P & D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

November 1, 2005 Letter 0363.L10

Alameda County

NOV 03 2005

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250

Environmental Health

Alameda, CA 94502

SUBJECT:

SUBSURFACE INVESTIGATION REPORT TRANSMITTAL

T.D. Rowe Facility 8134 Capwell Drive

Oakland, CA

Dear Mr. Wickham:

You will find enclosed one copy of the Subsurface Investigation Report (Report 0363.R3) dated October 27, 2005, prepared by P&D Environmental, Inc. for the subject site. A copy of the report and attachments was previously transmitted to you electronically. The required penalty of perjury certification statement for the enclosed report will be provided in a letter from T.D. Rowe under separate cover.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King President

Enclosure

cc: Mr. Leroy Griffin, Oakland Fire Department, Emergency Services, 250 Frank Ogawa Plaza, Suite 3341, Oakland, CA 94612 (w. enclosure)

Mr. Terry Davis, T.D. Rowe, 3 Riverway, Suite 1140, Houston, TX 77056 (w. enclosure)

PHK/wrw 0363.L10

P & D ENVIRONMENTAL

A Division of Paul H. King, Inc. 55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

June 28, 2005 Letter 0363.L6

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502 Alameda County
JUL 0 1 2005
Environmental Health

SUBJECT:

SUBSURFACE INVESTIGATION REPORT TRANSMITTAL

T.D. Rowe Facility 8134 Capwell Drive

Oakland, CA

Dear Mr. Wickham:

You will find attached the Subsurface Investigation Report (Report 0363.R2) dated June 17, 2005, prepared by P&D Environmental for the subject site. A copy of the report and attachments was previously transmitted to you electronically. The required penalty of perjury statement for the enclosed report will be provided in a letter from T.D. Rowe under separate cover.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental

Paul H. King President

Attachment

cc: Terry Davis, T.D. Rowe

Jul Walking

PHK/efo/bl 0363.L6

P & D Environmental, Inc.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

Alameda County

October 27, 2005 Report 0363.R3

,*

NOV 0 3 2005

Mr. Terry Davis T.D. Rowe 3 Riverway, Suite 1140 Houston, TX 77056 Environmental Health

SUBJECT:

SUBSURFACE INVESTIGATION REPORT

(Boreholes B8 Through B11) ACEH File #RO-2848 T.D. Rowe Facility 8134 Capwell Drive

Oakland, CA

Dear Mr. Davis:

P&D Environmental, Inc. (P&D) is pleased to present this report documenting the drilling and sampling at four locations designated as B8 through B11 at the subject site. Field activities were performed on September 6 and 7, 2005. The boreholes were drilled to further evaluate the horizontal and vertical extent of petroleum hydrocarbon impact to soil and groundwater in the vicinity of the former Underground Storage Tank (UST) pit. This investigation is intended to augment P&D's previous investigation at the site which was documented in P&D's Subsurface Investigation Report (Boreholes B5, B6, B7, and Wells MW1, MW2, MW3) dated June 17, 2005 (document 0363.R2).

The scope of work for this current investigation was performed in accordance with the scope of work set forth in the Discussion and Recommendations section of P&D's Subsurface Investigation Report (Boreholes B5, B6, B7, and Wells MW1, MW2, MW3) dated June 17, 2005 (document 0363.R2). In addition, this current investigation was performed in accordance with technical comments set forth in a July 1, 2005 letter from the Alameda County Environmental Health Department (ACEH) that concurred with the proposed scope of work in P&D's June 17, 2005 report, and subsequent telephone conversations with the site caseworker regarding the technical comments. A Site Location Map is attached as Figure 1, and a Site Vicinity Map showing the drilling locations is attached as Figure 2.

All work was performed under the direct supervision of an appropriately registered professional. This work was performed in accordance with guidelines set forth in the document "Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites" dated August 10, 1990 and "Appendix A - Workplan for Initial Subsurface Investigation" dated August 20, 1991.

BACKGROUND

P&D's understanding of historical site investigations is based on review of the following documents.

- August 6 or August 9, 1999 (different parts of the report have different dates)
 Underground Storage Tank Removal Report prepared by ACC Environmental Consultants (ACC),
- September 9, 2004 Additional Subsurface Investigation Report prepared by ACC,
- September 28, 2004 Opinion Letter Subsurface Investigation Results prepared by ACC.

Review of the August, 1999 Underground Storage Tank (UST) Removal Report indicates that two 3,000-gallon capacity fiberglass USTs were removed from the site on April 16, 1999. The USTs were reported to have stored gasoline that was used to supply fuel to delivery trucks operated by T.D. Rowe. The report stated that the USTs had not been used for three years prior to their removal. Mr. Stephen Craford of the Oakland Fire Department was onsite to observe UST removal and sample collection. At the time of UST removal, no holes were observed in either UST. However, it appeared that the fittings on one UST were damaged. The pit was reported to have been excavated to a depth of approximately six feet below the ground surface, and groundwater was observed in the pit at depths ranging from 4 to 6 feet below the ground surface. The groundwater level in the pit was reported to have been directly observed to be tidally influenced. Soil exposed in the walls of the pit consisted of brown silty sand.

Significant staining was reported to have been observed and petroleum hydrocarbon odors were detected in the UST pit. A total of four sidewall soil samples were collected at the soil-groundwater interface (samples TDR-Pit-N, TDR-Pit-S, TDR-Pit-E, TDR-Pit-W), and one pit water sample was collected (TDR-Pit). In addition, one soil stockpile sample designated as TDR-SP1 through SP8 was collected. The samples were analyzed for TPH-G, BTEX, Fuel Oxygenates (TBA, MTBE, DIPE, ETBE and TAME by EPA Method 8260) and Total Lead. The sample results showed elevated TPH-G concentrations on the north wall of the pit and in the pit water. The ratio of TPH-G to benzene in one soil sample and the absence of BTEX in the remaining soil samples indicated the gasoline was aged and degraded.

On April 29, 1999 approximately 150 tons of petroleum-impacted soil was removed from the north wall of the pit, extending the pit dimensions approximately 4 feet to the north. Following over-excavation of the pit, two confirmation soil samples were collected from the north wall (samples TDR-NWall-1 and TDRNWall-2). The samples were analyzed for TPH-G, BTEX, Fuel Oxygenates, and Total Lead. Based on the confirmation soil sample results, it was concluded that over-excavation activities successfully removed residual petroleum in the soil.

On May 18, 1999 approximately 800 gallons of water was removed from the pit by a vacuum truck prior to backfilling the pit. The surface of the water was reported to have

been skimmed in order to remove as much product as possible. A groundwater sample was collected from the pit (sample Pit-2) and analyzed for TPH-G, BTEX, fuel oxygenates and total lead.

Review of the ACC report summary tables shows that the only fuel oxygenate listed in the column heading is MTBE, and that the Table 1 soil sample analytical results incorrectly identify the MTBE units as mg/kg instead of ug/kg. Similarly, all of the Table 2 water sample analytical results are incorrectly reported as mg/kg and should be reported as ug/L with the exception of lead, which should be reported as mg/L. It appears that the January 19, 2005 ACEH work plan request letter incorrectly identified residual MTBE at the site as 57 mg/kg and not 57 ug /kg based on review of the report summary tables.

The report concluded that following over-excavation of the UST pit, confirmation soil sample results did not show detectable concentrations of petroleum hydrocarbons, and that after removal of petroleum-impacted groundwater from the pit, petroleum concentrations in groundwater decreased significantly.

Review of the City of Oakland UST removal application attached with the report shows that the USTs were identified in the application as containing both gasoline and diesel fuel. Review of the Uniform Hazardous Waste Manifest attached to the report dated April 16, 1999 shows that 950 gallons of liquid identified as "Rinse Aide" was removed from the site. Figure 2 of the ACC report incorrectly shows the site building extending to Capwell Drive and incorrectly identifies the UST pit dimensions.

Review of the September 9, 2004 Additional Subsurface Investigation Report documents the drilling of four soil borings designated as TDR-B1 through TDR-B4 on August 24, 2004. The boreholes were continuously cored using Geoprobe push technology. One soil sample was collected from each borehole at a depth of 4.0 feet below the ground surface, and one groundwater sample was collected from each borehole. Groundwater was reported to have been encountered at an estimated depth of 7.0 feet below the ground surface in each of the boreholes. The soils samples at the 4-foot depth from boreholes B1 and B2 and the groundwater samples from boreholes B1, B3 and B4 were analyzed for TPH-G, BTEX and MTBE by EPA Method 8260B.

Review of the boring logs for the boreholes shows that all of the boreholes were drilled to a total depth of 8 feet below the ground surface. The boring logs show that subsurface conditions consisted of silty clay to a depth of approximately 4 feet below the ground surface in all of the boreholes except TDR-B3, where silty clay was encountered to a depth of approximately 3 feet below the ground surface. Below the silty clay, silty sand with varying amounts of gravel was encountered to the total depths explored. The boring logs show that a mild gasoline odor was reported in the silty clay in all of the boreholes except for TDR-B1, where a gasoline odor was reported. Similarly, a strong gasoline odor was reported in the silty sand from all of the boreholes except for TDR-B1, where no gasoline odor was reported. Photoionization Detector (PID) values re reported on the boring logs at depths of 4 and 8 feet below the ground surface. The three boreholes where PID values were measured in the silty clay (B1, B2, and B4) showed PID values ranging from 1.4 to 1.8 ppm. In borehole B3, the 4-foot depth sample was located in silty sand, and was 82.0

ppm. In all of the boreholes the 8-foot depth PID reading was 21.1 or 22 ppm except for borehole B3, where 74.2 ppm was reported.

Review of the report text shows that the silty clay layer is identified as extending to a depth of approximately 6 feet below the ground surface, not the 3 or 4 feet below the ground surface shown on the boring logs. The report also identifies the soil sample and groundwater samples as being summarized in Tables 3 and 4. However, the soil and groundwater sample results are summarized in Tables designated as Table 1 and Table 2, respectively in the ACC report.

Based on the soil boring sample results, ACC concluded that no significant source of impact to soil or groundwater is present, impacted groundwater appears to be confined to the site and offsite migration and potential human exposure is minimal to nonexistent, offsite migration of dissolved-phase petroleum hydrocarbons is limited in the horizontal extent and is relatively well defined, and the sample results indicate that significant natural attenuation of the petroleum hydrocarbons is occurring. The ACC report concluded by requesting case closure.

Review of the September 28, 2004 ACC Opinion Letter shows that reference to Table 1 of the August 1999 report still references MTBE concentrations in mg/kg instead of ug/kg. In addition, the letter references RWQCB RBSLs, which were superseded in 2003 by ESLs. The letter does not address TPH-G groundwater sample results from borehole B3 of 4900 ug/L exceeding the RWQCB guideline value of 500 ug/L, and does not explicitly address the potential risk to occupants of the building at the site from soil vapor migration into the building.

Review of the summary tables for soil sample results in the ACC documents shows that following over-excavation of the north end of the UST pit, no petroleum hydrocarbon concentrations exceeding RWQCB ESL values were detected in the UST pit or in any of the soil borings. Similarly, review of the summary tables for groundwater sample results in the ACC documents shows that following pumping of the UST pit, no petroleum hydrocarbon concentrations exceeding RWQCB ESL values were detected in the UST pit or in any of the ACC soil borings soil sample results with the following exceptions.

- UST pit sample Pit-2 for TPH-G and lead (although Table 2 of the March 7, 2005 Work Plan identifies the Pit-2 water sample xylenes value of 54 ug/L exceeding the associated ESL value of 13 ug/L, the 54 ug/L xylenes value does not exceed the current RWQCB February 2005 Table B ESL value of 100 ug/L)
- Soil boring sample TDR-B3-W for TPH-G.

On January 19, 2005, the ACEH issued a letter requesting a subsurface conduit study and a 2,000-foot radius well survey. In addition, the January 19, 2005 ACEH letter requested a work plan for further subsurface investigation at the subject site.

In response to the ACEH letter, P&D submitted a Conduit Study and Well Survey Report dated March 4, 2005 (document 0363.R1) and a Soil and Groundwater Investigation Work Plan dated March 7, 2005 (document 0363.W1). Completion of the scope of work in the

work plan is documented in P&D's Subsurface Investigation Report (Boreholes B5, B6, B7, and Wells MW1, MW2, MW3) dated June 17, 2005 (document 0363.R2).

FIELD ACTIVITIES

Field activities were performed on September 6 and 7, 2005. All subsurface exploration and soil and groundwater sample collection was performed by Vironex, Inc. of San Leandro, California. Prior to drilling, City of Oakland (COO) permit X0500947 and Alameda County Public Works Agency (ACPWA) permit W05-0811 were obtained for the drilling of boreholes B8 through B11. In addition, the drilling locations were marked with white paint, Underground Service Alert was notified for underground utility location, a health and safety plan was prepared, and notification of the scheduled drilling date was provided to the COO, the ACPWA and the ACEH.

Continuous Coring

On September 6, 2005 each of boreholes B8a through B11a were continuously cored to a depth of 10.0 feet using a macrocore sampler lined with cellulose acetate tubes and Geoprobe push technology. The soil from the continuous cores was logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. All of the soil from the boreholes was evaluated with a 10.3 eV Photoionization Detector (PID) calibrated using a 100 ppm isobutylene standard.

No organic vapors were detected with the PID with the exception of borehole B11a, where a PID value of 164 ppm was detected at a depth of 7.0 to 8.0 feet, and 3 ppm that was detected between the depths of 8.0 and 10.0 feet below the ground surface. Similarly, no odors were detected in any of the boreholes with the exception of a slight sulfurous odor in borehole B8a between the depths of 8.0 to 10.0 feet below the ground surface, and petroleum hydrocarbon odors in borehole B11a that were described as moderate between the depths of 6.5 to 7.0 feet and 8.0 to 10.0 feet, and strong between the depths of 7.0 to 8.0 feet below the ground surface.

Soil samples were retained for laboratory analysis from each of the boreholes at a depth of 4.5 feet, and additionally in borehole B11a at a depth of 7.2 feet below the ground surface. Soil samples were retained from the continuous cores as a six-inch long sample in the cellulose acetate tubes cutting the core barrel sample liner at the depths corresponding to the desired sampling interval. For each soil sample, the ends of the sample tube were sequentially covered with aluminum foil and plastic endcaps, and the tube was then labeled and stored in a cooler with ice pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling.

Groundwater was initially encountered in boreholes B8a through B11a during drilling at depths of 5.0, 8.5, 8.0 and 7.0 feet below the ground surface, respectively. Groundwater was subsequently measured in the boreholes at depths of 3.9, 4.9, 4.0 and 3.9 feet below the ground surface, respectively. A groundwater grab sample was collected from each of the boreholes by placing a one-inch diameter slotted PVC pipe into each borehole and using polyethylene tubing and a stainless steel foot valve.

All water samples were transferred to 1-liter amber bottles and 40-milliliter glass Volatile Organic Analysis (VOA) vials containing hydrochloric acid preservative, which were sealed with Teflon-lined screw caps. The VOAs were overturned and tapped to ensure that air bubbles were not present. The samples were labeled and then placed into a cooler with ice pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling.

No sheen or separate phase layers of petroleum hydrocarbons were observed in any of the boreholes. No petroleum hydrocarbon sheen or odors were detected in any of the borehole groundwater grab samples, except for a slight petroleum hydrocarbon odor from the sample from borehole B11a.

All drilling equipment was steam cleaned prior to use at the site. New PVC pipe and polyethylene tubing were used in each borehole for sample collection. All other sampling equipment was cleaned with an Alconox solution followed by a clean water rinse prior to use in each borehole. Following completion of sample collection activities, the boreholes were filled with neat cement grout. Soil and water generated during drilling were stored in one drum at the subject site pending characterization and disposal.

The locations of the boreholes are shown on Figure 2. Copies of the boring logs are attached with this report.

Soil Conductivity Logging

On September 7, 2005 a soil electrical conductivity probe was advanced at locations identified as boreholes B8EC through B11EC. Each of the borehole locations corresponded with borehole locations B8a through B11a, respectively. Soil conductivity was continuously measured for each of the boreholes with the exception of borehole B8EC, which experienced a detector malfunction for the interval extending from the ground surface to a depth of approximately 8.0 feet below the ground surface. Soil conductivity values were recorded and printed as a log. Increased conductivity values indicate finer grained materials. Copies of the conductivity logs for boreholes B8EC through B11EC are attached with this report.

The probe was advanced to a depth of 48.0 feet in all of the boreholes except for B11EC, which was advanced to a depth of 58.0 feet. Comparison of the conductivity logs with boring logs from P&D's previous investigation (see P&D's Subsurface Investigation Report (Boreholes B5, B6, B7, and Wells MW1, MW2, MW3) dated June 17, 2005 (document 0363.R2)) shows excellent correlation of the increased conductivity log values with the Bay Mud layer previously encountered to a depth of approximately 20 feet. In boreholes B8EC through B11EC the bottom of the Bay Mud layer appears to be at a depth of approximately 21.0, 20.0, 21.0 and 22.0 feet, respectively. Below the Bay Mud layer the conductivity logs suggest that the materials encountered to the total depth explored of 58.0 feet consist predominantly of silty and sandy materials.

Hydropunch Groundwater Sample Collection

On September 7, 2005 groundwater grab samples were collected using a Hydropunch at locations identified as B8b through B11b. The locations of the boreholes are shown on Figure 2, and correspond with the locations of boreholes B8a through B11a, respectively. Following review of subsurface conditions identified in the soil conductivity logs, the Hydropunch samples were collected from boreholes B8b through B11b at intervals of 24.0 to 28.0, 22.0 to 26.0, 23.0 to 27.0, and 45.0 to 48.0 feet below the ground surface, respectively. Prior to retracting the drilling rods to expose the Hydropunch screen, the interior of the drilling rods for each borehole were evaluated to determine if water was present inside the drilling rods. No water was measured in any of the drilling rods prior to retracting the drilling rods to expose the Hydropunch screen.

Following retraction of the drilling rods to expose the Hydropunch screen, water was measured inside the drilling rods prior to sample collection at depths of 19.5, 4.9, 15.5, and 19.0 feet below the ground surface, respectively. A groundwater grab sample was collected from each of the boreholes using polyethylene tubing and a stainless steel foot valve. All water samples were transferred to 1-liter amber bottles and 40-milliliter glass Volatile Organic Analysis (VOA) vials containing hydrochloric acid preservative, which were sealed with Teflon-lined screw caps. The VOAs were overturned and tapped to ensure that air bubbles were not present. The samples were labeled and then placed into a cooler with ice pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling.

Groundwater Level Monitoring

On September 7, 2005 the depth to water was measured in the three groundwater monitoring wells at the site using an electric water level indicator with an accuracy of 0.01 foot. To ensure that water levels in the wells were at equilibrium, the depth to water was measured at the time that the wells were opened, and again approximately 2.5 hours later. No change in water level was measured for any of the wells. The measured depth to water in wells MW1, MW2 and MW3 was 4.56, 5.01 and 3.99 feet, respectively. The depth to water level measurements are summarized in Table 1.

GEOLOGY AND HYDROGEOLOGY

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the subject site is underlain by Bay Mud (Qhbm). Bay Mud is described as unconsolidated, water-saturated, dark, plastic clay and silty clay.

The subsurface materials encountered on September 6, 2005 in continuously cored boreholes B8a, B9a, B10a and B11a consisted of coarse-grained fill material to a depth of approximately 3.8, 3.0, 1.7 and 3.7 feet below the ground surface, respectively. Beneath the fill material clay is encountered to a depth ranging from 5.0 to 8.9 feet below the ground surface, which is in turn underlain by sand to the total depth explored of 10.0 feet. The

subsurface materials encountered in the boreholes are consistent with materials encountered in previously drilled boreholes at the site.

Review of the soil conductivity logs for boreholes B8EC through B11EC shows excellent correlation of the increased conductivity log values with the Bay Mud layer encountered in previously drilled boreholes. In boreholes B8EC through B11EC the bottom of the Bay Mud layer appears to be at a depth of approximately 21.0, 20.0, 21.0 and 22.0 feet, respectively. Below the Bay Mud layer the conductivity logs suggest that the materials encountered to the total depth explored of 58.0 feet consist predominantly of silty and sandy materials.

Groundwater was initially encountered during drilling in boreholes B8a, B9a, B10a and B11a at depths of 5.0, 8.5, 8.9 and 7.0 feet below ground surface, respectively. Groundwater was subsequently measured at depths of 3.9, 4.9, 4.0 and 3.9 feet below the ground surface, respectively. In boreholes B8a, B9b, B10b, and B11b (boreholes for Hydropunch groundwater grab sample collection) groundwater was measured in the drilling rods prior to sample collection at depths of 19.5, 4.9, 15.5 and 19.0 feet below the ground surface, respectively.

The measured depth to water during well monitoring and sampling at the site from May 27 to June 6, 2005 ranged from 4.14 to 4.30 feet in well MW1, from 4.82 to 4.97 feet in well MW2, and from 3.33 to 3.48 feet in well MW3. Most recently, the measured depth to water in wells MW1, MW2 and MW3 on September 7, 2005 was 4.56, 5.01 and 3.99 feet, respectively. The depth to water level measurements are summarized in Table 1.

Based on the measured depth to groundwater in the groundwater monitoring wells, the apparent groundwater flow direction at the site from May 27 to June 6, 2005 was calculated to be to the southwest with a gradient of 0.013 or 0.014. On September 7, 2005 the groundwater flow direction was calculated to be to the southwest with a gradient of 0.0070. The groundwater flow direction at the site on September 7, 2005 is shown on Figures 5, 6 and 7. The calculated groundwater flow direction and gradient for each day of monitoring are summarized in Table 2.

A tidally influenced canal that drains to the San Francisco Bay is located approximately 200 feet to the southwest of the subject site. However, based on the consistent calculated groundwater flow direction and gradient for the six different monitoring events, groundwater does not appear to be tidally influenced at the site.

LABORATORY ANALYSIS

All of the soil and groundwater samples were analyzed at McCampbell Analytical, Inc. in Pacheco, California. McCampbell Analytical, Inc. is a state-accredited hazardous waste testing laboratory. All of the soil and groundwater samples collected from the boreholes were analyzed for Total Petroleum Hydrocarbons as Gasoline (TPH-G), Total Petroleum Hydrocarbons as Diesel (TPH-D), and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) and using EPA Method 8015C; as well as benzene, toluene, ethylbenzene, and xylenes (BTEX), fuel oxygenates, and lead scavengers using EPA Method 8260B. In addition,

water samples B8a-8.0 Water, B10a-8.0 Water, and B11a-8.0 Water were re-extracted using a silica gel cleanup and re-analyzed for TPH-D and TPH-MO using the same methods described above.

Review of the laboratory analytical results for the borehole soil samples shows that none of the analytes were detected in any of the boreholes with the exception of borehole B11a. In borehole B11a, the samples collected at depths of 4.5 and 7.2 feet below the ground surface showed TPH-G at concentrations of 5.6 and 95 mg/kg, respectively, TPH-D at concentrations of 1.0 and 89 mg/kg, respectively, and ethylbenzene at concentrations of 0.026 and 0.12 mg/kg, respectively. TPH-MO was only detected in B11a-7.2 at a concentration of 310 mg/kg. Review of the laboratory analytical reports shows that the results reported as TPH-G are identified as heavier gasoline-range compounds, aged gasoline, and with no recognizable pattern. Similarly, the TPH-D results for the sample collected at a depth of 7.2 feet are identified as gasoline, diesel, and oil-range compounds. The soil sample results are summarized in Table 3. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

Review of the laboratory analytical results for the groundwater grab samples shows that in the shallow water samples collected at a depth of 8.0 feet from boreholes B8a through B11a BTEX, fuel oxygenates and lead scavengers were not detected with the exception of 0.00067 mg/L MTBE in borehole sample B9a, and 0.0007 mg/L toluene, 0.013 mg/L ethylbenzene, and 0.00068 mg/L MTBE in borehole sample B11a. TPH-G was only detected in borehole sample B11a at a concentration of 0.17 mg/L. TPH-D was detected in all of the boreholes at concentrations of 0.48, 0.089, 0.53, and 0.81 mg/L, respectively, and TPH-MO was detected in all of the boreholes at concentrations of 6.0, 0.41, 4.7 and 4.9 mg/L, respectively. Following re-extraction using silica gel cleanup and re-analysis of the water samples from boreholes B8a, B10a and B11a, the TPH-D concentrations were reduced to 0.23, 0.27 and 0.57 mg/L, respectively and the TPH-MO concentrations were reduced to 2.9, 2.1 and 4.1 mg/L, respectively.

Review of the laboratory analytical results for the groundwater grab samples shows that in the deeper water samples collected at depths of 26.0 to 28.0 feet from boreholes B8b, B9b and B10b, none of the analytes were detected in the samples from boreholes B8b and B9b. In the sample collected from borehole B10b, TPH-D was detected at a concentration of 0.092 mg/L, TPH-MO was detected at a concentration of 0.39 mg/L, toluene was detected at a concentration of 0.0011 mg/L, and xylenes were detected at a concentration of 0.00054 mg/L. Review of the laboratory analytical results for the deepest groundwater grab sample collected from borehole B11b at a depth of 48.0 feet shows that none of the analytes were detected with the exception of 0.077 mg/L TPH-D and 0.00086 mg/L toluene.

Review of the groundwater sample laboratory analytical reports shows that all of the results reported as TPH-D are identified as heavier gasoline-range compounds and aged gasoline. The borehole groundwater grab sample results are summarized in Table 4. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

All historical soil sample results for soil at a depth of approximately 4.5 feet below the ground surface in addition to soil sample results for the current investigation for TPH-G, TPH-D, and TPH-MO are shown in Figures 2, 3 and 4, respectively. All historical groundwater sample results for shallow water located above the Bay Mud layer in addition to groundwater sample results for the current investigation for TPH-G, TPH-D, and TPH-MO are shown in Figures 5, 6 and 7, respectively. All historical groundwater sample results for the current investigation for TPH-G, TPH-D, and TPH-MO are shown in Figures 8, 9 and 10, respectively. When detected, EPA 8260B compound names and associated concentrations are shown on Figures 2, 5, and 8. Values exceeding their respective February 2005 Environmental Screening Level (ESL) values are in bold and identified with an asterisk. Historical laboratory sample results are provided in Appendix A. Review of Table 2 shows that the groundwater flow direction has been consistently to the southwest for all monitoring events at the site.

Both the lithologic soil boring logs and soil conductivity logs show that the Bay Mud layer is continuous across the site. Review of the soil conductivity logs shows that no extensive low permeability layer was encountered below the Bay Mud. Review of Figures 8, 9 and 10 in conjunction with Table 4 and Appendix A shows that none of the analytes were detected at concentrations exceeding their respective ESL values in the materials located beneath the Bay Mud layer with the exception of 3.9 mg/L TPH-G and 88 mg/L TPH-D detected in borehole B7 at a depth of 28.0 feet below the ground surface. The horizontal extent of petroleum hydrocarbons in the materials located beneath the Bay Mud was defined by collecting groundwater grab samples at depths of 26.0 to 28.0 feet below the ground surface in boreholes B8b, B9b and B10b. The vertical extent of petroleum hydrocarbons in the materials located beneath the Bay Mud was defined by collecting one groundwater grab sample from adjacent to the former UST pit at a depth of 48.0 feet below the ground surface in borehole B11b.

Review of Figures 2, 3 and 4 in conjunction with Table 3 and Appendix A shows that none of the analytes were detected at concentrations exceeding their respective ESL values in soil following UST removal and over-excavation of the north UST pit wall, and that the horizontal and vertical extent of petroleum hydrocarbons in soil has been defined.

Review of Figures 5, 6 and 7 in conjunction with Table 4 and Appendix A shows that, following pumping of water from the UST pit, none of the analytes were detected at concentrations exceeding their respective ESL values outside of the former UST pit in shallow groundwater located above the Bay Mud layer with the exception of TPH-G in two locations, TPH-D in two locations, and TPH-MO in three locations as follows.

TPH-G was detected above the applicable ESL in shallow groundwater outside the former UST pit at concentrations of 4.9 and 0.96 mg/L in samples from boreholes B3 and B5, respectively. The horizontal extent of TPH-G in shallow groundwater was defined by groundwater grab samples from well MW1 to the northwest, boreholes B8a and B10a to the northeast, borehole B6 to the south, and borehole B9a to the west.

TPH-D was detected above the applicable ESL in shallow groundwater outside the former UST pit at concentrations of 1.6 and 0.81 mg/L in samples from boreholes B5 and B11a, respectively. In addition, 4.4 mg/L TPH-D was detected in the sample collected from borehole B7a located within the boundaries of the former UST pit. Following silica gel cleanup extraction and re-analysis the concentration of TPH-D in the shallow groundwater sample from borehole B11a was reduced to 0.57 mg/L, which is below the applicable ESL. The horizontal extent of TPH-D in shallow groundwater was defined by groundwater grab samples from well MW1 to the northwest, boreholes B8a and B10a to the northeast, borehole B6 to the south, and borehole B9a to the west.

TPH-MO was detected above the applicable ESL in shallow groundwater outside the former UST pit at concentrations of 6, 4.7, and 4.9 mg/L in samples from boreholes B8a, B10a, and Blla, respectively. Silica gel cleanup extraction followed by re-analysis of the samples shows that the TPH-MO concentrations were reduced to 2.9, 2.1 and 4.1 mg/L respectively, none of which were below the ESL. The downgradient extent of TPH-MO in shallow groundwater was defined by groundwater grab samples from boreholes B5, B6, and B9a, as well as from well MW2.

The general absence of BTEX in all of the sample results in conjunction with the laboratory report descriptions of the TPH as aged gasoline suggests that the more toxic components of the gasoline have degraded. The only compound detected in boreholes located adjacent to the site building that exceeds it's respective ESL is TPH-MO in the shallow groundwater sample collected from borehole B11a. The absence of BTEX and other EPA 8260B compounds in the soil sample collected where the highest concentrations of petroleum hydrocarbons encountered in borehole B11a (sample B11a-7.2, see Table 3, boring log B11a, and Figure 2) in conjunction with the similar absence of BTEX and other EPA 8260B compounds in the shallow water sample collected from borehole B11a (see Table 4 and Figure 5) indicates that VOCs at concentrations exceeding their respective ESL values are not present beneath the adjacent building. For this reason volatilization from groundwater or soil to indoor air is not considered an exposure pathway of concern. Similarly, groundwater is not pumped at or near the site, and dermal and ingestion exposure pathways are therefore not considered to be of concern.

The vertical and horizontal extent of petroleum hydrocarbons in soil and groundwater has been defined at the site. The residual TPH concentrations in groundwater exceeding their respective ESL values are limited in extent and do not pose an exposure risk to sensitive receptors at the site, as discussed above. Based on the extent of petroleum hydrocarbons having been defined vertically and horizontally in soil and groundwater and the absence of unacceptable levels of risk posed by residual petroleum hydrocarbons in soil and groundwater at the site, P&D recommends that the responsible party request case closure.

DISTRIBUTION

A copy of this report should be forwarded to Mr. Jerry Wickham at the ACEH. The report should be accompanied by a transmittal letter signed by an authorized representative of T.D. Rowe, in accordance with requirements set forth in the letter to TD Rowe from the ACDEH dated July 1, 2005.

LIMITATIONS

This report was prepared solely for the use of T.D. Rowe. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between boreholes and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King

President

Professional Geologist # 5901

1 and H.King

Expires: 12/31/05

Attachments: Table 1: Groundwater Level Monitoring Data

Table 2: Calculated Groundwater Flow Direction and Gradient

For Wells MW1, MW2 and MW3

Table 3: Summary of Laboratory Analytical Results -

Borehole Soil Samples

Table 4: Summary of Laboratory Analytical Results –

Borehole Groundwater Grab Samples

Figure 1: Site Location Map

Figure 2: TPH-G in Soil at 4.5 Feet Below Ground Surface

Figure 3: TPH-D in Soil at 4.5 Feet Below Ground Surface

Figure 4: TPH-MO in Soil at 4.5 Feet Below Ground Surface

Figure 5: TPH-G in Shallow Groundwater at 8 Feet Below Ground Surface

Figure 6: TPH-D in Shallow Groundwater at 8 Feet Below Ground Surface

Figure 7: TPH-MO in Shallow Groundwater

at 8 Feet Below Ground Surface

Figure 8: TPH-G in Deeper Groundwater

at 26-28 Feet Below Ground Surface

Figure 9: TPH-D in Deeper Groundwater

at 26-28 Feet Below Ground Surface

Figure 10: TPH-MO in Deeper Groundwater

at 26-28 Feet Below Ground Surface

Soil Boring Logs

Laboratory Analytical Reports and Chain of Custody Documentation

Appendix A: Historical Laboratory Sample Results

PHK wrw/efo 0363.R3

TABLE 1 GROUNDWATER LEVEL MONITORING DATA FOR WELLS MW1, MW2, AND MW3

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW1	9/7/05	11.27	4.56	6.71
	6/6/05		4.30	6.97
	6/2/05		4.24	7.03
	6/1/05		4.22	7.05
	5/31/05		4.26	7.01
	5/27/05		4.14	7.13
MW2	9/7/05	11.75	5.01	6.74
	6/6/05		4.97	6.78
	6/2/05		4.96	6.79
	6/1/05		4.94	6.81
	5/31/05		4.93	6.82
	5/27/05		4.82	6,93
MW3	9/7/05	11,14	3.99	7.15
	6/6/05		3.48	7.66
	6/2/05		3.43	7.71
	6/1/05		3.37	7.77
	5/31/05		3.39	7.75
	5/27/05		3.33	7.81

TABLE 2
CALCULATED GROUNDWATER FLOW DIRECTION AND GRADIENT FOR WELLS MW1, MW2, AND MW3

Date Monitored	Flow Direction	Gradient (ft./ft.)
9/7/05	S62°W	0.0070
6/6/05	S56°W	0.013
6/2/05	S54°W	0.013
6/1/05	S54°W	0.014
5/31/05	S57°W	0.014
5/27/05	S54°W	0.013

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS -BOREHOLE GROUNDWATER GRAB SAMPLES

Sample Name	ТРН-С	TPH-D/ TPH-D With SGC	TPH-MO/ TPH-MO With SGC	Benzene	Toluene	Ethyl- benzene	Xylenes	Other VOCs By 8260B
B8a-8.0, Water	ND<0.05	0.48,a,d/ 0.23,a,d	6.0/	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
B9a-8.0, Water	ND<0.05	0.089,a,d	0.41	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005, except MTBE = 0.00067
B10a-8.0, Water	ND<0.05	0.53,a,d/ 0.27,a,d	4.7/ 2.1	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
B11a-8.0, Water	0.17, a	0.81,a,d/ 0.57,a,d,f	4.9/ 4.1	ND<0.0005	0.0007	0.013	ND<0.0005	ND<0.0005 except MTBE = 0.00068
B8b-28.0, Water	ND<0.05	ND<0.05	ND<0.25	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
B9b-26.0, Water	ND<0.05	ND<0.05	ND<0.25	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005
B10b-27.0, Water	ND<0.05	0.092,d,a	0.39	ND<0.0005	0.0011	ND<0.0005	0.00054	ND<0.0005
B11b-48.0, Water	ND<0.05	0.077,a	ND<0.25	ND<0.0005	0.00086	ND<0.0005	ND<0.0005	ND<0.0005
ESL ₂	0.64	0.64	0.5	0.046	0.13	0.29	0.10	MTBE = 1.8

NOTES:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

SGC = Silica Gel Cleanup performed to remove non-petroleum hydrocarbons.

TPH-MO= Total Petroleum Hydrocarbons as Motor Oil.

VOCs = Volatile Organic Compounds.

MTBE = Methyl-butyl either

 ESL_2 = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated February 2005, from Table B – Shallow Soils, Groundwater is not a current or potential source of drinking water.

- a = Laboratory analytical report note: heavier gasoline range compounds are significant, possibly aged gasoline.
- b = Laboratory analytical report note: diesel range compounds are significant; no recognized pattern.
- c = Laboratory analytical report note: no recognizable pattern.
- d = Laboratory analytical report note: strongly aged gasoline or diesel range compounds are significant.
- e = Laboratory analytical report note: oil range compounds are significant.
- f = Laboratory analytical report note: gasoline range compounds are significant

ND = Not detected.

Results are in mg/L, unless otherwise indicated.

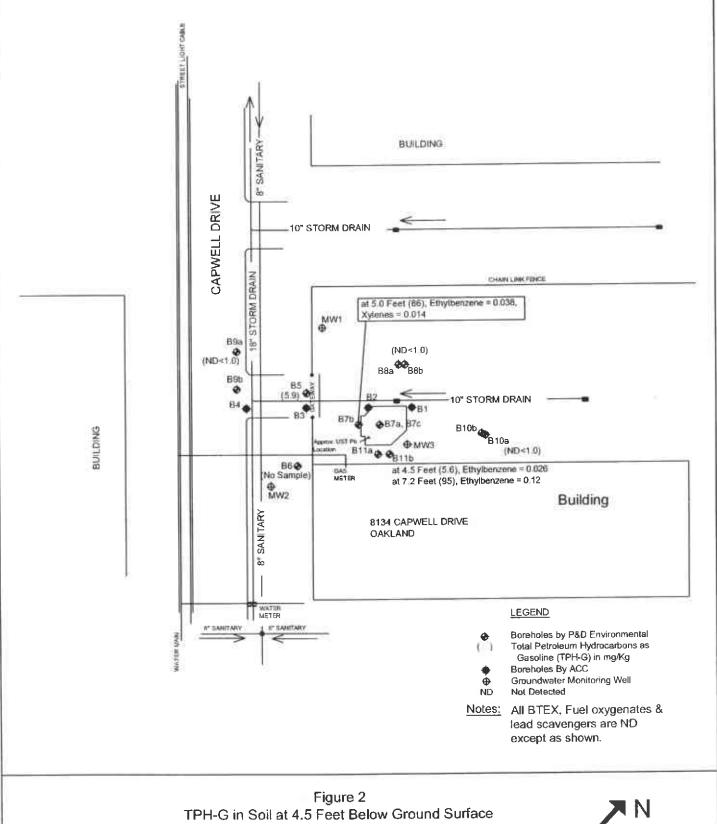
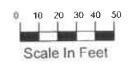
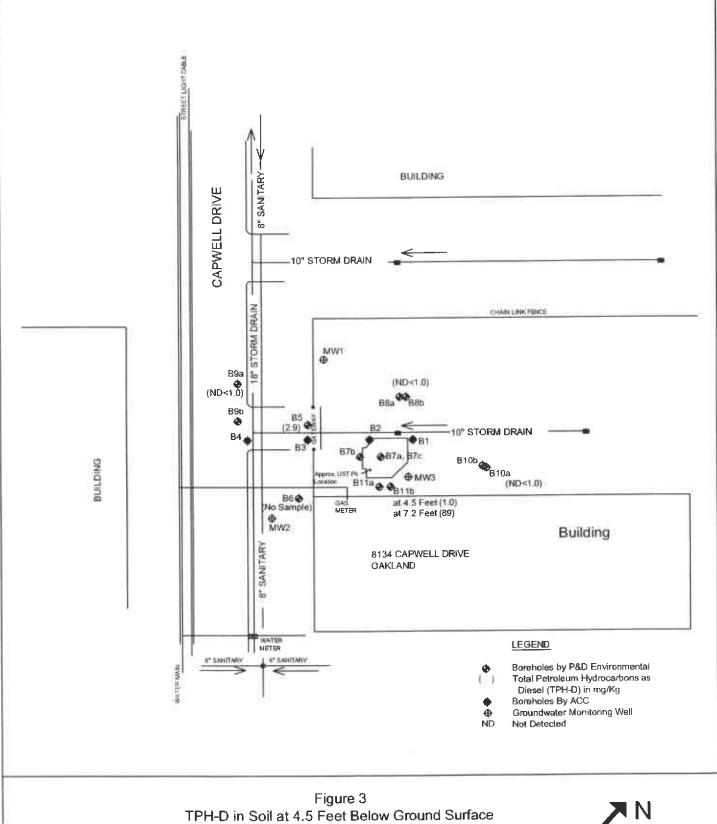


Figure 1 Site Location Map 8134 Capwell Drive Oakland, California

Base Map From: U.S. Geological Survey San Leandro, Calif. Photorevised 1980

P & D ENVIRONMENTAL, INC.





8134 Capwell Drive Oakland, California

P & D ENVIRONMENTAL, INC.

8134 Capwell Drive Oakland, California

P & D ENVIRONMENTAL, INC.

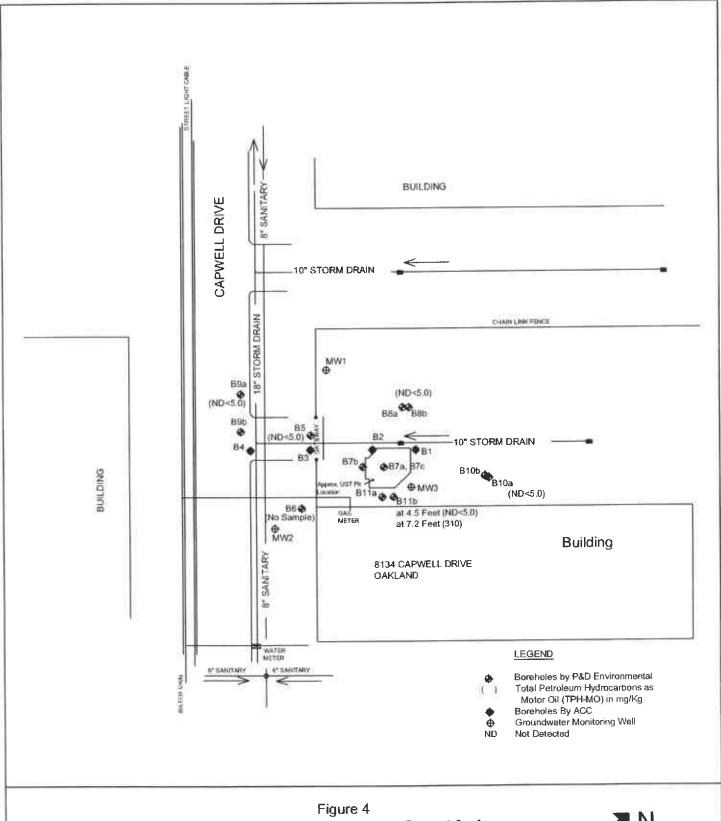


Figure 4
TPH-MO in Soil at 4.5 Feet Below Ground Surface
8134 Capwell Drive
Oakland, California

P & D ENVIRONMENTAL, INC.

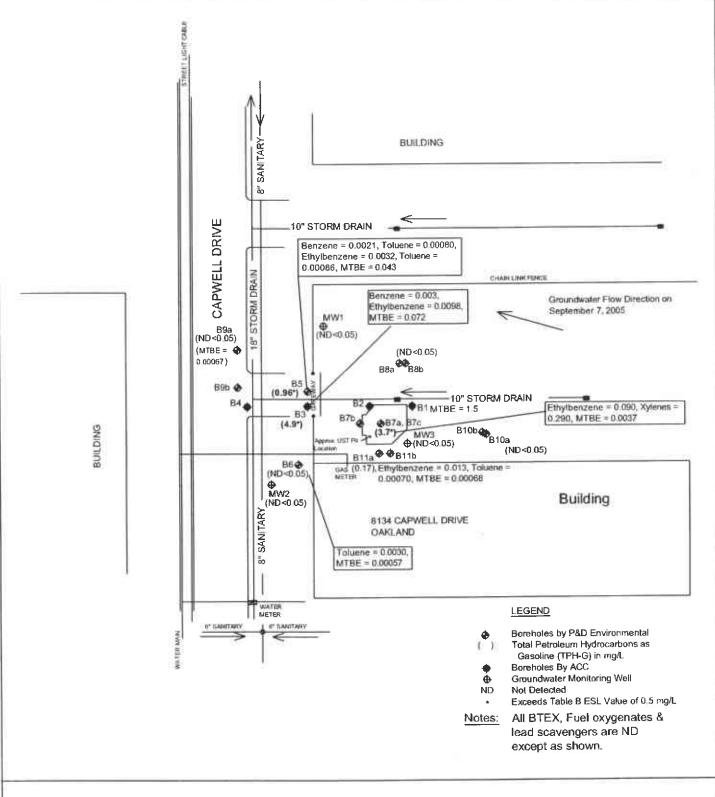


Figure 5
TPH-G in Shallow Groundwater at 8 Feet Below Ground Surface
8134 Capwell Drive
Oakland, California

P & D ENVIRONMENTAL, INC.

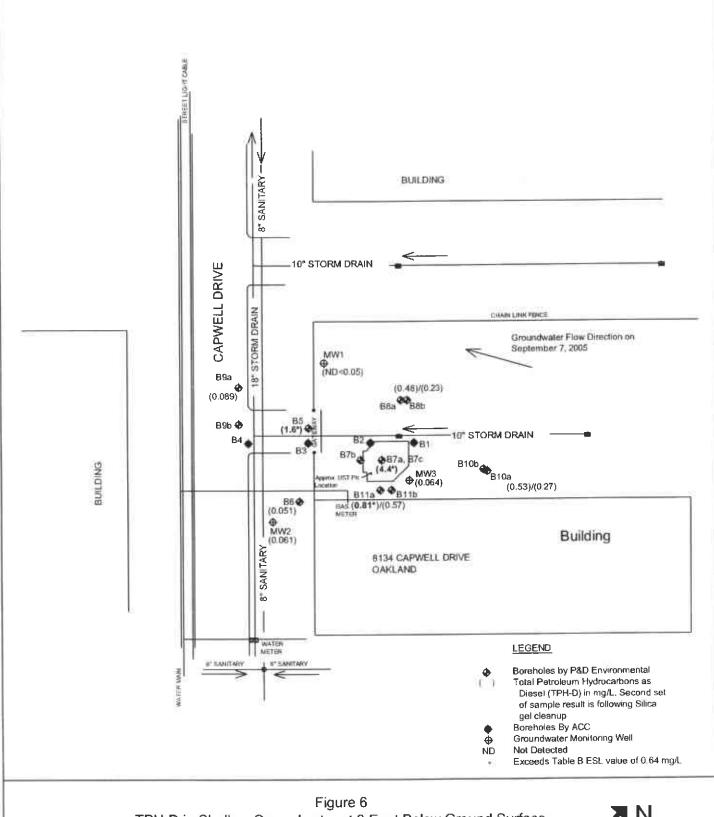
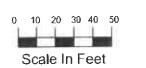



Figure 6
TPH-D in Shallow Groundwater at 8 Feet Below Ground Surface
8134 Capwell Drive
Oakland, California

P & D Environmental, Inc.

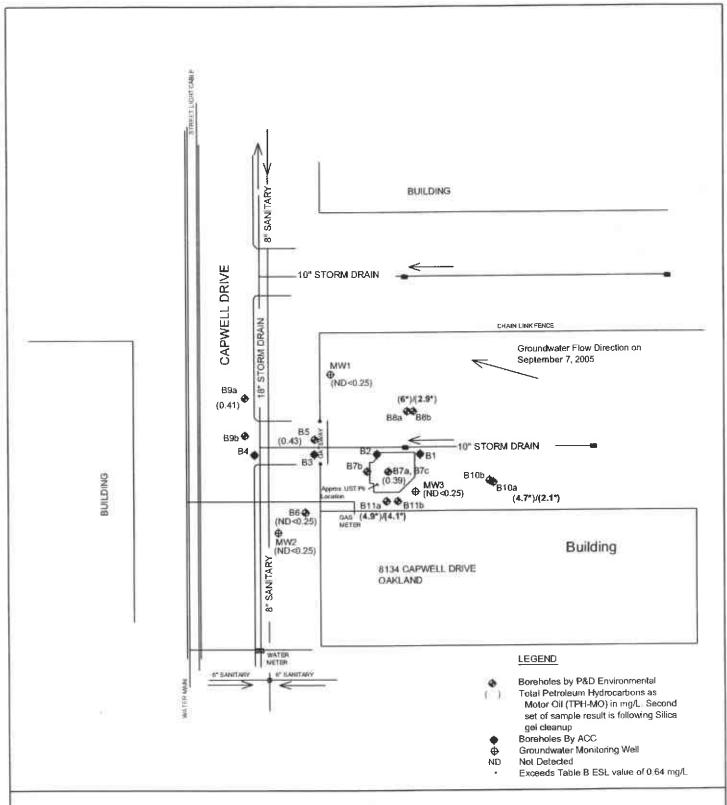
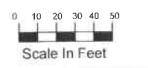



Figure 7
TPH-MO in Shallow Groundwater at 8 Feet Below Ground Surface
8134 Capwell Drive
Oakland, California

P & D ENVIRONMENTAL, INC.

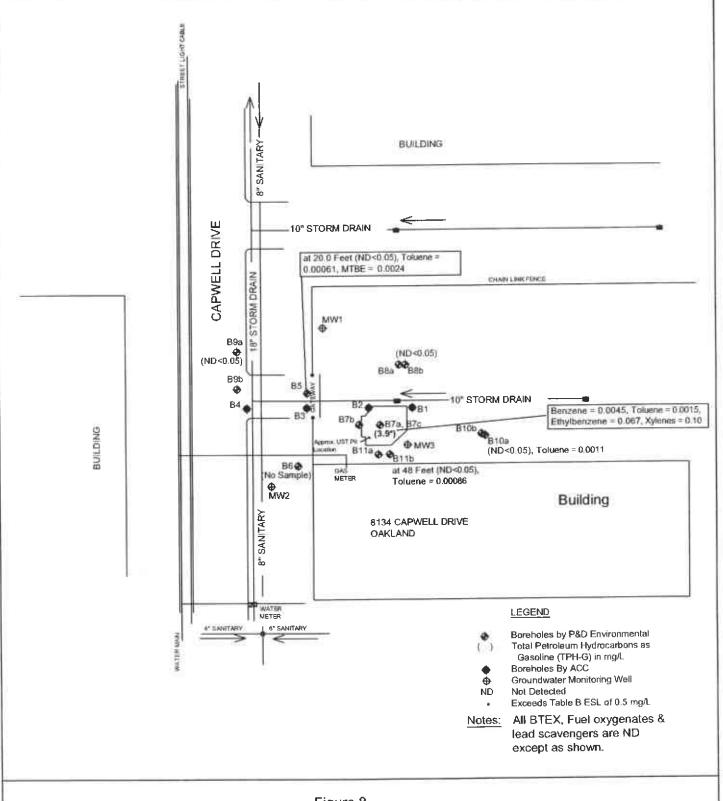


Figure 8
TPH-G in Deeper Groundwater at 26-28 Feet Below Ground Surface
8134 Capwell Drive
Oakland, California

P & D Environmental, Inc.

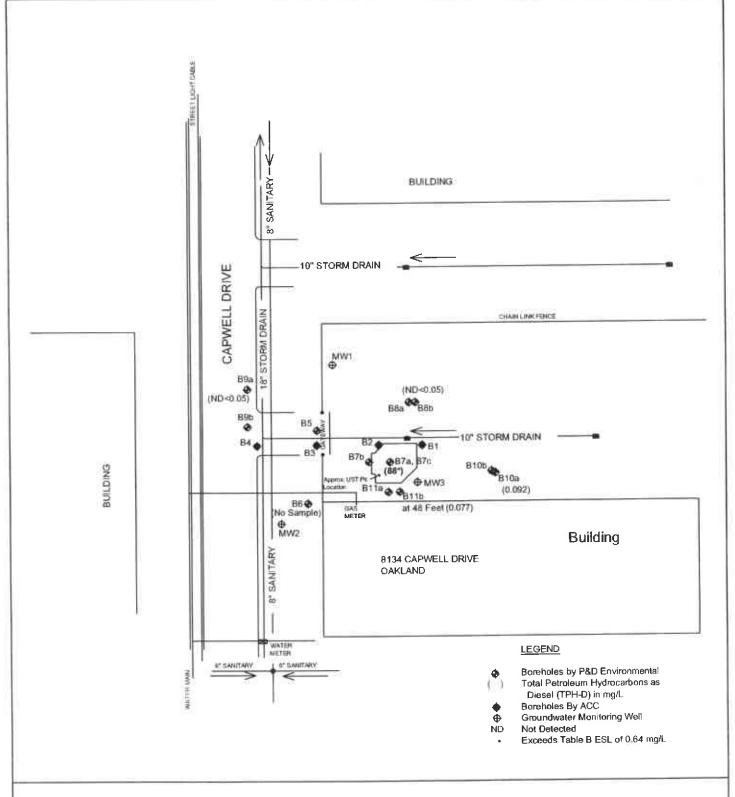


Figure 9
TPH-D in Deeper Groundwater at 26-28 Feet Below Ground Surface
8134 Capwell Drive
Oakland, California

P & D ENVIRONMENTAL, INC.

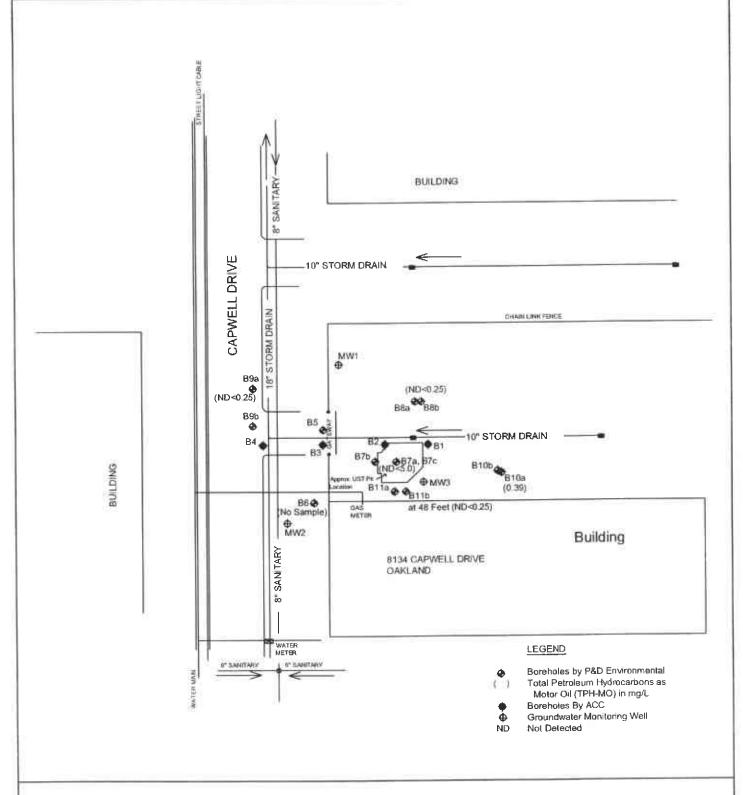
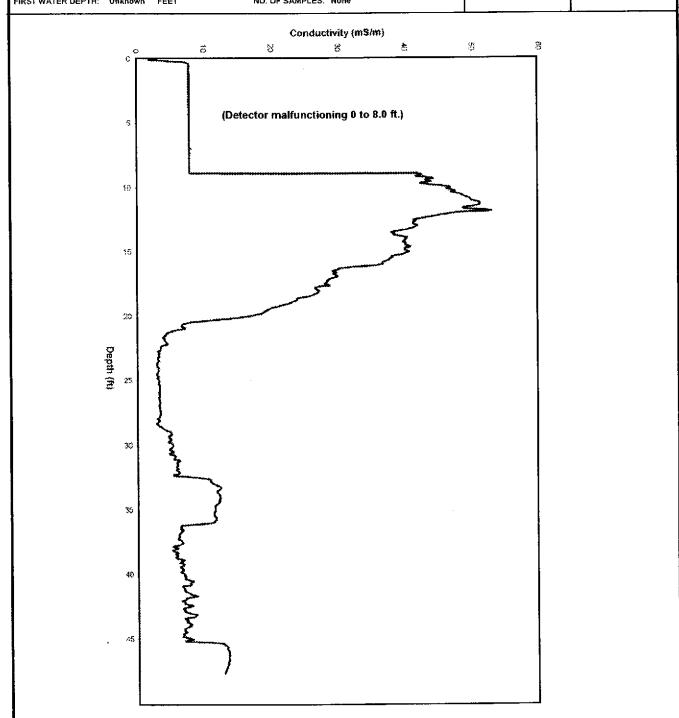


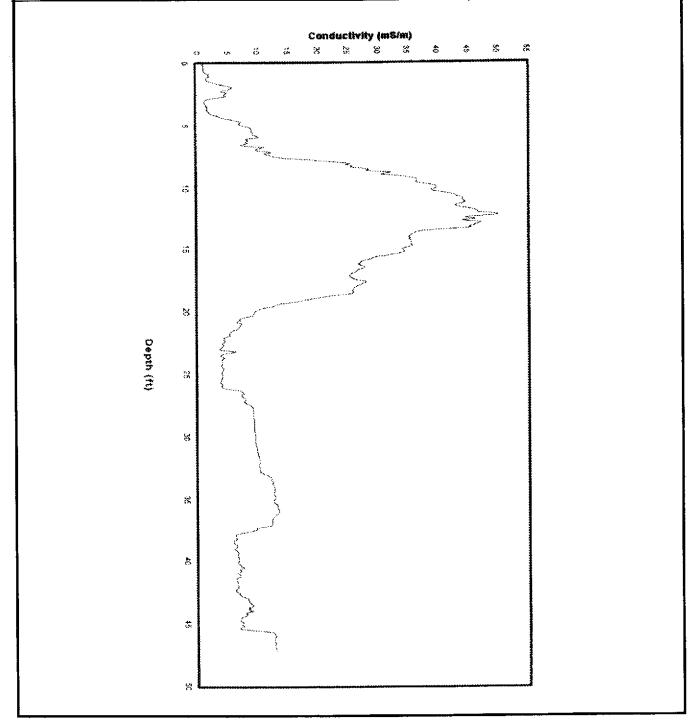
Figure 10
TPH-MO in Deeper Groundwater at 26-28 Feet Below Ground Surface
8134 Capwell Drive
Oakland, California



P & D Environmental, Inc.

во	RING N	10.:	B8a PROJECT NO.: 0363	PROJECT NAME:	T.D. Row	e, Oakland				
во	RING L	.00	ATION: North of UST Pit	ELEVATION AND DAT	UM: NONE				-	
DRI	LLING	AGE	ENCY: Vironex, Inc	DRILLER: Kurt and K	yle		DATE	E & TIME	STARTED:	DATE & TIME FINISHED:
DRI	LLING	EQU	JIPMENT: Geoprobe 6610 DT Track Rig				-	9/6/0)5	9/6/05
col	MPLE1	ION	DEPTH: 10,0 FEET	BEDROCK DEPTH: N	one encount	ered		LOGGE		CHECKED BY:
FIR	ST WA	TER	DEPTH: 5.0 FEET	NO. OF SAMPLES: 1	soil, 1 water		L	WR	<i>N</i>	
	DEPTH (FT.)		DESCRIPTK	ON	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			2 in. Asphalt Est. 6 in. Baser 8 in. to 2.4 ft. Medium brown loose, dry. No Petroleum (PHC) odor. 2.4 to 3.8 ft. Grayish black gr	ock sitty sand (FILL); Hydrocarbon avelly sitt (FILL);	FILL	No Well Constructed		0	cored us 2.5-in. C Macroco Sample intervals	e continuously sing a 5-ft. long D.D. Geoprobe pre barrel sampler s collected in 5 ft. s. The sampler
E	5	=	medium stiff, slightly No PHC odor 3.8 to 5.0 ft. Gray sandy clay	(CL); soft, moist.	X V	< CL		0	in. O.D. tubes.	ed with 5-ft. long, 2- cellulose acetate
E			Orange mottling. No F 5.0 to est. 8.0 ft. Dark gray s saturated. No PHC	and (SP); loose, codor.	SP			0	арргох. ing. Wa	ter encountered at 5.0 ft. during drill- ter measured at
E	10		8.0 to 10.0 ft. Dark gray grav gravel < 3/4 in. diam., loo No PHC odor, but slight s	se, saturated.	sw	<u>.</u>		0		0:30am approx. 5 er completion of
	15 20 25								10.0-ft. 1-in. dia in boref sample polyeth stainles No PHC water s Boreho with ne	le tremie grouted at cement and an cold-patch surface
	30									

BORING NO.: B8EC	PROJECT NO.: 0363	PROJECT NAME: T.D. Rowe, Oakland		
BORING LOCATION;	Northwest of former US	F Pit ELEVATION AND DATUM: NONE		
DRILLING AGENCY:	Vironex, Inc	DRILLER: Kurt and Kyle	DATE & TIME STARTED:	DATE & TIME FINISHED
DRILLING EQUIPMENT:	Geoprobe 6610 DT Trac	k Rig	9/7/05	9/7/05
COMPLETION DEPTH:	48.0 FEET	BEDROCK DEPTH: None encountered	LOGGED BY:	CHECKED BY:
FIRST WATER DEPTH:	Unknown FEET	NO. OF SAMPLES: None	WRW	


BORING NO.:	B8b	PROJECT NO.: 0363	PROJECT NAME:	T.D. Row	e, Oakland				
BORING LOC	ATION:	Northwest of former UST Pit	ELEVATIO	N AND DAT	UM: NONE				
DRILLING AG	ENCY:	Vironex, Inc	DRILLER: Kurt and Ky	le		DAT	E & TIME	STARTED:	DATE & TIME FINISHED:
DRILLING EQ	UIPMENT:	Geoprobe 6610 DT Track Rig		·			9/7/0	05	9/7/05
COMPLETION	DEPTH:	28.0 FEET	BEDROCK DEPTH: No	ne encount	tered		LOGGE		CHECKED BY:
FIRST WATE	R DEPTH:	19.5 FEET	NO. OF SAMPLES: 1 v	ater			WR	W	
DEPTH (FT.)		DESCRIPTI	ION	GRAPHIC COLUMIN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	<u>_</u>		REMARKS
10 10 10 10 10 10 10 10 10 10 10 10 10 1		Hydropunch o	-		No Well Constructed			puncher No water Hydropi Rods water exposival. Water in ft., 3:00 set from Water susing H polyeth stainless	e B8b Hydro-d to 28.0 ft. er present inside unch rods, 2:50pm. ithdrawn to 24.0 ft. se screened interneasured at 19.5 pm, in Hydropunch 124.0 to 28.0 ft. sample collected lydropunch with ylene tubing and a se steel foot valve.
30									

BORING	NO.;	89a PROJECT NO.: 0363	PROJECT NAME:		T.D. Rowe	, Oakland				
BORING	LOC	ATION: Edge of Street, SW of Pit	ELEVATION AND	DATUM	NONE	•				
DRILLIN	IG AGI	ENCY: Vironex, Inc	DRILLER: Kurta	nd Kyle			DATE		STARTED:	DATE & TIME FINISHED:
DRILLIN	IG EQ	UIPMENT: Geoprobe 6610 DT Track Rig						9/6/05		9/6/05
COMPLI	ETION	DEPTH: 10.0 FEET	BEDROCK DEPTI	H: None	encount	ered		LOGGE		CHECKED BY:
FIRST W	VATER	R DEPTH: 8.5 FEET	NO. OF SAMPLES							
DEPTH (FT.)		DESCRIPTIO	N		GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
		3 in. Asphalt Est. 6 in. Basero 8 in. to 3.0 ft. Reddish b gravel (FILL); dry. No P Hydrocarbon (PHC)	rown silty etroleum		FILL	No Well Constructed		0	cored u 2.5-in. 0 Macroc Sample	e continuously sing a 5-ft. long D.D. Geoprobe ore barrel sampler. s collected in 5-ft.
 5 	11111	3.0 to 8.5 ft. Gray silty of medium stiff, moist. Orang No PHC odor.			CL. Ţ			0	was line in. O.D. tubes.	s. The sampler ed with 5-ft. long, 2- cellulose acetate ater encountered at
- - -					∇			0	8.5 ft. d ter mea approx.	uring drilling. Wa- sured at 4.9 ft. 11:00 am approx.
E 10		8.5 to 10.0 ft. gray san loose, saturated. No Pl		Ξ	SW			0	5 min. a drilling.	after completion of
15									10.0-ft. 1-in. dia in borel sample polyeth stainles No PHC water s Boreho	le termie grouted at cement and an cold-patch surface

BORING NO.:	В9ь	PROJEC*	T NO.: 0363	PROJECT NAME:	-	T.D. Rowe	, Oakland				-
BORING LOC	ATION:	Edge of S	Street, SW of Pit	ELEVATION AND D	ATUM:	NONE		-			
DRILLING AG	ENCY:	Vironex,	Inc	DRILLER: Kurt an	d Kyle			DATI	E & TIME	STARTED:	DATE & TIME FINISHED:
DRILLING EC	UIPMENT:	Geoprob	e 6610 DT Track Rig						9/7/	05	9/7/05
COMPLETION	N DEPTH:	26,0	FEET	BEDROCK DEPTH:	None	encount	ered		LOGGE	D BY:	CHECKED BY:
FIRST WATE	R DEPTH:	4.9	FEET	NO. OF SAMPLES:	1 wat	er		1	WR	W	
БЕРТН (FT.)			DESCRIPTION			GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
10			Hydropunch only.				No Well Constructed			puncher No water Hydropi Rods w to expo- val. Water n 3:40pm set from Water s using H polyeth	e B9b Hydro-d to 26.0 ft. er present inside unch rods, 3:30pm. Ithdrawn to 22.0 ft. se screened inter- neasured at 4.9 ft., in Hydropunch 122.0 to 26.0 ft. ample collected ydropunch with ylene tubing and a s steel foot valve.
30										bottom punch ment a	le grouted from up through Hydro- ods with neat ce- nd an asphalt cold- urface seal, 9/7/05

JOOF	RING I	NO.:	B10a PROJECT	NO.: 0363	PROJECT NAME:	Т.	.D. Rowe	e, Oakland				
ВОР	RING	LOCA	ATION: Northeast	of former UST Pit	ELEVA	TION A	ND DAT	UM: NONE				
DRI	LLING	AGE	ENCY: Vironex, li	пс	DRILLER: Kurt an	i Kyle			DAT		STARTED:	DATE & TIME FINISHED:
DRII	LLING	EQ	JIPMENT: Geoprobe	6610 DT Track Rig						9/6/0)5	9/6/05
COM	VIPLE	TION	DEPTH: 10.0	FEET	BEDROCK DEPTH:	None	encount	ered		LOGGE		CHECKED BY:
FIR	ST W	ATER	DEPTH: B.9	FEET	NO. OF SAMPLES:	1 soil,	1 water		<u>. </u>	WR	Ν	
	DEPTH (FT.)		,	DESCRIP'			GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			loos Hy- 1.7 to 3.4 f	se, moist. No F drocarbon (PF t. Gray silty cl	erock ravelly sand (FILL); Petroleum IC) odor. ay (CL); medium		FILL CL	No Well Constructed		0	cored u 2.5-in. 0 Macroco Sample intervals	e continuously sing a 5-ft. long D.D. Geoprobe ore barrel sampler. s collected in 5-ft. s. The sampler ed with 5-ft. long, 2-
	5		3.4 to 8.9 ft		gravelly clay (CL); . Orange mottling.	Z Z	CL			0	in. O.D. tubes. First wa 8.9 ft. d ter mea	cellulose acetate ter encountered at uring drilling. Wasured at 4.0 ft., approx. 5 min.
E	10		sand (SW);	loose, saturat	ght gray gravelly ed. No PHC odor.	<u> </u>	sw	ML_		0	after co Boreho	mpletion of drilling. le terminated at
	15			0.0 ft. Gray sa , saturated. No							1-in. dia in boreh sample polyeth stainles No PHO water s	depth, 9/6/05. am. PVC casing set note and water collected using ylene tubing and a s steel foot valve. C sheen or odor on ample.
	20										with ne	at cement and an cold-patch surface
	25											

BORING NO.: B9EC	PROJECT NO.: 0363	PROJECT NAME: T.D. Rowe, Oakland		
BORING LOCATION:	Edge of Street, SW of Pit	ELEVATION AND DATUM: NONE		
DRILLING AGENCY:	Vironex, Inc	DRILLER: Kurt and Kyle	DATE & TIME STARTED:	DATE & TIME FINISHED:
DRILLING EQUIPMENT:	Geoprobe 6610 DT Track Rig		9/7/05	9/7/05
COMPLETION DEPTH:	48.0 FEET	BEDROCK DEPTH: None encountered	LOGGED BY:	CHECKED BY:
FIRST WATER DEPTH:	Unknown FEET	NO. OF SAMPLES: None	WRW	

BORING NO.: B10EC	PROJECT	IO.: 0363	PROJ	ECT NAME:	T.D. Rowe, Oak	land			
BORING LOCATION:	Northeast o	f former UST Pit		ELEVATION	ON AND DATUM: 1	NONE			
DRILLING AGENCY:	Vironex, Inc	:	DRILL	.ER: Kurtand K	yle		DATE & 1	IME STARTED:	DATE & TIME FINISHED
DRILLING EQUIPMENT:	Geoprobe 6	6610 DT Track Rig					7	9/7/05	9/7/05
COMPLETION DEPTH:	48.0	FEET	BEDR	OCK DEPTH: N	one encountered		LOC	GGED BY:	CHECKED BY:
FIRST WATER DEPTH:	Unknown	FEET	NO. O	F SAMPLES: N	опе			WRW	
							•		
		c>	× iS	congu	ctivity (m&/m) 8 &		ž .	8	
		ع اکــــ	- Maria - Mari						
		Ψ.	7						
		~	Z. Z.						
				-32-,	· · · · · · · · · · · · · · · · · · ·				
		 658			and the same	**************************************	•		
						~	Name - Transport		
						500000	-y		
		ថា			_	3			
					and the same of th				
					7				
		3		والمتارية والمتارية والمتارية والمتارية	-upor				
	-	1 1	, s						
	Depth (N)	<u> </u>							
	3 (74)	* }							
H.	_	,							
		38	3						
			4St						
		l	5						
		8	250						
			3						
			3						
		å	ي مداد د کامل د کامل د کامل د د د د د د د د د د د د د د د د د د د					1	
			Sw						
		វីភ	Contract of the second						
			-						
		s L							

BORING NO.:	B10b	PROJECT NO.: 0363	PROJECT NAME:	T.D. Rowi	e, Oakland				
BORING LOCA	ATION:	Northeast of former UST Pit	ELEVATION	N AND DAT	UM: NONE		_		
DRILLING AGE	ENCY:	Vironex, Inc	DRILLER: Kurt and K	yle		DATE		STARTED:	DATE & TIME FINISHED:
DRILLING EQ	JIPMENT:	Geoprobe 6610 DT Track Rig					9/7/	05	9/7/05
COMPLETION	DEPTH:	27.0 FEET	BEDROCK DEPTH: N	one encount	ered		LOGGE		CHECKED BY:
FIRST WATER	DEPTH:	15.5 FEET	NO. OF SAMPLES: 1	water		<u> </u>	WR	w	
DEPTH (FT.)		DESCRIPTI	ION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
10 10 20 20 20 20 20 20 20 20 20 20 20 20 20		Hydropunch o	nly.	₩ 	No Well Constructed			punche No water Hydrop Rods w to expo val. Water r ft., 4:00 set from Water s using H polyeth stainles	le B10b Hydrod to 27.0 ft. er present inside unch rods, 3:55pm. ithdrawn to 23.0 ft. se screened intermeasured at 15.5 pm, in Hydropunch 23.0 to 27.0 ft. sample collected lydropunch with ylene tubing and a is steel foot valve.
30						-			

BORING NO.	B11a PROJECT NO.: 0363	PROJECT NAME:	T.D. Rowe	, Oakland				
BORING LOC	ATION: Between building and fo	UM: NONE						
DRILLING AG	SENCY: Vironex, Inc		DATE		STARTED:	DATE & TIME FINISHED:		
DRILLING EC	UIPMENT: Geoprobe 6610 DT Trac			9/6/05		9/6/05		
COMPLETIO	N DEPTH: 10.0 FEET	ered		LOGGE		CHECKED BY:		
FIRST WATE	R DEPTH: 7.0 FEET	NO. OF SAMPLES: 2	soil, 1 water			WR	·	
ОЕРТН (FT.)	DESC	RIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
5 -	2 in. A Est. 6 in. 8 in. to 3.7 ft. White ar sand (FILL); gravel < 1 rnoist. No 3.7 to 7.0 ft. Brown a clay (CL); gravel < 1 in. Orange mottling. No 6.5 ft. Moderate PHC 7.0 to 10.0 ft. Gray sand Strong PHC odor from PHC odor from	Baserock and brown silty gravelly in. diam., loose, slightly PHC odor. Ind gray sand gravelly diam., very stiff, moist. PHC odor from 3.7 to odor from 6.5 to 7.0 ft. I (SP); loose, saturated. 7.0 to 8.0 ft. Moderate	FILL I SP	No Well Constructed		0 0 0	cored u 2.5-in. (Macroc Sample interval was line in. O.D. tubes. First wa 7.0 ft. d ter mea 11:55a	e continuously sing a 5-ft. long D.D. Geoprobe ore barrel sampler. s collected in 5-ft. s. The sampler ed with 5-ft. long, 2-cellulose acetate at uring drilling. Wasured at 3.9 ft., m approx. 5 min. impletion of drilling.
10 10 10 10 10 10 10 10 10 10 10 10 10 1							10.0-ft. 1 in. dia in borel sample polyeth stainles Slight F sheen Boreho with ne	am. PVC casing set note and water collected using ylene tubing and a sisted foot valve. PHC odor but no on water sample. The termie grouted at cement and an cold-patch surface

BORING NO.:	B11b	PROJECT NO.: 0363	PROJECT NAME:	T.D. Rov	ve, Oakland				
BORING LOC	ATION:	Between building and former US	T Pit ELEVA	TION AND DA	TUM: NONE			_	
DRILLING AG	ENCY:	Vironex, Inc	DRILLER: Kurt and	l Kyle		DAT	E & TIME	STARTED:	DATE & TIME FINISHED:
DRILLING EQ	UIPMENT:	Geoprobe 6610 DT Track Rig		•			9/7/	05	9/7/05
COMPLETION	I DEPTH:	48.0 FEET	BEDROCK DEPTH:	None encour	itered		LOGGE		CHECKED BY:
FIRST WATER	R DEPTH:	19.0 FEET	NO, OF SAMPLES:	1 water		L.,	WR	w	
БЕРТН (FT.)		DESCRIPTION	ON	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
20 = 30 = 30 = 30 = 30 = 30 = 30 = 30 =		Hydropunch on	ily.	▼ =	No Well Constructed			punche No wate Hydrop Rods w to expo val. Water r ft., 4:40 set fron Water s using H polyeth	le B11b Hydro- d to 48.0 ft. er present inside unch rods, 4:35pm. ithdrawn to 45.0 ft. se screened inter- measured at 19.0 pm, in Hydropunch n 45.0 to 48.0 ft. sample collected lydropunch with ylene tubing and a is steel foot valve.
50								bottom punch ment a	le grouted from up through Hydro- rods with neat ce- nd an asphalt cold- surface seal, 9/7/05.
60	1								

SORING NO.: B11EC	PROJECT	NO.: 0363	PROJECT NAME: T.D. Rowe, Oakland		
BORING LOCATION:	Between be	uilding and t	former UST Pit ELEVATION AND DATUM: NONE		
ORILLING AGENCY:	Vironex, In	c	DRILLER: Kurt and Kyle	DATE & TIME STARTED:	DATE & TIME FINISHED
DRILLING EQUIPMENT:	IENT: Geoprobe 6610 DT Track Ri		ck Rig	9/7/05	9/7/05
COMPLETION DEPTH:	58.0	FEET	BEDROCK DEPTH: None encountered	LOGGED BY:	CHECKED BY:
FIRST WATER DEPTH:	Unknown	FEET	NO. OF SAMPLES: None	WRW	
			Conductivity (mS/m)		
		جه جه م سسر ي	4 5 3 8 8 8 8 8	<i>5</i> , 8	
		539			
			Marine Marine Marine and Marine a		
		ö		200	
			4::::::	- E	
		ள்	-		
		."	and the same of th		
		13			
	0	53			
	Depth (ft)				
	Œ	8			
	-				
			with the same of t		
		35			
				1	
		ð			
		*			
		×	\		
		8	Ç.		
			ζ		
				ŧ	
		35	>		

Laboratory Analytical
Reports And
Chain of Custody
Documentation

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	, , , , , , , , , , , , , , , , , , , ,	Date Sampled: 09/06/05
55 Santa Clara, Ste.240	Oakland	Date Received: 09/07/05
0.11 1.64.04(10	Client Contact: Wilhelm Welzenbach	Date Extracted: 09/07/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 09/08/05

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*

xtraction method: S	W5030B		Analytical methods: SW8015Cm	Work Order: 0	50915
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS
001A	B8a-4.5	S	ND	1	84
002A	B9a-4.5	S	ND	1	93
003A	B10a-4.5	S	ND	l l	92
004A	B11a-4.5	s	5.6,b,m	1	85
005A	B11a-7.2	s	95,g,m	20	103
	 				
İ					
			Under the control of		
	THE PARTY OF THE P				
·					

Reporting	g Limit for DF =1;	W	NA	. NA	
	s not detected at or he reporting limit	, S	1.0	mg/Kg	

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0363; T.D. Rowe,	Date Sampled: 09/06/05
55 Santa Clara, Ste.240	Oakland	Date Received: 09/07/05
O-1-1 A CA 04610	Client Contact: Wilhelm Welzenbach	Date Extracted: 09/07/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 09/08/05-09/10/05

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

xtraction method: SW	3550C		Analytical methods: SW8015C		Work O	rder: 050915
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0509156-001A	B8a-4.5	S	ND	ND	1	103
0509156-002A	B9a-4.5	S	ND	ND	1	105
0509156-003A	B10a-4.5	S	ND	ND	1	105
0509156-004A	B11a-4.5	S	1.0,b	ND	1	103
0509156-005A	B11a-7.2	S	89,g,d,b	310	20	96
:						
						<u> </u>
						ł
	mit for DF =1;	W	NA	NA	u	g/L
	ot detected at or reporting limit	S	1.0	5.0	m	g/Kg

1	* water samples are reported in μg/L, wipe samples in μg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L,
	and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

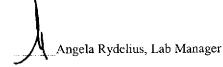
[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0363; T.D. Rowe,	Date Sampled: 09/06/05
55 Santa Clara, Ste.240	Oakland	Date Received: 09/07/05
O-111 CA 04610	Client Contact: Wilhelm Welzenbach	Date Extracted: 09/07/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 09/10/05
	- Chok Ties.	

Oxygenates and BTEX by GC/MS*


Work Order: 0509156 Analytical Method: SW8260B

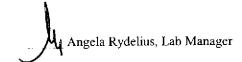
Extraction Method: SW5030B	An	alytical Method: SW826	0B		Work Orde	er: 0509156
Lab ID	0509156-001A	0509156-002A	0509156-003A	0509156-004A		
Client ID	B8a-4.5	B9a-4.5	B10a-4.5	B11a-4.5	Reporting	
Matrix	S	S	S	S	DF =1	
DF	1	1	1	1	s	W
Compound	<u> </u>	Conc	entration		mg/kg	ug/L
tert-Amyl methyl ether (TAME)	ND	ND	ND	ND	0.005	NA
Benzene	ND	ND ND	ND	ND	0.005	NA
t-Butyl alcohol (TBA)	ND	ND	ND	ND	0.05	NA
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	0.005	NA
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	ND	0.005	NA
Diisopropyl ether (DIPE)	ND	ND	ND	ND	0.005	NA
Ethylbenzene	ND	ND	ND	0.026	0.005	NA
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	ND	0.005	NA
Methyl-t-butyl ether (MTBE)	ND	ND	ND	ND	0.005	NA
Toluene	ND	ND	ND	ND	0.005	NA
Xylenes	ND	ND	ND	ND	0.005	NA
	Surr	ogate Recoverie	s (%)			
%SS:	105	104	104	99.2		
%SS1:	87.4	83.2	86.2	82.4		
%SS2:	101	101	99	96		· · · · · · · · · · · · · · · · · · ·
Comments						. = 431
)	t	at any		

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.


110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental		: #0363; T.D. Rowe,	Date Sampled: 09/0	06/05	
55 Santa Clara, Ste.240	Oakland		Date Received: 09/0)7/05	
·	Client Contact: V	Wilhelm Welzenbach	Date Extracted: 09/0)7/05	
Oakland, CA 94610	Client P.O.:		Date Analyzed: 09/	10/05	
	- -	tes and BTEX by GC/MS*			
Extraction Method: SW5030B		ytical Method: SW8260B		Work Orde	er: 0509156
Lab ID	0509156-005A				
Client ID	B11a-7.2	:		Reporting DF	
Matrix	S				- ₁
DF	2	i		S	W
Compound		Concentration		mg/kg	ug/L
tert-Amyl methyl ether (TAME)	ND<0.010			0.005	NA
Benzene	ND<0.010			0.005	NA
t-Butyl alcohol (TBA)	ND<0.10			0.05	NA
1,2-Dibromoethane (EDB)	ND<0.010			0.005	NA
1,2-Dichloroethane (1,2-DCA)	ND<0.010	:		0.005	NA
Diisopropyl ether (DIPE)	ND<0.010			0.005	NA
Ethylbenzene	0.12			0.005	NA
Ethyl tert-butyl ether (ETBE)	ND<0.010			0.005	NA
Methyl-t-butyl ether (MTBE)	ND<0.010	!		0.005	NA
Toluene	ND<0.010			0.005	NA
Xylenes	ND<0.010			0.005	NA
	Surro	gate Recoveries (%)			
%SS:	103				
%SS1:	80.1				
%SS2:	96.4				
Comments					
* water and vapor samples are reported in	L	samples in mg/kg, product/oil/non-	aqueous liquid samples and	all TCLP & S	SPLP

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0509156

EPA Method: SW8021B/	/8015Cm E	xtraction:	SW5030	В	Batc	hID: 17 9 05		Spiked San	nple ID: 050	9169-003A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS LCSD LCS-LCSD			Acceptance	Acceptance Criteria (%)		
Allalyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex) [£]	ND	0.60	111	112	1.35	111	111	0	70 - 130	70 - 130	
мтве	ND	0.10	93.5	95.7	2.41	102	103	1.24	70 - 130	70 - 130	
Benzene	ND	0.10	94.4	97.6	3.43	99.2	99.4	0.230	70 - 130	70 - 130	
Toluene	ND	0.10	94.5	97.8	3.38	99.5	100	0.694	70 - 130	70 - 130	
Ethylbenzene	ND	0.10	99.3	102	2.91	103	103	0	70 - 130	70 - 130	
Xylenes	ND	0.30	100	103	3.28	103	103	0	70 - 130	70 - 130	
%SS:	97	0.10	105	107	1.89	110	112	1.80	70 - L30	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 17905 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509156-001A	9/06/05	9/07/05	9/08/05 4:37 AM	0509156-002A	9/06/05	9/07/05	9/08/05 6:36 AM
0509156-003A	9/06/05	9/07/05	9/08/05 4:07 AM	0509156-004A	9/06/05	9/07/05	9/08/05 5:57 PM
0509156-005A	9/06/05	9/07/05	9/08/05 2:08 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to ligh matrix or analyte content.

QA/QC Officer

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

[£] TPH(blex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0509156

EPA Method: SW8015C	E	xtraction	SW3550	С	Batcl	hID: 17904	•	Spiked San	nple ID: 0509	157-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Anaryte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(d)	ND	20	104	105	1.07	102	102	0	70 - 130	70 - 130
%SS:	98	50	93	94	0.993	93	93	0	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 17904 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509156-001A	9/06/05	9/07/05	9/09/05 1:02 AM	0509156-002A	9/06/05	9/07/05	9/08/05 11:54 PM
0509156-003A	9/06/05	9/07/05	9/09/05 6:44 AM	0509156-004A	9/06/05	9/07/05	9/09/05 7:52 AM
0509156-005A	9/06/05	9/07/05	9/10/05 7:27 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0509156

EPA Method: SW8260B	E	xtraction	SW5030	В	Batc	hID: 17906	i	Spiked San	nple ID: 050	9154-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
Analyte	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS/MSD	LCS / LCSD
tert-Amyl methyl ether (TAME)	ND	0.050	81.9	82.9	1.25	95	94.5	0.602	70 - 130	70 - 130
Bonzene	ND	0.050	108	110	2.10	112	113	0.488	70 - 130	70 - 130
t-Butyl alcohol (TBA)	ND	0.25	103	105	1.83	94.4	99.4	5.16	70 - 130	70 - 130
Diisopropyl ether (DIPE)	ND	0.050	113	116	2.89	117	118	0.466	70 - 130	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	0.050	85.9	88.3	2.83	103	101	2.35	70 - 130	70 - 130
Methyl-t-butyl ether (MTBE)	ND	0.050	88.2	87.2	1.17	105	103	2.49	70 - 130	70 - 130
Toluene	ND	0.050	99.8	102	2.51	102	104	2.31	70 - 130	70 - 130
%SS1:	102	0.050	105	103	1.53	108	107	1.33	70 - 130	70 - 130
%SS2:	102	0.050	96	97	0.898	101	100	1.07	70 - 130	70 - 130
%SS3:	106	0.050	101	101	0	102	104	1.91	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 17906 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509156-001A	9/06/05	9/07/05	9/10/05 5:40 AM	0509156-002A	9/06/05	9/07/05	9/10/05 6:23 AM
0509156-003A	9/06/05	9/07/05	9/10/05 7:05 AM	0509156-004A	9/06/05	9/07/05	9/10/05 7:47 AM
0509156-005A	9/06/05	9/07/05	9/10/05 8:30 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

_QA/QC Officer

CHAIN-OF-CUSTODY RECORD

Page 1 of

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0509156

ClientID: PDEO

EDF: NO

Report to:

Wilhelm Welzenbach P & D Environmental

55 Santa Clara, Ste.240

TEL: FAX:

PO:

(510) 658-6916

510-834-0152

ProjectNo: #0363; T.D. Rowe, Oakland

Oakland, CA 94610

Bill to:

Requested TAT:

5 days

Accounts Payable

P & D Environmental

55 Santa Clara, Ste.240

Date Received:

09/07/2005

Oakland, CA 94610 Date Printed:

09/07/2005

												Requ	este	d Te	sts ((See	leg	end I	elow)						
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2		3	4		5	6	;	7	T.	8		9	10	0	11	12	2	13	14	1:
0509156-001	B8a-4.5	Soil	9/6/05	T	Α	Α				F		Ţ	- I				. [Ι.	· ·· .	•	-	.]		ļ	
0509156-002	B9a-4.5	Soil	9/6/05		Α	Α		!		•					:							1			:	
0509156-003	B10a-4.5	Soil	9/6/05		Α	Α				1							-			1			ĺ			
0509156-004	B11a-4.5	Soil	9/6/05		A	A	29km 1124										Ī		1 -			1			† ·	1
0509156-005	B11a-7.2	Soil	9/6/05		A	Α	-			!		1							1	:						

Test Legend:

1 G-MBTEX_S	2 MBTEXOXY-8260B_S	3	4	5
6	7 ;	8	9	10 🖁
11	12	13	14	15

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

P&D ENVIRONMENTAL

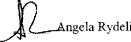
pde0 0509156

A Division of Paul H. King, Inc. 55 Santa Clara Ave, Suite 240 Oakland, CA 94610

CHAIN OF CUSTODY RECORD OF CUS (510) 658-6916 PROJECT NAME: PROJECT NUMBER: SAMPLED BY: (PRINTED AND SIGNATURE) REMARKS holm welzen bach SAMPLE LOCATION TYPE SAMPLE NUMBER TIME I DATE Domal Thronground Sol 9/405 APPROPRIATE GOOD CONDITION HEAD SPACE ABSENT PRESERVED IN LAR DECHLORINATED IN LAB TOTAL NO. OF SAMPLES LABORATORY: RECEIVED TO SIGNATURE RELINQUISHED BY: (SIGNATURE) (THIS SHIPMENT) TOTAL NO. OF CONTAINERS McCamped Ana (THOMPHE ZHIT) LABORATORY CONTACT: LABORATORY PHONE NUMBER: RECEIVED BY: (SIGNATURE Angela Rudo lius (925) 798-1620 SAMPLE ANALYSIS REQUEST SHEET RECEIVED FOR LABORATORY BY: RELINQUISHED BY: (SYCHATURE) ATTACHED: ()YES (NO (SIGNATURE) REMARKS:

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Work Order: 0509160


P & D Environmental	[,	Date Sampled: 09/06/05
55 Santa Clara, Ste.240	Oakland	Date Received: 09/07/05
0.11 1.04.04(10	Client Contact: Wilhelm Welzenbach	Date Extracted: 09/10/05-09/11/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 09/10/05-09/11/05
Casal	line Dange (C6-C12) Voletile Hydrogerhens	as Casaline*

Extraction method:	SW5030B		Analytical methods: SW8015Cm	Work Order:	0203160
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS
001A	B8a-8.0, Water	w	ND	1	112
002A	B9a-8.0, Water	w	ND	1	94
003A	B10a-8.0, Water	w	ND	1	94
004A	B11a-8.0, Water	w	170,b	· 1	108
					<u> </u>
					1
					<u> </u>
		<u> </u>			
		<u> </u>			
					ļ
	 	<u> </u>			1
					¦
	<u> </u>				ļ
				:	

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0363; T.D. Rowe,	Date Sampled: 09/06/05
55 Santa Clara, Ste.240	Oakland	Date Received: 09/07/05
O-1-11 CA 04610	Client Contact: Wilhelm Welzenbach	Date Extracted: 09/07/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 09/10/05

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

xtraction method: S	W3510C		Analytical methods: SW8015C		Work O	rder: 0509160
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0509160-001A	B8a-8.0, Water	w	480,g,b	6000	5	98
0509160-002A	B9a-8.0, Water	w	89,g,b	410	1	103
0509160-003A	B10a-8.0, Water	w	530,g,b	4700	10	102
0509160-004A	B11a-8.0, Water	W	810,g,b	4900	10	93
					:	-
<u>-</u> i	 					
						<u> </u>
				· · · · · · · · · · · · · · · · · · ·		
						<u> </u>
		<u> </u>			-	-
				· 		
Penartina	Limit for DF =1;	W	50	250		ıg/L
ND means	not detected at or reporting limit	s	NA	NA NA		g/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0363; T.D. Rowe,	Date Sampled: 09/06/05
55 Santa Clara, Ste.240	Oakland	Date Received: 09/07/05
0.11 1.01.04610	Client Contact: Wilhelm Welzenbach	Date Extracted: 09/10/05-09/13/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 09/10/05-09/13/05

	Oxygena	ites and BTEX	by GC/MS*				
Extraction Method: SW5030B	An	alytical Method: SW826	0В		Work Orde	er: 0509160	
Lab ID	0509160-001B	0509160-002B	0509160-003B	0509160-004B			
Client ID	B8a-8.0, Water	B9a-8.0, Water	B10a-8.0, Water	B11a-8.0, Water	Reporting		
Matrix	W	w	W	W	DF =1		
DF	1	I	1	1	S	W	
Compound		Conc	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND	ND	ND	ND	NA	0.5	
Benzene	ND	ND	ND	ND	NA	0.5	
t-Butyl alcohol (TBA)	ND	ND	ND	ND	NA	5.0	
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	ND	NA	0.5	
Diisopropyl ether (DIPE)	ND	ND	ND	ND	NA	0.5	
Ethylbenzene	ND	ND	ND	13	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	ND	NA	0.5	
Methyi-t-butyl ether (MTBE)	ND	0.67	ND	0.68	NA	0.5	
Toluene	ND	ND	ND	0.70	NA	0.5	
Xylenes	ND	ND	ND	ND	NA	0.5	
	Surr	ogate Recoverie	s (%)				
%SS1:	101	94	94	94			
%SS2:	90	94	93	88			
%SS3:	92	88	89	90			
Comments							

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0509160

EPA Method: SW8021B/	8015Cm E	xtraction	SW5030	В	Batc	hID: 17908		Spiked San	nple ID: 050	9158-012A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)		
Allalyte	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS/MSD	LCS / LCSD	
TPH(btex) [£]	ND	60	107	109	2.29	109	118	7.54	70 - 130	70 - 130	
МТВЕ	ND	10	88.5	90.7	2.46	90.7	96.4	6.07	70 - 130	70 - 130	
Benzene	ND	10	90.9	93.3	2.63	92.3	91.6	0.775	70 - 130	70 - 130	
Toluene	ND	10	91.4	94.5	3.30	93.4	94.3	1.03	70 - 130	70 - 130	
Ethylbenzene	ND	10	93.8	97.1	3.54	96.9	96	0.911	70 - 130	70 - 130	
Xylenes	ND	30	95	99.3	4.46	99.3	96	3.41	70 - 130	70 - 130	
%SS:	98	10	99	98	0.768	97	99	2.15	70 - 130	70 - 130	

 $All \ target \ compounds \ in \ the \ Method \ Blank \ of this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$

NONE

BATCH 17908 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509160-001A	9/06/05	9/11/05	9/11/05 6:24 AM	0509160-002A	9/06/05	9/10/05	9/10/05 2:49 PM
0509160-003A	9/06/05	9/10/05	9/10/05 3:23 PM	0509160-004A	9/06/05	9/10/05	9/10/05 3:56 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fail outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0509160

EPA Method: SW8015C	E	xtraction:	SW3510	С	Batcl	h ID: 179 03		Spiked San	nple ID: N/A		
Analyte	Sample	Spiked MS M		MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)		
Allalyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	N/A	1000	N/A	N/A	N/A	103	106	3.05	N/A	70 - 130	
%SS:	N/A	2500	N/A	N/A	N/A	113	118	5.06	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 17903 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509160-001A	9/06/05	9/07/05	9/10/05 7:27 AM	0509160-002A	9/06/05	9/07/05	9/10/05 5:10 AM
0509160-003A	9/06/05	9/07/05	9/10/05 12:05 PM	0509160-004A	9/06/05	9/07/05	9/10/05 9:45 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

__QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0509160

EPA Method: SW8260B	E	xtraction	SW5030	В	Batc	hID: 17909)	Spiked Sample ID: 0509158-003C			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Analyte	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS/MSD	LCS / LCSD	
tert-Amyl methyl ether (TAME)	ND	10	83.4	83.L	0.304	85.2	83.7	1.76	70 - 130	70 - 130	
Benzene	ND	10	111	114	2.39	109	111	1.76	70 - 130	70 - 130	
t-Butyl alcohol (TBA)	ND	50	102	103	1.42	105	101	3.67	70 - 130	70 - 130	
Diisopropyl ether (DIPE)	ND	10	115	114	0.674	116	114	1.78	70 - 130	70 - 130	
Ethyl tert-butyl ether (ETBE)	ND	10	86.3	88.4	2.40	91.4	87.9	3.86	70 - 130	70 - 130	
Methyl-t-butyl ether (MTBE)	ND	10	86.7	87.8	1.21	90.2	85.3	5.55	70 - 130	70 - 130	
Toluene	ND	10	104	102	2.14	102	102	0	70 - 130	70 - 130	
%SS1:	110	10	102	104	2.11	105	103	1.83	70 - 130	70 - 130	
%SS2:	99	10	97	94	3.42	98	99	0.816	70 - 130	70 - 130	
%SS3:	103	10	101	100	0.525	102	103	1.05	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 17909 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509160-001B	9/06/05	9/13/05	9/13/05 12:43 AM	0509160-002B	9/06/05	9/10/05	9/10/05 5:39 AM
0509160-003B	9/06/05	9/10/05	9/10/05 6:23 AM	0509160-004B	9/06/05	9/10/05	9/10/05 7:08 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

_QA/QC Officer

CHAIN-OF-CUSTODY RECORD

Page 1 of I

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0509160

ClientID: PDEO

EDF: NO

Report to:

Wilhelm Welzenbach

P & D Environmental

55 Santa Clara, Ste.240 Oakland, CA 94610

TEL:

(510) 658-6916

510-834-0152 FAX:

ProjectNo: #0363; T.D. Rowe, Oakland

PO:

Bill to:

Accounts Payable

P & D Environmental

55 Santa Clara, Ste.240

Oakland, CA 94610

Requested TAT:

Date Received:

Date Printed:

5 days

09/07/2005

09/07/2005

Sample ID Cli	lientSampID I	Matrix	Collection Date	Hold	1	2	2	4		6	1 -			1 1	40	4.4	40	40		T 1 4 = 1
				ŧ						0	<u> </u>	.	9	. ! .	10	11	12	13	14	1 15
	Ba-8.0, Water	Water	9/6/05		A	В			· · · ·				··[····		1			:	· .	.]
0509160-002 B9	9a-8.0, Water '	Water	9/6/05		Α	В		i				<u> </u>	<u> </u>	i			<u> </u>			
A Elizabeth Company of the Company o	and the second second second	Water Water	9/6/05 9/6/05		Α	В	;	‡					. i .		:.		-			

Test Legend:

1	G-MBTEX_W	2 MBTEXOXY-8260B_W	3	4	5
6		7	8 1	9	10
11	-	12	13	14	15

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

P&D ENVIRONMENTAL

A Division of Paul H. King, Inc. 55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916 0509160

GOOD CONDITION
HEAD SPACE ABSENT
DECHLORINATED IN LAB

APPROPRIATE
CONTAINERS
PRESERVED IN LAB

CHAIN OF CUSTODY RECORDS

PROJECT NUMBER: 0363 SAMPLED BY: (PRII	NTED AND	SIGNAT	ROJECT I	NAME:). Row Will	iel we	reland	NUMBER OF	ANAL YSISIEC,	THE STATE OF THE S				PRESERVA T.	J/11/4	RE	MARKS	
SAMPLE NUMBER	DATE	ПМЕ	1 1	į	SAMPLE LO	CATION	<u> </u>	Va.	17		//		a- /		<u> </u>		
88a - 80 Water	9/605		Wafer				7	X X	X			1	CE	100	mal Ti	mardun	4
610a-8.0, water B11a-8.0, water			<u> </u>				6	X	X				<u> </u>	\perp			
											_						
																	_
		 			:												
RELINQUISHED BY:	1. 1		DATY 2/2/	TIME	RECEIVED	(SIGNATU)	(THES SH	DE SAMPI RPWEKT) IF CONTA IPMENT)		¥ 26	1	ORATOI - Cam	RY:	mal Nico	-
RELINGUISHED BY	(SIBNATUR	É)	6/17	TIME	RECEIVED 1	BY: (SIGNATU	RE)	1, .	DARA	TODY	CONT	ra CT.		AD ATAI	DY DUC	- 1620 - 1620	ER:
RELINQUISHED BY:	(SIGNATUR	E)	DATE	TIME		FOR LABORAT	ORY BY:		7	SAMP	LE AI	NALY	rsis ri	EQUES	T SHEE	Ť	
			_1		REMARKS:	VOAS	frese	pre	d	W	 	(2	,				

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0363; T.D. Rowe,	Date Sampled: 09/06/05
55 Santa Clara, Ste.240	Oakland	Date Received: 09/07/05
O-144 CA 04610	Client Contact: Wilhelm Welzenbach	Date Extracted: 09/19/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 09/19/05

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons with Silica Gel Clean-Up*

raction method: S	W3510C		Analytical methods: SW8015C		Work O	rder: 050916
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
509160-001B	B8a-8.0, Water	w	230,g,b	2900	1	100
509160-003B	B10a-8.0, Water	w	270,g,b	2100	1	99
509160-004B	B11a-8.0, Water	w	570,g,d,b	4100	: I	98
						<u> </u>
			 			<u> </u>
- 						
Dona-Air-	Lincia for DE -1	117	50	250		ıg/L
ND means	Limit for DF =1; not detected at or e reporting limit	W S	NA	NA NA		g/Kg

^{*} water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L$.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

^{#)} cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0509160

EPA Method: SW8015C	E	Extraction: SW3510C				nID: 18082	:	Spiked San	nple ID: N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(d)	N/A	1000	N/A	N/A	N/A	90.6	91.2	0.677	N/A	70 - 130
%SS:	N/A	2500	N/A	N/A	N/A	106	108	1.03	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 18082 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509160-001B	9/06/05	9/19/05	9/19/05 3:41 PM	0509160-003B	9/06/05	9/19/05	9/19/05 3:41 PM
0509160-004B	9/06/05	9/19/05	9/19/05 3:54 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

P&D ENVIRONMENTAL

A Division of Paul H. King, Inc. 55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916 0509140

GOOD CONDITION
HEAD SPACE ABSENT
DECHLORINATED IN LAB

APPROPRIATE
CONTAINERS
PRESERVED IN LAB

CHAIN OF CUSTODY RECORD OF CUSTODY RECORD OF CUSTODY

PAGE ____ OF _

								-	7 01	-		7 7	7		
PROJECT NUMBER:		Р	ROJECT	IAME:		1 1		ANAL YSIS(ES).	/ }		* / /	' / /	/ w /		ì
0365				. Row	e, car	land	u_v	Sigl	/ g/-	100	/ /	//	E /		
SAMPLED BY: (PRIN	ITED AND	SIGNAT	uRĖ)	11/1	f' = f	<i>(</i> (~ #	<i>5 </i> :	$A \mathcal{R}$	131		/ /	ž /	REMARI	(S
Wilhelm	wel ze	en bo	ach.	Wall	eh Wata	210	NUMBER OF CONTAINERS	\ <u>\\ \\</u>	刘	in the second	//	ا / ا	"CSERVA TIVE		
SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCAT	ION .	₹8	B			\perp				
88a - 80 water 89a - 8.0 water 610a - 8.0 water	9/405		water	· · · · · ·		<u> </u>	7	XX	XX	1		IC	= 12×	mal Turna	ound
69-8.0 Water	<u> </u>						7	\mathbb{K}		╁╌┼	+		1		
B10g-8,0, water		L					<u> </u>	KK		} 		1.4	+		
B 11 a - 8.0, Water	<u> </u>		<u> </u>				6		<u> </u>						
, , , , , ,									_				_		
		-													
		<u> </u>	1												
					···		<u> </u>	1	 	1-1	\top	1	_		
		ļ	 				 	1 1		+ +	_				
	<u> </u>	ļ					 -	+		╁╼┼	+	- -		,	
		<u> </u>			·		<u> </u>	 		╂	+		_		
							_	1-1		1-1			<u> </u>		
	!							1		1	$-\!\!\!\perp$				
		1													
		1	1			_		1			-	.			
RELINQUISHED BY:	(SIGNATUR	<u> </u> F	DATE	ηмε	RECEIVED TO	(SIGNATURE)		TOTAL	L HO. DF	SAMPL	ES	41	ABORATO	RY:	, ,
	1. 1		17/1/	1220				TOTAL	NO. OF	CONTAI	HERS 1	26	Mc Can	pholl Anal	Mei
Willed	(CIDUATIO	351	DATE	TIME	RECEIVED BY:	(SICNATIDE)	·····	1 40	ODAT	אמתי	CONT	ACT- I	ABORATO	RY PHONE !	HIMBER:
RELINGUISHED BY	Signation	\C.)	13/2	7-70	KECEIVED #1:	MAAZ	,		L .	. I.) [1	9>5)	798-16	20
11/1		1	7//	330	1200)		v nv.	1 [M98	<u> </u>	Ydi	IN SELE	REQUES	(\O I\	
RELINQUISHED BY:	(SIGNATUF	₹Ε)() ,	BATE	TIME	RECEIVED FOR (SIGNATURE)	LABUKATUR	: 01:			ATT.	ACHE	D: ()	YES (>	9NO	
					REMARKS:	INAC	1. ~ ^ ~		J 'T		[] /	(()			ı

CHAIN-OF-CUSTODY RECORD

Page 1 of

Pacl (925

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0509160

ClientID: PDEO

EDF: NO

Report to:

Wilhelm Welzenbach
P & D Environmental

55 Santa Clara, Ste.240
Oakland, CA 94610

TEL: FAX:

(510) 658-6916 510-834-0152

ProjectNo: #0363; T.D. Rowe, Oakland

PO:

Bill to:

Accounts Payable
P & D Environmental
55 Santa Clara, Ste.240

Oakland, CA 94610

Requested TAT:

Date Received: 09/07/2005

5 days

Date Add-On: 09/16/2005

Date Printed: 09/19/2005

										Requ	ested	Tests	(See I	egend	below	<u>(</u>)					
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	}	7	8	9	11	0 .	11	12	13		15
	•																				
			,	:	η				,	1		γ									. ,
0509160-001	B8a-8.0, Water	Water	9/6/05	_	В	1								:						<u> </u>	
0509160-003	B10a-8.0, Water	Water	9/6/05		В	į			:	l .							:				
0509160-004	B11a-8.0, Water	Water	9/6/05		В											i					:

Test Legend:

1	TPH(DMO)WSG_W	2		3 1		4	5
6		7	:	8	:	9	10,
11		12		13		14]	15

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

			h						
P & D Envir	onmental	Client Pro	ject ID: #0363; T.D. Rowe	Date Sampled:	09/07/05				
55 Santa Cla	ra, Ste.240			Date Received:	09/08/05	*			
011 101	04610	Client Cor	ntact: Wilhelm Welzenbach	Date Extracted:	09/11/05				
Oakland, CA	. 94610	Client P.C	Client P.O.: Date Analyzed: 09						
Extraction method:		line Range	(C6-C12) Volatile Hydrocarbons Analytical methods: SW8015Cm	as Gasoline*	Work	Work Order: 0509189			
Lab ID	Client ID	Matrix	TPH(g)			DF	% SS		
001A	B8b-28.0, Water	w	ND,i			L	97		
002A	B9b-26.0, Water	w	ND,i			ł	95		
003A	B10b-27.0, Water	w	ND,i			1	98		
004A	B11b-48.0, Water	w	ND,i			l	96		
		;							
Reporti	ing Limit for DF =1;	W	50		i	щ	g/L		
	ans not detected at or the reporting limit	S	NA			N	IA		
			1						

____Angela Rydelius, Lab Manager

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0363; T.D. Rowe	Date Sampled: 09/07/05
55 Santa Clara, Ste.240		Date Received: 09/08/05
0.11 1.04.04(10	Client Contact: Wilhelm Welzenbach	Date Extracted: 09/08/05
Oakland, CA 94610	Client P.O.:	Date Analyzed: 09/10/05-09/13/05

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Work Order: 0509189 Analytical methods: SW8015C Extraction method: SW3510C TPH(mo) DF % SS Client ID Matrix TPH(d) Lab (D 117 ND W ND,i 0509189-001A B8b-28.0, Water W ND,i ND 1 103 0509189-002A B9b-26.0, Water 1 390 106 0509189-003A B10b-27.0, Water 92,g,b,i 115 77,b,i ND 1 0509189-004A B11b-48.0, Water

l	Reporting Limit for DF =1;	W	50	250	μg/L	
	ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg	
ř						

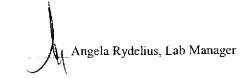
^{*} water samples are reported in $\mu g/L$, wipe samples in $\mu g/w$ in $\mu g/w$ in $\mu g/w$ in $\mu g/w$ and all DISTLC / STLC / STLC / STLP / TCLP extracts are reported in $\mu g/L$.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant;; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Client Project ID: #0363; T.D. Rowe	Date Sampled: 09/07/05				
	Date Received: 09/08/05				
Client Contact: Wilhelm Welzenbach	Date Extracted: 09/12/05				
Client P.O.:	Date Analyzed: 09/12/05				
Oxygenates and BTEX by GC/M	S*				
Analytical Method: SW8260B	Work Order: 0509189				
	Client Contact: Wilhelm Welzenbach Client P.O.: Oxygenates and BTEX by GC/M				


Lab ID	0509189-001B	0509189-002B	0509189-003B	0509189-004B			
Client ID	B8b-28.0, Water	B9b-26.0, Water	B10b-27.0, Water	B11b-48.0, Water	Reporting		
Matrix	W	W	W	w	DF =1		
DF	1	1	1	: 1	S	W	
Compound		ug/kg	μg/L				
tert-Amyl methyl ether (TAME)	ND	ND	ND	ND	NA	0.5	
Benzene	ND	ND	ND	ND	NA	0.5	
t-Butyl alcohol (TBA)	ND	ND	ND	ND	NA	5.0	
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	ND	NA	0.5	
Diisopropyl ether (DIPE)	ND	ND	ND	ND	NA	0.5	
Ethylbenzene	ND	ND	ND	NĐ	NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	ND	NA	0.5	
Methyl-t-butyl ether (MTBE)	ND	ND	ND	ND	NA	0.5	
Toluene	ND	ND	1.1	0.86	NA	0.5	
Xylenes	ND	ND	0.54	ND	NA	0.5	
	Surr	ogate Recoverie	es (%)				
%SSI:	100	108	#	106			
%SS2:	101	98.9	98.9	98.7		· · · · · ·	
%SS3:	103	107	106	105			

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Comments

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0509189

EPA Method: SW8015Cm	E	xtraction:	SW5030	В	Batc	hID: 17924		Spiked Sample ID: 0509192-002A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Analyte	μg/L	µg/L	% Rec. % Rec.		% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex) [£]	ND	60	105	106	0.588	108	106	1.36	70 - 130	70 - 130	
мтве	ND	10	88.7	97.2	9.13	93	95.4	2.56	70 - 130	70 - 130	
Benzene	ND	10	90.1	92.3	2.42	92.5	95.8	3.52	70 - 130	70 - 130	
Toluene	ND	10	91.8	93.5	1.92	93.8	96.5	2.86	70 - 130	70 - 130	
Ethylbenzene	ND	10	92.3	94.5	2.37	94.9	96	1.16	70 - 130	70 - 130	
Xylenes	ND	30	94.7	94.7	0	95.3	99.3	4.11	70 - 130	70 - 130	
%SS:	112	10	97	96	1.26	96	96	0	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 17924 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Date Analyzed Sample ID		Date Extracted	Date Analyzed
0509189-001A	9/07/05	9/11/05	9/11/05 3:05 AM	0509189-002A	9/07/05	9/11/05	9/11/05 5:17 AM
0509189-003A	9/07/05	9/11/05	9/11/05 6:22 AM	0509189-004A	9/07/05	9/11/05	9/11/05 6:55 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

M_QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0509189

EPA Method: SW8015C	E	Extraction: SW3510C				BatchID: 17911			Spiked Sample ID: N/A			
A I A	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%)			
Analyte :	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD		
TPH(d)	N/A	1000	N/A	N/A	N/A	102	102	0	N/A	70 - 130		
%SS:	N/A	2500	N/A	N/A	N/A	103	103	0	N/A	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 17911 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509189-001A	9/07/05	9/08/05	9/10/05 8:51 AM	0509189-002A	9/07/05	9/08/05	9/10/05 9:59 AM
0509189-003A	9/07/05	9/08/05	9/13/05 8:05 AM	0509189-004A	9/07/05	9/08/05	9/10/05 12:16 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

____QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0509189

EPA Method: SW8260B	E	xtraction:	SW5030	В	Batc	hID: 17910		Spiked Sample ID: 0509162-005B				
A . 4 -	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)		
Analyte	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD		
tert-Amyl methyl ether (TAME)	ND	10	82.6	82.4	0.264	81.4	84.9	4.23	70 - 130	70 - 130		
Benzene	ND	10	113	111	1.79	106	107	1.27	70 - 130	70 - 130		
t-Butyl alcohol (TBA)	ND	50	103	99.8	3.41	93.3	98.9	5.78	70 - 130	70 - 130		
Diisopropyl ether (DIPE)	ND	10	113	114	0.710	108	111	2.61	70 - 130	70 - 130		
Ethyl tert-butyl ether (ETBE)	ND	10	86.3	86.9	0.642	81	84.6	4.28	70 - 130	70 - 130		
Methyl-t-butyl ether (MTBE)	ND	10	89.1	87.3	2.07	80.9	83	2.57	70 - 130	70 - 130		
Toluene	ND	10	102	102	0	100	98.4	1.57	70 - 130	70 - 130		
%SS1:	97	10	105	104	1.27	104	103	0.369	70 - 130	70 - 130		
%SS2:	94	10	96	97	1.44	100	97	2.42	70 - 130	70 - 130		
%SS3:	87	10	99	101	2.60	103	101	2.14	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 17910 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509189-001B	9/07/05	9/12/05	9/12/05 8:28 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

M QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0509189

EPA Method: SW8260B	E	xtraction:	SW5030	В	Batc	hID: 17925		Spiked Sample ID: 0509192-003B				
	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	criteria (%)		
Analyte	µg/L	µg/L % Rec. % Rec.		% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSC		
tert-Amyl methyl ether (TAME)	ND	10	110	113	2.94	84.6	83.6	1.16	70 - 130	70 - 130		
Benzene	ND	10	119	112	6.10	105	107	2.80	70 - 130	70 - 130		
t-Butyl alcohol (TBA)	ND	50	91.3	83	9.47	97.4	100	2.79	70 - 130	70 - 130		
Diisopropyl ether (DIPE)	ND	10	112	115	2.58	111	115	3.74	70 - 130	70 - 130		
Ethyl tert-butyl ether (ETBE)	ND	10	113	106	6.50	87.2	89.1	2.14	70 - 130	70 - 130		
Methyl-t-butyl ether (MTBE)	0.63	10	108	100	6.89	87.7	89.3	1.85	70 - 130	70 - 130		
Toluene	ND	10	99.8	101	0.854	99.4	100	0.732	70 - 130	70 - 130		
%SS1:	108	10	104	100	4.53	102	101	0.902	70 - 130	70 - 130		
%SS2:	98	10	100	102	1.37	101	98	2.72	70 - 130	70 - 130		
%SS3:	107	10	95	98	2.88	106	102	3.70	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH	17925	SUMI	MARY

Sample ID	Date Sampled Date Ext		Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0509189-002B	9/07/05	9/12/05	9/12/05 2:02 PM	0509189-003B	9/07/05	9/12/05	9/12/05 2:45 PM
0509189-004B	9/07/05	9/12/05	9/12/05 3:28 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample dituted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels

____QA/QC Officer

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

110 Second Avenue South, #D7
Pacheco, CA 94553-5560
(925) 798-1620

WorkOrder: 0509189

ClientID: PDEO

EDF: NO

Report to:

Wilhelm Welzenbach

P & D Environmental 55 Santa Clara, Ste.240

55 Santa Clara, Ste.240 Oakland, CA 94610 TEL: FAX: (510) 658-6916 510-834-0152

ProjectNo: #0363; T.D. Rowe

PO:

Bill to:

Requested TAT:

5 days

Accounts Payable P & D Environmental

55 Santa Clara, Ste.240 Oakland, CA 94610

Date Received:

09/08/2005

Date Printed:

09/08/2005

Oakialiu, CA	94010 																_			1
			- -	[· · · · · · · · · · · · · · · · · · ·			Reques	ted Te	sts (Se	e legend	belov	v)					
Sample ID	ClientSampID	Matrix	Collection Date		2	3		4	5	6	7	8	9	1	0	11 1	2	13	14 15	ĺ
Sample to	Officialism			L																
			,	т— : .			T			-1				- 1	1-		1	T		1
0509189-001	B8b-28.0, Water	Water	9/7/05	U _ A	B					 	<u> </u>			- ! -	-					
0509189-002	B9b-26.0, Water	Water	9/7/05	<u>A</u>	В		_			ļ				!			!			1
0509189-003	B10b-27.0, Water	Water	9/7/05	A	, В															
0509189-004	B11b-48.0, Water	Water	9/7/05		В							L	<u> </u>	L						į

Test Legend:

1 G-MBTEX W	2 MBTEXOXY-8260B_W	3	4	5
6	7	8	9	10
11	12	13	[14]	15
	* ****			

Prepared by: Rosa Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

P & D ENVIRONMENTAL

A Division of Paul H. King, Inc. Oakland, CA 94610

CHAIN OF CUSTODY RECORD 55 Santa Clara Ave, Suite 240 (510) 658-6916 PROJECT NAME: PROJECT NUMBER: T. D. Lowe, Oaklan SAMPLED BY: (PRINTED AND SIGNATURE) **REMARKS** Welzenbach SAMPLE LOCATION TIME TYPE SAMPLE NUMBER DATE Normal Turngram B86-280, wife 9/7/05 water **APPROPRIATE** CONTAINERS HEAD SPACE ABSENT PRESERVED IN LAI DICHLORINATED IN LAB OAG | METALS TOTAL HOL OF SAMPLES RECEIVED BY (SIGNATURE) LABORATORY: DAZÉ TIME RELINQUISHED BX: (SIGNATURE) TOTAL NO. OF CONTAINERS (THIS SHPMENT) LABORATORY CONTACT: LABORATORY PHONE NUMBER: DATE RECTIVED BY: (SIGNATURE) RECEIVED FOR LABORATORY BY: SAMPLE ANALYSIS REQUEST SHEET RELINQUISHED BY: (SIGNATURE) TIME ATTACHED: ()YES (X)NO (SIGNATURE) REMARKS: JOAS preserved w HCl.

Appendix A Historical Laboratory Sample Results

-Soil and Groundwater Investigation Work Plan (document 0363.W1) March 7, 2005 -Tables 1, 2, 3, 4

> -Subsurface Investigation Report (document 0363.R2) June 17, 2005 -Tables 1, 2, 3, 4, 5, 6

Soil and Groundwater Investigation Work Plan (document 0363.W1) March 7, 2005 Tables 1, 2, 3, 4

TABLE 1 - UST PIT SOIL SAMPLE ANALYTICAL RESULTS

						Fu		xygo g/kg		es	
Sample ID	TPHg mg/kg	Benzene mg/kg	Toluene mg/kg	Ethyl- Benzene mg/kg	Xylenes mg/kg	TBA	MTBE	DIPE	ETBE	TAME	Lead mg/kg
TDR- Pit-N	5,900	ND<6.2	8.3	66 420		ND<60	ND<60	ND<120	ND<60	09>QN	5.8
TDR- Pit-S	10	ND<0.62	ND<0.62	ND<0.62 ND<0.62 S		42	ND<36	ND<72	9E>QN	ND<36	10
TDR- Pit-E	73	ND<0.62	ND<0.62	ND<0.62 ND<0.62		ND<46	ND<46	ND<92	ND<46	ND<46	ND<5.0
TDR- Pit-W	ND<1.0	ND<0,0050	ND<0.0050	ND<0.0050	ND<0.0050 ND<0.0050		32	ND<10	ND<5.0	ND<5.0	6.1
TDR- NWall-1	ND<1.0	ND<0.0050	ND<0.0050	ND<0.0050	0050 ND<0.0050		ND<5.0	ND<10	ND<5.0	ND<5.0	6.7
TDR- NWall-2	ND <i.0< td=""><td>ND<0.0050</td><td>ND<0.0050</td><td>ND<0.0050</td><td colspan="2">ND<0.0050 ND<0.0050</td><td>ND<18</td><td>ND<35</td><td>ND<18</td><td>ND<18</td><td>5.6</td></i.0<>	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050 ND<0.0050		ND<18	ND<35	ND<18	ND<18	5.6
ESL	400	0.38	9.3	13 1.5		110	5,600				750

mg/kg = milligrams per kilogram μg/kg = micrograms per kilogram

ND = Not Detected

TPHg = Gasoline

ESL = Environmental Screening Level established by San Francisco Bay Regional Water Quality Control Board (July 2003, Updated Feb 2004, Table B Shallow Soils (≤ 3m bgs) Groundwater is NOT a Current or Potential Source of Drinking Water.)

Fuel Oxygenates (by EPA 8260)

TBA = Tertiary Butyl Alcohol

MTBE = Methyl Tertiary Butyl Ether

DIPE = Di-Isopropyl Ether

ETBE = Ethyl Tertiary Butyl Ether

TAME = Tertiary Amyl Methyl Ether

TABLE 2 - UST PIT WATER SAMPLE ANALYTICAL RESULTS

						Fuel Oxygenates µg/L					
Sample ID	TPHg μg/L	Benzene μg/L	Toluene µg/L	Ethyl-Benzene µg/L	Xylenes μg/L	TBA	MTBE	DIPE	ETBE	TAME	Lead mg/L
TDR-Pit	99,000	220	500	1,500	14,000	ND<500	ND<500	ND<1,000	ND<500	ND<500	0.82
Pit-2	3,200	40	3.1	11	54	NA	ND<5.0	NA	NA	NA	0.037
ESL	500	46	130	290	13	18,000	1,800				0.0025

 $\mu g/L$ = micrograms per liter

mg/L = milligrams per liter

ND = Not Detected

NA = Not Analyzed

TPHg = Gasoline

Fuel Oxygenates (by EPA 8260)

TBA = Tertiary Butyl Alcohol

MTBE = Methyl Tertiary Butyl Ether

DIPE = Di-Isopropyl Ether

ETBE = Ethyl Tertiary Butyl Ether

TAME = Tertiary Amyl Methyl Ether

 $ESL = Environmental Screening Level established by San Bay Francisco Regional Water Quality Control Board (July 2003, Updated Feb 2004, Table B Shallow Soils (<math>\leq 3m$ bgs) Groundwater is NOT a Current or Potential Source of Drinking Water.)

Analytical results from the pit water sample collected after overexcavation (Pit-2) indicate a significant reduction in concentrations of TPHg and BTEX constituents when compared to the original water sample.

TABLE 3 - SOIL BORING SOIL SAMPLE ANALYTICAL RESULTS

Sample ID	TPHe	Benzene	Toluene	Ethyl-Benzene	Total Xylene	МТВЕ
TDR-B1-4.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
TDR-B2-4.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.0098
ESL	400	0.38	9.3	13	1.5	5,600

 $ND = Not \ Detected$

TPHg = Gasoline

Soil sample results are in milligrams per kilogram (mg/kg).

ESL = Environmental Screening Level established by San Francisco Bay Regional Water Quality Control Board (July 2003, Updated Feb 2004, Table B Shallow Soils (\leq 3m bgs) Groundwater is NOT a Current or Potential Source of Drinking Water.)

TABLE 4 - SOIL BORING GROUNDWATER SAMPLE ANALYTICAL RESULTS

Sample ID	TPHg	Benzene	Toluene	Ethyl-Benzene	Total Xylene	MTBE
TDR-B1-W	ND<50	ND<50	ND<50	ND<50	ND<1.0	1.5
TDR-B3-W	4,900	3.0	ND<2.5	9.8	ND<5.0	72
TDR-B4-W	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0,50
ESL	500	46	130	290	13	1,800

ND = Not Detected

TPHg = Gasoline

Water sample results are in micrograms per liter(μ g/L).

 $ESL = Environmental Screening Level established by San Francisco Bay Regional Water Quality Control Board (July 2003, Updated Feb 2004, Table B Shallow Soils (<math>\leq$ 3m bgs) Groundwater is NOT a Current or Potential Source of Drinking Water.)

Subsurface Investigation Report (document 0363.R2) June 17, 2005 Tables 1, 2, 3, 4, 5, 6

TABLE 1 GROUNDWATER LEVEL MONITORING DATA FOR WELLS MW1, MW2, AND MW3

Well No.	Date Monitored	Top of Casing Elev. (ft.)	Depth to Water (ft.)	Water Table Elev. (ft.)
MW1	6/6/05	11.27	4.30	6.97
	6/2/05		4.24	7.03
	6/1/05		4.22	7.05
	5/31/05		4.26	7.01
	5/27/05		4.14	7.13
MW2	6/6/05	11.75	4.97	6.78
	6/2/05		4.96	6.79
	6/1/05		4.94	6.81
	5/31/05		4.93	6.82
	5/27/05		4.82	6.93
MW3	6/6/05	11.14	3.48	7.66
	6/2/05		3.43	7.71
	6/1/05		3.37	7.77
	5/31/05		3.39	7.75
	5/27/05		3.33	7.81

TABLE 2 CALCULATED GROUNDWATER FLOW DIRECTION AND GRADIENT FOR WELLS MW1, MW2, AND MW3

Date Monitored	Flow Direction	Gradient (ft./ft.)
6/6/05	S56°W	0.013
6/2/05	S54°W	0.013
6/1/05	S54°W	0.014
5/31/05	S57°W	0.014
5/27/05	S54°W	0.013

TABLE 3
GROUNDWATER ELECTRICAL CONDUCTIVITY MONITORING DATA
FOR WELLS MW1, MW2, AND MW3
(Wells Monitored June 2 and 6, 2005)

Well No.	Date Conductivity Prior to Purge (mS/cm)		Conductivity Following Purge (mS/cm)
MW1	6/6/05		11.69
	6/2/05	9.97	NA
MW2	6/6/05	8.06	6.97
	6/2/05	8.39	NA
MW3	6/6/05	5.93	5.24
	6/2/05	6.29	NA

-- = Not Monitored.

NA = Not Applicable

TABLE 4 SUMMARY OF LABORATORY ANALYTICAL RESULTS -BOREHOLE SOIL SAMPLES

(Samples Collected on April 26, 2005)

Sample Name	TPH-D	ТРН-МО	трн-G	Benzene	Toluene	Ethyl- benzene	Xylenes	Other VOCs By 8260
B5-4.5	2.9,c	ND<5.0	5.9,a,b	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
B5-10.0	1.4,đ	ND<5.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND except, MTBE = 0.021
B5-15.0	1.1,d	ND<5.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND except, MTBE = 0.0052
B6-5.0	ND<1.0	ND<5.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
B6-10.0	ND<1.0	ND<5.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
B6-15.0	2.0, d	ND<5.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
B7 b- 5.0	12,c,d	ND<5.0	86	ND<0.005	ND<0.005	0.038	0.014	ND
B7b-10.0	61,c,d	ND<25	160,a,b	ND<0.10	ND<0.10	3.6	5.0	ND
B7b-15.0	2.6,c	ND<5,0	4.5,a,b	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
B7b-19.5	4.4,c	ND<5.0	2.2,a,b	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
B7b-23.0	ND<1.0	ND<5.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
B7b-27.5	ND<1.0	ND<5.0	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND
ESL_1	500	1000	400	0.38	9.3	32	11	MTBE = 5.6

NOTES:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO= Total Petroleum Hydrocarbons as Motor Oil.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

VOCs = Volatile Organic Compounds.

 ESL_1 = Environmental Screening Level, developed by San Francisco Bay - Regional Water Quality Control Board (SF-RWQCB) updated February 2005, from Table B - Shallow Soils, Groundwater is not a current or potential source of drinking water (commercial/industrial land use only).

ND = Not detected.

Results are in mg/kg, unless otherwise indicated.

a = Laboratory analytical report note: heavier gasoline range compounds are significant, possibly aged gasoline.

b = Laboratory analytical report note: no recognizable pattern.

c = Laboratory analytical report note: gasoline range compounds are significant.

d = Laboratory analytical report note: diesel range compounds are significant; no recognizable pattern.

TABLE 5 SUMMARY OF LABORATORY ANALYTICAL RESULTS -BOREHOLE GROUNDWATER GRAB SAMPLES

(Samples Collected on April 26, 2005)

Sample Name	TPH-D	трн-мо	TPH-G	Benzene	Toluene	Ethyl- benzene	Xylenes	Other VOCs By 8260
B5-8.0 Water	1.6,b,c,d	0.43	0.96	0.0021	0.00080	0.0032	0.00086	ND, except MTBE = 0.043
B5-20.0 Water	0.076,c,e	ND<0.25	ND<0.05	ND<0.0005	0.00061	ND<0.0005	ND<0.0005	ND, except MTBE = 0.0024
B6-8.0 Water	0.051,c,e	ND<0.25	ND<0.05	ND<0.0005	0.0030	ND<0.0005	ND<0.0005	ND, except MTBE = 0.00057
B7-8.0 Water	4.4,b,c,d	0.39	3.7	ND<0.0025	ND<0.0025	0.090	0.290	ND, except MTBE = 0.0037
B7-28.0 Water	88,b,c	ND<5.0	3.9,a	0.0045	0.0015	0.067	0.10	ND
ESL ₂	0.64	0,64	0.5	0.046	0.13	0.29	0.10	MTBE = 1.8

NOTES:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO= Total Petroleum Hydrocarbons as Motor Oil.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

VOCs = Volatile Organic Compounds.

 ESL_2 = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated February 2005, from Table B – Shallow Soils, Groundwater is not a current or potential source of drinking water.

a = Laboratory analytical report note: heavier gasoline range compounds are significant, possibly aged gasoline.

b = Laboratory analytical report note: gasoline range compounds are significant.

c = Laboratory analytical report note: diesel range compounds are significant; no recognizable pattern.

d = Laboratory analytical report note: oil range compounds are significant.

e = Laboratory analytical report note: one to a few isolated peaks present.

ND = Not detected.

Results are in mg/L, unless otherwise indicated.

TABLE 6 SUMMARY OF LABORATORY ANALYTICAL RESULTS MONITORING WELL GROUNDWATER SAMPLES (Samples Collected June 6, 2005)

Sample Name	TPH-D	трн-мо	TPH-G	Benzene	Toluene	Ethyl- benzene	Xylenes	Other VOCs By 8260
MW1	ND<0.05	ND<0.25	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
MW2	0.061,c	ND<0.25	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
MW3	0.064,c	ND<0.25	ND<0.05	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.0005	ND
ESL_2	0.64	0.64	0.5	0.046	0.13	0.29	0.10	MTBE = 1.8

NOTES.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO= Total Petroleum Hydrocarbons as Motor Oil.

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

VOCs = Volatile Organic Compounds.

 ESL_2 = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated February 2005, from Table B – Shallow Soils, Groundwater is not a current or potential source of drinking water.

c = Laboratory analytical report note: diesel range compounds are significant; no recognizable pattern.

ND = Not detected.

Results are in mg/L, unless otherwise indicated.