RECEIVED

By Alameda County Environmental Health 11:53 am, Jan 08, 2016

SECOND SEMIANNUAL 2015 GROUNDWATER MONITORING AND PRODUCT EXTRACTION REPORT

BRIDGEWATER APARTMENTS PHASE I PARKING GARAGE 6400 CHRISTIE AVENUE EMERYVILLE, CALIFORNIA

Prepared for:

EMERYBAY COMMERCIAL ASSOCIATION EMERYVILLE, CA 94608

January 2016

SECOND SEMI-ANNUAL 2015 GROUNDWATER MONITORING AND PRODUCT EXTRACTION REPORT

BRIDGEWATER APARTMENTS PHASE I PARKING GARAGE 6400 CHRISTIE AVENUE EMERYVILLE, CALIFORNIA

Prepared for:

EMERYBAY COMMERCIAL ASSOCIATION 6475 CHRISTIE AVENUE, SUITE 550 EMERYVILLE, CA 94608

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

January 8, 2016

Project No. 2007-65

GEOSCIENCE & ENGINEERING CONSULTING

January 8, 2016

Mr. Mark Detterman Hazardous Materials Specialist Alameda County Department of Environmental Health Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Second Semiannual 2015 Groundwater Monitoring & Product Extraction Report

EmeryBay Commercial Association Phase I Condo Parking Garage

6400 Christie Avenue, Emeryville, California.

Dear Mr. Detterman:

Enclosed is the Stellar Environmental Solutions, Inc. report summarizing the site activities conducted in September 2015 at the referenced site. This report is being submitted on behalf of the owner and Responsible Party, Emerybay Commercial Association. The subject site activities since the beginning of 2015 included a surfactant injection into selected wells, introduction of a high sulfate metabolic supplement into the site trench wells two product extraction events and the first and second semiannual 2015 groundwater monitoring events.

This report summarizes the 24th sampling event conducted at the site since 1988. The bulk of the residual contamination beneath the site remains concentrated around wells MW-8, MM-10, MW-12, MW-13, MW-14 and MW-15, and the plume underlying the parking garage. In accordance with regulatory requirements, an electronic copy of this report has been uploaded to ACEH and to the State Water Resources Control Board's GeoTracker system.

We declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report are true and correct to the best of our knowledge. If you have any questions regarding this report, please contact us at (510) 644-3123.

We declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report are true and correct to the best of our knowledge. If you have any questions regarding this report, please contact us at (510) 644-3123.

Sincerely,

Richard S. Makdisi, P.G.

January S. Waldin

Principal Geochemist & President

Ms. Katherine Collins Emerybay Commercial

Assoc.

TABLE OF CONTENTS

Secti	on	Page
1.0	INTRODUCTION	1
	Project Background	1
	Site and Vicinity Description	
	Previous Investigations	1
	Objectives and Scope of Work	6
	Regulatory Oversight	
2.0	PHYSICAL SETTING	8
	Topography and Drainage	8
	Geology	
	Groundwater Hydrology	9
3.0	SEPTEMBER 2015 GROUNDWATER MONITORING AND SAMPLING ACTIVITIES	11
	Sampling Methods and Activities	
	Current Monitoring Event	11
4.0	REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS, AND	
	DISCUSSION OF FINDINGS	14
	Regulatory Considerations	
	Groundwater Sample Results	15
5.0	FREE-PHASE HYDROCARBON PRODUCT REMEDIATION SYSTEM	24
	LNAPL Remediation System Construction	24
	Historical Free Product Extraction	
	2013-2015 surfactant injections	
	SEptember 2015 bioremediation compound injection	
	september 2015 Product Removal Event	
	Discussion of Free product removal and limitations	30
6.0	SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS	32
	Findings and Conclusions.	32
	Recommendations	35

TABLE OF CONTENTS (continued)

Section	1	Page				
7.0	REFERENCES AND BIBLIOGRAPHY					
8.0	LIMIT	ATIONS42				
Appen	dices					
Append	dix A	Historical Groundwater Well Analytical Results				
Append	dix B	Groundwater Monitoring Field Data Sheets				
Append	dix C	Analytical Laboratory Report and Chain-of-Custody Record				
Append	dix D	Historical Groundwater Elevation Data				
Append	dix E	Historical Product Extraction Data Table				

TABLES AND FIGURES

Tables Pa	ıge
Table 1 September 28, 2015 Groundwater Monitoring Well Construction and Groundwater Elevation Data 6400 Christie Avenue, Emeryville, California	
Table 2 Groundwater Sample Analytical Results – September 28 2015, 6400 Christie Ave Emeryville, California	
Table 3 Active Product Extraction – September 28, 2015, 6400 Christie Avenue, Emeryvi California	
Figures Pa	ıge
Figure 1 Site Location Map	2
Figure 2 Site Plan	3
Figure 3 Monitoring Well and Trench Locations	5
Figure 4 Groundwater Elevation Map – September 28, 2015	10
Figure 5 Groundwater Monitoring Well Analytical Results – September 28, 2015	16
Figure 6 Total Petroleum Hydrocarbon Plume as Gasoline – September 28, 2015	18
Figure 7 Total Petroleum Hydrocarbon Plume as Diesel – September 28, 2015	19

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property, located at 6400 Christie Avenue in Emeryville, California, is owned by the Emerybay Commercial Association, for which Stellar Environmental Solutions, Inc. (Stellar Environmental) provides environmental consulting services. The site has undergone fuel tank-related investigations and remediation since 1988 (by Stellar Environmental since 2007). All known environmental documents for the subject property are listed in the References and Bibliography section (Section 7.0) of this report. Previous remediation and investigation activities are outlined in the final subsection of this chapter.

SITE AND VICINITY DESCRIPTION

The project site is located at 6400 Christie Avenue in Emeryville, California (see Figure 1). The project site, which slopes to the south, is wholly developed with an open ground-floor parking area and apartment complex known as the Bridgewater Phase I Condos and parking garage. The area of monitoring and product extraction is primarily located in the northeastern portion of the parking garage. Figure 2 is a site plan. The site is bordered to the east by the Emery Bay Phase II Condos and parking garage, to the north by 65th Street, beyond Christie Avenue and to the west by the Bay Center Offices, and to the south by 64th Street. The surrounding area is developed with apartment complexes, offices, and commercial stores.

PREVIOUS INVESTIGATIONS

Historical groundwater well analytical results are presented in Appendix A, and are discussed in detail in Section 5.0 of this report.

The subject property parcel was developed as early as 1958 with the Garrett Motor Freight Station, associated with Delta Lines, Inc. The Delta Lines complex contained an "Oil and Gas" building, located at the site of the present-day Emery Bay Phase I Condo complex and parking garage. The building remained on the property until 1986, when it was demolished to build the present-day structures. Twelve underground fuel storage tanks (UFSTs) containing diesel and gasoline were removed from the Emery Bay Phase I and Phase II Condo complex parcels in 1987, at which time soil and groundwater contamination was discovered.

SITE PLAN AND ADJACENT LAND USE

6400 Christie Ave. Emeryville, CA

By: MJC JUNE 2015

Figure 2

The subsurface contamination originated from the trucking terminal that was operated by the Garrett Freight Line and Delta Lines, and existed at the site of the Bay Center Apartments before its development in the late 1980s. Site investigations identified a total of 12 UFSTs in three areas of the trucking terminal. These UFST areas were referred to as: 1) Tank Pits A and B (each containing one 10,000-gallon diesel tank); 2) Tank Pit TC-1 (four 12,000-gallon diesel tanks, two 10,000-gallon diesel tanks, and one 6,000-gallon gasoline tank); and 3) Tank Pit WO-1 and WO-2 (one 6,000-gallon tank, one 4,000-gallon tank, and one 1,000-gallon tank). Nine UFSTs were located beneath the current footprint of the Emery Bay Phase I Condo complex, while three were beneath the Emery Bay Phase II Condo complex. Figure 2 shows the historical locations where the tanks were removed.

To remediate the hydrocarbon contamination beneath the garage area of the Emery Bay Phase I Condo complex, a light non-aqueous phase liquid (LNAPL) groundwater pump-and-treat system was installed by Groundwater Technology, Inc. (GTI) in 1989. The system extracted approximately one million gallons of groundwater, yielding approximately 100 gallons of LNAPL from recovery well RW-1 from July 1990 to March 1991. Three monitoring wells had previously been installed in 1985. GTI installed (and repaired) several more monitoring wells between 1987 and 1990, for a total of seven monitoring wells and one extraction well by 1990. The system and groundwater monitoring wells were designed and monitored as a condition of discharge permits granted by the East Bay Municipal Utility District (EBMUD) and the Bay Area Air Quality Management District (BAAQMD). The first groundwater monitoring event for MW-1 through MW-6 occurred in December 1988. The second monitoring event, which also included MW-E and RW-1, was conducted in March 1989. Subsequently, the groundwater extraction system operated by GTI was closed in late 1990 when corrosion and other mechanical problems caused the system to fail. Recovery of LNAPL continued manually on RW-1 until 1991, and a third groundwater sampling event occurred in February 1991. In 1994, the GTI system was abandoned. Appendix A contains the historical analytical results. Figure 3 shows the locations of the monitoring wells and trenches.

No groundwater monitoring events had occurred at the site between 1991 and 2004, when PES Environmental, Inc. (PES) was retained to evaluate and implement remediation of the residual contamination at the TC-1 (former location of seven UFSTs) Emery Bay Phase I Condo complex area. (Note: Harding Lawson Associates conducted soil and groundwater sampling on the Phase II Apartment complex area during this time, but not for the purpose of product extraction or remediation.) In 2004, PES installed an additional 10 groundwater monitoring wells (monitoring wells MW-1 and MW-2 were either abandoned or paved over with asphalt during construction), bringing the current total to 17 monitoring wells and one extraction well in the Phase I parking garage area. The first groundwater monitoring event for the current wells was conducted in March 2004 and the second event conducted in December 2006. A previous Stellar Environmental report

(Stellar Environmental, 2007) discusses previous site remediation and investigations, site geology and hydrogeology, and residual site contamination. Tabular summaries of historical groundwater well water elevations and analytical results are included in Appendices D and A, respectively.

In March 2014, Stellar Environmental Solutions conducted a groundwater investigation that consisted of advancing five soil borings in the areas between wells MW-3 on the southern edge of the site and MW-18 in the garage and downgradient of MW-3, with the goal to locate a suspected source of residual subsurface hydrocarbons. The reason for this additional work was based on the recent uptrend in diesel concentration noted in well MW-3 since the late 2012 initiation of construction de-watering at the 6340 Christie Avenue (ACHCSA Case # RO0000057) property across 64th Street, south of the subject property garage area.

The impact the dewatering had on the subject site was apparent in terms of both the changes to the site hydrology—with the change in the groundwater flow regime from west/northwest to having a southern component—as well as a hydrochemical impact. The hydochemical impact, as documented in the Y2013 and Y2014 site monitoring reports, was to draw the hydrocarbon plume southward, increasing the concentrations of TEHd by orders of magnitude at well MW-3 near the subject property south border, compared to the previous 5 years of monitoring that showed stable results. The TEHd concentration at MW-3 on the southern property line increased from 15,000 µg/L TEHd in April 2013 to 250,000 µg/L TEHd in September 2013. The relatively stable TEHd concentration present in well MW-18 since 2012, suggested a possible undiscovered source between these two wells that was impacting well MW-3. However, the plume appears to have stabilized since the cessation of construction dewatering at the site across 64th Street along with the product recovery efforts in the garage area. That groundwater flow direction and plume geometry has now reverted to the pre-pumping groundwater regime. The TVHg and TEHd concentrations in well MW-3 have substantially decreased since the highest concentrations of 2013, with both the September 2014 and September 2015 monitoring events.

OBJECTIVES AND SCOPE OF WORK

This report discusses the following activities conducted/coordinated by Stellar Environmental in the current annual monitoring period:

- Introduction of an electron acceptor solution (Nutrisulfate) into sump trench wells TAE, TAM, TAW, TCE, TCM and TCW on September 3, 2015. Nutrisulfate is a high sulfate metabolic supplement designed to enhance the kinetics and efficiency of microbial systems specifically related to bioremediation of BTEX, MTBE, TBA and other petroleum hydrocarbons.
- Active extraction on all groundwater monitoring wells and recovery well RW-1.

- Record water levels in site wells to determine groundwater flow direction.
- Sampling of site monitoring wells for contaminant analysis.
- Evaluation of hydrochemical and groundwater elevation trends in the context of plume stability and case closure assessment

REGULATORY OVERSIGHT

Alameda Department of Environmental Health (ACEH) is the lead regulatory agency for the case, acting as a Local Oversight Program for the Regional Water Quality Control Board (Water Board). There are currently no ACEH or Water Board cleanup orders for the site; however, all site work has been conducted under the oversight of ACEH. ACEH assigned the site to its fuel leak case system (RO #2799), currently overseen by Mr. Mark Detterman. In a November 2008 meeting with the Responsible Party (represented by Ms. Sarah Irving), Stellar Environmental (represented by Ms. Teal Glass and Mr. Richard Makdisi), and ACEH (represented by Ms. Jakub and Ms. Donna Drogas), it was agreed that quarterly sampling could be reduced to a semiannual schedule with the stipulation that an indoor air and preferential pathway study be completed. Stellar Environmental submitted a letter on November 24, 2008 to ACEH documenting the change in sampling frequency. The Indoor Air Survey and Preferential Pathway Report (Stellar Environmental, 2009b) was submitted to ACEH on April 6, 2009. Stellar Environmental conducted an additional indoor air survey in the ground floor office area on March 22, 2010. The results were presented in a separate report, submitted to ACEH on April 6, 2010 (Stellar Environmental, 2010). The case has been assigned No. SLT2O05561 in the Water Board's GeoTracker system. Electronic uploads of required data/reports are submitted to both agencies. The November 2012 and March 2013 monitoring reports warned ACEH of impacts from the adjacent site dewatering at 6340 Christie Avenue and tracked the pull of the hydrocarbon plume to the southern property boundaries. The cessation of dewatering from the adjacent southern development, along with selected well purging at Bay Center, resulted in a re-equilibration of the plume back closer to its former geometry as documented in the 2014 monitoring events.

2.0 PHYSICAL SETTING

The following evaluation of the physical setting of the site—including topography, drainage, and geologic and hydrogeologic conditions—is based on previous (1986 through 2006) site investigations conducted by others, and site inspections and subsurface data collection by Stellar Environmental in 2007, 2008 and 2014.

TOPOGRAPHY AND DRAINAGE

The mean elevation of the property is about 13 feet above mean sea level, and the general topographic gradient in the vicinity of the property is to the southwest, although the regional gradient is to the west-southwest.

The nearest receiving water body is San Francisco Bay, located approximately 700 feet to the west of the subject property. East of the site lies the Oakland Hills, which rise to an elevation of approximately 1,000 feet and are situated 2.5 miles east of the subject property. The subject property is not listed within a 100- or 500-year flood zone.

Storm drains from the roof collect storm runoff for discharge onto the asphalt-paved parking lots. Drainage collected in storm sewers from the parking lot and from Christie, 64th, and 65th Streets discharges into San Francisco Bay. Stellar Environmental noted several storm drains, in the parking lot area and on the surrounding streets.

GEOLOGY

The subject property area is underlain with material mapped "Qhbm," designated early pleistocene alluvium, that is moderately consolidated, deeply weathered, poorly sorted, irregularly interbedded clay, silt, sand, and gravel. A geotechnical survey conducted in 1985 revealed that the upper 15 to 20 feet of soil consists of a combination of fill and soft bay sediment. The upper 1 to 2 feet of soil is generally pavement and imported fill. This is underlain by approximately 20 feet of firm soil consisting of primarily dense, silty sand with intermittent layers of silty and sandy clay. Stiff to very stiff clay lies a depth of approximately 40 feet and extends to the depth of the borings, approximately 101.5 feet (Geomatrix, 1988).

The closest major fault, the Hayward Fault, is located about 3 miles east of the property. While the site is located in a seismically active area, it is not within an Alquist-Priolo Special Studies active

fault zone, the legislatively defined zone of restricted land use 200 feet around an active fault due to the high probability of ground rupture.

GROUNDWATER HYDROLOGY

Regulatory agency records indicate that the direction of shallow groundwater flow in the site vicinity is to the west-northwest, toward San Francisco Bay. However, water levels and flow direction in this area are influenced by tidal patterns, natural topography modifications and the historical LNAPL, resulting in a relatively slow moving and stable plume pattern.

The groundwater flow direction measured during the September 2015 monitoring event was generally towards the west. The localized, approximately southerly direction to groundwater flow in the area of MW-3 noted in the 2013 monitoring events, thought to be the result of construction dewatering that had been occurring during 2013 at the re-development site across 64th Street, appears to have dissipated for the current event, since that de-watering has been discontinued since February of 2014. According to current and historical water level data obtained from onsite monitoring wells, depth to groundwater beneath the site ranges from approximately 7.5 to 10.5 feet below ground surface (bgs). Groundwater elevations recorded during the last monitoring event in March 2015, ranged from 7.03 feet (RW-1) to 9.19 feet (MW-6) above mean sea level. For this "Fall" monitoring event of September 2015, groundwater elevations ranged from 6.94 feet (MW-5) to 9.24 feet (MW-16) above mean sea level, with the average groundwater gradient for the current monitoring event being 0.007 foot/foot.

Figure 4 is a groundwater elevation map from the recent groundwater-monitoring event (activities discussed in Section 4.0).

3.0 SEPTEMBER 2015 GROUNDWATER MONITORING AND SAMPLING ACTIVITIES

This section presents the groundwater sampling and analytical methods for the most recent event. Table 1 summarizes monitoring well construction and groundwater monitoring data. Groundwater analytical results are summarized in Section 4.0.

SAMPLING METHODS AND ACTIVITIES

Activities for this event include:

- Measuring static water levels in all 18 wells
- Collecting post-purge groundwater samples from the 18 wells for laboratory analysis of the following contaminants:
 - benzene, toluene, ethyl benzene, and xylenes (BTEX)
 - methyl tertiary-butyl ether (MTBE)
 - total petroleum hydrocarbons as gasoline (TPHg)
 - total petroleum hydrocarbons as diesel (TPHd)

The site monitoring well sampling locations are shown on Figure 3. Well construction information and water level data are summarized in Table 1. Appendix B contains the groundwater monitoring field records.

CURRENT MONITORING EVENT

Blaine Tech Services conducted groundwater monitoring well level measurements, purging, sampling, and field analyses on September 28, 2015 under the supervision of Stellar Environmental personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs. As the first task of the monitoring event, static water levels and free product levels were measured in the 18 wells using an electric water level indicator. The depth of free product was recorded, and the water level was adjusted to reflect the groundwater elevation.

Table 1
September 28, 2015
Groundwater Monitoring Well Construction and Groundwater Elevation Data 6400 Christie Avenue, Emeryville, California

Well	Well Depth (feet bgs)	Screened Interval	Top of Well Casing Elevation (a)	Depth to Free Product (TOC)	Thickness of Free Product (feet)	Groundwater Elevation (September 28, 2015)
MW-3	25	5 to 20	16.65	7.22	1.78	7.65
MW-4	25	5 to 20	16.29	NP	NP	8.61
MW-5	25	5 to 20	16.72	NP	NP	6.94
MW-6	25	5 to 20	16.82	NP	NP	7.73
MW-7	20	5 to 20	17.73	NP	NP	7.19
MW-8	16	5 to 16	17.84	9.93	0.05	7.86
MW-9	20	5 to 20	17.84	NP	NP	7.79
MW-10	20	5 to 20	17.83	9.34	0.35	8.14
MW-11	20	5 to 20	17.76	NP	NP	7.28
MW-12	20	5 to 20	17.83	NP	NP	7.35
MW-13	20	5 to 20	17.66	9.57	0.02	8.07
MW-14	20	5 to 20	17.60	NP	NP	8.19
MW-15	20	5 to 20	17.80	NP	NP	7.95
MW-16	20	5 to 20	17.74	NP	NP	9.24
MW-17	20	5 to 20	18.17	NP	NP	8.17
MW-18	20	5 to 20	16.35	NP	NP	7.66
MW-E	47	7 to 40	17.47	NP	NP	7.40
RW-1	30	unknown	16.70	NM	NM	7.01
ТА-Е	11-13	6-8 to 11-13	17.20	NM	NM	NM
TA-M	11-13	6-8 to 11-13	17.21	NM	NM	NM
TA-W	11-13	6-8 to 11-13	17.28	NM	NM	NM
ТВ-Е	11-13	6-8 to 11-13	17.24	NM	NM	NM
TB-M	11-13	6-8 to 11-13	17.30	NM	NM	NM
TB-W	11-13	6-8 to 11-13	17.33	NM	NM	NM
тс-е	11-13	6-8 to 11-13	17.07	NM	NM	NM
TC-M	11-13	6-8 to 11-13	17.37	NM	NM	NM
TC-W	11-13	6-8 to 11-13	17.32	NM	NM	NM

Notes:

bgs = below ground surface

TOC = below top of casing

NP = no free product in well)

NM = depth to groundwater and/or free product could not be determined due to the presence of product

MW-3 through MW-6 and MW-E are 2-inch PVC. MW-7 through MW-18 are 3/4-inch PVC. RW-1 is 10-inch steel.

⁽a) Relative to mean sea level.

⁽b) Depth to groundwater and/or of free product could not be determined because free product density would not allow a clear delineation.

Approximately 750 gallons of water and 0.083 gallons of product were removed/purged from wells during the active product removal on September 24 and 25, 2015; The water generated during the active product and water removal was stored in a 1,100 gallon, plastic above ground storage tank located in the fenced compound.

4.0 REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS, AND DISCUSSION OF FINDINGS

This section presents the analytical results of the most recent monitoring event and summarizes the relevant regulatory considerations. Appendix C contains the certified analytical laboratory report and chain-of-custody record.

REGULATORY CONSIDERATIONS

As specified in the East Bay Plain Groundwater beneficial Use Evaluation Report by the San Francisco Bay Region Water Board (Water Board, 1999), all groundwater is considered a potential source of drinking water unless otherwise indicated by the Water Board, and is assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. The subject property is listed as occurring within Zone B, designated as groundwater that is unlikely to be used as a drinking water resource. The basin is shallow in this area, with depths of less than 300 feet. Groundwater in this area is used for backyard irrigation, industrial supply, and commercial irrigation. There is a low likelihood that this water will be used as a public water supply in the near future.

The Water Board publishes Environmental Screening Levels (ESLs) for residential and commercial/industrial properties where groundwater <u>is/is not</u> a likely drinking water resource. As stipulated in the ESL document (Water Board, 2013), ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments. The groundwater ESLs are composed of one or more components—including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional remediation and/or investigation (e.g., monitoring plume stability to demonstrate no risk to sensitive receptors where drinking water is not threatened) may be warranted. Because the subject property is a residential property where groundwater is not a likely drinking water resource, the contaminant levels at the site will be compared to the ESLs for these criteria.

Contaminants detected above the ESLs during this sampling event include gasoline, diesel, benzene, toluene, ethylbenzene, and total xylenes. In general, concentrations of gasoline and diesel have decreased as compared to both the previous quarter and the same quarter last year.

GROUNDWATER SAMPLE RESULTS

Table 2 and Figure 5 summarize the contaminant analytical results of the current monitoring event samples.

Table 2
Groundwater Sample Analytical Results – September 28, 2015
6400 Christie Avenue, Emeryville, California

	Analytical Results						
Well ID	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
MW-3	330	4,500	0.71	< 0.5	<0.5	3.2	<2.0
MW-4	120	4,400	< 0.5	<0.5	<0.5	<0.5	<2.0
MW-5	60	4,400	<0.5	< 0.5	<0.5	< 0.5	<2.0
MW-6	65	1,700	0.88	<0.5	<0.5	<0.5	< 2.0
MW-7	1,000	10,000	280	16	10	52.9	21
MW-8	23,000	4,400	7,100	100	510	267	<170
MW-9	190	9,000	8.0	0.71	<0.5	0.87	<2.0
MW-10	7,300	2,700	1,300	62	<0.5	37	<100
MW-11	1,300	8,000	110	16	2.1	20.4	<2.0
MW-12	13,000	3,100	4,300	110	52	71	<50
MW-13	13,000	8,300	3,100	78	440	255	<50
MW-14	9,500	5,500	2,600	250	190	237	<100
MW-15	10,000	3,100	3,100	63	33	48	<50
MW-16	110	6,200	10	1.1	<0.5	<0.5	<2.0
MW-17	8,100	3,700	1,800	160	90	143	<50
MW-18	<50	9,700	<0.5	< 0.5	<0.5	<0.5	<2.0
MW-E	22,000	11,000	6,400	230	750	80	<120
RW-1	450	660	75	4.2	1.4	<0.5	<2.0
ESLs (a)	100 / 500	100 / 640	1.0 / 46	40 / 130	30 / 43	20 / 100	5.0 / 1,800

Notes:

MTBE = methyl tertiary-butyl ether

TPHd = total petroleum hydrocarbons – diesel range (equivalent to total extractable hydrocarbons – diesel range)

TPHg = total petroleum hydrocarbons – gasoline range (equivalent to total volatile hydrocarbons – gasoline range)

All concentrations are expressed in micrograms per liter (µg/L), equivalent to parts per billion (ppb).

Results listed in **bold-face type** are at or above the ESLs where groundwater *is not* a drinking water resource.

⁽a) Water Board Environmental Screening Levels for residential sites where groundwater <u>is/is not</u> a drinking water resource (Water Board, 2013).

6400 Christie Ave., Emeryville, CA

by: MJC

DECEMBER 2015

Distribution of Hydrocarbon Contaminants

For the current sampling event, several wells have hydrocarbon concentrations greatly in excess of the Water Board ESLs. However, hydrocarbon concentrations in wells can be significantly affected by the purging of accumulated hydrocarbons product, so large swings in concentration (both reductions and increases) are possible due to this occurrence. In addition, the introduction of surfactant since 2013 (see Section 5) into the trench and selected monitoring wells with the aim of reducing accumulated LNAPL in those wells is likely to affect dissolved concentrations.

Increases in September 28, 2015 TVHg concentrations compared to the September 2014 monitoring event were observed in all wells except MW-3, MW-7, MW-11 and MW-13. This represents twelve wells exhibiting an increase in TVHg as compared to five wells for the September 2014 sampling event.

Gasoline was detected in wells MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17 and MW-E above the ESL where groundwater is not a likely drinking water resource (500 micrograms per liter [µg/L]). Gasoline was also detected in MW-3, MW-4, MW-5, MW-6, MW-9, MW-16, MW-18 and RW-1, but at concentrations below the ESL.

Diesel was detected in all site wells above the ESL of $640 \mu g/L$ (where groundwater is not a likely drinking water resource), but showed a decrease in concentration in 12 of the 18 wells sampled as compared to 9 of 18 wells in the September 2014 sampling event.

The highest concentrations of TVHg (23,000 μ g/L in MW-8) and TEHd (11,000 μ g/L in MW-E) for the current event can be compared to concentrations of 16,000 μ g/L TVHg in MW-13 and 21,000 μ g/L TEHd observed in well MW-3 in September 2014. Concentrations of hydrocarbons in well MW-13 have decreased steadily since the September 2012 sampling event, with TVHg decreasing from 60,000 μ g/L to 13,000 μ g/L, and TEHd decreasing from 7,200,000 μ g/L in 2012 to the current 83000 μ g/L. Concentrations of hydrocarbons in well MW-8 fluctuated since the March 2012 sampling event, with TVHg increasing from 380 μ g/L in 2012 to 23,000 μ g/L for the current event, and TEHd decreasing from 9,800 μ g/L in 2012 to the current 4,400 μ g/L.

Figures 6 and 7 are isoconcentration maps of TPHg and TEHd concentrations in groundwater based on the September 28, 2015 analytical results.

Since the introduction of the surfactant in wells MW-3 MW-8, MW-12, MW-13 and MW-14 and into all nine trench wells in 2014 and 2015, gasoline concentrations in site wells have increased overall, while diesel concentrations have shown decreases in overall hydrocarbon concentration. Fluctuating concentrations of TVHg and TEHd in these wells may be attributed to LNAPL recovery and introduction of surfactant since March 2013.

Figure 8 depicts historical groundwater analytical trends for TPHd in downgradient wells MW-5 and MW-6. Figure 9 depicts historical groundwater analytical trends for TPHd in source wells MW-11 and MW-12. Figure 10 depicts historical groundwater analytical trends for TPHd in crossgradient wells MW-3 and MW-18.

In monitoring wells MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17, MW-E and RW-1 concentrations of benzene exceeded the ESL of 46 μ g/L where groundwater is not a drinking water resource. Comparing September 2014 results to the current results showed a decrease in benzene in 3 of the 18 site wells sampled. An increase in benzene was detected in 12 of the 18 wells. Benzene was detected in wells MW-3, MW-6, MW-9, and MW-16, but at concentrations below the ESL. Perimeter wells MW-5 and MW-6, which in September 2014 contained concentrations of benzene at <0.05 μ g/L and 0.79 μ g/L benzene respectively, remain stable at < 0.5 μ g/L and 0.88 μ g/L respectively for the current event.

Toluene was detected at or above the ESL of 130 μ g/L in monitoring wells MW-14, MW-17 and MW-E. Toluene was also detected in wells MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, MW-13, MW-15, MW-16, and RW-1 but at levels below the ESL.

Ethylbenzene was detected above the 43 μ g/L ESL in monitoring wells MW-8, MW-12, MW-13, MW-14, MW-17 and MW-E. Ethylbenzene was also detected in MW-7, MW-11, MW-15, and RW-1 but at levels below the ESL.

Total xylene concentrations in wells MW-8, MW-13, MW-14, MW-17 and MW-E were above the 100-μg/L ESL where groundwater is not a likely drinking water resource. Total xylenes were detected in MW-3, MW-9, MW-10, MW-11, MW-12, MW-15, MW-E but below the ESL.

MTBE was not detected above the ESL of 1,800 μ g/L in any of the monitoring wells. MTBE was detected in MW-7 but below the ESL.

Quality Control Sample Analytical Results

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the laboratory in accordance with the requirements of each analytical method. All laboratory QC results and sample holding times were within method limits (Appendix C).

5.0 FREE-PHASE HYDROCARBON PRODUCT REMEDIATION SYSTEM

This section describes the historical extraction of the free product from the Emery Bay/Bridgewater Phase I Condo parking garage, the construction details of the current LNAPL remediation system located on the northeastern portion of the garage, and the most recent product removal activities conducted on September 24 and 25, 2015 (prior to the sampling event on September 28, 2015). Appendix E summarizes historical product removal.

LNAPL REMEDIATION SYSTEM CONSTRUCTION

In an attempt to maximize free product removal, PES constructed three trenches, each containing three sump wells, in the northeastern area of the parking garage. Historically, this area has had the highest concentrations of contamination and accumulation of free product. The trenches (TA, TB, and TC) extend to depths of approximately 12.5 to 13 feet bgs, while the collection sumps (TA-W, TA-M, TA-E, TB-W, TB-M, TB-E, TC-W, TC-M, and TC-E) extend to approximately 11 to 13 feet bgs. The sumps were constructed using 10-inch-diameter schedule 40 polyvinyl chloride (PVC) casing. Blank casing was used from approximately 0.5 feet bgs to between 6 and 8 feet bgs. Slotted 0.06-inch PVC was used from between 6 and 8 feet bgs to 6 inches from the total depth of the trench. The trenches were then backfilled with high-porosity, high-permeability gravel designed to promote LNAPL migration (PES, 2007). Passive skimmers, manufactured by QED Environmental Systems were then placed in each of the sumps in Trench A and in one of the sumps (TC-E) in Trench C.

Skimmers operate in principal by floating on the surface of the water. Water and free product collect in a filtration reservoir, which allows water to pass through. A tube connected to the reservoir then filters the free product into a collection reservoir located below the water surface. The reservoir can be emptied by opening a valve located on the bottom of the cylindrical shaped reservoir. Each of these skimmers is attached to the sump lid by a rope, and can be removed and transferred to another sump as needed. However, the skimmers were never particularly effective at capturing the petroleum product as designed, and as of the past several monitoring events, have contained nearly no free oil. Because the skimmers were no longer effective as of 2014, and because the skimmer equipment was covered with oily residue, possibly contributing to the hydrocarbon impacts to site groundwater, the skimmers were removed from the wells in trenches A (six skimmers) and C (one skimmer) on September 4, 2015.

HISTORICAL FREE PRODUCT EXTRACTION

As mentioned under the "Previous Investigations" subsection in Section 1.0, in approximately 1986, contaminated soil and groundwater were discovered during the removal of 12 UFSTs from the Emery Bay Phase I and Phase II parcels. To dewater the excavation during the Phase I and Phase II Condo construction, a groundwater extraction and remediation system was installed by GTI in 1988. Approximately 1 million gallons of water yielding 100 gallons of hydrocarbon product was removed from RW-1 during its operation (PES, 2007). However, corrosion and other mechanical problems caused the system to fail in 1991, and it was decommissioned in 1994. In February 2008, Stellar Environmental removed all of the old parts of the system from the well and vault.

In 2004, PES began manual extraction on RW-1, and was reported to have removed approximately 48 gallons of LNAPL (PES, 2004a)—although it is unclear whether the removed material was pure product or product mixed with water. To accelerate free product removal, PES constructed a new LNAPL hydrocarbon remediation system (described previously) between April and May 2004 (PES, 2007). Several extraction events were conducted by PES from May 2004 through March 2007; the extraction events yielded a total of approximately 51 gallons of LNAPL. No extraction events were conducted by PES in 2005; approximately 50 gallons of hydrocarbons was removed in 2006; and approximately 0.6 gallon of hydrocarbons was removed by PES between January and November 2007. In November and December 2007, after Stellar Environmental was retained for the project, the skimmer system yielded 2.82 gallons. Figure 11 graphs the comparison of free product extraction on a yearly basis.

No historical product extraction reports were provided to Stellar Environmental by the previous owner or by PES. Therefore, there is little to no information on how active product extraction occurred during 2004 and 2006. Based on better defined recovery in 2008 through 2011 the volume of free product indicated to have been recovered during 2004 and 2006 appears unrealistically high, suggesting that free-phase project mixed with water was reported as free-phase product recovery.

2013-2015 SURFACTANT INJECTIONS

Many of the centrally located wells and well MW-3 contain a molasses like, degraded product that has made well purging and sampling increasingly difficult. Equipment lowered down into the well casings come back out coated with a tar like substance that is difficult or impossible to clean, and may account for low water yield in some wells due to sand pack and well screen fouling. Four of the worst wells in this regard are MW-3, MW-8, MW-10, MW-12, MW-13 and MW-14. All these wells are constructed with ¾-inch diameter PVC casing, and are screened to total depth across the same interval of 5 to 20 feet bgs, except for MW-8 which is screened from 5 to 16 feet bgs. In order to

attempt to clean the well casings and emulsify the tar thought to exist in the well pack, a surfactant was chosen as a solution.

Surfactants are designed to change the interfacial tension between the water and NAPL and desorb the residual LNAPLs entrained in the soil matrix by micro-emulsifying the organic particles, and forming a micelle. In the case of weathered LNAPLs, surfactants have been used to decrease the viscosity of the material, resulting in increased and more efficient recovery. Surfactants can also be considered bioremediation enhancing and vapor suppression agents. The use of mobile multi-phase extraction that has been occurring at the site twice-yearly since 2008, allows a focused remediation effort at a targeted area of the site, and increases the effective radius of influence of the pumping. This combined approach involves the in-situ application of a surfactant mixture, under pressure, into the site subsurface. The injection is followed by high-vacuum induced multi-phase recovery from the injected wells as well as surrounding wells via a mobile vacuum truck.

In March and September 2013 wells MW-8, MW-12, MW-13 and MW-14 were injected with EnviroClean[®] supplied by Enviro Clean Services, LLC. EnviroClean[®] is described the manufacturer as a non-flammable, non-toxic, water-based, proprietary blend of non-toxic, non-ionic ethoxylated octylphenolic surfactants that has been specifically engineered as a cleanup/mitigation agent for a wide range of hydrocarbon products. EnviroClean[®] product information is included in Appendix F. A working solution of 4% EnviroClean[®] was mixed per manufacturer recommendations using clean water. Approximately 5 gallons of the solution was introduced each well using a funnel. The well casing and screen in each well were then scrubbed using a stiff bristle brush attached to an extension. After the scrubbing, approximately 15 gallons of the working EnviroClean[®] solution was injected under pressure into each well using a dual-diaphragm pump.

Based on the positive results of the non-hazardous surfactant injection into wells MW-8, MW-12, MW-13 and MW-14 in 2013 which resulted in reduced or eliminated oil residue, the same surfactant was introduced into well MW-3 which has historically been difficult to gauge and sample due to the thick oil in the well. On July 2, 2014, approximately 10 gallons of a 5% mixture of the surfactant was introduced into MW-3 and the well casing scrubbed. On September 4, 2014, approximately 20 gallons of the 5% surfactant mixture was introduced into each of the nine trench wells onsite after the skimmers had been removed from the wells in trenches A and C, to test the ability of the surfactant to re-dissolve the viscous hydrocarbon buildup in those wells.

Additional surfactant application occurred on February 3, 2015. Approximately 1 gallon of an 8% surfactant mixture was introduced into wells MW-8, MW-12, MW-13, MW-18 and MW-E. Each well was swabbed as described above. 2 gallons of a 10% mixture and 5 gallons of a 15% solution was introduced into wells MW-10 and NMW-3 respectively, and swabbed.

SEPTEMBER 2015 BIOREMEDIATION COMPOUND INJECTION

Surfactant injection efforts since 2012 have reduced free-floating product phase in the area of the trench wells and other nearby monitoring well hotspots such as MW-8, MW-10 and MW-13. Based on the very low volumes of free product being recovered from site monitoring and extraction wells, introduction of a bioremediation compound into the trench wells was conducted to reduce the hydrocarbon plume hotspot.

After reviewing the various options for in-situ bioremediation Stellar Environmental concluded that for this particular site, with the apparent concentration and type of hydrocarbons evident, the most promising remedy is to use a product designed to degrade the petroleum hydrocarbons anaerobically. The proposed remedial design accomplishes this through enhanced natural attenuation/biodegradation and *in situ* chemical reduction uniquely induced via the use of a sulfate delivery bioremediation compound. The method relies on sulfate utilization. In fact, the vast majority of petroleum hydrocarbon sites are sulfate depleted. Sulfate is readily soluble therefore large amounts of it can quickly dissolve into groundwater. Sulfate reducing bacteria will use the petroleum hydrocarbons as a food source and the sulfate as the terminal electron acceptor. The result is the rapid bioremediation of aqueous phase petroleum hydrocarbons and gasoline additives. The product chose for the remedial injection is Nutrisulfate®. The metabolites in Nutrisulfate® greatly enhance microbial growth. Advantages include:

- Improved bioremediation kinetics
- Thinner (parallel to groundwater flow) bio-barriers
- Faster remedies
- Reduced costs

For the proposed 14,400 cubic feet treatment volume (60ft x 60ft x 4ft) one, 500 lb. drum of Nutrisulfate® was introduced into Trench Well arrays A and C on September 3, 2015. An additional 1,000 lbs. of the product is scheduled to be introduced into the Trench Well arrays A and C in early February 2016. The product loading is based on the averaging the concentrations in the six monitoring wells MW-8, MW-10, and MW-12-through MW-15 collected in Y-2014. The product is engineered for the slow release of sulfate and nutrients to stimulate the bioremediation of the hydrocarbon groundwater environment at the site. The product is designed to release over a 10-12 month period. The injected product has no harmful products or byproducts associated with it.

SEPTEMBER 2015 PRODUCT REMOVAL EVENT

Product yield from the trench recovery system has been unproductive and inconsistent, with the passive skimmer collection reservoirs not filling up completely, or filling up with water rather than product. As mentioned above, due to their ineffectiveness at collecting free product over the past several monitoring events, and due to the oily residue on the skimmers, the skimmers were removed from the wells in trenches A and C prior to the surfactant injection in early September 2014. As described above, a bioremediation product, Nutrisulfate® was introduced into trench well arrays A and C on September 4, 2015. No product recovery was conducted from Trench well arrays A and C for the current monitoring event so as to not disturb/remove the Nutrisulfate® product. Product recovery was conducted for trench well array B, recovery well RW-1 and all site monitoring wells.

Stellar Environmental conducted active product removal on site during the 2 days prior (September 24 and 25, 2015) to the groundwater sampling event (September 28) to determine the recharge rate of free product in wells. Approximately 750 gallons of groundwater yielding approximately 0.053 gallons (Table 3) of free product were removed during the current active product removal event.

Table 3
Active Product Extraction – September 24 and 25, 2015
6400 Christie Avenue, Emeryville, California

Well	Total Gallons of Product Removed	Well	Total Gallons of Product Removed
MW-3	0.015	MW-17	0
MW-4	0	MW-18	0
MW-5	0	MW-E	0
MW-6	0	RW-1	0.015
MW-7	0	TA-E	Not Pumped
MW-8	0.015	TA-M	Not Pumped
MW-9	0	TA-W	Not Pumped
MW-10	0.0078	ТВ-Е	0
MW-11	0	TB-M	0
MW-12	0	TB-W	0
MW-13	0	TC-E	Not Pumped
MW-14	0	TC-M	Not Pumped
MW-15	0	TC-W	Not Pumped
MW-16	0		
		Second 2015 Event Total	0.053

Notes:

Product removal estimates are based on the total amount of free product measured in the purge drum after pumping each well

The removal activities for September 24 and 25, 2015 can be summarized as follows:

- Stellar Environmental removed a total of 300 gallons of water from trench wells TB-W, TB-E and TB-M with no measurable free product. No removal was attempted from trench wells TA-W, TA-E TA-M, TC-W, TC-E or TC-M due to the Nutrisulfate® product that had been introduced into those wells approximately 3-weeks before.
- Stellar Environmental removed a total of 50 gallons of groundwater from recovery well RW-1 along with an estimated 0.015 gallons (2 oz) of product.
- A total of approximately 0.0378 gallons (5 oz) of petroleum product was removed along with the 400 gallons of liquid that was pumped from all of the monitoring wells. Wells MW-3, MW-8 and MW-10 yielded the free product, with some of the remaining wells containing a trace of free product that was not measurable.
- All of the purge water and free product extracted during these events was contained onsite in the 1,100-gallon AST located in the northeastern gated area of the garage.

DISCUSSION OF FREE PRODUCT REMOVAL AND LIMITATIONS

As mentioned under the "Historical Free Product Extraction" subsection of this chapter, no product extraction was conducted by PES in 2005. "Product" removal in 2006 was reported at a significant 52 gallons by PES; however, it was not achieved through collection from the trench hydrocarbon skimmers, but rather through active pumping; in addition, the "product" referred to by PES appears to actually have been a mixture of petroleum product and water. The PES report provides no documentation (e.g., manifests) of the removal of actual recovered petroleum product. The recovery by PES from the start of 2007 through October 2007 (when Stellar Environmental assumed environmental consulting activities) was limited to 0.6 gallon collected from the skimmers. In addition, there had been no removal of free product from well RW-1 since 2004, at which time approximately 50 gallons of free-floating product was reportedly (PES, 2004c) removed by active pumping although antidotal evidence suggests that much of this was purge water versus free product. The majority of petroleum product is indicated to have been removed by active pumping and removal activities rather than from the trench well skimmers, the petroleum product recovery being in the form of a mixture of water and hydrocarbons. In 2007, passive extraction of free product through trench well skimmers removed only 3.41 gallons. Stellar Environmental removed approximately 5.65 gallons of free product from these passive skimmers during the 2008 removal events. Since 2011, the skimmers have contained only water and a trace of oil when checked. Approximately 14.99 gallons of product were removed by active pumping on wells during 2008, 28.65 gallons in 2009, 39.52 gallons in 2010, 2.65 gallons in 2011, 0.798 gallons in 2012, 0.955 gallons in 2013 and 0.369 gallons in 2014 indicating that the active pumping of site wells to be an effective means of product removal as compared to the passive skimmer system. Differences in recovery can be attributed to fluctuations in groundwater levels and to an overall reduction of free product as active pumping continues year to year.

For the current monitoring event, 9 of 15 wells in which TVHg is historically detected showed an increase of that compound as compared to September 2014. Downgradient wells MW-4, MW-5 and MW-6 which have historically not contained detectable concentrations of TVHg, contained TVHg at concentrations of 120 mg/l, 60 mg/l and 65 mg/l respectively. Six of 17 wells that have historically contained TVHd showed an increase in TEHd concentrations compared to September 2014. The observed increase of TVHg and TEHd for the current monitoring event compared to the September 2014 sampling event is likely be due to LNAPL becoming at least partially emulsified, as intended. The reduction of LNAPL by active extraction, which has since 2013 been combined with surfactant injections in selected wells, was a necessary step prior to in-situ bio-remedial efforts, the first application of which occurred on September 3, 2015. Inconsistent trends in the hydrocarbon concentrations, particularly the upward spike in gasoline and diesel concentrations observed in well since the surfactant injection in and/or near that wells may show more consistent trend lines after additional bio-remedial efforts are conducted (see Section 6). The next application of 1,000 lbs. of the Nutrisulfate® product in to Trench Well arrays A and C is scheduled for early February 2015. Based on observations made during the September 2015 field work, wells MW-3, MW-8, MW-10 and RW-1 would benefit from additional surfactant application into those wells.

In general, residual hydrocarbons left in the soil after the USTs were removed from the site in the 1980's, is likely to continue to be a source of contamination to groundwater at the site. Additional surfactant applications at the site are expected to continue to reduce the degraded product present, particularly in wells MW-3, MW-8, MW-10 and RW-1 which are currently the only wells with detectable free, degraded LNAPL product on site. The planned additional introduction of Nutrisulfate® into the trench wells as mentioned above, are expected to be useful to speed the reduction of the dissolved hydrocarbon concentrations to levels acceptable to the regulatory community and to achieve eventual regulatory closure.

The outward effect of the surfactant injection based on observations made during product removal for the current monitoring event, has been a marked reduction in the viscous hydrocarbon substance in site wells. A significant increase in water yield from wells that received surfactant has not been observed. The total measured recovery volume of product (in gallons) from the 18 wells for the two 2014 monitoring events, compared to the 2015 events, decreased from 0.369 gallons to 0.176 gallons which is likely attributable to the emulsification of LNAPL in the wells receiving the surfactant.

6.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

FINDINGS AND CONCLUSIONS.

- The subject property parcel was developed as early as 1958 with the Motor Freight Station, associated with Delta Lines, Inc. The Delta Lines complex contained an "Oil and Gas" building, located at the site of the present-day Emery Bay Phase I Condo complex and parking garage. In 1986, the building was demolished, and 12 UFSTs containing diesel and gasoline were removed from the Emery Bay Phase I and Phase II Condo complex parcels. Soil and groundwater contamination was discovered.
- In response to the contamination, a LNAPL groundwater pump-and-treat system was installed in 1989, but failed in 1991. Active pumping of free product began again in 2004, and a product extraction system consisting of passive product removal was installed in 2006. Groundwater monitoring events have been sporadically conducted since 1988; quarterly groundwater monitoring events were conducted for the first time in 2008. The quarterly sampling was reduced to a semi-annual frequency in 2009.
- The site currently contains 17 monitoring wells, 1 recovery well, and 9 product extraction trench wells. The current event is the 24th sampling event conducted since 1988.
- Site geological conditions consist of a combination of fill and soft bay sediment to between 15 and 20 feet bgs, covered by approximately 1 to 2 feet of pavement and imported fill. This is underlain by approximately 20 feet of firm soil consisting of primarily dense silty sand with intermittent layers of silty and sandy clay. Stiff to very stiff clay extends from a depth of approximately 40 feet to approximately 102 feet.
- The groundwater flow direction calculated during this monitoring event was found to be generally to the west. Some mounding is evident in the area of MW-4 which is likely due to water accumulating from landscape irrigation leaks (MW-4 well box often full of water).
- Construction dewatering that had occurred during the 2012-2013 time period at the construction site across 64th Street that was influencing the groundwater flow direction towards that site, was discontinued in February 2014.
- Groundwater elevations during the September 28, 2015 event ranged from 6.94 feet amsl (MW-5) to 9.24 feet amsl (MW-16). The average groundwater gradient was 0.007 foot/foot.

- The injection of a (non-hazardous) surfactant into selected site monitoring wells and into the nine trench wells over five separate occasions since 2013 was used to test the ability of the surfactant to emulsify the viscous hydrocarbon buildup in the injected wells and nearby wells. Based on field observations of site wells, 11 of 27 monitoring and trench wells had detectable LNAPL prior to the first surfactant injection in March 2013 compared to 4 of 27 for the current monitoring period.
- Surfactant injections into the A and C trench well arrays and wells MW-3, MW-8, MW-10, MW-12, MW-13, MW-14 and MW-18 and MW-E have reduced or eliminated LNAPL in those wells, and may have contributed to an increase in concentrations of dissolved hydrocarbons and MBTEX in those wells and other site monitoring wells as compared to the September 2014 monitoring event.
- The elimination of viscous LNAPL from site wells has allowed introduction of the product Nutrisulfate® which encourages natural attenuation/biodegradation and *in situ* chemical reduction via a sulfate delivery bioremediation compound. The metabolites in Nutrisulfate® greatly enhance microbial growth. An initial application of 500 lbs. of Nutrisulfate® was conducted on September 3, 2015. An additional 1,000 lbs of the product is scheduled to be introduced into Trench Well arrays A and C in early February 2016.
- Current contaminants of concern include TPHg, TPHd, and BTEX. Current groundwater concentrations exceeded the ESLs for these contaminants.
- MTBE was detected in one well (MW-7) during the current monitoring event, but was not detected above the ESL of 1,800 µg/L in any of the monitoring wells.
- The highest concentrations of TVHg (23,000 μg/L in MW-8) and TEHd (11,000 μg/L in MW-E) for the current event can be compared to concentrations of 16,000 μg/L TVHg in MW-13 and 21,000 μg/L TEHd observed in well MW-3 in September 2014. Concentrations of hydrocarbons in well MW-13 have decreased steadily since the September 2012 sampling event, with TVHg decreasing from 60,000 μg/L to 13,000 μg/L, and TEHd decreasing from 7,200,000 μg/L in 2012 to the current 83000 μg/L. Concentrations of hydrocarbons in well MW-8 fluctuated since the March 2012 sampling event, with TVHg increasing from 380 μg/L in 2012 to 23,000 μg/L for the current event, and TEHd decreasing from 9,800 μg/L in 2012 to the current 4,400 μg/L.
- Increases in September 28, 2015 TVHg concentrations compared to the September 2014 monitoring event were observed in all wells except MW-3, MW-7, MW-11 and MW-13. This represents twelve wells exhibiting an increase in TVHg as compared to five wells for the September 2014 sampling event.

- Gasoline was detected in wells MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17 and MW-E above the ESL where groundwater is not a likely drinking water resource (500 micrograms per liter [μg/L]). Gasoline was also detected in MW-3, MW-4, MW-5, MW-6, MW-9, MW-16, MW-18 and RW-1, but at concentrations below the ESL.
- Diesel was detected in all site wells above the ESL of 640 µg/L (where groundwater is not a likely drinking water resource), but showed a decrease in concentration in 12 of the 18 wells sampled as compared to 9 of 18 wells in the September 2014 sampling event.
- In monitoring wells MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17, MW-E and RW-1 concentrations of benzene exceeded the ESL of 46 μg/L where groundwater is not a drinking water resource. Comparing September 2014 results to the current results showed a decrease in benzene in 3 of the 18 site wells sampled. An increase in benzene was detected in 12 of the 18 wells. Benzene was detected in wells MW-3, MW-6, MW-9, and MW-16, but at concentrations below the ESL. Perimeter wells MW-5 and MW-6, which in September 2014 contained concentrations of benzene at <0.05 μg/L and 0.79 μg/L benzene respectively, remain stable at < 0.5 μg/L and 0.88 μg/L respectively for the current event.
- Toluene was detected at or above the ESL of 130 µg/L in monitoring wells MW-14, MW-17 and MW-E. Toluene was also detected in wells MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, MW-13, MW-15, MW-16, and RW-1 but at levels below the ESL.
- Ethylbenzene was detected above the 43 μg/L ESL in monitoring wells MW-8, MW-12, MW-13, MW-14, MW-17 and MW-E. Ethylbenzene was also detected in MW-7, MW-11, MW-15, and RW-1 but at levels below the ESL.
- Total xylene concentrations in wells MW-8, MW-13, MW-14, MW-17 and MW-E were above the 100-µg/L ESL where groundwater is not a likely drinking water resource. Total xylenes were detected in MW-3, MW-9, MW-10, MW-11, MW-12, MW-15, MW-E but below the ESL.
- Significantly, well MW-3 has shown a decrease in TVHg and TEHd concentrations for the current monitoring event as compared to the November 2014 event, which may be a continued reflection of the cessation of the dewatering pumping that occurred at the construction site across 64th Street during 2012-2013.
- Due to the ineffectiveness of the product skimmers that were in wells in recovery trenches A and C, the skimmers were removed from the wells in September 2014. The other reason for removal of the skimmers was that they were coated with oil, and thought to be contributing to dissolved hydrocarbon groundwater contamination. No degraded LNAPL product was

- recovered from the nine skimmers for the September 2014 monitoring and 0.07 gallons of residual product was removed during the March 2015 event, allowing for the introduction of the Nutrisulfate® product into the Trench Well arrays A and C in September 2105.
- Stellar Environmental conducted active product removal on the source area wells, recovery well RW-1, and select monitoring wells during the September 2015 extraction event. A total of approximately 750 gallons of groundwater that includes approximately 0.053 gallons of free-floating petroleum product from all the wells was removed with the estimate based on free-product accumulation in the extraction drum after pumping each well.

RECOMMENDATIONS

- A sixth application of surfactant should be conducted in wells MW-3, MW-8, MW-10 and RW-1 in mid-January 2016. These are the only wells currently onsite that currently contain detectable free, degraded product. The timing of the surfactant application in January is recommended to allow the introduction of additional Nutrisulfate® in mid-February, about 4 to 6 weeks prior to the first 2016 semi-annual monitoring event scheduled for the end of March 2016.
- Conduct a second application of Nutrisulfate® into Trench Well arrays A and C as was first done in September 2015. The timing of this work would occur in mid-February to allow it to potentially impact the first semi-annual 2016 monitoring event. 500 lbs. (one drum) of the product would be introduced into Trench A via the three wells in that trench, and 500 lbs. would be introduced into Trench C via those wells. Trench B will not have bioremediation product introduced, acting as a control.
- Groundwater monitoring should be continued on a semiannual basis to document contaminant concentrations over time. This monitoring of site wells will allow follow-on evaluation of the Nutrisulfate® introduction and its efficacy for scaling upward to move the site toward full regulatory site closure.
- Active groundwater/dissolved product removal events should be continued to ascertain their effectiveness in reducing the plume size over time. Active product removal is currently being conducted on a semiannual basis immediately prior to the sampling event.
- Electronic uploads to ACEH's ftp system and the State Water Board's GeoTracker system should be continued as required.

7.0 REFERENCES AND BIBLIOGRAPHY

- Aqua Science Engineers (Aqua), 1986a. Hydrocarbon Contamination Abatement Plan for Bay Center, Emeryville, CA. May 23.
- Aqua Science Engineers (Aqua), 1986b. Report Soil Sampling and Determination of Hydrocarbon Contamination from Tank Removal at the Bay Port Development, 64th and Lacoste Street, Emeryville, CA. May 27.
- Aqua Science Engineers (Aqua), 1986c. A Proposal for Installing a Fuel Contamination and Recovery System. August 27.
- Aqua Science Engineers (Aqua), 1986d. Phase II Extent of Groundwater Contamination Investigation, Bay Center. August 27.
- Aqua Science Engineers (Aqua), 1986e. Project Report Soils Gas Investigation, Bay Center. August 27.
- Aqua Science Engineers (Aqua), 1986f. Request for Additional Information Regarding Aeration and Sampling Soils Contaminated with Motor Fuel Hydrocarbons. Information addressed to the Alameda County Health Care Services, Hazardous Materials Unit. July 28.
- Aqua Science Engineers (Aqua), 1986g. Additional Information Regarding Aeration and Sampling Soils Contaminated with Motor Fuel Hydrocarbons. July 11.
- Bay Area Air Quality Management District (BAAQMD), 1987. Letter to the Martin Company authorizing the contaminated groundwater and oil recovery system. April 13.
- Chan, Barney, 2007. Project Officer, Alameda County Department of Environmental Health. Personal communication to Richard Makdisi of Stellar Environmental Solutions, Inc. April 10.
- Creps, Rob, 2007. PES Environmental, Inc. Project Manager for the Phase I Apartment Complex Remediation. Personal communication to Teal Glass and Richard Makdisi of Stellar Environmental Solutions, Inc. April 19.

- Earth Metrics, Inc., 1986a. Draft Soils Contamination Characterization for Garret Freight Lines Emeryville Site, 64th Street and Lacoste, Emeryville, CA. March 14.
- Earth Metrics, Inc., 1986b. Environmental Assessment for the Proposed Bay Center Apartment Complex in the Redevelopment Project Area of the City of Emeryville. May.
- Earth Metrics, Inc., 1986c. Draft Work Plan for Soils Contamination Characterization of Bay Center Site, Emeryville, CA. May 19.
- Earth Metrics, Inc., 1986d. Soils and Groundwater Contamination Characterization of Bay Center Site, Emeryville, CA. August 20.
- Earth Metrics, Inc., 1987. Safety Plan for Bay Center Offices and Apartments in Emeryville, CA. September 15.
- Geomatrix, 1988. Observation and Testing of Earthwork Construction, Bay Center Apartments. May 20.
- Groundwater Technology, Inc. (GTI), 1987a. Letter to Alameda County Health Department Hazardous Materials Division citing irregularities in the Aqua Science Laboratory Results. August 19.
- Groundwater Technology, Inc. (GTI), 1987b. Report of Further Subsurface Hydrocarbon Investigation, Emeryville, CA, Bay Center Project. September 8.
- Groundwater Technology, Inc. (GTI), 1989a. Well Replacement and Groundwater Assessment Report, Bay Center Project, Emeryville, CA. June.
- Groundwater Technology, Inc. (GTI), 1989b. Water Treatment System Start-Up Report, Bay Center Project, Christie and 64th Streets, Emeryville, CA. April 10.
- Groundwater Technology, Inc. (GTI), 1990a. First Quarter Sampling Event. Laboratory Analyses at the Bay Center Project. July 24.
- Groundwater Technology, Inc. (GTI), 1990b. Letter to the Bay Center Apartment Associates detailing problems with the groundwater extraction system. August 14.
- Groundwater Technology, Inc. (GTI), 1990c. Quarterly Report, Bay Center Apartment Associates, Bay Center Project, Christie and 64th Streets, Emeryville, CA. October 31.
- Groundwater Technology, Inc. (GTI), 1991a. Quarterly Report, Bay Center Project, Christie and 64th Streets, Emeryville, CA. January.

- Groundwater Technology, Inc. (GTI), 1991b. Quarterly Status Report. April 15.
- Harding Lawson Associates (HLA), 1991. Preliminary Hazardous Materials Site Assessment. December 16.
- Harding Lawson Associates (HLA), 1992a. Results of Soil and Groundwater Investigation. May 6.
- Harding Lawson Associates (HLA), 1992b. Hazardous Waste Management Plan. May 26.
- Harding Lawson Associates (HLA), 1992c. Conceptual Design of Venting System, Emerybay II Apartments. November 24.
- Harding Lawson Associates (HLA), 1993. Results of Soil Sampling, Emerybay II Apartments. April 21.
- Harding Lawson Associates (HLA), 1994. Results of Services During Construction, Emerybay Apartments Phase II. May 19.
- Johnson, Mark, 2007. Project Officer, Regional Water Quality Control Board. Personal communication to Teal Glass of Stellar Environmental Solutions, Inc. April 11.
- Martin Company, 1986a. Letter to Lowell Miller of Alameda County Health Care Services documenting agreements for the construction workplan involving contaminated soil. June 5.
- Martin Company, 1986b. Letter to Tom Owens of Emeryville Community Developers, Inc. documenting recognized contamination issues. May 21.
- Martin Company, 1986c. Letter to Rafat Shahid of Alameda County Health Care Services documenting agreement of drum removal. May 16.
- Martin Company, 1986d. Letter to the State Water Resources Control Board documenting unused underground storage tanks. December 11.
- PES Environmental, Inc. (PES), 2004a. Status Report, Investigation of Subsurface Petroleum Hydrocarbon Residuals. Bay Center Apartments, Christie Avenue and 64th Street, Emeryville, CA. April 5.
- PES Environmental, Inc. (PES), 2004b. Investigation for Missing Wells. April 5.
- PES Environmental, Inc. (PES), 2004c. Status Report. August 30.

- PES Environmental, Inc. (PES), 2007. Construction Implementation and Semi-Annual Operations Report. Free-Phase Hydrocarbon Product Remediation System. EmeryBay Commercial Association, Christie Avenue and 64th Street, Emeryville, CA. March 30.
- Regional Water Quality Control Board (Water Board), 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report.
- Regional Water Quality Control Board (Water Board), 2008. Environmental Screening Levels for residential properties on shallow soils where groundwater is a drinking water resource / is not a drinking water resource. Written February 2005, revised May 2008.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2007. Phase I Environmental Site Assessment 6425-6475 Christie Avenue, Emeryville, CA. April 17.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008a. 2007 Annual Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. January 28.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008b. Quarter One 2008 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. May 7.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008c. Second Quarter 2008 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. July 18.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2008d. Third Quarter 2008
 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking
 Garage 6400 Christie Avenue, Emeryville, CA. October 15.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009a. Fourth Quarter 2008 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. January 16.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009b. Indoor Air and Preferential Pathway Survey Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. April 4.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009c. First Semiannual 2009 Groundwater Monitoring Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. April 29.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2009d. Second Semiannual 2009 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. December 31.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011a. Indoor Air Sampling Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. April 6, 2010.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2010b. First Semiannual 2010 Groundwater Monitoring Report. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. April 21.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011. Second Semiannual 2010 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. January 4.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011. First Semiannual 2011 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. May 6.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2011. Second Semiannual 2011 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. October 27.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012. First Semiannual 2012 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. June 11.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2012. Second Semiannual 2012 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. November 12.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. First Semiannual 2013 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage – 6400 Christie Avenue, Emeryville, CA. June 4.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2013. Second Semiannual 2013 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. December 6.

- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014. First Semiannual 2014 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. May 14.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2014. Second Semiannual 2014 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. December 22.
- Stellar Environmental Solutions, Inc. (Stellar Environmental), 2015. First Semiannual 2015 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. June 8.

8.0 LIMITATIONS

This report has been prepared for the exclusive use of Emerybay Commercial Association, their authorized representatives and assigns, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on a review of previous investigators' findings at the site, as well as site investigations conducted by SES in 2007, 2008, and 2009. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the date of this report. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the activities completed.

APPENDIX A

Historical Groundwater Well Analytical Results

TABLE A Historical Groundwater Monitoring Well Groundwater Analytical Results Petroleum and Aromatic Hydrocarbons (µg/L) 6400 Christic Avenue, Emeryville, California

				MW	-1				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	380	17,000	NA	8,600	940	250	570	NA
2	May-89	130	24,000	NA	16,000	2,100	300	1,200	NA
3	Feb-91	<10	22,000	NA	6,800	3,500	410	2,000	NA
			Monitor	ing well abanc	loned - date u	nclear			

	MW-2												
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE				
1	Dec-88	72	22	NA	< 0.5	< 0.5	<0.5	< 0.5	NA				
2	May-89	40	18	NA	< 0.5	< 0.5	<0.5	< 0.5	NA				
3	Feb-91	83	<10	NA	< 0.3	< 0.3	<0.3	<0.6	NA				
	Monitoring well abandoned - date unclear												

				MW	-3				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	<10	4,200	NA	77	1,400	140	560	NA
2	May-89	110	1,800	NA	64	250	61	110	NA
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	3,400	440	3,900	< 0.5	<0.5	1.5	<1.0	9.7
5	Dec-06	350	280	230	< 0.5	<0.5	<0.5	< 0.5	2.0
6	Dec-07	960	150	NA	0.54	0.54	<0.5	< 0.5	<2.0
7	Mar-08	6,600	450	NA	< 0.5	< 0.5	1.8	2.0	4.3
8	Jun-08	4,500	440	NA	< 0.5	< 0.5	4.0	2.0	9.5
9	Sep-08	1,700	280	NA	< 0.5	< 0.5	1.0	<0.5	<2.0
10	Dec-08	2,300	240	NA	< 0.5	< 0.5	1.1	< 0.5	<2.0
11	Mar-09	4,300	260	NA	1.3	< 0.5	1.8	0.5	2.9
12	Sep-09	5,000	300	NA	2.5	< 0.5	<0.5	< 0.5	<2.0
13	Mar-10	4,500	230	670	1.7	< 0.5	1.0	< 0.5	2.7
14	Sep-10	5,100	470	NA	< 0.5	0.64	<0.5	1.6	2.9
15	Mar-11	2,600	540	NA	47	28	7.6	11.8	17
16	Sep-11	7,800	290	NA	13	1.5	< 0.50	2.0	9.5
17	Mar-12	1,900	430	NA	3.3	< 0.5	<0.5	2.5	2.7
18	Sep-12	7,200	380	NA	18	14	6.0	25.3	<2.0
19	Mar-13	15,000	470	NA	1.3	0.68	2.1	2.1	8.6
20	Sep-13	250,000	530	NA	< 0.5	< 0.5	<0.5	2.4	5.6
21	Mar-14	1,600	270	NA	1.4	<0.5	<0.5	<0.5	<2.0
22	Sep-14	21,000	530	NA	0	0	0.0	0.0	0
23	Mar-15	11,000	580	NA	29	2.7	12.0	4.4	<2.0
24	Sep-15	4,500	330	NA	0.71	0	0.0	3.2	0

				MW	-4				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	<10	100	NA	2.0	1.0	<0.5	2.0	NA
2	May-89	60	18	NA	1.0	<0.5	<0.5	< 0.5	NA
3	Feb-91	<10	<10	NA	< 0.3	<0.3	<0.3	< 0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	<50	50	<200	< 0.5	<0.5	<0.5	< 0.5	<1.0
6	Dec-07	710	<50	NA	< 0.5	<0.5	<0.5	< 0.5	<2.0
7	Mar-08	680	57	NA	< 0.5	< 0.5	< 0.5	<0.5	<2.0
8	Jun-08	620	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
9	Sep-08	440	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
10	Dec-08	730	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	<2.0
11	Mar-09	940	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
12	Sep-09	660	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
13	Mar-10	680	<50	380	< 0.5	< 0.5	<0.5	< 0.5	<2.0
14	Sep-10	770	71	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
15	Mar-11	590	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	2.4
16	Sep-11	380	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
17	Mar-12	340	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
18	Sep-12	350	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	<2.0
19	Mar-13	390	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
20	Sep-13	250	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
21	Mar-14	380	<50	NA	< 0.5	<0.5	<0.5	< 0.5	<2.0
22	Sep-14	380	0	NA	0	0	0	0	0
23	Mar-15	NA	NA	NA	NA	NA	NA	NA	NA
24	Sep-15	370	120	NA	0	0	0	0	0

				MW	-5				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	530	890	NA	<1.0	<1.0	1.0	3.0	NA
2	May-89	90	5.0	NA	1.0	<0.5	<0.5	< 0.5	NA
3	Feb-91	58	<10	NA	0.6	< 0.3	<0.3	< 0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	330	<25	<200	0.6	<0.5	<0.5	< 0.5	<1.0
6	Dec-07	5,100	1.3	NA	1.3	< 0.5	<0.5	1.23	<2.0
7	Mar-08	4,500	<50	NA	0.53	< 0.5	< 0.5	<0.5	<2.0
8	Jun-08	3,300	<50	NA	0.64	< 0.5	<0.5	< 0.5	<2.0
9	Sep-08	4,200	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.0
10	Dec-08	5,200	<50	NA	0.61	< 0.5	<0.5	<0.5	<2.0
11	Mar-09	5,800	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
12	Sep-09	5,600	<50	NA	< 0.5	< 0.5	<0.5	<0.5	<2.0
13	Mar-10	4,300	<50	5,400	4.9	< 0.5	<0.5	<0.5	<2.0
14	Sep-10	4,500	<50	NA	0.58	< 0.5	<0.5	<0.5	2.0
15	Mar-11	4,900	<50	NA	1.3	< 0.5	<0.5	<0.5	5.9
16	Sep-11	4,400	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
17	Mar-12	3,600	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	<2.0
18	Sep-12	4,100	<50	NA	< 0.5	< 0.5	<0.5	<0.5	<2.0
19	Mar-13	3,900	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
20	Sep-13	3,100	<50	NA	0.65	<0.5	<0.5	<0.5	<2.0
21	Mar-14	2,300	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
22	Sep-14	3,700	0	NA	0	0	0	0	0.0
23	Mar-15	4,200	0	NA	0	0	0	0	0.0
24	Sep-15	4,400	60	NA	0	0	0	0	0.0

				MW	-6				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	<10	52	NA	1.0	< 0.5	<0.5	< 0.5	NA
2	May-89	140	31	NA	1.0	< 0.5	<0.5	< 0.5	NA
3	Feb-91	130	40	NA	0.8	< 0.3	<0.3	<0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	200	43	<200	1.1	< 0.5	<0.5	< 0.5	<1.0
6	Dec-07	1,000	<50	NA	0.98	0.81	<0.5	0.5	< 2.0
7	Mar-08	940	<50	NA	0.87	1.0	<0.5	<0.5	<2.0
8	Jun-08	1,100	56	NA	0.92	< 0.5	<0.5	< 0.5	2.9
9	Sep-08	1,000	<50	NA	0.91	< 0.5	<0.5	<0.5	<2.0
10	Dec-08	1,400	<50	NA	1	< 0.5	<0.5	< 0.5	<2.0
11	Mar-09	1,200	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
12	Sep-09	1,500	<50	NA	0.79	< 0.5	<0.5	< 0.5	<2.0
13	Mar-10	910	<50	1,500	1.9	< 0.5	<0.5	< 0.5	<2.0
14	Sep-10	1,200	72	NA	1.0	< 0.5	<0.5	< 0.5	<2.0
15	Mar-11	1,900	<50	NA	1.3	< 0.5	<0.5	< 0.5	3.9
16	Sep-11	1,900	<50	NA	1.8	< 0.5	<0.5	< 0.5	<2.0
17	Mar-12	2,300	<50	NA	0.82	< 0.5	<0.5	< 0.5	<2.0
18	Sep-12	2,200	<50	NA	0.85	< 0.5	<0.5	< 0.5	<2.0
19	Mar-13	1,600	<50	NA	0.83	< 0.5	<0.5	< 0.5	<2.0
20	Sep-13	1,100	<50	NA	1.70	< 0.5	<0.5	< 0.5	<2.0
21	Mar-14	830	65	NA	0.81	< 0.5	<0.5	< 0.5	<2.0
22	Sep-14	1,600	0	NA	0.79	< 0.5	<0.5	< 0.5	<2.0
23	Mar-15	1,200	61	NA	0.87	0.62	<0.5	< 0.5	<2.0
24	Sep-15	1.700	65	NA	0.88	0	0	0	0

				MW	-7				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in N	farch 2004		•		
1	Mar-04	1,600	490	1,900	240	100	14	56	<2.5
2	Dec-06	420	<25	470	< 0.5	<0.5	<0.5	< 0.5	<1.0
3	Dec-07	6,300	3,100	NA	640	28	48	231	<10
4	Mar-08	7,000	360	NA	140	5.8	11	58	<2.0
5	Jun-08	5,400	1,700	NA	480	15	28	139	<2.0
6	Sep-08	9,400	1,200	NA	330	12	21	88	<2.0
7	Dec-08	8,700	2,200	NA	640	100	43	185	<4.0
8	Mar-09	8,700	1,700	NA	510	33	47	220	<10
9	Sep-09	6,800	620	NA	310	9.5	27	117	<10
10	Mar-10	8,700	330	6,800	68	2.2	10	31.6	<2.0
11	Sep-10	10,000	1,300	NA	580	54	35	163	<20
12	Mar-11	8,100	630	NA	160	5.3	14	65	<2.0
13	Sep-11	8,000	2,900	NA	900	46	51	284	<2.0
14	Mar-12	7,900	740	NA	220	150	14	140	<2.0
15	Sep-12	10,000	1,700	NA	660	35	32	137	<2.0
16	Mar-13	8,600	3,000	NA	950	39	30	149	<33
17	Sep-13	12,000	2,100	NA	540	29	17	89	<29
18	Mar-14	8,200	1,900	NA	440	22	14	63	<29
19	Sep-14	11,000	1,200	NA	330	21	5.8	68	<29
20	Mar-15	7,700	900	NA	260	13	8.8	47.8	7.1
21	Sep-15	10,000	1,000	NA	280	16	10	52.9	21

				MW	-8				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in N	farch 2004				
1	Mar-04	140,000	51,000	56,000	19,000	720	2,400	3,300	<50
2	Dec-06	2,400	29,000	<380	13,000	<100	640	500	<200
3	Dec-07	5,900	30,000	NA	11,000	180	650	561	<100
4	Mar-08	21,000	47,000	NA	10,000	260	1,200	458	<2.0
5	Jun-08	7,300	27,000	NA	9,300	140	790	290	<2.0
6	Sep-08	13,000	35,000	NA	11,000	190	900	402	<100
7	Dec-08	7,600	19,000	NA	6,800	110	380	236	<50
8	Mar-09	10,000	22,000	NA	9,400	200	640	358	<50
9	Sep-09	9,200	26,000	NA	8,600	100	630	230	170
10	Mar-10	11,000	19,000	1,900	6,200	120	830	149	<2.0
11	Sep-10	7,600	7,800	NA	8,800	110	620	212	<100
12	Mar-11	8,800	19,000	NA	8,100	130	890	149	<2.0
13	Sep-11	18,000	13,000	NA	8,000	140	860	178	<2.0
14	Mar-12	9,800	380	NA	100	3	5.9	20	<2.0
15	Sep-12	24,000	73,000	NA	18,000	520	2,300	670	<2.0
16	Mar-13	38,000	39,000	NA	9,400	160	1,600	255	<50
17	Sep-13	2,100	14,000	NA	3,800	140	35	86	440
18	Mar-14	13,000	23,000	NA	6,800	96	620	200	<200
19	Sep-14	13,000	15,000	NA	4,100	65	300	100	0
20	Mar-15	20,000	36,000	NA	8,200	150	910	160	< 170
21	Sep-15	9,400	23,000	NA	7,100	100	510	267	0

				MW	-9				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in N	farch 2004				
1	Mar-04	1,300	95	1,500	4.7	0.68	<0.5	<1.0	< 0.5
2	Dec-06	<50	92	<200	2.8	<0.5	<0.5	< 0.5	<1.0
3	Dec-07	8,400	84	NA	4.7	1.1	<0.5	1.9	<2.0
4	Mar-08	8,600	100	NA	4.1	1.1	<0.5	<0.5	2.0
5	Jun-08	5,900	98	NA	4.9	< 0.5	<0.5	< 0.5	2.3
6	Sep-08	9,300	130	NA	4.6	< 0.5	<0.5	< 0.5	<50
7	Dec-08	7,800	95	NA	4.0	0.54	<0.5	<0.5	<2.0
8	Mar-09	9,400	130	NA	4.6	< 0.5	<0.5	< 0.5	<2.0
9	Sep-09	8,200	98	NA	4.0	< 0.5	<0.5	< 0.5	<2.0
10	Mar-10	6,500	140	4,000	5.2	< 0.5	<0.5	< 0.5	<2.0
11	Sep-10	6,400	170	NA	4.8	0.77	<0.5	< 0.5	<2.0
12	Mar-11	11,000	150	NA	5.9	0.61	<0.5	0.5	<2.0
13	Sep-11	9,400	62	NA	4.2	< 0.5	<0.5	< 0.5	<2.0
14	Mar-12	9,400	140	NA	6.2	0.61	<0.5	0.51	<2.0
15	Sep-12	10,000	130	NA	7.2	< 0.5	0.53	0.92	<2.0
16	Mar-13	8,500	170	NA	14.0	0.73	0.7	0.63	<2.0
17	Sep-13	11,000	130	NA	12.0	<0.5	0.92	<0.5	4.9
18	Mar-14	7,300	140	NA	9.8	2	<0.5	< 0.5	<2.0
19	Sep-14	10,000	120	NA	8.6	2	0.55	0	0
20	Mar-15	9,000	310	NA	8.7	0.75	<0.5	1.25	<2.0
21	Sep-15	11,000	190	NA	8.0	0.71	0	0.87	0

				MW	10				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in N	farch 2004				
1	Mar-04	840,000	14,000	<100,000	4,000	77	200	120	<50
2	Dec-06	19,000	12,000	<4,000	4,600	42	90	52	<50
3	Dec-07	4,700	13,000	NA	5,300	96	42	86	<50
4	Mar-08	280,000	10,000	NA	2,600	50	37	58.7	22
5	Jun-08	4,800	10,000	NA	3,800	62	24	61	<2.0
6	Sep-08	4,700	1,200	NA	350	11	3.4	11	< 2.0
7	Dec-08	3,200	2,900	NA	550	45	15	56	<20
8	Mar-09	6,200	8,200	NA	890	46	78	130	<20
9	Sep-09	6,100	1,400	NA	1,200	35	19	31	<20
10	Mar-10	3,900	7,800	960	1,200	46	34	56	54
11	Sep-10	3,500	3,400	NA	1,500	47	18	44	<40
12	Mar-11	4,500	3,700	NA	1,200	81	25	46.4	< 2.0
13	Sep-11	3,800	4,600	NA	720	49	26	52.4	<2.0
14	Mar-12	3,500	2,400	NA	240	27	10	33.6	<2.0
15	Sep-12	13,000	6,600	NA	1,800	89	130	46	<2.0
16	Mar-13	24,000	15,000	NA	1,300	66	130	94	<50
17	Sep-13	3,800	4,600	NA	900	87	29	56	<42
18	Mar-14	3,300	6,200	NA	940	43	<0.5	53	<40
19	Sep-14	42,000	7,000	NA	1,500	68	28	36	0
20	Mar-15	7,300	6,500	NA	640	53	44	22	<67
21	Sep-15	11,000	190	NA	8	1	0	0.87	0

				MW	-11				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBI
				Installed in	May 2004				
1	Dec-06	<50	920	<200	26	4.5	1.8	5.4	<1.0
2	Dec-07	6,900	1,500	NA	320	44	53	140	<2.0
3	Mar-08	7,500	1,200	NA	120	7.6	10	24.9	3.0
4	Jun-08	5,100	2,000	NA	190	11	7.7	16.3	<2.0
5	Sep-08	5,600	2,200	NA	260	20	34	60	<2.0
6	Dec-08	7,800	2,100	NA	270	14	7.6	15.6	<2.0
7	Mar-09	7,100	1,400	NA	200	6.4	7.3	10.4	< 2.0
8	Sep-09	6,400	1,900	NA	320	13	9.8	15.2	2.0
9	Mar-10	6,500	1,600	6,900	150	<0.5	3.9	12.8	2.9
10	Sep-10	5,500	1,300	NA	330	15	9.2	17.3	<2.0
11	Mar-11	6,500	3,400	NA	1300	22	9.6	19.9	<2.0
12	Sep-11	4,400	3,600	NA	1200	36	16	39.1	< 2.0
13	Mar-12	4,600	5,700	NA	2100	27	12	16.7	<2.0
14	Sep-12	5,200	4,100	NA	1,500	33	<0.5	18	< 2.0
15	Mar-13	8,400	1,800	NA	97	18	19	30	<2.0
16	Sep-13	7,900	1,900	NA	60	<0.5	3.6	13	27.0
17	Mar-14	5,700	2,000	NA	60	<0.5	3.8	14.2	<2.0
18	Sep-14	7,800	2,000	NA	89	0	6	14.4	0.0
19	Mar-15	7,900	1,600	NA	140	14	5.3	15.5	61.0
20	Sep-15	8,000	1,300	NA	110	16	2.1	20.4	0.0

				MW	-12				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	May 2004				
1	Dec-06	<50	19,000	<200	9,100	51	<50	110	<100
2	Dec-07	2,700	17,000	NA	8,000	110	25	115	<40
3	Mar-08	3,300	33,000	NA	9,200	140	85	116	< 2.0
4	Jun-08	3,000	17,000	NA	6,600	95	50	110	< 2.0
5	Sep-08	3,100	14,000	NA	6,200	79	18	83	<10
6	Dec-08	3,600	19,000	NA	7,900	140	72	124	<50
7	Mar-09	4,100	14,000	NA	6,100	150	130	111	<40
8	Sep-09	3,000	1,900	NA	4,500	80	14	51	<40
9	Mar-10	4,000	15,000	1,900	6,200	110	73	101	< 2.0
10	Sep-10	3,100	4,900	NA	5,900	97	47	73	<100
11	Mar-11	3,300	15,000	NA	7,900	180	200	127	<2.0
12	Sep-11	1,800	8,600	NA	2,700	85	31	63	<2.0
13	Mar-12	2,500	17,000	NA	6,300	160	180	124	<2.0
14	Sep-12	2,300	10,000	NA	4,600	160	210	85	<2.0
15	Mar-13	9,800	9,100	NA	2,600	110	170	111	<2.0
16	Sep-13	7,800	9,400	NA	2,400	130	130	125	520
17	Mar-14	7,800	10,000	NA	2,500	89	68	55	<100
18	Sep-14	4,000	6,500	NA	1,500	110	26	59.9	0
19	Mar-15	3,500	14,000	NA	3,800	120	82	73	66
20	Sep-15	3,100	13,000	NA	4,300	110	52	71	0

				MW-	-13				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	April 2004				
1	Dec-06	12,000	87,000	2,100	18,000	470	2,400	3,500	<400
2	Dec-07	NA	68,000	NA	19,000	650	1,700	2,440	<100
3	Mar-08	1,100,000	98,000	NA	19,000	820	2,300	3,190	<100
4	Jun-08	71,000	44,000	NA	12,000	510	1,600	1,950	<2.0
5	Sep-08	440,000	52,000	NA	<100	500	1,600	1,500	<100
6	Dec-08	1,100,000	2,700,000	NA	23,000	<250	40,000	45,000	<1,000
7	Mar-09	2,000,000	330,000	NA	25,000	1,300	6,400	8,500	<1,000
8	Sep-09	38,000	1,400,000	NA	19,000	2,500	19,000	21,300	<1,000
9	Mar-10	15,000	43,000	670	12,000	310	1,600	1,140	<2,500
10	Sep-10	3,100,000	1,700,000	NA	21,000	2,300	30,000	17,200	7,000
11	Mar-11	13,000	86,000	NA	7,900	180	200	127	<2.0
12	Sep-11	15,000	49,000	NA	16,000	380	1900	850	<2.0
13	Mar-12	1,100,000	260,000	NA	23,000	1500	5700	4100	<2.0
14	Sep-12	7,200,000	60,000	NA	22,000	580	2,100	1,700	<2.0
15	Mar-13	23,000	27,000	NA	5,600	260	1,300	1,080	<200
16	Sep-13	39,000	19,000	NA	3,400	180	760	515	<200
17	Mar-14	19,000	20,000	NA	3,700	120	710	361	<200
18	Sep-14	11,000	16,000	NA	2,400	70	460	253	0
19	Mar-15	11,000	14,000	NA	2,200	76	430	160	<100
20	Sep-15	8,300	13,000	NA	3,100	78	440	255	0

				MW	-14				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in .	April 2004				
1	Dec-06	<50	8,300	<200	3,700	240	230	260	<50
2	Dec-07	2,600	6,800	NA	3,100	150	220	168	<20
3	Mar-08	4,400	18,000	NA	4,400	330	340	245	<2.0
4	Jun-08	2,600	7,700	NA	2,600	180	200	141	<2.0
5	Sep-08	2,500	4,100	NA	1,300	50	80	61	<10
6	Dec-08	2,800	2,300	NA	830	27	45	30.7	<10
7	Mar-09	3,200	13,000	NA	4,300	870	260	283	<50
8	Sep-09	2,100	550	NA	630	14	28	17	<20
9	Mar-10	3,900	6,700	3,100	2,400	400	140	185	<20
10	Sep-10	2,500	2,000	NA	1,700	44	98	89	<40
11	Mar-11	2,800	16,000	NA	6,600	1600	450	600	< 2.0
12	Sep-11	5,900	20,000	NA	6,600	690	550	740	<2.0
13	Mar-12	4,400	13,000	NA	3,000	1400	340	870	< 2.0
14	Sep-12	9,900	31,000	NA	4,800	2400	740	2,450	<2.0
15	Mar-13	21,000	11,000	NA	2,300	340	280	371	<50
16	Sep-13	24,000	7,200	NA	1,900	200	160	197	<83
17	Mar-14	8,200	6,900	NA	2,100	220	170	155	<110
18	Sep-14	8,500	7,100	NA	1,600	220	120	180	0
19	Mar-15	11,000	14,000	NA	2,900	390	210	222	<100
20	Sep-15	5,500	9,500	NA	2.600	250	190	237	0

				MW	-15				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in .	April 2004				
1	Dec-06	<50	9,200	<200	3,700	<25	60	57	<50
2	Dec-07	3,300	8,100	NA	3,000	48	28	44.5	<20
3	Mar-08	3,000	13,000	NA	3,600	66	210	59.5	<64
4	Jun-08	2,900	15,000	NA	5,800	61	230	56.4	<2.0
5	Sep-08	3,400	18,000	NA	7,800	73	270	59.9	<10
6	Dec-08	3,000	20,000	NA	7,600	95	300	84.2	<50
7	Mar-09	3,400	17,000	NA	7,200	91	170	60	<50
8	Sep-09	2,700	2,300	NA	6,200	71	68	42	<50
9	Mar-10	3,700	14,000	910	5,900	74	170	69	<2.0
10	Sep-10	3,500	5,800	NA	8,100	95	170	71	<100
11	Mar-11	3,200	11,000	NA	5,600	88	110	66.1	<2.0
12	Sep-11	2,200	15,000	NA	6,400	100	71	77.7	<2.0
13	Mar-12	3,500	16,000	NA	7,200	110	160	177	<2.0
14	Sep-12	3,500	28,000	NA	12,000	300	380	297	<2.0
15	Mar-13	3,100	15,000	NA	6,100	170	360	266	<67
16	Sep-13	2,800	17,000	NA	4,100	92	76	144	<200
17	Mar-14	2,200	12,000	NA	3,900	75	30	54	<2.0
18	Sep-14	3,300	9,500	NA	2,600	110	22	46.7	0
19	Mar-15	8,500	16,000	NA	3,400	66	93	29	<100
20	Sep-15	3,100	10,000	NA	3,100	63	33	48	0

				MW	-16				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in .	April 2004				
1	Dec-06	<50	190	<200	11.0	1.4	<0.5	< 0.5	<1.0
2	Dec-07	8,500	71	NA	13	2.6	<0.5	1.46	< 2.0
3	Mar-08	12,000	60	NA	11	0.73	<0.5	< 0.5	< 2.0
4	Jun-08	10,000	120	NA	13	2.2	<0.5	< 0.5	2
5	Sep-08	8,200	64	NA	9.9	1.9	<0.5	< 0.5	< 2.0
6	Dec-08	8,800	60	NA	11	2.8	<0.5	0.53	<2.0
7	Mar-09	14,000	78	NA	12	2.3	<0.5	< 0.5	<2.0
8	Sep-09	10,000	51	NA	9.3	1.6	<0.5	< 0.5	2.2
9	Mar-10	12,000	70	4,700	12	2.1	0.56	1.35	<2.0
10	Sep-10	9,800	77	NA	12	1.9	<0.5	0.55	2
11	Mar-11	9,900	64	NA	13	1.6	<0.5	2.3	16
12	Sep-11	10,000	74	NA	17	2.3	<0.5	1.33	<2.0
13	Mar-12	8,400	66	NA	12	1.8	<0.5	1.07	<2.0
14	Sep-12	7,700	84	NA	17	1.5	0.57	0.69	<2.0
15	Mar-13	8,100	80	NA	15	1.4	<0.5	0.75	<2.0
16	Sep-13	9,800	66	NA	13	1.7	<0.5	1.38	<2.0
17	Mar-14	5,900	76	NA	11	1.2	<0.5	0.94	<2.0
18	Sep-14	10,000	110	NA	14	1.5	0	0	0
19	Mar-15	9,500	200	NA	34	2.4	2.5	1.82	<2
20	Sep-15	6.200	110	NA	10	1.1	0	0	0

				MW-	17				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	April 2004				
1	Dec-06	<50	14,000	<200	3,400	1,100	480	< 0.5	<1.0
2	Dec-07	2,900	5,000	NA	1,100	260	110	206	<10
3	Mar-08	3,100	6,800	NA	1,200	110	91	94	21
4	Jun-08	2,900	7,200	NA	1,100	45	75	66	< 2.0
5	Sep-08	3,300	5,500	NA	900	63	69	69	<10
6	Dec-08	3,200	7,100	NA	1,100	530	190	390	<10
7	Mar-09	3,000	5,400	NA	770	150	87	161	< 2.0
8	Sep-09	3,000	2,200	NA	120	3.1	11	1.6	< 2.0
9	Mar-10	3,400	5,000	1,900	910	66	73	93	<2.0
10	Sep-10	2,800	3,500	NA	1,400	62	46	76	<40
11	Mar-11	3,900	6,100	NA	1,100	44	55	70	< 2.0
12	Sep-11	2,400	4,600	NA	850	49	51	64	<2.0
13	Mar-12	2,200	5,800	NA	1,500	57	58	67	< 2.0
14	Sep-12	1,400	4,800	NA	1,300	45	100	41	< 2.0
15	Mar-13	2,900	7,200	NA	1,200	89	220	110	<25
16	Sep-13	2,100	8,000	NA	1,400	150	220	122	<67
17	Mar-14	2,600	8,600	NA	1,800	150	320	118	<67
18	Sep-14	3,000	7,900	NA	1,500	160	130	91	0
19	Mar-15	3,200	9,800	NA	1,600	220	120	136	57
20	Sep-15	3,700	8,100	NA	1,800	160	90	143	0

				MW	-18				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	May 2004				
1	Dec-06	<50	120	<200	22	6.2	3.2	6.2	<2.0
2	Dec-07	8,600	<50	NA	0.98	< 0.5	<0.5	< 0.5	<2.0
3	Mar-08	9,800	<50	NA	0.52	< 0.5	<0.5	< 0.5	2.0
4	Jun-08	8,800	<50	NA	<0.5	<0.5	<0.5	< 0.5	3.1
5	Sep-08	8,600	<50	NA	<0.5	< 0.5	<0.5	< 0.5	<2.0
6	Dec-08	9,300	<50	NA	<0.5	< 0.5	<0.5	< 0.5	<2.0
7	Mar-09	10,000	<50	NA	< 0.5	< 0.5	<0.5	< 0.5	<2.0
8	Sep-09	11,000	<50	NA	< 0.5	< 0.5	< 0.5	<0.5	<2.0
9	Mar-10	9,400	<50	2,700	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
10	Sep-10	6,400	1,800	NA	2200	45	64.0	78.0	<50
11	Mar-11	10,000	68	NA	5.5	1.1	< 0.5	1.3	17
12	Sep-11	9,800	<50	NA	0.58	< 0.5	< 0.5	< 0.5	<2.0
13	Mar-12	9,200	<50	NA	< 0.5	<0.5	< 0.5	<0.5	<2.0
14	Sep-12	11,000	160	NA	5.1	< 0.5	5.7	0.6	<2.0
15	Mar-13	9,600	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
16	Sep-13	11,000	<50	NA	0.52	< 0.5	<0.5	<0.5	<2.0
17	Mar-14	8,200	<50	NA	0.52	< 0.5	<0.5	<0.5	<2.0
18	Sep-14	12,000	0	NA	0	0	0.0	0.0	0
19	Mar-15	10,000	69	NA	6	< 0.5	<0.5	<0.5	0
20	Sep-15	9,700	0	NA	0	0	0.0	0.0	0

				MW	-E				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	100	5,400	NA	3,200	690	97	330	NA
2	May-89	NS	NS	NS	NS	NS	NS	NS	NS
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	470	810	<500	340	6.1	2.2	7.7	<1.0
5	Dec-06	280	1,900	<200	910	<10	10	<10	<20
6	Dec-07	6,900	7,000	NA	3,300	50	51	80	<20
7	Mar-08	6,300	2,700	NA	780	17	20	20.9	12
8	Jun-08	5,200	7,400	NA	2,900	43	85	50	<2.0
9	Sep-08	7,800	11,000	NA	3,800	170	130	257	<50
10	Dec-08	9,400	9,100	NA	3,400	110	180	182	<50
11	Mar-09	5,600	850	NA	270	7.5	13	17.5	<2.0
12	Sep-09	6,200	540	NA	1,200	22	37	37.2	<2.0
13	Mar-10	3,800	2,400	5,100	1,000	20	37	26.9	4.9
14	Sep-10	6,600	1,800	NA	2,200	45	64	78	<50
15	Mar-11	5,900	4,400	NA	2,600	46	64	90	<50
16	Sep-11	7,600	3,600	NA	4,500	150	340	402	<2.0
17	Mar-12	5,800	6,500	NA	2,600	50	52	84	<2.0
18	Sep-12	8,300	7,800	NA	5,500	190	430	431	<2.0
19	Mar-13	7,700	21,000	NA	5,900	210	850	970	<50
20	Sep-13	9,400	15,000	NA	3,800	120	470	351	200
21	Mar-14	5,600	9,500	NA	3,200	110	240	178	<140
22	Sep-14	7,800	6,800	NA	1,800	55	86	87	0
23	Mar-15	12,000	6,800	NA	2,200	70	140	131	<67
24	Sep-15	11,000	22,000	NA	6,400	230	750	810	120

				RW	-1				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	NS	NS	NS	NS	NS	NS	NS	NS
2	May-89	NS	NS	NS	NS	NS	NS	NS	NS
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	<50	640	<200	100	1.3	2	1.6	<1.0
6	Dec-07	2,100	770	NA	110	< 0.5	3.8	1.96	<2.0
7	Mar-08	11,000	890	NA	100	4.2	4.4	2.0	<2.0
8	Jun-08	1,500	1,200	NA	290	4.8	10	4.8	<2.0
9	Sep-08	1,900	1,400	NA	280	9.8	10	6.7	<2.0
10	Dec-08	54,000	1,100,000	NA	500	<250	3,200	530	<1,000
11	Mar-09	2,800	950	NA	180	3.6	13	3	<2.0
12	Sep-09	770	350	NA	120	3.1	11	2	<2.0
13	Mar-10	810	200	<300	<0.5	< 0.5	<0.5	< 0.5	<2.0
14	Sep-10	980	860	NA	170	4.0	5.6	2.8	8.0
15	Mar-11	810	310	NA	15	4.4	2.5	3.9	8.8
16	Sep-11	440	230	NA	28	2.7	1.7	1.5	<2.0
17	Mar-12	1,900	502	NA	70	2.0	2.2	2.1	<2.0
18	Sep-12	890	790	NA	150	9.6	5.5	12.0	<2.0
19	Mar-13	2,800	280	NA	2.7	1.7	2.5	1.9	<2.0
20	Sep-13	1,500	420	NA	10.2	6.0	<0.5	5.7	8.2
21	Mar-14	4,700	410	NA	1.3	1.0	2.4	3.4	2.8
22	Sep-14	1,000	440	NA	41	0.9	1.5	2.2	2.8
23	Mar-15	2,300	710	NA	100	3.8	6.6	131.0	<2
24	Sep-15	660	450	NA	75	4.2	1.4	0.0	0.0

Notes
The 1988, 1989, and 1991 sampling events were conducted by Oroundwriter Technology, Inc.
The 2004 and 2006 sampling events were conducted by PES Environmental
NS – Not sample
NS – Not sample
NS – Not enablyced for this constituent
All concentrations shown in µg f.

APPENDIX B

Groundwater Monitoring Field Data Sheets

WELL GAUGING DATA

Project # 150 %	2-DS (_ Date 9 - 28	ris Clie	ent Stella	ar env

Site Pay conto Apartments Emergille, CA

Well ID	Time	Well Size (in.)	Sheen / Odor		Thickness of Immiscible Liquid (ft.)	Immiscibles Removed	(量) ちゅうきょうきょうきゅう しょうほうしょう しょうしゅうしょ	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
MW-3	1106	2_		7.22	1.78		9.00			
MW- 4	0945	2					7.68	2486		
mw-8	0951	2					9.7%	2482		
mw-6	0958	2					9.09	23.32		
mw-)	1010	3/83/L					10.54	1980		
MW-B	1046	3/4	Shewy	993	0.05		9.98			
mω-9	1013 =	314"			`		10.05	19.70		
MWYO	105(3/4"	sheven/ oder	934	0.35		9.69	g garagement		
MW-11	1018	3/4"			-		10.48	19:70		
MW-12	1026	31411			-Nan-	Schools.	9.65	18.98		
MW-13	1054	3/4"	shenl	9.57	0.02		9.59	_	The state of the s	
MW-14	11058	74"					9.41	19.50	1	
MW-13	1102	3/4"					9.85	18.65		
MW-16	MINESH	3/4"			-	-	8.50 4.85 (P)	19:10 14:15 (8)	The state of the s	
MW-17		3/4"		-	-	-		19:50		
MW-18	1035	3/4"	-	-		_	8,69	19.57		
MW-E	1046	2					10.07	47,40	7	

WELL GAUGING DATA

Project #_	15092	120-8	Date _	9	-26	15	Client	Stella	renv.
Site	<u>Saz</u>	anter	0,00	HW	ents	Em)	11. CA	

Well ID	Time	Well Size (in.)	Sheen / Odor	Liquid (ft.)	of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
RW~1	1111	10	OPOR	very mich			9.69	-	V	SP4+
										SPH + thick ganze Accom

WELLHEAD INSPECTION CHECKLIST

Page ____ of __ Z

Client Stulo	enviv	me	Mal		Date	9-28	15	
Site Address	Bay Con	ter f	too Am	onts				
Client State Site Address Job Number	15092	6-081	**************************************	Tech	nician	DC_		
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
mw-3					NL			
MW-4					Stimuseum			
mw-5					2400			
mw-6								
mu-7								
mw-8			,		***************************************			
00W-9					and the same of th			
mw-10					Constitution to Grant			
mw~11					eriori svicanti adicase			
mw-12				4				
MW-13	·				ACAMADA PARA			
MUILY				. 1	Security and the securi			
		·						
mw-15								
MW-17								
mw-18					4			
NOTES:	_	<u> </u>						

					**************************************	***************************************	**************************************	
							,	

WELLHEAD INSPECTION CHECKLIST

Page 2 of 2

Client Stelle	ar enviv	oment	eil_		Date	9-28	-15	
Site Address	Bay cen	Her A	pe Am	onts				
ClientSite Address	50928-	-02/		Tech	nician	DS		
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
MW-E	V							
MW-E RW-1	/							
			,			`		
				· ·				
	:				**************************************			
		·						
NOTES:		L						L
			C T T T T T T T T T T T T T T T T T T T			*		

					2			
		· · · · · · · · · · · · · · · · · · ·						

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ЛЕ			PROJECT NUMBER					
EQUIPMENT · NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP	INITIALO		
Ultrameter	BTS	9-28-15	10.7,4	3900	ok	Zorc	INITIALS		
· · · · · · · · · · · · · · · · · · ·		0640	12 C) 7 W	Name and a					
Whameter	BLS	9/28/15	3200con	3201	ok	20°C	Ba		

		,		O Z LAZ I O				
Project #:	150928-I	OS1		Client:	Stellar F	Environmental So	lutions @ Bay Center Apts	
Sampler: 7	>5			Date:		9/29/15		
Well I.D.:	MW-3			Well D	iametep	2 3 4	6 8	
Total Well	Depth (TE)): で	200	Depth to Water (DTW): 9.00				
Depth to Fr	ee Produc	t: 7	22	1		ree Product (fe		
Referenced	to: 🕻	PVC	Grade	D.O. M	leter (if	req'd):	YSI HACH	
DTW with	80% Rech	arge [(ŀ	Height of Water	Column	ı x 0.20) + DTW]:		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic etion Pump			Disposable Bailer Extraction Port Dedicated Tubing : Mu Tubin	
(Case Volume	Gals.) X Speci	fied Volun	= Calculated Vo	_Gals.	Well Diamete 1" 2" 3"	er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 er radius² * 0.163	
Time	Temp (°F or °C)	рН	Cond. (mS or μS)	Turb (NT	•	Gals. Removed	Observations	
1244	*Star	a pu	rge K	a 500) onle	nin		
	水 0.	TW:	9,081					
X1250	* en	d	ourso/s	ampl	~) C	ollected		
			1					
		,			:			
Did well dev	water?	Yes /	No	Gallons	actuall	y evacuated: 1	29 Alm	
Sampling D	ate: 9/27/	15	Sampling Time	: 129	 5	Depth to Water	A: 9.17_	
Sample I.D.	: MW- 3			Laborat	ory:	Curtis & Tom	okins	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenat	tes (5)	Other: See CO	C	
EB I.D. (if a	pplicable)	•	@ Time	Duplica	te I.D. ((if applicable):		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenat	tes (5)	Other:		
D.O. (if req'o	d): Pr	e-purge:		mg/L	Po	ost-purge:	$^{ m mg}/_{ m L}$	

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

O.R.P. (if req'd):

Pre-purge:

mV

Post-purge:

mV

				and the second of the second o			
Project #: 150928-DS1		Client: Stellar Environmental Solutions @ Bay Center Apt					
Sampler: AC		Date:	9/28/15				
Well I.D.: MW- 4		Well Diameter: 2 3 4 6 8					
Total Well Depth (TD): 2	4.86	Depth to Wa	Depth to Water (DTW): 7.68				
Depth to Free Product:	manifestation and a second	Thickness of	f Free Product (fe	eet):			
Referenced to: PVC	Grade	D.O. Meter	(if req'd):	YSI (HACH)			
DTW with 80% Recharge [Height of Water	· Column x 0.	20) + DTW]:	11,12			
Purge Method: Bailer Disposable Bailer Positive Air Displacer Electric Submersible	nent Extrac Other	Waterra Peristaltic ction Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing			
2 · 75 (Gals.) X 3 1 Case Volume Specified Vol	$\frac{1}{1} = \frac{8.75}{\text{Calculated Vo}}$	Gals. Solume Well Dia 1" 2" 3"	meter Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 5 1.47 18 18 19 19 19 19 19 19			
Time Temp (For °C) pH	Cond. (mS or us)	Turbidity (NTUs)	Gals. Removed	Observations			
1229 68.5 7.30	1704	97	2.75				
1234 68,4 6.91	1669	107	5.50				
1239 68.2 6.94	1661	64	8.25				
Did well dewater? Yes	(No	Gallons actua	ally evacuated:	8.25 m			
Sampling Date: 9/28/15	Sampling Time	e: 1249	Depth to Wate	or: \$5 7.70			
Sample I.D.: MW- 4		Laboratory:	Curtis & Tom	pkins			
Analyzed for: TPH-G BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other: See CO				
EB I.D. (if applicable):	@ Time	Duplicate I.D	. (if applicable):				
Analyzed for: трн-с втех	MTBE TPH-D	Oxygenates (5)	Other:				
O.O. (if req'd): Pre-purge		$^{\mathrm{mg}}/_{\mathrm{L}}$	Post-purge:	mg/ _L			

mV

Post-purge:

O.R.P. (if req'd):

•			VELL WONIE	ORINGDALA	A SHLLI	
Project #:	150928-I	OS1		Client: Stellar	Environmental Sol	lutions @ Bay Center Apt
Sampler:	AC			Date:	9 / 28/15	
Well I.D.:	MW- Ø	5		Well Diamete	r: 2 3 4	6 8
Total Well	Depth (TD)): <u>2</u>	4.82	Depth to Wate	er (DTW): 9.	74
Depth to Fr	ree Product	t:			Free Product (fe	
Referenced	to:	PVC	Grade	D.O. Meter (it	f req'd):	YSI HÁCH
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20	0) + DTW]: /	2.76
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristaltic ction Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing
2 · 4 (0 1 Case Volume	Jais. j 2x	3 ified Volum	$\frac{1}{\text{mes}} = \frac{7.2}{\text{Calculated Vol}}$	Gals. Jume	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 ₱ 5 , ♥ ♥ ⟩ 1.47 radius² * 0.163
Time	Temp (F or °C)	рН	Cond. (mS or as)	Turbidity (NTUs)	Gals. Removed	Observations
1300	67.8	7.67	2296	817	2.4	
1715	66.4	7.86	2266	860	4.8	
1320	66.2	7.94	2248	21000	7.2	
Did well dev	water?	Yes (No)	Gallons actual	ly evacuated:	7.2
Sampling D	ate: 9/28/	15	Sampling Time	: 1340	Depth to Wate	r: /2.62
Sample I.D.	: MW- 5	>		Laboratory:	Curtis & Tomp	okins
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	c
EB I.D. (if a	pplicable)	•	Time Time	Duplicate I.D.	(if applicable):	
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if reg'o	d): Pr	e-purge:		mg/ _L P	ost-purge:	mg/L

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

O.R.P. (if req'd):

Pre-purge:

mV

Post-purge:

g Walter

		· · · · · · · · · · · · · · · · · · ·	A HALOTAL CHERCH A	VIVIII DAIA	A DIEIDED E				
Project #:	150928-I	OS1		Client: Stellar I	Environmental So	lutions @ Bay Center Apt			
Sampler:	A Ĉ			Date:	9 /28/ 15				
Well I.D.:	MW- 6			Well Diameter	r: 🖄 3 4	6 8			
Total Well	Depth (TE)): 23.	32	Depth to Wate	er (DTW): 9.	09			
Depth to Fr	ee Produc	t:		Thickness of I	Thickness of Free Product (feet):				
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20) + DTW]: 1	1,94			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing			
2.3 ((1 Case Volume		ろ fied Volun	= 6,9 Calculated Vo	Gals. Gals. Well Diamer " 2" 3"	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65			
Time	Temp (°F or °C)	рН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations			
1355	65.8	11.07	1544	142	2.3				
13400	66.1	11.18	1558	113	4,6				
1405	66.0	11.22	(576	99	6.9				
Did well dev	water?	Yes (No	Gallons actuall	y evacuated:	6.9			
Sampling Da	ate: 9 /28/	15	Sampling Time	e: 1915	Depth to Wate	r: 9.20			
Sample I.D.:	: MW- 6			Laboratory: (Curtis & Tom	okins			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other; See CO	c)			
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'o	d): Pro	e-purge:		mg/ _L P	ost-purge:	$^{ m mg}\!/_{ m L}$			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Post-purge:

O.R.P. (if req'd):

			V LLL	IVIUIVII	URING DAI	ASHEEL					
Project #:	150928-	DS1			Client: Stellar	Environmenta	Solu	ntions @ Bay Center Ap			
Sampler:	DS				Date:	9 /28/ 15					
Well I.D.:	MW- 7				Well Diamete	er: 2 3	4	6 8 3/4"			
Total Well	Depth (TI	D): 19	.80		Depth to Wat	Depth to Water (DTW): 10,54					
Depth to Fr	ree Produc	:t:			Thickness of	Free Product	(fee	et):			
Referenced	to:	PVC	>	Grade	D.O. Meter (i	if req'd):		YSI CHÁCH			
DTW with	80% Rech	arge [(F	leight	of Water	Column x 0.2	0) + DTW]:	12	.39			
Purge Method:	Bailer Disposable I Positive Air Electric Sub	Displaceme	ent	_	Waterra Peristaltic étion Pump	Sampling Me	ethod:	Bailer Disposable Bailer Extraction Port Dedicated Tubing MewTubing			
ONS (0	Gals.) XSpec	3 ified Volum	= nes C	0.54 Calculated Vo	II 4"	neter Multiplier 0.04 0.16 0.37	Well D 4" 6" Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163			
Time	Temp (F or °C)	рН	I	Cond.	Turbidity (NTUs)	Gals. Remo	ved	Observations			
1320	58.3	8.61	IJ.	65 MS	717	0.20	,	000R			
1323	57.5	8.50		Hms	408	0.40		ODOR			
1326	56.7	8.66	12	.09ms	392	0.60		6 DOK			
						<u>a</u>		*			
Did well de	water?	Yes (Ñō		Gallons actual	lly evacuated	: 0	.00			
Sampling D	ate: 9/28	/ 15	Samp	ling Time	e: 1221	Depth to W	ater	: 12.17			
Sample I.D.	: MW- 7				Laboratory:	Curtis & To	ompl	kins			
Analyzed fo	r: TPH-G	ВТЕХ	MTBE	TPH-D	Oxygenates (5)	Other: See	COC				
EB I.D. (if a	pplicable)	*	@	Time	Duplicate I.D.	(if applicabl	e):				
Analyzed fo	r: TPH-G	BTEX	МТВЕ	TPH-D	Oxygenates (5)	Other:					
D O (if rea'	d). pr	e-purge			mg/,	Post-nurge:		$mg_{/_{I}}$			

mV

Post-purge:

O.R.P. (if req'd):

Project #:	150928-1	OS1		Client: Stellar Environmental Solutions @ Bay Center Ap					
Sampler: 1	>>			Date:	9/29/15				
Well I.D.:	MW- ⊖			Well Diamete	er: 2 3 4	6 8 (<u>3/4 ''</u>)			
Total Well	Depth (TI)):		Depth to Water (DTW): 9.98					
Depth to Fi	ree Produc	t: 9.9	3	Thickness of Free Product (feet): 0.05					
Referenced	to: 🕻	PVC	Grade	D.O. Meter (i	f req'd):	YSI HACH			
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20	0) + DTW]: <i>N/</i>	4.			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	ailer Displaceme		Waterra Peristaltic tion Pump	Sampling Method Other	l: Bailer Disposable Bailer Extraction Port Dedicated Tubing			
(0 1 Case Volume	Gals.) XSpeci	fied Volun	= nes Calculated Vo	_Gals. lume Well Diam 1" 2" 3"	eter Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 er radius² * 0.163			
Time	Temp (°F or °C)	рН	Cond. (mS or (nS)	Turbidity (NTUs)	Gals. Removed	Observations			
4031	566	498	7223			and generally in all the state of the contract			
+ 03 4				-					
1031	X Stan	· Pur	ze* Probe o	loes not Git	with tubing	,			
1034				j					
1037	* Well	Purge	1 for 6 m	inutes /s	ample colle	eted			
Did well de	water?	Yes (No	Gallons actual	ly evacuated: 🗷	# 0.3			
Sampling D	ate: 9/29/	15	Sampling Time	: 104Z	Depth to Wate	r: /0.63			
Sample I.D.	: MW-8			Laboratory:	Curtis & Tomp	pkins			
Analyzed fo	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other: See CO	C			
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):	,			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'	d): Pro	e-purge:	ne en version. En 2000 e ses sout en couract d'annéement de pour de le SANA à sit sur 6 décembre des seus	mg/L I	Post-purge:	mg/L			
ORP (if re	a'd). Pro	-nurge		mV I	Post_nurge:	mV			

Project #:	150928-I	DS1		Client	: Stellar F	Environmental So	olutions @ Bay Center Apt
Sampler:	DS			Date:		9 /28/ 15	
Well I.D.:	MW-9			Well I	Diameter	r: 2 3 4	6 8 (3/4")
Total Well	Depth (TI)): 19×	70	Depth	to Wate	er (DTW): 10.	05
Depth to Fr	ree Produc	t:		Thicks	ness of F	Free Product (fe	
Referenced	to:	PVC	Grade	D.O. N	Meter (if	req'd):	YSI HACH
DTW with	80% Rech	arge [(F	Height of Water	Colum	n x 0.20) + DTW]: //	.98
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Bailer Displaceme		Waterra Peristaltic ction Pump	a C	Sampling Method	d: Bailer Disposable Bailer Extraction Port Dedicated Tubing
O.21 ((1) 1 Case Volume		ろ ified Volum	= <u>0.63</u> mes Calculated Vol		Well Diameter 1" 2" 3"	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Il Diameter Multiplier 0.65 1.47
Time	Temp (F)or °C)	рН	Cond. (mS or (µS)	i	bidity TUs)	Gals. Removed	l Observations
1411	56.6	9.64	2791	2	<i>8</i> 8	0.25	odor, light tan
1414		967	2630	Yearaaa	8	0.50	odor, light tan
1417		9.73	2593	-	(J	0.75	odor
AND							
Did well dev	water?	Yes (No	Gallon	s actuall	ly evacuated:	0-75
Sampling Da	ate: 9/28/	/ 15	Sampling Time	2: <u>142</u>	-(Depth to Wate	er: 11.92
Sample I.D.:	: MW-9			Laborat	tory:	Curtis & Tomp	pkins
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: See CO	OC s
EB I.D. (if a	pplicable)):	@ Time	Duplic	ate I.D. ((if applicable):	
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D (Oxygena	ates (5)	Other:	
D.O. (if req'o	d): Pr	re-purge:		mg/L	P	ost-purge:	mg/L
O.R.P. (if red	q'd): Pr	e-purge:		mV	P	ost-purge:	mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

		Y	V EDEL IVIOIVI I	OMINO DATA	A DEREZEZ E	
Project #:	150928-I	OS1		Client: Stellar I	Environmental Sol	utions @ Bay Center Apt
Sampler:	DS			Date:	9/29/15	
Well I.D.:	MW- 10			Well Diameter	r: 2 3 4	6 8 (3/4")
Total Well	Depth (TE)): —		Depth to Wate	er (DTW): 9.6	9
Depth to Fr	ree Product	t: 9.3°		Thickness of F	Free Product (fe	et): 0.35
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI (HACH)
DTW with	80% Rech	arge [(I	Height of Water	Column x 0.20) + DTW]:	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displacem (ent Extrac Other	Waterra Peristaltic tion Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing
(1 Case Volume	Gals.) XSpeci	fied Volur	= Calculated Vo	Gals. Well Diamet 1" 2" 3"	er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius² * 0.163
Time	Temp (°F or °C)	рН	Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations
1053	* Star	red	Durge *	,		
1056	* probe	100	$\Gamma : \mathcal{M}_{i} \longrightarrow \mathbb{R}$	-DTW with t	ubing in we	T Tomas T T Tomas T Tomas T Tomas T T Tomas T Tomas T
1059	* Durs	e eno	led @ 6 mi	nutes and	well same	oled.*
						6
Did well de	water?	Yes (No	Gallons actuall	y evacuated: 🚜	# 0.3
Sampling D	ate: 9/29/	15	Sampling Time	: 1105	Depth to Wate	r: 10 .41
Sample I.D.	: MW-10)		Laboratory:	Curtis & Tomp	okins
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	С
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D. ((if applicable):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req'	d): Pro	e-purge:	- O beenhaarnen konst Protestaan (han de protestaan (han de protestaan (han de protestaan (han de protestaan (h	mg/ _L P	ost-purge:	$^{\mathrm{mg}}/_{\mathrm{L}}$

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Post-purge:

O.R.P. (if req'd):

Designet #:	150029	DC1		Client: Stellar Environmental Solutions @ Bay Center Apt						
Project #:	150928-1	<u> </u>		Chent: St						
Sampler:	DS			Date:		9/28/	15			
Well I.D.:	MW-//		and the second s	Well Dia	meter	: 2 3	3 4	6 8 3/4"		
Total Well	Depth (TI	D): 19~	70	Depth to Water (DTW): 10.46						
Depth to Fr	ree Produc	t:		Thicknes	ss of F	ree Prod	uct (fe	eet):		
Referenced	to:	PVC	Grade	D.O. Met	ter (if	req'd):		YSI (HACH)		
DTW with	80% Rech	arge [(F	Height of Water	Column x	k 0.20)) + DTW	7: 12.	32		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	S	Waterra Peristaltic ction Pump			g Method:	Disposable Bailer Extraction Port Dedicated Tubing Mew Jubin		
0.20 (I Case Volume	Gals.) XSpeci	b ified Volum	= O.(00 Calculated Vo	_ Gals.	ell Diamete 1" 2" 3"	er <u>Multiplie</u> 0.04 0.16 0.37	r Well 4" 6" Other	Diameter Multiplier 0.65 1.47 er radius² * 0.163		
Time	Temp (F)or °C)	рН	Cond. (mS or µS)	Turbidi (NTU:	-	Gals. Re	moved	Observations		
1452	558	8.57	2230	Çs		0.20)	ODOR		
1457	55.6	8.15	2203	27		0.40		ODOR		
图1501	59.5	8.07	2190	15		0.60		ODOR		
					,4 ₁ /4	Ř.				
ya'A										
Did well de	water?	Yes	No	Gallons a	ctuall	y evacua	ited: _c	D1 (40)		
Sampling D	ate: 9/26	/ 15	Sampling Time					r: 12,18		
Sample I.D.	: MW- 11		3	Laborator	ry:	Curtis &	z Tomp	okins		
Analyzed fo	The second	BTEX	MTBE TPH-D	Oxygenates	s (5)	Other:	See CO	C		
EB I.D. (if a	 ipplicable)):	@ Time	Duplicate	I.D. (if applic	able):	¥		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	s (5)	Other:	A.C.			
D.O. (if req'	d): Pr	re-purge:	3-, 1	mg/L	Po	ost-purge:		mg/ _L		
O.R.P. (if re	q'd): Pr	re-purge:		mV	Po	ost-purge:	ì	mV		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Project #: 150928-DS1					Client: Stellar Environmental Solutions @ Bay Center Apts			
Sampler: D 5						9 /28/ 15		
Well I.D.: MW- /2				Well I	Diameter	: 2 3 4	4 6 8 (3/4")	
Total Well Depth (TD): 18.98				Depth to Water (DTW): 9.65				
Depth to Free Product:					Thickness of Free Product (feet):			
Referenced to: PVC Grade					D.O. Meter (if req'd): YSI (HACH)			
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 11,52							11,52	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	,	Waterra Peristaltic tion Pump	;	Sampling Metho	Disposable Bailer Extraction Port Dedicated Tubing	
$\frac{O_{s} ? O}{1 \text{ Case Volume}} \text{ (Gals.) X } \frac{3}{\text{Specified Volumes}} = \frac{O \cdot 60}{\text{Calculated Vo}}$					Well Diamet	0.04 4" 0.16 6"	7 5 1	
Time	Temp (F or °C)	рН	Cond. (mS or (uS)	1	bidity ΓUs)	Gals. Remove	ed Observations	
1520	55.0	17.93	1526	15		0.20		
15241	54.7	7.85	1445	25		0.40		
1528	54.6	7.79	1427	16		0.60		
-					***************************************			
Did well dewater? Yes (Nø Gallons actually evacuated: 0.60								
Sampling D	ate: 9/28/	15	Sampling Time	: (53	8	Depth to Wat	ter: 11.38	
Sample I.D.	: MW- 1	2		Labora	tory: <	Curtis & Ton	npkins	
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See COC								
<u> </u>						(if applicable)):	
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:						Other:		
D.O. (if req'd): Pre-purge: mg/L Post-purge: mg/L								

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Post-purge:

mV

O.R.P. (if req'd):

Project #: 150928-DS1	Client: Stellar Environmental Solutions @ Bay Center Apt			
Sampler: DS	Date: 9/29/15			
Well I.D.: MW- 13	Well Diameter: 2 3 4 6 8 $(3/4'')$			
Total Well Depth (TD):	Depth to Water (DTW): 9,59			
Depth to Free Product: 9,57	Thickness of Free Product (feet): 0,02			
Referenced to: PVC Grade	D.O. Meter (if req'd): YSI HACH			
DTW with 80% Recharge [(Height of Wa	ter Column x 0.20) + DTW]:			
Purge Method: Bailer Disposable Bailer Positive Air Displacement Ex Electric Submersible Other	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer traction Pump Extraction Port Dedicated Tubing Other:			
	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65			
(Gals.) X = Calculated	Gals. 2" 0.16 6" 1.47 3" 0.37 Other radius² * 0.163			
Temp Cond. Time (F or °C) pH (mS or (LS)	Turbidity (NTUs) Gals. Removed Observations			
1115 * Began Purget				
1118 * unable to take DT	N: probe does not git with tubing in well.			
1121 * Russended@6mi				
Did well dewater? Yes No	Gallons actually evacuated: 0.4			
Sampling Date: 9 /29/15 Sampling Ti	me: //26 Depth to Water: /6.57			
Sample I.D.: MW-13	Laboratory: Curtis & Tompkins			
Analyzed for: трн-G втех мтве трн-G	Oxygenates (5) Other: See COC			
EB I.D. (if applicable):	Duplicate I.D. (if applicable):			
Analyzed for: трн-G втех мтве трн-D	Oxygenates (5) Other:			
D.O. (if req'd): Pre-purge:	mg/ _L Post-purge: mg/ _L			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Post-purge:

mV

O.R.P. (if req'd): Pre-purge:

		•					
Project #:	150928-	DS1		Client: Stellar Environmental Solutions @ Bay Center Apts			
Sampler:	DS			Date:	9/29/15		
Well I.D.:	MW- 14			Well Diameter	:: 2 3 4	6 8 (3/4")	
Total Well	Depth (TI	D): 19.5	 50	Depth to Water (DTW): 9.41			
Depth to Fr				Thickness of Free Product (feet):			
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH			
DTW with	80% Rech	arge [(I	Height of Water	Column x 0.20) + DTW]: 11,	42	
Purge Method:	Bailer Disposable E Positive Air Electric Subi	Bailer Displaceme	en e	Waterra Peristaltic ction Pump	Sampling Method:	: Bailer Disposable Bailer Extraction Port Dedicated Tubing	
0.22 (1 Case Volume	Gals.) X Z) ified Volu	= O. O. Calculated Vol	Gals. Gals.	er Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 r radius² * 0.163	
Time	Temp (°F)or °C)	рН	Cond. (mS of µS)	Turbidity (NTUs)	Gals. Removed	Observations	
1149	914	8.26	1363	21	0.25	elean	
1155	55.1	8.20	1158	2(0.50	clear	
\$P1202	54.9	8.13	1115	16	0.75	clear clear	
Did well de	water?	Yes (No	Gallons actually	y evacuated:	0.75	
Sampling D	ate: 9 27	/ 15	Sampling Time	: 1207	Depth to Water	r: //.37	
Sample I.D.	: MW-17			Laboratory: Curtis & Tompkins			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Oxygenates (5) Other: See COC		
EB I.D. (if applicable):				Duplicate I.D. (if applicable):			
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:							
D.O. (if req'	d): Pr	e-purge:		mg/L Po	ost-purge:	$^{mg}/_{L}$	

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Post-purge:

mV

O.R.P. (if req'd):

Project #:	150928-1	DS1		Client: Stellar	Environmental So	lutions @ Bay Center Apts
Sampler: 7) \$			Date:	9/29/15	
Well I.D.:	MW- 15			Well Diamete	r: 2 3 4	6 8(3/4")
Total Well	Depth (TI)): 18:{	 39	Depth to Wate	er (DTW): 9-84	3
Depth to Fi	ree Produc	t:		Thickness of	Free Product (fe	eet):
Referenced	lto: 🕻	PVC	Grade	D.O. Meter (it	f req'd):	YSI HACH
DTW with	80% Rech	arge [(I	Height of Water	Column x 0.20)) + DTW]: /(1,80
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displacem	ent Extrac Other	Waterra Peristaltic ction Pump Well Diame	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing
O.19 (1 Case Volume	Gals.) XSpeci	ろ fied Volur	mes = <u>() 57</u> Calculated Vo	Gals. 1"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47
Time	Temp (°F or °C)	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations
PHE P	54.8	7.81	1195	80	0,20	ODOR
1223	55.3	7.66	1220	5(0.40	ndor
1229	59.2	7.49	1232	31	0.60	OBOR
Did well de	water?	Yes	(No)	Gallons actual	ly evacuated:	0.60
Sampling D	ate: 9/29/	15	Sampling Time	: 1235	Depth to Wate	r: 10,61
Sample I.D.	: MW-15	5		Laboratory:	Curtis & Tomp	okins
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	С
EB I.D. (if a	pplicable)	:	@ Time	Duplicate I.D.	(if applicable):	**
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req'	d): Pr	e-purge:		mg/L P	ost-purge:	$mg_{/\mathrm{L}}$
O.R.P. (if re	q'd): Pr	e-purge:		mV P	ost-purge:	mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Project #:	150928-1	DS1		Client: Stellar I	Environmental Sol	lutions @ Bay Center Apt
Sampler:	DS			Date:	9/18/15	
Well I.D.:	MW- \			Well Diameter	r: 2 3 4	6 8 (3/4")
Total Well	Depth (TI)): 19.	90	Depth to Wate	er (DTW): 10	00
Depth to Fr	ee Produc	t:		Thickness of F	Free Product (fe	eet):
Referenced	to: 🔇	PVC	Grade	D.O. Meter (if	req'd):	YSI CHACH
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20) + DTW]: //-	90
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	The state of the s	Waterra Peristalfic tion Pump	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing
0.165 0-38 (1 Case Volume	Gals.) X Speci	3 fied Volun	= 0.5 nes Calculated Vo	Gals. Well Diamet 1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 rr radius² * 0.163
Time	Temp (F) or °C)	рН	Cond. (mS or μ S)	Turbidity (NTUs)	Gals. Removed	Observations
1240	61.3	8.51	1123	205	0.17	oder
1243	61.1	8.10	1006	73	0.34	o der
1246	61-6	7.97	984.7	29	0.51	dor
			\$ <u></u>			
Did well de	water?	Yes (No)	Gallons actuall	y evacuated: C) .51
Sampling D	ate: 9 /28/	15	Sampling Time	: 1251	Depth to Wate	r: 11.73
Sample I.D.	: MW-17	•		Laboratory:	Curtis & Tomp	okins
Analyzed fo	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other: See CO	C
EB I.D. (if a	pplicable)	:	@ Time	Duplicate I.D. ((if applicable):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	• • • • • • • • • • • • • • • • • • • •	Other:	
D.O. (if req'	d): Pr	e-purge:		mg/L P	ost-purge:	$^{ m mg}/_{ m L}$
O.R.P. (if re	q'd): Pr	e-purge:		mV Po	ost-purge:	mV

			A DESTI MANUAL	OKING DATA	* OHENE	
Project #:	150928-I	DS1		Client: Stellar F	Environmental Sol	lutions @ Bay Center Apt
Sampler: ()\$			Date:	9 /29 / 15	
Well I.D.:	MW-i6			Well Diameter	r: 2 3 4	6 8 3 4 11)
Total Well	Depth (TI)): 19.1	10	Depth to Wate	er (DTW): 8-54	0
Depth to Fr	ee Produc	t:		Thickness of F	Free Product (fe	eet):
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with	80% Rech	arge [(F	leight of Water	Column x 0.20) + DTW]: /c	0.62
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme		Waterra Peristallic ction Pump		Disposable Bailer Extraction Port Dedicated Tubing Wew Tubins
<u>0.23</u> (0.13)		ろ ified Volum		Gals. Solume Well Diameter 1" 2" 3"	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163
Time	Temp (F) or °C)	рН	Cond. (mS or μ S)	Turbidity (NTUs)	Gals. Removed	Observations
0817	57.4	10.00	3440	51	0.25	odor/brown
0821	56-8	10.13	3701	27	0,50	odor brown
0825	56.8	10.22	3190	16	0.75	odor brown
	7					,
Did well dev	water?	Yes (No	Gallons actuall	y evacuated:	0.75
Sampling D	ate: 9/29/	/ 15	Sampling Time	<i>::0</i> 830	Depth to Water	er: 10,18
Sample I.D.	: MW-16)		Laboratory:	Curtis & Tomp	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	C
EB I.D. (if a	pplicable)):	@ Time	Duplicate I.D. ((if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req'o	d): Pr	re-purge:		mg/ _L Po	ost-purge:	$^{ m mg}/_{ m L}$

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Post-purge:

mV

O.R.P. (if req'd):

		¥	V EDELD IVEOTALL	ONENO DATA	A CHEETEL	
Project #:	150928-I	DS1		Client: Stellar I	Environmental Sol	lutions @ Bay Center Apt
Sampler:	DS			Date:	9/29/15	
Well I.D.:	MW- 18			Well Diameter	r: 2 3 4	6 8 (14")
Total Well	Depth (TI	D): 19a	57	Depth to Wate	er (DTW): 8.6	
Depth to Fr	ree Produc	t:		Thickness of I	Free Product (fe	eet):
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI CHACH
DTW with	80% Rech	arge [(F	Height of Water		0) + DTW]: / O	1.86
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	Commence of the Commence of th	Waterra Peristaltic ction Pump	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing
		WITH MENTAL WATER AND ADDRESS OF THE PARTY O		Well Diamet	0.04 4"	Diameter Multiplier 0.65
0.23 (0 1 Case Volume		ろ ified Volun	$\frac{1}{\text{mes}} = \frac{0.60}{\text{Calculated Vo}}$	Gals. 2" 3"	0.16 6" 0.37 Othe	1.47 er radius ² * 0.163
Time	Temp (°F) or °C)	рН	Cond. (mS or (uS))	Turbidity (NTUs)	Gals. Removed	Observations
0841	55.2	7.63	6792	>1000	0.25	Block, odor
0846	55.2	7.56	6796	71000	0.50	Black/dow
0852	55,0	7.46	6852	71000	0.75	Block, odor Block/dorn Block/dorn
						,
ž Ž					, est	*
Did well dev	water?	Yes (No	Gallons actuall	ly evacuated:	2,75
Sampling D	ate: 9/29/	/ 15	Sampling Time	÷: 0857	Depth to Water	r: 10 .31
Sample I.D.	: MW-18	>		Laboratory:	Curtis & Tomp	okins
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	C
EB I.D. (if a	pplicable)	1:	@ Time	Duplicate I.D.	(if applicable):	
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if reg'o	d): Pr	e-purge:		mg/L P	Post-purge:	$^{ m mg}/_{ m L}$

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Post-purge:

O.R.P. (if req'd):

Project #:	150928-1	DS1		Client: Stellar I	Environmental Sol	utions @ Bay Center Apt
Sampler:	DS			Date:	9 /29 / 15	
Well I.D.:	MW- E			Well Diamete	r: (2) 3 4	6 8
Total Well	Depth (TI)): 46 ^{CC}	94 7:90	Depth to Wate	er (DTW): 47-	10.07
Depth to Fr	ee Produc	t:		Thickness of I	Free Product (fe	
Referenced	to: 🕻	PVC	Grade	D.O. Meter (if	req'd):	YSI (HACH)
DTW with	80% Rech	arge [(I	Height of Water	Column x 0.20) + DTW]: \	1.63
Purge Method:	Bailer Disposable E Positive Air I Electric Subr	Displacem	ent Extrac	1 tubins	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing Wew Tubins
<u>(6.05</u> (6 1 Case Volume	Gals.) X Speci	ろ ified Volur	$\frac{1}{1} = \frac{10.15}{\text{Calculated Vo}}$		ter Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius² * 0.163
Time	Temp (°F or °C)	pН	Cond. (mS or as)	Turbidity (NTUs)	Gals. Removed	Observations
0938	54.9	8:32	2733	1000	6.1	dark, doudy
0946	55.0	8.17	2827	[000]	12.2	dark, cloudy dark, cloudy
0958	55,2	8,29	2833	୧୧୨	18,3	dan cloudy
						(
Did well dev	water?	Yes (Ño	Gallons actual	y evacuated:	18.3
Sampling D	ate: 9 / /	/ 15	Sampling Time): 1005	Depth to Wate	r: 17.15
Sample I.D.	: MW- E			Laboratory:	Curtis & Tomp	okins
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See CO	С
EB I.D. (if a	pplicable)	\$1 _.	@ Time	Duplicate I.D.	(if applicable):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req'o	d): Pr	e-purge:		mg/L P	ost-purge:	mg/ _L

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

mV

Post-purge:

mV

O.R.P. (if req'd):

		Ψ'	LELEUR	IVE OT VE E	ORING DA	. R. I.S. OR.S	ERJEJE				
Project #:	150928-Г	OS1			Client: Stell	ar Envir	onmenta	al Solı	utions	@ Bay Cente	r Apt
Sampler: ①	>>				Date:	9 /2	29/15				
Well I.D.:	MW- RU	v-1			Well Diame	eter: 2	3	4	6	8 (10)	
Total Well I	Depth (TD)):			Depth to Wa	ater (D	TW): 4	7.6			
Depth to Fre	e Product	i: Very	tmou La Re	, unoible egosli	Thickness o	of Free	Produc	et (fee	et): 🗸	lentinch	éton
Referenced t	to: 🤇	PVC	ACCOUNT.	Grade	D.O. Meter	(if req'	d):		YSI	HACH	<u> </u>
DTW with 8	0% Recha	arge [(F	Ieight	of Water	Column x 0.	.20) + I	OTW]:				
	Bailer Disposable Ba Positive Air D Electric Subm	Displaceme		Extrac Other	Waterra Peristalfic ction Pump	Sai	mpling M	lethod:		Bailer Disposable Baile Extraction Port Dedicated Tubin	g
pa-				***************************************	Well Dia		fultiplier		Diameter		
(Gase Volume	als.) XSpecif	fied Volum	= nes <u>C</u>	alculated Vo	Gals. 1" 2" 3"	0.	.04 .16 .37	4" 6" Other		0.65 1.47 radius ² * 0.163	
Time	Temp (°F or °C)	рН	i	Cond.	Turbidity (NTUs)	Ga	ls. Remo	oved		Observations	
1312 *	3/a/1	Pure	he_		· .						
1318 *	End	Dur	2	Sam	de col	less	ed				
	· .	4	5			!*	-				

							***************************************				****************
Did well dew	vater?	Yes C	No	>	Gallons actu	ıally ev	acuate	d:	500	ml	
Sampling Da	te: 9/29/	15	Sampl	ling Time	e: /325	Dep	oth to V	Vater	:: 9.	71	
Sample I.D.:	MW-P	w-1			Laboratory:	Cur	tis & T	omp	kins		
Analyzed for	TPH-G	BTEX	МТВЕ	TPH-D	Oxygenates (5)) Othe	er: Se	e COC	3		
EB I.D. (if ap	plicable):	•	@ .	Time	Duplicate I.I		pplicab	ole):			
Analyzed for	: ТРН-G	BTEX	MTBE	TPH-D	Oxygenates (5)) Othe	er:				
D O (if rea'd)· Pre	e-nurge			mg/I	Post-pi	urge.				mg/I

mV

Post-purge:

O.R.P. (if req'd):

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 270284 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2007-65

Location : Bay Center Apts

Date: <u>10/07/2015</u>

Level : II

Sample ID	<u>Lab ID</u>
MW-7	270284-001
MW-9	270284-002
MW-11	270284-003
MW-12	270284-004
MW-4	270284-005
MW-5	270284-006
MW-6	270284-007
MW-17	270284-008
RW-1	270284-009
MW-3	270284-010
MW-15	270284-011
MW-14	270284-012
MW-13	270284-013
MW-10	270284-014
MW-8	270284-015
MW-E	270284-016
MW-18	270284-017
MW-16	270284-018

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar
Project Manager
tracy.babjar@ctberk.com
(510) 204-2226

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: 270284

Client: Stellar Environmental Solutions

Project: 2007-65

Location: Bay Center Apts

Request Date: 09/29/15 Samples Received: 09/29/15

This data package contains sample and QC results for eighteen water samples, requested for the above referenced project on 09/29/15. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

Low recoveries were observed for gasoline C7-C12 in the MS/MSD of MW-7 (lab \sharp 270284-001); the LCS was within limits, and the associated RPD was within limits. Many samples were diluted due to client history of high non-target or organic acid interference. MW-7 (lab \sharp 270284-001) had pH greater than 2. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

					Chain of	f Cus	tody R	eco	rd										Lab job no. 25	102	3
Laboratory Curns	d Ta	MPK	2143	М	ethod of Shipment	<u> </u>	DRIVE	<u>sy</u> o	•	LAS	دصر	Rve	4		.	,			Date <u>9-2</u>	of 7	_
Address 2323 Fi		1.		St	ipment No			– ,							NI.			:	· · · · · · · · · · · · · · · · · · ·	,	_
ISE ICHECE	7, ~			Ai	rbill No			_				, _	7		Analys	is Req	uired				
Project OwnerSite Address & CHOO C	HRISTI Ey, Y	IE A	₩Ĕ.	— Pr	ooler Nooject Manager 2. W oject Manager 2. Wo jephone No. <u>(510)</u> 644-		i	 -	Fill Fill	No. or o	Something of the second of the		7			7/	7	7/			
Project Name BAY CE	NTER	APA	RTM	? ✓TFa	x No(510) 644-	3859		_ /	/	ر چې /	10/4	71	75	"	/ /	/ /	/ /	/ ,	/ / Rer	marks	
Project Number 2007					mplers: (Signature)		(A)	-/	/			#7	*								
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Pre: Cooler	servation Chemical	1/	/	/			7	/	/	/_/			/		
MW-7	19'	9-2815	1331	W	ZAmbers/3VOAS		HCI		5	χ		X									
mw-9	191	T	1421		Î				5	χ		×									
MW-11	191		1500						5	X		X									
mw-12	1891		1538	W					5	Ϋ́		X									
NW-4	241		1249	w					5	Υ		X									
mw-5	241		1340	W			1		5	γ		X									
mw-6	231	Y	1415	W	Y		4		5	×		X									
mw-17	19'	A	1251	W)	•		V		5	×		×									
RW-1	15,	9/29/19	1325	W	2 Amber, 3 VOA'S		HCI		5	\star		X									
mw-3	181	1	1255						5	×		X									
mw-15	18'		1235	W					5	X	•	X									
mw-14	.191	V	1207	W	V 1		4		5	X		X									
Relinquished by: Signature		Date	Received Signati	- /X	at Lands	Date 129	Relinquished Signature .	by:				_	Date	1	ceived I	•				Date	
Printed Orrer Sur	<u> </u>	Time	Printed	19	2 tonzalez	Time	Printed						Time		Printed					— Time	
Company		411	Compa	any	<u>C97</u>	14/5	Company .								Compa	ny				<u> </u>	
Turnaround Time: 57400	ARD						Relinquished	•					Date	ľ	ceived l	•				Date	
Comments: EDF R	FOU. P	(P)					Signature .					-			Signatu	re				l	

* Stellar Environmental Solutions

1D # SLT 2005561

2198 Sixth Street #201, Berkeley, CA 94710

Time

Time

Chain of Custody Record

Lab job r	0.27	10284	
Date	7-2	9-15	
	~0	つ	

Laboratory CURTS Address 2323 Fi	FTH S	7.		s	ethod of Shipment hipment No	<u></u>		<u>-</u>	9.7	/ /		7			X Malysi				Page		<u>. Z</u>
Project Owner Site Address & CO C	HRIST EY, C	7 <i>E /</i>	かと	C	ooler No	MAKDI		_	/	No. of C.	Semantine Semant	17 5 6		3	Amalysi Amalysi	s Hequ	uirea /		//	/	
Project Name BAY Ce	SUTER		KETM	ente) 644-3859	SA	_ /	/	, ,	9) /	//	//	//			Remari	ks
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Conta	iner Pr	eservation Chemical	$\exists / \hat{\ }$		/			Y	/ ,	/ /	/ /	/ /	/ /	/		
MW-13	18'	9/29/1	1126	W	EAMVER 3V	OAS	HCI		5	7		7									
MW-10	161		1105	W					5	X		X									
mw-8	18'		1042	W					5	X		Ý					\top		***************************************		
mw-E	16'		1005	W					5	X		X									
mw-18	191		0357	W					5	×		X				\top		1			
mw-16	191	V	0830	N	V		V		5	7		7									
,																	<u></u>				
			<u> </u>													_	+	-			
Relinquished by Signature		Date 1/2/15	l	ture 1	of Horn	Date 9/23/	Relinquishe	•					Date		eived by						Da
Company 615		Time Y	Printe	(- ET	Time	Printed . Company						Time		rinted _	·	· · · · · · · · · · · · · · · · · · ·				Tin
Turnaround Time: 57401							Relinquishe	d by:	· <u>·</u>		····		Date	 	eived by						Dε
Comments: EDF P							Signature							s	ignature						
GLOBAL ID #	SLT	20	005	56			Printed _						Time	P	rinted _						Tin
				<u> </u>			Company							١ ,	ompany	,					1

COOLER RECEIPT CHECKLIST

Date Opened APAIS By (print) Date Logged in 4 By (print) TLB (sign) 1. Did cooler come with a shipping slip (airbill, etc) Shipping info 2A. Were custody seals present? YES (circle) on cooler on samples NO How many Name Date How many Name Date 2B. Were custody seals intact upon arrival? YES NO NO 4. Were custody papers dry and intact when received? YES NO NO 5. Is the project identifiable from custody papers? (If so fill out top of form) YES NO 6. Indicate the packing in cooler: (if other, describe) Bubble Wrap Foam blocks XBags None Paper towels 7. Temperature documentation: * Notify PM if temperature exceeds 6°C Type of ice used: Wet Blue/Gel None Temp(°C) Z2°C Z4	Login # _ Client	2702	STEWA	Dat	e Received	1 9 Project_	129/15	Numbe 2007 - 1	r of coole	rs 2	
Shipping info 2A. Were custody seals present? YES (circle) on cooler	Date Ope Date Log	ened 9 ged in				,		<i>→</i>	18 5		_ _
2A. Were custody seals present? YES (circle) on cooler on samples Noo How many Name Name 2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form) YES NO 6. Indicate the packing in cooler: (if other, describe) Bubble Wrap	1. Did coo	oler come	e with a sl	hipping sl	ip (airbill,	etc)			YES	S (NO	
4. Were custody papers filled out properly (ink, signed, etc)? Solution State S	2B. Were	ow many custody s	seals pres	sent? ct upon ar	☐ YES Name rival?	(circle)	on coole	Date	YES	NO (N	
Cloth material	4. Were c5. Is the p	ustody pa project ide	pers fille entifiable	d out prop from cus	erly (ink, tody paper	signed, or s? (If so	etc)?	of form	YES	NO	_
□ Samples Received on ice & cold without a temperature blank; temp. taken with IR gun □ Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present?		Cloth mate	erial	☐ Cardb	oard	☐ St	yrofoam	Ī	Paper to	wels	
□ Samples Received on ice & cold without a temperature blank; temp. taken with IR gun □ Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present?										2°C.	2.4
Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present? YES NO If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? YES NO 10. Are there any missing / extra samples? YES NO 11. Are samples in the appropriate containers for indicated tests? YES NO 12. Are sample labels present, in good condition and complete? YES NO 13. Do the sample labels agree with custody papers? YES NO 14. Was sufficient amount of sample sent for tests requested? YES NO 15. Are the samples appropriately preserved? YES NO 16. Did you check preservatives for all bottles for each sample? YES NO 16. Did you document your preservative check? YES NO 16. Did you change the hold time in LIMS for unpreserved VOAs? YES NO 16. Did you change the hold time in LIMS for preserved terracores? YES NO 16. Other was the client contacted concerning this sample delivery? YES NO 16. Other YES NO 16. Was the client contacted concerning this sample delivery? YES NO 16. Under the contacted concerning this sample delivery? YES NO 16. Other YES, Who was called? By Date:										,	-
If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 10. Are bubbles > 6mm absent in VOA samples? 11. YES NO WA 12. Was the client contacted concerning this sample delivery? 12. YES NO WA 13. Do the sample delivery? 14. Was the client contacted concerning this sample delivery? 15. Are the samples appropriately preserved terracores? 16. Did you change the hold time in LIMS for preserved terracores? 17. Did you change the hold time in LIMS for preserved terracores? 18. Did you change the hold time in LIMS for preserved terracores? 19. NO WA 10. Are bubbles > 6mm absent in VOA samples? 10. Are bubbles > 6mm absent in VOA samples? 11. Was the client contacted concerning this sample delivery? 12. YES NO WA 13. Did you document your preserved? 14. Was the client contacted concerning this sample delivery? 15. NO WA 16. Did you change the hold time in LIMS for preserved terracores? 16. Did you change the hold time in LIMS for preserved terracores? 17. Did you document your preserved terracores? 18. Did you change the hold time in LIMS for preserved terracores? 19. NO WA 10. Are bubbles > 6mm absent in VOA samples? 10. Are bubbles > 6mm absent in VOA samples? 10. Are bubbles > 6mm absent in VOA samples? 11. YES NO WA 12. Was the client contacted concerning this sample delivery? 12. YES NO WA 13. YES NO WA 14. Was the client contacted concerning this sample delivery? 16. Di										_	
COMMENTS (6.) Bubbles present in 1/3 VOA for Samples 1, 13, 14,	If You all by the same same same same same same same sam	YES, what bottles arreary menter any memples in temple laber sample laber samples u check per u docume u change to bles > 6 for e client co	at time we rive unbro dissing / ea the approp els present abels agre mount of appropria reservative ant your p the hold to mabsent ontacted contacted of	ere they trocken/unor extra samp priate cont, in good ee with cur sample so ately preseves for all reservative ime in LI ime in LI concerning to the concerning extended to the concern	ansferred to ened?les?tainers for condition stody paperent for test erved?bottles for echeck? MS for un MS for pressamples? gethis samples?	indicate and comers? reach sa preserved to tellowers.	d tests?plete? red? mple? d VOAs? _ erracores?		YES YES YES YES YES YES YES YES	PS NO PES NO PES NO NO NO NO NO NO NO NO NO NO NO NO NO N	
	COMMEN'	TS bbles	present	T în	1/3 V	10A	for	Samp	les I,	13, 1	<u>5</u> , - -

Rev 10, 9/12

Detections Summary for 270284

Results for any subcontracted analyses are not included in this summary.

Client : Stellar Environmental Solutions

Project : 2007-65

Location : Bay Center Apts

Client Sample ID : MW-7

Laboratory Sample ID :

270284-001

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	1,000		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	21	С	2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Benzene	280		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Toluene	16		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	10		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	43		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	9.9	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	10,000	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-9 Laboratory Sample ID:

270284-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	190		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	8.0		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Toluene	0.71		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	0.87	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	11,000	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-11

Laboratory Sample ID:

270284-003

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	1,300		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	110		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Toluene	16	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	2.1		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	14	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
o-Xylene	6.4	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	8,000	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Page 1 of 5 18.0

Client Sample ID: MW-12 Laboratory Sample ID: 270284-004

Analyte	Result		RL								Method
Gasoline C7-C12	13,000		1,300	ug/L	As	Recd	25.00	EPA	8015B	EPA	5030B
Benzene	4,300		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Toluene	110		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Ethylbenzene	52		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
m,p-Xylenes	53		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
o-Xylene	18	С	13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Diesel C10-C24	3,100	Y	49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: MW-4 Laboratory Sample ID: 270284-005

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	120	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Diesel C10-C24	370	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-5 Laboratory Sample ID: 270284-006

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	60	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Diesel C10-C24	4,400	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-6 Laboratory Sample ID: 270284-007

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	65	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	0.88		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	1,700	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-17 Laboratory Sample ID: 270284-008

Analyte	Result	Flags									Method
Gasoline C7-C12	8,100		1,300	ug/L	As	Recd	25.00	EPA	8015B	EPA	5030B
Benzene	1,800						25.00				
Toluene	160		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Ethylbenzene	90		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
m,p-Xylenes	90		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
o-Xylene	53	С	13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Diesel C10-C24	3,700	Y	49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Page 2 of 5

Client Sample ID : RW-1 Laboratory Sample ID : 270284-009

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	450		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	75		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Toluene	4.2	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Ethylbenzene	1.4		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	660	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID: MW-3 Laboratory Sample ID: 270284-010

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	330	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
MTBE	2.9		2.0	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Benzene	0.71		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
m,p-Xylenes	3.2	С	0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	4,500	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : MW-15 Laboratory Sample ID : 270284-011

Analyte	Result	_									Method
Gasoline C7-C12	10,000		1,300	ug/L	As	Recd	25.00	EPA	8015B	EPA	5030B
Benzene	3,100			ug/L							
Toluene	63		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Ethylbenzene	33		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
m,p-Xylenes	34		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
o-Xylene	14	С	13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Diesel C10-C24	3,100	Y	49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: MW-14 Laboratory Sample ID: 270284-012

Analyte	Result	Flags									Method
Gasoline C7-C12	9,500		2,500	ug/L	As	Recd	50.00	EPA	8015B	EPA	5030B
Benzene	2,600			ug/L							
Toluene	250		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Ethylbenzene	190		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
m,p-Xylenes	170			ug/L							
o-Xylene	67		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Diesel C10-C24	5,500	Y	49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Page 3 of 5

8 of 68

Client Sample ID: MW-13 Laboratory Sample ID: 270284-013

Analyte	Result		RL								Method
Gasoline C7-C12	13,000		1,300	ug/L	As	Recd	25.00	EPA	8015B	EPA	5030B
Benzene	3,100		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Toluene	78		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Ethylbenzene	440		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
m,p-Xylenes	210		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
o-Xylene	45		13	ug/L	As	Recd	25.00	EPA	8021B	EPA	5030B
Diesel C10-C24	8,300	Y	49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: MW-10 Laboratory Sample ID: 270284-014

Analyte	Result	Flags									Method
Gasoline C7-C12	7,300		2,500	ug/L	As	Recd	50.00	EPA	8015B	EPA	5030B
Benzene	1,300						50.00				
Toluene	62						50.00				
m,p-Xylenes	37		25	ug/L	As	Recd	50.00	EPA	8021B	EPA	5030B
Diesel C10-C24	2,700	Y	49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: MW-8 Laboratory Sample ID: 270284-015

Analyte	Result	Flags	RL	Units	Ва	asis	IDF	Met	thod	Prep	Method
Gasoline C7-C12	23,000			ug/L							
Benzene	7,100		42	ug/L	As	Recd	83.33	EPA	8021B	EPA	5030B
Toluene	100		42	ug/L	As	Recd	83.33	EPA	8021B	EPA	5030B
Ethylbenzene	510		42	ug/L	As	Recd	83.33	EPA	8021B	EPA	5030B
m,p-Xylenes	210		42	ug/L	As	Recd	83.33	EPA	8021B	EPA	5030B
o-Xylene	57		42	ug/L	As	Recd	83.33	EPA	8021B	EPA	5030B
Diesel C10-C24	9,400	Y	49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: MW-E Laboratory Sample ID: 270284-016

Analyte	Result	_	RL							_	Method
Gasoline C7-C12	22,000		1,700	ug/L	As	Recd	33.33	EPA	8015B	EPA	5030B
MTBE	120		67	ug/L	As	Recd	33.33	EPA	8021B	EPA	5030B
Benzene	6,400		17				33.33				
Toluene	230		17	ug/L	As	Recd	33.33	EPA	8021B	EPA	5030B
Ethylbenzene	750		17	ug/L	As	Recd	33.33	EPA	8021B	EPA	5030B
m,p-Xylenes	660		17	ug/L	As	Recd	33.33	EPA	8021B	EPA	5030B
o-Xylene	150	C	17	ug/L			33.33				
Diesel C10-C24	11,000	Y	49	ug/L	As	Recd	1.000	EPA	8015B	EPA	3520C

Client Sample ID: MW-18 Laboratory Sample ID: 270284-017

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	9,700	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Page 4 of 5

Client Sample ID: MW-16 Laboratory Sample ID: 270284-018

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	110	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Benzene	10		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Toluene	1.1		0.50	ug/L	As Recd	1.000	EPA 8021B	EPA 5030B
Diesel C10-C24	6,200	Y	49	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

C = Presence confirmed, but RPD between columns exceeds 40%

Y = Sample exhibits chromatographic pattern which does not resemble standard

 Field ID:
 MW-7
 Batch#:
 227806

 Type:
 SAMPLE
 Sampled:
 09/28/15

 Lab ID:
 270284-001
 Analyzed:
 10/02/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	1,000	50	EPA 8015B
MTBE	21 C	2.0	EPA 8021B
Benzene	280	0.50	EPA 8021B
Toluene	16	0.50	EPA 8021B
Ethylbenzene	10	0.50	EPA 8021B
m,p-Xylenes	43	0.50	EPA 8021B
o-Xylene	9.9 C	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	93	80-132	EPA 8015B	
Bromofluorobenzene (PID)	96	71-141	EPA 8021B	

Field ID: MW-9 Batch#: 227806
Type: SAMPLE Sampled: 09/28/15
Lab ID: 270284-002 Analyzed: 10/02/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	190	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	8.0	0.50	EPA 8021B
Toluene	0.71	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	0.87 C	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	96	80-132	EPA 8015B	
Bromofluorobenzene (PID)	98	71-141	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 1 of 10 4.3

Y= Sample exhibits chromatographic pattern which does not resemble standard

Field ID: MW-11 Batch#: 227806
Type: SAMPLE Sampled: 09/28/15
Lab ID: 270284-003 Analyzed: 10/02/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	1,300	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	110	0.50	EPA 8021B
Toluene	16 C	0.50	EPA 8021B
Ethylbenzene	2.1	0.50	EPA 8021B
m,p-Xylenes	14 C	0.50	EPA 8021B
o-Xylene	6.4 C	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	99	80-132	EPA 8015B	
Bromofluorobenzene (PID)	104	71-141	EPA 8021B	

Field ID: MW-12 Batch#: 227806
Type: SAMPLE Sampled: 09/28/15
Lab ID: 270284-004 Analyzed: 10/02/15

Diln Fac: 25.00

Analyte	Result	RL	Analysis
Gasoline C7-C12	13,000	1,300	EPA 8015B
MTBE	ND	50	EPA 8021B
Benzene	4,300	13	EPA 8021B
Toluene	110	13	EPA 8021B
Ethylbenzene	52	13	EPA 8021B
m,p-Xylenes	53	13	EPA 8021B
o-Xylene	18 C	13	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	116	80-132	EPA 8015B	
Bromofluorobenzene (PID)	121	71-141	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 2 of 10 4.3

Y= Sample exhibits chromatographic pattern which does not resemble standard

Field ID: MW-4 Batch#: 227806
Type: SAMPLE Sampled: 09/28/15
Lab ID: 270284-005 Analyzed: 10/02/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	120 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	119	80-132	EPA 8015B	
Bromofluorobenzene (PID)	121	71-141	EPA 8021B	

Field ID: MW-5 Batch#: 227806
Type: SAMPLE Sampled: 09/28/15
Lab ID: 270284-006 Analyzed: 10/02/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	60 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	106	80-132	EPA 8015B	
Bromofluorobenzene (PID)	109	71-141	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 3 of 10 4.3

Y= Sample exhibits chromatographic pattern which does not resemble standard

Field ID: MW-6 Batch#: 227806
Type: SAMPLE Sampled: 09/28/15
Lab ID: 270284-007 Analyzed: 10/02/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	65 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	0.88	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	101	80-132	EPA 8015B	
Bromofluorobenzene (PID)	106	71-141	EPA 8021B	

Field ID: MW-17 Batch#: 227806
Type: SAMPLE Sampled: 09/28/15
Lab ID: 270284-008 Analyzed: 10/02/15

Diln Fac: 25.00

Analyte	Result	RL	Analysis
Gasoline C7-C12	8,100	1,300	EPA 8015B
MTBE	ND	50	EPA 8021B
Benzene	1,800	13	EPA 8021B
Toluene	160	13	EPA 8021B
Ethylbenzene	90	13	EPA 8021B
m,p-Xylenes	90	13	EPA 8021B
o-Xylene	53 C	13	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	114	80-132	EPA 8015B	
Bromofluorobenzene (PID)	121	71-141	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 4 of 10 4.3

Y= Sample exhibits chromatographic pattern which does not resemble standard

Field ID: RW-1 Batch#: 227806
Type: SAMPLE Sampled: 09/29/15
Lab ID: 270284-009 Analyzed: 10/02/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	450	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	75	0.50	EPA 8021B
Toluene	4.2 C	0.50	EPA 8021B
Ethylbenzene	1.4	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	121	80-132	EPA 8015B	
Bromofluorobenzene (PID)	126	71-141	EPA 8021B	

Field ID: MW-3 Batch#: 227806
Type: SAMPLE Sampled: 09/29/15
Lab ID: 270284-010 Analyzed: 10/02/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	330 Y	50	EPA 8015B
MTBE	2.9	2.0	EPA 8021B
Benzene	0.71	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	3.2 C	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	118	80-132	EPA 8015B	
Bromofluorobenzene (PID)	123	71-141	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 5 of 10 4.3

Y= Sample exhibits chromatographic pattern which does not resemble standard

Field ID: MW-15 Batch#: 227806
Type: SAMPLE Sampled: 09/29/15
Lab ID: 270284-011 Analyzed: 10/02/15

Diln Fac: 25.00

Analyte	Result	RL	Analysis
Gasoline C7-C12	10,000	1,300	EPA 8015B
MTBE	ND	50	EPA 8021B
Benzene	3,100	13	EPA 8021B
Toluene	63	13	EPA 8021B
Ethylbenzene	33	13	EPA 8021B
m,p-Xylenes	34	13	EPA 8021B
o-Xylene	14 C	13	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	110	80-132	EPA 8015B	
Bromofluorobenzene (PID)	120	71-141	EPA 8021B	

Field ID: MW-14 Batch#: 227893
Type: SAMPLE Sampled: 09/29/15
Lab ID: 270284-012 Analyzed: 10/05/15

Diln Fac: 50.00

Analyte	Result	RL	Analysis
Gasoline C7-C12	9,500	2,500	EPA 8015B
MTBE	ND	100	EPA 8021B
Benzene	2,600	25	EPA 8021B
Toluene	250	25	EPA 8021B
Ethylbenzene	190	25	EPA 8021B
m,p-Xylenes	170	25	EPA 8021B
o-Xylene	67	25	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	116	80-132	EPA 8015B	
Bromofluorobenzene (PID)	106	71-141	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

Page 6 of 10 4.3

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Field ID: MW-13 Batch#: 227806

Type: SAMPLE Sampled: 09/29/15

Lab ID: 270284-013 Analyzed: 10/02/15

Diln Fac: 25.00

Analyte	Result	RL	Analysis
Gasoline C7-C12	13,000	1,300	EPA 8015B
MTBE	ND	50	EPA 8021B
Benzene	3,100	13	EPA 8021B
Toluene	78	13	EPA 8021B
Ethylbenzene	440	13	EPA 8021B
m,p-Xylenes	210	13	EPA 8021B
o-Xylene	45	13	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	114	80-132	EPA 8015B	
Bromofluorobenzene (PID)	119	71-141	EPA 8021B	

Field ID: MW-10 Batch#: 227806
Type: SAMPLE Sampled: 09/29/15
Lab ID: 270284-014 Analyzed: 10/02/15

Diln Fac: 50.00

Analyte	Result	RL	Analysis
Gasoline C7-C12	7,300	2,500	EPA 8015B
MTBE	ND	100	EPA 8021B
Benzene	1,300	25	EPA 8021B
Toluene	62	25	EPA 8021B
Ethylbenzene	ND	25	EPA 8021B
m,p-Xylenes	37	25	EPA 8021B
o-Xylene	ND	25	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	114	80-132	EPA 8015B	
Bromofluorobenzene (PID)	119	71-141	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 7 of 10

4.3

Y= Sample exhibits chromatographic pattern which does not resemble standard

Field ID: MW-8 Batch#: 227806

Type: SAMPLE Sampled: 09/29/15

Lab ID: 270284-015 Analyzed: 10/02/15

Diln Fac: 83.33

Analyte	Result	RL	Analysis
Gasoline C7-C12	23,000	4,200	EPA 8015B
MTBE	ND	170	EPA 8021B
Benzene	7,100	42	EPA 8021B
Toluene	100	42	EPA 8021B
Ethylbenzene	510	42	EPA 8021B
m,p-Xylenes	210	42	EPA 8021B
o-Xylene	57	42	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	109	80-132	EPA 8015B	
Bromofluorobenzene (PID)	120	71-141	EPA 8021B	

Field ID: MW-E Batch#: 227806
Type: SAMPLE Sampled: 09/29/15
Lab ID: 270284-016 Analyzed: 10/02/15

Diln Fac: 33.33

Analyte	Result	RL	Analysis
Gasoline C7-C12	22,000	1,700	EPA 8015B
MTBE	120	67	EPA 8021B
Benzene	6,400	17	EPA 8021B
Toluene	230	17	EPA 8021B
Ethylbenzene	750	17	EPA 8021B
m,p-Xylenes	660	17	EPA 8021B
o-Xylene	150 C	17	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	116	80-132	EPA 8015B	
Bromofluorobenzene (PID)	123	71-141	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 8 of 10 4.3

Y= Sample exhibits chromatographic pattern which does not resemble standard

Field ID: MW-18 Batch#: 227893

Type: SAMPLE Sampled: 09/29/15

Lab ID: 270284-017 Analyzed: 10/05/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	88	80-132	EPA 8015B	
Bromofluorobenzene (PID)	81	71-141	EPA 8021B	

Field ID: MW-16 Batch#: 227806
Type: SAMPLE Sampled: 09/29/15
Lab ID: 270284-018 Analyzed: 10/02/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	110 Y	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	10	0.50	EPA 8021B
Toluene	1.1	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	102	80-132	EPA 8015B	
Bromofluorobenzene (PID)	103	71-141	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected

RL= Reporting Limit

Page 9 of 10 4.3

Y= Sample exhibits chromatographic pattern which does not resemble standard

Type: BLANK Batch#: 227806 Lab ID: QC806178 Analyzed: 10/01/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	111	80-132	EPA 8015B	
Bromofluorobenzene (PID)	103	71-141	EPA 8021B	

Type: BLANK Batch#: 227893 Lab ID: QC806515 Analyzed: 10/05/15

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Bromofluorobenzene (FID)	106	80-132	EPA 8015B	
Bromofluorobenzene (PID)	101	71-141	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

- 10 5 10

Page 10 of 10 4.3

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	270284	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC806177	Batch#:	227806
Matrix:	Water	Analyzed:	10/01/15
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	972.0	97	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	115	80-132

Page 1 of 1 5.0

Curtis & Tompkins Laboratories Analytical Report						
Lab #: 270284		Location:	Bay Center Apts			
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B			
Project#: 2007-6	55	Analysis:	EPA 8015B			
Field ID:	MW-7	Batch#:	227806			
MSS Lab ID:	270284-001	Sampled:	09/28/15			
Matrix:	Water	Received:	09/29/15			
Units:	ug/L	Analyzed:	10/02/15			
Diln Fac:	1.000					

Type: MS Lab ID: QC806179

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,014	2,000	2,329	66 *	76-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	94	80-132

Type: MSD Lab ID: QC806180

Analyte	Spiked	Result	%REC	Limits	RPD I	Lim
Gasoline C7-C12	2,000	2,433	71 *	76-120	4	20

Surroga	e %REC	Limits
Bromofluorobenzen	(FID) 101	80-132

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

Curtis & Tompkins Laboratories Analytical Report						
Lab #:	270284			Location:	Bay Center Apts	
Client:	Stellar	Environmental	Solutions	Prep:	EPA 5030B	
Project#:	2007-65			Analysis:	EPA 8021B	
Matrix:		Water		Diln Fac:	1.000	
Units:		ug/L		Batch#:	227806	

Type: BS Analyzed: 10/01/15

Lab ID: QC806181

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	11.53	115	74-137
Benzene	10.00	10.58	106	80-120
Toluene	10.00	10.76	108	80-120
Ethylbenzene	10.00	10.81	108	80-120
m,p-Xylenes	10.00	11.28	113	80-120
o-Xylene	10.00	11.04	110	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	105	71-141

Type: BSD Analyzed: 10/02/15

Lab ID: QC806182

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	30.00	33.57	112	74-137	3	37
Benzene	30.00	33.39	111	80-120	5	20
Toluene	30.00	32.85	109	80-120	2	20
Ethylbenzene	30.00	33.85	113	80-120	4	20
m,p-Xylenes	30.00	31.93	106	80-120	6	20
o-Xylene	30.00	32.79	109	80-120	1	20

Surrogate	%REC	Limits	
Bromofluorobenzene (PID)	119	71-141	

	Curtis & Tompkins Laboratories Analytical Report						
Lab #:	270284	Location:	Bay Center Apts				
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B				
Project#:	2007-65	Analysis:	EPA 8015B				
Type:	LCS	Diln Fac:	1.000				
Lab ID:	QC806514	Batch#:	227893				
Matrix:	Water	Analyzed:	10/05/15				
Units:	ug/L						

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	992.4	99	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	113	80-132

Page 1 of 1 8.0

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #: 270284	1	Location:	Bay Center Apts
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2007-6	55	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZ	Batch#:	227893
MSS Lab ID:	270367-001	Sampled:	10/02/15
Matrix:	Water	Received:	10/02/15
Units:	ug/L	Analyzed:	10/05/15
Diln Fac:	1.000		

Type: MS Lab ID: QC806516

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	14.06	2,000	1,691	84	76-120

Surrogate	%REC	Limits
Bromofluorobenzene	114	80-132

Type: MSD Lab ID: QC806517

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	1,786	89	76-120	5	20

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	122	80-132

	Curtis & Tompkins Lab	oratories Anal	Lytical Report
Lab #:	270284	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	227893
Units:	ug/L	Analyzed:	10/05/15
Diln Fac:	1.000		

Type: BS Lab ID: QC806518

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.11	101	74-137
Benzene	10.00	9.868	99	80-120
Toluene	10.00	10.16	102	80-120
Ethylbenzene	10.00	10.66	107	80-120
m,p-Xylenes	10.00	10.92	109	80-120
o-Xylene	10.00	10.71	107	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	103	71-141

Type: BSD Lab ID: QC806541

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	19.00	95	74-137	6	37
Benzene	20.00	19.02	95	80-120	4	20
Toluene	20.00	19.15	96	80-120	6	20
Ethylbenzene	20.00	19.00	95	80-120	11	20
m,p-Xylenes	20.00	20.08	100	80-120	8	20
o-Xylene	20.00	19.69	98	80-120	8	20

Surrogate	%REC	Limits
Bromofluorobenzene (PID)	104	71-141

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-038, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-041, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-042, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-046, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-043, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-044, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-045, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-047, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-053, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-054, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-058, A

-----\Lims\gdrive\ezchrom\Projects\GC05\Data\278-012, C

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-057, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-060, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-061, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-059, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-062, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\274-003, A

Total Extractable Hydrocarbons Bay Center Apts EPA 3520C Lab #: 270284 Location: Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Analysis: EPA 8015B 09/29/15 10/02/15 Matrix: Water Received: Units: ug/L Prepared: Diln Fac: 1.000 10/05/15 Analyzed: Batch#: 227851

Field ID: MW-7 Lab ID: 270284-001 Type: SAMPLE Sampled: 09/28/15

 Analyte
 Result
 RL

 Diesel C10-C24
 10,000 Y
 49

Surrogate %REC Limits
o-Terphenyl 95 67-136

Field ID: MW-9 Lab ID: 270284-002 Type: SAMPLE Sampled: 09/28/15

 Analyte
 Result
 RL

 Diesel C10-C24
 11,000 Y
 49

Surrogate %REC Limits
o-Terphenyl 106 67-136

Field ID: MW-11 Lab ID: 270284-003 Type: SAMPLE Sampled: 09/28/15

 Analyte
 Result
 RL

 Diesel C10-C24
 8,000 Y
 49

Surrogate %REC Limits
o-Terphenyl 93 67-136

Field ID: MW-12 Lab ID: 270284-004 Type: SAMPLE Sampled: 09/28/15

 Analyte
 Result
 RL

 Diesel C10-C24
 3,100 Y
 49

Surrogate %REC Limits
o-Terphenyl 89 67-136

Field ID: MW-4 Lab ID: 270284-005 Type: SAMPLE Sampled: 09/28/15

 Analyte
 Result
 RL

 Diesel C10-C24
 370 Y
 49

Surrogate %REC Limits
o-Terphenyl 93 67-136

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 4

13.0

Total Extractable Hydrocarbons 270284 Lab #: Location: Bay Center Apts Stellar Environmental Solutions Client: EPA 3520C Prep: Analysis: Received: Project#: 2007-65 EPA 8015B 09/29/15 Water Matrix: 10/02/15 Units: ug/L Prepared: 1.000 Diln Fac: Analyzed: 10/05/15 Batch#: 227851

Field ID: MW-5Lab ID: 270284-006 09/28/15 Type: SAMPLE Sampled:

Analyte Result Diesel C10-C24 4,400 Y 49

%REC Limits Surrogate 92 o-Terphenyl 67-136

Field ID: MW-6Lab ID: 270284-007 SAMPLE Sampled: 09/28/15 Type:

Analyte Result RL1,700 Y Diesel C10-C24

Surrogate Limits o-Terphenyl 97 67 - 136

270284-008 Field ID: MW-17Lab ID: 09/28/15 Type: SAMPLE Sampled:

Analyte Result RL Diesel C10-C24 3,700 Y

Surrogate %REC Limits o-Terphenyl

Field ID: RW-1Lab ID: 270284-009 SAMPLE Sampled: 09/29/15 Type:

Analyte Result Diesel C10-C24 660 Y

Surrogate Limits %REC o-Terphenyl 85 67-136

MW-3Lab ID: 270284-010 Field ID: Type: SAMPLE Sampled: 09/29/15

Result Analyte RLDiesel C10-C24 4,500 Y

Limits Surrogate %REC o-Terphenyl

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 4 13.0

Total Extractable Hydrocarbons Lab #: 270284 Location: Bay Center Apts Stellar Environmental Solutions Client: EPA 3520C Prep: Analysis: Received: Project#: 2007-65 EPA 8015B 09/29/15 Water Matrix: 10/02/15 Units: ug/L Prepared: 1.000 Diln Fac: Analyzed: 10/05/15 Batch#: 227851

Field ID: MW-15 Lab ID: 270284-011 09/29/15 Type: SAMPLE Sampled:

Analyte Result Diesel C10-C24 3,100 Y 49

Limits Surrogate %REC o-Terphenyl 67-136

Field ID: MW-14Lab ID: 270284-012 SAMPLE Sampled: 09/29/15 Type:

Analyte Result RL5,500 Y Diesel C10-C24

Surrogate Limits o-Terphenyl 94 67 - 136

270284-013 Field ID: MW-13Lab ID: Type: SAMPLE Sampled: 09/29/15

Analyte Result RL Diesel C10-C24 8,300 Y

Surrogate %REC Limits o-Terphenyl

Field ID: MW-10Lab ID: 270284-014 SAMPLE Sampled: 09/29/15 Type:

Analyte Result

2,700 Y Diesel C10-C24

Surrogate Limits %REC o-Terphenyl 84 67-136

MW-8Lab ID: 270284-015 Field ID: Type: SAMPLE Sampled: 09/29/15

Result Analyte RLDiesel C10-C24 9,400 Y

Limits Surrogate %REC o-Terphenyl 110

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 3 of 4

13.0

Total Extractable Hydrocarbons Bay Center Apts EPA 3520C 270284 Lab #: Location: Stellar Environmental Solutions Client: Prep: Analysis: Received: Project#: 2007-65 EPA 8015B 09/29/15 Water Matrix: 10/02/15 Units: ug/L Prepared: Diln Fac: 1.000 10/05/15 Analyzed: Batch#: 227851

Field ID: MW-E Lab ID: 270284-016 Type: SAMPLE Sampled: 09/29/15

 Analyte
 Result
 RL

 Diesel C10-C24
 11,000 Y
 49

Surrogate %REC Limits
o-Terphenyl 99 67-136

Field ID: MW-18 Lab ID: 270284-017 Type: SAMPLE Sampled: 09/29/15

 Analyte
 Result
 RL

 Diesel C10-C24
 9,700 Y
 49

Surrogate %REC Limits
o-Terphenyl 87 67-136

Field ID: MW-16 Lab ID: 270284-018 Type: SAMPLE Sampled: 09/29/15

AnalyteResultRLDiesel C10-C246,200 Y49

Surrogate %REC Limits
o-Terphenyl 79 67-136

Type: BLANK Lab ID: QC806344

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
o-Terphenyl 98 67-136

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 4 of 4

13.0

Batch QC Report

	Total Extractable Hydrocarbons				
Lab #:	270284	Location:	Bay Center Apts		
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C		
Project#:	2007-65	Analysis:	EPA 8015B		
Matrix:	Water	Batch#:	227851		
Units:	ug/L	Prepared:	10/02/15		
Diln Fac:	1.000	Analyzed:	10/05/15		

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC806350

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,150	86	60-121

Surrogate	%REC	Limits
o-Terphenvl	96	67-136

Type: BSD Cleanup Method: EPA 3630C Type: Lab ID:

QC806351

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	1,985	79	60-121	8	32

Surrogate	%REC	Limits	
o-Terphenyl	92	67-136	

\Lims\gdrive\ezchrom\Projects\GC15B\Data\278b017, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\278b018, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\278b011, B

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\278b012, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\278b013, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\278b014, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\278b015, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\278b016, B

\\lims\gdrive\ezchrom\Projects\GC27\Data\278a015.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\278a016.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\278a017.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\278a018.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\278a019.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\278a020.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\278a021.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\278a022.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\278a023.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\278a024.dat, Front Signal

\Lims\gdrive\ezchrom\Projects\GC15B\Data\278b004, B

APPENDIX D

Historical Groundwater Elevation Data

TABLE B Historical Monitoring, Extraction, and Trench Well Elevations 6400 Christie Avenue, Emeryville, California

	MW-1									
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation					
1	Dec-88	14.39	9.60	NP	4.79					
2	May-89	14.31 ^(a)	8.73	NP	5.58					
3	Feb-91	14.31	9.18	NP	5.13					
		Monitoring well	abandoned - dat	e unclear						

	MW-2								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
1	Dec-88	14.36	9.64	NP	4.72				
2	May-89	14.28 ^(a)	8.78	NP	5.50				
3	Feb-91	14.28	9.61	NP	4.67				
	Monitoring well abandoned - date unclear								

MW-3								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
1	Dec-88	14.53	8.93	trace	5.60			
2	May-89	14.43 ^(a)	8.69	NP	5.74			
3	Feb-91	14.43	8.31	NP	6.12			
4	Mar-04	16.96 ^(b)	9.47	NP	7.49			
5	Dec-06	NA	NA	NA	NA			
6	Dec-07	16.65 ^(c)	7.76 ^(e)	7.76	8.89			
7	Mar-08	16.65	8.72	8.70	7.93			
8	Jun-08	16.65	8.56	NP	8.09			
9	Sep-08	16.65	9.27	7.95	7.38			
10	Dec-08	16.65	8.36	7.49	8.29			
11	Mar-09	16.65	7.94	NP	8.71			
12	Sep-09	16.65	8.58	NP	8.07			
13	Mar-10	16.65	8.08 ^(e)	8.08	8.57			
14	Sep-10	16.65	8.68 ^(e)	8.68	7.97			
15	Mar-11	16.65	10.40	NM	6.25			
16	Sep-11	16.65	10.84	10.83	6.17			
17	Mar-12	16.65	8.21	NM	8.44			
18	Sep-12	16.65	10.77	NM	5.88			
19	Mar-13	16.65	11.27	NM	5.38			
20	Sep-13	16.65	11.50	NM	5.15			
21	Mar-14	16.65	9.64	9.61	7.01			
22	Sep-14	16.65	NM	10.85	NM			
23	Mar-15	16.65	9.40	9.35	7.25			
24	Sep-15	16.65	9.00	7.22	7.65			

			MW-4		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
1	Dec-88	14.21	8.29	NP	5.92
2	May-89	14.12 ^(a)	7.75	NP	6.37
3	Feb-91	14.12	8.04	NP	6.08
4	Mar-04	16.74 ^(b)	6.90	NP	7.49
5	Dec-06	NA	NA	NA	NA
6	Dec-07	16.29 ^(c)	6.61	NP	9.68
7	Mar-08	16.29	7.24	NP	9.05
8	Jun-08	16.29	6.94	NP	9.35
9	Sep-08	16.29	6.85	NP	6.85
10	Dec-08	16.29	7.42	NP	8.87
11	Mar-09	16.29	6.90	NP	9.39
12	Sep-09	16.29	7.40	NP	8.89
13	Mar-10	16.29	7.08	NP	9.21
14	Sep-10	16.29	7.08	NP	9.21
15	Mar-11	16.29	7.02	NP	9.27
16	Sep-11	16.29	7.83	NP	8.46
17	Mar-12	16.29	7.01	NP	9.28
18	Sep-12	16.29	7.82	NP	8.45
19	Mar-13	16.29	9.15	NP	7.14
20	Sep-13	16.29	8.00	NP	8.29
21	Mar-14	16.29	7.72	NP	8.57
22	Sep-14	16.29	8.23	NP	8.06
23	Mar-15	16.29	8.42	NP	7.87
24	Sep-15	16.29	7.68	NP	8.61

	MW-5								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
1	Dec-88	14.65	10.23	NP	4.42				
2	May-89	14.56 ^(a)	9.29	NP	5.27				
3	Feb-91	14.56	10.04	NP	4.52				
4	Mar-04	17.11 ^(b)	9.10	NP	8.01				
5	Dec-06	NA	NA	NA	NA				
6	Dec-07	16.72 ^(c)	9.66	NA	7.06				
7	Mar-08	16.72	9.72	NP	7.00				
8	Jun-08	16.72	9.72	NP	7.00				
9	Sep-08	16.72	8.56	NP	8.16				
10	Dec-08	16.72	9.75	NP	6.97				
11	Mar-09	16.72	9.31	NP	7.41				
12	Sep-09	16.72	9.79	NP	6.93				
13	Mar-10	16.72	9.48	NP	7.24				
14	Sep-10	16.72	9.90	NP	6.82				
15	Mar-11	16.72	9.29	NP	7.43				
16	Sep-11	16.72	9.77	NP	6.95				
17	Mar-12	16.72	9.19	NP	7.53				
18	Sep-12	16.72	9.70	NP	7.02				
19	Mar-13	16.72	10.63	NP	6.09				
20	Sep-13	16.72	10.20	NP	6.52				
21	Mar-14	16.72	9.68	NP	7.04				
22	Sep-14	16.72	9.73	NP	6.99				
23	Mar-15	16.72	9.59	NP	7.13				
24	Sep-15	16,72	9.78	NP	6.94				

MW-6								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
1	Dec-88	14.75	8.10	NP	6.65			
2	May-89	14.67 ^(a)	7.58	NP	7.09			
3	Feb-91	14.67	7.05	NP	7.62			
4	Mar-04	17.22 ^(b)	6.51	NP	10.71			
5	Dec-06	NA	NA	NA	NA			
6	Dec-07	16.82 ^(c)	6.61	NP	10.21			
7	Mar-08	16.82	7.02	NP	9.80			
8	Jun-08	16.82	7.55	NP	9.27			
9	Sep-08	16.82	6.06	NP	10.76			
10	Dec-08	16.82	6.91	NP	9.91			
11	Mar-09	16.82	6.45	NP	10.37			
12	Sep-09	16.82	8.05	NP	8.77			
13	Mar-10	16.82	6.66	NP	10.16			
14	Sep-10	16.82	7.98	NP	8.84			
15	Mar-11	16.82	5.91	NP	10.91			
16	Sep-11	16.82	7.66	NP	9.16			
17	Mar-12	16.82	5.65	NP	11.17			
18	Sep-12	16.82	7.51	NP	9.31			
19	Mar-13	16.82	7.60	NP	9.22			
20	Sep-13	16.82	5.65	NP	11.17			
21	Mar-14	16.82	6.33	NP	10.49			
22	Sep-14	16.82	8.13	NP	8.69			
23	Mar-15	16.82	7.63	NP	9.19			
24	Sep-15	16.82	9.09	NP	7.73			

	MW-7								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
		Installe	d March 2004						
1	Mar-04	18.09	9.93	NP	8.16				
2	Dec-06	NA	NA	NA	NA				
3	Dec-07	17.73 ^(c)	10.30	NP	7.43				
4	Mar-08	17.73	10.51	NP	7.22				
5	Jun-08	17.73	10.50	NP	7.23				
6	Sep-08	17.73	10.37	NP	7.36				
7	Dec-08	17.73	10.60	NP	7.13				
8	Mar-09	17.73	10.13	NP	7.60				
9	Sep-09	17.73	10.61	NP	7.12				
10	Mar-10	17.73	10.02	NP	7.71				
11	Sep-10	17.73	10.59	NP	7.14				
12	Mar-11	17.73	10.14	NP	7.59				
13	Sep-11	17.73	10.58	NP	7.15				
14	Mar-12	17.73	10.12	NP	7.61				
15	Sep-12	17.73	10.50	NP	7.23				
16	Mar-13	17.73	11.30	NP	6.43				
17	Sep-13	17.73	5.50	NP	12.23				
18	Mar-14	17.73	10.82	NP	6.91				
19	Sep-14	17.73	10.61`	NP	7.02				
20	Mar-15	17.73	10.57	NP	7.16				
21	Sep-15	17.73	10.54	NP	7.19				

MW-8								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
•		Installe	d March 2004					
1	Mar-04	18.25	9.32	8.15	8.93			
2	Nov-06 ^(d)	16.96	10.59	NP	6.37			
3	Dec-07	17.84 ^(c)	9.42	NP	8.42			
4	Mar-08	17.84	10.50	9.18	7.34			
5	Jun-08	17.84	9.68	9.10	8.16			
6	Sep-08	17.84	9.63	8.89	8.21			
7	Dec-08	17.84	9.58	8.89	8.26			
8	Mar-09	17.84	9.62	8.89	8.22			
9	Sep-09	17.84	8.55 ^(e)	8.55	9.29			
10	Mar-10	17.84	9.02 ^(e)	9.02	8.82			
11	Sep-10	17.84	9.75	9.89	7.95			
12	Mar-11	17.84	8.89	8.99	8.85			
13	Sep-11	17.84	9.87	9.55	7.97			
14	Mar-12	17.84	9.29	9.01	8.55			
15	Sep-12	17.84	9.25	8.46	8.59			
16	Mar-13	17.84	9.95	9.59	7.89			
17	Sep-13	17.84	10.32	10.28	7.52			
18	Mar-14	17.84	10.22	10.28	7.62			
19	Sep-14	17.84	9.91	9.85	7.93			
20	Mar-15	17.84	9.71	9.47	8.13			
21	Sep-15	17.84	9.88	9.93	7.96			

		1	MW-9								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation						
•		Installe	d March 2004								
1	Mar-04	18.27	9.38	NP	8.89						
2	Dec-06	NA	NA	NA	NA						
3	Dec-07	17.84 ^(c)	9.54	NP	8.30						
4	Mar-08	17.84	9.77	NP	8.07						
5	Jun-08	17.84	9.68	NP	9.27						
6	Sep-08	17.84	9.30	NP	8.54						
7	Dec-08	17.84	9.83	NP	8.01						
8	Mar-09	17.84	9.37	NP	8.47						
9	Sep-09	17.84	9.70	NP	8.14						
10	Mar-10	17.84	9.46	NP	8.38						
11	Sep-10	17.84	9.75	NP	8.09						
12	Mar-11	17.84	9.52	NP	8.32						
13	Sep-11	17.84	9.80	NP	8.04						
14	Mar-12	17.84	9.54	NP	8.30						
15	Sep-12	17.84	9.54	NP	8.30						
16	Mar-13	17.84	10.08	NP	7.76						
17	Sep-13	17.84	10.13	NP	7.71						
18	Mar-14	17.84	10.01	NP	7.83						
19	Mar-15	17.84	9.98	NP	7.86						
20	Sep-15	17.84	10.05	NP	7.79						

MW-10								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
		Installe	d March 2004					
1	Mar-04	18.21	9.87	8.24	8.34			
2	Dec-06	18.21	9.30	8.86	8.91			
3	Dec-07	17.83 ^(c)	8.98 ^(e)	8.98	8.85			
4	Mar-08	17.83	9.28	8.98	8,55			
5	Jun-08	17.83	8.86	8.78	7.23			
6	Sep-08	17.83	8.95	8.84	8.88			
7	Dec-08	17.83	8.97	8.74	8.86			
8	Mar-09	17.83	9.25	8.54	9.25			
9	Sep-09	17.83	8.63	8.52	9.20			
10	Mar-10	17.83	10.30	8.58	7.53			
11	Sep-10	17.83	8.76	8.82	9.01			
12	Mar-11	17.83	8.15	8.14	9.68			
13	Sep-11	17.83	8.83	8.78	9.00			
14	Mar-12	17.83	7.89	7.75	9.94			
15	Sep-12	17.83	7.48	7.40	10.35			
16	Mar-13	17.83	10.30	9.33	7.53			
17	Sep-13	17.83	10.02	9.65	7.81			
18	Mar-14	17.83	9.92	9.65	7.91			
19	Sep-14	17.83	9.74	9.36	8.09			
20	Mar-15	17.83	9.19	9.16	8.64			
21	Sep-15	17.83	9.69	9.34	8.14			

		ľ	MW-11	MW-11								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation							
		Install	ed May 2004									
1	Nov-06 ^(d)	17.76 ^(c)	10.33	NP	7.43							
2	Dec-07	17.76	10.27	NP	7.49							
3	Mar-08	17.76	10.34	NP	7.42							
4	Jun-08	17.76	10.20	NP	8.16							
5	Sep-08	17.76	10.03	NP	7.73							
6	Dec-08	17.76	10.34	NP	7.42							
7	Mar-09	17.76	10.20	NP	7.56							
8	Sep-10	17.76	10.25	NP	7.51							
9	Mar-10	17.76	10.23	NP	7.53							
10	Sep-10	17.76	10.24	NP	7.52							
11	Mar-11	17.76	10.10	NP	7.66							
12	Sep-11	17.76	10.30	NP	7.46							
13	Mar-12	17.76	10.18	NP	7.58							
14	Sep-12	17.76	10.24	NP	7.52							
15	Mar-13	17.76	10.62	NP	7.14							
16	Sep-13	17.76	10.21	NP	7.55							
17	Mar-14	17.76	10.33	NP	7.43							
18	Sep-14	17.76	10.40	NP	7.36							
19	Mar-15	17.76	10.40	NP	7.36							
20	Sep-15	17.76	10.48	NP	7.28							

		N	MW-12							
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation					
	Installed between 2004-2006									
1	Nov-06 ^(d)	17.83 ^(c)	9.37	NP	8.46					
2	Dec-07	17.83	9.15	NP	8.68					
3	Mar-08	17.83	9.11	NP	8.72					
4	Jun-08	17.83	8.86	NP	8.97					
5	Sep-08	17.83	8.76	NP	9.07					
6	Dec-08	17.83	8.98	NP	8.85					
7	Mar-09	17.83	8.50	NP	9.33					
8	Sep-09	17.83	8.95	NP	8.88					
9	Mar-10	17.83	8.66	NP	9.17					
10	Sep-10	17.83	8.89	NP	8.94					
11	Mar-11	17.83	8.18	NP	9.65					
12	Sep-11	17.83	8.80	NP	9.03					
13	Mar-12	17.83	7.79	NP	10.04					
14	Sep-12	17.83	7.44	NP	10.39					
15	Mar-13	17.83	9.39	NP	8.44					
16	Sep-13	17.83	9.72	NP	8.11					
17	Mar-14	17.83	9.55	NP	8.26					
18	Sep-14	17.83	9.46	NP	8.37					
19	Mar-15	17.83	9.18	NP	8.65					
20	Sep-15	17.83	10.48	NP	7.35					

		1	MW-13		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
		Installed b	etween 2004-20	06	
1	Dec-06	17.66 ^(c)	9.81	9.44	7.85
2	Dec-07	17.66	9.95	9.39	7.71
3	Mar-08	17.66	10.02	9.54	7.64
4	Jun-08	17.66	9.86	9.45	7.80
5	Sep-08	17.66	10.34	9.54	7.32
6	Dec-08	17.66	10.54	9.65	7.12
7	Mar-09	17.66	9.26	9.14	8.40
8	Sep-09	17.66	9.91 ^(e)	9.72	7.75
9	Mar-10	17.66	9.22 ^(e)	9.22	8.44
10	Sep-10	17.66	9.40	10.18	7.48
11	Mar-11	17.66	9.90	NM	NM
12	Sep-11	17.66	10.41	9.64	7.25
13	Mar-12	17.66	10.09	9.02	7.57
14	Sep-12	17.66	9.54	9.23	8.12
15	Mar-13	17.66	9.36	9.35	8.30
16	Sep-13	17.66	9.48	9.45	8.18
17	Mar-14	17.66	9.58	9.45	8.08
18	Sep-14	17.66	8.89	8.87	8.77
19	Mar-15	17.66	9.13	9.12	8.53
20	Sep-15	17.66	9.59	9.57	8.07

		N	MW-14					
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
		Installed be	etween 2004-2	2006				
1	Nov-06 ^(d)	17.60 ^(c)	9.11	9.11(sheen)	8.49			
2	Dec-07	17.60	8.86	8.84	8.74			
3	Mar-08	17.60	8.91	8.88	8.69			
4	Jun-08	17.60	8.66	8.62	8.94			
5	Sep-08	17.60	8.64	NP	8.96			
6	Dec-08	17.60	8.70	NP	8.90			
7	Mar-09	17.60	9.25	NP	9.25			
8	Sep-09	17.60	8.80	NP	8.80			
9	Mar-10	17.60	8.42	NP	9.18			
10	Sep-10	17.60	8.56	8.62	8.98			
11	Mar-11	17.60	7.93	7.92	9.67			
12	Sep-11	17.60	8.60	8.55	9.00			
13	Mar-12	17.60	7.71	7.61	9.89			
14	Sep-12	17.60	7.22	7.20	10.38			
15	Mar-13	17.60	9.18	9.17	8.42			
16	Sep-13	17.60	9.49	9.47	8.11			
17	Mar-14	17.60	9.48	9.47	8.12			
18	Sep-14	17.60	9.16	NP	8.44			
19	Mar-15	17.60	8.93	NP	8.67			
20	Sep-15	17.60	8.41	NP	8.19			

		1	MW-15		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
		Installed b	etween 2004-20	06	
1	Dec-06	17.80 ^(c)	9.15	NP	8.65
2	Dec-07	17.80	9.30	NP	8.50
3	Mar-08	17.80	9.20	9.18	8.60
4	Jun-08	17.80	9.60	9.63	8.20
5	Sep-08	17.80	8.84	8.84 ^(f)	8.96
6	Dec-08	17.80	9.19	8.36	8.61
7	Mar-09	17.80	8.70	NP	9.10
8	Sep-09	17.80	9.40 ^(e)	9.22	8.08
9	Mar-10	17.80	8.81 ^(e)	8.81	8.99
10	Sep-10	17.80	9.42	9.45	8.35
11	Mar-11	17.80	8.50	NM	9.30
12	Sep-11	17.80	9.32	NP	8.48
13	Mar-12	17.80	8.55	NP	9.25
14	Sep-12	17.80	8.03	NP	9.77
15	Mar-13	17.80	9.45	NP	8.35
16	Sep-13	17.80	10.01	NP	7.79
17	Mar-14	17.80	10.18	NP	7.62
18	Sep-14	17.80	9.74	NP	8.06
19	Mar-15	17.80	9.34	NP	8.46
20	Sep-15	17.80	9.85	NP	7.95

		N	MW-16		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
		Installed be	etween 2004-20	06	
1	Dec-06	NA	NA	NA	NA
2	Dec-07	17.74 ^(c)	9.36	NP	8.38
3	Mar-08	17.74	9.88	NP	7.86
4	Jun-08	17.74	9.25	NP	7.80
5	Sep-08	17.74	9.07	NP	8.67
6	Dec-08	17.74	9.45	NP	8.29
7	Mar-09	17.74	8.88	NP	8.86
8	Sep-09	17.74	9.51	NP	8.23
9	Mar-10	17.74	8.92	NP	8.82
10	Sep-10	17.74	9.40	NP	8.34
11	Mar-11	17.74	9.16	NP	8.57
12	Sep-11	17.74	9.56	NP	8.18
13	Mar-12	17.74	9.38	NP	8.36
14	Sep-12	17.74	9.15	NP	8.59
15	Mar-13	17.74	9.60	NP	8.14
16	Sep-13	17.74	10.03	NP	7.71
17	Mar-14	17.74	9.81	NP	7.93
18	Sep-14	17.74	9.80	NP	7.94
19	Mar-15	17.74	9.56	NP	8.18
20	Sep-15	17.74	8.50	NP	9.24

		N	MW-17		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
		Installed be	etween 2004-20	06	
1	Dec-06	NA	NA	NA	NA
2	Dec-07	18.17 ^(c)	9.40	9.32	8.77
3	Mar-08	18.17	9.34	9.18	8.83
4	Jun-08	18.17	8.98	8.97	9.19
5	Sep-08	18.17	9.21	7.92	8.96
6	Dec-08	18.17	9.25	9.11	8.92
7	Mar-09	18.17	8.89	NP	9.28
8	Sep-09	18.17	9.31	NP	8.86
9	Mar-10	18.17	8.93	NP	9.24
10	Sep-10	18.17	9.15	NP	9.02
11	Mar-11	18.17	8.52	8.50	9.65
12	Sep-11	18.17	9.15	NP	9.02
13	Mar-12	18.17	8.17	NP	10.00
14	Sep-12	18.17	7.77	NP	10.40
15	Mar-13	18.17	9.17	NP	9.00
16	Sep-13	18.17	10.00	NP	8.17
17	Mar-14	18.17	10.00	NP	8.17
18	Sep-14	18.17	9.72	NP	8.45
19	Mar-15	18.17	9.51	NP	8.86
20	Sep-15	18.17	10.00	NP	8.17

			MW-18		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
		Installed be	etween 2004-20	06	
1	Dec-06	NA	NA	NA	NA
2	Dec-07	16,35 ^(c)	8.30	NP	8.05
3	Mar-04	16.35	8.34	NP	8.01
4	Jun-08	16.35	8.34	NP	8.20
5	Sep-08	16.35	8.48	NP	7.87
6	Dec-08	16.35	8.61	NP	7.74
7	Mar-09	16.35	7.75	NP	8.60
8	Sep-09	16.35	8.50	NP	7.85
9	Mar-10	16.35	7.97	NP	8.38
10	Sep-10	16.35	8.28	NP	8.07
11	Mar-11	16.35	8.63	NP	7.72
12	Sep-11	16.35	8.90	NP	7.45
13	Mar-12	16.35	8.56	NP	7.79
14	Sep-12	16.35	8.59	NP	7.76
15	Mar-13	16.35	9.92	NP	6.43
16	Sep-13	16.35	9.81	NP	6.54
17	Mar-14	16.35	9.19	NP	7.16
18	Sep-14	16.35	9.56	NP	6.79
19	Mar-15	16.35	8.51	NP	6.84
20	Sep-15	16.35	8.69	NP	7.66

	MW-E												
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation								
1	Dec-88	NM	NM	NM	NM								
2	May-89	15.32	10.39	NP	4.93								
3	Feb-91	NM	NM	NM	NM								
4	Mar-04	17.80	9.92	NP	7.88								
5	Nov-06 ^(d)	17.80	10.22	NP	7.58								
6	Dec-07	17.47 ^(c)	10.03	NP	7.44								
7	Mar-08	17.47	10.21	NP	7.26								
8	Jun-08	17.47	10.20	NP	7.27								
9	Sep-08	17.47	9.55	NP	7.92								
10	Dec-08	17.47	10,32	NP	7.15								
11	Mar-09	17.47	9.79	NP	7.68								
12	Sep-09	17.47	10.22	NP	7.25								
13	Mar-10	17.47	9.82	NP	7.65								
14	Sep-10	17.47	10.11	NP	7.36								
15	Mar-11	17.47	9.10	NP	8.37								
16	Sep-11	17.47	8.41	NP	9.06								
17	Mar-12	17.47	9.86	NP	7.61								
18	Sep-12	17.47	9.95	NP	7.52								
19	Mar-13	17.47	10.41	NP	7.06								
20	Sep-13	17.47	10.21	NP	7.26								
21	Mar-14	17.47	10.15	NP	7.32								
22	Sep-14	17.47	9.98	NP	7.49								
23	Mar-15	17.47	10.15	NP	7.32								
24	Sep-15	17.47	10.07	NP	7.40								

		RW-1												
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation									
1	Dec-88	NM	NM	NM	NM									
2	May-89	14.54	10.17	10.14	4.37									
3	Feb-91	14.54	11.46	10.85	3.57									
4	Mar-04	18.32	7.20	5.62	11.12									
5	Nov-06 ^(d)	18.32	9.15	9.11	9.17									
6	Dec-07	16.70 ^(c)	9.53 ^(e)	9.53	7.17									
7	Mar-08	16.70	8.99	8.92	7.71									
8	Jun-08	16.70	8.95	8.87	7.75									
9	Sep-08	16.70	NM ^(c)	NM ^(c)	NM ^(c)									
10	Dec-08	16.70	NM	NM	NM									
11	Mar-09	16.70	9.06 ^(e)	9.06	7.64									
12	Sep-09	16.70	9.45 ^(e)	9.45	7.25									
13	Mar-10	16.70	8.93 ^(e)	8.93	7.77									
14	Sep-10	16.70	9.50	9.65	7.05									
15	Mar-11	16.70	9.05	9.04	7.65									
16	Sep-11	16.70	9.75	9.74	6.95									
17	Mar-12	16.70	9.33	NP	7.35									
18	Sep-12	16.70	NM	9.69	NM									
19	Mar-13	16.70	NM	9.99	NM									
20	Sep-13	16.70	11.60	9.99	5.10									
21	Mar-14	16.70	9.13	9.99	7.57									
22	Sep-14	16.70	11.10	11.09	5.60									
23	Mar-15	16.70	9.67	11.09	7.03									
24	Sep-15	16.70	9.69	11.09	7.01									

Notes:

The 1988, 1989, and 1991 water elevations were measured by Groundwater Technology, Inc.

The 2004 and 2006 water elevations were measured by PES Environmental.

NS = Not sampled

NP = No product

NM - Not measured/Could Not Measure

NA = data not available from the previous consultant for this event

TOC Elevation = Top of Casing Elevation

DTW = Depth to water from the top of the casing

DTP - Depth to product from the top of the casing

GW Elevation - Groundwater elevation as compared to mean sea level

^(a) Wells resurveyed in May 1989

 $^{(\mbox{\scriptsize b})}\mbox{\sc New elevation}$ recorded by PES. Date of survey unclear.

 $^{\rm (c)}$ Wells resurveyed by PES in April 2007

(d) no water level data available for the December 2006 sampling event

(e) Thickness of product interfered with determining oil/water interface.

(f)Depth to groundwater = depth to free product as difference could not be determined

APPENDIX E

Historical Product Extraction Data Table

Table C
Historical Trench and Monitoring Well Product Recovery, 6400 Christie Avenue, Emeryville, CA

Historical Trench and Monitoring Well Product Recovery, 6400 Christie Avenue, Emeryville, CA Well or Trench Location																tie Aver	eryville	, CA							1			
												W	ell or 1	rench L	ocation													Total
Extraction Date	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9		MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-E		TA-E	TA-M	TA-W	ТВ-Е	TB-M	TB-W	тс-е	TC-M	TC-W	Extracted
Apr-04						1.00		1.00										19.75										21.75
May-04																		22.5										22.50
Sep-04																		0.74										0.74
Oct-04																		5.22										0.00
2004 Total																	г –	T										44.99 0.00
Jan-05																					3.3							3.30
Apr-06 Jun-06																			8.9	9.2	10.3							28.40
Jul-06																			3.6	5	5.3							13.90
Aug-06						0.8		0.8			1	0.2	0.2						0.2	0.2	0.4							3.80
Sep-06								0.8			0.2	0.3							0.6		0.6							2.50
Nov-06																			0.2									0.20
Dec-06				-															0.2				-					0.20
2006 Total																												52.30
Jan-07																			0.2									0.20
Feb-07																			0.2									0.20
Mar-07																			0.2									0.20
Nov-07																				0.81	0.68				0.63			2.12
Dec-07 2007 Total																			0.01	0.61	0.07				0.002			0.69
Feb-08	0.03																T	0.45	0.08	0.06	0.18	0.04	0.06	0.06	0.08	0.05	0.05	3.41 1.14
Feb-08	0.03		0.05															0.45	0.08	0.00	0.18	0.04	0.00	0.00		0.03	0.03	1.14
Mar-08				0.02	0.002	0.02	0.001	0.04	0.02	0.03	0.004	0.01	0.02	0.01	0.01	0.003	0.012	0.43	0.13	0.13	0.09				0.06			0.80
Mar-08						0.02	0.001				0.004		0.02		0.01		0.012			0.002	0.008							0.01
May-08	0.09							0.075		0.075	0.019	0.009			0.13			1.397	0.866	1.466	1.431							5.56
Jun-08																			0.15	0.11	0.57							0.83
Aug-08	0.12							0.048		0.024	0.009							0.75	0.9	1.6	0.7	0.3	0.3		0.15			4.90
Sep-08																			0.03	0.09	0.048							0.17
Nov-08	0.078					0.009				0.06	0.009			0.003	0.06			0.6	0.1	0.03		0.06	0.06	0.06	0.06	0.09	0.09	1.37
Dec-08																			0.0003	0.08					0.03			0.11
2008 Total																												14.99
Mar-09	0.279					0.378		0.369		0.261	0.007	0.023	0.117		0.342		0.023	1.800	0.750	0.950	1.010	0.153	0.153	0.153	0.653	0.153	0.153	7.73
Jun-09																			0.5									0.50
Sep-09	0.286				0.022	0.418		0.176	0.308	0.176	0.088	0.007	0.176	0.088	0.176	0.022	0.066	7.15	0	0.9	1.2	1.1	1.1	1.1	1.1	1.1	1.1	19.46 0.96
Dec-09 2009 Total																			0	0.9	0.06				0			28.65
Mar-10	0.14				0.01	0.18	0.02	0.60		0.60	0.03	0.10	0.69	0.04	0.30	0.02		8.00	1.30	1.00	1.00	0.50	1.00	0.50	1.00	1.00	1.00	19.03
Jun-10																				0.75								0.75
Sep-10	0.3	0.2	0.4	0.5	0.01	0.5	0.01	0.5		1.6	0.02	0.01	1.5	0.02	1.0	0.02	0.1	6.9	1.00	1.00	1.00	0.3	0.3	0.4	1.00	0.5	0.5	19.59
Dec-10																			0.10	0.00	0.05				0.00			0.15
2010 Total																												39.52
Mar-11						0.002		0.002				0.002			0.003			0.002	0.06	0.06	0.02				0			0.15
Sep-11	0.2					0.3					0.2			0.1				0.5		0.45	0.25	0.1	0.1	0.1		0.1	0.1	2.50
2011 Total																												2.65
Mar-12	0.015					0.015				-	0.06	-	-		0.01			0.06	0.13	0.03	0.015	-	0.01			0.015	0.015	0.375
Sep-12						0.03		0.023			0.08			-			0.015	0.06	0.045	0.08	0.09							0.423
2012 Total																												0.798
Mar-13	0.06					0.08		0.015			0.08						0.01	0.06	0.05	0.12	0.07				0.03	0.03	0.03	0.635
Sep-13	0.06					0.02		0.05									0.02	0.06	0.02	0.02	0.02				0.01	0.02	0.02	0.320
2013 Total																												0.955
Mar-14	0.08							0.023						0.015			0.01	0.09	0.03	0.03	0.015				0.015	0.015	0.015	0.338
Sep-14								0.031																				0.031
2014 Total								0.021									10.0050	0.0055	0.00		0.000							0.369
Mar-15								0.031									0.0078	0.0078	0.031	0.0228	0.0228							0.123
Sep-15	0.015					0.015		0.0078										0.015										0.053
2015 Total	1	0.50	0.45	0.55	0.04	2 ==	0.00	1.1	0.22	2.02	101	0.55	2.50	0.50	2.02	0.05	0.55	5000	22.02	25.00	20.00	2	2.00		4.00	2.00	2.00	0.176
Total Extracted	1.74	0.20	0.45	0.52	0.04	3.75	0.03	4.61	0.33	2.83	1.81	0.66	2.70	0.28	2.03	0.07	0.26	76.84	22.03	25.96	28.80	2.55	3.08	2.37	4.83	3.08	3.08	194.93

Note: All free product quantities presented in gallons

Product extraction events conducted before November 2007 were completed by PES Environmental

46 gallons removed from trench wells by PES between April 2006 and March 2007