RECEIVED

9:17 am, Oct 29, 2010

Alameda County
Environmental Health

October 18, 2010

Jerry Wickham Alameda County Environmental Health Svcs 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Transmittal Letter

Site Location:

Springtown Gas

909 Blue Bell Drive, Livermore, CA 94551

Dear Mr. Wickham:

On behalf of Aminifilibadi Masood & Amini Sharbano, Geological Technics Inc. (GTI) prepared the 2nd Semi-Annual Groundwater Monitoring & Interim Remedial Effectiveness Report (2nd & 3rd Quarters), dated October 18, 2010 that was sent to your office via electronic delivery per Alameda County's guidelines on October 29, 2010.

I declare under penalty of law that the information and/or recommendations contained in the above referenced document or report is true and correct to the best of my knowledge.

Respectfully submitted,

Aminifilibadi Masood/Amini Sharbano

Property Owner 909 Blue Bell Drive Livermore, CA 94551

REPORT

Groundwater Monitoring (2nd & 3rd Quarters 2010) & Interim Remedial Effectiveness

> Springtown Gas 909 Bluebell Drive Livermore, California

> > Project No. 1409.2 October 18, 2010

Prepared for:
Masood Amini Filibadi and Shahrbano Amini
909 Bluebell Drive
Livermore, California 94551

Prepared by:
Geological Technics Inc.
1172 Kansas Avenue
Modesto, California 95351
(209) 522-4119
www.gtienv.com

Geological Technics Inc._

1172 Kansas Avenue Modesto, California 95351 (209) 522-4119/Fax (209) 522-4227 www.gtienv.com

October 18, 2010

Project No.:

1409.2

Project Name:

Springtown Gas (Bluebell)

Masood Amini Filibadi and Shahrbano Amini Springtown Gas 909 Bluebell Drive Livermore, California 94551

RE: Report –Groundwater Monitoring (2nd & 3rd Quarter 2010) & Interim Remedial Effectiveness Springtown Gas, 909 Bluebell Drive, Livermore, California

Dear Masood Amini Filibadi and Shahrbano Amini:

Geological Technics Inc. (GTI) has prepared the following Report for the 2nd and 3rd Quarter 2010 groundwater monitoring events performed on June 25, and August 24, 2010 at Springtown Gas, 909 Bluebell Drive, Livermore, California. This report also includes an evaluation of the effectiveness of the interim remedial action and recommendations, as directed by Alameda County Environmental Health (ACEH) in correspondence dated August 25, 2010.

If you have any questions, please do not hesitate to call me at (209) 522-4119.

Respectfully submitted,

Tamorah Bryant, P.E.

cc: Jerry Wickham - ACEHS

USTCFP

TABLE OF CONTENTS

1.	EXECUTIVE SUMMARY	
2.	PHYSICAL SETTING	2
3.	GROUNDWATER MONITORING	3
	3.1. 2nd Quarter	3
	3.2. 3 rd Quarter	3
	3.3. Groundwater Sampling Procedure	3
	3.4. Laboratory Analyses	4
4.	GROUNDWATER MONITORING FINDINGS	5
5.	REMEDIAL EFFECTIVENESS	6
	5.1. Hydrogen Peroxide Pilot Study	
	5.2. Impact on D.O. Concentrations	
	5.3. Impact on Contamination Concentrations	6
	5.4. Environmental Screening Levels	
	5.5. Opinion of Effectiveness	7
	5.6. Further Interim Action	
6.	CONCLUSIONS AND RECOMMENDATIONS	
7.	LIMITATIONS	
8.	Signatures CERTIFICATION	10
	<u>FIGURES</u>	
VICI	INITY MAP	1
GRC	OUNDWATER GRADIENT MAP (2 nd Quarter 2010)	2 3
	OUNDWATER GRADIENT MAP (3 rd Quarter 2010)	4
	OUNDWATER GRADIENT ROSE DIAGRAM	5
	BE CONTOUR MAP (3 rd Quarter 2010)	6
IBA	A CONTOUR MAP (3 rd Quarter 2010)	0
	APPENDICES	
SUM	MMARY TABLES	A
	Table 1: Summary of Groundwater Elevation	
	Table 2: Summary of Groundwater Analytical Data	
	Table 3: Summary of Water Quality Parameter Data	
	Table 4: Summary of Monitoring Well Completion Data	
	Table 5: Summary of Hydrogen Peroxide Injections	
CER	RTIFIED LABORATORY ANALYTICAL REPORTS	В
	DUNDWATER MONITORING FIELD LOGS	C

i

Geological Technics Inc._

1172 Kansas Avenue Modesto, California 95351 (209) 522-4119/Fax (209) 522-4227

REPORT

Groundwater Monitoring (2nd & 3rd Quarter 2010) & Interim Remedial Effectiveness

Springtown Gas 909 Bluebell Drive Livermore, California

Project No. 1409.2 October 18, 2010

1. EXECUTIVE SUMMARY

This report summarizes the results of the 2nd and 3rd Quarter 2010 groundwater monitoring and sampling events that took place on June 25 and August 24, 2010 at Springtown Gas, 909 Bluebell Drive, Livermore, Alameda County, California (Site), and includes an evaluation of the interim remedial effectiveness as directed by Alameda County Environmental Health (ACEH) in correspondence dated August 25, 2010.

The groundwater trend was observed to be variable for both monitoring events. Laboratory analytical data from the 2nd quarter 2010 event indicated that that the four new wells were non-detect for all constituents analyzed. Third quarter 2010 analytical data indicated the presence of MtBE and TBA only, in concentrations at or near historic lows for the site.

An evaluation of Interim Remedial Activities included a review of dissolved oxygen concentrations measured before and after conducting the hydrogen peroxide pilot test, and a comparison of post pilot test contaminant levels to Environmental Screening Levels. It is GTI's opinion that the interim remedial activities consisting of hydrogen peroxide injection pilot test was successful and that ISCO is an effective technology to address the MTBE and TBA contamination in the subsurface.

Based on 3rd quarter groundwater monitoring and sampling data, it is recommended that additional pilot study work include hydrogen peroxide injection into MW-2 and MW-102, which have been hypothesized to be located up-gradient of a small pocket of contamination that may be sourcing the groundwater plume along with the initial pilot test injection wells STMW-1/101, STMW-3/103, and P-1.

GTI will commence the additional Pilot Test work upon review and approval by ACEH.

2. PHYSICAL SETTING

The Site is situated in a mixed commercial-residential land-use area of Livermore, California, located at the southeast corner of the intersection of Springtown Boulevard and Blue Bell Drive, approximately 300 feet north of westbound Interstate 580 (Figure 1). The Site occupies approximately 0.74 acres, and is currently an operating service station with minimart retailing Chevron-branded gasoline and diesel fuel products. The site contains one UST cluster in the east portion of the Site consisting of one 12,000 gallon capacity unleaded gasoline UST, and a 12,000 gallon capacity segmented UST storing 6,000 gallons of diesel and 6,000 gallons of premium unleaded. A single story mini-mart is located on the southern portion of the Site, and six canopied fuel dispensers are located in the north portion of the Site. No automotive repair facilities exist on the Site. The Site is adjoined by Springtown Boulevard on the west, motel properties on the south and east, and Bluebell Drive on the north. Retail land-use is located on the north side of Bluebell Drive, with residential land-use beyond to the north and northeast.

The Site is located at an elevation of approximately 520 feet above mean sea level in the northeast portion of the Livermore Valley (USGS 1981). The Livermore Valley is a structural basin bounded by faults on the east and west that create the Altamont Hills uplift on the east and the Pleasanton Ridge uplift on the west (CDM&G, 1991). The shallow Pleistocene to recent sediments underlying the basin consist of alluvial deposits that have been informally divided into upper and lower units. The sediment, ranging from coarse-grained gravel to fine-grained mud, was transported northward from the Northern Diablo Range on the southern margin of the basin and deposited in an alluvial fan, braided stream, and lacustrine environments. Because the sediment prograded northward, the coarse-grained sediment makes up nearly 80% of the sediment in the southern part of the basin, but northward and westward interfingers with clay deposits that may be as much as 30 feet thick (DWR, 2004).

Drainages from the south, north, and east converge in the western part of the basin and flow out of the basin toward the Sunol Valley and Alameda Creek west of Pleasanton Ridge. The nearest surface drainages are Las Positas Creek located approximately 1 mile west of the Site, and Cavetano Creek 2 miles west of the Site (USGS 1981).

The alluvial fan, braided stream and lacustrine deposits are the principal aquifers for most domestic and irrigation purposes in the Livermore Valley, although the underlying Livermore Formation, which may be as much as 4,000 feet thick, yields significant quantities of groundwater on the eastern side of the basin (DWR 2004).

3. GROUNDWATER MONITORING

3.1. 2nd Quarter

The average groundwater elevation for the 2nd Quarter 2010 monitoring event was 511.46 feet AMSL on June 25, 2010, which corresponds to approximately 8.17 feet below ground surface (bgs). This elevation represents a decrease of 1.05 feet since the 1st Quarter 2010 monitoring event (February 10, 2010). The groundwater gradient for the 2nd Quarter 2010 groundwater monitoring event was variable, which is consistent with the previous groundwater monitoring events.

The gradient direction for the 2nd Quarter 2010 groundwater monitoring event is shown on Figure 2 (Groundwater Gradient Map 2nd Quarter). The calculated groundwater gradient and flow direction is shown on Figure 4 (Groundwater Gradient Rose Diagram). The groundwater elevation data are summarized in Table 1 included in Appendix A. Table 4 provides a summary of monitoring well completion data.

3.2. 3rd Quarter

The average groundwater elevation for the 3rd Quarter 2010 monitoring event was 511.25 feet AMSL on August 24, 2010, which corresponds to approximately 8.38 feet below ground surface (bgs). This elevation represents a decrease of 0.21 feet since the 2rd Quarter 2010 monitoring event (June 25, 2010), and an elevation increase of 0.46 feet since the 3rd Quarter 2009 monitoring event (September 8, 2009). The groundwater gradient for the 3rd Quarter 2010 groundwater monitoring event was variable, which is consistent with the previous groundwater monitoring events.

The gradient direction for the 3rd Quarter 2010 groundwater monitoring event is shown on Figure 3 (Groundwater Gradient Map 3rd Quarter). The calculated groundwater gradient and flow direction is shown on Figure 4 (Groundwater Gradient Rose Diagram). The groundwater elevation data are summarized in Table 1 included in Appendix A. Table 4 provides a summary of monitoring well completion data.

3.3. Groundwater Sampling Procedure

The 2nd Quarter 2010 groundwater monitoring event was conducted on June 25, 2010. GTI monitored groundwater elevations and collected groundwater samples for analyses from the newly installed wells (MW-101, MW-102, MW-103, and MW-4).

The 3rd Quarter 2010 groundwater monitoring event was conducted on August 24, 2010. GTI monitored groundwater elevations and collected groundwater samples for analyses from eight groundwater monitoring wells on the Site.

Depth to water in each monitoring well was measured and recorded before groundwater samples were collected from the wells. The wells being sampled were purged of at least three well volumes of stagnant water using dedicated Waterra® foot valves and tubing. Purging continued until the temperature, conductivity, and pH of the groundwater stabilized (<10% variation in three consecutive readings), indicating that formation water representative of aquifer conditions was entering the wells. These water quality parameters were measured at intervals of each well volume purged. All purge water was placed in a 55-gallon DOT drums and secured on-site.

Before a sample was collected from each well, the water level was allowed to recharge to at least 80% of its initial level. Dedicated tubing attached to Waterra® foot valves were used to collect groundwater samples from the monitoring wells. The samples were placed into 40-ml VOA vials preserved with hydrochloric acid. Care was taken to minimize sample aeration during sample collection and avoid generating headspace. All samples were checked for the presence of headspace, labeled, recorded on a chain-of-custody, and placed in an ice chest cooled to 4°C for transport to the analytical laboratory. All non-disposable sampling equipment was decontaminated in an Alconox solution and double-rinsed with de-ionized water before initial use and between uses at each monitoring well.

Groundwater monitoring field logs are included in Appendix C. A summary of Water Quality Parameter Data is included in Table 3 of Appendix A.

3.4. Laboratory Analyses

The groundwater samples collected on June 25, and August 24, 2010, were delivered to Argon Laboratories of Ceres, California (ELAP #2359) for the following analyses:

The laboratory utilized USEPA Method 8260B to analyze the groundwater samples for the following constituents:

- Total petroleum hydrocarbons as gasoline (TPH-G),
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX),
- Methyl tertiary butyl ether (MtBE), and,
- Di-isopropyl alcohol (DIPE), ethyl-tertiary butyl ether (EtBE), tert-amyl-methyl ether (TAME), 1,2-dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), tert butyl alcohol (TBA), methanol and ethanol

The results and detection limits for the above analyses are listed in Table 2 included in Appendix A. Certified analytical reports are included in Appendix B.

As required under AB2886, the groundwater elevation and laboratory analytical data were submitted electronically to GeoTracker on October 25, 2010 for the groundwater elevation data for both $2^{\rm nd}$ and $3^{\rm rd}$ quarters, (confirmation numbers 8845826148 & 4834060609), and the laboratory analytical data for both $2^{\rm nd}$ and $3^{\rm rd}$ quarters (confirmation numbers 5506677091& 8845826148).

4. GROUNDWATER MONITORING FINDINGS

The results of the 2nd Quarter 2010 groundwater monitoring event indicate the following:

- The average groundwater elevation at the site was 511.46 feet AMSL and the groundwater flow was variable for this event.
- The results of analyses conducted on groundwater samples collected from the four monitoring wells (STMW-101, STMW-102, STMW-103 and MW-4) were found to be below laboratory reporting limits for all constituents analyzed.

The results of the 3rd Quarter 2010 groundwater monitoring event indicate the following:

- The average groundwater elevation at the site was 511.25 feet AMSL and the groundwater flow was variable for this event.
- The results of analyses conducted on groundwater samples collected from all eight monitoring wells (STMW-1, STMW-2, STMW-3, P-1, MW-4, MW-101, MW-102, and MW-103) did not detect total petroleum hydrocarbons as gasoline (TPH-G) above laboratory reporting limits.
- Concentrations of Methyl tertiary Butyl Ether (MtBE) were detected in groundwater samples collected from two of the sites eight monitoring wells STMW-1 (5.9 μg/l), and P-1 (5.4 μg/l). Figure 5 is a contour map showing the distribution of MtBE concentrations for the 3rd Quarter 2010 monitoring event. The contours suggest the MtBE groundwater plume is localized in the vicinity of monitoring well P-1.
- Concentrations of Tert-Butyl Alcohol (TBA) were detected in groundwater samples collected from three of the sites eight monitoring wells sampled during the 3rd quarter of 2010 STMW-1 (87 μg/l), STMW-2 (33 μg/l), and P-1 (120 μg/l). Figure 6 is a contour map showing the distribution of TBA concentrations for the 3rd Quarter 2010 event. The contours mirror the same conclusion as for the MtBE groundwater plume, the TBA groundwater plume is localized in the vicinity of monitoring well P-1.
- Concentrations of di-isopropyl alcohol (DIPE), ethyl-tertiary butyl ether (EtBE), tertamyl-methyl ether (TAME), 1,2-dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), methanol, ethanol, benzene, toluene, ethylbenzene and total xylenes (BTEX) were not detected in groundwater samples collected from the sites eight monitoring wells.
- Concentrations of MtBE and TBA reported in the groundwater samples collected from the sites four monitoring wells STMW-1, STMW-2, STMW-3 and P-1 are at or near historic or near lows for the 3rd quarter of 2010.

 Dissolved Oxygen (DO) concentrations increased in all wells that were incorporated into the hydrogen peroxide pilot test (see following discussion) except for MW-101, and MW-103, which are screened in the course grained sand unit.

5. REMEDIAL EFFECTIVENESS

5.1. Hydrogen Peroxide Pilot Study

A summary of the hydrogen peroxide injections pilot test activities has been included in the *Additional Site Characterization and Interim Remedial Action Report* prepared by GTI, dated July 30, 2010.

The hydrogen peroxide injection pilot test consisted of a total of 16 injection events conducted from March 30, 2010 through July 21, 2010. Table 5 of Appendix A contains a summary of the volumes, concentrations, wells, and dates of application for each of the injection events.

5.2. Impact on D.O. Concentrations

The following table includes a summary of the D.O. concentrations that were monitored in the field before during and after the injection events. Please note that STMW-2 did not receive any hydrogen peroxide, but has been included for comparison purposes.

Location	Pre Remedial DO Level (2/10/2010)	Mid Remedial DO Level (4/7/10)	Post Remedial DO level (8/24/10)
STMW-1	6.77	46.5	43.37
STMW-2	0.87	3.65	0.53
STMW-3	0.89	44.26	45.92
P1	0.85	41.56	25.20

It appears that each of the injection wells has experienced a significant increase in D.O. concentrations which appears to have sustained the increase at least a month after the pilot test injections had stopped.

MW-101, and MW-103 did not exhibit the sustained increase in D.O., and it is hypothesized that the wells are screened in a coarse grained unit, which has increased potential for transport, and the benefit of the hydrogen peroxide injection may have moved down gradient towards the small amount of contamination identified in the vicinity of GP-15.

5.3. Impact on Contamination Concentrations

The third quarter groundwater monitoring event analytical data has indicated historic or near historic lows of contaminant concentrations for the site. It is important to note that the third

quarter groundwater monitoring event was conducted more than 30 days following the last injection event, to allow for potential rebound of concentrations. The following table is a summary of the MtBE and TBA concentrations reported to be present before and after the pilot test injection events:

	1977	tBE	ΤΒΑ (μg/l)					
Location	Pre Pilot Test (2/10/10)	Post Pilot Test (8/24/10)	Pre Pilot Test (2/10/10)	Post Pilot Test (8/24/10)				
STMW-1	32	5.9	28	87				
STMW-2	< 0.5	< 0.5	110	33				
STMW-3	44	< 0.5	610	<5.0				
P-1	110	5.4	5,200	120				

Based on the above analytical data it appears that the pilot test was effective at reducing MtBE and TBA concentrations.

5.4. Environmental Screening Levels

Maximum concentrations reported in the 3rd quarter 2010 groundwater monitoring event were compared to <u>Table F-1a</u>. Groundwater Screening Levels (groundwater is a current or <u>potential drinking water resource</u>) of *Screening for Environmental Concerns with Contaminated Soil and Groundwater Interim Final – November 2007 (Revised May 2008)* prepared by the California Regional Water Quality Control Board San Francisco Bay Region.

COC	3 rd Qtr 2010 Max Conc. (μg/l)	Table F-1a ESL (μg/l)
TPH-Gasoline	ND<50	100
MtBE	5.9	5
TBA	120	12

MtBE was reported to be above ESLs (based on taste and odor) in P-1 only, but was below the California Drinking Water Maximum Contaminant Level of 13 μ g/l in all wells. TBA was reported to be present above ESLs (based on drinking water toxicity) in wells STMW-1, STMW-2, and P-1.

5.5. Opinion of Effectiveness

It is GTI's opinion that the interim remedial activities consisting of hydrogen peroxide injection pilot test was successful and that ISCO is an effective technology to address the contamination in the subsurface.

It is hypothesized that a small amount of residual contamination located in the northwest area of the former USTs (in the vicinity of SB-8) may be sourcing the groundwater plume that is being reported in samples collected from P1 and STMW-1.

5.6. Further Interim Action

In order to achieve contaminant levels below ESL's, it is recommended that additional pilot study work be conducted, including injecting into STMW-2. STMW-2 and MW-102 are believed to be located up-gradient of a small pocket of contamination that may be sourcing the groundwater plume. It is proposed that introducing hydrogen peroxide into STMW-2 and MW-102 will address the contamination present in the vadose zone and any contamination in the deeper interval. With MW-102 screened in the coarser grained unit, it is expected to have a large radius of influence.

Further hydrogen peroxide pilot study is proposed, consisting of 12 injection events, including STMW-1, STMW-2, STMW-3, P-1, MW-101, MW-102, and MW-103.

Based on the results of the previous pilot testing, GTI has determined that the wells do not all accept the 50 gallons initially proposed. Wells STMW-1 and P-1 have been observed to accept 10 gallons or less. In order to maximize the effectiveness of the injections, it is proposed that a 10% solution of hydrogen peroxide be injected into each of these wells.

The remaining wells will receive 50 gallons of 7% hydrogen peroxide solution, with the exception of STMW-3, which has been observed to accept 30 gallons per injection event. Up to 50 gallons of water will be injected into each well following the hydrogen peroxide injection to assist with introducing the oxidizing agent into the formation. It is proposed that field parameters such as D.O. and ORP be collected prior to the 1st injection event. Field parameters for all wells will be collected during the 4th quarter 2010 groundwater monitoring event, for an indication of mid-pilot test conditions.

It is anticipated that the 12 injection events can be performed before the next semi-annual groundwater monitoring event, including a minimum two week cessation prior to the 4th quarter 2010 groundwater monitoring event of the new monitoring wells, as directed by ACEH. The 1st quarter 2011 groundwater monitoring event will be scheduled a minimum of 30 days following the last injection event, to allow for potential rebound. Field parameters from this event will provide post study conditions.

If the pilot study continuation is successful, it is anticipated that further reductions in MtBE and TBA concentrations will be observed, and Pre, Mid, and Post study field parameters such as D.O. and ORP are expected to be elevated and potentially sustained in the subsurface following pilot test work. Further, if the pilot study is successful, at its conclusion it is anticipated that the site can be considered for low risk closure.

6. CONCLUSIONS AND RECOMMENDATIONS

Conclusions:

- The historical groundwater trend is variable, although in the past a northwesterly direction has been observed.
- The results of analyses conducted on groundwater samples collected during the 2nd quarter of 2010 from the four new monitoring wells (STMW-101, STMW-102, STMW-103 and MW-4) were found to be below laboratory reporting limits for all constituents analyzed (ND).
- The results of analysis for the third quarter 2010 sampling event indicated that all eight
 wells were ND for TPH-g, with MTBE reported to be present in two wells and TBA
 reported to be present in three wells at or near historic lows for the site.
- Interim Remedial Activities included a hydrogen peroxide injection pilot test, which
 consisted of a total of 16 injection events conducted from March 30, 2010 through July
 21, 2010.
- It appears that the injection wells have experienced a significant increase in D.O. concentrations which appears to have sustained the increase at least a month after the pilot test injections had stopped.
- Post pilot test monitoring has indicated that MtBE was reported to be below ESLs (based on taste and odor) in all wells except for P-1, and was below the California Drinking Water Maximum Contaminant Level of 13 μg/l in all wells; and TBA was reported to be present above ESLs (based on drinking water toxicity) in wells STMW-1, STMW-2, and P-1.
- It is GTI's opinion that the interim remedial activities consisting of hydrogen peroxide injection pilot test was successful and that ISCO is an effective technology to address the MTBE and TBA contamination in the subsurface.
- It is hypothesized that a small amount of residual contamination located in the northwest area of the former USTs (in the vicinity of SB-8) may be sourcing the groundwater plume that is being reported in samples collected from P1 and STMW-1.

Recommendations

- Based on 3rd quarter groundwater monitoring and sampling data, it is recommended that additional pilot study work include hydrogen peroxide injection into MW-2 and MW-102, which have been hypothesized to be located up-gradient of a small pocket of contamination that may be sourcing the groundwater plume along with the initial pilot test injection wells STMW-1/101, STMW-3/103, and P-1.
- Continue semi-annual groundwater monitoring as directed in the ACEHS correspondence dated July 2009, and quarterly monitoring of the newly installed wells through the 1st quarter 2011 groundwater monitoring event.

7. LIMITATIONS

This report was prepared in accordance with the generally accepted standard of care and practice in effect at the time Services were rendered. It should be recognized that definition and evaluation of environmental conditions is an inexact science and that the state or practice of environmental geology/hydrology is changing and evolving and that standards existing at the present time may change as knowledge increases and the state of the practice continues to improve. Further, that differing subsurface soil characteristics can be experienced within a small distance and therefore cannot be known in an absolute sense. All conclusions and recommendations are based on the available data and information.

The tasks proposed and completed during this project were reviewed and approved by the local regulatory agency for compliance with the law. No warranty, expressed or implied, is made.

8. Signatures CERTIFICATION

This report was prepared by:

Michael van den Enden, B.S.c

Geology

This report was prepared under the direction of:

Tamorah Bryant, P.E.

No. 67205

Exp. 9/30/12

PROFESSIONAL CITY

No. 67205

Exp. 9/30/12

Scale: 1"=30"

14092 site plan

File:

SPRINGTOWN GAS (BLUEBELL) 909 BLUEBELL DRIVE INFRMORE CA

Page 1 of 1

File: 14092 site plan

LIVERMORE, CA

Page 1 of 1

By:	MV
Job No:	1409.2 Date: 09/10/10
Scale:	1"=30'
File:	14092 site plan

SPRINGTOWN GAS (BLUEBELL) 909 BLUEBELL DRIVE LIVERMORE, CA

Job No: 1409.2 Date: 09/10/10 Scale: 1"=30" File: 14092 site plan

SPRINGTOWN GAS (BLUEBELL) 909 BLUEBELL DRIVE LIVERMORE, CA

Page 1 of 1

Appendix A

Summary Tables

Table 1 Summary of Groundwater Elevation

Springtown Gas 909 Bluebell Drive Livermore, California

Date		STMW-1	STMW1	STMW-2	STMW2	STMW-3	STMW3	P-1	P-1	MW-4	MW-4	MW-101	MW-101	MW-102	MW-102	MW-103	MW-103	Avg GW	AVG GW	GW G	radient
		GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	GW Elev	DTW	Elev	DTW		Directio
I	top of casing*	517.55		519.59		520.37		518.93		521.98		518.42		520.13		520.07				ft/ft	
9/4/2007		510.97	6.58	511.59	8.00	510.85	9.52	- 1	-		-	. 1				- 1		511.14	-	0.006	N66°W
12/10/2007		511.29	6.26	511.59	8.00	511.25	9.12	- 1	-		-	1	-	-	-	-	- 2	511.38	-	0.004	N62°W
9/25/2008		510.69	6.86	510.9	8.69	510.65	9.72	- T	-	I - I					- 2	- 1		510.75	21	0.003	N54°W
11/20/2008		510.81	6.74	511.17	8.42	510.82	9.55			-			- The	2		-	- 1	510.93	-	0.004	N60°W
12/29/2008		511.60	5.95	511.9	7.69	511.50	8.87	-	- 2	-	-4		-	2	-	-	- 82	511.67	2	0.004	N64°W
3/10/2009		512.60	4.95	512.99	6.60	512.44	7.93	513.20	5.73	- 1		34	-	-	- 2	-	*	512.81	6.30	variable	variable
6/10/2009		510.90	6.65	511.21	8.38	510.84	9.53	511.50	7.43			(-	-	-	*	-		511.11	8.00	variable	variable
9/8/2009		510.62	6.93	510.78	8.81	510.59	9.78	511.17	7.76	(40)	-	1 (-)		-	*	-		510.79	8.32	variable	variable
2/10/2010		512.39	5.16	512.68	6.91	512.00	8.37	512.95	5.98	-	- 35	2.00	- E	- 1	. 5	-		512.51	6.61	variable	variable
6/25/2010		511.19	6.36	511.43	8.16	511.06	9.31	511.73	7.20	512.09	9.89	511.36	7.06	511.47	8.66	511.38	8.69	511.46	8.17	variable	variable
8/24/2010		511.15	6,40	511.38	8 21	511.01	9.36	510.72	8.21	511.98	10.00	511.21	7.21	511.31	8.82	511.23	8,84	511.25	8.38	variable	variable

^{*}TOC elevations surveyed on 9/06/07 by Muir Consutling Inc. for wells STMW-1, 2, 3, & P-1 NAD 83 and NGVD 29
*TOC elevations surveyed on 7/08/10 by Benchmark Engineering for wells MW-101, 102, 103, & MW-4
**Gradient and slope determined from computer generated contours
*-" Well P-1 not surveyed until 2/03/09

Table 2 **Summary of Groundwater Analytical Data**

Springtown Gas 909 Bluebell Drive Livermore, California

MONITORING WELL	Date	TPHg	В	T	E	х	MtBE	TBA	DIPE	EtBE	TAME	1,2-DCA	EDB	Methanol	Ethano
		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
STMW-1	9/4/2007	220	<10	<10	<10	<10	850	6,500		-					-
GIVEN AND THE	12/10/2007	210	<5	<5	<5	<5	540	4,200		5.45			-	-	
	9/25/2008	230	< 0.5	< 0.5	< 0.5	<1.0	204	704	< 0.5	< 0.5	0.6	< 0.5	< 0.5	<5	<20
	11/20/2008	<50	<0.5	<0.5	<0.5	<1.0	14	930	<0.5	<0.5	< 0.5			-	
	12/29/2008	<50	<0.5	<0.5	<0.5	<1.0	15	1,000	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	<5
	3/10/2009	<50	<0.5	<0.5	<0.5	<1.0	29	3,000	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
	6/10/2009	<50	<0.5	<0.5	<0.5	<1.0	60	3,800	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
	9/8/2009	<50	<0.5	<0.5	<0.5	<1.0	52	190	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
	2/10/2010	<50	<0.5	<0.5	<0.5	<1.0	32	28	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
	6/25/2010	-50	~0.0	V0.0	~0.5	~1.0	32	20	~0.0	40.5	-0.0	40.5	40.0	-50	-0
	8/24/2010	<50	<0.5	<0.5	<0.5	<1.0	5.9	87	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
STMW-2	0/4/2007	<50	<0.5	<0.5	<0.5	<0.5	<1	42							-
SIMWY-Z	9/4/2007	<50	<0.5	<0.5	<0.5	<0.5	<1	83		/all					
		100,074	<0.5	<0.5	<0.5	<1	<0.5	71	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<20
	9/25/2008	<50	250000					190		<0.5	<0.5	~0.5	~0.5	-5	-20
	11/20/2008	90	1.7	6.9	1.7	7.6	2.2	100000	<0.5		2000	<0.5	<0.5	<50	<5
	12/29/2008	<50	<0.5	<0.5	<0.5	<1.0	<0.5	56	<0.5	<0.5	<0.5	<0.5			<5
	3/10/2009	<50	<0.5	<0.5	<0.5	<1.0	1.5	96	<0.5	<0.5	<0.5		<0.5	<50	
	6/10/2009	<50	<0.5	<0.5	<0.5	<1.0	1.1	43	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
	9/8/2009	<50	<0.5	<0.5	<0.5	<1.0	<0.5	45	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
	2/10/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	110	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
	6/25/2010				-0.5			-	-0.5	-0.5	-0.5	-0.5	-0.5	-50	<u></u>
	8/24/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	33	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
STMW-3	9/4/2007	59	<1	<1	<1	<1	160	120		-				-	
	12/10/2007	<50	<0.5	<0.5	<0.5	<0.5	17	86		-		1 1		-	
_	9/25/2008	<50	<0.5	< 0.5	<0.5	<0.5	67	31.7	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<20
	11/20/2008	<50	<0.5	<0.5	<0.5	<1.0	12	<5	<0.5	<0.5	<0.5	- 2000			•
	12/29/2008	<50	<0.5	<0.5	< 0.5	<1.0	2.2	<5.	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
	3/10/2009	<50	<0.5	<0.5	<0.5	<1.0	3	95	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
	6/10/2009	<50	<0.5	<0.5	<0.5	<1.0	8.3	45	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	<5
	9/8/2009	<50	< 0.5	<0.5	< 0.5	<1.0	11	29	<0.5	<0.5	<0.5	<0.5	< 0.5	<50	<5
	2/10/2010	<50	< 0.5	< 0.5	< 0.5	<1.0	44	610	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<50	<5
	6/25/2010						-			-					-
	8/24/2010	<50	<0.5	<0.5	<0.5	<1.0	ND<0.5	ND<5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
P1	11/20/2008	<50	<5	<5	<5	<10	180	2,300	<5	<5	<5			-	
	12/29/2008	<50	< 0.5	< 0.5	< 0.5	<1.0	120	3,900	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<50	<5
	3/10/2009	<50	< 0.5	< 0.5	< 0.5	<1.0	240	9,300	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<50	<5
	6/10/2009	<50	< 0.5	< 0.5	< 0.5	<1.0	250	6,300	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<50	<5
	9/8/2009	<250	<2.5	<2.5	<2.5	<5	180	2,900	<2.5	<2.5	<2.5	<2.5	<2.5	<250	<25
	2/10/2010	<250	<2.5	<2.5	<2.5	<5	110	5,200	<2.5	<2.5	<2.5	<2.5	<2.5	<250	<25
	6/25/2010	10-0					-				-				
	8/24/2010	<50	<0.5	<0.5	<0.5	<1.0	5.4	120	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
MW-4	6/25/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
A110000	8/24/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
MW-101	6/25/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
	8/24/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
MW-102	6/25/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
VON PRESTRE	8/24/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
MW-103	6/25/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
	8/24/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<5
and the second s			THE RESERVE TO SERVE	79.5	And the second second	The second second									

Total petroleum hydrocarbons as gasoline
Total petroleum hydrocarbon
Benzene
Toluene
Ethylbenzene
Total xylenes
Methyl tertiary butyl ether
Tert-butyl alcohol
Di-isopropyl ether
Ethyl-tertiary butyl ether
Tert-amyl-methyl ether
1,2-Dichloroethane
1,2-Dibromoethane
below ground surface
micrograms per liter
Not analyzed or not reported TPHd
B
T
E
X
MIBE
TBA
DIPE
EIBE
TAME
1,2-DCA
EDB
bgs
ug/l

Table 3 Summary of Water Quality Parameter Data

Springtown Gas 909 Bluebell Drive Livermore, California

Monitoring Well			STI	VIW-1					ST	VIW-2					STI	NW-3		
Date	рН	E.C.	°C	°F	ORP	DO	рН	E.C.	°C	°F	ORP	DO	рН	E.C.	°C	°F	ORP	DO
9/4/2007	6.37	1462	21.4	70.5	NM	NM	6.43	1405	21.1	70.0	NM	NM	6.14	2115	20	68.0	NM	NM
12/10/2007	6.92	1090	18.5	65.3	NM	NM	7.02	1074	19.8	67.6	NM	NM	6.77	1267	NM	NM	NM	NM
9/25/2008	7.22	1706	21.63	70.9	48.3	0.38	7.15	1652	21.26	70.3	34	0.7	6.84	1838	20.32	68.6	60.2	0.84
10/2/2008	7.16	1701	21.57	70.8	45.6	0.68	7.07	1650	21.14	70.1	51.8	0.58	6.82	1892	20.47	68.8	156	1.81
10/9/2008	NM.	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
10/16/2008	7.53	970	21.48	70.7	71.6	36.39	7.07	1611	21.35	70.4	56.7	0.21	7.38	656	20.64	69.2	66.6	37.4
10/23/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
10/30/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	MM	NM	NM	NM	NM	NM	NM	NM	NM
11/6/2008	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
11/20/2008	7.36	1554	20.74	69.3	208.3	11.17	7.20	1782	21.21	70.2	211.4	1.13	7.88	771	20.63	69.1	194.6	15.53
12/29/2008	7.78	1685	18.61	65.5	168.8	41.24	7.64	1577	20.21	68.4	66.9	2.04	7.55	1196	19.69		141.5	32.54
3/10/2009	7.23	1861	16.14	61.1	401.3	20.56	7.31	1600	17.94	64.3	372.9	0.67	7.10	1555	17.29	63.1	509.3	7.17
6/10/2009	7.24	1624	18.76	65.8	469.2	12.69	7.30	1548	18.58	65.4	348.7	0.38	7.08		17.97	64.3	557.5	2.17
9/8/2009	7.07	NM	21.66	71.0	544.3	NM	7.22	NM	20.88	69.6	250.1	NM	6.83	NM	20.15	68.3	564.2	NM
2/10/2010	7.35	1660	17.09	62.8	531.3	6.77	7.30	1618	18.71	65.7	394.4	0.87	7.20	1642	17.99	64.4	469.0	0.89
6/25/2010	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
8/24/2010	6.44	707	20.79	69.4	195.7	43.37	6.32	1730	20.45	68.8	135.9	0.53	6.61	384	20.10	68.2	255.2	45.92
Monitoring Well			F	2-1					V	E-1					V	E-2		
Date	рН	E.C.	°C	°F	ORP	DO	рН	E.C.	°C	٩F	ORP	DO	pН	E.C.	°C	°F	ORP	DO
9/4/2007	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
12/10/2007	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	1 4141				E0.0	1.19	00	2072	22.8	73.0	-44.9	3.07	7.1	1933	21.67			6.48
9/25/2008	7.2	1941	20.6	69.1	50.3	1.19	6.9	2012		73.0				1000	21.07	71.0	-13.6	
9/25/2008 10/2/2008			20.6	69.1 68.8	59.6	1.18	7.18	1780	22.02	71.6	2.1	8.29	NM	NM	NM	71.0 NM	-13.6 NM	NM
	7.2	1941							11,740,000	110000000000000000000000000000000000000					NM NM	NM NM		NM NM
10/2/2008	7.2 7.1	1941 1893	20.44	68.8	59.6	1.18	7.18	1780	22.02	71.6	2.1 NM 3.3	8.29 NM 1.53	NM	NM NM 1912	NM NM 21.38	NM NM 70.5	NM NM -1.1	NM NM 7.25
10/2/2008 10/9/2008	7.2 7.1 NM	1941 1893 NM	20.44 NM	68.8 NM	59.6 NM	1.18 NM	7.18 NM	1780 NM	22.02 NM	71.6 NM	2.1 NM	8.29 NM 1.53 NM	NM NM	NM NM	NM NM 21.38 19.91	NM NM	NM NM -1.1 49.6	NM NM 7.25 8.48
10/2/2008 10/9/2008 10/16/2008	7.2 7.1 NM 7.75	1941 1893 NM 1285	20.44 NM 20.61	68.8 NM 69.1	59.6 NM 85.9	1.18 NM 18.23	7.18 NM 6.84	1780 NM 1668	22.02 NM 22.29	71.6 NM 72.1	2.1 NM 3.3 NM NM	8.29 NM 1.53 NM NM	NM NM 7.16	NM NM 1912 1924 1052	NM NM 21.38 19.91 20.05	NM NM 70.5 67.8 68.1	NM NM -1.1 49.6 164.0	NM NM 7.25 8.48 172.1
10/2/2008 10/9/2008 10/16/2008 10/23/2008	7.2 7.1 NM 7.75 NM	1941 1893 NM 1285 NM	20.44 NM 20.61 NM	68.8 NM 69.1 NM	59.6 NM 85.9 NM	1.18 NM 18.23 NM	7.18 NM 6.84 NM	1780 NM 1668 NM	22.02 NM 22.29 NM	71.6 NM 72.1 NM	2.1 NM 3.3 NM	8.29 NM 1.53 NM	NM NM 7.16 7.42	NM NM 1912 1924	NM NM 21.38 19.91	NM NM 70.5 67.8	NM NM -1.1 49.6 164.0 183.5	NM NM 7.25 8.48
10/2/2008 10/9/2008 10/16/2008 10/23/2008 10/30/2008	7.2 7.1 NM 7.75 NM NM	1941 1893 NM 1285 NM NM	20.44 NM 20.61 NM NM	68.8 NM 69.1 NM	59.6 NM 85.9 NM NM	1.18 NM 18.23 NM NM	7.18 NM 6.84 NM NM	1780 NM 1668 NM NM	22.02 NM 22.29 NM NM	71.6 NM 72.1 NM NM	2.1 NM 3.3 NM NM NM NM 38.6	8.29 NM 1.53 NM NM NM NM	NM 7.16 7.42 7.81 7.13 6.89	NM 1912 1924 1052 1329 1593	NM NM 21.38 19.91 20.05 19.94 19.47	NM 70.5 67.8 68.1 67.9 67.0	NM NM -1.1 49.6 164.0 183.5 224.5	NM NM 7.25 8.48 172.1 9.77 9.09
10/2/2008 10/9/2008 10/16/2008 10/23/2008 10/30/2008 11/6/2008	7.2 7.1 NM 7.75 NM NM	1941 1893 NM 1285 NM NM NM	20.44 NM 20.61 NM NM	68.8 NM 69.1 NM NM	59.6 NM 85.9 NM NM	1.18 NM 18.23 NM NM	7.18 NM 6.84 NM NM	1780 NM 1668 NM NM	22.02 NM 22.29 NM NM	71.6 NM 72.1 NM NM	2.1 NM 3.3 NM NM	8.29 NM 1.53 NM NM	NM 7.16 7.42 7.81 7.13 6.89 NM	NM 1912 1924 1052 1329 1593 NM	NM NM 21.38 19.91 20.05 19.94 19.47 NM	NM 70.5 67.8 68.1 67.9 67.0 NM	NM NM -1.1 49.6 164.0 183.5 224.5 NM	NM NM 7.25 8.48 172.1 9.77 9.09 NM
10/2/2008 10/9/2008 10/16/2008 10/23/2008 10/30/2008 11/6/2008 11/20/2008	7.2 7.1 NM 7.75 NM NM NM NM	1941 1893 NM 1285 NM NM NM 1392	20.44 NM 20.61 NM NM NM 19.96	68.8 NM 69.1 NM NM NM 67.9	59.6 NM 85.9 NM NM NM	1.18 NM 18.23 NM NM NM NM 8.19	7.18 NM 6.84 NM NM NM NM 6.99 NM	1780 NM 1668 NM NM NM 1960 NM	22.02 NM 22.29 NM NM NM 18.91 NM	71.6 NM 72.1 NM NM NM 66.0 NM	2.1 NM 3.3 NM NM NM 38.6 NM	8.29 NM 1.53 NM NM NM 4.82 NM	NM NM 7.16 7.42 7.81 7.13 6.89 NM NM	NM NM 1912 1924 1052 1329 1593 NM NM	NM NM 21.38 19.91 20.05 19.94 19.47 NM NM	NM NM 70.5 67.8 68.1 67.9 67.0 NM NM	NM NM -1.1 49.6 164.0 183.5 224.5 NM NM	NM NM 7.25 8.48 172.1 9.77 9.09 NM NM
10/2/2008 10/9/2008 10/16/2008 10/23/2008 10/30/2008 11/6/2008 11/20/2008 12/29/2008	7.2 7.1 NM 7.75 NM NM NM 7.99 7.99	1941 1893 NM 1285 NM NM NM 1392 1766	20.44 NM 20.61 NM NM NM 19.96 18.99	68.8 NM 69.1 NM NM NM 67.9 66.2	59.6 NM 85.9 NM NM NM 180 285.5	1.18 NM 18.23 NM NM NM 8.19 43.92	7.18 NM 6.84 NM NM NM NM 6.99	1780 NM 1668 NM NM NM 1960 NM NM	22.02 NM 22.29 NM NM NM 18.91	71.6 NM 72.1 NM NM NM 66.0	2.1 NM 3.3 NM NM NM 38.6 NM	8.29 NM 1.53 NM NM NM 4.82	NM NM 7.16 7.42 7.81 7.13 6.89 NM NM	NM NM 1912 1924 1052 1329 1593 NM NM	NM NM 21.38 19.91 20.05 19.94 19.47 NM NM	NM NM 70.5 67.8 68.1 67.9 67.0 NM NM	NM NM -1.1 49.6 164.0 183.5 224.5 NM NM	NM NM 7.25 8.48 172.1 9.77 9.09 NM NM
10/2/2008 10/9/2008 10/16/2008 10/23/2008 10/30/2008 11/6/2008 11/20/2008 12/29/2008 3/10/2009	7.2 7.1 NM 7.75 NM NM 7.99 7.99 7.30	1941 1893 NM 1285 NM NM NM 1392 1766 1797	20.44 NM 20.61 NM NM NM 19.96 18.99 16.81	68.8 NM 69.1 NM NM NM 67.9 66.2 62.3	59.6 NM 85.9 NM NM NM 180 285.5 473.9	1.18 NM 18.23 NM NM NM 8.19 43.92 3.03	7.18 NM 6.84 NM NM NM NM 6.99 NM	1780 NM 1668 NM NM NM 1960 NM NM NM	22.02 NM 22.29 NM NM NM 18.91 NM NM NM	71.6 NM 72.1 NM NM NM 66.0 NM NM NM	2.1 NM 3.3 NM NM NM 38.6 NM NM NM	8.29 NM 1.53 NM NM NM 4.82 NM NM NM	NM NM 7.16 7.42 7.81 7.13 6.89 NM NM NM	NM NM 1912 1924 1052 1329 1593 NM NM NM	NM NM 21.38 19.91 20.05 19.94 19.47 NM NM NM	NM NM 70.5 67.8 68.1 67.9 67.0 NM NM NM	NM NM -1.1 49.6 164.0 183.5 224.5 NM NM NM	NM NM 7.25 8.48 172.1 9.77 9.09 NM NM NM
10/2/2008 10/9/2008 10/16/2008 10/23/2008 10/30/2008 11/6/2008 11/6/2008 11/20/2008 12/29/2008 3/10/2009 6/10/2009	7.2 7.1 NM 7.75 NM NM 7.99 7.99 7.30 7.34	1941 1893 NM 1285 NM NM NM 1392 1766 1797 1795	20.44 NM 20.61 NM NM 19.96 18.99 16.81 17.85	68.8 NM 69.1 NM NM 67.9 66.2 62.3 64.1	59.6 NM 85.9 NM NM 180 285.5 473.9 455.7	1.18 NM 18.23 NM NM NM 8.19 43.92 3.03 1.09	7.18 NM 6.84 NM NM NM 6.99 NM NM	1780 NM 1668 NM NM NM 1960 NM NM	22.02 NM 22.29 NM NM NM 18.91 NM NM NM	71.6 NM 72.1 NM NM NM 66.0 NM NM NM NM	2.1 NM 3.3 NM NM NM 38.6 NM NM NM	8.29 NM 1.53 NM NM 4.82 NM NM NM NM	NM NM 7.16 7.42 7.81 7.13 6.89 NM NM NM NM	NM NM 1912 1924 1052 1329 1593 NM NM NM NM	NM NM 21.38 19.91 20.05 19.94 19.47 NM NM NM NM	NM NM 70.5 67.8 68.1 67.9 67.0 NM NM NM NM	NM NM -1.1 49.6 164.0 183.5 224.5 NM NM NM	NM NM 7.25 8.48 172.1 9.77 9.09 NM NM NM
10/2/2008 10/9/2008 10/16/2008 10/23/2008 10/30/2008 11/6/2008 11/6/2008 11/20/2008 3/10/2009 6/10/2009 9/8/2009	7.2 7.1 NM 7.75 NM NM 7.99 7.30 7.34 7.14	1941 1893 NM 1285 NM NM NM 1392 1766 1797 1795	20.44 NM 20.61 NM NM 19.96 18.99 16.81 17.85 19.98	68.8 NM 69.1 NM NM 67.9 66.2 62.3 64.1 68.0	59.6 NM 85.9 NM NM 180 285.5 473.9 455.7 312.2	1.18 NM 18.23 NM NM NM 8.19 43.92 3.03 1.09	7.18 NM 6.84 NM NM NM 6.99 NM NM NM	1780 NM 1668 NM NM NM 1960 NM NM NM	22.02 NM 22.29 NM NM NM 18.91 NM NM NM	71.6 NM 72.1 NM NM NM 66.0 NM NM NM	2.1 NM 3.3 NM NM NM 38.6 NM NM NM	8.29 NM 1.53 NM NM NM 4.82 NM NM NM	NM NM 7.16 7.42 7.81 7.13 6.89 NM NM NM	NM NM 1912 1924 1052 1329 1593 NM NM NM	NM NM 21.38 19.91 20.05 19.94 19.47 NM NM NM	NM NM 70.5 67.8 68.1 67.9 67.0 NM NM NM	NM NM -1.1 49.6 164.0 183.5 224.5 NM NM NM	NM NM 7.25 8.48 172.1 9.77 9.09 NM NM NM

Monitoring Well			M	W-4					MV	V-101					MV	V-102		
Date	рН	E.C.	°C	°F	ORP	DO	рН	E.C.	°C	°F	ORP	DO	pН	E.C.	°C	٩F	ORP	DO
6/25/2010	7.20	1228	18.2	64.8	165.5	0.05	7.2	1077	19.4	66.9	248.3	30.27	7.10	1042	19.6	67.3	190.3	6.35
8/24/2010	6.11	1343	19.27	66.7	125.7	0.94	6.58	1170	19.80	67.6	178.5	7.36	6.44	1141	19.81	67.7	129.3	5.22

Monitoring Well		,	MV	V-103		
Date	рН	E.C.	°C	۰F	ORP	DO
6/25/2010	7.12	1316	19.1	66.4	277.3	29.46
8/24/2010	6.56	1464	19.32	66.8	192.1	23.64

Notes:

E.C. Electricval conductivity

°C Degrees centigrade °F Degrees fahrenheit

ORP Oxygen reduction potential DO Dissolved oxygen

NM Not measured

Table 4 Summary of Monitoring Well Completion Data

Springtown Gas 909 Bluebell Drive Livermore, California

Well Number	Status	Date Drilled	Total Depth	Boring Diameter	Well Casing Diameter	Casing Type	Slot Size (in)	Sand Type	Well S	creen	Filter	Pack	Annula	ır Seal	Grout	Seal
			(ft)	(in)	(in)		355.5		From	То	From	То	From	То	From	То
STMW-1	Active	8/23/2007	20	10	2	PVC	0.02	#2/12	10	20	20	8	8	7	7	0
STMW-2	Active	8/23/2007	20	10	2	PVC	0.02	#2/12	10	20	20	8	8	7	7	0
STMW-3	Active	8/23/2007	20	10	2	PVC	0.02	#2/12	10	20	20	8	8	7	7	0
P1	Active	9/19/2008	20	10	4	PVC	0.02	#3/12	10	20	20	8	8	7	7	0
MW-4	Active	2/25/2010	20	8	2	PVC	0.02	#3/12	10	20	20	8	8	5	5	0
MW-101	Active	2/25/2010	37	8	2	PVC	0.02	#3/12	32	37	37	30	30	28	28	0
MW-102	Active	2/25/2010	40	8	2	PVC	0.02	#3/12	32	40	40	30	30	27	27	0
MW-103	Active	2/26/2010	35	8	2	PVC	0.02	#3/12	30	35	35	28	28	25	25	0

Table 5 Summary of Hydrogen Peroxide Injections

Springtown Gas 909 Bluebell Drive Livermore, California

DATE	STM	W-1	STM	W-3	P	1	MW-	101	MW-	103
	7%	10%	7%	10%	7%	10%	7%	10%	7%	10%
3/30/2010	65		60		25					
4/7/2010	75		50		25					
4/15/2010	10		30		10		50		50	
4/22/2010	15		30		10		55		50	
4/30/2010		15		30		8		50		47
5/5/2010		10		35		5		50		50
5/11/2010		10		35		5		50		50
5/18/2010		10		25		5		45		45
5/26/2010		10		25		5		55		55
6/2/2010		10		50		7		50		35
6/9/2010	10		50		8		35		40	
6/16/2010	15		45			7	45		40	
7/1/2010	15		40			7	45		45	
7/8/2010	10		30			10	50		50	
7/14/2010	10		30			10	50		50	
7/21/2010	10		25			10	50		50	

Geological Technics Inc. Project No.: 1409.2

Appendix B

Laboratory Analytical Data Sheets

argon laboratories

03 September 2010

GTI Geological Technics, Inc. 1101 7th Street Modesto, CA 95354

RE: Springtown Gas Project Data

Enclosed are the results for sample(s) received on 08/25/10 14:49 by Argon Laboratories. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages.

Please see quality control report for a summary of QC data pertaining to this project.

The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Sample(s) may be archived by prior arrangement.

Thank you for the opportunity to service the needs of your company.

Sincerely,

Hiram Cueto Lab Manager

Geological	Techn	ics Inc.
		A SOUTH OF THE PARTY OF THE PAR

Page_ l of _ l

Thurs .

1172 Kansas Avenue Modesto, CA (209) 522-4119 Fax 522-4227 F-mail: gti@gtieny.com

Chain of Custody

	E-r	nail: gti@gtienv	.com						*	А	naly	sis R	eques	sted			Laboratory:
Project #: 1409.2		iject Name. GTOWN GA	5			Other)		100/00	BTEX & 90x1'S (8 2605)								ARGON LABS Temp. @ Shipping: C°
Site Address 909 BLU		Dr. , LIVERN	ORE, CA			Gas,) S, Axo								Temp. @ Lab Receipt: C° Purchase Order #
Global ID No T 06019	716197				Containers	I, Water,	on Type		STEXES								1909 - 36228 EDF Report: ▼Yes □ No
Sampled By:	- Norm	EN	Jun		70	Matrix (Soil, Water,	Preservation Type		TPH-6,								Turnaround Time: (S = Standard) 1 day 2 day 5 day
Date	Time	Field I.D.		ple i.D.	Š				F	_	+	\vdash	+	+			Remarks
RIZIN	1020		MW-4		4	W	HCL	1	\mathbb{H}	_	+	Н	-	+	\vdash		
-	1100		MM-101		4	W	-	+	4	_	-	\vdash		1	\vdash		*THE 9 OXY'S INCLUDE:
	OPII		MW-102		4	M		1	4		\perp	\sqcup		\perp	\sqcup		MTBE, ETBE, DIPE, TAME, TBA,
	1205		MW-103		4	W		\downarrow	11		\perp			\perp			1,2-DCA, EDB, METHANOL, ETHANOL
	1305		STMW-Z		4	W			Ц								(METHOD 8260B)
	1400		STMW-1	×	4	W											
	1420		STMW-3	1	4	W											- REPORTING LIMITS -
4	1430		P-1 .		4	W	1	T	V			П					
								T									TPH-G -> RL = 50,Mg/L.
																	BTEX → RL = 0.5 Mg/L
								I									9 0xY's → RL = 0.549/L
					-			1	4	4	\perp			+			
					┝	\vdash	_	+	+	+	+	\vdash	\vdash	+	H	_	
Relinquished Relinquished	Non			Date:	Tim	610)	_	- 1	Receiv	mr. A	10 .	ature)	>		7	Date: Time:
Relinquishe	la li	7	-	Date:		44'	Ì		- 1	Receiv	(V)	0 1	1	17	12	*	Date: Time: Time: Time:

Argon Laboratories Sample Receipt Checklist

Client Name:	Geological Tecl	hnics						Date	e & Tim	ne Received	l:0	8/25/10		4:49
Project Name:	Springtown Gas	8						Clie	ent Proj	ect Numbe		1	409.2	
Received By:	SH			Mat	rix:	Water	1	Soil			Slud	ge		
Sample Carrier:	Client	Lab	oratory	1	Fed Ex		UPS	3 [] Ot	her				
Argon Labs Project	Number:	K008	<u>8053</u>									26220		
Shipper Container in o	good condition?					Sample	s receive	ed in pro	oper con	tainers?	Yes	4	No	
	N/A	Yes	1	No		The state of the state of	s receive				Yes	✓	No	
Samples received und	der refrigeration?	Yes	V	No		Sufficie	nt sample	e volum	e for red	quested tests	? Yes	V	No	
Chain of custody pres	ent?	Yes	V	No		Sample	s receive	ed within	n holding	g time?	Yes	1	No	
Chain of Custody sign	ned by all parties?	Yes	V	No		Do sam	ples con	tain pro		servative?	Yes	V	No	
Chain of Custody mat	ches all sample la	bels?				Do VOA	vials cont	ain zero	headspa	ace?				
		Yes	V	No				(None	e submit	ted 🔲)	Yes	7	No	
	A 1 15 / 115	1-8 DI	CODONO	- MUCT	DE DETA	II ED IN	THE CO	MANAENI.	TC CEC	TION BELO	W			
		10 KI	ESPUNSI					WINEN						
Date Client Contact	ted:		ē.	-	Per	rson Co	ntacted:	-						_
Contacted By:					Subject:									
Comments:								TM (47+52-47						
												- VIII-		
A. U T. I.						-			20					
Action Taken:														
			-	ADDITIO	NAL TES	T(S) RE	QUEST /	OTHER	R					
Contacted By:						Da	ate:			_	Tim	e:		_
Call Received By: _					=									
Comments:														
L														

@F3000 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

Modesto, CA 95354

1101 7th Street

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.: K008053

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-4	K008053-01	Water	08/24/10 10:20	08/25/10 14:49
MW-101	K008053-02	Water	08/24/10 11:00	08/25/10 14:49
MW-102	K008053-03	Water	08/24/10 11:40	08/25/10 14:49
MW-103	K008053-04	Water	08/24/10 12:05	08/25/10 14:49
TMW-2	K008053-05	Water	08/24/10 13:05	08/25/10 14:49
TMW-1	K008053-06	Water	08/24/10 14:00	08/25/10 14:49
STMW-3	K008053-07	Water	08/24/10 14:20	08/25/10 14:49
2-1	K008053-08	Water	08/24/10 14:30	08/25/10 14:49

@FSON laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354 Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.: K008053

TPH-gas & Volatile Organic Compounds by GC/MS

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-4 (K008053-01) Water	Sampled: 24-Aug-10 10:20	Received	: 25-Aug	-10 14:49			
Total Petroleum Hydrocarbons	HOW WHEN THE PROPERTY OF THE P	50	ug/L	1	26-Aug-10	EPA 8260B	
Gasoline						**	
Benzene	ND	0.5		"	30	"	
Toluene	ND	0.5	"	".	.0	,,	
Xylenes, total	ND	1.0	**	<u>"</u>			
Ethyl Benzene	ND	0.5	311	w.	,		
Methanol	ND	50		11.			
Ethanol	ND	5.0	31.		"		
t-Butanol	ND	5.0					
Methyl tert-Butyl Ether	ND	0.5	"	"			
Di-Isopropyl Ether	ND	0.5	"		.10	"	
Ethyl tert-Butyl Ether	ND	0.5	25	ii.	2003		
tert-Amyl Methyl Ether	ND	0.5	W.	"		"	
1,2-Dichloroethane	ND	0.5	in	"	11		
1,2-Dibromoethane (EDB)	ND	0.5	20	".			
Surr. Rec.:		83 %			"	"	
MW-101 (K008053-02) Wate	r Sampled: 24-Aug-10 11:	00 Receiv	ed: 25-A	ug-10 14:49			
Total Petroleum Hydrocarbons	8767	50	ug/L	1	26-Aug-10	EPA 8260B	
Gasoline		1028021	92		:00		
Benzene	ND	0.5	"	N		,,	
Toluene	ND	0.5	u	"	,		
Xylenes, total	ND	1.0	30	"			
Ethyl Benzene	ND	0.5	11	: !! %3	,		
Methanol	ND	50					
Ethanol	ND	5.0					
t-Butanol	ND	5.0	"	"	"		
Methyl tert-Butyl Ether	ND	0.5	**	"	0		
Di-Isopropyl Ether	ND	0.5	11	30	u u		
Ethyl tert-Butyl Ether	ND	0.5	11	3000	*		
tert-Amyl Methyl Ether	ND	0.5			"	"	
1,2-Dichloroethane	ND	0.5	"			9.002	
1,2-Dibromoethane (EDB)	ND	0.5		п	"	(.11)	
Surr. Rec.:		85 %			"	"	

Approved By

@FGON laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.:

K008053

TPH-gas & Volatile Organic Compounds by GC/MS

Analyte	Result	porting Limit	Units	Dilution	Analyzed	Method	Notes
G-100147005	Sampled: 24-Aug-10 11:40	Receiv	ed: 25-A	ug-10 14:49			
Total Petroleum Hydrocarbons @	ND	50	ug/L	1	26-Aug-10	EPA 8260B	
Gasoline					w)		
Benzene	ND	0.5				"	
Toluene	ND	0.5	"	*	.07		
Xylenes, total	ND	1.0	n,	"		,	
Ethyl Benzene	ND	0.5	"	"			
Methanol	ND	50	**	"	"	"	
Ethanol	ND	5.0	ж		"	"	
t-Butanol	ND	5.0	21	"			
Methyl tert-Butyl Ether	ND	0.5		"	m m		
Di-Isopropyl Ether	ND	0.5	"	*	316		
Ethyl tert-Butyl Ether	ND	0.5	"	iii			
tert-Amyl Methyl Ether	ND	0.5	**	n	w .	"	
1,2-Dichloroethane	ND	0.5	30	n .			
1,2-Dibromoethane (EDB)	ND	0.5	20	II .	"	u.	
Surr. Rec.:		84 %				"	
MW-103 (K008053-04) Water	Sampled: 24-Aug-10 12:05	Receiv	ed: 25-A	ug-10 14:49			
Total Petroleum Hydrocarbons @	ND	50	ug/L	1	26-Aug-10	EPA 8260B	
Gasoline							
Benzene	ND	0.5		"		,	
Toluene	ND	0.5	"	"		,	
Xylenes, total	ND	1.0	300	.01	3.90		
Ethyl Benzene	ND	0.5	3863		1.9		
Methanol	ND	50		"	u		
Ethanol	ND	5.0	"	"	200		
t-Butanol	ND	5.0	"	ш		11	
Methyl tert-Butyl Ether	ND	0.5					
Di-Isopropyl Ether	ND	0.5	11:				
Ethyl tert-Butyl Ether	ND	0.5	30.3	000			
tert-Amyl Methyl Ether	ND	0.5		"			
1,2-Dichloroethane	ND	0.5			10	3.00	
1,2-Dibromoethane (EDB)	ND	0.5	"	и	III.	(Att.)	
Surr. Rec.:		80 %			u	#	

Approved By

@FGON laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Project Number: 1409.2

Project Name: Springtown Gas

Work Order No.: K008053

Modesto, CA 95354

Project Manager:GTI

TPH-gas & Volatile Organic Compounds by GC/MS

		porting				Mathed	Meta
Analyte	Result	Limit	Units	Dilution	Analyzed	Method	Note
STMW-2 (K008053-05) Water	Sampled: 24-Aug-10 13:05	Receiv	ed: 25-A	Aug-10 14:49			
Total Petroleum Hydrocarbons @	ND	50	ug/L	1	26-Aug-10	EPA 8260B	
Gasoline					ñ		
Benzene	ND	0.5	10.	5 49 /.			
Toluene	ND	0.5		W .			
Xylenes, total	ND	1.0		0	"		
Ethyl Benzene	ND	0.5		**	"	"	
Methanol	ND	50		**			
Ethanol	ND	5.0		u.		"	
t-Butanol	33	5.0	00	. 11	"	"	
Methyl tert-Butyl Ether	ND	0.5	00		"	"	
Di-Isopropyl Ether	ND	0.5	10	ii .	"	"	
Ethyl tert-Butyl Ether	ND	0.5		"	**	"	
tert-Amyl Methyl Ether	ND	0.5			n		
1,2-Dichloroethane	ND	0.5		iii	n	28	
1,2-Dibromoethane (EDB)	ND	0.5		000			
		81%			"	"	
Surr. Rec.:							
STMW-1 (K008053-06) Water	Sampled: 24-Aug-10 14:00	Receiv	/ed: 25-A	Aug-10 14:49			
Total Petroleum Hydrocarbons @	ND	50	ug/L	1	26-Aug-10	EPA 8260B	
Gasoline						**	
Benzene	ND	0.5	"	u.			
Toluene	ND	0.5	"		"		
Xylenes, total	ND	1.0	"	"			
Ethyl Benzene	ND	0.5	**	**	30.3		
Methanol	ND	50	"			"	
Ethanol	ND	5.0		W.			
t-Butanol	87	5.0	"		u	30	
Methyl tert-Butyl Ether	5.9	0.5	"		311	31	
Di-Isopropyl Ether	ND	0.5		n	:n:	38	
Ethyl tert-Butyl Ether	ND	0.5	w	"	.0.:	**	
	ND	0.5	30	.11.		"	
				2		n .	
tert-Amyl Methyl Ether		0.5	30	"			
	ND ND	0.5	"			m	

Approved By

@FGON laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.: K008053

TPH-gas & Volatile Organic Compounds by GC/MS

Analyte	Re Result	porting Limit	Units	Dilution	Analyzed	Method	Notes
STMW-3 (K008053-07) Water	Sampled: 24-Aug-10 14:20	Receiv	ed: 25-A	ug-10 14:49			
Total Petroleum Hydrocarbons @	1.0 (0.4	50	ug/L	1	26-Aug-10	EPA 8260B	
Gasoline					"		
Benzene	ND	0.5	200	"			
Toluene	ND	0.5	"			0.	
Xylenes, total	ND	1.0		"		"	
Ethyl Benzene	ND	0.5		**		"	
Methanol	ND	50		10.			
Ethanol	ND	5.0		.00	"		
t-Butanol	ND	5.0	.0	m .		"	
Methyl tert-Butyl Ether	ND	0.5		u u	"	и	
Di-Isopropyl Ether	ND	0.5	**		11	"	
Ethyl tert-Butyl Ether	ND	0.5	"	· ·		"	
	ND	0.5		· w	n	"	
tert-Amyl Methyl Ether	ND	0.5		H .	"	**	
1,2-Dichloroethane	ND	0.5	ne.		,,	n .	
1,2-Dibromoethane (EDB)	ND				"	"	
Surr. Rec.:		83 %					
P-1 (K008053-08) Water Samp	pled: 24-Aug-10 14:30 Reco	eived: 2	5-Aug-10	14:49			
Total Petroleum Hydrocarbons @	20030	50	ug/L	1	26-Aug-10	EPA 8260B	
Gasoline							
Benzene	ND	0.5	"	".			
Toluene	ND	0.5	"	"			
Xylenes, total	ND	1.0	**	"	"		
Ethyl Benzene	ND	0.5	**				
Methanol	ND	50		"			
Ethanol	ND	5.0	TI TI	**	**		
t-Butanol	120	5.0	"	9			
Methyl tert-Butyl Ether	5.4	0.5				"	
Di-Isopropyl Ether	ND	0.5	30	31			
Ethyl tert-Butyl Ether	ND	0.5	.0	.0		*	
tert-Amyl Methyl Ether	ND	0.5		n			
1,2-Dichloroethane	ND	0.5	n			"	
1,2-Dibromoethane (EDB)	ND	0.5	"	n.	.00	5.8.5	
1,2-Diotoffloetilane (EDB)		70 %			v	"	

Surr. Rec.:

79 %

Approved By

@FSON laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Analyte

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Reporting

Limit

Result

Work Order No.:

K008053

Notes

RPD

Limit

%REC

Limits

RPD

TPH-gas & Volatile Organic Compounds by GC/MS - Quality Control

Units

Spike

Level

Source

Result

%REC

Argon Laboratories

Blank (K001290-BLK1)				Prepared & Analyzed: 08/26/10							
Surrogate: Fluorobenzene	40.5		ug/L	50	81	70-130					
Total Petroleum Hydrocarbons @ Gasoline	ND	50									
Benzene	ND	0.5	"								
Toluene	ND	0.5	"								
Xylenes, total	ND	1.0	"								
Ethyl Benzene	ND	0.5									
Methanol	ND	50	"								
Ethanol	ND	5.0	"								
-Butanol	ND	5.0									
Methyl tert-Butyl Ether	ND	0.5	n								
Di-Isopropyl Ether	ND	0.5									

Ethyl tert-Butyl Ether	ND	0.5		
tert-Amyl Methyl Ether	ND	0.5	3005	
1,2-Dichloroethane	ND	0.5		
1,2-Dibromoethane (EDB)	ND	0.5	311	

LCS (K001290-BS1)			Prepared & A	nalyzed: 08/26/	10
Methyl tert-Butyl Ether	27.3	ug/L	25	109	80-120

LCS Dup (K001290-BSD1)			Prepared & A	nalyzed: 08/26/	10		
Methyl tert-Butyl Ether	28.2	ug/L	25	113	80-120	3	20

Matrix Spike (K001290-MS1)	Source: K008053-01		Prepared & Analyzed: 08/26/10					
Total Petroleum Hydrocarbons @ Gasoline	985	ug/L	1000	ND	98	70-130		
Matrix Spike Dup (K001290-MSD1)	Source: K008053-01		Prepared & Analyzed: 08/26/10					
Total Petroleum Hydrocarbons @ Gasoline	951	ug/L	1000	ND	95	70-130	4	20

Approved By

@F30n laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.:

K008053

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

argon laboratories

08 July 2010

GTI Geological Technics, Inc. 1101 7th Street Modesto, CA 95354

RE: Springtown Gas Project Data

Enclosed are the results for sample(s) received on 06/28/10 14:11 by Argon Laboratories. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages.

Please see quality control report for a summary of QC data pertaining to this project.

The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Sample(s) may be archived by prior arrangement.

Thank you for the opportunity to service the needs of your company.

Sincerely,

Hiram Cueto Lab Manager

Argon Laboratories Sample Receipt Checklist

Client Name:	Geological Tecl	nnics	Inc.					Date	& Time Received:	0	6/28/10	- 9	14:11
Project Name:	Springtown Gas	3						Clien	nt Project Number:			409.2	
Received By:	D.C.			Mat	rix:	Water	7	Soil		Slud	ge		
Sample Carrier:	Client	Lab	oratory	J	Fed Ex		UPS		Other				
Argon Labs Project	Number:	K00	6074										
Shipper Container in	good condition?					Sample	s receive	d in prop	er containers?	Yes	1	No	
	N/A	Yes	7	No		Sample	s receive	d intact?		Yes	1	No	
Samples received un	der refrigeration?	Yes	V	No		Sufficie	nt sample	volume	for requested tests?	Yes	1	No	
Chain of custody pres	sent?	Yes	7	No		Sample	s receive	d within I	holding time?	Yes	7	No	
Chain of Custody sign	ned by all parties?	Yes	V	No		Do sam	ples cont	ain prope	er preservative?	Yes	V	No	
Chain of Custody ma	tches all sample la	bels?				Do VOA	vials conta	ain zero h	eadspace?				
		Yes	1	No				(None s	submitted [])	Yes	1	No	
	ANY "N	lo" RI	SPONSI	E MUST	BE DETA	ILED IN	THE CO	MMENTS	S SECTION BELOV	v			_
Date Client Contac	ted:			_	Per	rson Co	ntacted:						-
Contacted By:					Subject:								_
Comments:						P						-11	
Action Taken:													
177 - 17142-172			-	ADDITIO	NAL TES	T(S) REC	QUEST /	OTHER					
Contacted By:						Da	nte:			Time	e:		
Call Received By:					_								
Comments:													

argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.:

K006074

ANALYTICAL REPORT FOR SAMPLES

	Briston Control	0821/90207	Data Campled	Date Received
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-103	K006074-01	Water	06/25/10 10:40	06/28/10 14:11
MW-101	K006074-02	Water	06/25/10 11:20	06/28/10 14:11
MW-102	K006074-03	Water	06/25/10 12:05	06/28/10 14:11
MW-4	K006074-04	Water	06/25/10 13:00	06/28/10 14:11

@F300 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.: K006074

TPH-gas & Volatile Organic Compounds by GC/MS

Analyte	Result	eporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-103 (K006074-01) Water	Sampled: 25-Jun-10 10:40	Receive	ed: 28-Ju	n-10 14:11			
Total Petroleum Hydrocarbons @		50	ug/L	1	02-Jul-10	EPA 8260B	
Gasoline						u u	
Benzene	ND	0.5					
Toluene	ND	0.5		(11)	,		
Xylenes, total	ND	1.0		"	"		
Ethyl Benzene	ND	0.5		W .	"	"	
Methanol	ND	50	"	II .		. !! **:	
Ethanol	ND	5.0		9			
t-Butanol	ND	5.0		ii .	"		
Methyl tert-Butyl Ether	ND	0.5	0	11.		20	
Di-Isopropyl Ether	ND	0.5	ar.	11.			
Ethyl tert-Butyl Ether	ND	0.5	95	"	Ü	300	
tert-Amyl Methyl Ether	ND	0.5	**	"	.11	30	
1,2-Dichloroethane	ND	0.5			11.	.,,	
1,2-Dibromoethane (EDB)	ND	0.5	"	m .	.00	W .	
1,2-Dibioinoethalie (EDB)	.,	87 %			"		
Surr. Rec.:		0/ 70					
MW-101 (K006074-02) Water	Sampled: 25-Jun-10 11:20	Receive	ed: 28-Ju	ın-10 14:11			
Total Petroleum Hydrocarbons @		50	ug/L	1	02-Jul-10	EPA 8260B	
I otal I cholcum Hydrocarbons (c	9		ab L				
Gasoline							
	ND	0.5		"			
Gasoline	ND ND	0.5 0.5		"			
Gasoline Benzene	ND ND ND	0.5 0.5 1.0	" "	" "	u 		
Gasoline Benzene Toluene	ND ND ND ND	0.5 0.5 1.0 0.5	" "	" " " "	" "		
Gasoline Benzene Toluene Xylenes, total	ND ND ND ND	0.5 0.5 1.0 0.5 50	" "	" " " " " " " " " " " " " " " " " " " "	0 0 11		
Gasoline Benzene Toluene Xylenes, total Ethyl Benzene	ND ND ND ND ND	0.5 0.5 1.0 0.5 50 5.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	0 0 7 1	" " " " "	
Gasoline Benzene Toluene Xylenes, total Ethyl Benzene Methanol Ethanol	ND ND ND ND	0.5 0.5 1.0 0.5 50 5.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "		" " " " " " "	
Gasoline Benzene Toluene Xylenes, total Ethyl Benzene Methanol Ethanol t-Butanol	ND ND ND ND ND	0.5 0.5 1.0 0.5 50 5.0 5.0	" " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " "	0 0 0 0 0	
Gasoline Benzene Toluene Xylenes, total Ethyl Benzene Methanol Ethanol t-Butanol Methyl tert-Butyl Ether	ND ND ND ND ND ND	0.5 0.5 1.0 0.5 50 5.0 5.0 0.5		" " " " " " " " " " " " " " " " " " " "	" " " " " " " "	0 0 0 0 0	
Gasoline Benzene Toluene Xylenes, total Ethyl Benzene Methanol Ethanol t-Butanol Methyl tert-Butyl Ether Di-Isopropyl Ether	ND ND ND ND ND ND ND	0.5 0.5 1.0 0.5 50 5.0 5.0 0.5 0.5		" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " "	" " " " " " " " " " " " " " "	
Gasoline Benzene Toluene Xylenes, total Ethyl Benzene Methanol Ethanol t-Butanol Methyl tert-Butyl Ether Di-Isopropyl Ether Ethyl tert-Butyl Ether	ND	0.5 0.5 1.0 0.5 50 5.0 0.5 0.5 0.5		" " " " " " " " " " " "	" " " " " " " " " " "	" " " " " " " " " " " " " " "	
Gasoline Benzene Toluene Xylenes, total Ethyl Benzene Methanol Ethanol t-Butanol Methyl tert-Butyl Ether	ND N	0.5 0.5 1.0 0.5 50 5.0 5.0 0.5 0.5		" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " "	" " " " " " " " " " " " " " "	

Surr. Rec.:

89 %

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

@FGOn laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.:

K006074

TPH-gas & Volatile Organic Compounds by GC/MS

Analyte	Result	eporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-102 (K006074-03) Water	Sampled: 25-Jun-10 12:05	Receive	ed: 28-Ju	ın-10 14:11			
Total Petroleum Hydrocarbons @	ND	50	ug/L	1	02-Jul-10	EPA 8260B	
Gasoline		0.5	- 00	11	W.	ii .	
Benzene	ND	0.5	"	,,	W W	"	
Toluene	ND	0.5			"	"	
Xylenes, total	ND	1.0	,••				
Ethyl Benzene	ND	0.5					
Methanol	ND	50	.01	"			
Ethanol	ND	5.0	"				
t-Butanol	ND	5.0	30	E(10)			
Methyl tert-Butyl Ether	ND	0.5	.0.	"	"	"	
Di-Isopropyl Ether	ND	0.5	"		ŭ.	"	
Ethyl tert-Butyl Ether	ND	0.5			"	"	
tert-Amyl Methyl Ether	ND	0.5		.10	11		
1,2-Dichloroethane	ND	0.5	110	311			
1,2-Dibromoethane (EDB)	ND	0.5	:10	:W:	"		
Surr. Rec.:		87%			"	"	
MW-4 (K006074-04) Water Sa	mpled: 25-Jun-10 13:00 F	Received	28-Jun-	10 14:11			
Total Petroleum Hydrocarbons @	ND	50	ug/L	1	02-Jul-10	EPA 8260B	
Gasoline					,	,,	
Benzene	ND	0.5					
Toluene	ND	0.5	"	"	w w	"	
Xylenes, total	ND	1.0	u	W.	"		
Ethyl Benzene	ND	0.5	"	11	"		
Methanol	ND	50	100				
Ethanol	ND	5.0	90	10	"		
t-Butanol	ND	5.0		"	u	"	
Methyl tert-Butyl Ether	ND	0.5			"	"	
Di-Isopropyl Ether	ND	0.5		ii.			
Ethyl tert-Butyl Ether	ND	0.5	0.	m.		n	
tert-Amyl Methyl Ether	ND	0.5	"	m ,	,	"	
1,2-Dichloroethane	ND	0.5	"	"			
1,2-Dibromoethane (EDB)	ND	0.5		"		и	
Surr. Rec.:	14500 44500	88 %			,,	"	

Approved By

Argon Laboratories, Inc. California D.O.H.S. Cert. #2359

@FGOM laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Project Number: 1409.2

Project Name: Springtown Gas

Work Order No.:

Modesto, CA 95354

Project Manager:GTI

K006074

TPH-gas & Volatile Organic Compounds by GC/MS - Quality Control

Argon Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch K000997 - EPA 5030B										
Blank (K000997-BLK1)				Prepared	& Analyze	ed: 07/02/	10			
Surrogate: Fluorobenzene	42.5		ug/L	50		85	70-130			
Total Petroleum Hydrocarbons @ Gasoline	ND	50	н							
Benzene	ND	0.5	w							
Toluene	ND	0.5	"							
Xylenes, total	ND	1.0	11							
Ethyl Benzene	ND	0.5								
Methanol	ND	50								
Ethanol	ND	5.0	11							
-Butanol	ND	5.0	"							
Methyl tert-Butyl Ether	ND	0.5	**							
Di-Isopropyl Ether	ND	0.5	"							
Ethyl tert-Butyl Ether	ND	0.5	"							
ert-Amyl Methyl Ether	ND	0.5								
1,2-Dichloroethane	ND	0.5	"							
1,2-Dibromoethane (EDB)	ND	0.5	"							
LCS (K000997-BS1)				Prepared of	& Analyze	ed: 07/02/	10			
Methyl tert-Butyl Ether	23.5		ug/L	25		94	80-120			
LCS Dup (K000997-BSD1)				Prepared of	& Analyze	ed: 07/02/	10			
Methyl tert-Butyl Ether	25.5		ug/L	25		102	80-120	8	20	
Matrix Spike (K000997-MS1)	ix Spike (K000997-MS1) Source: K006063-04					ed: 07/02/	10			
Total Petroleum Hydrocarbons @ Gasoline	1060		ug/L	1000	ND	106	70-130			
Matrix Spike Dup (K000997-MSD1)	So	urce: K00606	3-04	Prepared a	& Analyze	ed: 07/02/	10			
Total Petroleum Hydrocarbons @ Gasoline	982		ug/L	1000	ND	98	70-130	7	20	

@TGOM laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1409.2

Project Name: Springtown Gas

Project Manager:GTI

Work Order No.:

K006074

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Page_ of _ i

1172 Kansas Avenue Modesto, CA (209) 522-4119 Fax 522-4227

Chain of Custody

		nail: gti@gtienv							Ar	nalysis	Requested	ľ	Laboratory:
Project #: 1409.2	Client/Proj	ect Name	Gas			Other)		9					Argan Temp. @ Shipping: C°
Site Address	Blue			more, CA				240					Temp. @ Lab Receipt: C° Purchase Order #
	21971	6177			ainers	Matrix (Soil, Water, Gas,	Preservation Type	100					EDF Report: XYes INO Turnaround Time (S = Standard)
Sampled By:	(printand si	gnnāme)	len Erc	lin	of Containers	rix (Soil	servatio	Method					Turnaround Time S = Standard 1 day 2 day 5 day
Date	Time	Field I.D.	Sa	imple I.D.	S.	Mat	Pre	*					Remarks
W/25/12	1040		MW	-103'	4	W	HILL	X					* TPH-9, BTEX, MTBE,
i	1120		MW.	-101	11		1	li					ETBE DIPE TAME TBA
	1205		MW	-102.	T	Ш		Π					ETBE DIPE, TAME, TBA, 1,2-DCA, EDB, Methanol,
/	1300		MW.	-4 ·	*	*	T	4					Ethanol
					1	Ш		L				4-4-	
						Ш							Reporting limits!
													TPH-9 = 50, mg-11
													TPH-9 = 50, mg/1 All others = 0.5 mg/1
													0.
						Ш							
		,											
		_											
Relinquished			6.60	Date: 15/10	Tim/	16: 50	0		Received	d by: (sig	nature)		Date: Time: (4)25/10 1530
Relinguished	by: (signati	ure)		Date: (4 2) 10	Tim	411			Receive	by: (sig	nature		Date: Time: 14:11
Relinquished	by: (signati	ure)		Date.	Tim	ne:			Receive	d by: (sig	nature)		Date: Time:

Appendix C

	Project Name: Project No.:	range Aven soon	wn Ga	s (Blue Bell)				Well I.D.: STMW-1 Date: 8/24/2010
	Project Location:	909 Blue		rive				Samples sent to: Argon
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
13:16	0.00	31.8	32	326	8.25	153.6	42.90	Brown, no odor, few sediments
13:18	2.25	21.5	58	689	6.67	230.7	44.86	Light brown, no odor, few sediments
13:20	4.50	21.7	76	1022	6.20	245.7	43.39	Light brown, no odor, few sediments
13:23	6.75	20.7	79	707	6.44	195.7	43.37	Light brown, no odor, few sediments
14:00								Collected samples
						- I		
	Purge Method: Pumping Rate:			Naterra □Cen	ntrifugal pur	mp with dedicated	tubing 🚨 Ot	ther
Well (Constructed TD (ft):		00		Sample	Containers used:	4	# VOAs preserved non-preserved
	* Well TD (ft):	-						# amber liters preserved non-preserved
	Silt Thickness (ft):							# polys preserved non-preserved
	Initial DTW (ft):	-						# polys preserved non-preserved
	r column height (ft):		06			Notes:	Recharge was r	moderately slow.
One	casing volume (gal):						-	A \
	** Final DTW (ft):					Sampled By:	E. Nona	
C	asing diameter (in):	2'					~	
Sample Me				iler Other a. = 0.38 4" dia. = 0.6	e	* = measured	** = @ sampling	Purged Water Drummed: ☒ Yes ☐ No No. of Drums:

	Project Name: Project No.:	Springtown Ga	s (Blue Bell)			Well I.D.: STMW-2 Date: 8/24/2010				
	Project Location:	909 Bluebell D Livermore, CA					Samples sent to: Argon			
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks			
12:51	0.0	30.00	773	7.70	113.2	7.42	Light brown, no odor, very few sediments			
2:54	2.0	20.52	1729	6.64	134.2	0.66	Light brown, no odor, very few sediments			
2:57	4.0	20.55	1729	6.39	139.3	0.49	Light brown, no odor, very few sediments			
3:00	6.0	20.45	1730	6.32	135.9	0.53	Light brown, no odor, very few sediments			
3:05							Collected samples			
Well	Purge Method: Pumping Rate: Constructed TD (ft): * Well TD (ft): Silt Thickness (ft): Initial DTW (ft)	20.00	Waterra □Cer		mp with dedicated Containers used:		# VOAs			
Mate	r column height (ft)	-	-		Notes:		polyspossives			
	casing volume (gal)		1		Notes.		. 1			
One	** Final DTW (ft)	-	1		Sampled By:	E. Nona	1 h			
C	asing diameter (in)				Campion by.	7				
mple M	ethod:	Waterra ⊠ Ba	⊒ ailer □ Other □	i	* = measured	** = @ sampling	Purged Water Drummed: ☐ Yes ☐ No			

	Project Name: Project No.:	1409.2						Well I.D.: STMW-3 Date: 8/24/2010
	Project Location:	209 Blueb		rive				Samples sent to: Argon
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
13:33	0.00	25.15	5	313	7.92	220.6	46.46	Light brown, no odor, very few sediments
13:36	1.75	20.19	9	350	7.80	220.2	44.36	Light brown, no odor, very few sediments
13:38	3.50	20.29	9	424	6.77	258.7	44.74	Light brown, no odor, very few sediments
13:42	5.25	20.10	0	384	6.61	255.2	45.92	Light brown, no odor, very few sediments
14:20								Collected samples
	Purge Method: Pumping Rate:			Waterra □Cer	ntrifugal pur	mp with dedicated	tubing 🔲 Of	her
Well	Constructed TD (ft):	20.00	0		Sample	Containers used:	4	# VOAs X preserved non-preserved
	* Well TD (ft):	19.60	6					# amber liters preserved non-preserved
	Silt Thickness (ft):	0.34	Į.					# polys preserved non-preserved
	Initial DTW (ft)	9.36	6					# polys preserved non-preserved
Water	column height (ft)	10.3	0			Notes:	Recharge was i	noderately slow.
One	casing volume (gal)	1.75	5					A \
	** Final DTW (ft)	11.7	0			Sampled By:	E. Nona	Day June
С	asing diameter (in)	2"						
ample M	ethod:			iler □ Other □ ia. = 0.38 4" dia. = 0.6		* = measured 1.02, 6" dia. = 1.48	** = @ sampling	Purged Water Drummed:

	Project Name:	Springto	wn Ga	s (Blue Bell)				Well I.D.: MW-4
	Project No.:	1409.2						Date: 8/24/2010
	Project Location:	909 Blue	ebell Di	rive				
		Livermo	e, CA					Samples sent to: Argon
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (µS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
10:05	0.00	31.5	54	622	7.94	166.6	10.39	Light brown, no odor, few sediments
0:10	1.75	19.3	30	1354	6.19	158.9	0.96	Light brown, no odor, few sediments
10:15	3.50	19.2	29	1349	6.07	134.8	0.73	Light brown, no odor, few sediments
10:20	5.25	19.2	27	1343	6.11	125.7	0.94	Light brown, no odor, few sediments
10:20								Collected samples
	Purge Method: Pumping Rate:			Vaterra □Cer	ntrifugal pu	mp with dedicated	tubing	Pither
Well	Constructed TD (ft):	20.0	00		Sample	Containers used:	4	# VOAs preserved non-preserved
	* Well TD (ft):	20.2	29					# amber liters preserved non-preserved
	Silt Thickness (ft):	-0.2	29					# polys preserved non-preserved
	Initial DTW (ft):	10)					# polys preserved non-preserved
Water	column height (ft):	10.2	29			Notes:		
One	casing volume (gal):	1.7	5					
	** Final DTW (ft):	10.	05			Sampled By:	E. Nona	22 / June
С	asing diameter (in):	2'						
ample Mo	ethod: Illons per foot of casing.			iler Other	65, 5" dia. =	* = measured 1.02, 6" dia. = 1.48	** = @ sampling	Purged Water Drummed: Yes No. of Drums:

	Project Name:	Springtown (Gas (Blue Bell)				Well I.D.: P-1
	Project No.:	1409.2					Date: 8/24/2010
	Project Location:	909 Bluebell	Drive				
	25.	Livermore, C					Samples sent to: Argon
Time	Cumulative Volume Purged (gal)	Temp C	° EC (µS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
13:50	0.0	25.48	477	8.12	177.7	34.79	Clear, no odor, no sediments
14:16	7.5	20.17	634	7.47	253.7	43.13	Light brown, no odor, no sediments
	15.0	20.95	632	7.99	206.4	25.20	Light brown, no odor, no sediments
	22.5						
14:30							Collected samples
							7
Well (Purge Method: Pumping Rate: Constructed TD (ft): * Well TD (ft): Silt Thickness (ft): Initial DTW (ft):	20.00 19.51 0.49	d Waterra □Cer	279 DE	np with dedicated Containers used:	*	# VOAs
Water	r column height (ft):	11.30	7		Notes:	Well went dry a	15 gallons purged. Samples were collected before 80% recharge
One	casing volume (gal):	1.92				was obtained.	. \
	** Final DTW (ft):	16.39			Sampled By:	E. Nona	e du
С	asing diameter (in):	4"					
Sample Mo			Bailer ☐ Other ☐ " dia. = 0.38 4" dia. = 0.4		* = measured	** = @ sampling	Purged Water Drummed:

	Project Name:	Springtown Ga	s (Blue Bell)				Well I.D.: MW-101
	Project No.:	1409.2					Date: 8/24/2010
	Project Location:	909 Bluebell Dr	rive				
		Livermore, CA					Samples sent to: Argon
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
0:40	0.0	26.75	716	8.08	175.2	13.55	Light brown, no odor, a lot of sediments
):45	5.0	19.91	1164	6.35	219.4	5.21	Light brown, no odor, a lot of sediments
0:49	10.0	19.77	1170	6.41	202.7	6.96	Clear, no odor, no sediments
0:54	15.0	19.80	1170	6.58	178.5	7.36	Clear, no odor, no sediments
1:00							Collected samples
Well	Purge Method: Pumping Rate:	1.08	Vaterra □Cer	10 mg/s 201	np with dedicated to	tubing 🗖 Ot	# VOAsX preserved non-preserved
	* Well TD (ft):	36.40		•			# amber liters preserved non-preserved
	Silt Thickness (ft):	0.60					# polys preserved non-preserved
	Initial DTW (ft):	7.21					# polys preserved non-preserved
Water	column height (ft):	29.19			Notes:		
One	casing volume (gal):	4.96					. \
	** Final DTW (ft):	7.24			Sampled By:	E. Nona &	To A di
C	asing diameter (in):	2"				~	
mple Me		Waterra ⊠ Bai	ler Other a. = 0.38 4" dia. = 0.6		" = measured .02, 6" dia. = 1.48	··= @ sampling	Purged Water Drummed:

									9
	Project Name:	Springto	own Ga	s (Blue Bell)				Well	.D.: MW-102
	Project No.:	1409.2						D	ate: 8/24/2010
	Project Location:	909 Blue	ebell Di	rive					
		Livermo	re, CA					Samples sen	t to: Argon
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)		Remarks
11:20	0.00	27.3	37	1068	7.64	123.6	7.99	Light brown, no oc	or, very few sediments
11:25	5.25	19.9	91	1146	6.20	170.7	4.17	Light brown, no oc	or, very few sediments
11:30	10.50	19.	83	1146	6.31	141.0	4.27	Light brown, no oc	lor, very few sediments
11:35	15.75	19.	81	1141	6.44	129.3	5.22	Light brown, no oc	or, very few sediments
11:40								Collected samples	
	Purge Method: Pumping Rate:		dicated \	Waterra □Cer	ntrifugal pur	mp with dedicated	tubing 🚨 Ot	her	
Well	Constructed TD (ft):	40.	00		Sample	Containers used:	4	# VOAs	_X preserved non-preserved
	* Well TD (ft):	39.	35					# amber liters	preserved non-preserved
	Silt Thickness (ft):	0.6	35					_# polys	preserved non-preserved
	Initial DTW (ft)	8.8	32			·		# polys	preserved non-preserved
Water	r column height (ft):	30.	53			Notes:	·		
One	casing volume (gal)	5.1	19					11	
	** Final DTW (ft)	8.8	33			Sampled By:	E. Nona	S A	
С	asing diameter (in)	2	11				1		
Sample M	ethod:			iler Other		* = measured 1.02, 6" dia. = 1.48	** = @ sampling		Purged Water Drummed:

	Project Name:	Springtov	vn Ga	s (Blue Bell)				Well	I.D.: MW-103
	Project No.:	1409.2						1	Date: 8/24/2010
	Project Location:	909 Bluel	oell D	rive					
		Livermore	e, CA					Samples ser	nt to: Argon
Time	Cumulative Volume Purged (gal)	Temp	c°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)		Remarks
11:51	0.0	24.40	0	417	8.20	185.0	51.97	Brown, no odor, a	lot of sediments
11:55	4.5	19.36	6	1449	6.26	236.3	25.42	Brown, no odor, a	lot of sediments
11:59	9.0	19.3	4	1460	6.40	209.3	25.33	Brown, no odor, a	lot of sediments
12:03	13.5	19.3	2	1464	6.56	192.1	23.64	Brown, no odor, a	lot of sediments
12:05								Collected sample:	s
	Purge Method: Pumping Rate:		1.13	Waterra □Cen		mp with dedicated			
Well	Constructed TD (ft):	-	_		Sample	Containers used:	4	_# VOAs	X preserved non-preserved
	* Well TD (ft):							# amber liters	preserved non-preserved
	Silt Thickness (ft):							_# polys	preserved non-preserved
	Initial DTW (ft):	-						# polys	preserved non-preserved
	column height (ft):	O	0			Notes:			
One o	asing volume (gal):						- 6		
	** Final DTW (ft):	, and the same of				Sampled By:	E. Nona	So Alm	
Ca	asing diameter (in):	2"							
Sample Me	ethod: lons per foot of casing.			iler Other	5, 5" dia. = 1	* = measured	** = @ sampling]	Purged Water Drummed:

(209) 522-4119 (Office) * (209) 522-4227 (Fax) 1172 Kansas Avenue, Modesto, CA 95351 gti@gtienv.com

SPRINGTOWN GAS (BLUE BELL) 1409.2 909 BLUE BELL DRIVE, LIVERMORE

MONITORING WELL FIELD SUMMARY LOG 2010 DEPTH TO WATER MEASUREMENTS

	QTR. 1	QTR. 2	QTR. 3	QTR. 4	WELL
DATE	2/10/2010	6/25/2010	8/24/2010	mm/dd/yy	TD
	(ft)	(ft)	(ft)	(ft)	
LOCATION					
P-1	5.98	7.20	8.21		20.00
STMW-1	5.16	6.36	6.40		20.00
STMW-2	6.91	8.16	8.21		20.00
STMW-3	8.37	9.31	9.36		20.00
MW-4		9.89	10.00		20.00
MW-101		7.06	7.21		37.00
MW-102		8.66	8.82		40.00
MW-103		8.69	8.84		35.00

^{*}TD Total Depth

NOTE:

ALL MEASUREMENTS ARE MADE FROM THE NORTH SIDE AND TOP EDGE OF THE WELL
CASING. THE TOP OF CASING WITH A NOTCH OR PERMANENT MARKINGS, WHICH EVER ONE
CONDITION IS APPROPRIATE.

	Project Name:	Springtown Gas	s (Blue Bell)				Well I	I.D.: MW-4
	Project No.:	1409.2					Da	ate: 6/25/2010
	Project Location:	909 Bluebell Dr	rive					
		Livermore, CA					Samples sen	t to: Argon
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)		Remarks
12:21	0.00	22.47	1484	7.66	173.0	8.60	Clear, no odor, no	sediments
12:26	1.75	18.26	1285	7.22	177.5	0.14	Brown, no odor, a	lot of sediments
12:31	3.50	18.23	1247	7.20	170.6	0.05	Cloudy, no odor, n	no sediments
12:35	5.25	18.15	1228	7.20	165.5	0.05	Cloudy, no odor, n	no sediments
13:00							Collected samples	3
	Purge Method: Pumping Rate:		Vaterra □Cer	ntrifugal pur	np with dedicated	tubing 🚨 Ot	her	
Well	Constructed TD (ft):	20.00		Sample	Containers used:	4	# VOAs	X preserved non-preserved
	* Well TD (ft):	20.16					# amber liters	preserved non-preserved
	Silt Thickness (ft):	-0.16					# polys	preserved non-preserved
	Initial DTW (ft):	9.89					# polys	preserved non-preserved
Water	r column height (ft):	10.27			Notes:			
One	casing volume (gal):	6.68					_ /	
	** Final DTW (ft):	9.91			Sampled By:	M. van den Er	nden Make	ulrud [1
С	asing diameter (in):	4"						
ample M	ethod: allons per foot of casing.		ler Other a. = 0.38 4" dia. = 0.6		* = measured	** = @ sampling]	Purged Water Drummed: ☑ Yes ☐ No No. of Drums: 1

Project Name: Springtown Gas (Blue Bell)						Well I.D.: MW-101					
Project No.: 1409.2							Date: 6/25/2010				
	Project Location:	909 Bluebell Di	rive								
		Livermore, CA				Samples sent to: Argon					
īme	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks				
0:51	0.0	20.02	1047	7.20	272.9	27.37	Brown, no odor, a lot of sediments				
0:55	5.0	19.38	1076	7.18	265.2	29.49	Brown, no odor, a lot of sediments				
1:01	10.0	19.41	1077	7.19	253.3	30.09	Clear, no odor, few sediments				
1:07	15.0	19.43	1077	7.19	248.3	30.27	Clear, no odor, few sediments				
1:20							Collected samples				
Well (Purge Method: Pumping Rate: Constructed TD (#): * Well TD (#): Silt Thickness (#): Initial DTW (#):	37.00 36.30 0.70	Vaterra □Cer gal/min		np with dedicated Containers used:		# VOAs				
Water	column height (ft):	29.24			Notes:						
One o	asing volume (gal):	4.97									
	** Final DTW (ft):	7.12			Sampled By:	M. van den Er	nden Mahalmade El				
Ca	asing diameter (in):	2"					,				
mple Me	ethod: llons per foot of casing.		ler Other a. = 0.38 4* dia. = 0.		* = measured 1.02, 6" dia. = 1.48	** = @ sampling	Purged Water Drummed: ☐ Yes ☐ No No. of Drums:				

	Project Name:	Springtown Ga	s (Blue Bell)				Well I.D.: MW-102
	Project No.:	1409.2					Date: 6/25/2010
	Project Location:	909 Bluebell Di	rive				
		Livermore, CA					Samples sent to: Argon
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
11:35	0.00	23.32	1100	7.68	190.0	10.07	Brown, no odor, a lot of sediments
11:39	5.25	19.53	1046	7.20	197.0	6.48	Brown, no odor, a lot of sediments
11:43	10.50	19.56	1030	7.20	185.0	7.17	Brown, no odor, a lot of sediments
11:47	15.75	19.57	1042	7.10	190.3	6.35	Brown, no odor, a lot of sediments
12:05							Collected samples
						_	
	Purge Method:		Vaterra □Cer	ntrifugal pur	np with dedicated	tubing 🚨 Ot	Other
Well	Constructed TD (ft):	40.00		Sample	Containers used:	4	# VOAsX preserved non-preserved
	* Well TD (ft):	39.25					# amber liters preserved non-preserved
	Silt Thickness (ft):	0.75					# polys preserved non-preserved
	Initial DTW (ft):	8.66					# polys preserved non-preserved
Water	column height (ft):	30.59			Notes:		
One	casing volume (gal)	5.20					
	** Final DTW (ft)	8.67			Sampled By:	M. van den En	Enden Muhael rud Ed
С	asing diameter (in)	2"					
Sample Me	ethod: llons per foot of casing.		ler Other		* = measured .02, 6" dia. = 1.48	** = @ sampling	Purged Water Drummed:

	Project Name: Project No.:	Springtown Gas	s (Blue Bell)				Well I.D.: MW-103 Date: 6/25/2010			
	Project Location:	909 Bluebell Dr Livermore, CA	ive			Samples sent to: Argon				
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks			
10:12	0.0	17.76	937	6.91	268.3	17.63	Brown, no odor, a lot of sediments			
10:18	4.5	19.08	1293	7.15	288.6	29.56	Brown, no odor, a lot of sediments			
10:23	9.0	19.11	1307	7.13	282.7	29.83	Brown, no odor, a lot of sediments			
10:29	13.5	19.12	1316	7.12	277.3	29.46	Clear, no odor, no sediments			
10:40							Collected samples			
	:									
	Purge Method: Pumping Rate:			trifugal pur	np with dedicated	tubing 🚨 Ot	her			
Well	Constructed TD (ft):	35.00		Sample	Containers used:	4	# VOAsX preserved non-preserved			
	* Well TD (ft):	34.08					# amber liters preserved non-preserved			
	Silt Thickness (ft):	0.92					# polys preserved non-preserved			
	Initial DTW (ft):	8.69					# polys preserved non-preserved			
Water	column height (ft):	25.39			Notes:		0000			
One	casing volume (gal):	16.50								
	** Final DTW (ft):	8.70			Sampled By:	M. van den En	den Muhel und El			
C	asing diameter (in):	4"								
ample Me	ethod: llons per foot of casing.	Waterra ⊠ Baile 2" dia. = 0.17, 3" dia		5, 5" dia. = 1	* = measured .02, 6" dia. = 1.48	** = @ sampling	Purged Water Drummed:			

(209) 522-4119 (Office) * (209) 522-4227 (Fax) 1172 Kansas Avenue, Modesto, CA 95351 gti@gtienv.com

SPRINGTOWN GAS (BLUE BELL) 1409.2 909 BLUE BELL DRIVE, LIVERMORE

MONITORING WELL FIELD SUMMARY LOG 2010 DEPTH TO WATER MEASUREMENTS

	QTR. 1	QTR. 2	QTR. 3	QTR. 4	WELL
DATE	2/10/2010	6/25/2010	mm/dd/yy	mm/dd/yy	TD
	(ft)	(ft)	(ft)	(ft)	
LOCATION					
P-1	5.98	7.20			20.00
STMW-1	5.16	6.36			20.00
STMW-2	6.91	8.16			20.00
STMW-3	8.37	9.31			20.00
MW-4		9.89			20.00
MW-101		7.06			37.00
MW-102		8.66		<u></u>	40.00
MW-103		8.69			35.00

*TD Total Depth

NOTE:

ALL MEASUREMENTS ARE MADE FROM THE NORTH SIDE AND TOP EDGE OF THE WELL
CASING. THE TOP OF CASING WITH A NOTCH OR PERMANENT MARKINGS, WHICH EVER ONE
CONDITION IS APPROPRIATE.