

May 2, 2001 RGA Job # HSHI3908 Report 0164.R9

Mr. Tom Farrell Hardage Construction Corporation 12730 High Bluff Drive, Suite 250 San Diego, CA 92130

RE: QUARTERLY MONITORING AND SAMPLING REPORT

Hardage Construction Corporation Site 5800 Shellmound Street Emeryville, CA 94608

Dear Mr. Farrell;

RGA Environmental, Inc. (RGA) is pleased to present this report documenting the results of the monitoring and sampling of the seven groundwater monitoring wells at the subject site. The wells are designated as ATD1B, ATD2A, ATD3, ATD4A, ATD5, ATD6, and ATD7. The wells were monitored and sampled on April 21, 2001. The monitoring and sampling was performed to evaluate groundwater conditions as part of the quarterly monitoring and sampling program requested by Ms. Susan Hugo of the Alameda County Department of Environmental Health (ACDEH). A Site Location Map (Figure 1) and Site Plan (Figure 2) are attached with this report.

All work was performed under the direct supervision of an appropriately registered professional. This report is prepared in accordance with guidelines set forth in the document "Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites" dated August 10, 1990 and "Appendix A - Workplan for Initial Subsurface Investigation" dated August 20, 1991.

BACKGROUND

A summary of investigations performed at the subject site is provided in RGA's "Environmental Site Assessment Update Report" dated December 11, 1997. A total of seven groundwater monitoring wells were installed at the site by others during previous subsurface investigations. Based on discussions with Ms. Susan Hugo of the ACDEH, the seven groundwater monitoring wells were determined to be adequate to characterize groundwater conditions at the subject site. One of the wells installed by others (ATD1) appeared to have been destroyed by others, and was subsequently replaced with a well designated as ATD1A. One of the wells installed by others (ATD2) was destroyed and replaced with well ATD2A because the wellhead had been removed during construction and the well had filled with gravel.

One of the wells (ATD4) was destroyed and replaced with well ATD4A so as not to be located within the footprint of the new hotel at the site. Installation of the three wells was performed to restore the site groundwater monitoring network to a total of seven wells. Documentation of replacement of the wells is provided in RGA's report 0164.R4, "Well Installation Report," dated May 2, 2000.

Recent quarterly monitoring and sampling activity revealed that one well in the system (ATD1A) was partially full of sand. Documentation of attempts to flush and purge the sand out of ATD1A with clean water can be found in RGA's Report 0164.R5, "Quarterly Monitoring and Sampling Report," dated September 6, 2000. The sand in the well was the sand used for construction of the well filter pack. Based upon repeated attempts to remove the sand, it was determined that well replacement was appropriate. A Monitoring Well Replacement Work Plan (Letter 0164.L29) dated September 13, 2000 was submitted to the ACDEH for review and approval. The work plan was verbally approved by Ms. Susan Hugo of the ACDEH on September 19, 2000. On October 2, 2000, RGA personnel oversaw the destruction of ATD1A and the installation of one replacement groundwater monitoring well, designated as ATD1B, in the same borehole. Documentation of replacement of this well is provided in RGA's Report 0164.R6, "Monitoring Well Replacement Report," dated October 25, 2000.

FIELD ACTIVITIES

On April 21, 2001, the seven groundwater monitoring wells at the site (designated as ATD1B, ATD2A, ATD3, ATD4A, ATD5, ATD6, and ATD7 on the attached Site Plan) were monitored by RGA personnel. The groundwater monitoring wells were monitored for depth to water and the presence of free product or sheen. Depth to water was measured to the nearest 0.01 foot using an electric water level indicator, and the presence of free product or sheen was evaluated using a transparent bailer. No sheen was observed on the water from any of the wells, with the exception of well ATD6. Free product was not observed in any of the wells. A faint sulfurous odor was detected from well ATD2A, and a creosote-like odor was detected from well ATD6. Depth to water level measurements for the wells and associated calculated groundwater surface elevations are presented in Table 1.

All of the wells were sampled on April 21, 2001. After monitoring and prior to sampling, the monitoring wells were purged of a minimum of three casing volumes of water or until the wells were purged dry. During purging operations, the field parameters of electrical conductivity, temperature and pH were monitored. Once the field parameters were observed to stabilize, and a minimum of three casing volumes had been purged or the wells had been purged dry and partially recovered, water samples were collected using a clean Teflon bailer. Records of the field parameters measured during well purging are attached with this report.

The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials and 1-liter amber glass bottles which were sealed with Teflon-lined screw caps, and to plastic polypropylene bottles which were sealed with plastic screw caps. The VOA vials were overturned and tapped to assure that no air bubbles were present.

The VOA vials and bottles were then transferred to a cooler with ice, until they were transported directly to McCampbell Analytical, Inc. in Pacheco, California. McCampbell Analytical, Inc. is a State-Certified hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory.

HYDROGEOLOGY

Water levels were measured in the monitoring wells once during the quarter. The measured depth to water in wells ATD1B through ATD7 ranged from 2.78 to 5.91 feet. Since the previous quarter, groundwater levels have increased in all of the wells ATD2A, ATD4A and ATD5 by 0.05, 0.50 and 0.07 feet, respectively, and have decreased in the remaining wells by 0.05 to 0.62 feet.

Based on the wellhead elevation survey data obtained from Santina & Thompson (State-licensed surveyors) and the measured depth to groundwater, the groundwater flow direction on April 21, 2001 was calculated to be to the west-southwest with a gradient of 0.012. This flow direction is consistent with the previous quarter and previous reports by others which have shown that the groundwater flow direction at the site is westerly, towards San Francisco Bay. The groundwater monitoring data collected during this monitoring and sampling episode is presented in Table 1.

LABORATORY RESULTS

The groundwater samples collected on April 21, 2001 from monitoring wells ATD1B, ATD2A, ATD3, ATD4A, ATD5, ATD6, and ATD7 were analyzed for the following constituents: Total Petroleum Hydrocarbons as Diesel (TPH-D) using EPA Method 3510 in conjunction with Modified EPA Method 8015; benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8020; and the RCRA 8 metals (arsenic, barium, cadmium, chromium, mercury, lead, selenium, and sliver) by various EPA-approved methods.

The laboratory analytical results of the groundwater samples collected on January 15, 2001 show that TPH-D was detected in all of the wells except ATD3 at concentrations ranging from 0.062 to 1.6 ppm. Benzene was not detected in any of the wells with the exception of wells ATD2A and ATD4A, where it was detected at concentrations of 0.0015 and 0.0014 ppm, respectively. Review of the laboratory analytical reports indicates that the TPH-D results for wells ATD1B, ATD2A, ATD4A, and ATD7 showed

diesel-range compounds with no recognizable pattern; the TPH-D results for well ATD5 were described as unmodified or weakly modified diesel and a medium boiling point pattern which does not match diesel; and the TPH-D results for well ATD6 were described as gasoline-range compounds. The TPH-D results for well ATD2A were also reported to contain oil-range compounds.

The laboratory analytical results for the eight RCRA metals for the groundwater samples collected on April 21, 2001 show that: cadmium, chromium, mercury, selenium and silver were not detected in any of the wells. Arsenic was detected in wells ATD2A, ATD4A, and ATD5 at concentrations of 0.0055, 0.071, and 0.0098 ppm, respectively. Barium was detected in all of the wells (except ATD2A and ATD5 where it was not detected) at concentrations ranging from 0.059 to 0.12 ppm. Lead was detected in wells ATD4A and ATD5 at concentrations of 0.026 ppm and 0.013 ppm, respectively.

Since the previous quarter when the wells sampled on January 15, 2001, TPH-D concentrations have decreased in all of the wells except in wells ATD2A and ATD4A, where the TPH-D concentrations have increased. Benzene concentrations have decreased in the two wells where benzene was detected, since the previous quarter. Similarly, since the previous quarterly monitoring and sampling episode, concentrations of the eight RCRA metals have decreased in all of the wells with the exception of arsenic in wells ATD2A and ATD4A and barium in well ATD7. The laboratory analytical results for organic compound analysis of the groundwater samples are summarized in Table 2. Laboratory analytical results for metals analysis of the groundwater samples are summarized in Table 3. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

All of the wells were monitored and sampled one time during the quarter. Sheen was detected in well ATD6 only. No measurable free product layers were detected in any of the wells.

The sample results showed that TPH-D was detected in all of the wells (except for well ATD3 where it was not detected) at concentrations ranging from 0.062 to 2 ppm. Benzene was not detected in any of the wells with the exception of wells ATD2A and ATD4A, where it was detected at concentrations of 0.0015 and 0.0014 ppm, respectively. Review of the laboratory analytical reports indicates that the TPH-D results for wells ATD1B, ATD2A, ATD4A, and ATD7 showed diesel-range compounds with no recognizable pattern; the TPH-D results for well ATD5 were described as unmodified or weakly modified diesel and a medium boiling point pattern which does not match diesel; and the TPH-D results for well ATD6 were described as gasoline-range compounds. The TPH-D results for well ATD2A were also reported to contain oil-range compounds.

None of the RCRA metals were detected at concentrations exceeding their respective MCL values with the exception of arsenic in well ATD4A. The MCL value for arsenic is 0.05 mg/L, and arsenic was detected in well ATD4A at a concentration of 0.072 mg/L.

Based on the calculated water level elevations in the wells, the groundwater flow direction at the site on April 21, 2001 was calculated to be to the west-southwest with a gradient of 0.012. This flow direction is consistent with previous the previous quarter and previous reports by others which have shown that the groundwater flow direction at the site is westerly, towards San Francisco Bay.

Based on review of organic and inorganic water quality sample results for the past year, no significant increase in water quality analytes was observed. Based on these results, RGA recommends that the quarterly groundwater monitoring and sampling program be discontinued and the site be evaluated for case closure.

LIMITATIONS

This report was prepared solely for the use of Hardage Construction Corporation. The content and conclusions provided by RGA in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgement based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly reveeveam(1Uconditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. RGA is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgement based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to call us at (510) 547-7771.

Sincerely,

RGA Environmental

Paul H. King

California Registered Geologist

Registration No.: 5907 Expires: 12/31/01

DLK for Stepp

Steff Steiner Project Manager

Attachments:

Tables 1, 2, & 3

Site Location Map (Figure 1)

Site Plan Showing Well Locations (Figure 2)

Monitoring Well Purge Data Sheets Laboratory Analytical Results Chain of Custody Documentation

PHK 0164.R9

TABLE 1 WELL MONITORING DATA

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
ATD1B+	4/21/01	8.77	2.78	5.99
	1/15/01	8.77	2.73	6.04
	10/25/00	Unknown	3.56	Unknown
ATD1A+	10/2/00 8/15/00 8/10/00 7/17/00	Destroyed and replac Unknown Unknown Unknown	ed by well ATD1B 3.90 6.10 5.22	Unknown Unknown Unknown
ATD2A	4/21/01	9.23	2.89	6.34
	1/15/01	9.23	2.94	6.29
	10/25/00	Unknown	3.95	Unknown
	7/17/00	Unknown	3.91	Unknown
	8/26/98	Unknown	3.77	Unknown
ATD3	4/21/01	9.96	4.77	5.19
	1/15/01	9.96	4.37	5.59
	10/26/00	Unknown	3.91	Unknown
	7/17/00	Unknown	3.64	Unknown
	8/26/98	Unknown	3.37	Unknown
ATD4A	4/21/01	10.28	5.78	4.50
	1/15/01	10.28	6.28	4.00
	10/26/00	Unknown	6.59	Unknown
	7/17/00	Unknown	4.30	Unknown
ATD5	1/15/01	10.05	5.14	4.91
	1/15/01	10.05	5.21	4.84
	10/25/00	Unknown	6.21	Unknown
	7/17/00	Unknown	5.96	Unknown
	11/9/97	Unknown	3.85	Unknown
	11/5/97	Unknown	3.92	Unknown

Notes

+ = Well ATD1A was replaced by Well ATD1B on October 2, 2000.

Elev. = Elevation

ft. = feet

TABLE 1 (Continued) WELL MONITORING DATA

Well	Date	Top of Casing	Depth to	Water Table
No.	Monitored	Elev. (ft.)	Water (ft.)	Elev. (ft.)
ATD6	1/15/01	7.87	5.91	1.96
	1/15/01	7.87	5.29	2.58
	10/25/00	Unknown	5.80	Unknown
	7/17/00	Unknown	5.65	Unknown
ATD7	1/15/01	7.92	4.65	3.27
	1/15/01	7.92	4.54	3.38
	10/26/00	Unknown	4.85	Unknown
	7/17/00	Unknown	4.91	Unknown
	11/9/97	Unknown	5.23	Unknown
	11/5/97	Unknown	5.20	Unknown

Notes:

+ = Well ATD1A was replaced by Well ATD1B on October 2, 2000.

Elev. = Elevation

ft. = feet

TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS GROUNDWATER SAMPLES ORGANIC ANALYSIS RESULTS

Well No.	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes
		(Samp	oles Collecte	ed on April 2	21, 2001)		
ATD1B	0.062	NA	NA	ND	ND	ND	ND
ATD2A*	0.63	NA	NA	0.0015	ND	ND	ND
ATD3	ND	NA	NA	ND	ND	ND	ND
ATD4A	1.6	NA	NA	0.0014	ND	ND	0.00098
ATD5****	0.58	NA	NA	ND	ND	0.0065	0.014
ATD6***	0.29	NA	NA	ND	ND	ND	ND
ATD7	0.2	NA	NA	ND	ND	ND	ND
		(Sampl	es Collected	l on January	15, 2001)		
ATD1B	0.088	NA	NA	ND	ND	ND	ND
ATD2A	0.53	NA	NA	0.0019	ND	ND	ND
ATD3	0.1	NA	NA	ND	ND	ND	ND
ATD4A	2.5	NA	NA	0.002	0.00098	ND	0.0014
ATD5	1.2	NA	NA	ND	ND	0.012	0.025
ATD6	0.9	NA	NA	ND	ND	0.0011	ND
ATD7	0.25	NA	NA	ND	ND ·	ND	ND

Notes:

NA = Not Analyzed.

ND = Not Detected.

Results are in ppm (mg/L), unless otherwise indicated.

^{* =} Laboratory analytical report note: both diesel- and oil-range compounds are significant in the TPH-D result.

^{*** =} Laboratory analytical report note: gasoline-range compounds significant in TPH-D result.

^{****=}Laboratory analytical report note: unmodified or weakly modified diesel is significant, and medium boiling point pattern that does not match diesel fuel (fuel oil?).

TABLE 2 (Continued)

SUMMARY OF LABORATORY ANALYTICAL RESULTS GROUNDWATER SAMPLES ORGANIC ANALYSIS RESULTS

Well No.	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes
		(Samples C	ollected on	October 25	and 26, 2006	0)	
ATD1B	ND	NA	NA	ND	ND	ND	ND
ATD2A*	0.51	NA	NA	0.0024	ND	ND	ND
ATD3	ND	NA	NA	ND	ND	ND	ND
ATD4A*	2.9	NA	NA	0.0023	0.0014	ND	ND
ATD5*	0.7	NA	NA	ND	0.00051	0.015	0.023
ATD6#	NA	NA	NA	NA	NA	NA	NA
ATD7*	0.23	NA	NA	ND	ND	ND	ND
	(San	nples Collec	ted on July	17, 18, and	August 15, 2	2000)	
ATD1A**	0.12	NA	NA	ND	ND	ND	ND
ATD2A**	0.5	NA	NA	0.0018	ND	ND	0.0023
ATD3**	0.099	NA	NA	ND	ND	ND	ND
ATD4A	3	NA	NA	0.0032	0.0021	ND	0.003
ATD5	0.72	NA	NA	ND	0.00055	0.012	0.011
ATD6***	0.22	NA	NA	ND	ND	0.0019	0.00092
ATD7	0.26	NA	NA	ND	ND	ND	ND

Notes:

NA = Not Analyzed.

ND = Not Detected.

- # = Sample ATD6 was analyzed using the Fuel Fingerprint method; the laboratory analytical report describes the chromatogram for this sample as having two significant hydrocarbon patterns, one between C9 and C12 resembling Stoddard solvent, and one between C18 and C30, in the oil range.
- * = Laboratory analytical report note: both diesel- and oil-range compounds are significant in the TPH-D result.
- ** = Laboratory analytical report note: oil-range compounds significant in TPH-D result.
- *** = Laboratory analytical report note: gasoline-range compounds significant in TPH-D result.

Results are in ppm (mg/L), unless otherwise indicated.

TABLE 2 (Continued) SUMMARY OF LABORATORY ANALYTICAL RESULTS

GROUNDWATER SAMPLES ORGANIC ANALYSIS RESULTS

Well No.	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes
		(Sampl	es Collecte	d on August	26, 1998)		
ATD2	1.2	ND	NA	0.0021	ND	ND	ND
ATD3	ND	ND	NA	ND	ND	ND	ND
				on Novemb	,		
ATD5	0.22	NA	NA	NA	NA	NA	NA
ATD7	0.24	ΝA	NA	NA	NA	NA	NA
		(Sample	s Collected	on Novemb	er 5, 1997)		
ATD5	0.23	ND	ND	ND	ND	ND	ND
ATD7	0.21	ND	ND	ND	ND	ND	ND

Notes:

NA = Not Analyzed.

ND = Not Detected.

- * = Laboratory analytical report note: oil-range compounds significant in TPH-D result.
- ** = Laboratory analytical report note: gasoline-range compounds significant in TPH-D result.
- *** = Laboratory analytical report note: both diesel- and oil-range compounds are significant in the TPH-D result.

Results are in ppm (mg/L), unless otherwise indicated. .

TABLE 3 SUMMARY OF LABORATORY ANALYTICAL RESULTS GROUNDWATER SAMPLES METALS RESULTS

Well No.	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
MCL	0.05	1.00	0.01	None	0.05	0.002	0.01	0.05
		(Sam	ples Collec	ted on April	21, 200	01)		
ATD1B	ND	0.12	ND	ND	ND	ND	ND	ND
ATD2A	0.0055	ND	ND	ND	ND	ND	ND	ND
ATD3	ND	0.12	ND	ND	ND	ND	ND	ND
ATD4A	0.071	0.059	ND	ND	0.026	ND	ND	ND
ATD5	0.0098	ND	ND	ND	0.013	ND	ND	ND
ATD6	ND	0.065	ND	ND	ND	ND	ND	ND
ATD7	ND	0.11	ND	ND	ND	ND	ND	ND
		(Samp	les Collecte	ed on Januar	y 15, 20	001)		
ATD1B	ND	0.14	ND	ND	ND	NĎ	ND	ND
ATD2A	ND	ND	ND	ND	ND	ND	ND	ND
ATD3	ND	0.15	ND	ND	ND	ND	ND	ND
ATD4A	ND	0.088	ND	ND	0.10	ND	ND	ND
ATD5	0.084	0.027	ND	ND	0.017	ND	ND	ND
ATD6	0.0065	0.075	ND	ND	ND	ND	ND	ND
ATD7	ND	0.14	ND	ND	ND	ND	ND	ND

Notes:

MCL = Maximum Concentration Limit.

NA = Not Analyzed.

ND = Not Detected.

Results are in ppm (mg/L), unless otherwise indicated.

TABLE 3 (Continued) SUMMARY OF LABORATORY ANALYTICAL RESULTS GROUNDWATER SAMPLES METALS RESULTS

Well No.	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
MCL	0.05	1.00	0.01	None	0.05	0.002	0.01	0.05
	((Samples	Collected or	n October 25	and 2	6, 2000)		
ATD1B	ND	0.078	ND	ND	ND	ND	ND	ND
ATD2A	0.0077	ND	ND	ND	ND	ND	ND	ND
ATD3	ND	0.14	ND	ND	ND	ND	ND	ND
ATD4A	0.23	0.12	ND	ND	0.12	ND	ND	ND
ATD5	0.022	ND	ND	ND	0.027	ND	ND	ND
ATD6	NA	NA	NA	NA	NA	NA	NA	NA
ATD7	ND	0.16	ND	ND	ND	ND	ND	ND
	(San	noles Coll	ected on Jul	ly 17, 18, an	ά Αποι	ıst 15 20t	00)	
ATD1A	0.015	0.22	ND	ND	ND	ND	ND	ND
ATD2A	0.0087	ND	ND	ND	ND	ND	ND	ND
ATD3	ND	0.14	ND	ND	ND	ND	ND	ND
ATD4A	10	0.34	ND	0.031	0.72	0.006	ND	ND
ATD5	0.016	ND	ND	0.024	0.04	0.001	ND	ND
ATD6	0.0066	0.088	ND	ND	ND	ND	ND	ND
ATD7	ND	0.11	ND	0.17	ND	ND	ND	ND
		(Sami	ales Callest	ed on Augus	+ 26 1	008)		
ATD2	0.023	ND	ND	ND	ND	ND	ND	ND
ATD3	0.023 ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND
AIDS	ND	ND	ND	ND	ND	ND	ND	ND
		` -		d on Novem	•	,		
ATD5	NA	NA	NA	ND	NA	NA	NA	NA
ATD7	NA	NA	NA	NA	NA	NA	NA	NA
		(Sampl	es Collecte	d on Novemi	ber 5, 1	1997)		
ATD5	0.026	0.11	ND	0.01	0.016		ND	ND
ATD7	ND	0.095	ND	0.0055	ND	ND	ND	ND
NT - 4								

Notes:

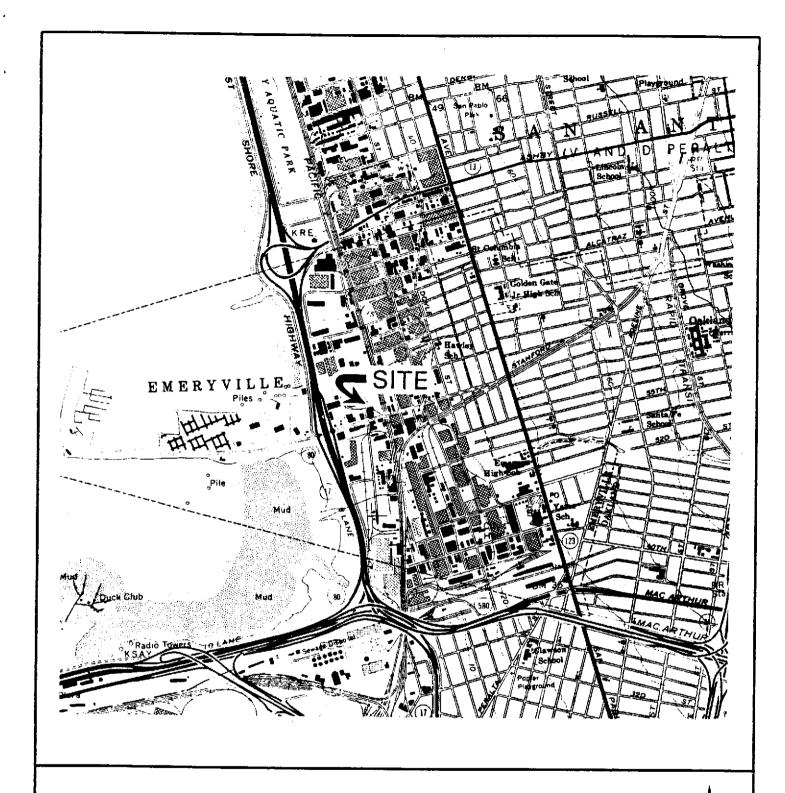
MCL = Maximum Concentration Limit.

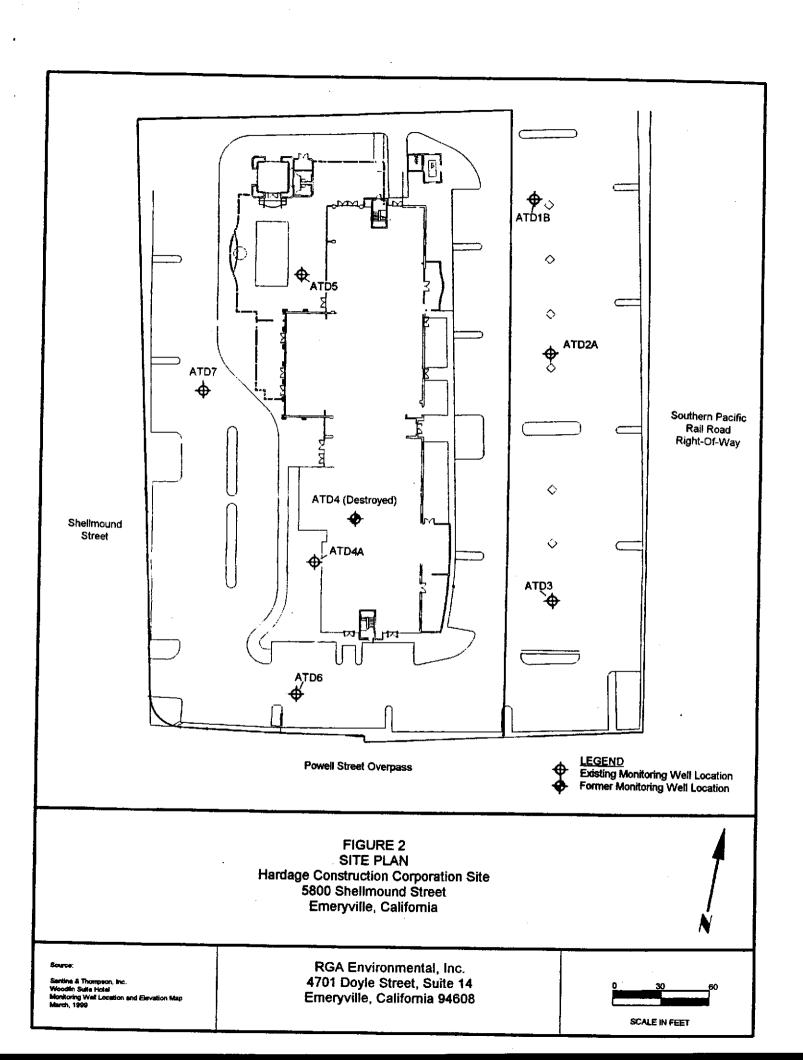
NA = Not Analyzed.

ND = Not Detected.

Results are in ppm (mg/L), unless otherwise indicated.

Page 13 of 13




FIGURE 1
SITE LOCATION MAP
Hardage Construction Corporation Site
5800 Shellmound Street
Emeryville, California

Source

U.S. Geological Survey Oakland West, Colifornia 7.5 Minute Quadrongie Photorevised, 1980 RGA Environmental, Inc. 4701 Doyle Street, Suite 14 Emeryville, California 94608

SCALE IN FEET

Site Name	HSHI		Well No	ATDIB
Job No	0164		Date	4/21/01
	(ft.) 2.78		Sheen	None
Well Depth	(ft.) 10.0	<u> </u>	Free Produc	t Thickness
Well Diamete	er Z "		Sample Coll	ection Method
Gal./Casing	vol. 1,2	_	Teflor	Bailer
	£=3.6		(F)	ELECTRICAL (15/2)
TIME	GAL. PURGED	<u>на</u> С 26	TEMPERATURE ()	CONDUCTIVITY
3:18		9.09	73.6	8.67 x100
3:19		8.86	67.9	
3:20		8.71	65.5	8.37
<u>3:21</u>	<u> </u>	8.55	64.5	8.32
<u>3:22</u>		8.40	64,0	8.27
<u> 3:23</u>	6	8.27	63.6	8.19
3:24		8,1 ଝ	63.5	8,22
3:25	8	8,10	63.4	8,19
3:26	9	8.04	63,4	8,18
75:27	10	7,99	63.4	8,19
3:30	Collect S	umple		
		 -		

NOTES:				•
<u> </u>				

Site Name _	HSHE		Well No	ATDZA
Job No	0164			4/21/01
TOC to Wate	r (ft.) <u> </u>		Sheen	None
Well Depth	(ft.) <u>ዓና</u>		Free Prod	uct Thickness
Well Diamet	er4"_	<u> </u>	Sample Co	llection Method
Gal./Casing	Vol.	1.5	_ Tef	-lon Bailer
	£= 13,5	•	63	
TIME	GAL. PURGED	Hq	•	CONDUCTIVITY CM
4:20		8.35	63.7	11.36
4:21_		8.40	62.5	<u> 11.98 </u>
4:22	<u> </u>	8.66	<u> </u>	<u> . </u>
4:23	6	9.18	62.1	11.08
4:24	ଟ	9.66	62.0	11.12
4:25	10	10.10	67.0	11.15
4:26	12	10.36	61.9	11.13
4:27	14	10.51	62.0	11.04
4:28	16	10.67	62.0	11.04
<u>4: 29</u>	18	18.01	62.0	11.01
4:30	2	1097	62.0	11.04
4:51	<u> </u>	11.13	62.0	11.08
4:32	24_	11.28	61.5	11.10
4.33	26	<u>82 . II </u>	61.8	11.09
4:44	28	11.48	61.9	11.11
4:45	_ Collect	Sample		
		<u> </u>		
				
NOTES:	Sulfrons	odor in 1	enrae water	

Site Name HSHL	_	Well No	ALP3
Job No. 0164	_	Date 4	12101
TOC to Water (ft.) 4.7	7	Sheen	None
Well Depth (ft.) 27.4	_	Free Product	Thickness Ø
Well Diameter 4"		Sample Colle	ection Method
Gal./Casing Vol. 11.4	_	_ Teflo	n Bailer
Z=34.2	TT	TEMPERATURE (F)	ELECTRICAL CONDUCTIVITY CASCAN
TIME GAL. PURGED	<u>면</u> - 니		——————————————————————————————————————
2:16	10.24	70.6	8.83 x100
1-121 5	9.32	66.6	7.81
<u> </u>	8.80	67.9	7.92
2:31 15	8.79	67.3	7.75
2:37 20	8.78	70.3	8.40
2:39 well deur	tered		
2:39 well deur	ample		Name of the last o
	_		
		· · · · · · · · · · · · · · · · · · ·	
NOTES:			

Site Name	MSHE		Well No	ATD 4A
Job No	0164		Date	<u> 1/घ1०। </u>
	(ft.) 5.78		Sheen	None
Well Depth ((ft.) 11.Z	<u> </u>	Free Produc	t Thickness 💋
Well Diamete	er Z "	<u>.</u>	Sample Coll	ection Method
	۷ol. <u></u> م	<u> </u>	Ter	lon Boiler
	8=3		(40)	ELECTRICAL ()
	GAL. PURGED	Hq	TEMPERATURE	CONDUCTIVITY
8:26	<u> </u>	<u>11.32</u>	67.0	1,11×1006
8:27	1.5	11.06	63.6	1,55
<u>8:28</u>		10.95	<u>63.8</u>	1.09
8:29	Well deval	tered		
8:36	<u>Coiled</u> Sam	ple		
	·	<u></u>		

			, e - e e - e e e e e e e e e e e e e e	
				
				
	·		·	
 ,	· <u></u>			
			·	
•				
NOTEC -				
NOTES:			,	
·				

Site Name _	HSHI	_	Well No	ATD5
Job No	0164	_	Date	4/21/01
TOC to Water	(ft.) 5.14	_	Sheen	Vone
Well Depth	(ft.) 2 ,3		Free Produc	t Thickness
Well Diamete	er4"		Sample Coll	ection Method
Gal./Casing	vol. 2.1		Tef1	on Boiler
TIME	ξ= 6.3 GAL. PURGED	Нq	TEMPERATURE (F)	ELECTRICAL CONDUCTIVITY CM
7:44	0.5	9.45	63.9	4.05X1000
7:45	1	10.17	63.6	1.36
7:46	~	10.61	63.5	1.18
7:47	3	10.86	63.6	1.15
7.48	<u> </u>	11.08	63.7	1.09
7:49	5	11.22	63.6	1.03
7:50	6	11.32	63.5	1.00
7:51	7	11.40	63.5	0.98
<u> </u>	<u> </u>	11.43	63.5	8 9.0
7:55	<u>collect</u> s	ample		
				
11828-18				
				
				
	· · · · · · · · · · · · · · · · · · ·			
NOTES:				
				

Site Name HSHI	_	Well No/	ATD6
Job No. 0164	_	Date	1121101
TOC to Water (ft.) 5.91	-	Sheen	Hone Yes
Well Depth (ft.) 11.5	_	Free Product	Thickness ϕ
Well Diameter 4"	·	Sample Colle	ection Method
Gal./Casing Vol. 3.6	_	Teflor	Bailer
Z=10.8 TIME GAL. PURGED	TT	TEMPERATURE (F)	ELECTRICAL CONDUCTIVITY (US on
GAL. PURGED	рн 1090	61.1	1.30 × 1000
9:17 3	10.85	61.4	2,981,00
7:19	9.58	62.5	6.98
	1 de wate		
9:25 Sample W		~ <u>~~</u>	
	<u> </u>	· ·	
			
			•
		· · · · · · · · · · · · · · · · · · ·	
	-	· · · · · · · · · · · · · · · · · · ·	
		-	
		· · ·	
	<u> </u>		
			
			
NOTES:		· · · · · · · · · · · · · · · · · · ·	. <u>. </u>
Creosote-like	oder in p	mge water 5	sheen is very
tar-like and is diff	icult to c	Jean From the	egnipment

Site Name	HSHI		Well No	A T b 7	
Job No	0164	_	Date	4/21/01	
	(ft.) 4.65		Sheen	None	
Well Depth (ft.) 9. 7	_	Free Produ	ct Thickness	
Well Diameter	r4"	<u> </u>	=	lection Method	
Gal./Casing '	vol. <u>ح، ۹</u>	_	Te	flon Bailer	
TIME (ξ= \$ 9 GAL. PURGED	Нa	TEMPERATURE (F	ELECTRICAL CONDUCTIVITY (MS/C	m)
5:27	<u> </u>	10.02	65.1	4.63 × 1000	
5:28	2	9.71	66.3	4.89	
5:29	3	9.56	66.7	3,89	
5:30	4	9.62	66.5	<u> て、とう</u>	
5:31	5	9,43	67.0	2,46	
57:32	6	<u>9,18</u>	66.9	3,14	
<u>\$:33</u>	7	8.88	668	4.65	
5:3\$	-total s	- well a	deuntered		
2:35	Collect S	ample			
		-		<u> </u>	
-					
				-	
NOTES:			· · · · · · · · · · · · · · · · · · ·		

110 2nd Avenuc South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

		,	······································		·		
RGA Environmental		Client Pro	ject ID: #0164/3908; HSHI-	Date Sampled: 04/21/01			
4701 Doyle S	Street, #14	Emeryvill	e	Date Received: (04/23/01		
Emeryville, C	CA 94608	Client Cor	ntact: Paul King	Date Extracted: 04/23/01			
		Client P.C):	Date Analyzed:	04/23-04/24/01		
EPA methods me			C23) Extractable Hydrocarbor		D(3510)		
Lab ID	Client ID	Matrix	TPH(d) ⁺	001.0(3330) 01.0011	% Recovery Surrogate		
66011	ATD-1B	w	62,b		105		
66012	ATD-2A	w	630,g,b		106		
66013	ATD-3	w	ND		104		
66014	ATD-4A	w	1600,b	1600,b			
66015	ATD-5	w	580,a/e	580,a/e			
66016	ATD-6	w	290,d		99		
66017	ATD-7	w	200,ь	· <u>-</u> - · · ·	98		
				·			
					w		
	***		<u> </u>				
Reporting Lin	nit unless otherwise	w	50 ug/L				
	ns not detected above porting limit	S	1.0 mg/kg				

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STI.C / SPI.P

^{*} cluttered chromatogram resulting in cocluted surrogate and sample peaks, or, surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

^{*}The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (fuel oil?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than -5 vol. % sediment.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

RGA En	· · · · · · · · · · · · · · · · · · ·			ject ID: #0	164/3908;	HSHI-	Date Sampled: 04/21/01				
4701 Doyle Street, #14			Emeryvill	e			Date Received: 04/23/01				
Emeryvi	lle, CA 94608	3	Client Cor	ntact: Paul King Date Extracted: 04/23-04/2				3-04/25/01			
			Client P.O):	-		Date Analyzed: 04/23-04/25/0				
	ne Range (C6 ods 5030, modifie								* & BTEX*		
Lab ID	Client ID	Matrix	TPH(g) ⁺	MTBE	Всписле	Toluene	Ethyl- benzene	Xylenes	% Recovery Surrogate 96		
66011	ATD-1B	w			ND	ND	ND	ND	96		
66012	ATD-2A	w			1.5	ND	ND	ND	104		
66013	ATD-3	w	***		ND	ND	DN	ND	98		
66014	ATD-4A	w			1.4	ND	ND	0.98	104		
66015	ATD-5	w	***		ND	ND	6.5	14	104		
66016	ATD-6	w			ND	ND	ND	ND	100		
66017	ATD-7	w	***		ND	ND	ND	ND	102		
			······································								
											
		↓		L							

* water and vapor samples are reported in ug/l.	, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPI.P extracts
in ug/L	

0.5

0.005

5.0

0.05

W

S

50 ug/L

1.0 mg/kg

^{&#}x27;The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

0.5

0.005

0.5

0.005

0.5

0.005

Reporting Limit unless

otherwise stated; ND means not detected above

the reporting limit

[&]quot; cluttered chromatogram; sample peak coclutes with surrogate peak

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

RGA Environmental		Emeryville				Date Sampled: 04/21/01 Date Received: 04/23/01 Date Extracted: 04/23/01			
4701 Doyle Street, #14	Emeryvil								
Emeryville, CA 94608	Client Co								
	Client P.O: Date Analyzed						i: 04/23-04/25/01		
EPA methods 6010/200.7; 7470/7470/2	245.1/245.5 (He)	RCRA 1	Metals*	(Se): 239	2 (Ph	water matrix	\		
Lab ID	66011	66012	66013	6601			-		
Client (D	ATD-1B	ATD-2A	ATD-3	ATD-4	1A	Reporting Limit			
Matrix	w	W	W	w		S	w	STLC, TCLP	
Extraction ^o	Dissolved	Dissolved	Dissolved	Dissolv	red	TTLC	Dissolved		
Compound		Concent	ration*			mg/kg	mg/L.	mg/l	
Arsenic (As)	ND	0.0055	ND	0.07		2.5	0.005	0.25	
Barium (Ba)	0.12	ND	0.12	0.059	,	1.0	0.05	0.05	
Cadmium (Cd)	ND	ND	ND	ND		0.5	0.005	0.01	
Chromium (Cr)	ND	ND	ND	ND		0.5	0.02	0.05	
Lead (Pb)	ND	ND	ND	0.026	,	3.0	0.005	0.2	
Mercury (Hg)	ND	ND	ND	ND		0.06	0.0008	0.005	
Sclenium (Se)	ND	ND	ND	ND		2.5	0.005	0.25	
Silver (Ag)	ND	ND	ND	ND		1.0	0.01	0.05	
% Recovery Surrogate	N/A	N/A	N/A	N/A					
Comments							•		

^{*} water samples are reported in mg/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in mg/L. ND means not detected above the reporting limit; N/A means surrogate not applicable to this analysis

DHS Certification No. 1644

[°] EPA extraction methods 1311(TCLP), 3010/3020(water,TTLC), 3040(organic matrices,TTLC), 3050(solids,TTLC); STLC -CA Title 22

^{**} DISTLC extractions are performed using STLC methodology except that deionized water is substituted for citric acid buffer as the extraction fluid. DISTLC results are not applicable to STLC regulatory limits.

surrogate diluted out of range

^{*} reporting limit raised due to matrix interference

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

110 2nd Avenue South, #D7, Pachcoo, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

RGA Environmental	Client Pro	oject ID: #01	64/3908; HS	SHI-	Date Sampled: 04/21/01					
4701 Doyle Street, #14	Lineryvii	Lineryttic					Date Received: 04/23/01			
Emeryville, CA 94608	Client Co	Client Contact: Paul King			Da	Date Extracted: 04/23/01				
	Client P.0	Client P.O: Date Analyzed: 04/2						/25/01		
EPA methods 6010/200.7; 7470/7470/2	245.1/245.5 (Hg)	RCRA 1	Metals*	(Se); 239.	2 (Pb	. water matrix)			
Lab ID	66015	66016	66017					 .		
Client ID	ATD-5	ATD-6	ATD-7			R	teporting Limi	t		
Matrix	W	w	w			s	w	STLC,		
Extraction"	Dissolved	Dissolved	Dissolved			TTLC	TCLP			
Compound		Concent	ration*		•	mg/kg	ing/l.	mg/L		
Arsenic (As)	0.0098	ND	ND			2.5	0.005	0.25		
Barium (Ba)	ND	0.065	0.11			1.0	0.05	0.05		
Cadmium (Cd)	ND	ИD	ND			0.5	0.005	0.01		
Chromium (Cr)	ND	ND	ND			0.5	0.02	0.05		
Lead (Pb)	0.013	ND	ND			3.0	0.005	0.2		
Mercury (Hg)	ND	ND	ND			0.06	0.0008	0.005		
Solonium (Se)	ND	ND	ND			2.5	0.005	0.25		
Silver (Ag)	ND	ИN	ND			0.1	0.01	0.05		
% Recovery Surrogate	N/A	N/A	N/A							
Comments										

^{*} water samples are reported in mg/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in mg/L. ND means not detected above the reporting limit; N/A means surrogate not applicable to this analysis

DHS Certification No. 1644

[°] EPA extraction methods 1311(TCLP), 3010/3020(water, TTLC), 3040(organic matrices, TTLC), 3050(solids, TTLC); STLC -CA Title 22

^{*} DISTLC extractions are performed using STLC methodology except that deionized water is substituted for citric acid buffer as the extraction fluid. DISTLC results are not applicable to STLC regulatory limits. $^{\#}$ surrogate diluted out of range

^{*} reporting limit raised due to matrix interference

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

RGA 25562 ZLQA78.doc

ENVIRONMENTAL INC.

4701 Dayle Sh, AFTERN 45 TH STREET FAX: (510) 547-1983

Tel.: (510) 547-7771 EMERYVILLE, CA 94608

CHAIN OF CUSTODY

Project Number: Project Name: No. of Containers: 0164/3908 66011 HSHI - Emeryville Sampled By: (Printed and Signature): 66012 Paul H. King and HILKing 66013 Sample Number Date Time Type Sample Location 66014 ATD-13 4)2101 Water AS- CTA Normal Two Are X.E 6 Arb - 3 ATD - 4A XX ж AMD - 5 -ATD -6 14 ATD -7 × YUAS LOUGHETALS OTHER ICE/F 66015+ PRESERVATION GOOD CONDITION APPROPRIATE Filtered & preserved 66016 HEAD SPACE ADSENT CONTAINER Relinquished By: (Signature): Relinquished By: (Signature): Time Date Total No. of Samples Total No. of Laboratory: 915 11/178EX #280 Containers Relinquished By: (Signature): McCampbell Analytical 42 Relinquished By: (Signature): Time Altrack DEO **Laboratory Contact:** Laboratory Phone Number: 15:40 Relinquished By: (Signature). Ed Hamilton 925-798-1620 Date Time Received For Laboratory B Sample Analysis Request Sheet (Signature)

Comments: VDAs preserved with HCQ. Polypropylene containers are not preserved. Please Filter and preserve contents of polypropylene containers upon receipt.

-16:5V

66017 ÷