SUSTAINABLE STRATEGIES FOR GLOBAL LEADERS

RECEIVED

9:55 am, May 09, 2008

Alameda County
Environmental Health

May 8, 2008 DELTA Project SCA1801S1 SAP: 135783

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: FIRST QUARTER 2008 GROUNDWATER MONITORING REPORT Shell-Branded Service Station 1801 Santa Rita Road Pleasanton, California

Dear Mr. Wickham:

On behalf of Shell Oil Products (SHELL), Delta Consultants (DELTA), has prepared this *First Quarter 2008 Groundwater Monitoring Report* for the above referenced site. The sampling activities at the site were performed by Blaine Tech Services, Inc. under contract to SHELL and included the collection of groundwater samples and static water level measurements. A DELTA staff member under the supervision of a California Registered Civil Engineer or a California Professional Geologist performed the data evaluation.

This quarterly report represents DELTA's professional opinions based upon the currently available information and is arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between DETLA and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of DELTA's Client and anyone else specifically listed on this report. DELTA will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, DELTA makes no express or implied warranty as to the contents of this report.

Mr. Jerry Wickham Alameda County Health Care Services Agency May 8, 2008 Page 2

If you have any questions regarding this site, please contact Ms. Elisabeth Silver (DELTA) at (425) 498-7736 or Mr. Denis Brown (SHELL) at (707) 865-0251.

Sincerely,

Delta Consultants

Elisabeth Silver Senior Project Manager

Richard A. Garlow, M.S., P.G.

Project Manager

Attachment: First Quarter 2008 Groundwater Monitoring Report

cc: Mr. Denis Brown, Shell Oil Products US, Carson

SHELL QUARTERLY STATUS REPORT

Station Address:	1801 Santa Rita Road, Pleasanton, CA
DELTA Project No.:	SJ1801S1X
SHELL Project Manager / Phone No.:	Denis Brown / (707) 865-0251
DELTA Site Manager / Phone No.:	Elisabeth Silver / (425) 498-7736
Primary Agency / Regulatory ID No.:	Alameda County Environmental Health (ACEH) /
	Mr. Jerry Wickham
Other Agencies to Receive Copies:	None
WORK PERFORMED THIS QUARTER (FIR	ST - 2008):
1. Quarterly groundwater monitoring and samp	oling. Submitted quarterly report.
2. Submitted work plan for additional borings	
WORK PROPOSED FOR NEXT QUARTER (Second - 2008):
1. Quarterly groundwater monitoring and samp	oling. Submit quarterly report.
Current Phase of Project:	Groundwater monitoring.
Site Use:	Shell-branded service station
Frequency of Sampling:	Quarterly – Wells MW-1, MW-1A, MW-4, MW-4A, MW-5, and MW-6
	Annual – Wells MW-2 and MW-3
Frequency of Monitoring:	Quarterly – Wells MW-1, MW-1A, MW-4, MW-4A, MW-5, and MW-6
	Annual – Wells MW-2 and MW-3
Is Separate Phase Hydrocarbon Present Onsite (Well #'s):	☐ Yes ⊠ No
Cumulative SPH Recovered to Date:	NA
SPH Recovered This Quarter:	None
Cumulative Groundwater Recovered to Date:	NA
Groundwater Recovered This Quarter:	289.2 gallons were recovered on January 10, 2007
Sensitive Receptor(s) and Respective Direction(s):	City of Pleasanton Well 06 located approximately 1,531 feet southeast of the site is the nearest municipal water supply well identified by Delta. City of Pleasanton Wells 04 and 05 are located approximately 1,795 feet and 1,848 feet southeast of site, respectively.
Site Lithology:	Borings for the wells encountered primarily clay and clayey sand from the ground surface to a depth of approximately 25 feet. Clay and silty clay were encountered from approximately 25 to 55 feet; and well graded sand and gravels were encountered from approximately 55 feet to 97.5 feet, the maximum depth explored.
Current Remediation Techniques:	None
Permits for Discharge:	None

SHELL QUARTERLY STATUS REPORT (CONT.)

Approximate Depth to Groundwater:

38.63 to 40.39 feet below top of well casing

Groundwater Gradient:

South-southwest at approximately 0.01 ft/ft in the shallow zone. South-southwest at approximately 0.002 ft/ft in the deep zone.

Current Agency Correspondence:

None

Date of Most Recent Work Plan Approval: May 4, 2007

Site History:

Case Opening

2002

Onsite Assessment

2002-2007

Offsite Assessment

None

Passive Remediation

Active Remediation

None None

Closure

NA

Summary of Unusual Activity:

TPH-G decreased in Well MW-4A from 400 micrograms per

liter (ug/l) last quarter to 200 ug/l.

Discussion:

Monitoring data from well MW-4A to watch for seasonal changes.

ATTACHED:

- Table 1 Well Concentrations
- Figure 1 Site Location Map
- Figure 2 Groundwater Elevation Contour Map (Shallow)
- Figure 3 Groundwater Elevation Contour Map (Deep)
- Figure 4 Hydrocarbon Distribution Map
- Appendix A Field Data Sheets
- Appendix B Field Procedures
- Appendix C Laboratory Report and Chain-of-Custody Document

TABLE

			:					MTBE						Depth to	GW
Well ID	Date	TPPH	TEPH	В	Т	E	X	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-1	12/12/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	85.83	NA
MW-1	12/20/2002	<50	<50	<0.50	<0.50	<0.50	0.71	<0.50	<2.0	<2.0	<2.0	<50	NA	85.60	NA
MW-1	3/31/2003	<50	75	<0.50	<0.50	<0.50	<1.0	<5.0	NA	NA	NA	NA	342.10	77.36	264.74
MW-1	6/26/2003	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	342.10	72.48	269.62
MW-1	9/15/2003	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	342.10	79.03	263.07
MW-1	12/31/2003	<50	<50	<0.50	0.99	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	342.10	70.57	271.53
MW-1	3/8/2004	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	342.10	65.95	276.15
MW-1	6/16/2004	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	342.10	66.50	275.60
MW-1	4/14/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	342.10	55.97	286.13
MW-1	10/20/2005	<50	330 b/190 b	0.86	<0.50	<0.50	1.2	0.87	<2.0	<2.0	<2.0	<5.0	342.10	56.51	285.59
MW-1	2/27/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	342.10	45.93	296.17
MW-1	4/19/2006	<50.0	<47.2 c	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<10.0	342.10	43.15	298.95
MW-1	7/12/2006	<50.0	53.1 c	<0.500	<0.500	<0.500	<1.5	<0.500	<0.500	<0.500	<0.500	<10.0	342.10	44.80	297.30
MW-1	10/6/2006	<50.0	76 c,d	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<10.0	342.10	44.65	297.45
MW-1	1/19/2007	<50	71 c	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	342.10	39.39	302.71
MW-1	4/3/2007	51 i	150 c,h	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	342.10	36.12	305.98
MW-1	7/6/2007	<50 i	<50 c	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	342.10	44.15	297.95
MW-1	10/25/2007	<50 i	<50 c	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	342.10	40.39	301.71
MW-1	1/10/2008	<50 i	<50k	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	342.10	36.57	305.53
MW-1A	2/23/2006	NA	NA	NA	NA	NA	NA	NA	ŃΑ	NA	NA.	NA	341.72	46.95	294.77
MW-1A	2/27/2006	<50.0	55.9 с	4.04	<0.500	<0.500	2.02	3.32	<0.500	<0.500	<0.500	12.5	341.72	45.56	296.16
MW-1A	4/19/2006	<50.0	119 c	1.05	0.990	<0.500	<0.500	1.41	<0.500	<0.500	<0.500	<10.0	341.72	42.78	298.94
MW-1A	7/12/2006	<50.0	79.6 c	<0.500	<0.500	<0.500	<1.5	9.82	<0.500	<0.500	<0.500	19.1	341.72	44.41	297.31
MW-1A	10/6/2006	<50.0	90 c,d	<1.00	<1.00	<1.00	<3.00	7.27	<1.00	<1.00	<1.00	<10.0	341.72	44.22	297.50
MW-1A	1/19/2007	<50	64 c	<0.50	<0.50	<0.50	<0.50	15	<0.50	<0.50	<0.50	24	341.72	38.94	302.78

TABLE 1 **WELL CONCENTRATIONS**

Shell-branded Service Station 1801 Santa Rita Road Pleasanton, CA

								MTBE						Depth to	GW
Well ID	Date	TPPH	TEPH	В	Т	E	Х	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-1A	4/3/2007	<50 i	210 c	0.74	<1.0	<1.0	<1.0	14	<2.0	<2.0	<2.0	<10	341.72	35.67	306.05
MW-1A	7/6/2007	<50 i	68 c	0.76	<1.0	<1.0	<1.0	38	<2.0	<2.0	<2.0	63	341.72	43.72	298.00
MW-1A	10/25/2007	<50 i	<50 c	<0.50	<1.0	<1.0	<1.0	30	<2.0	<2.0	<2.0	29	341.72	39.89	301.83
MW-1A	1/10/2008	<50 i	100 h,k	<0.50	<1.0	<1.0	<1.0	23	<2.0	<2.0	<2.0	<10	341.72	36.06	305.66
															Min.,
MW-2	12/12/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	85.15	NA
MW-2	12/20/2002	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.0	<2.0	<2.0	<50	NA	85.00	NA
MW-2	3/31/2003	<50	63	<0.50	0.71	<0.50	<1.0	<5.0	NA	NA	NA	NA	341.57	76.63	264.94
MW-2	6/26/2003	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.57	71.94	269.63
MW-2	9/15/2003	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.57	78.41	263.16
MW-2	12/31/2003	<50	120 a	<0.50	1.3	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.57	69.96	271.61
MW-2	3/8/2004	<50	110 a	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.57	65.34	276.23
MW-2	6/16/2004	<50	90 a	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.57	65.86	275.71
MW-2	4/14/2005	<50	77 a	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.57	55.35	286.22
MW-2	10/20/2005	<50	75 a/<50	<0.50	<0.50	<0.50	<1.0	0.54	<2.0	<2.0	<2.0	<5.0	341.57	55.89	285.68
MW-2	2/27/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.57	45.30	296.27
MW-2	4/19/2006	<50.0	80.1 c	<0.500	<0.500	<0.500	<0.500	0.630	<0.500	<0.500	<0.500	<10.0	341.57	42.56	299.01
MW-2	7/12/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.57	44.20	297.37
MW-2	10/6/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.57	44.07	297.50
MW-2	1/19/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.57	38.79	302.78
MW-2	4/3/2007	<50 i	190 с	<0.50	<1.0	<1.0	<1.0	0.77 j	<2.0	<2.0	<2.0	<10	341.57	35.54	306.03
MW-2	7/6/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.57	43.54	298.03
MW-2	10/25/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.57	39.77	301.80
MW-2	1/10/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.57	35.95	305.62
					· ·			.	_						Committee on the committee of the commit
MW-3	12/12/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	85.49	NA
MW-3	12/20/2002	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.0	<2.0	<2.0	<50	NA	85.25	NA

								MTBE						Depth to	GW
Well ID	Date	TPPH	TEPH	В	Т	E	Х	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-3	3/31/2003	<50	<50	<0.50	<0.50	<0.50	<1.0	<5.0	NA	NA	NA	NA	341.65	76.81	264.84
MW-3	6/26/2003	<50	80 a	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.65	72.05	269.60
MW-3	9/15/2003	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.65	78.52	263.13
MW-3	12/31/2003	<50	<50	<0.50	1.2	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.65	70.15	271.50
MW-3	3/8/2004	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.65	65.46	276.19
MW-3	6/16/2004	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.65	65.87	275.78
MW-3	4/14/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.65	55.50	286.15
MW-3	10/20/2005	<50	55 a/<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	341.65	55.97	285.68
MW-3	2/27/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.65	45.45	296.20
MW-3	4/19/2006	<50.0	200 с	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	20.2	341.65	42.67	298.98
MW-3	7/12/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.65	44.32	297.33
MW-3	10/6/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.65	44.19	297.46
MW-3	1/19/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.65	38.98	302.67
MW-3	4/3/2007	<50 i	140 c	0.21 j	<1.0	<1.0	<1.0	0.29 j	<2.0	<2.0	<2.0	<10	341.65	35.72	305.93
MW-3	7/6/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.65	43.69	297.96
MW-3	10/25/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.65	39.90	301.75
MW-3	1/10/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	341.65	36.12	305.53
	.										1			1	-
MW-4	12/12/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	84.36	NA
MW-4	12/20/2002	<50	69	<0.50	<0.50	<0.50	<0.50	<0.50	<2.0	<2.0	<2.0	<50	NA	84.15	NA
MW-4	3/31/2003	<50	70	<0.50	<0.50	<0.50	<1.0	<0.50	NA	NA	NA	NA	340.68	75.90	264.78
MW-4	6/26/2003	<50	86 a	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	340.68	71.01	269.67
MW-4	9/15/2003	<50	120 a	1.0	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	340.68	77.57	263.11
MW-4	12/31/2003	<50	<50	<0.50	0.64	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	340.68	69.15	271.53
MW-4	3/8/2004	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	340.68	64.51	276.17
MW-4	6/16/2004	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	340.68	65.04	275.64
MW-4	4/14/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	340.68	54.53	286.15

								MTBE						Depth to	GW
Well ID	Date	TPPH	TEPH	В	T	E	Х	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-4	10/20/2005	<50	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<2.0	<2.0	<2.0	<5.0	340.68	55.05	285.63
MW-4	2/27/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	340.68	44.49	296.19
MW-4	4/19/2006	<50.0	265 с	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<10.0	340.68	41.72	298.96
MW-4	7/12/2006	<50.0	652 c	<0.500	<0.500	<0.500	<1.5	<0.500	<0.500	<0.500	<0.500	<10.0	340.68	43.34	297.34
MW-4	10/6/2006	<50.0	320 c,d	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<10.0	340.68	43.23	297.45
MW-4	1/19/2007	<50	79 c	<0.50	<0.50	<0.50	0.88	<0.50	<0.50	<0.50	<0.50	<20	340.68	38.12	302.56
MW-4	4/3/2007	<50 i	1,200 c,h	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	340.68	34.55	306.13
MW-4	7/6/2007	<50 i	<50 c	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	340.68	42.75	297.93
MW-4	10/25/2007	<50 i	1,400 c,h	<0.50	0.30 j	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	340.68	38.92	301.76
MW-4	1/10/2008	<50 i	<50 k	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	340.68	35.22	305.46
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											and the second s
MW-4A	2/23/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	340.77	46.55	294.22
MW-4A	2/27/2006	3,280	246 c	232	135	27.2	306	10.2	<0.500	<0.500	<0.500	<10.0	340.77	44.61	296.16
MW-4A	4/19/2006	15,000	967 c	2,620	1,280	518	1,460	34.9	<0.500	<0.500	<0.500	<10.0	340.77	41.82	298.95
MW-4A	7/12/2006	25,900	<47.2 c	3,720	749	728	1,770	37.6	<0.500	<0.500	<0.500	32.2	340.77	43.48	297.29
MW-4A	10/6/2006	4,340	560 c,d	573	14.9	193	132	16.4	<1.00	<1.00	<1.00	<10.0	340.77	43.42	297.35
MW-4A	1/19/2007	3,700	420 c	1,300 e,f,g	150	350	400	40	<2.5	<2.5	<2.5	<100	340.77	38.03	302.74
MW-4A	4/3/2007	2,200 i	1,200 c	240	5.0	240	9.4	41	<2.0	<2.0	<2.0	44	340.77	34.78	305.99
MW-4A	7/6/2007	1,300 i	290 с	130	6.5	130	40.7	29	<2.0	<2.0	<2.0	72	340.77	42.91	297.86
MW-4A	10/25/2007	400 i	220 c,h	3.8	0.50 j	3.7	1.37 j	34	<2.0	<2.0	<2.0	200	340.77	39.12	301.65
MW-4A	1/10/2008	200 i	150 h, k	8.8	0.75 j	2.4	0.37 j	40	<2.0	<2.0	<2.0	310	340.77	35.20	305.57
	1			,		r	T		T		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
MW-5	2/23/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	340.86	45.10	295.76
MW-5	2/27/2006	<50.0	<50.0 c	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<10.0	340.86	44.69	296.17
MW-5	4/19/2006	<50.0	<47.2 c	0.810	0.810	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<10.0	340.86	41.95	298.91
MW-5	7/12/2006	<50.0	71.6 c	<0.500	<0.500	<0.500	<1.5	<0.500	<0.500	<0.500	<0.500	<10.0	340.86	43.44	297.42
MW-5	10/6/2006	<50.0	260 c,d	<1.00	<1.00	<1.00	<3.00	<1.00	<1.00	<1.00	<1.00	<10.0	340.86	43.46	297.40

								MTBE						Depth to	GW
Well ID	Date	TPPH	TEPH	В	Т	E	Х	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-5	1/19/2007	<50	<50 c	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	340.86	38.09	302.77
MW-5	4/3/2007	<50 i	120 c,h	<0.50	<1.0	<1.0	<1.0	0.34 j	<2.0	<2.0	<2.0	<10	340.86	34.91	305.95
MW-5	7/6/2007	<50 i	<50 c	<0.50	<1.0	<1.0	<1.0	1.3	<2.0	<2.0	<2.0	<10	340.86	42.95	297.91
MW-5	10/25/2007	<50 i	<50 c	<0.50	0.34 j	<1.0	<1.0	1.7	<2.0	<2.0	<2.0	<10	340.86	39.16	301.70
MW-5	1/10/2008	<50 i	82 h,k	<0.50	<1.0	<1.0	<1.0	1.1	<2.0	<2.0	<2.0	<10	340.86	35.30	305.56
MW-6	9/12/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	42.20	NA
MW-6	9/19/2007	<50 i	<50 c	<0.50	<1.0	<1.0	<1.0	2.5	NA	NA	NA	<10	NA	41.85	NA
MW-6	10/25/2007	<50 i	<50 c	<0.50	<1.0	<1.0	<1.0	<1.0	<2.0	<2.0	<2.0	<10	340.34	38.63	301.71
MW-6	1/10/2008	<50 i	<50 k	<0.50	<1.0	<1.0	<1.0	0.86 j	<2.0	<2.0	<2.0	<10	340.34	35.29	305.05

(ug/L)

(ug/L)

(ug/L)

PI	easanto	n, CA						
		MTBE						Depth to
E	Х	8260	DIPE	ETBE	TAME	TBA	TOC	Water

(ug/L)

(ug/L)

(ug/L)

(MSL)

(ft.)

GW Elevation

(MSL)

Abbreviations:

Well ID

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B.

TPPH

(ug/L)

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

TEPH

(ug/L)

В

(ug/L)

Т

(ug/L)

(ug/L)

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B.

MTBE = Methyl tertiary butyl ether

Date

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

TBA = Tertiary Butanol or Tertiary butyl alcohol

n/n = TEPH/TEPH w/Silica Gel Clean-up

TOC = Top of Casing Elevation

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

NA = Not applicable

TABLE 1 WELL CONCENTRATIONS

Shell-branded Service Station 1801 Santa Rita Road

			•
Ple	asa	ntor	ı, CA

								MTBE						Depth to	GW
Well ID	Date	TPPH	TEPH	В	Т	E	X	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										

Notes:

- a = Hydrocarbon does not match pattern of laboratory's standard.
- b = The concentration reported reflect(s) individual or discrete unidentified peaks not matching a typical fuel pattern.
- c = Analysis with Silica Gel clean-up.
- d = Hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- e = Initial analysis within holding time. Reanalysis for the required dilution or confirmation was past holding time.
- f = The sample, as received, was not preserved in accordance to the referenced analytical method.
- g = pH=7
- h = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- i = Analyzed by EPA Method 8015B (M).
- j = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
- k = The sample extract was subjected to Silica Gel treatment prior to analysis.
- Site surveyed January 14, 2003 by Mid Coast Engineers.
- 1Q06 survey data for wells MW-1A, MW-4A, and MW-5 provided by Delta Environmental.
- TOC elevation for well MW-6 surveyed on October 5, 2007 and was provided by Delta Environmental.

FIGURES

SHELL-BRANDED SERVICE STATION 1801 Santa Rita Road Pleasanton, California

1	i icasanton,
PROJECT NO.	DRAWN BY
SJ1801S1X	VF 10/23/03
FILE NO.	PREPARED BY
	VF
REVISION NO.	REVIEWED BY

FILENAME: SCA1801S1_08Q1.DWG|FIG2_GWCONTOURS_SHALLOW

LEGEND

MW-5⊕

305.05

MW−1 💠

GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION

(DEEP)

GROUNDWATER MONITORING
WELL LOCATION AND DESIGNATION
(SHALLOW)

GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (Ft/MSL)

GROUNDWATER CONTOUR IN FEET ABOVE MEAN SEA LEVEL (Ft/MSL) 305.40 — — —

CONTOUR INTERVAL=0.20 FEET

APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)

SHELL OIL PRODUCTS US SHELL-BRANDED SERVICE STATION PLEASANTON, CALIFORNIA

FIGURE 2 GROUNDWATER ELEVATION CONTOUR MAP (SHALLOW) 01/10/08

> 1801 SANTA RITA ROAD PLEASANTON, CALIFORNIA

FILENAME: SCA1801S1_08Q1.DWG|FIG3_GWCONTOURS_DEEP

LEGEND

MW-1**♦**

MW-5⊕

GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION

GROUNDWATER MONITORING
WELL LOCATION AND DESIGNATION

(SHALLOW)

305.62

GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (Ft/MSL)

305.55 -- -- GROUNDWATER CONTOUR IN FEET ABOVE MEAN SEA

LEVEL (Ft/MSL) CONTOUR INTERVAL=0.05 FEET

0.002 /1//1

APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)

SHELL OIL PRODUCTS US SHELL-BRANDED SERVICE STATION PLEASANTON, CALIFORNIA

FIGURE 3 GROUNDWATER ELEVATION CONTOUR MAP (DEEP) 01/10/08

1801 SANTA RITA ROAD PLEASANTON, CALIFORNIA

APPENDIX A

FIELD DATA SHEETS

SHELL WELLHEAD INSPECTION FORM

(FOR SAMPLE TECHNICIAN)

Site Address		18	c l	٠	Zin	17 B	1,14 1	nd. F	lusmin A	Date	1/14/08	<i>*</i>
Job Number	08	6110		VE 1		Tec	hnician	<u></u>	Russman (A	Page		1
Well ID	Well Inspected - No Corrective Action Required	Well Box Meets Compliance Requirements *See Below	Water Bailed From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists		Notes	,	
	K											
mw-1/ mw-2 mw-3	X										· · · · · · · · · · · · · · · · · · ·	
MW-2	У								· · · · · · · · · · · · · · · · · · ·			
MW-3	X					:			V.,			
m 100 4	X											
mu-41	У							+ f**;				
mw-4A mw-5	×											, in the second
in wal	K								***************************************			
											•	
						/						
							S					**************************************
							Į,				15	
					3						:	. :
	A =11.00		45 5			. 4) \4/5' ;	le econe	ARIERVI	ESIGN (12"or less) 2) W	ELL IS MARKED	WITH THE W	ORDS
"MONITORING WEL	t all thr L" (12"	ee criteria 'or less)	to be 3) WE	LL TA	G IS	RESENT,	SECURE,	AND CORF	RECT	ELL IO MANNED		
Notes:												
	%G.	7.5	· · · · · · · · · · · · · · · · · · ·									
BLAINE TECH SER	RVICES, IN	C.		SAN J	OSE	SACRAN	MENTO	LOS ANGELE	S SAN DIEGO SEA	ATTLE	www.blainet	tech.com

WELL GAUGING DATA

Proj	ect#_	08]	0110-	DRI	D	ate	0/98		Client	97615964	
					465 a	,					
Site	<u> </u>	01	Smola	R. 14	R.J.	Husson	Å.	•			

	 	I	T		r			T		γ 	_
7		Well		Double to	Thickness of	Volume of Immiscibles	B .		Survey		
		Size	Sheen /	Depth to Immiscible			Depth to water	Depth to well	Point: TOB or		
Well ID	Time	(in.)	Odor	Liquid (ft.)		1	(ft.)	bottom (ft.)	TOC	Notes	
<u> </u>			 	2.40.0	Ziquia (iii)	(1111)	(111)	bottom (tt.)	G	140103	┨
nw=14	0840	+	- 4				36.57	61.77	/ /		ND
1 2							1				-
mw=11	0837	4	+ 4				36.06	52.19			2
							0				الموجد ا
MW-2	0833	4	- 4		•		35,95	93.10	6	60.	3
			,	4				£ 5.			1
burn -3	0830	2	- 4				36,12	96-81	\ \	G. O.	A
Al.		,						7 1			1
ma-3	08613	L	- 3				35.22	94.13	3	x.*	UD.
	.6	_	- 4								
mw-41 mw-5	08016	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7				35.20	54.60			5
-		سرا	[1				35.30 35.29	1.	V]
MW =3	0850	K	H				33.30	54.42	0		
	0663	•	4				0	P 1.			NB
MW. U	08)3		7				35, 29	3457			
								ė			
,	· 🎉										
							!				
					İ						
L			<u></u>				1				J

BTS#: O	80110-I	1 J		Site: 976	15962	
Sampler:	DR			Date: 1/14	108	
Well I.D.:	Mw-1			Well Diamet	er: 2 3 4	6 8
Total Well	Depth (TD): 91	1.72	Depth to Wa	ter (DTW): 31.	57
Depth to Fr	ee Product	•		Thickness of	Free Product (fe	et):
Referenced	to:	PVG	Grade	D.O. Meter (if req'd):	YSI HACH
DTW with	80% Recha	arge [(H	leight of Water	Column x 0.2	20) + DTW]: 4	7.60
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subir	Displaceme		Waterra Peristaltic tion Pump Well Dia	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing
35.8 (0 1 Case Volume		3 fied Volum	$\frac{107.4}{\text{Calculated Vo}}$		0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 radius ² * 0.163
Time	Temp (°F)	pН	Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations
1036	62.1	6.9	139.1	142	3.5.5	1. The cloudy
1043	63.8	6.6	1382	17	71.6	elean
1050	63.9	6.5	1377	10	107.4	17
				,		
Did well de	water?	Yes (No)	Gallons actua	ally evacuated:	107.4
Sampling D	rate: 1/10/0	8	Sampling Time	e: 1100	Depth to Wate	r: 36.68
Sample I.D.	: MW-			Laboratory:		a/541201C)
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other: 5	i CoC	
EB I.D. (if a	applicable)	•	@ Time	Duplicate I.I	. (if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:		
D.O. (if req	'd): Pr	e-purge:		mg/L	Post-purge:	mg/l.
O.R.P. (if re	eq'd): Pr	e-purge:		mV	Post-purge:	mV

BTS#: OE	\$ 0110 - D	RI I		Site:	9761	5964	
Sampler:	DR			Date:	1/10/0	8	
Well I.D.:	Mw-1	A		Well Di	ameter:	2 3 4	6 8
Total Well I	Depth (TD): 5	7.19	Depth to	o Water	·(DTW): 36.0	6
Depth to Fro	ee Product	•		Thickne	ess of Fi	ree Product (fee	t):
Referenced	to:	PVG	Grade	D.O. M	eter (if		YSI HACH
DTW with	80% Recha	arge [(H	eight of Water	Column	x 0.20)	<u> + DTW]: 40</u>	7.29
Purge Method:	Bailer Disposable Ba Positive Air E (Electric Subm	Displaceme	nt Extrac Other	_	Well Diamete	Sampling Method: Other:	XBailer Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	Gals.) X Speci	3 fied Volum	$\frac{1}{\text{ces}} = \frac{41.1}{\text{Calculated Vol}}$	Gals.	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163
Time	Temp (°F)	рН	Cond. (mS or µS)	Turb (NT	-	Gals. Removed	Observations
1125	63.8	6.7	1827	13	て	13,7	light cloudy
1127	63.6	6.4	8 דרו	2	3	27.4	clear
1130	£3.7	6.4	1726		L	41.1	o p
						·	
Did well de	water?	Yes	(No)	Gallons	actuall	y evacuated:	41.1
Sampling D	Date: 1/10/0	Е	Sampling Tim	e: 113	5	Depth to Water	
Sample I.D	: MW-	14		Laborat	ory:	STL Other	1/Science
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:	Sec	e CeC.	
EB I.D. (if	applicable));	@ Time	Duplica	ite I.D.	(if applicable):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:			-
D.O. (if req	'd): P:	re-purge:		mg/L	P	ost-purge:	ing/L
ORP (if r	ea'd). Pr	re-murge'		mV	P	ost-purge:	m.V

BTS #: O	30110-D	RI		Site:	9761	5964	
Sampler:	DR			Date:	1/14/0	8	
Well I.D.:	Mw-	-		ł		: ② 3 4	6 8
Total Well	Depth (TD): qu	.13	Depth	to Water	r (DTW): 35・2	الا
Depth to Fr	ee Product			Thickr	ess of F	ree Product (fee	et):
Referenced	to:	PVG	Grade	D.O. N	Aeter (if	req'd):	YSI HACH
DTW with	80% Recha	arge [(H	eight of Water	Colum	n x 0.20)) + DTW]: 4	7,00
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	isplaceme	nt Extrac Other	Waterra Peristaltic etion Pump	Well Diamete		XBailer Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	Gals.) X Speci	3 fied Volum	$= \frac{28.2}{\text{Calculated Vo}}$	Gals. olume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163
Time	Temp (°F)	рН	Cond. (mS or µS)	1	bidity TUs)	Gals. Removed	Observations
0949	61.4	7.1	1182	7100	70	9.4	clendy
0959	62.1	6.9	1268	74	-16	18.3	7
1009	62.0	6:8	1269	3,	0 }	28.2	* (
Did well de	water?	Yes	N9	Gallon	s actuall	y evacuated:	28.2
Sampling D	ate: 1/10/0	8	Sampling Tim	e: 101	5	Depth to Water	1: 37.27
Sample I.D	: MW-	4		Labora	itory:	Depth to Water	a/SLIVACE)
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:	Sie	CoC .	
EB I.D. (if	applicable)	:	(i) Time	Duplic		(if applicable):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:			
D.O. (if req	'd): P1	e-purge:		mg/1	P	ost-purge:	^{mg} / _{L.}
O.R.P. (if re	eq'd): Pı	e-purge:		mV	Р	ost-purge:	mV

BTS #: OF	70110-D	Ω1		Site: 9761 596 ²					
Sampler:	DR				1/10/0				
Well I.D.:	MW-C	1A		Well Diameter: 2 3 (4) 6 8					
Total Well	Depth (TD): 5 ^L	1.60	Depth to Water (DTW): 35, 20					
Depth to Fre	ee Product	•		Thickn	ess of F	ree Product	(feet)):	
Referenced	to:	PVG	Grade	D.O. M	leter (if	req'd):	Y	'SI HACH	
DTW with	80% Recha	arge [(H	leight of Water	Column	x 0.20)	+ DTW]:	39.	68	
Purge Method:	Bailer Disposable Ba Positive Air I (Electric Subm	isplaceme	nt Extrac Other		Well Diamete	r Multiplier	ther: Well Dia	★ Bailer Disposable Bailer Extraction Port Dedicated Tubing	
1 Case Volume	Gals.) X Speci	3 fied Volun	$\frac{1}{10000000000000000000000000000000000$	Gals.	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163	
Time	Temp (°F)	рН	Cond. (mS or µS)	1	oidity (Us)	Gals. Remov	ved	Observations	
1150	59.8	67	1671	7,	8	12.6		dur	
1152	63.2	6.4	1697	L		25.2		/ 0	
1153	63.4	64	1664	2	_4	37.8			
				,					
Did well de	water?	Yes	N ₀	Gallons	actuall	y evacuated	:	7,8	
Sampling D	ate: 1/10/0	8	Sampling Tim	e: 120	<u>.0</u>	Depth to W	ater:	35. 33	
Sample I.D.	: MW-L	14		Labora	tory:	STL Other	Gal	Science)	
Analyzed for	or: TPH-G	BTEX	МТВЕ ТРН-D	Other:	Sec	CoC.			
EB I.D. (if	applicable)	:	@ Time	Duplica	ate I.D.	(if applicabl	e):		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:			, , , , , , , , , , , , , , , , , , ,	-	
D.O. (if req	'd): P1	e-purge:		mg/L	Р	ost-purge:		mg/L	
O.R.P. (if re	eq'd): Pi	e-purge:		mV	P	ost-purge:		mV	

BTS#: 0 9	10/10-D	Q1		Site: 976 596 ²⁴						
Sampler:				Date:	1/14/00	8				
Well I.D.:	Mw-5			Well Di	ameter:	2 3 4	6 8			
Total Well I	Depth (TD)): 54	1.42	Depth to	o Water	·(DTW): 35,	30			
Depth to Fre	ee Product:			Thickness of Free Product (feet):						
Referenced		PVG	Grade	D.O. Meter (if req'd): YSI HACH						
DTW with 8	30% Recha	rge [(H	eight of Water	Column	x 0.20)	+ DTW]: }	1.12			
J	Bailer Disposable Ba Positive Air D Electric Subm	isplaceme	nt Extrac Other		Well Diamete		Disposable Bailer Extraction Port Dedicated Tubing			
12.4 (C	Gals.) X Specia	3 Fied Volum	= 37.2 Calculated Vo		1" 2" 3"	0.04 4" 0.16 6" 0.37 Oth	0.65 1.47 er radius ² * 0.163			
Time	Temp (°F)	рН	Cond. (mS or µS)	Turb (NT	-	Gals. Removed	Observations			
1106	62.7	6.7	1756	4	83	12.4	clauly			
1108	84.4		1770	[]	32	24.8	light cloudy			
000	64.6	6.5	1781		7	37.2	elect			
				,						
Did well de	water?	Yes (No)	Gallons	actuall	y evacuated:	37.2			
Sampling D	ate: 1/10/0	E	Sampling Tim	ie: 112	0		er: 35.43			
Sample I.D.	: MW-	ς		Labora	tory:	STL Other	Cal Science			
Analyzed for		BTEX	MTBE TPH-D	Other:	Ere	CeC .				
EB I.D. (if	applicable)):	@ Time	Duplica	ate I.D.	(if applicable)	•			
Analyzed for	or: TPH-G	BTEX	МТВЕ ТРН-D	Other:			-			
D.O. (if req	(d): P	re-purge:		mg/L	F	Post-purge:	mg/ _{1.}			
ORP (if r	eald). D	re-15111.ae		mV	F	ost-purge:	m∨			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS #: 08	30110-D	Q1	- Turnet Manual	Site:	9761	59621		Appropriate to the second seco		
Sampler:	DR				1/14/0					
Well I.D.:	mw-b			Well D	iameter:	2 3	4	6 8		
Total Well	Depth (TD): 54	1.57	Depth t	o Water	(DTW):	35.7	29		
Depth to Fr	ee Product	•		Thickness of Free Product (feet):						
Referenced	to:	PVG	Grade	D.O. M	eter (if	req'd):		YSI HACH		
DTW with	80% Recha	arge [(H	eight of Water	Column	x 0.20)	+ DTW]	39	1.15		
	Bailer Disposable Ba Positive Air D Electric Subm	Displacement Piersible	nt Extrac Other		Well Diamete 1" 2"	Sampling N r Multiplier 0.04 0.16	Other:	★Bailer Disposable Bailer Extraction Port Dedicated Tubing Standard Tubing		
1 Case Volume	Speci	fied Volum	nes Calculated Vo	olume	3"	0.37	Other	· radius ² * 0.163		
Time	Temp (°F)	рН	Cond. (mS or μS)	1	idity 'Us)	Gals. Ren	noved	Observations		
0916	64.8	6.0	1188	71	000	12.	5	clandy		
0919	65.2	6.3	1631	4	176	23	.0	11		
0921	65.3	6:5	1635	7	000	37.	5	. 11		
					•					
Did well de	water?	Yes ((Na	Gallons	s actuall	y evacuat	ed:	37.5		
Sampling D	Date: 1/40/0	8	Sampling Tim	e: 09	30	Depth to	Water	36.22		
Sample I.D	: MW-6	<i>(</i>)		Labora	tory:	STL Of	her G	1/5cme		
Analyzed for	or: TPH-G	BTEX	МТВЕ ТРН-D	Other:	Sec	C.C	/	s. •		
EB I.D. (if	applicable)):	@ Time	Duplic	ate I.D.	(if applica	ıble):			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:	m., v		<u>-</u>			
D.O. (if req	'd): P1	re-purge:		mg/L	P	ost-purge:		աg _{/լ}		
O.R.P. (if re	eq'd): Pi	e-purge:		тV	P	ost-purge:		m∇		

APPENDIX B

FIELD PROCEDURES

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT SHELL SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Shell comply with Shell's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Shell site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. MMC). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed a minimum of 2 hours to recharge prior to sampling. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Shell approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using a stainless steel, Teflon or disposable ballers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Field Technician uses their discretion in choosing the well at which the Duplicate is collected, typically one suspected of containing measurable contaminants. The Duplicate sample is labeled "DUP" and the time of collection is omitted from the COC, thus rendering the sample blind.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and ballers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 54, 58 or 95) or HACH field test kits.

The YSI meters are equipped with a stirring device that enables them to collect accurate in-situ readings. The probe/stirring devices are modified to allow downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe and stirrer is lowered into the water column. The reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

APPENDIX C

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENT

January 21, 2008

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Subject:

Calscience Work Order No.:

Client Reference:

08-01-0853

1801 Santa Rita Rd., Pleasanton, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 1/12/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Danillerone -

Laboratories, Inc. Danielle Gonsman

Project Manager

CA-ELAP ID:

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 01/12/08 08-01-0853 EPA 3510C EPA 8015B

Project: 1801 Santa Rita Rd., I	Pleasanto	n, CA			en e	······································	Pa	ge 1 of 3
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-6		08-01-0853-1-F	01/10/08	Aqueous	GC 43	01/14/08	01/14/08 10:12	080114B04
Comment(s): -The sample extract wa	as subjected to	Silica Gel treatment p	orior to analy	sis.				
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	117	68-140						
MW-4		08-01-0853-2-F	01/10/08	Aqueous	GC 43	01/14/08	01/14/08 10:21	080114B04
Comment(s): -The sample extract wa	as subjected to	Silica Gel treatment _l						
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	99	68-140						
MW-1		08-01-0853-3-F	01/10/08	Aqueous	GC 43	01/14/08	01/14/08 10:31	080114B04
Comment(s): -The sample extract w	as subjected to	Silica Gel treatment	prior to analy					
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	119	68-140						

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 01/12/08 08-01-0853 EPA 3510C EPA 8015B

Project: 1801 Santa Rita Rd., Pleasanton, CA

Page 2 of 3

Client Sample Numb	er		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-5			08-01-0853-4-F	01/10/08	Aqueous	GC 43	01/14/08	01/14/08 10:40	080114B04
Comment(s):	-The sample chromate of the unknown hydroThe sample extract w	carbon(s) in the	e sample was based ι	ipon the spec	ified standar	pattern of the	e specified st	andard. Qua	ntitation
<u>Parameter</u>	·	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organi	ics	82	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		113	68-140						
MW-1A			08-01-0853-5-F	01/10/08	Aqueous	GC 43	01/14/08	01/14/08 10:49	080114B04

Comment(s):	of the unknown hydrocarbon(s) in the sample was based upon the specified standard. -The sample extract was subjected to Silica Gel treatment prior to analysis.										
<u>Parameter</u>	-The sample extract was	Result	RL	DE DE	Qual	<u>Units</u>					
Diesel Range Organio	es	100	50	1		ug/L					
Surrogates:		REC (%)	Control Limits		Qual						
Decachlorobiphenyl		111	68-140								

MW-4A	08-01-0853-6-F 01/10/08 Aqueous GC 43 01/14/08 01/14/08 080114B04 10:58
Comment(s):	-The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation

of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

-The sample extract was subjected to Silica Gel treatment prior to analysis.

 -The sample extract was subjected to Silica Gel treatment prior to analysis. 											
<u>Parameter</u>	<u>Result</u>	RL	DF	Qual	<u>Units</u>						
Diesel Range Organics	150	50	1		ug/L						
Surrogates:	REC (%)	Control Limits		Qual							
Decachlorobiphenyl	111	68-140									

DF - Dilution Factor ,

Qual - Qualifiers

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 01/12/08 08-01-0853 EPA 3510C EPA 8015B

Project: 1801 Santa Rita Rd., Pleasanton, CA

Page 3 of 3

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-211-166	N/A	Aqueous	GC 43	01/14/08	01/14/08 8:13	080114B04
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	99	68-140						

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 01/12/08 08-01-0853 EPA 5030B EPA 8015B (M)

Project: 1801 Santa Rita Rd., Pleasanton, CA

Page 1 of 2

Project: 1801 Santa Rita Rd., F	Pleasanto	n, CA			morecompanios y considerático mante	uus varaniilikkiilinaanaanaakan	Pε	ige 1 of 2
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-6		08-01-0853-1-D	01/10/08	Aqueous	GC 29	01/14/08	01/14/08 18:36	080114B01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	79	38-134						
MW-4		08-01-0853-2-D	01/10/08	Aqueous	GC 29	01/14/08	01/14/08 19:44	080114B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	67	38-134						
MW-1		08-01-0853-3-D	01/10/08	Aqueous	GC 29	01/14/08	01/14/08 20:18	080114B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	68	38-134						
MW-5		08-01-0853-4-D	01/10/08	Aqueous	GC 29	01/14/08	01/14/08 20:52	080114B01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	70	38-134						

DF - Dilution Factor ,

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

01/12/08 08-01-0853 **EPA 5030B** EPA 8015B (M)

Laste 4004 Conta Dita Dd. Diagonton CA

Page 2 of 2

Project: 1801 Santa Rita I	Rd., Pleasanto	n, CA		······································	and a construction of the /del>		Pa	age 2 of 2
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-1A		08-01-0853-5-D	01/10/08	Aqueous	GC 29	01/14/08	01/14/08 21:26	080114B01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	71	38-134						
MW-4A		08-01-0853-6-D	01/10/08	Aqueous	GC 29	01/14/08	01/14/08 22:00	080114B01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	200	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	59	38-134						
Method Blank		099-12-436-1,358	N/A	Aqueous	GC 29	01/14/08	01/14/08 10:02	080114B01
Parameter Parame	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	82	38-134						

RL - Reporting Limit ,

DF - Dilution Factor ,

01/12/08 Date Received: Blaine Tech Services, Inc. Work Order No: 08-01-0853 1680 Rogers Avenue Preparation: EPA 5030B San Jose, CA 95112-1105 EPA 8260B Method: I Inite ua/l

	D' DI DI		04		Units:					Dogo	ug/L
Project: 1801 Santa Client Sample Number	Rita Rd., Ple	easanto	Lab Sa	ımple	Date Collected	Matrix	Instrument	Date Prepare		e/Time alyzed	QC Batch ID
MW-6				0853-1-A	01/10/08	Aqueous	GC/MS O	01/17/08		/17/08 2:44	080117L01
Comment(s): -Results we	ere evaluated to the	∍ MDL, cc	ncentrati	ons >= to the I	MDL but < RI	_, if found, are	e qualified wi	th a "J" flag.			
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	MDL	DF Qual
Benzene	ND	0.50	0.14	1	o-Xylene			ND	1.0	0.17	1
1,2-Dibromoethane	ND	1.0	0.49	1	Methyl-t-Br	utyl Ether (MT	BE)	0.86	1.0	0.26	1 .
1,2-Dichloroethane	ND	0.50	0.26	1	Tert-Butyl	Alcohol (TBA))	ND	10	5.4	1
Ethylbenzene	ND	1.0	0.23	1	Diisopropy	Ether (DIPE)	ND	2.0	0.33	1
Toluene	ND	1.0	0.27	1	Ethyl-t-But	yl Ether (ETB	E)	ND	2.0	0.18	1
p/m-Xylene	ND	1.0	0.54	1	Tert-Amyl-	Methyl Ether	(TAME)	ND	2.0	1.1	1
Surrogates:	REC (%)	Control	Limits	<u>Qual</u>	Surrogates		,	REC (%)	Contro	l Limits	<u>Qual</u>
Dibromofluoromethane	98	74-140			1.2-Dichlor	oethane-d4		97	74-146	;	
Toluene-d8	108	88-112				fluorobenzene	9	100	74-110)	
MW-5			08-01-	0853-4-A	01/10/08	Aqueous	GC/MS O	01/17/0		/17/08 5:10	080117L01
Comment(s): -Results we	ere evaluated to the	≥ MDL cr	ncentrati	ons >= to the I	MDL but < RI	if found, are	e qualified wi	th a "J" flag.	100, 100, 50, 50, 50	Confidence on C	
Parameter	Result	RL	MDL	DF Qual	<u>Parameter</u>		•	Result	RL	MDL	DF Qual
	ND	0.50	0.14	1	o-Xylene			ND	1.0	0.17	1
Benzene		1.0	0.14	1	,	utyl Ether (M7	RE)	1.1	1.0	0.26	1
1,2-Dibromoethane	ND	0.50	0.49	1	,	Alcohol (TBA	•	ND	10	5.4	1
1,2-Dichloroethane	ND		0.23	1	-	Ether (DIPE		ND	2.0	0.33	1
Ethylbenzene 	ND	1.0		1		•	•	ND	2.0	0.18	1
Toluene	ND	1.0	0.27	1		yl Ether (ETB		ND	2.0	1.1	1
p/m-Xylene	ND DEC (%)	1.0	0.54			Methyl Ether	(TAIVIE)	REC (%)		l Limits	, Qual
Surrogates:	<u>REC (%)</u>	Control	LIMIUS	<u>Qual</u>	Surrogates:						Qua
Dibromofluoromethane	92	74-140				oethane-d4		96	74-146		
Toluene-d8	104	88-112			1,4-Bromo	fluorobenzene	9	99	74-110	tisker til til knjig til	
MW-1A			08-01-	0853-5-A	01/10/08	Aqueous	GC/MS O	01/17/0		/17/08 5:40	080117L01
Comment(s): -Results we	ere evaluated to the	e MDL, co	oncentrati	ons >= to the I	MDL but < RI	_, if found, are	e qualified wi	th a "J" flag.			
Parameter	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u> Qual	<u>Parameter</u>			Result	RL	MDL	
Benzene	ND	0.50	0.14	1	o-Xylene			ND	1.0	0.17	1
1,2-Dibromoethane	ND	1.0	0.49	1	,	utyl Ether (M7	BE)	23	1.0	0.26	1
1,2-Dichloroethane	ND	0.50	0.26	1	,	Alcohol (TBA	•	ND	10	5.4	1
Ethylbenzene	ND	1.0	0.23	1	•	I Ether (DIPE	•	ND	2.0	0.33	1
Toluene	ND	1.0	0.27	1		yl Ether (ETB	•	ND	2.0	0.18	1
p/m-Xylene	ND	1.0	0.54	1		Methyl Ether		ND	2.0	1.1	1
Surrogates:	REC (%)	Control		Qual	Surrogates	•		REC (%)	Contro	l Limits	<u>Qua</u>
		74-140		2,000	-	roethane-d4		96	74-146	3	
Dibromofluoromethane	97				•	fluorobenzen	a.	100	74-110		
Toluene-d8	105	88-112			1,4-0101110	HUOLUDELIZELI	•	100	7 7 1 1 1 0	•	

DF - Dilution Factor ,

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

01/12/08 08-01-0853 EPA 5030B EPA 8260B

					Units:						ug/L
Project: 1801 Santa	Rita Rd., Ple	easanto	n, CA							Page	2 of 2
Client Sample Number			Lab Sa Num		Date Collected	Matrix	Instrument	Date Prepar		e/Time llyzed	QC Batch ID
MW-4A			08-01-0	0853-6-A	01/10/08 A	∖queous	GC/MS O	01/17/0		17/08 6:09	080117L01
Comment(s): -Results we	ere evaluated to the	e MDL, co	ncentratio	ons >= to th	e MDL but < RL, if	found, are	qualified wi	th a "J" flag	J.		
<u>Parameter</u>	<u>Result</u>	RL	MDL	<u>DF</u> Qu	al Parameter			Result	<u>RL</u>	MDL	DF Qual
Benzene	8.8	0.50	0.14	1	o-Xylene			0.37	1.0	0.17	1 J
1,2-Dibromoethane	ND	1.0	0.49	1	Methyl-t-Butyl	Ether (MTI	BE)	40	1.0	0.26	1
1,2-Dichloroethane	8.2	0.50	0.26	1	Tert-Butyl Alco	ohol (TBA)		310	10	5.4	1
Ethylbenzene	2.4	1.0	0.23	1	Diisopropyl Eth	her (DIPE)		ND	2.0	0.33	1
Foluene	0.75	1.0	0.27	1	J Ethyl-t-Butyl E	ther (ETBE	Ξ)	ND	2.0	0.18	1
o/m-Xylene	ND	1.0	0.54	1	Tert-Amyl-Met	hyl Ether (TAME)	ND	2.0	1.1	1
Surrogates:	REC (%)	Control I	<u>imits</u>	<u>Qu</u>	al Surrogates:			REC (%)	Control	Limits	<u>Qual</u>
Dibromofluoromethane	98	74-140			1,2-Dichloroet	hane-d4		100	74-146		
Toluene-d8	105	88-112			1,4-Bromofluo	robenzene		99	74-110	VI-V	
Method Blank			099-10	-006-24,11	2 N/A A	Aqueous	GC/MS O	01/17/0		17/08 1:45	080117L01
Comment(s): -Results we	ere evaluated to the	e MDL, co	ncentratio	ons >= to th	e MDL but < RL, if	found, are	qualified wi	th a "J" flaç].		
Parameter	Result	RL	MDL	DF Qu				Result	<u>RL</u>	<u>MDL</u>	DF Qual
Benzene	ND	0.50	0.14	1	o-Xylene			ND	1.0	0.17	1
1,2-Dibromoethane	ND	1.0	0.49	1	Methyl-t-Butyl	Ether (MT	BE)	ND	1.0	0.26	1
1,2-Dichloroethane	ND	0.50	0.26	1	Tert-Butvl Alco	•	,	ND	10	5.4	1
Ethylbenzene	ND	1.0	0.23	1	Diisopropyl Etl	. ,		ND	2.0	0.33	1
Toluene	ND	1.0	0.27	1	Ethyl-t-Butyl E	, ,		ND	2.0	0.18	1
o/m-Xylene	ND	1.0	0.54	1	Tert-Amyl-Met	,	,	ND	2.0	1.1	1
Surrogates:	REC (%)	Control I	_imits	Qu	•	, ,		REC (%)	Control	<u>Limits</u>	<u>Qual</u>
Dibromofluoromethane	100	74-140			1,2-Dichloroet	hane-d4		102	74-146		
Dibionionacionicinalic	106	88-112			1.4-Bromofluo			99	74-110		

RL - Reporting Limit ,

DF - Dilution Factor ,

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 01/12/08 08-01-0853 EPA 5030B EPA 8260B

					Units:						ug/L
Project: 1801 Santa F	Rita Rd., Ple	easanto						D - 4 -	. D-		1 of 1
Client Sample Number			Lab Sa Num		Date Collected	Matrix	Instrument	Date Prepar		te/Time ialyzed	QC Batch ID
MW-4			08-01-	0853-2-A	01/10/08	Aqueous	GC/MS O	01/17/		/17/08 14:11	080117L01
Comment(s): -Results were	e evaluated to the	e MDL, co	ncentrati	ons >= to the	MDL but < RL	L, if found, are	e qualified wi	th a "J" flag	J.		
Parameter	Result	RL	MDL	DF Qual				<u>Result</u>	<u>RL</u>	MDL	DF Qua
Benzene	ND	0.50	0.14	1	Methyl-t-Bu	utyl Ether (Mไ	ΓBE)	ND	1.0	0.26	1
Ethylbenzene	ND	1.0	0.23	1	Tert-Butyl	Alcohol (TBA)	ND	10	5.4	1
Toluene	ND	1.0	0.27	1	Diisopropyl	l Ether (DIPE)	ND	2.0	0.33	1
p/m-Xylene	ND	1.0	0.54	1	Ethyl-t-Buty	yl Ether (ETB	IE)	ND	2.0	0.18	1
o-Xylene	ND	1.0	0.17	1	Tert-Amyl-l	Methyl Ether	(TAME)	ND	2.0	1.1	1
Surrogates:	<u>REC (%)</u>	Control	<u>Limits</u>	<u>Qual</u>	Surrogates:	<u>:</u>		REC (%)	Contro	ol Limits	<u>Qua</u>
Dibromofluoromethane	95	74-140			1,2-Dichlor	roethane-d4		97	74-146		
Toluene-d8	105	88-112			1,4-Bromot	fluorobenzen	е	99	74-110)	
Comment(s): -Results were	e evaluated to the	e MDL. co	ncentrati	ons >= to the	MDL but < RL	L, if found, are	e qualified wi	th a "J" flag] .		
Parameter	e evaluated to the <u>Result</u>	<u>RL</u>	MDL	DF Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u> Qua
P <u>arameter</u> Benzene	<u>Result</u> ND	<u>RL</u> 0.50	<u>MDL</u> 0.14	<u>DF</u> Qual 1	<u>Parameter</u> Methyl-t-Bu	utyl Ether (Mา	ΓBE)	<u>Result</u> ND	<u>RL</u> 1.0	<u>MDL</u> 0.26 5.4	
P <u>arameter</u> Benzene Ethylbenzene	<u>Result</u> ND ND	<u>RL</u> 0.50 1.0	MDL 0.14 0.23	<u>DF</u> <u>Qual</u> 1 1	Parameter Methyl-t-Bu Tert-Butyl	utyl Ether (M1 Alcohol (TBA	ΓΒΕ))	<u>Result</u> ND ND	<u>RL</u> 1.0 10	0.26	1
<u>Parameter</u> Benzene Ethylbenzene Toluene	<u>Result</u> ND ND ND	RL 0.50 1.0 1.0	MDL 0.14 0.23 0.27	<u>DF</u> Qual 1	Parameter Methyl-t-Bu Tert-Butyl Diisopropyl	utyl Ether (MT Alcohol (TBA I Ether (DIPE	ΓΒΕ)))	Result ND ND ND	<u>RL</u> 1.0	0.26 5.4	1
P <u>arameter</u> Benzene Ethylbenzene Toluene p/m-Xylene	Result ND ND ND ND	0.50 1.0 1.0 1.0	MDL 0.14 0.23 0.27 0.54	<u>DF</u> <u>Qual</u> 1 1 1	Parameter Methyl-t-Bu Tert-Butyl Diisopropyl Ethyl-t-Buty	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB	ΓΒΕ))) βΕ)	<u>Result</u> ND ND	<u>RL</u> 1.0 10 2.0	0.26 5.4 0.33	1
Parameter Benzene Ethylbenzene Toluene p/m-Xylene o-Xylene	<u>Result</u> ND ND ND	RL 0.50 1.0 1.0	MDL 0.14 0.23 0.27 0.54 0.17	<u>DF</u> <u>Qual</u> 1 1 1	Parameter Methyl-t-Bu Tert-Butyl Diisopropyl Ethyl-t-Buty	utyl Ether (M1 Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether	ΓΒΕ))) βΕ)	Result ND ND ND ND ND	RL 1.0 10 2.0 2.0 2.0	0.26 5.4 0.33 0.18	1
Parameter Benzene Ethylbenzene Toluene p/m-Xylene o-Xylene Surrogates:	Result ND ND ND ND ND ND REC (%)	RL 0.50 1.0 1.0 1.0 1.0	MDL 0.14 0.23 0.27 0.54 0.17	<u>DF</u> <u>Qual</u> 1 1 1 1	Parameter Methyl-t-Bu Tert-Butyl Diisopropyl Ethyl-t-But Tert-Amyl-I Surrogates:	utyl Ether (M1 Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether	ΓΒΕ))) βΕ)	Result ND ND ND ND ND ND	RL 1.0 10 2.0 2.0 2.0	0.26 5.4 0.33 0.18 1.1 ol Limits	1 1 1 1
Parameter Benzene Ethylbenzene Toluene p/m-Xylene o-Xylene	Result ND ND ND ND ND	RL 0.50 1.0 1.0 1.0 1.0 Control	MDL 0.14 0.23 0.27 0.54 0.17	<u>DF</u> <u>Qual</u> 1 1 1 1	Parameter Methyl-t-Bu Tert-Butyl Diisopropyl Ethyl-t-But Tert-Amyl-I Surrogates: 1,2-Dichlor	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether	ΓΒΕ))) βΕ) (TAME)	Result ND ND ND ND ND ND ND ND REC (%)	1.0 10 2.0 2.0 2.0 Contro	0.26 5.4 0.33 0.18 1.1 bl Limits	1 1 1 1
Parameter Benzene Ethylbenzene Toluene p/m-Xylene o-Xylene Surrogates: Dibromofluoromethane	Result ND ND ND ND ND ND RD REC (%)	RL 0.50 1.0 1.0 1.0 1.0 Control 74-140	MDL 0.14 0.23 0.27 0.54 0.17 Limits	<u>DF</u> <u>Qual</u> 1 1 1 1	Parameter Methyl-t-Bu Tert-Butyl Diisopropyl Ethyl-t-But Tert-Amyl-I Surrogates: 1,2-Dichlor	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether : roethane-d4	ΓΒΕ))) βΕ) (TAME)	Result ND SEC (%)	RL 1.0 10 2.0 2.0 2.0 Contro 74-146 74-110	0.26 5.4 0.33 0.18 1.1 bl Limits	1 1 1 1
Parameter Benzene Ethylbenzene Toluene p/m-Xylene o-Xylene Surrogates: Dibromofluoromethane Toluene-d8 Method Blank	Result ND ND ND ND ND ND RD REC (%)	RL 0.50 1.0 1.0 1.0 1.0 Control 74-140 88-112	MDL 0.14 0.23 0.27 0.54 0.17 Limits	DF Qual 1 1 1 1 Qual 0-006-24,112	Parameter Methyl-t-But Tert-Butyl / Diisopropyl Ethyl-t-But Tert-Amyl-I Surrogates: 1,2-Dichlor 1,4-Bromot N/A	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether Coethane-d4 fluorobenzene Aqueous	TBE))) (TAME) GC/MS O	Result ND ND ND ND ND SEC (%) 95 98 01/17/6	RL 1.0 10 2.0 2.0 2.0 Contro 74-146 74-110 08	0.26 5.4 0.33 0.18 1.1 bl Limits 6 0	1 1 1 1 1 <u>Qua</u>
Parameter Benzene Ethylbenzene Foluene o/m-Xylene o-Xylene Surrogates: Dibromofluoromethane Foluene-d8 Method Blank Comment(s): -Results were	Result ND ND ND ND ND ND ND 4 104	RL 0.50 1.0 1.0 1.0 1.0 Control 74-140 88-112	MDL 0.14 0.23 0.27 0.54 0.17 Limits	DF Qual 1 1 1 1 Qual 0-006-24,112	Parameter Methyl-t-Bu Tert-Butyl / Diisopropyl Ethyl-t-Buty Tert-Amyl-I Surrogates: 1,2-Dichlor 1,4-Bromot	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether Coethane-d4 fluorobenzene Aqueous	TBE))) (TAME) GC/MS O	Result ND ND ND ND ND ND SEC (%) 95 98	RL 1.0 10 2.0 2.0 2.0 Contro 74-146 74-110	0.26 5.4 0.33 0.18 1.1 bl Limits	1 1 1 1 1 Qua 080117L01
Parameter Benzene Ethylbenzene Foluene b/m-Xylene b-Xylene Burrogates: Dibromofluoromethane Foluene-d8 Method Blank Comment(s): -Results were Parameter	Result ND ND ND ND ND ABC (%) 94 104	RL 0.50 1.0 1.0 1.0 1.0 Control 74-140 88-112	MDL 0.14 0.23 0.27 0.54 0.17 Limits	DF Qual 1 1 1 1 Qual 1-006-24,112 ons >= to the DF Qual 1	Parameter Methyl-t-Butyl / Diisopropyl Ethyl-t-Butyl / Tert-Amyl- Surrogates: 1,2-Dichlor 1,4-Bromot N/A MDL but < RI Parameter	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether Coethane-d4 fluorobenzene Aqueous	rBE)) (TAME) BE GC/MS O e qualified wi	Result ND ND ND ND SEC (%) 95 98 01/17/ th a "J" flace Result ND	RL 1.0 10 2.0 2.0 2.0 Contro 74-146 74-110 08 01	0.26 5.4 0.33 0.18 1.1 bl Limits 6 0 /17/08 11:45	1 1 1 1 1 Qua 080117L01
Parameter Benzene Ethylbenzene Foluene D'm-Xylene D-Xylene Burrogates: Dibromofluoromethane Foluene-d8 Method Blank Comment(s): -Results were Benzene	Result ND ND ND ND REC (%) 94 104 e evaluated to the	RL 0.50 1.0 1.0 1.0 1.0 Control 74-140 88-112	MDL 0.14 0.23 0.27 0.54 0.17 Limits 099-10	DF Qual 1 1 1 1 Qual 0-006-24,112 cons >= to the DF Qual 1 1	Parameter Methyl-t-But Tert-Butyl / Diisopropyl Ethyl-t-But Tert-Amyl- Surrogates: 1,2-Dichlor 1,4-Bromol N/A MDL but < RI Parameter Methyl-t-But	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether : roethane-d4 fluorobenzend Aqueous L, if found, ard utyl Ether (MT Alcohol (TBA	rBE)) (TAME) GC/MS O e qualified wi	Result ND ND ND ND 95 98 01/17/ th a "J" flace Result ND ND ND	RL 1.0 10 2.0 2.0 2.0 Control 74-146 74-110 08 01 08 01	0.26 5.4 0.33 0.18 1.1 bl Limits 6 0 /17/08 11:45 MDL 0.26 5.4	1 1 1 1 1 Qua 080117L01 DF Qua 1 1
Parameter Benzene Ethylbenzene Foluene D'm-Xylene D-Xylene Burrogates: Dibromofluoromethane Foluene-d8 Method Blank Comment(s): -Results were Benzene Ethylbenzene	Result ND ND ND ND REC (%) 94 104 e evaluated to the Result ND	RL 0.50 1.0 1.0 1.0 1.0 Control 74-140 88-112	MDL 0.14 0.23 0.27 0.54 0.17 Limits 099-10 oncentrati MDL 0.14 0.23 0.27	DF Qual 1 1 1 1 Qual -006-24,112 ons >= to the DF Qual 1 1 1	Parameter Methyl-t-But Tert-Butyl / Diisopropyl Ethyl-t-But Tert-Amyl- Surrogates: 1,2-Dichlor 1,4-Bromol N/A MDL but < RL Parameter Methyl-t-But Tert-Butyl / Diisopropyl	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether : roethane-d4 fluorobenzend Aqueous L, if found, ard utyl Ether (MT Alcohol (TBA I Ether (DIPE	rBE)) (TAME) GC/MS O e qualified wi	Result ND ND ND ND SEC (%) 95 98 01/17/ th a "J" flace Result ND ND ND ND	RL 1.0 10 2.0 2.0 2.0 Contro 74-146 74-110 08 01 01 01 01 01 02 01 01 01 01 01 01 01 01 01 01	0.26 5.4 0.33 0.18 1.1 bl Limits 6 0 /17/08 11:45 MDL 0.26 5.4 0.33	1 1 1 1 Qua 080117L01 DF Qua 1 1 1
Parameter Benzene Ethylbenzene Foluene D'm-Xylene D-Xylene Burrogates: Dibromofluoromethane Foluene-d8 Method Blank Comment(s): -Results were Benzene Ethylbenzene Foluene	Result ND ND ND ND REC (%) 94 104 e evaluated to the Result ND ND	RL 0.50 1.0 1.0 1.0 1.0 Control 74-140 88-112 e MDL, cc RL 0.50 1.0	MDL 0.14 0.23 0.27 0.54 0.17 Limits 099-10 oncentration MDL 0.14 0.23	DF Qual 1 1 1 1 Qual 1-006-24,112 cons >= to the DF Qual 1 1 1 1	Parameter Methyl-t-But Tert-Butyl / Diisopropyl Ethyl-t-Buty Tert-Amyl-I Surrogates: 1,2-Dichlor 1,4-Bromof M/A MDL but < RI Parameter Methyl-t-Butyl / Diisopropyl Ethyl-t-Butyl /	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether Troethane-d4 fluorobenzend Aqueous L, if found, ard utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB	FBE) GC/MS O e qualified wi FBE) (TSE)	Result ND ND ND ND SEC (%) 95 98 01/17/6 th a "J" flag Result ND ND ND ND ND ND	RL 1.0 10 2.0 2.0 2.0 Contro 74-146 74-110 08 01 01 01 02 02 02 03 04	0.26 5.4 0.33 0.18 1.1 bl Limits 6 0 //17/08 11:45 MDL 0.26 5.4 0.33 0.18	1 1 1 1 Qua 080117L01 DF Qua 1 1 1 1
Parameter Benzene Ethylbenzene Foluene O/m-Xylene D-xylene Surrogates: Dibromofluoromethane Foluene-d8 Method Blank Comment(s): -Results were Parameter Benzene Ethylbenzene Foluene D/m-Xylene	Result ND ND ND ND REC (%) 94 104 e evaluated to the Result ND ND ND ND	RL 0.50 1.0 1.0 1.0 Control 74-140 88-112 e MDL, cc RL 0.50 1.0 1.0 1.0	MDL 0.14 0.23 0.27 0.54 0.17 Limits 099-10 oncentratic MDL 0.14 0.23 0.27 0.54 0.17	DF Qual 1 1 1 1 Qual -006-24,112 ons >= to the DF Qual 1 1 1 1 1 1	Parameter Methyl-t-But Tert-Butyl / Diisopropyl Ethyl-t-Buty Tert-Amyl-I Surrogates: 1,2-Dichlor 1,4-Bromof M/A MDL but < RI Parameter Methyl-t-Butyl / Diisopropyl Ethyl-t-Butyl / Tert-Amyl-I	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether Troethane-d4 fluorobenzend Aqueous L, if found, ard utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether	FBE) GC/MS O e qualified wi FBE) (TSE)	Result ND ND ND ND SEC (%) 95 98 01/17/6 th a "J" flag Result ND ND ND ND ND ND ND ND ND	RL 1.0 10 2.0 2.0 2.0 Contro 74-146 74-110 08 01 01 01 02 02 02 02 03 04	0.26 5.4 0.33 0.18 1.1 bl Limits 6 0 //17/08 11:45 MDL 0.26 5.4 0.33 0.18 1.1	1 1 1 1 Qua 080117L01 DF Qua 1 1 1 1 1
Parameter Benzene Ethylbenzene Toluene p/m-Xylene Surrogates: Dibromofluoromethane Toluene-d8 Method Blank Comment(s): -Results were Parameter Benzene Ethylbenzene Toluene p/m-Xylene p-Xylene p-Xylene	Result ND ND ND ND REC (%) 94 104 e evaluated to the Result ND ND ND ND ND ND ND ND	RL 0.50 1.0 1.0 1.0 20 1.0 74-140 88-112 e MDL, co RL 0.50 1.0 1.0 1.0	MDL 0.14 0.23 0.27 0.54 0.17 Limits 099-10 oncentratic MDL 0.14 0.23 0.27 0.54 0.17	DF Qual 1 1 1 1 Qual 1-006-24,112 cons >= to the DF Qual 1 1 1 1	Parameter Methyl-t-But Tert-Butyl / Diisopropyl Ethyl-t-Buty Tert-Amyl-I Surrogates: 1,2-Dichlor 1,4-Bromof M/A MDL but < RI Parameter Methyl-t-Butyl / Diisopropyl Ethyl-t-Butyl /	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether Troethane-d4 fluorobenzend Aqueous L, if found, ard utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether	FBE) GC/MS O e qualified wi FBE) (TSE)	Result ND ND ND ND SEC (%) 95 98 01/17/6 th a "J" flag Result ND ND ND ND ND ND	RL 1.0 10 2.0 2.0 2.0 Control 74-146 74-110 08 01 1.0 1.0 2.0 2.0 2.0 Control 2.0 2.0 01 02 03 04 04 05 05 05 05 05 05 05 05 05 05	0.26 5.4 0.33 0.18 1.1 bl Limits 6 0 /17/08 11:45 MDL 0.26 5.4 0.33 0.18 1.1 bl Limits	1 1 1 1 Qua 080117L01 DF Qua 1 1 1 1
Parameter Benzene Ethylbenzene Toluene p/m-Xylene o-Xylene Surrogates: Dibromofluoromethane Toluene-d8 Method Blank	Result ND ND ND ND REC (%) 94 104 e evaluated to the Result ND	RL 0.50 1.0 1.0 1.0 Control 74-140 88-112 e MDL, cc RL 0.50 1.0 1.0 1.0	MDL 0.14 0.23 0.27 0.54 0.17 Limits 099-10 oncentratic MDL 0.14 0.23 0.27 0.54 0.17	DF Qual 1 1 1 1 Qual -006-24,112 ons >= to the DF Qual 1 1 1 1 1 1	Parameter Methyl-t-But Tert-Butyl / Diisopropyl Ethyl-t-But Tert-Amyl-I Surrogates: 1,2-Dichlor 1,4-Bromol N/A MDL but < RL Parameter Methyl-t-But Tert-Butyl / Diisopropyl Ethyl-t-But Tert-Amyl-I Surrogates:	utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether Troethane-d4 fluorobenzend Aqueous L, if found, ard utyl Ether (MT Alcohol (TBA I Ether (DIPE yl Ether (ETB Methyl Ether	FBE) GC/MS O e qualified wi FBE) (TSE)	Result ND ND ND ND SEC (%) 95 98 01/17/6 th a "J" flag Result ND ND ND ND ND ND ND ND ND	RL 1.0 10 2.0 2.0 2.0 Contro 74-146 74-110 08 01 01 01 02 02 02 02 03 04	0.26 5.4 0.33 0.18 1.1 bl Limits 6 0 /17/08 11:45 MDL 0.26 5.4 0.33 0.18 1.1 bl Limits 6	1 1 1 1 Qua 080117L01 DF Qua 1 1 1 1 1

RL - Reporting Limit ,

DF - Dilution Factor ,

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No:

01/12/08 08-01-0853

Project: 1801 Santa Rita Rd., Pleasanton, CA

Page 1 of 1

Client Sample Number		Lab S	ample Nur		ate ected	Matrix		
MW-1A		08-0	1-0853-5	01/1	0/08 A	queous		New York Control of the Control of t
Parameter HEM - SGT: Oil and Grease	<u>Result</u> ND	<u>RL</u> 1.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/L	<u>Date Prepared</u> N/A	Date Analyzed 01/15/08	Method EPA 1664A
Method Blank				N	/A A	queous		
Parameter HEM - SGT: Oil and Grease	<u>Result</u> ND	<u>RL</u> 1.0	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> mg/L	<u>Date Prepared</u> N/A	Date Analyzed 01/15/08	Method EPA 1664A

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 01/12/08 08-01-0853 EPA 5030B EPA 8015B (M)

Project 1801 Santa Rita Rd., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-01-0850-1	Aqueous	GC 29	01/14/08		01/14/08	080114S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	97	96	68-122	2	0-18	

RPD - Relative Percent Difference ,
7440 Lincoln

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 01/12/08 08-01-0853 EPA 5030B EPA 8260B

Project 1801 Santa Rita Rd., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
MW-6	Aqueous	GC/MS O	01/17/08		01/17/08	080117501	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	102	103	88-118	1	0-7		
Carbon Tetrachloride	99	102	67-145	3	0-11		
Chlorobenzene	101	102	88-118	1	0-7		
1,2-Dibromoethane	100	103	70-130	3	0-30		
1,2-Dichlorobenzene	103	100	86-116	2	8-0		
1,1-Dichloroethene	102	101	70-130	1	0-25		
Ethylbenzene	104	103	70-130	0	0-30		
Toluene	102	103	87-123	1	8-0		
Trichloroethene	106	109	79-127	3	0-10		
Vinyl Chloride	93	96	69-129	3	0-13		
Methyl-t-Butyl Ether (MTBE)	103	107	71-131	4	0-13		
Tert-Butyl Alcohol (TBA)	77	88	36-168	14	0-45		
Diisopropyl Ether (DIPE)	97	102	81-123	5	0-9		
Ethyl-t-Butyl Ether (ETBE)	97	102	72-126	5	0-12		
Tert-Amyl-Methyl Ether (TAME)	96	100	72-126	5	0-12		
Ethanol	111	118	53-149	7	0-31		

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: N/A 08-01-0853 EPA 3510C EPA 8015B

Project: 1801 Santa Rita Rd., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		LCS/LCSD Bate Number	h
099-12-211-166	Aqueous	GC 43	01/14/08	01/14/0)8	080114B04	
<u>Parameter</u>	LCS %	REC LCSD	%REC %F	REC CL	RPD	RPD CL	Qualifiers
Diesel Range Organics	106	105	5 7	5-117	2	0-13	

RPD - Relative Percent Difference ,

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: N/A 08-01-0853 EPA 5030B EPA 8015B (M)

Project: 1801 Santa Rita Rd., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dai Analy		LCS/LCSD Bato Number	h
099-12-436-1,358	Aqueous	GC 29	01/14/08	01/14/08		080114B01	
<u>Parameter</u>	LCS %	REC LCSD	%REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	102	107	7	78-120	5	0-10	

RPD - Relative Percent Difference ,

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: N/A 08-01-0853 EPA 5030B EPA 8260B

Project: 1801 Santa Rita Rd., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bate Number	h
099-10-006-24,112	Aqueous	GC/MS O	01/17/08	01/1	7/08	080117L01	
<u>Parameter</u>	LCS %RE	C LCSD %R	EC %F	REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	102	103	8	34-120	1	0-8	
Carbon Tetrachloride	101	100	6	3-147	1	0-10	
Chlorobenzene	99	101	3	89-119	2	0-7	
1,2-Dibromoethane	96	99	8	30-120	3	0-20	
1,2-Dichlorobenzene	100	100	8	39-119	0	0-9	
1,1-Dichloroethene	105	103	7	7-125	2	0-16	
Ethylbenzene	104	103	8	30-120	0	0-20	
Toluene	104	103	8	33-125	1	0-9	
Trichloroethene	105	106	3	39-119	1	8-0	
Vinyl Chloride	96	93	6	3-135	3	0-13	
Methyl-t-Butyl Ether (MTBE)	97	93	8	32-118	4	0-13	
Tert-Butyl Alcohol (TBA)	69	57	4	16-154	19	0-32	
Diisopropyl Ether (DIPE)	98	97	8	31-123	1	0-11	
Ethyl-t-Butyl Ether (ETBE)	94	95	7	4-122	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	95	97	7	76-124	2	0-10	
Ethanol	94	86	6	60-138	9	0-32	

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No:

N/A 08-01-0853

Project: 1801 Santa Rita Rd., Pleasanton, CA

Matrix: Aqueous										
<u>Parameter</u>	Method	Quality Control Sample ID	<u>Date</u> <u>Extracted</u>	<u>Date</u> <u>Analyzed</u>	LCS % REC	LCSD % REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qual</u>
HEM - SGT: Oil and	EPA 1664A	099-05-121-1,191	N/A	01/15/08	86	92	64-132	6	0-34	

Glossary of Terms and Qualifiers

Work Order Number: 08-01-0853

<u>Qualifier</u>	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
Ν	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

TA -Trvine, California		21	. The first		P-5	H		Ĉ	ha		٥	łC	ئاڭ	sło	ď	/ Ñ	lei	oı	'd								
☐ TA - Morgan Hill, California	NAME OF PERS	ON TO	BILL	Denis	Brown															NIT	/Ec	ONL	NA:		1		
TA - Sacramento, California	☑ ENVIRONMENTAL SE			, orne	D101111													1111111	UIUI	1313.5	-1/1/1/1	1	+!!	111111111 T	4	1. 1.	
TA - Nashville, Tennessee	700000000000000000000000000000000000000			00000 0000			L CH	ECK B	ох то	VERIF	Y IF NO	O INCII	DENT :	# APPL	IES		9	7	6	1	5	9	6	4] [DATE: 1/10/08 PAGE:	
La Calscience	☐ NETWORK DEV / FE		☐ BILL	CONSULTA	NT						PO*	ŧ.							SA	Par	CRM	T#				1 ,	
Other	COMPLIANCE	200 Mag 1	☐ RMT	/CRMT		Britisi C		1	<u> </u>	1	T				::::::::::	101111111		10121010					<u> </u>	<u> </u>	F	'AGE: of	
SAMPLING COMPANY:		LOG CODE	:			SITE	ADDR	ESS: S	treet ar	d City	1	1	<u> </u>				State			GLOB	AL ID N	√O.:	Щ				
Blaine Tech Services	ne Tech Services BTSS					1801 Santa Rita Rd., Pleasanton									CA T0600144714												
ADDRESS: 1680 Rogers Avenue, San Jose, CA 95112					EDF DELIVERABLE TO (Name, Company, Office Location): PHONE NO								NO.:										CONSULTANT PROJECT NO.:				
PROJECT CONTACT (Hardcopy or PDF Re	eport to):					Jon Sulng, Delta, Monrovia Office 626.256.66								i662 jsuing@deltaenv.com									BTS# 670110-DA1				
Michael Ninokata						SAM	ANPLER NAME(S) (Print):												LAB USE ONLY								
TELEPHONE: 408-573-0555	FAX: E-MAIL: 408-573-7771 mninokata@blainetech.com					D. Rogna										Jsuing@deltaenv.com BTS#6701ルール LABUSE ONLY ロバーの853									21-1853		
TAT (STD IS 10 BUSINESS DAY		AYS):		RESULTS NE		┝	<i>y</i> ,		091	79																	
☑ STD ☐ 5 DAY ☐ 3 1	DAY 2 DAY 2	4 Hours		N WEEKE			REQUESTED ANALYSIS											ζ									
☐ LA - RWQCB REPORT FORMA						Π	_																	Τ		1	
SPECIAL INSTRUCTIONS OR NO		_	INTRACT RA	ATE APPLIE	S	30B)	(8015M)		ETBE															₹		FIELD NOTES:	
i I	☐ STATE REIMB RATE APPLIES ☑ RECEIPT VERIFICATION REQUESTED					ble (82	ctable		l ui	·I									5M)					e (166		Container/Preservative or PID Readings or Laboratory Notes	
Run TPHd and Tota					Up	Gas, Purgeable (8260B)	TPH · Diesel, Extractable	60B)	5 Oxygenates (8260B) (MTBE, TBA, DIPE, TAMI	MTBE (8260B)	08)	(B)	TAME (8260B)	60B)	1,2 DCA (8260B)	18)	Ethanol (8260B)	Methanol (8015M)	TPH-motor oll (8015M)	-	Total Iron (6010B)	Total Lead (6010B)		and Grease (1664A)			
CC Elisabeth Silver es				ort	-	Gas	- Die	K (82	ygen E. TB.	E (82	(826((826	≘ (82	(82	ξ V	(826(8) 101	anol	moto	160.	ron	Lea		o ∃a			
ise Field Sample	Identification	DATE	PLING TIME	MATRIX	NO. OF CONT.	TH	HH.	BTEX (8260B)	5 Ox (MTB	MTB	TBA (8260B)	DIPE (8260B)	TAM	ETBE (8260B)	1,2 D	EDB (8260B)	Etha	Meth	TPH.	TDS (160.1)	Total	Total		Total Oil		TEMPERATURE ON RECEIPT C°	
1 mw-6		110/18	930	w	7	Х	X	X	X					·	λ	X											
Z- MW-4		$\perp I$	1015	w	7	X	Х	X	大						×	×	- 24	0	~								
3 MW-1			1100	W	7	X	х	义	入						×	X	_	1/2	1	8							
3 mw-1 4 mw-5			1120	w	7	X	x	X	火						X	X											
5 mu - 1A			1135	w	12	X		入	Х						火	Х		1						X		Collected & 250AL	
6 MW-4A		V	1200	w	7		<i>></i>	×	<u> </u>						×	火									1	Collected of 250AL buttles of the say preservature	
	***************************************						_								-										 		
										ļ																	
		-				-	-		-	-							\dashv		-			-		-			
						-	_				-													-		707D-	
Relinquished by: (Signature)		L		Received by	(Signature)					<u> </u>	Ļ				1			-	Dale:				<u></u>		Time		
						(Smaple Custastian)								1/10/08								1 11119	1615 1558 1000				
Relinquished by: (Signature)	11 -				: (Signature)		aff		11	/									Date:	((((>	Ç.			Time	1556	
Relinquished by: (Sîgnature)	108h (+650)			Received by	r: (Signatura)	t		1	41,						/		7		Date:	11	10	. 7			Time	1000	
A Committee of the Comm	1400 (400)		GERT F	^a Kawaran			<u>.:</u>	,7/	1/6			Ι	0	V02/08	Kevisio	<u>- </u>				4	12	/_	22			05/02/06 Ravision	

WORK ORDER #: **08** - 0 / - 0 8 5 3

Cooler __/_ of __/_

SAMPLE RECEIPT FORM

CLIENT: Blaine Tech	DATE: 1/12/08
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): ° C Temperature blank. ° C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not l	ntact): Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	