THE SAN JOAQUIN COMPANY INC.

1120 HOLLYWOOD AVENUE, SUITE 3, OAKLAND, CALIFORNIA 94602

Groundwater Quality Monitoring Report September 2009

Oak Walk Site Emeryville, California

RECEIVED

8:50 am, Dec 14, 2009

Alameda County
Environmental Health

for

Bay Rock Oaks, LLC

December 2009

Project No.: 0004.087

BAYROCK OAKS, LLC

Alameda County Environmental Health Care Services Local Oversight Program 1131 Harbor Way Parkway, Suite 250 Alameda, California 94502-6577

Date: December 10, 2009

Your Reference: RO2733

Attn. Mr. Steven Plunkett

SUBJECT: Groundwater Quality Monitoring Report - September - Oak Walk Site, Emeryville

California

Dear Mr. Plunkett:

A copy of the: Groundwater Quality Monitoring Report - September 2009 - Oak Walk Site, Emeryville California, prepared by our consultants, The San Joaquin Company Inc. (SJC), is herewith submitted electronically to the Alameda County Environmental Health Care Services CEH website.

With respect to the report I state the following: I declare, under penalty of perjury, that the information and recommendations contained in the attached report are true and correct to the best of my knowledge.

If you have any technical questions about the report please call Dr. Watkins at (510) 336-9118. For administrative questions please call me at (510) 594-8811 Ext. 205.

Sincerely,

Marilyn Ponte

Bay Rock Oaks, LLC

cc: Dr. Dai Watkins, The San Joaquin Company Inc.

Table of Contents

Professional Certification and Limitations	iv
1.0 INTRODUCTION	1
1.2 Site North	1
1.3 Topography	
1.4 Site History	
1.5 Sources of Contamination Affecting the Oak Walk Site	
1.5.1 The Former Dunne and Boysen Paint Sites	
1.5.2 The Former Celis Alliance Automobile Service Station	
1.5.3 The Former San Francisco French Bread Site	
1.5.4 Oak Walk Site	
1.6 Site Characterization Program	
1.6.1 Geology	
1.6.2 Hydrology	
1.6.3 Hydrogeology	
1.6.3.1 Hydrostratigraphic Sections	
1.6.3.2 Net Permeable Facies	7
1.7 Remediation	
1.7.1 Remedial Excavations	
1.7.2 Extraction of Contaminated Groundwater	
1.7.3 Re-engineering of Site-wide Soils	10
1.7.4 Installation of Elastomeric Membrane	
2.0. SEPTEMBER 2009 GROUNDWATER-QUALITY MONITORING ROUND	12
2.1 Groundwater Elevations and Flow Direction	12
2.2 Purging of Groundwater-quality Monitoring Wells	
2.2.1 Disposal of Purge Water	
2.3 Recovery of Groundwater Samples from Monitoring Wells	
2.4 Analyses of Groundwater Samples	
3.0 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER	
3.1. Concentrations of Analytes in Excess of the ESLs	15
3.2 Comingling of Fuel Hydrocarbons and Paint Solvents	1 <i>3</i>
3.3 Middle Distillate-range Petroleum Hydrocarbons in Groundwater	
3.4 Gasoline-range Petroleum Hydrocarbons in Groundwater	
3.4.1 Distribution of BTEX Compounds	
3.4.1 Distribution of BTEA Compounds 3.4.2 Distribution of MTBE	
3.5 Distribution of Polynuclear Aromatic Compounds and Other Analytes	
3.6 Integration of Groundwater-quality Data from Oak Walk and Celis Wells	
4.0 FUTURE GROUNDWATER-QUALITY MONITORING	20
5 O REFERENCES	21

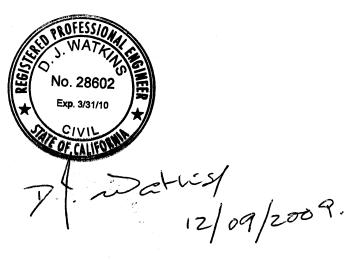
TABLES

- Table 1: Results of Organic Chemical Analyses of Soil Samples Recovered from the Oak Walk Site
- Table 2: Heavy Metals in Native and Imported Soil, Oak Walk Site
- Table 3: Results of Analyses of Soil Samples Recovered from Off-site Locations
- Table 4: Depths to Groundwater
- Table 5: Results of Analyses of Groundwater Samples Recovered from Trenches, Pits and Wells on the Oak Walk Site
- Table 6: Results of Analyses of Groundwater Recovered from Off-site Locations
- Table 7: Results of Analyses of Soil Samples Recovered from Floors of Remedial Excavations
- Table 8: RWQCB Tier 1 Concentration Limits (ESLs) for Chemicals of Concern in Shallow Soil, Groundwater and Soil Gas at Sites Where Groundwater is Not a Source of Drinking Water
- Table 9: RWQCB Tier 1 Concentration Limits (ESLs) for Chemicals of Concern in Deep Soil, Groundwater and Soil Gas at Sites Where Groundwater is Not a Source of Drinking Water

FIGURES

- Figure 1: Site Location
- Figure 2: Site Plan
- Figure 3: Unauthorized Release Sites in Neighborhood of Subject Property
- Figure 4: Boring, Well and Exploratory Trench Locations
- Figure 5: Hydrostratigraphic Section A-A'
- Figure 6: Hydrostratigraphic Section B-B'
- Figure 7: Hydrostratigraphic Section C-C'
- Figure 8: Hydrostratigraphic Section D-D'
- Figure 9: Hydrostratigraphic Section E-E'
- Figure 10: Hydrostratigraphic Section F-F'
- Figure 11: Hydrostratigraphic Section G-G'
- Figure 12: Hydrostratigraphic Section H-H'
- Figure 13: Net Permeable Facies
- Figure 14: Soil Sampling Locations in Remedial Excavation No. 1
- Figure 15: Soil Sampling Locations in Remedial Excavation No. 2
- Figure 16: September 21, 2009 Groundwater Contours at the Oak Walk Site
- Figure 17: Groundwater Contours at Oak Walk and Celis Sites (09/21/09)
- Figure 18: Areas of the Oak Walk Site Affected by Middle Distillate-range Hydrocarbons in Soil and Groundwater
- Figure 19: Areas of the Oak Walk Site Affected by Gasoline-range Hydrocarbons in Soil and Groundwater
- Figure 20: Isocons of Middle Distillate-range Hydrocarbons in Groundwater on the Oak Walk Site (September 2009)
- Figure 21: Isocons of Gasoline-range Hydrocarbons in Groundwater on the Oak Walk Site (September 2009)
- Figure 22: Isocons of Benzene in Groundwater on the Oak Walk Site (September 2009)
- Figure 23: Areas of the Oak Walk Site Affected by MTBE in Groundwater (September 2009)
- Figure 24: Isocons of Middle Distillate-range Hydrocarbons in Groundwater for Combined Oak Walk and Celis Sites (September 2009)

- Figure 25: Isocons of Gasoline-range Hydrocarbons in Groundwater for Combined Oak Walk and Celis Sites (September 2009)
- Figure 26: Isocons of Benzene in Groundwater for Combined Oak Walk and Celis Sites (September 2009)
- Figure 27: Areas of the Combined Oak Walk and Celis Sites Affected by MTBE in Groundwater (September 2009)


APPENDICES

Appendix A: Field Notes
Appendix B: Waste Manifest

Appendix C: Certificates of Analysis

PROFESSIONAL CERTIFICATION AND LIMITATIONS

This report was prepared under the direction of the engineer whose seal and signature appear below. The work was performed in accordance with generally accepted standards of engineering practice based on information available to us at the time of its preparation and within the limits of the scope of work directed by the client. No other representation, express or implied, and no warranty or guarantee is included or intended as to professional opinions, recommendations, or field or laboratory data provided.

D. J. Watkins, Ph.D., P.E. Civil Engineer The San Joaquin Company Inc.

1.0 INTRODUCTION

This groundwater-quality monitoring report was prepared by The San Joaquin Company Inc. (**SJC**) of Oakland, California for the Oak Walk Site in the city of Emeryville, California. The site location is shown on Figure 1. The site occupies a major part of the city block that is bounded by 41st Street, Adeline Street, 40th Street and San Pablo Avenue. It has a total area of some 75,294 sq. ft. (1.73 acres). Figure 2 is a site plan. Figure 3 shows the neighborhood setting of the Oak Walk Site.

The property is owned by Bay Rock Oaks, LLC (**Bay Rock Oaks**) of Emeryville California, a California Limited Liability Company. SJC prepared this remediation report for Bay Rock Oaks.

Soil and groundwater beneath the property has been affected by the release of fuel hydrocarbons and industrial solvents the sources of which were underground storage tanks formerly located at several off- and on-site locations.

1.2 Site North

As is shown on Figure 3, true north at the Oak Walk Site is slightly to the west of the center line of Adeline Street, which runs along the eastern side of the city block on which the Oak Walk property is located. However, to simplify discussion, in this report we have established a "Site North" that parallels the alignment of San Pablo Avenue, which runs along the western side of the property. Unless otherwise stated, all compass directions used in this text should be interpreted in the context of that directional construct.

1.3 Topography

The site has a mean elevation close to 45.5 ft. above the National Vertical Datum (**NVD**). At the scale of the property as a whole, it has a downward slope from east to west (*i.e.*, from Adeline Street to San Pablo Avenue). Along the subject property's southern frontage, 40th Street slopes down toward San Pablo Avenue at a gradient of 1.35%, while along the northern frontage on 41st Street the corresponding slope is only 0.78%.

The whole of the Oak Walk Site is surrounded by public streets except along its eastern boundary, beyond which are residential sites that front onto Adeline and 41st Streets (see Figure 3).

1.4 Site History

The whole of the property was cleared for redevelopment in 2004 and the new construction shown on Figure 2 was completed in January 2009. Prior to its redevelopment, the site had been occupied by residences, some of which had been present since the late 1800s, and commercial structures that had been developed in the early years of the 20th Century through the 1970s (The San Joaquin Company Inc. 2009a).

The Oak Walk Site now includes three new structures that are designated Buildings 1, 2, and 3 on Figure 2. Building 1 is located at the intersection of 40th Street and San Pablo Avenue. Its ground floor is occupied by two large retail spaces. Above that are one one-bedroom and one two-bedroom condominium residence. The commercial spaces on the ground floor of Building 1 have the addresses 4000 and 4010 San Pablo Avenue. The residences on the upper floor have the addresses 4002 and 4008 San Pablo Avenue.

Building 2, which has three stories, is located at the northwestern corner of the site at the intersection of 41st Street and San Pablo Avenue. The ground floor of that structure includes a retail space, two two-bedroom town homes and one three-bedroom town home. The upper floors of that building feature two one-bedroom condominiums and two two-bedroom condominiums. The commercial space on the ground floor of Building 2 has the address 4098 San Pablo Avenue. The residences on the ground floor have the addresses 1087, 1089 and 1091 41st Street. The four units on the upper floors of that building have the addresses 1093, 1095, 1097 and 1099 41st Street.

Building 3 is a four-story residential building, which is comprised of a total of 44 one-, two- and three-bedroom condominium and townhome units with a 61 car garage that occupies a portion of the ground floor. The garage is accessible from 40th Street. A restroom facility for AC Transit is located, as shown on Figure 2, on the ground floor of Building 3. It is accessed by a door opening onto 40th Street. The residential units in Building 3 have the address 1122 40th Street, Unit Nos.1 through 44.

The redeveloped site also includes five single-family residences at 1077 - 1085 41st Street. Those structures had previously been situated at other locations on the property but were moved to their present sites where they were restored to preserve their historic architecture.

As is also shown on Figure 2, an outdoor parking lot is accessed from both San Pablo Avenue and 40th Street and there is a small public playground accessed from 41st Street in the northeastern corner of the site.

1.5 Sources of Contamination Affecting the Oak Walk Site

The program of environmental site characterization conducted at the Oak Walk Site showed that soil and groundwater beneath the property is affected by both fuel hydrocarbons and paint thinners (solvents) (The San Joaquin Company Inc. 2005). Those materials were released into the subsurface at four separate locations. Three of the sources, two where paint solvents were released and one where fuel hydrocarbons were released, are located off the Oak Walk Site, while the fourth, at which a release of fuel hydrocarbons occurred, is today partially outside and partially inside the Oak Walk site boundary. Each of those sources is discussed below.

1.5.1 The Former Dunne and Boysen Paint Sites

These sites are in close proximity to each other and are situated to the east of the Oak Walk Site beyond the adjacent Ennis property and Adeline Street. Their locations are shown on Figure 3. Paint was manufactured and paint solvents were stored in underground tanks at both of these facilities. In the case of the former Boysen Paint Site (also referred to in the regulatory records as Oakland National Engraving (ONE Oakland), contamination is also known to have been released from a sump on that property. Both are cited in regulatory records as sources of releases of regulated materials to the subsurface. With the currently available information it is not possible to be certain whether or not the solvents released at Boysen Paint commingled with solvents released at the Dunne Paint Site. However, both contribute to the plume of paint solvents found to be affecting the subsurface beneath the Oak Walk Site. For the purpose of this report, those two release sites will be treated as if they are a single source.

Petroleum hydrocarbons in the gasoline and middle-distillate ranges, including compounds in the diesel and mineral spirits range, which can be ascribed to releases of solvents at the Dunne Paint Site and at the Boysen Paint/ONE Oakland Site, have been detected over essentially the whole area of the Oak Walk Site. There is also clear evidence that those materials are present at high concentrations in soil and groundwater under the Ennis property, which, as shown on Figure 3, is adjacent to the Oak Walk Site and lies between it and the former paint manufacturing sites.

The Alameda County Department of Environmental Health Department (**ACEH**) has assigned the case number RO72/RO73 to the Dunne Paint Site and the case number RO79 to the Boysen Paint/ONE Oakland Site.

1.5.2 The Former Celis Alliance Automobile Service Station

The location of the former Celis service station, which is today beneath the 40th Street right-of-way and adjacent to the Oak Walk Site, is also shown on Figure 3. Large quantities of fuel hydrocarbons were released from underground storage tanks on that site. The releases contaminated soil and groundwater over a wide area that is, today, occupied by the 40th Street right-of-way, a portion of the Andante condominium housing site to the south, a significant portion of the Oak Walk Site to the north, beneath San Pablo Avenue and property to the west of that thoroughfare. After the City of Emeryville Redevelopment Agency acquired the Celis Site by eminent domain for the purpose of extending 40th Street west from Adeline Street, a portion of the area of the subsurface affected by the release at that site was remediated by removal of contaminated soil down to some 9 ft. below the ground surface (**BGS**) and by a limited program of groundwater pumping. Some limited areas beneath the 40th Street right-of way to the east of, and up the hydrogeologic gradient from, the tanks were also partially remediated by excavation and off-site disposal of contaminated soil.

The Celis Site is recorded in California regulatory databases with the identifiers shown below:

The California State Water Resources Control Board (**SWRCB**) has established the following Global ID for the Celis Site: T0600101794

The California Regional Water Quality Control Board - San Francisco Bay Region (**RWQCB**) has been assigned the following case number to the Celis Site: 01-1938

The ACEH Local Oversight Program (**LOP**), which is the lead agency for the site, has assigned the following case number to the Celis Site: RO453/RO567

Releases of fuel hydrocarbons and, to limited extent, motor oil from the Celis Site commingled beneath the Oak Walk Site with the paint solvents released at the Boysen and Dunne Paint Sites to the east.

1.5.3 The Former San Francisco French Bread Site

The San Francisco French Bread Company (**SFFBC**) formerly occupied a part of the Oak Walk Site that today fronts onto 40th Street. SFFBC installed two ten thousand-gallon underground storage tanks on their property, which had the address 4070 San Pablo Avenue. One tank stored diesel and the other stored gasoline for use in the bread company's fleet of distribution vehicles. The former locations of the tanks are shown on Figure 3.

When the 1995 extension of 40th Street between Adeline Street and San Pablo Avenue was constructed by the City of Emeryville, the southern half of the tank sites became part of the street right-of-way and the northern half remained within the current boundaries of the Oak Walk site. At that time, soil was remediated by excavation to a depth of 10 ft. over an approximately 20 ft. by 18 ft. rectangular area at a location coincident with the southern half of the former SFFBC tank pit. No further remediation of the portion of SFFBC tank site that is beneath 40th Street has occurred since then. However, as is recorded in this report, the northern portion of the former SFFBC Site was included in the remediation work conducted at the Oak Walk Site.

The SFFBC tank site is recorded in California databases with the identifications shown below.

The SWRCB has established the following Global ID for the SFFBC Site: T0600101186

The RWQCB has been assigned the following case number to the SFFBC Site: 01-1289

The ACEH LOP, which is the lead agency for the site, has assigned the following case number to the SFFBC Site: RO171

1.5.4 Oak Walk Site

With the exception of the small area of the former SFFBC property that is included in the Oak Walk Site, there are no known sources of contamination on the subject property. However, in order to provide oversight of the site characterization and remediation of the Oak Walk Site, the ACEH has assigned the following case number to the Oak Walk Site: RO2733. At the request of the ACEH, the SWRCB established the following Geotracker Global ID for the Oak Walk Site: T06019705080.

1.6 Site Characterization Program

SJC completed an extensive, multi-phased environmental and geotechnical engineering site characterization program for the Oak Walk Redevelopment Site in 2005 (The San Joaquin Company Inc. 2005, 2004a,b,c). The scope of that investigation included excavation of eight exploratory trenches (Nos. 1-8), drilling of two cone penetrometer test holes and a total of 30 exploratory borings, in 21 of which groundwater-quality monitoring wells were constructed (the locations of the trenches, wells and borings are shown on Figure 4). During the subsequent site remediation, which is described in Section 1.7 below, three additional exploratory trenches (Nos. 9-11) were excavated, Monitoring Wells MWT-1 through MWT-10 and MW-6 were closed and eleven new wells, numbered MW-6A, MW-9 through 15 and MW-16A, -16B and -16C were installed at the locations shown on Figure 4 (The San Joaquin Company Inc. 2009a).

In addition to the trenches, wells and borings drilled by SJC, geotechnical and geochemical data was available from wells and borings installed for the former Dunne and Boysen Paint Sites, the San Francisco French Bread Site, the Celis Site and the Andante Site (see Figure 3 for locations).

The results of analyses of soil samples recovered from borings, wells and trenches are compiled in Tables 1, 2, and 3. Depths to groundwater are recorded in Table 4. The results of analyses of groundwater samples are compiled in Tables 5 and 6.

SJC's principal findings derived from the site characterization work are summarized below.

1.6.1 Geology

The subject property is situated on the eastern side of San Francisco Bay in the California Coast Ranges section of the Pacific Border physiographic province.

As is typical of sites in the neighborhood, the subject property is underlain by fill that varies in thickness from approximately 3 to 10 feet. Beneath the fill are strata of alluvial fan deposits of the Quaternary-age Temescal Formation that is comprised of interfingering lenses of clayey gravel, sandy silty clay and sand-clay-silt mixtures (Radbruch 1957). At the site, this formation is some 20 ft. to 30 ft. thick and lies unconformably over earlier Quaternary continental and marine sands, clays and gravels of the Alameda

Formation, the maximum thickness of which has not been fully explored in the region around the subject property, but is known to exceed 1,050 ft.

1.6.2 Hydrology

Temescal Creek flows in underground culverts along a generally east to west course approximately 0.5 miles to the north of the subject property and discharges into San Francisco Bay, the shore of which is today some 0.85 miles to the west of the site. Prior to circa 1880, after which it was filled to become the site of a housing tract, there was a 30-acre tidal flat that formed an embayment in the shoreline of the Bay at a distance of some 0.6 miles southwest of the Oak Walk Site.

Temescal Creek and the tidal flats of San Francisco Bay dominated the regional hydrology of the area prior to its urbanization in the late 19th Century. However, there were no known streams that existed during the historical period in the vicinity of the Oak Walk Site closer than Temescal Creek.

The majority of precipitation running off the roofs of the structures and the parking lot on the redeveloped Oak Walk property is directed into filtration beds. Water discharged from the filter beds and small areas of paving that drain into street gutters is directed into the City of Emeryville's storm water management system. That system drains to San Francisco Bay. Approximately 95% of precipitation falling on the site is either diverted into the filter beds or percolates into the subsurface.

1.6.3 Hydrogeology

The depth to the groundwater table in the area of the subject property reflects long term weather cycles as well as seasonal variations in local precipitation in the San Francisco Bay Area. Depending upon those factors, the piezometric level of the regional groundwater may be at elevations that vary between approximately 4 and 12 ft. BGS (The San Joaquin Company Inc. 2005).

The regional direction of groundwater flow in the area of the site is essentially from east to west but, locally, it is greatly influenced by zones and channels of permeable sands and gravels that are present in the subsurface. Areas where channels and zones of high-permeability soils are present extend from east to west across the length of the site. However, such permeable facies are relatively less pronounced along the southern boundary of the site at 40th Street. In close proximity to the northern boundary of the site along 41st Street, they are essentially absent.

1.6.3.1 Hydrostratigraphic Sections

Information from the logs of the trenches, borings and wells drilled on the site and om the surrounding streets was synthesized to develop hydrostratigraphic sections along the lines A-A', B-B', C-C', D-D', E-E', F-F', G-G' and H-H' that are located as shown on Figure 4. The sections are shown on Figures 5 through 12.

The cross sections show the fill material that covers the site and the underlying alluvial sediments, which are divided into six classes: very low-permeability fill that was used to restore the remedial excavations; very low-permeability soil that was created by excavating and re-compacting soils in other areas of the site; and the following undisturbed natural soils: the very low-permeability clays and silty clays; the slightly more permeable sandy clay and clays with some silt, sand or gravel (*i.e.*, soils that are dominantly clayey, but which have small lenses and inclusions of coarser facies); permeable silts, clayey gravels and sands; and highly permeable gravels that are free of silty or clayey fractions. That presentation makes it possible to reduce the details of the stratigraphy to a tractable degree of complexity by distinguishing between the different soil types based on the properties that are of importance to the understanding of the distribution and transport of chemicals of concern (COCs) in the subsurface. However, it is not intended to represent the detailed geologic stratigraphy of the complex of interbedded and lenticular strata and paleo streambed deposits that are present in the alluvial fan on which the Oak Walk Site is located.

Also shown on the cross sections are the locations from which soil samples were recovered on, or close to, the section lines. The concentrations of TPHg, TPHd (which includes diesel, mineral spirits and components of other middle-distillate petroleum hydrocarbons) and the critical analyte, benzene, that were detected in those samples, which were recovered before the site was remediated, are noted adjacent to the sampling locations.

The hydrostratigraphic cross sections reveal that beneath some areas of the Oak Walk Site there are relatively high-permeability facies that include in-filled paleo streambed channels.

1.6.3.2 Net Permeable Facies

To assist with understanding of the distribution of high-permeability channels in the subsurface beneath the Oak Walk Site, the net permeable facies diagram shown on Figure 13 was constructed.

The isochores shown on the Figure are for the 5-20 ft. BGS interval, which is the interval between the typical depth to groundwater and the typical maximum depth to which the subsurface is affected by petroleum hydrocarbons. The permeable intervals summed to compute the net permeable facies were the sandy clays, clays with some silt, sand or gravel, and highly-permeable gravels.

Areas shown on Figure 13, where the net permeable facies in the subsurface exceed 50% in the selected interval are highlighted, provide a good visual image of the areal distribution of permeable zones and channels beneath the site through which contaminants of concern have preferentially migrated across the Oak Walk Site following their release at the paint factory sites to the east of Adeline Street, at the Celis Site beneath 40th Street, and at the former SFFBC site.

The areas and channels of permeable soil detected beneath the Oak Walk Site are not confined to that property alone. They extend westward beneath San Pablo Avenue and eastward beneath the adjoining Ennis property and across Adeline Street under the Frank Dunne and Boysen Paint Sites at least as far as the California Linen Rental Site (California Linen), which is located to the east of Linden Street in Oakland. The locations of channels and areas of high-permeable soil in the neighborhood are shown on Figure 3. That Figure was prepared by SJC at the request of the ACEH (Alameda County Health Care Services 2006) and was developed from available data from the Andante Site (The San Joaquin Company Inc. 2003), the Oak Walk Site (The San Joaquin Company Inc. 2009a, 2005, 2004a,b,c), the Frank Dunne Site, the Boysen Paint Site and the California Linen Site.

Figure 3 presents SJC's best estimates of the courses of the paleo streambed channels that pass through the area and the continuity of the high permeability sand and gravel deposits that are characteristic of those channels. The interpretations are based on a preponderance of the available stratigraphic, hydrogeologic and geochemical data. With the exception of the paleo streambed that crosses from the northern to western boundaries of the Andante property and those that were exposed during the remediation of Oak Walk Site, the location and continuity of the streambed deposits on the other properties and streets as shown on the drawing have not been observed in open excavations.

As is shown on Figure 3, there are two principal channels of high-permeability deposits that cross the Oak Walk Site. One passes from the Ennis property westward towards San Pablo Avenue through the northern portion of the subject property. In addition, there is a second narrow, but well-defined channel of paleo streambed deposits that extends from the southwest portion of the Ennis property across the Oak Walk Site in a northeast to southwest direction and continues beneath 40th Street to cross the boundary of the Andante Property to the south and continues through that site to pass beneath San Pablo Avenue. That paleo channel was originally discovered in 2003 when SJC was remediating the Andante Site (The San Joaquin Company Inc. 2003) and was confirmed to cross 40th Street when its sandy and gravely deposits were again encountered in Exploratory Trenches 3 and 11 (see Figure 4 for locations) on the Oak Walk Site (The San Joaquin Company Inc. 2009a, 2004c).

The streambed deposits on the Andante Site were excavated from the channel and clay plugs were installed across the channel where it crossed the boundaries of that site at 40th Street and at San Pablo Avenue.

As part of the site characterization program conducted at the Oak Walk Site, SJC recovered samples of silty clay recovered from boring BG-2 (see Figure 4 for location) at a depth of 6.5 ft. and a second sample of similar material from a depth of 6 ft. in Monitoring Well MW-7. Constant-head permeability tests conducted on those samples found that the soils had hydraulic conductivities of 2.51 x 10⁻⁹ cm/sec and 2.95 x 10⁻⁸ cm/sec, respectively (The San Joaquin Company Inc. 2005). Those test results confirmed the extremely low permeability of the silty clays beneath the site and supported the interpretation that migration of contaminants in groundwater is controlled by the silts,

sands and gravels that were deposited on the site in the paleo streambed channels and other alluvial fan deposits laid down during the Recent geological era.

The hydrogeologic features described above are compatible with the published geology of the region, which is covered by an alluvial fan that, in the neighborhood of the Oak Walk Site, includes bands of stream and levee deposits (California Regional Water Quality Control Board - San Francisco Bay Region 1999).

1.7 Remediation

The Oak Walk Site was remediated in compliance with a Corrective Action Plan (The San Joaquin Company Inc. 2006a,b) that was approved by the ACEH (Alameda County Environmental Health Care Services 2006) and included the following elements.

1.7.1 Remedial Excavations

To remove soil heavily affected by benzene and other petroleum hydrocarbons and to limit the potential health risk due to the presence of such soils beneath residential structures, two remedial excavations were opened at the locations shown on Figure 4. As shown o

n Figure 14, Remedial Excavation No. 1 (**RE-1**) had dimensions of 60 ft. x 110 ft. x 7 ft. deep, while Remedial Excavation No. 2 (**RE-2**), shown on Figure 15, measured 75 ft. x 215 ft. x 6 ft. deep. A total of 3,096.13 tons of affected soil from the remedial excavations and auxiliary pits required for extraction of contaminated groundwater and planting of trees was removed from the site and disposed at permitted landfills.

Confirmation soil samples were recovered from the floors of the remedial excavations at the locations shown on Figures 14 and 15. Those samples were analyzed for TPHd, TPHms, TPHg and the BTEX compounds.

The remedial excavations were backfilled with clean low-permeability engineered fill compacted to a minimum relative density of 90%. The hydraulic conductivity of the fill was in the range 1.52×10^{-8} to 7.82×10^{-8} cm/sec. The highest hydraulic conductivity in that range is less than the hydraulic conductivity of 1.0×10^{-7} cm/sec that was used for the design of the corrective action measures (The San Joaquin Company Inc. 2009a).

1.7.2 Extraction of Contaminated Groundwater

A groundwater extraction pit, designated Groundwater Extraction Pit No. 1 (**GEP-1**), was opened at the location shown on Figure 4. A total of 21,000 gallons of contaminated groundwater was extracted from the area of the site where 54,000 μ g/L of TPHd, 81,000 μ g/L of TPHms, 8,200 μ g/L of TPHg, 1.4 μ g/L of benzene, 3.6 μ g/L of toluene and 2.2 μ g/L of xylenes had been present. (See results of analysis of Sample No GEP-1A in Table 5). However the mixtures of compounds present in the sample in the diesel and gasoline range did not have the characteristics of fuel hydrocarbons, which is consistent with the interpretation developed from the site characterization program that groundwater

in that area of the Oak Walk Site is primarily affected by mineral spirits and other industrial solvents released at the up-gradient Boysen Paint and Frank Dunne Sites. Following the extraction, as measured in sample GEP-1B, the concentrations of those contaminants in groundwater were reduced to 530 μ g/L of TPHd, 810 μ g/L of TPHms, 1,100 μ g/L of TPHg, and no detectable traces of benzene, toluene or xylenes.

1.7.3 Re-engineering of Site-wide Soils

Due to the soft native soils on the Oak Walk Site, construction of foundations for buildings required improvement of the soil in the upper 3 ft. to 6 ft. BGS. To accomplish this, the geotechnical engineering plan (The San Joaquin Company Inc. 2004b) for the site called for soil beneath the whole of Building 3 (see Figure 2 for location) to be excavated to a minimum depth of 6 ft. After conditioning, this soil was returned to the excavation as engineered fill compacted to a relative density of 90%. The re-engineered soil beneath Building 1 has a depth of 7 ft., which was required by the environmental corrective action plan, which in this area exceeded the 6 ft. geotechnical engineering depth requirement. The depth of re-engineered soil beneath Building 2 and the single family residential structures fronting onto 41st Street is a minimum of 4 ft. Soil beneath the paved outdoor parking was re-engineered to a minimum depth of 3 ft.

The effect of the geotechnical engineering soil improvement work described above was to create a stratum of very low permeability soil beneath both the residential and commercial ground floor units in the new building complex that has hydraulic conductivity within the range 1.52×10^{-8} to 7.82×10^{-8} cm/sec. That range is less than the 5.65×10^{-7} cm/sec hydraulic conductivity that was used for the design of the corrective action measures (The San Joaquin Company Inc. 2009a).

1.7.4 Installation of Elastomeric Membrane

A Liquid Boot[®] elastomeric membrane was placed beneath the floor slabs of all first floor residential and commercial space in the buildings on the Oak Walk Site. Liquid Boot[®] has a hydraulic conductivity of less than 1.0×10^{-11} cm/sec (Tofani 2009) as measured by ASTM Standard Test D4491 (American Society for Testing and Materials 2004). It does not break down in the presence of petroleum hydrocarbons when subjected to the ASTM Standard D543-06 test (American Society for Testing and Materials International 2006) and it has been shown to gain less than 1% in weight when exposed to benzene vapor at a concentration of 136,000 μ g/L. At that concentration, a 60 mil thickness of the material has a mean benzene diffusion coefficient of 2.1 x 10^{-13} m²/day (GeoKinetics, Inc. 2008, Tofani 2009).

The Liquid Boot[®] membrane was sprayed over a geotextile substrate laid over a 4-in. thick gravel base until it reached a minimum thickness of 60 mils. The membrane was also installed vertically along the interior sides of the buildings' strip footings and column bases, as well as around each utility pipe or other penetration passing through the floor slabs. That technique ensures that there are no gaps anywhere in the completed membrane over the entire area of the occupied space. In addition to the areas beneath

ground floor occupied space, a Liquid Boot[®] membrane was installed so as to fully seal the floor and walls of the elevator pits in Building 3 of the new development.

Following installation and curing, 105 mil thick Liquid Boot[®] Ultra Shield-1000 geotextile fabric was laid over the membrane to protect it during installation of the concrete floor slabs.

2.0. SEPTEMBER 2009 GROUNDWATER-QUALITY MONITORING ROUND

On September 21-24 2009, SJC conducted the first post-remediation round of groundwater-quality monitoring at the Oak Walk property. On September 21, 2009, URS, Inc. (URS), the City of Emeryville's consultants, conducted a parallel groundwater-quality monitoring round in wells URS MW-1 through URS MW-5 and LFMW-LF-4, which were installed as part of the site characterization program for the Celis' Site (see Figure 3 for locations).

2.1 Groundwater Elevations and Flow Direction

On September 21, 2009, prior to recovery of samples, the depth to groundwater in each of the monitoring wells installed for the Oak Walk Site was measured using a conductivity probe. The depths to groundwater are recorded in Table 4, together with the water table elevations computed relative to the National Vertical Datum (NAVD) based on the previously-surveyed top of casing elevations of the wells.

The depth to groundwater and groundwater table elevations obtained by URS for the City of Emeryville's wells are also recorded in Table 4. The groundwater elevations presented in Table 4 were used to generate the groundwater contours shown on Figure 16. Although the interpretation of the geometry of the groundwater contours shown on Figure 16 is in strict compliance with the depths to groundwater measured on September 21, 2009, the interpretation of the contour geometries between well locations reflect the known distributions of paleo streambed deposits in the subsurface and hydrostratigraphy of the site and the general geometry of groundwater contours that were derived from the round of groundwater sampling conducted on November 8, 2004, when data from temporary wells MWT-1 through MWT-14 were available (The San Joaquin Company, Inc. 2005).

Due to the complex hydrostratigraphy of the subsurface the direction and gradient of groundwater flow varies from location to location over the Oak Walk Site and surrounding area, but the general direction of groundwater flow is to the southwest at a gradient of 0.02 ft./ft.

Figure 17 shows groundwater contours for September 21, 2009 from the integrated data gathered by on the Oak Walk Site and URS from the Celis Site.

2.2 Purging of Groundwater-quality Monitoring Wells

A small-diameter, submersible pump was used to purge Monitoring Wells WCEW-1 through MW-16C of stagnant water. The pumped water was discharged into 5-gallon pails, each of which was, in turn, discharged into a 55-gallon drum. The water in the drum was periodically discharged into a 500-gallon holding tank stored in the garage area of Building 3.

During the purging procedure, the temperature, pH and electrical conductivity of the stream of purge water were monitored by checking those parameters periodically using a

multi-function electronic meter. Purging continued until all three parameters stabilized (*i.e.*, variations between measurements were less than 10%) or, as in the case of Monitoring Wells MW-2, MW-16A, MW-16B and MW-16C, the casing was completely emptied and the well was dry. The array of parametric results for each well is recorded in SJC's field notes (see Appendix A).

2.2.1 Disposal of Purge Water

As noted above, purge water extracted from the monitoring wells was discharged periodically into a 500-gallon storage tank held on the property. On October 2, 2009, the 342 gallons of water held in the tank was pumped into a vacuum truck and transported under a waste manifest to the DeMenno/Kerdoon treatment facility in Compton, California, where its petroleum hydrocarbon content was recycled in beneficial use and the cleaned water discharged under permit to the Los Angeles County Sanitation District's sewerage system. A copy of the manifest is included in Appendix B.

2.3 Recovery of Groundwater Samples from Monitoring Wells

After purging, samples were recovered from all wells using disposable bailers. Water brought to the surface in the bailers was decanted via discharge spigot valves placed in the bottom of each bailer so as to completely fill clean glassware supplied by the laboratory containing pre-dispensed hydrochloric acid preservative. The sample vials were then tightly closed, labeled for identification, entered into chain-of-custody control and packed on chemical ice for transport to the sample refrigerator at SJC's Oakland office. They were later transported on ice to TestAmerica Laboratories, Inc. in Pleasanton, California (**TestAmerica**) for analysis.

2.4 Analyses of Groundwater Samples

Each groundwater sample recovered was analyzed at the laboratory for the following suite of analytes.

<u>Analyte</u>	Method of Analysis
Total Petroleum Hydrocarbons (quantified as diesel)	EPA Method 8015B with pre-treatment by EPA Method 3630.
Total Petroleum Hydrocarbons (quantified as mineral spirits)	EPA Method 8015B with pre-treatment by EPA Method 3630.
Total Petroleum Hydrocarbons (quantified as gasoline)	EPA Method 8260B
Benzene	EPA Method 8260B

Toluene EPA Method 8260B

Ethylbenzene EPA Method 8260B

Total Xylene Isomers EPA Method 8260B

tertiary-Butyl alcohol EPA Method 8260B

Methyl-tertiary butyl ether EPA Method 8260B

Di-isopropyl ether EPA Method 8260B

Ethyl tertiary-butyl ether EPA Method 8260B

Tertiary-amyl methyl ether EPA Method 8260B

TestAmerica's laboratory is certified by the DHS to perform the groundwater analyses listed above.

The results of the analyses of samples of groundwater from the Oak Walk Site are presented in Table 5, which includes the results of analyses of groundwater samples recovered from all previous sampling rounds. Copies of the laboratory's Certificates of Analysis generated from the September 2009 monitoring round are included in Appendix C of this report.

Results of analysis of samples recovered from the Celis wells by URS are also included in Table 5.

3.0 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER

The investigations of the geochemistry of the subsurface at the Oak Walk Site have shown that soil and groundwater over essentially the whole of the property is affected by petroleum hydrocarbons. As was discussed in Section 1.5 above, mineral spirits and paint thinners were released from the Frank Dunne and Boysen Paint sites located to the east of Adeline Street and diesel and gasoline were released at the Celis Site, located beneath what is now 40th Street. Over large areas of the site the solvents and fuels became intermingled. In addition, a limited area of the site on its southern frontage on 40th Street was affected by a release of gasoline from a tank installed by the SFFBC that was formerly located partially within and partially outside the Oak Walk property boundary. Those release sites are shown on Figure 3.

The concentrations of COCs in soil recovered from the subsurface at the Oak Walk Site are presented in Tables 1, 2 and 7 and the concentrations of COCs in groundwater are presented in Table 5. **Note:** As is described in Section 1.7, in some areas of the Site, soil was remediated by excavation and off-site disposal. In Table 1, COCs detected in samples from locations where soil was shipped off-site and replaced with clean, imported fill are shown in *italic font*. At locations where remediation involved excavation and recompaction of native soil, the concentrations are shown in smaller font.

3.1. Concentrations of Analytes in Excess of the ESLs

To provide a standard process for determining whether COCs detected at a contaminated site will require additional evaluation, the RWQCB has established Environmental Screening Levels (**ESLs**) for many chemicals and for mixtures of chemicals such as gasoline and diesel (California Regional Water Quality Control Board San Francisco Bay Region 2008).

If the concentrations of COCs in soil or groundwater exceed the applicable ESLs it does not necessarily mean that active remediation of soil or groundwater is necessary or that additional corrective action measures beyond the scope of those already taken would be required. It simply means that in the case of an un-remediated site, additional evaluation is required to determine whether or not remediation measures must be implemented. In the case of the Oak Walk property, at which the remediation program is complete, comparison of the COCs remaining in situ with the applicable ESLs can simply identify soil and groundwater in which the COCs remain elevated but, due to the implementation of the corrective action program, no longer pose unacceptable risk.

The RWQCB has found that shallow groundwater in the region of the Oak Walk Site is not a source of drinking water (California Regional Water Quality Control Board - San Francisco Bay Region 1999). Given that finding and because there are both residential and commercial structures on the Oak Walk Site, the applicable ESLs are those developed for residential sites where the groundwater is not a current or potential source of drinking water. In the case of contaminants in soils, there are separate ESLs for shallow soils (*i.e.*, soil at depth less than 3 meters (9.84 ft. BGS) and for deep soils (*i.e.*,

at depths greater than 9.84 ft). The applicable ESLs for the COCs at the Oak Walk Site for soil and groundwater are compiled in Tables 8 (shallow soils) and 9 (deep soils).

The results of analyses of soil and groundwater that indicated the presence of contaminants of concern at concentrations in excess of the applicable ESLs are shown in **bold font** in Tables 1, 2, 3, 5, 6 and 7. (**Note:** Although they are located slightly deeper than 9.84 ft., SJC conservatively considered soil at depths up to 10 ft. to be "shallow" when preparing the Tables.)

3.2 Comingling of Fuel Hydrocarbons and Paint Solvents

Comingling of different petroleum products from the different sources that migrated across the Oak Walk Site complicate an interpretation of which areas of the site were affected by discharges from those different sources. However, it has been possible to reach an understanding of the distribution of petroleum compounds that fall within different ranges of carbon-chain length and to delineate areas affected by chemicals of particular concern, such as benzene. Figures 18 through 23 provide visual representations of those distributions. To construct those visualizations, SJC considered petroleum hydrocarbons that fall into the middle-distillate range separately from hydrocarbons that fall into the gasoline range.

The middle-distillate range hydrocarbons include diesel, mineral spirits and the heavier fraction of paint solvents. The gasoline range hydrocarbons include gasoline fuel, including its components that are of specific concern such as benzene, toluene, ethyl benzene and xylene isomers, as well as lighter fractions of paint solvents. However, paint solvents do not generate chromatographic patterns that are characteristic of fuel hydrocarbons. This makes it possible to distinguish samples of soil and groundwater affected by fuel hydrocarbons from those affected solely by paint solvents.

As part of the site characterization program for the Oak Walk Site, SJC made a study of site-specific hydrogeologic and chemical parameters that could be used to differentiate between areas of the property that had been affected solely by paint solvents as opposed to areas where a comingling of paint solvents and fuel hydrocarbons are present That study showed that components of mineral spirits and other paint solvents, including the gasoline-range components of those products, emanating from the Frank Dunne and Boysen Paint Sites were present over essentially the whole area of the Oak Walk Site. However, study of chromatograms from analyses of the gasoline-range compounds in groundwater samples recovered from wells located in the approximate northern half of the site were not consistent with the fuel gasoline (The San Joaquin Company Inc. 2005).

However, groundwater samples recovered from wells located in a substantial portion of the southern half of the Site contained significant concentrations of the BTEX compounds. This indicates that the source of at least a portion of the gasoline-range hydrocarbons in that area were released from either the Celis or SFFBC fuel tanks. This finding was supported by the presence of MTBE in groundwater in that area. For example, the sample of groundwater recovered on September 24, 2009 from Monitoring

Well MW-2, which, as is shown on Figure 4, is located a few feet to the south of the 40th Street frontage of the Oak Walk Site, contained diesel, mineral spirits and gasoline at concentrations of 400 μ g/L, 350 μ g/L and 4,000 μ g/L, respectively. That information alone does not permit a conclusion that the groundwater at Monitoring Well MW-2 contains fuel hydrocarbons. However, the fact that the sample recovered from that well contained benzene at a concentration of 1,500 μ g/L together with ethylbenzene at 520 μ g/L and MTBE at 47 μ g/L is evidence that the fuel gasoline is present at that location and is comingled with the paint solvents that include mineral spirits.

Figure 18 shows the area of the Oak Walk Site where soil or groundwater is affected by middle distillate-range hydrocarbons regardless of whether the source of those compounds is from tanks containing fuel hydrocarbons or paint solvents.

Figure 19 shows the area of the Oak Walk Site where gasoline-range petroleum hydrocarbons affect the soil and groundwater. That area extends over almost the whole of the Site. This is reflective of the commingling of gasoline fuel released at the Celis and SFFBC Sites with the high concentrations of gasoline-range compounds in the paint solvents that migrated down the groundwater gradient from the Dunne and/or Boysen Paint Sites to the east of Adeline Street.

3.3 Middle Distillate-range Petroleum Hydrocarbons in Groundwater

Isocons of middle distillate range hydrocarbons on the Oak Walk Site are shown on Figure 20. A substantial portion of those COCs were released at the Frank Dunn and Boysen Paint Sites and carried onto the Oak Walk property from the east in two streams that correspond with the paleo streambeds shown on Figure 3. There they comingled with the diesel that leaked from the underground storage tanks formerly located on the Celis site which was situated beneath 40th. Street where in joins the eastern side of San Pablo Avenue.

The highest concentrations detected in September 2009 were present in the sample recovered from Monitoring Well MW-16A. that contained TPH(ms) at 4,100 μ g/L and TPH (d) at 2,400 μ g/L. An area where groundwater was affected by middle distillate petroleum hydrocarbons at concentration in excess of 1,100 μ g/L extended in a band westward from there across San Pablo Avenue.

3.4 Gasoline-range Petroleum Hydrocarbons in Groundwater

Isocons of gasoline range hydrocarbons on the Oak Walk Site are shown on Figure 21. As is the case for middle distillate hydrocarbons, a significant portion of those COCs were released in the form of solvent products at the Frank Dunn and Boysen Paint Sites and carried onto the Oak Walk property from the east. where they comingled with gasoline fuel that leaked from the underground storage tanks formerly located on the Celis site.

The highest concentration of gasoline-range hydrocarbons detected in the September 2009 monitoring round was $64,000~\mu g/L$ in groundwater in Monitoring Well MWT-16A. High concentrations of those compounds were also present in Monitoring Wells MW-16B and MW-2 at $4,000~\mu g/L$ in each. In the latter case, that represented a reduction from the $8,300~\mu g/L$ of gasoline range compounds that had been detected in MW-2 on September 18, 2007.

3.4.1 Distribution of BTEX Compounds

No BTEX compounds in excess of their ESLs were detected in groundwater recovered from any of the wells on the Oak Walk Site during the September 2009 monitoring round except for the case of Monitoring Wells MW-2, MW-16A and MW-16B. However, the concentration of benzene in Monitoring Well MW-16A was at the unusually high level of 18,000 μ g/L and it was also present at high concentrations (1,650 μ g/L and 1,600 μ g/L respectively) in Monitoring Wells MW-2 and MW-16B.

The isocons for benzene on the Oak Walk Site are shown on Figure 22 which have the form of a confined elliptical plume centered around Monitoring Well MW-16A. No benzene was detected in the samples recovered from Monitoring Well MW-3 (2ee Figure 22 for location) which suggests that any of that COC that had its source at the former SFFB tank has fully dissipated and the benzene detected on the Oak Walk Site and adjacent areas in September 2009 had its source at the former Celis Alliance Service Station.

3.4.2 Distribution of MTBE

The only fuel oxygenate detected in groundwater recovered from the Oak Walk Site during the September 2009 monitoring round was MTBE. None was present at a concentration in excess of its ESL. The area of the Oak Walk Site that is affected by MTBE in groundwater is shown on Figure 23. The boundaries of that area provide a good indication of the extent to which gasoline fuel leaking from the Celis tanks affected the site. (**Note:** The SFFBC tanks were removed from the underground prior to the 1992 mandated use of MTBE in gasoline fuel.)

3.5 Distribution of Polynuclear Aromatic Compounds and Other Analytes

Tables 1 and 5 also show that there are a few instances where the polynuclear aromatic compounds (**PNA**s), naphthalene and 2-methyl-naphthalene, were present in soil and groundwater beneath the Oak Walk Site. Those PNAs may be components of diesel fuel or of industrial solvents. At the Oak Walk Site, they were at their highest concentrations in groundwater in samples recovered on May 19, 2004 and from Monitoring Wells MW-2 and MWT-2 (see Figure 4 for locations), which suggests that they are principally associated with diesel released from the former Celis service station site. Some very low concentrations of PNAs were detected in some soil samples from more widely-dispersed

locations, but the preponderance of those additional detections was also in areas that were affected by fuel hydrocarbons.

3.6 Integration of Groundwater-quality Data from Oak Walk and Celis Wells

Isocons of the concentrations of diesel-range hydrocarbons, gasoline-range hydrocarbons and benzene in groundwater derived by integrating the data recovered from the groundwater monitoring wells at both the Oak Walk and Celis Sites in September 2009 are shown on Figures 24 through 26, respectively. Figure 27 shows the area where MTBE is present at both sites.

4.0 FUTURE GROUNDWATER-QUALITY MONITORING

As called for by the approved CAP, a one-year duration groundwater-quality monitoring program is planned for the Oak Walk Site that will employ the extant 18-well array of groundwater-quality monitoring wells shown on Figure 4.

Based on consideration of the criteria established by California State Water Resources Control Board Resolution No. 2009-0042 (California State Water Resources Control Board 2009) and following discussion with the RWQCB Case Officer, the next round of groundwater-quality monitoring at the Oak Walk site is planned for March 2010.

5.0 REFERENCES

Alameda County Environmental Health Care Services (2006), Letter: *TOXICS Case RO0002733*, *Oak Walk Redevelopment Site*, *Emeryville*, *CA 94608*. From Barney M. Chan, Hazardous Materials Specialist to Mr. Peter Schellinger, Bay Rock Residential and Mr. John Tibbits. Dated December 1, 2006.

American Society for Testing and Materials International (2006), D543-06 Standard Practices for Evaluating the Resistance of Plastics to Chemical Reagents. American Society for Testing and Materials, West Conshohocken, Pennsylvania. 2006.

American Society for Testing and Materials International (2004), ASTM D4491 - 99a(2004)e1 Standard Test Methods for Water Permeability of Geotextiles by Permittivity. American Society for Testing and Materials, West Conshohocken, Pennsylvania. 2004.

American Society for Testing and Materials (2002), *Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites*. American Society for Testing and Materials, West Conshohocken, Pennsylvania. 2002.

Aqua Science Engineers, Inc. (2005a), Report of Additional Soil and Groundwater Assessment, ASE Job No. 3976, at Kozel Property, 1001 42nd Street, Oakland, California. October 28, 2005.

Aqua Science Engineers, Inc. (2005b), Report of Soil and Groundwater Assessment, ASE Job No. 3976, at Kozel Property, 1001 42nd Street, Oakland, California. January 19, 2005.

Block Environmental Services (1999), Evaluation of Site Contamination and Recent Groundwater Sampling, ONE, Dunne Paints, California Linen, Oakland/Emeryville, California. Prepared for O.N.E. Color Communications. February 25, 1999.

California Regional Water Quality Control Board San Francisco Bay Region (2008), *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*. California Regional Water Quality Control Board San Francisco Bay Region INTERIM FINAL. November 2007 (Revised May 2008).

California Regional Water Quality Control Board - San Francisco Bay Region (1999), East Bay Plane Groundwater Basin Beneficial Use Evaluation Report - Alameda and Contra Costa Counties, CA., California Regional Water Quality Control Board - San Francisco Bay Region Groundwater Committee. June 1999.

California State Water Resources Control Board (2009), Resolution No. 2009-0042: Actions to Improve Administration of the Underground Storage Tank (UST) Cleanup Fund and UST Cleanup Program. May 18, 2009.

Clayton Group Services (2007), Workplan for Off-site Groundwater Investigation, Former Dunne Quality Paints, 1007 41st Street, Oakland, CA 94608. Prepared for Green City Lofts and McGrath Properties. January 17, 2007.

Clayton Group Services (2005), *Green City Offsite Investigation*. Prepared for Green City Lofts. 2005.

Clayton Group Services (2004a), *Green City Offsite Investigation*. Prepared for Green City Lofts. 2004.

Clayton Group Services (2003), Supplemental Investigation of the Former Dunne Paint Facility, 1007 41st Street in Oakland/Emeryville and 4050 Adeline Street in Emeryville, California. Prepared for City of Emeryville. Dated June 10, 2003.

Clayton Group Services (2002), *Pre-development Investigation, Former Dunne Paints,* 1007–41st Street in Oakland/Emeryville and 4050 Adeline Street in Emeryville, California. Dated December 23, 2002.

Environmental Resource Management (2006), Aegis, Limited Soil and Groundwater Investigation Report, Kozel Property, 1001 42nd Street, Oakland, California. June 29, 2006.

GeoKinetics, Inc. (2008), Common Questions and Answers Regarding the Use of Sub-Slab Membranes for VOC Mitigation. Vapor Barrier Technology Memorandum. December 2008.

GeoKinetics, Inc. (2005), Letter Report: Results of Benzene Diffusion Tests for Liquid Boot Membranes. October 1, 2005.

Hageman-Aquiar, Inc. (1992), Report of Limited Soil Investigation, Frank W. Dunne Company, 1007 41st Street, Oakland, CA. June 22, 1992.

Lawrence Berkeley National Laboratory (1995), Protocol for Determining Background Concentrations of Metals in Soil at Lawrence Berkeley National Laboratory (LBNL). Berkeley, California. August 1995.

Levine-Fricke (1994), Further Soil and Groundwater Investigation, Fuel Station, 40th Street Right-of-Way, Emeryville, California. Prepared for Catellus Development Corporation. Dated March 1994.

Levine-Fricke (1993), *Phase II Investigation Results, Proposed 40th Street Right-of-Way, Emeryville, California.* Prepared for Catellus Development Corporation. Dated September 8, 1993.

Radbruch, Dorothy H. (1957), *Areal and Engineering Geology of the Oakland West Quadrangle*, *California*, <u>Miscellaneous Geological Investigations Map I-239</u>, United States Geological Survey, Washington, D.C.

SEACOR Science and Engineering Analysis Corporation (1992), Results of Monitoring Well Installation and Sampling, 4070 San Pablo Avenue, Emeryville, California. September 30, 1992.

The San Joaquin Company Inc. (2009a), Remediation Report, Oak Walk Redevelopment Site, Emeryville, California. August 2009

The San Joaquin Company Inc. (2009b), Geotechnical Engineering Inspection Report, Oak Walk Redevelopment Site, Emeryville, California. February 2009.

The San Joaquin Company Inc. (2006a), Addendum to Corrective Action Plan Oak Walk Redevelopment Site Emeryville, California. November 2006.

The San Joaquin Company Inc. (2006b), Corrective Action Plan, Oak Walk Redevelopment Site, Emeryville, California. (Vols. I and II.) July 2006.

The San Joaquin Company Inc. (2005), Environmental Site Characterization, Oak Walk Redevelopment Site, Emeryville, California. April 2005.

The San Joaquin Company Inc. (2004a) Letter: Subject: Subsurface Contamination Found at Oak Walk Redevelopment Site, Emeryville, Adjacent to Former Celis Service Station at 400 San Pablo Avenue, Case No.:567 RWQCB Case RO453/RO56, from D. J. Watkins, Ph.D., P.E. to Mr. Barney Chan Alameda Environmental Health Care Services, Local Oversight Program. Dated August 12, 2004.

The San Joaquin Company Inc. (2004b), *Geotechnical Engineering Report: Oak Walk Project Site*, *Emeryville*, *California*. Letter Report prepared for Bay Rock Residential LLC. August 2004.

The San Joaquin Company Inc. (2004c), Results of Preliminary Subsurface Investigation: The Oak Walk Site, Emeryville, California. Letter Report prepared for Bay Rock Residential LLC. April 2004.

The San Joaquin Company Inc. (2003), Corrective Action Report, SNK Andante Project, 3992 San Pablo Avenue, Emeryville, California. Prepared for SNK Captec Andante LLC. August 2003.

URS Corporation (2009), First Quarter 2008 Groundwater Monitoring at Former Celis' Alliance Service Station, 4000 San Pablo Avenue, Emeryville, California. Prepared for the City of Emeryville Redevelopment Agency. Dated July 22, 2009.

URS Corporation (2007a), Fourth Quarter 2007 Groundwater Monitoring at Former Celis' Alliance Service Station, 4000 San Pablo Avenue, Emeryville, California. Prepared for the City of Emeryville Redevelopment Agency. Dated December 26, 2007.

URS Corporation (2007b), *Monitoring Well Installation at Former Celis' Alliance Service Station, 4000 San Pablo Avenue Emeryville, California.* Prepared for the City of Emeryville Redevelopment Agency. Dated August 29, 2007.

URS Corporation (2006), Additional Investigation at Former Celis' Alliance Service Station, 4000 San Pablo Avenue Emeryville, California. Prepared for the City of Emeryville Redevelopment Agency. Dated May 31, 2006.

Woodward-Clyde International-Americas (1998), Letter: Subject - Request for Site Closure Former Celis Alliance Fuel Station at 4000 San Pablo Avenue, Emeryville California. Emeryville, California, Xinggang Tong, PE to Ms Susan Hugo, Division of Environmental Health Services, Department of Environmental Health, Alameda County Health Agency. Dated October 15, 1998.

Woodward-Clyde Consultants (1997), Third Quarter 1997 Groundwater Monitoring Results, Former Celis Alliance Fueling Station, 4000 San Pablo Avenue, Emeryville, California. Prepared for City of Emeryville Redevelopment Agency. Dated November 13, 1997.

Woodward-Clyde Consultants (1995), Report on Soil Remediation at the Former Celis Alliance Fueling Station, 4000 San Pablo Avenue, Emeryville, California. Prepared for City of Emeryville Redevelopment Agency. Dated January 6, 1995.

TABLE 1

RESULTS OF ORGANIC CHEMICAL ANALYSES OF SOIL SAMPLES RECOVERED FROM THE OAK WALK SITE

			Petrole	eum Hydr	ocarbons								Other	Volatile (Organic (Compoun	nds							PNAs	
Sample ID	Date Sam- pled	Depth BGS	Min- eral Spirits mg/Kg	(Die-	TPHg (Gaso- line) mg/Kg	Ben- zene mg/Kg	Tolu- ene mg/Kg	Ethyl- ben- zene mg/Kg	Total Xy- lenes mg/Kg	MTBE mg/Kg	tone	ta- none	n-Bu- tylben- zene mg/Kg			-	p-isopro- pyiben- zene mg/Kg	p-Isopro- pyltol- uene mg/Kg	n-Pro- pylben- zene mg/Kg	1,2,4-Tri- methyl- benzene mg/Kg		52 Other VOCs by 8260B GC/MS	Naptha- lene mg/Kg	2-Methyl- napthalene	15 Other PNAs by 8270C mg/Kg
Trenches																									
T1 - 7.0	12/03/03	7.0	na ²	70 ¹⁶	530 ⁵	ND	ND	8.3	4.7	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T1 - 8.5	12/03/03	8.5	na	90	1,400 ⁵	ND	ND	10	1.9	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T2 - 6.5	12/03/03	6.5	na	ND	3.8 ⁵	0.026	ND	0.024	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T2 - 8.5	12/03/03		na	1.5	300 ⁵	1.1	3.1	6.4	27	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T3 - 8.0	12/03/03	8.0	na	4.3	6.4	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	ND	na	na
T3 - 9.5	12/03/03		na	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T4 - 10.5	12/03/03	10.5	na	ND	ND	ND	ND	ND	ND	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND
T5 - 9.0	12/03/03	9	ND	70 ⁴	400	ND	2.6	6.1	36	ND	na	na	ND	0.6	ND	0.88	ND	ND	3.9	25	7.6	ND	4.1	1.8	ND
T6 - 8.5	12/02/03	8.5	na	70	3,000 5	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T7 - 9.0	12/02/03	9.0	na	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T8 - 8.5	12/02/03	8.5	na	150	820 ⁵	ND	ND	ND	ND	ND	na	na	0.51	0.81	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND
T9-S10-D 5.0	10/04/07	5.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T9-S10-D 10.0	10/04/07		ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T9-S10-D 14.25	10/04/07		100	67	19,000	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T9-S30-D 5.0 T9-S30-D 10.0	10/05/07 10/05/07		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T9-S30-D 10.0	10/05/07		14	8.9	3,900	ND	ND	ND	ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
T9-S50-D 14.0	10/05/07		ND	12	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T9-S50-D 10.0	10/05/07		99	75	530	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T9-S50-D 13.0	10/05/07		900	600	7,600	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T9-S50-D 15.0	10/05/07		ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-0S-5.0	09/21/07	5.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-0S-10.0	09/21/07	10.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-0S-15.0	09/21/07	15.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S21.5-17.0	09/21/07	17.0	300	210	560	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S21.5-20.5	09/21/07	20.5	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S50-D 5.0	09/24/07		ND	3.8 16	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S50-D 10.0	09/24/07		ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S50-D 15.0	09/24/07		48	30	350	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S55-D 17.0	09/24/07		ND	ND	2.2	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S75-D 5.0	09/24/07		ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S75-D 10.0	09/24/07		ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S75-D 15.0	09/24/07		580	360	2,100	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S75-D 17.0 T10-S100-D 5.0	09/24/07 09/26/07		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S100-D 5.0			ND ND	2.3 ND	ND ND	ND ND	ND ND	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
T10-S100-D 10.0			1.300	820	4,200	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S100-D 15.0	09/26/07		ND	2.9	4,200 ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S125-D 3.0			ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
. 10 0120 0 10.0	33/20/01	10.0	140	140	110	110	140	140	140	IIu	i i u	na	i iu	IIu	i i u	i i u	iiu	i i u	i i u	iiu	i iu	i iu	· iu	i i u	i iu

			Petrole	um Hydro	ocarbons								Other	Volatile (Organic (Compour	nds							PNAs	
Sample ID	Date Sam- pled	Depth BGS	Min- eral Spirits mg/Kg	TPHd (Die- sel) mg/Kg	TPHg (Gaso- line) mg/Kg	Ben- zene mg/Kg	Tolu- ene mg/Kg	Ethyl- ben- zene mg/Kg	Total Xy- lenes mg/Kg	MTBE mg/Kg	Ace- tone	2-Bu- ta- none mg/Kg	n-Bu- tylben- zene mg/Kg			Isopro- pylben- zene mg/Kg	p-isopro- pyiben- zene mg/Kg	p-Isopro- pyltol- uene mg/Kg	n-Pro- pylben- zene mg/Kg	1,2,4-Tri- methyl- benzene mg/Kg	1,3,5-Tri- methyl- benzene mg/Kg	52 Other VOCs by 8260B GC/MS	Naptha- lene mg/Kg	2-Methyl- napthalene mg/Kg	15 Other PNAs by 8270C mg/Kg
T10-S125-D 15.0	09/26/07	15.0	ND	ND	2.1	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S150-D 5.0	09/26/07	5.0	2.2	6.2	2.6	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T10-S150-D 10.0 T10-S150-D 15.0	09/26/07 09/26/07	10.0 15.0	ND 550	ND 420	ND 1,700	ND ND	ND ND	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
T10-S150-D 19.0			ND	ND	6.9	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T11-5	08/08/07	5.0	ND	9.2	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T11-10	08/08/07		ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
T11-15	08/08/07	15.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
Borings and We	ells																								
BE-1-5.0	04/02/04	5.0	62 ³	ND	540	ND	ND	5.1	1.6	ND	ND	ND	8.4	3.1	ND	2.7	ND	0.29	13	12	3.8	ND ⁶	18	3.2	ND 9
BE-1-10.0	04/02/04		130 ³	ND	3,600	13	140	80	430	ND	ND	ND	3.7	ND	ND	1.4	ND	ND	6.2	32	12	ND	7.5	ND	ND
BE-1-13.5	04/02/04		na ND	na	na 7.0	na o ooc	na	na 0.12	na	na 0.011	na ND	na	na 0.014	na	na	na ND	na ND	na ND	na 0.027	na 0.054	na 0.013	na ND	na 0.12	na	na ND
BE-1-15.0 BE-1-20.0	04/02/04 04/02/04		ND	ND ND	7.9 2.5	0.096 0.027	0.029 0.011	0.12	0.6 0.033	0.011 ND	0.031	ND ND	0.014 ND	ND ND	ND ND	ND	ND	ND	ND	0.054 ND	0.013 ND	ND	0.12 ND	ND ND	ND
BE-1-25.0	04/02/04		ND	ND	ND	ND	0.0053	ND	0.011	0.012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BE-2-5.0	04/02/04	5.0	27 ³	ND	340	1.3	ND	5.7	26	ND	ND	ND	9.1	2.4	ND	2.5	ND	ND	12	37	14	ND	18	1.4	ND
BE-2-10.0	04/02/04	10.0	24 ³	ND	820	7.4	33	16	87	ND	ND	ND	3.3	ND	ND	1.3	ND	ND	5.7	29	10	ND	6.8	0.31	ND
BE-2-15.0	04/02/04	15.0	ND	2.5 8	5.0	0.052	ND	0.027	ND	0.075	0.14	ND	0.046	0.019	ND	0.0097	ND	ND	0.046	ND	ND	ND	ND	ND	ND
BE-2-20.0			ND	2.4	ND	ND	ND	ND	0.0086	0.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BE-2-25.0	04/02/04	25.0	ND	ND	ND	0.053	0.051	0.038	0.15	0.018	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0069	ND	ND	ND	ND	ND
BE-3-5.0	04/02/04		ND	1.1 ⁸	ND	ND	ND	ND	ND	ND	0.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BE-3-10.0 BE-3-15.0	04/02/04 04/02/04		ND ND	ND 1.3 ⁷	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.025 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
BE-3-20.0	04/02/04		190	ND	1,600 5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BE-4-5.0	04/01/04	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BE-4-9.5	04/01/04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BE-4-14.5	04/01/04		ND	1.3 ⁸	2.8	0.006	ND	0.047	0.024	ND	0.04	ND	0.081	0.027	ND	0.017	0.0099	ND	0.081	0.12	0.005	ND	0.086	ND	ND
BE-4-19.5	04/01/04	19.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BE-5-5.0	04/01/04		ND	4.5 7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BE-5-10.0	04/01/04		14	ND	340 ⁵	ND	ND	ND	ND	ND	ND	ND	0.092	0.046	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BE-5-14.5 BE-5-19.5	04/01/04 04/01/04		ND ND	2.5 ⁷	ND ND	ND ND	ND ND	ND ND	ND ND	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND	ND na	ND	ND	ND na	ND	ND	ND	ND na
																	na		na	na		na	na	na	
BE-6-4.0	04/01/04		ND	227	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BE-6-9.5	04/01/04			1,200 ′	ND 130 ⁵	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0066	ND	ND
BE-6-15.0 BE-6-20.0	04/01/04 04/01/04		ND ND	4.9 ⁸	2.6 ⁵	ND ND	ND ND	ND	ND ND	ND na	ND na	ND na	ND na	ND na	ND	ND na	ND	ND na	ND	ND na	ND	ND na	ND	ND	ND
															na		na		na		na		na	na	na
BG-1-5	04/06/04		ND 35 ³	ND	1.3	ND	ND	ND	ND 75	ND	0.046	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	ND
BG-1-10	04/06/04			ND	870 270	ND 1.1	9.0 0.99	13 4.9	75 24	ND ND	ND 0.065	ND	2.6 0.028	ND	ND	1.1 ND	ND ND	ND ND	4.4 0.025	23	8.1 0.056	ND	4.2 0.055	3.5	ND
BG-1-15 BG-1-20	04/06/04 04/06/04		ND ND	3.7 ⁸ ND	ND	1.1 0.0062	0.99 ND	4.9 ND	ND		0.065	ND ND	0.028 ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.025 ND	0.160 ND	0.056 ND	ND ND	0.055 ND	ND ND	ND ND
BG-1-25			ND	ND	ND	0.0002 ND	ND	0.0051	0.023	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
BG-1-30	04/06/04	30.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BG-1-35	04/06/04	35.0	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na

			Petrole	um Hydr	rocarbons								Other	Volatile	Organic (Compour	nds							PNAs	
Sample ID	Date Sam- pled	Depth BGS ft.	Min- eral Spirits mg/Kg	TPHd (Die- sel) mg/Kg	TPHg (Gaso- line) mg/Kg	Ben- zene mg/Kg	Tolu- ene mg/Kg	Ethyl- ben- zene mg/Kg	Total Xy- lenes mg/Kg	MTBE mg/Kg	Ace- tone	2-Bu- ta- none mg/Kg	n-Bu- tylben- zene mg/Kg	sec-Bu- tylben- zene mg/Kg		Isopro- pylben- zene mg/Kg	p-Isopro- pylben- zene mg/Kg	p-Isopro- pyltol- uene mg/Kg	n-Pro- pylben- zene mg/Kg	1,2,4-Tri- methyl- benzene mg/Kg	1,3,5-Tri- methyl- benzene mg/Kg	52 Other VOCs by 8260B GC/MS	Naptha- lene mg/Kg	2-Methyl- napthalene	15 Other PNAs by 8270C mg/Kg
BG-2-5.0	04/06/04	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BG-2-10.5	04/06/04	10.5	47 ³	ND	1,200	ND	ND	16	80	ND	ND	ND	6.0	ND	ND	2.4	ND	ND	10	50	17	ND	8.5	3.0	ND
BG-2-15.0	04/06/04	15.0	ND	ND	ND	ND	ND	ND	ND	ND	0.028	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BG-2-18.0		18.0	ND	ND	ND	ND	ND	ND	ND	0.020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BG-2-21.0		21.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BG-2-25.0	04/06/04	25.0	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
BG-2-30.0	04/06/04	30.0	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
BG-2-35.0	04/06/04	35.0	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-1-4.0	04/02/04	4.0	ND	ND	ND	ND	ND	ND	0.0063	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-1-11.5	04/02/04	11.5	74	ND	2,400 ⁵	ND	ND	ND	ND	ND	ND	ND	ND	0.023	0.022	ND	ND	ND	ND	ND	ND	ND	ND	1.7	ND
MWT-1-15.0	04/02/04	15.0	ND	2.8 8	ND	ND	ND	ND	ND	ND	ND	ND	0.0051	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-1-20 ¹¹	04/02/04	20.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-2-5.5	04/02/04	5.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-2-10.0	04/02/04	10.0	12 ³	ND	440	ND	ND	2.3	6.8	ND	ND	ND	1.8	0.44	ND	0.500	ND	ND	2.4	10	3.8	ND	1.2	0.93	ND
MWT-2-15.0	04/02/04	15.0	ND	8.08	120	ND	ND	0.67	1.2	ND	0.099	0.027	0.035	0.0079	ND	0.0055	ND	ND	0.032	0.18	0.047	ND	0.08	0.14	ND
MWT-2-20.0	04/02/04	20.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-3-5.0	04/02/04	5.0	ND	1.2 7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-3-10.0	04/02/04	10.0	ND	7.5 ⁸	7.0 5	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.026	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-3-15.0		15.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-3-20.0	04/02/04	20.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-4-4.0	04/01/04	4.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-4-10.0		10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-4-15.0		15.0	150	ND	120 5	ND	ND	ND	ND	ND	ND	ND	0.026	0.015	0.0094	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-4-20.0	04/01/04	20.0	ND	2.4 ⁸	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-5-5.0	04/02/04	5.0	ND	1.3 4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-5-10.0	04/02/04	10.0	ND	1.1 4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-5-15.0	04/02/04	15.0	ND	7.0 7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-5-20.0	04/02/04	20.0	ND	7.6 ⁷	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-6-5.0	04/01/04	5.0	ND	2.1 ⁴	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-6-10.5	04/01/04	10.5	51	ND	860 ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-6-14.5	04/01/04		ND	1.4 8	9.0 ⁵	ND	ND	ND	ND	ND	0.064	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-6-19.5	04/01/04		ND	8.5 ⁸	13 ⁵	ND	ND	ND	0.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-7-5.0	04/01/04	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-7-10.0	04/01/04	10.0	ND	3.5 8	4.40 ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-7-15.0	04/01/04	15.0	ND	3.4 8	7.20 ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-7-20.0	04/01/04	20.0	ND	ND	ND	ND	ND	ND	ND	ND	0.088	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-8-5.5	04/02/04	5.5	ND	1.5 4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-8-10.5	04/02/04	10.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-8-15.0		15.0	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-8-18.0	04/02/04	18.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-9-4.0	04/01/04	4.0	ND	3.3 7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-9-9.5	04/01/04	9.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-9-14.5	04/01/04	14.5	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na

			Petrole	um Hydr	ocarbons								Other	Volatile (Organic (Compoun	nds							PNAs	
Sample ID	Date Sam- pled	Depth BGS ft.	Min- eral Spirits mg/Kg	TPHd (Die- sel) mg/Kg	TPHg (Gaso- line) mg/Kg	Ben- zene mg/Kg	Tolu- ene mg/Kg	Ethyl- ben- zene mg/Kg	Total Xy- lenes mg/Kg	MTBE mg/Kg	tone	2-Bu- ta- none mg/Kg	n-Bu- tylben- zene mg/Kg		tert-Bu- tylben- zene mg/Kg	•	p-Isopro- pylben- zene mg/Kg	p-Isopro- pyltol- uene mg/Kg	n-Pro- pylben- zene mg/Kg	1,2,4-Tri- methyl- benzene mg/Kg	1,3,5-Tri- methyl- benzene mg/Kg	52 Other VOCs by 8260B GC/MS	Naptha- lene mg/Kg	2-Methyl- napthalene mg/Kg	15 Other PNAs by 8270C mg/Kg
MWT-9-19.5	04/01/04	19.5	ND	14 4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-10-5.0	04/01/04	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-10-10.0	04/01/04	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-10-15.0	04/01/04	15.0	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-10-20	04/01/04	20.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-11-5	11/05/04	5.0	ND	1.1 12	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-11-10	11/05/04	10.0	33 ¹³	ND	170 ¹⁴	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-11-15	11/05/04	15.0	ND	1.4 ¹²	27 14	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-11-19.5	11/05/04	19.5	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-12-5	11/05/04	5.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-12-10	11/05/04		ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-12-15	11/05/04		ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-12-19.5	11/05/04	19.5	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-13-5	11/05/04	5.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-13-10	11/05/04	10.0	40 ¹³	ND	520 ¹⁴	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-13-15	11/05/04		ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-13-19	11/05/04	19.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-14-5	11/05/04		ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-14-10	11/05/04	10.0	110 ¹³	ND	360 ¹⁴	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-14-15	11/05/04	15.0	12 ¹³	ND	1.2 14	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-14-19.5	11/05/04	19.5	15 ¹³	ND	82 ¹⁴	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MW-2-5.0	04/07/04	5.0	29 ³	ND	860	ND	ND	19	87	ND	ND	ND	2.9	ND	ND	0.098	ND	ND	4.4	27	9.8	ND	7.2	1.1	ND
MW-2-10.0	04/07/04	10.0	16 ³	ND	530	ND	2.4	9.2	47	ND	ND	ND	2.1	ND	ND	0.77	ND	ND	3.4	21	7.4	ND	5.0	0.23	ND
MW-2-15.0	04/07/04	15.0	ND	ND	ND	0.03	ND	0.021	0.029	ND	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0085	ND	ND
MW-2-20.0	04/07/04	20.0	ND	ND	ND	ND	0.0062	ND	0.037	0.12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-3-5.0	04/07/04		Lost	Core																					
MW-3-10.0	04/07/04		Lost	Core																					
MW-3-14.0 MW-3-20.0	04/07/04 04/07/04		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MW-4-5.5	04/30/04	5.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-4-10.5	04/30/04	10.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-4-15.5	04/30/04	15.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-4-19.5	04/30/04	19.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5-6.0	04/30/04	6.0	ND	ND	ND _	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5-10.0	04/30/04	10.0	27	ND	1,000 ⁵	ND	ND	0.55	3.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5-15.5	04/30/04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5-19.5	04/30/04	19.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-6-5.0	04/07/04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-6-10.0	04/07/04		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-6-15.0	04/07/04		na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MW-6-20.0	04/07/04	20.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-6A-5.0 ¹⁵	09/27/08	5.0	ND 2	11	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MW-6A-10.0	09/27/08		ND	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
5.1 10.0	55,21,00	. 5.0												·Iu	·iu			u	. 10	·iu	·Iu	·iu			

			Petrole	um Hydr	ocarbons								Other	Volatile (Organic C	Compour	nds							PNAs	
Sample ID	Date Sam- pled	Depth BGS ft.	Min- eral Spirits mg/Kg	TPHd (Die- sel) mg/Kg	TPHg (Gaso- line) mg/Kg	Ben- zene mg/Kg	Tolu- ene mg/Kg	Ethyl- ben- zene mg/Kg	Total Xy- lenes mg/Kg	MTBE mg/Kg	Ace- tone	2-Bu- ta- none mg/Kg	n-Bu- tylben- zene mg/Kg		tert-Bu- tylben- zene mg/Kg	-	p-Isopro- pylben- zene mg/Kg	p-Isopro- pyltol- uene mg/Kg	n-Pro- pylben- zene mg/Kg	1,2,4-Tri- methyl- benzene mg/Kg	1,3,5-Tri- methyl- benzene mg/Kg	52 Other VOCs by 8260B GC/MS	Naptha- lene mg/Kg	2-Methyl- napthalene	15 Other PNAs by 8270C mg/Kg
MW-6A-15.0 MW-6A-20.0	09/27/08 09/27/08	15.0 20.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
MW-7-5.0 MW-7-10.0 MW-7-15.0	04/06/04 04/06/04		ND ND	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na
MW-7-20.0	04/06/04 04/06/04		na ND	7.9 ⁴	ND	ND	ND	ND	ND	ND	na ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-8-5.0 MW-8-10.0 MW-8-15.0	04/07/04 04/07/04 04/06/04	10.0	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na	ND ND na
MW-8-20.0	04/06/04	20.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-9-5.0 MW-9-10.0 MW-9-15.0 MW-9-20.0	09/27/08 09/27/08 09/27/08 09/27/08		ND ND ND ND	ND ND ND ND	ND ND 6.5 2.7	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na
MW-10-5.0	09/27/08	5.0	ND	ND	0.92	ND	ND	ND	ND	ND	na	na na	na na	na	na	na	na	na	na	na	na	na	na	na	na
MW-10-10.0 MW-10-15.0 MW-10-20.0	09/27/08 09/27/08 09/27/08	10.0 15.0 20.0	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na
MW-11-5.0 MW-11-10.0	09/27/08 09/27/08	10.0	ND 79	ND 47	ND 540 ³	ND ND	ND ND	ND ND	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
MW-11-15.0 MW-11-20.0	09/27/08 09/27/08	15.0 20.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
MW-12-5.0 MW-12-10.0 MW-12-15.0	02/09/09 02/09/09 02/09/09	5.0 10.0 15.0	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na
MW-12-20.0 MW-13-5.0	02/09/09	20.0	ND ND	ND 3.9	1.0 ND	0.086 ND	0.0075 ND	0.036 ND	0.046 ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
MW-13-10.0 MW-13-15.0	02/09/09 02/09/09	10.0 15.0	93 ND	110 1.3	3.3 ND	ND ND ND	ND ND	ND ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
MW-13-20.0 MW-14-5.0	02/09/09	5.0	2.7 ND	2.8 ND	2.3 ND	ND	ND ND	ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
MW-14-10.0 MW-14-15.0 MW-14-20.0	02/09/09 02/09/09 02/09/09	10.0 15.0 20.0	2,400 ND ND	1,700 ND ND	5,600 2.5 ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na
MW-15-5.0 MW-15-10.0	02/09/09 02/09/09	5.0 10.0	1.2 2.3	15 1.6	ND 1.6	ND ND	ND ND	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
MW-15-15.0 MW-15-20.0	02/09/09 02/09/09	15.0 20.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
MW-16A-5.0 MW-16A-10.0 MW-16A-15.0 MW-16A-20.0	02/09/09 02/09/09 02/09/09 02/09/09	5.0 10.0 15.0 20.0	9.4 13 ND Lost	8.8 11 ND Core	8.5 860 2.0	0.22 6.0 0.10	ND 13 0.019	0.21 12 0.027	0.17 56 0.055	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na	na na na
MW-16B-5.0 MW-16B-10.0	02/10/09 02/10/09	5.0 10.0	Lost 49	Core 43	590	2.9	8.6	8.4	44	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na

			Petrole	um Hydr	ocarbons								Other	Volatile (Organic (Compou	nds							PNAs	
Sample ID	Date Sam- pled	Depth BGS	Min- eral Spirits mg/Kg	TPHd (Die- sel) mg/Kg	TPHg (Gaso- line) mg/Kg	Ben- zene mg/Kg	Tolu- ene mg/Kg	Ethyl- ben- zene mg/Kg	Xy- lenes	MTBE mg/Kg	Ace- tone	2-Bu- ta- none mg/Kg	n-Bu- tylben- zene mg/Kg				p-Isopro- pylben- zene mg/Kg		n-Pro- pylben- zene mg/Kg	1,2,4-Tri- methyl- benzene mg/Kg		52 Other VOCs by 8260B GC/MS	Naptha- lene mg/Kg	2-Methyl- napthalene mg/Kg	15 Other PNAs by 8270C mg/Kg
MW-16B-15.0	02/10/09	15.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MW-16B-20.0	02/10/09	20.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MW-16B-25.0	02/10/09	25.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MW-16C-5.0 MW-16C-10.0 MW-16C-15.0 MW-16C-20.0 MW-16C-25.0 MW-16C-30.0	02/10/09 02/10/09 02/10/09 02/10/09 02/10/09	10.0 15.0 20.0 25.0	ND 42 ND ND ND ND	1.9 29 ND ND ND ND	1.7 2,300 6.1 ND 0.39 0.40	0.12 9.6 0.13 ND 0.0075 0.0076	ND 17 0.12 ND 0.012 0.011	0.15 30 0.11 ND 0.0090 0.0091	0.060 160 0.54 0.014 0.038 0.038	na na na na na na	na na na na na na	na na na na na na	na na na na na	na na na na na	na na na na na	na na na na na	na na na na na	na na na na na	na na na na na na	na na na na na	na na na na na	na na na na na	na na na na na na	na na na na na	na na na na na
Groundwate	r Extraction	Pit																							
GEP-1-5.0	09/26/07	5.0	ND	6.7	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
GEP-1-10.0	09/26/07	10.0	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
GEP-1-15.0	09/26/07	15.0	310	220	3,900	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na

Concentrations in bold script exceed the 2008 San Francisco Bay Area RWQCB's Residential Environmental Screening Levels in shallow or deep soils, as appropriate, where groundwater is not a source of drinking water.

Notes:

- (1) ND = Not Detected above the Method Detection Limit (MDL).
- (2) na = Not analyzed
- (3) The laboratory reports that the detected hydrocarbon does not match its mineral spirits standard.
- (4) The laboratory reports that the detected hydrocarbon does not match its Diesel standard.
- (5) The laboratory reports that the detected hydrocarbon does not match its standard for gasoline.
- (6) Laboratory Method EPA 8260B analyzes for 108 Volatile Organic Compounds. Only those found are listed separately in this table.
- (7) The laboratory reports that the compound reported reflects individual or discrete unidentified peaks detected in the diesel range; the pattern does not match a typical fuel standard.
- (8) The laboratory reports that the hydrocarbon reported is in the early Diesel range and does not match the laboratory's Diesel standard.
- (9) Laboratory Method EPA 8270C analyzes for 17 Polynuclear Aromatics. Only those found are listed separately in this table.
- (10) Concentrations in bold script exceed the 2008 San Francisco Bay Area RWQCB's Environmental Screening Levels in shallow or deep soils, as appropriate, where groundwater is not a source of drinking water.
- (11) MWT-1-20.0 was also analyzed for 65 Semi-volatile chemicals by GC/MD EPA8270C. None were detected in the sample.
- (12) Quantity of unknown hydrocarbon(s) in sample based on Diesel
- (13) Quantity of unknown hydrocarbon(s) in sample based on Mineral Spirits
- (14) Quantity of unknown hydrocarbon(s) in sample based on Gasoline
- (15) When first drilled, MW-6A was designated MW-17.
- (16) Concentrations of chemicals of concern that were detected in samples recovered from locations where soil has since been shipped off site are shown initalic font. At locations where the undisturbed in situ soil was excavated and the areas were restored with engineered fill derived from on-site soil, the concentrations are shown insmaller font.

TABLE 2

HEAVY METALS IN NATIVE AND IMPORTED SOIL
OAK WALK SITE

Sample No.	Date Sampled	Depth BGS ft.	Anti- mony mg/Kg	Ar- senic mg/Kg	Bar- ium mg/Kg	Beryl- lium mg/Kg		Chro- mium III mg/Kg	Chro- mium VI mg/Kg	Cobalt mg/Kg	Copper mg/Kg	Lead mg/Kg	Molyb- denum mg/Kg	Nickel mg/Kg	Sele- nium mg/Kg	Silver mg/Kg	Thal- lium mg/Kg	Vana- dium mg/Kg	Zinc mg/Kg	Mer- cury mg/Kg
BE-4-5.5	04/01/04	5.5	ND ¹	2.6 ³	110	ND	ND	27	na	2.6	17	4.3	ND	24	ND	ND	ND	22 ³	31	ND
BE-1-13.5	04/02/04	13.5	ND	1.3	110	ND	ND	35	ND	4.9	12	4.1	ND	46	ND	ND	ND	24	28	0.053
BE-3-19.5	04/02/04	19.5	ND	2.1	150	ND	ND	30	na	6.9	19	5.4	ND	26	ND	ND	ND	25	32	ND
Los Altos	08/21/07	19.5	na	na	na	na	ND	88	na	na	na	ND	na	63	na	na	na	na	28	na

Concentrations in bold script exceed the 2008 San Francisco Bay Area RWQCB's Residential Environmental Screening Levels in shallow or deep soils, as appropriate, where groundwater is not a source of drinking water.

Notes:

- (1) ND = Not Detected above the Method Detection Limit (MDL). na = not analyzed
- (2) Concentrations of chemicals of concern that were detected in samples recovered from locations where soil has since been shipped off site are shown in *italic font*. At locations where the undisturbed in situ soil w excavated and the areas were restored with engineered fill derived from on-site soil, the concentrations are shown in smaller font.
- (3) No heavy metals were detected at concentrations greater than those that are typical of their natural presence in the alluvial materials that originated in the Oakland Hills to the east of the subject site (Lawrence Berkeley National Laboratory 1995, Bradford, et al 1996).

TABLE 3

RESULTS OF ANALYSES OF SOIL SAMPLES RECOVERED FROM OFF-SITE LOCATIONS

Sample ID	Date Sampled			Oil	Mineral Spirits	TPHd	Kero- sene	TPHg	Ben- zene	Tolu- ene		•	pyltoluene	tone	tert-Butyl- benzene	benzene	thalene	Other VOCs		Lead
		ft. BGS	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Borings for Do	unne Paint	Site 3,4	4,5																	
HAB-1-4	06/10/92	4.0	na ¹¹	ND 10	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
HAB-1-7	06/10/92	7.0	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
HAB-2-4	06/10/92	4.0	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
HAB-2-7	06/10/92	7.0	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
HAB-3-4	06/10/92	4.0	na	ND	4.9	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
HAB-3-7	06/10/92	7.0	na	ND	1.5	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
HAB-4-4	06/10/92	4.0	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
HAB-4-7	06/10/92	7.0	na	ND	ND	ND	ND	ND	na na	na na	na na	na na	na na	na na	na na	na	na	na na	na na	na
	00/40/00	4.0		ND	ND	ND	ND	ND												
HAB-5-4 HAB-5-7	06/10/92 06/10/92	4.0 7.0	na na	ND ND	ND 17	ND ND	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
HAB-6-4 HAB-6-7	06/10/92 06/10/92	4.0 7.0	na na	ND ND	3.4 620	ND ND	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
11/12/07					020														110	
CDB-1@11	11/04/02	11.0	na	ND	na	ND	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND
CDB-2@6	11/04/02	6.0	na	ND	na	160 ¹²	na	94 ¹²	ND	ND	ND	ND	ND	ND	ND	ND	0.025	ND	na	7.3
CDB-2@16	11/04/02	16.0	na	ND	na	13 ¹²	na	210 ¹²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND
CDB-3@3	11/04/02	3.0	na	ND	na	ND	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	15
CDB-3@3	11/04/02	13.0	na	ND	na	37 ¹²	na	250 12	ND	ND	ND	ND	ND	ND	ND	0.115	0.048	1,2,4 trimethylben-	na	ND
																		zene 0.740		
CDB-4@10	11/04/02	10.0	na	ND	na	52 ¹²	na	74 ¹²	ND	ND	ND	ND	ND	ND	ND	ND	ND	hexachlorobuta-	na	ND
CDB-5@3	11/04/02	3.0	na	ND	na	ND	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	diene 0.092 ND	na	24
CDB-5@13	11/04/02	13.0	na	ND	na	21 12	na	180 ¹²	ND	ND	ND	ND	ND	ND	ND	ND	0.413	ND	na	ND
CDB-6@9	11/04/02	9.0	na	ND	na	38 ¹²	na	440 ¹²	ND	ND	ND	ND	ND	ND	0.0063	ND	0.081	ND	na	ND
CDB-7@4	11/04/02	4.0	na	5.5	na	120 ¹² 76 ¹²	na	250 ¹² 130 ¹²	ND	ND	ND	ND	ND	ND	ND	0.017	ND	ND	na	24
CDB-7@12	11/04/02	12.0	na	ND	na		na		ND	ND	ND	ND	ND	ND	ND	ND	0.060	ND	na	ND
CDB-7@23	11/04/02	23.0	na	ND	na	7.0 12	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND
CDB-8@5	11/04/02	5.0	na	ND	na	130 ¹²	na	230 ¹²	ND	ND	ND	ND	ND	ND	0.027	ND	ND	ND	na	3.0
CDB-8@17	11/04/02	17.0	na	ND	na	40 ¹²	na	130 ¹²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND
CDB-9@6	11/05/02	6.0	na	ND	no	4.8 ¹²	no	6.2 ¹²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	no	6.7
CDB-9@14	11/05/02	14.0	na na	ND	na na	100 ¹²	na na	513 ¹²	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	na na	ND
	11/00/02	1-1.0	i i u	110	i iu		iiu	2.0	110	110	110	110	110	110	110	110	110	110	Πū	110

Sample ID	Date Sampled	Sample Depth		Oil	Mineral Spirits	TPHd	Kero- sene	TPHg	Ben- zene	Tolu- ene		•	p-isopro- pyltoluene	tone	benzene	sec-Butyl- benzene	thalene		PCBs	
		ft. BGS	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
CDB-10@6	11/05/02	6.0	na	ND	na	3,500 ¹²	na	3,600 ¹²	ND	ND	1.0	ND	ND	ND	ND	0.550	14	Isopropylbenzene 710 n-Propylbenzene 1,200 rimethylbenzene 1,400)	6.1
CDB-10@9	11/05/02	9.0	na	ND	na	220 12	na	380 ¹²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND
CDB-10@25	11/05/02	25.0	na	ND	na	1.1 12	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND
CDB-11@3	11/05/02	3.0	na	ND	na	4,300 ¹²	na	2,500 ¹²	ND	ND	3,500	ND	ND	ND	ND	ND	1,2,4-T	n-Propylbenzene 2,000 rimethylbenzene 8,600 rimethylbenzene 4,200		100
CDB-11@10	11/05/02	10.0	na	ND	na	720 12	na	1,800 ¹²	ND	ND	ND	ND	ND	ND	ND	ND	1.6	ND	na	ND
CDB-11@16	11/05/02	16.0	na	51	na	510 ¹²	na	2,100 ¹²	ND	ND	ND	ND	ND	ND	ND	ND	3.2	ND	na	ND
CDB-12@3	11/05/02	3.0	na	ND	na	1.6	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	280
CDB-13@14	11/05/02	14.0	na	ND	na	160 ¹²	na	400 ¹²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	ND
CDB-14@3	11/05/02	3.0	na	24	na	9.4	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.012	ND	na	130
CDB-16@3	11/05/02	3.0	na	28	na	6.0	na	7.4 ¹²	ND	ND	ND	ND	ND	ND	ND	ND	0.012	ND	na	5.0
OB-2	06/30/03	10.5	na	na	160	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
OB-10	06/30/03	10.0	na	na	430	na	na	na	na	na	na	na	na	ND	na	ND	ND	na	na	na
B-1-3.5	02/10/05	3.5	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-1-7.5	02/10/05	7.5	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-1-11.5	02/10/05	11.5	na	na	180	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-2-3.5	02/10/05	3.5	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-2-7.5	02/10/05	7.5	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-2-12.5	02/10/05	12.5	na	na	9.6	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-3-3.5	02/10/05	3.5	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-3-7.5	02/10/05	7.5	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-3-11.5	02/10/05	11.5	na	na	330	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-4-3.5	02/10/05	3.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-4-7.5	02/10/05	7.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-4-11.5	02/10/05	11.5	na	na	1,600	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-4-13.5	02/10/05	13.5	na	na	1,400	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-5-3.5	02/10/05	3.5	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-5-7.5	02/10/05	7.5	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-5-11.5	02/10/05	11.5	na	na	4,900	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-5-13.5	02/10/05	13.5	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-6-3.5	02/10/05	3.5	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-6-7.5	02/10/05	7.5	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-6-11.5	02/10/05	11.5	na	na	380	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-6-13.5	02/10/05	13.5	na	na	260	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na

Page 2 of 9 SJC

Sample ID	Date Sampled			Oil	Mineral Spirits	TPHd	Kero- sene	TPHg	Ben- zene	Tolu- ene	Ethyl Benzene		p-isopro- pyltoluene		tert-Butyl- benzene	sec-Butyl- benzene	Naph- thalene	Other VOCs	PCBs	Lead
		ft. BGS	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Borings for Bo	ysen Pair	nt Site 3,5	5,9																	
ВН-А	2004	11.5	na	na	8.3	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
ВН-В	2004	11.5	na	na	130	na	na	na	ND	ND	ND	ND	ND	0.086	ND	ND	ND	ND	na	na
вн-с	2004	14.5	na	na	13	na	na	na	ND	ND	ND	ND	ND	0.052	ND	ND	ND	ND	na	na
BH-D	2004	15.5	na	na	5.4	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
ВН-Е	2004	15.5	na	na	2.0	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-F	2004	19.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-G	2004	19.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
ВН-Н	2004	7.5	na	na	14	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-I	2004	1.0	na	na	6.6	na	na	na	ND	ND	ND	ND	0.040	ND	0.015	0.040	0.040	ND	na	na
BH-J	2004	11.5	na	na	2.3	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
ВН-К	2004	15.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-L	2004	19.5	na	na	1.2	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-M	2004	11.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-N	2004	11.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
ВН-О	2004	20.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-P	2004	7.5	na	na	140	na	na	na	ND	ND	ND	ND	ND	0.085	0.0074	ND	ND	ND	na	na
BH-Q	2004	19.5	na	na	27	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-R	2004	11.5	na	na	14	na	na	na	ND	ND	ND	ND	ND	0.130	0.010	ND	ND	ND	na	na
BH-S	2004	11.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	0.0056	ND	ND	ND	na	na
BH-T	2004	11.5	na	na	6.6	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-U	2004	7.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-V	2004 2004	11.5 25.5	na na	na na	12 3.3	na na	na na	na na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	na na	na na
BH-W	2004	7.5	na	na	24	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na

Page 3 of 9 SJC

Sample ID	Date Sampled	Sample Depth	TRPH	Motor Oil	Mineral Spirits	TPHd	Kero- sene	TPHg	Ben- zene	Tolu- ene	Ethyl Benzene	Total Xylenes	p-isopro- pyltoluene		tert-Butyl- benzene	sec-Butyl- benzene	Naph- thalene	Other VOCs	PCBs	Lead
		ft. BGS	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
BH-X	2004	11.5	na	na	5.8	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-Y	2004	8.5	na	na	44	na	na	na	ND	ND	ND	ND	0.036	0.067	ND	ND	ND	ND	na	na
BH-Z	2004	11.5	na	na	51	na	na	na	ND	ND	ND	ND	0.026	0.100	ND	ND	0.028	ND	na	na
BH-AA	2004	11.5	na	na	1,100	na	na	na	ND	ND	ND	ND	0.058	ND	ND	ND	ND	ND	na	na
BH-BB	2004	11.5	na	na	320	na	na	na	ND	ND	ND	ND	0.017	ND	ND	ND	ND	ND	na	na
BH-CC	2004	11.5	na	na	31	na	na	na	ND	ND	ND	ND	0.032	ND	ND	ND	ND	ND	na	na
	2004	19.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-DD	Aug. 2005	11.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-EE	Aug. 2005	3.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
	Aug. 2005	23.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-FF	Aug. 2005		na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
	Aug. 2005	23.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-GG	Aug. 2005		na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
	Aug. 2005		na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-HH	Aug. 2005		na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
	Aug. 2005	11.5	na	na	7.1	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-II	Aug. 2005		na	na	19	na	na	na	ND	ND	ND	ND	ND	0.056	ND	ND	ND	ND	na	na
	Aug. 2005		na	na	7.1 7.1	na	na	na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	na	na
	Aug. 2005	34.3	na	na	7.1	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-JJ	Aug. 2005		na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
	Aug. 2005	15.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-KK	Aug. 2005		na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
	Aug. 2005	23.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-LL	Aug. 2005		na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
	Aug. 2005	23.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-MM	Aug. 2005		na	na	56	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
	Aug. 2005	15.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
BH-NN	Aug. 2005	11.5	na	na	15	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
	Aug. 2005	15.5	na	na	ND	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-1-11.5	05/30/06	11.5	ND	ND	55	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-1-14	05/30/06	14	ND	ND	110	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-2-7 B-2-15	05/30/06 05/30/06	7.0 15.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.12	ND ND	ND 0.00052	ND ND	ND ND	ND ND	ND 0.020	ND ND	ND ND	ND ND	ND ND	na na	na na
D-2-1J	03/30/00	13.0	ND	שויו	שאו	IND	ND	0.12	ND	0.00032	. 140	IND	ND	0.020	שאו	ואט	שאו	שאו	ııa	ıια

Table 3 SJC Page 4 of 9

Sample ID	Date Sampled	Sample Depth	TRPH	Motor Oil	Mineral Spirits	TPHd	Kero- sene	TPHg	Ben- zene	Tolu- ene	Ethyl Benzene	Total Xylenes	p-isopro- pyltoluene		tert-Butyl- benzene	sec-Butyl- benzene	Naph- thalene	Other VOCs	PCBs	Lead
		ft. BGS	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
B-3-7	05/30/06	7.0	ND	ND	ND	ND	ND	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-4-7	05/30/06	7.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
B-5-7	05/30/06	7.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na
Borings and C	onfirmatio	n Samp	ling for	Celis	Site 1,2,6															
LF-LFMW-1	07/08/93	4.5	77	16	na	220	na	550	0.84	1.2	5.6	2.7	na	na	na	na	na	na	na	na
	07/08/93	9.5	ND	ND	na	18	na	470	0.97	ND	6.6	8.9	na	na	na	na	na	na	na	na
	07/08/93	14.5	60	ND	na	16	na	8.4	0.14	0.17	0.081	0.37	na	na	na	na	na	na	na	na
LF-LFMW-2	07/08/93 07/08/93	9.5 14.5	30 ND	ND ND	na na	14 ND	na na	ND 75	4.7 0.009	35 0.012	13 ND	68 0.015	na na	na na	na na	na na	na na	na na	na na	na na
	07/00/93	14.5	ND		IIa		IIa	75	0.009	0.012	ND	0.013	IIa	IIa	IIa	IIa	IIa	IIa	IIa	IIa
LF-LFMW-3	07/08/93	9.5	37	ND	na	ND	na	ND	0.062	0.28	1.1	1.1	na	na	na	na	na	na	na	na
	07/08/93	14.5	ND	ND	na	ND	na	850	0.014	ND	0.01	0.007	na	na	na	na	na	na	na	na
LF-LFMW-4	01/28/94	5	na	ND	na	ND	na	8.0	0.083	ND	ND	0.034	na	na	na	na	na	na	na	na
	01/28/94	10	na	ND	na	19	na	220	1.7	6.7	4.5	24	na	na	na	na	na	na	na	na
WC N-1	8/14/1994		ND	na	na	21	na	920	2.6	21	11	57	na	na	na	na	na	na	na	na
WC N-2	8/14/1994		ND	na	na	10	na	250	0.097	0.83 3	2.5	11	na	na	na	na	na	na	na	na
WC N-3 WC N-4	8/14/1994 Late 1994	8.0 8.0	ND 160	na na	na na	96 310	na na	390 85	0.38 0.16	ND	3.6 1	17 1.3	na na	na na	na na	na na	na na	na na	na na	na na
WC W-1 WC W-2	8/14/1994 8/14/1994	8.0 8.0	ND ND	na na	na na	ND 34	na na	ND 230	ND 0.34	ND 0.61	ND 2.3	ND 6.9	na na	na na	na na	na na	na na	na na	na na	na na
WC W-2	8/14/1994		ND	na	na	180	na	20	0.012	0.01	0.029	0.043	na	na	na	na	na	na	na	na
WC W-4	8/14/1994		150	na	na	500	na	80	ND	0.073	0.26	0.99	na	na	na	na	na	na	na	na
WC S-1	8/14/1994	8.0	na	no	20	na	no	800	1.7	6	9.9	41	na	no	20	20	20	20	20	20
WC S-1	8/14/1994	8.0	ND	na na	na na	60	na na	430	0.4	0.2	4	12	na	na na	na na	na na	na na	na na	na na	na na
WC S-3	8/14/1994	8.0	na	na	na	na	na	730	1.4	ND	11	1.7	na	na	na	na	na	na	na	na
WC S-4	8/14/1994	8.0	ND	na	na	25	na	560	ND	ND	5.6	13	na	na	na	na	na	na	na	na
WC E-1	8/14/1994		na	na	na	na	na	240	0.33	3.5	3.4	16	na	na	na	na	na	na	na	na
WC E-2	8/14/1994	8.0	ND	na	na	2	na	170	0.81	3.4	1.8	8.9	na	na	na	na	na	na	na	na
WC E-3 WC E-4	8/14/1994 8/14/1994		na ND	na na	na na	na 5.2	na na	660 380	2.9 2.6	18 12	9.2 4.9	46 24	na na	na na	na na	na na	na na	na na	na na	na na
WC B-C-1 WC B-O&G-1	8/14/1994		ND ND	na	na	68 160	na	260 490	0.081	0.11	2	8.4	na	na	na	na	na	na	na	na
WC B-0&G-1 WC B-D-1	8/14/1994 8/14/1994		15,000	na na	na na	18,000	na na	490 650	2.4 3.8	9.9 1.7	6.3 8.1	27 17	na na	na na	na na	na na	na na	na na	na na	na na
WC B-G-1	8/14/1994	9.5	120	na	na	ND	na	540	0.64	ND	6.5	12	na	na	na	na	na	na	na	na
WC B-C-2	8/14/1994		ND	na	na	75	na	1,000	2.4	10	11	49	na	na	na	na	na	na	na	na
WC B-C-3	8/14/1994		ND	na	na	29	na	690	2.2	15	7.3	39	na	na	na	na	na	na	na	na
URS-SB-1-6-6.5	02/06/06	6.0	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
URS-SB-1-10-10.		10.0	na	na	6.2	5.1	na	ND	6.2	5.1	ND	ND	na	na	na	na	na	na	na	na
URS-SB-1-15.5-1	02/06/06	15.5	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na

Page 5 of 9 SJC

Sample ID	Date Sampled	Sample Depth		Oil	Mineral Spirits	TPHd	Kero- sene	TPHg	Ben- zene	Tolu- ene		•	p-isopro- pyltoluene	tone	benzene	sec-Butyl- benzene	thalene	Other VOCs	PCBs	
		ft. BGS	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
URS-SB-1-18.5-1	02/06/06	18.5	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
URS-SB-3-6-6.5	02/07/06	6.0	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
URS-SB-3-11-11.	02/07/06	11.0	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	MTBE: 10, TBA: 10 DIPE: 10	na	na
URS-SB-3-15.5-1		15.5	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
URS-SB-6-5.5-6	02/07/06	5.5	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
URS-SB-6-11.5-1		11.5 15.5	na	na	ND ND	ND ND	na	ND ND	ND ND	ND ND	ND ND	ND ND	na	na	na	na	na	na	na	na
URS-SB-6-15.5-1		19.5	na na	na na	ND ND	ND ND	na na	ND	ND	ND	ND ND	ND ND	na na	na na	na na	na na	na na	na	na	na
URS-SB-6-19.5-2	02/01/06	19.5	IId	IId	ND	ND	IId	ND	ND	ND	ND	ND	IIa	IIa	IId	IIa	IIa	na	na	na
URS-MW-1-6.5	07/02/07	6.0	na	na	ND	1.9	na	ND	ND	1.9	ND	ND	na	na	na	na	na	na	na	na
URS-MW-1-11.0	07/02/07	10.5	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
URS-MW-1-16.0	07/02/07	15.5	na	na	ND	11	na	ND	ND	11	ND	ND	na	na	na	na	na	na	na	na
URS-MW-2-5.5	07/02/07	5.0	na	na	ND	1.3	na	ND	ND	1.3	ND	ND	na	na	na	na	na	na	na	na
URS-MW-2-11.0	07/02/07	10.5	na	na	ND	1.4	na	ND	ND	1.4	ND	ND	na	na	na	na	na	na	na	na
URS-MW-2-16.0	07/02/07	15.5	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
URS-MW-3-10.0	06/29/07	9.5	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
URS-MW-3-15.0 URS-MW-3-20.0	06/29/07 06/29/07	14.5 19.5	na na	na	ND ND	1.8 1.3	na	ND ND	ND ND	1.8 1.3	ND ND	ND ND	na	na	na	na	na	na	na	na
UK3-WW-3-20.0	00/29/07	19.5	IId	na	ND	1.3	na	ND	ND	1.3	ND	ND	na	na	na	na	na	na	na	na
URS-MW-4-9.0	06/29/07	8.5	na	na	ND	8.0	na	ND	ND	8.0	ND	ND	na	na	na	na	na	na	na	na
URS-MW-4-14.5	06/29/07	14.0	na	na	ND	6.7	na	ND	ND	6.7	ND	ND	na	na	na	na	na	na	na	na
URS-MW-4-20.0	06/29/07	19.5	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
URS-MW-5-6.5	06/29/07	6.0	na	na	2.2	5.1	na	3.8	2.2	5.1	3.8	ND	na	na	na	na	na	na	na	na
URS-MW-5-10.0	06/29/07	9.5	na	na	68	13	na	120	68	13	120	ND	na	na	na	na	na	na	na	na
URS-MW-5-15.0	06/29/07	14.5	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
Borings and Co	onfirmatio	n Samp	ling for	San F	rancisco I	Bread Si	te ^{1,6,7,8}													
SMW-1-6	09/04/92	18.5	na	na	na	ND	na	ND	0.0078	0.0061	ND	ND	na	na	na	na	na	na	na	4.9
LFSB17-4.5	08/09/93	4.5	70	ND	na	40	na	260	ND	22	12	69	na	na	na	na	na	na	na	na
LFSB17-6.0	08/09/93	7	50	ND	na	70	na	440	ND	27	8	43	na	na	na	na	na	na	na	na
LFSB17-12.0	08/09/93	12	47	190	na	130	na	500	190	9	4	23	na	na	na	na	na	na	na	na
MW-3-5.0	04/07/04	5.0	Lost	Core	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MW-3-10.0	04/07/04	10.0	Lost		na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MW-3-15.0	04/07/04	15.0	ND	ND	ND	ND	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na
MW-3-20.0	04/07/04	120.0	ND	ND	ND	ND	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na
URS-MW-5-6.5	06/29/07	6.0	na	na	2.2	5.1	na	3.8	ND	ND	ND	ND	na	na	na	na	na	na	na	na
URS-MW-5-10.0	06/29/07	9.5	na	na	68	13	na	120	ND	ND	2.3	ND	na	na	na	na	na	na	na	na
URS-MW-5-15.0	06/29/07	14.5	na	na	ND	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na

Borings and Confirmation Sampling in 40th Street ¹

Page 6 of 9 SJC

Sample ID	Date Sampled	Sample Depth	TRPH	Motor Oil	Mineral Spirits	TPHd	Kero- sene	TPHg	Ben- zene	Tolu- ene	Ethyl Benzene	Total Xvlenes	p-isopro- pyltoluene		tert-Butyl- benzene	sec-Butyl- benzene	Naph- thalene	Other VOCs	PCBs	Lead
		ft. BGS	mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
LFSB1-7.0	08/08/93	7	290	27	na	240	na	850	5.4	ND	25	42	na	na	na	na	na	na	na	na
LFSB1-9.5	08/08/93	9.5	130	ND	na	220	na	180	0.89	1.1	4.3	18	na	na	na	na	na	na	na	na
LFSB1-14.5	08/08/93	14.5	60	ND	na	ND	na	7.4	0.44	0.44	0.14	0.61	na	na	na	na	na	na	na	na
LFSB2-7.0	08/08/93	7	160	57	na	790	na	780	8	ND	31	140	na	na	na	na	na	na	ND	na
LFSB2-9.5	08/08/93	9.5	210	ND	na	200	na	720	2.4	5.2	15	59	na	na	na	na	na	na	na	na
LFSB2-14.5	08/08/93	14.5	43	12	na	ND	na	1.0	0.2	0.21	0.021	0.12	na	na	na	na	na	na	ND	na
LFSB3-9.5	08/07/93	9.5	37	ND	na	11	na	580	9.7	50	15	90	na	na	na	na	na	na	ND	na
LFSB3-14.5	08/07/93	14.5	37	ND	na	ND	na	0.9	0.092	0.16	0.031	0.17	na	na	na	na	na	na	ND	na
LFSB4-7.0	08/08/93	7	70	ND	na	13	na	380	3	5.2	8.2	18	na	na	na	na	na	na	na	na
LFSB4-14.5	08/08/93	14.5	210	ND	na	ND	na	ND	0.026	0.005	0.019	0.023	na	na	na	na	na	na	na	na
LFSB5-7.0	08/08/93	7	37	ND	na	15	na	410	2.4	0.6	16	6.3	na	na	na	na	na	na	na	na
LFSB5-14.5	08/08/93	14.5	93	ND	na	ND	na	ND	0.011	ND	0.008	0.008	na	na	na	na	na	na	na	na
LFSB6-9.5	08/08/93	9.5	67	ND	na	51	na	490	2.7	ND	15	15	na	na	na	na	na	na	na	na
LFSB6-14.5	08/08/93	14.5	ND	ND	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LFSB7-9.5	08/07/93	9.5	170	66	na	52	na	750	2.5	8.5	22	93	na	na	na	na	na	na	na	na
LFSB7-14.5	08/07/93	14.5	ND	ND	na	ND	na	2.8	ND	ND	0.029	0.03	na	na	na	na	na	na	na	na
LFSB8-9.5	08/08/93	9.5	130	ND	na	110	na	2,800	22	9.5	82	290	na	na	na	na	na	na	na	na
LFSB8-14.5	08/08/93	14.5	37	11	na	ND	na	ND	0.009	ND	ND	ND	na	na	na	na	na	na	na	na
LFSB9-7.0	08/07/93	7	ND	ND	na	14	na	210	2.8	13	5.1	29	na	na	na	na	na	na	na	na
LFSB9-9.5	08/07/93	9.5	na	na	na	na	na	1,200	14	81	26	140	na	na	na	na	na	na	na	na
LFSB9-14.5	08/07/93	14.5	77	ND	na	ND	na	ND	0.079	0.059	0.011	0.041	na	na	na	na	na	na	na	na
LFSB10-7.0	08/07/93	7	na	na	na	na	na	73	2.6	4.7	1.6	7.7	na	na	na	na	na	na	na	na
LFSB10-9.5	08/07/93	9.5	40	ND	na	ND	na	1,100	ND	7.8	ND	22	na	na	na	na	na	na	na	na
LFSB10-14.5	08/07/93	14.5	ND	ND	na	ND	na	8.6	0.48	0.29	0.1	0.48	na	na	na	na	na	na	na	na
LFSB11-14.5	08/09/93	14.5	40	11	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LFSB12-1.0	08/09/93	1	4,600	400	na	ND	na	ND	na	na	na	na	na	na	na	na	na	na	ND	na
LFSB12-3.0	08/09/93	3	420	64	na	560	na	6,500	na	na	na	na	na	na	na	na	na	na	ND	na
																· · ·				
LFSB13-5.0	08/09/93	5	63	ND	na	ND	na	23	na	na	na	na	na	na	na	na	na	na	ND	na
LFSB13-6.5	08/09/93	6.5	37	ND	na	ND	na	13	na	na	na	na	na	na	na	na	na	na	ND	na
LFSB14-2.0	08/09/93	2	2,200	480	na	ND	na	42	na	na	na	na	na	na	na	na	na	na	0.22	na
LFSB14-4.5	08/09/93	4.5	47	ND	na	ND	na	ND	na	na	na	na	na	na	na	na	na	na	ND	na
LFSB15-4.5	08/09/93	4.5	480	12	na	140	na	4,700	na	na	na	na	na	na	na	na	na	na	ND	na
LFSB15-6.0	08/09/93	6	120	14	na	59	na	3,700	na	na	na	na	na	na	na	na	na	na	ND	na
LFSB16-4.5	08/09/93	4.5	60	ND	na	ND	na	9	na	na	na	na	na	na	na	na	na	na	ND	na
LFSB16-6.0	08/09/93	6	53	ND	na	ND	na	8	na	na	na	na	na	na	na	na	na	na	ND	na
LFSB18-1.0	08/09/93	1	2,200	320	na	ND	na	1	na	na	na	na	na	na	na	na	na	na	ND	na
LFSB18-3.0	08/09/93	3	1,100	390	na	ND	na	ND	na	na	na	na	na	na	na	na	na	na	ND	na
LFSB19-1.5	08/09/93	1.5	2,200	530	na	ND	na	ND	na	na	na	na	na	na	na	na	na	na	ND	na

Page 7 of 9 SJC

Sample ID	Date Sampled	Sample Depth	TRPH	Motor Oil	Mineral Spirits	TPHd	Kero- sene	TPHg	Ben- zene	Tolu- ene	Ethyl Benzene	Total Xylenes	p-isopro- pyltoluene		tert-Butyl- benzene	sec-Butyl- benzene	Naph- thalene	Other VOCs	PCBs	Lead
		ft. BGS	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
LFSB19-3.0	08/09/93	3	3,600	740	na	ND	na	1	na	na	na	na	na	na	na	na	na	na	ND	na
LF-1-4.5	08/07/93	4.5	77	16	na	220	na	550	0.84	1.2	5.6	2.7	na	na	na	na	na	na	na	na
LF-1-9.5	08/07/93	9.5	ND	ND	na	18	na	470	0.97	ND	6.6	8.9	na	na	na	na	na	na	na	na
LF-1-14.5	08/07/93	14.5	60	ND	na	16	na	8.4	0.14	0.17	0.081	0.37	na	na	na	na	na	na	na	na
LF-2-9.5	08/07/93	9.5	30	ND	na	14	na	740	4.70	35	13	68	na	na	na	na	na	na	na	na
LF-2-14.5	08/07/93	14.5	ND	ND	na	ND	na	ND	0.009	0.012	ND	0.015	na	na	na	na	na	na	na	na
LF-3-9.5	08/07/93	9.5	37	ND	na	ND	na	75	0.062	0.28	1.1	1.1	na	na	na	na	na	na	na	na
LF-3-14.5	08/07/93	14.5	ND	ND	na	ND	na	ND	0.014	ND	0.01	0.007	na	na	na	na	na	na	na	na
LF-B1-2	08/30/94	2	ND	na	na	ND	na	8.0	0.008	ND	0.016	0.085	na	na	na	na	na	na	na	na
LF-B1-5	08/30/94	5	30	na	na	ND	na	110	0.840	0.520	3.2	12	na	na	na	na	na	na	na	na
LF-B1-10	08/30/94	10	30	na	na	ND	na	690	12	50	18	99	na	na	na	na	na	na	na	na
LF-B2-2	08/30/94	2	10	na	na	ND	na	110	0.6	2.9	3.3	16	na	na	na	na	na	na	na	na
LF-B2-5	08/30/94	5	10	na	na	1.0	na	66	0.37	8.0	0.79	3.5	na	na	na	na	na	na	na	na
LF-B2-10	08/30/94	10	30	na	na	ND	na	830	13	52	21	110	na	na	na	na	na	na	na	na
LF-B3-2	08/30/94	2	80	na	na	ND	na	440	8.5	36	12	58	na	na	na	na	na	na	na	na
LF-B3-5	08/30/94	5	200	na	na	8.0	na	810	14	62	22	100	na	na	na	na	na	na	na	na
LF-B3-10	08/30/94	10	50	na	na	ND	na	390	7.1	22	7.2	38	na	na	na	na	na	na	na	na
LF-B4-2	08/30/94	2	40	na	na	ND	na	49	0.14	0.12	2.3	11	na	na	na	na	na	na	na	na
LF-B4-5	08/30/94	5	1,300	na	na	28	na	8,800	6.8	7.3	190	870	na	na	na	na	na	na	na	na
LF-B4-10	08/30/94	10	110	na	na	3.0	na	510	1.1	0.96	3.4	13	na	na	na	na	na	na	na	na
LF-B5-2	08/30/94	2	10	na	na	ND	na	0.4	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B5-5	08/30/94	5	2,400	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B5-10	08/30/94	10	ND	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B6-2	08/30/94	2	20	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B6-5	08/30/94	5	10	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B6-10	08/30/94	10	ND	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B7-2	08/30/94	2	10	na	na	ND	na	27	0.42	ND	0.75	0.05	na	na	na	na	na	na	na	na
LF-B7-5	08/30/94	5	ND	na	na	ND	na	16	0.67	ND	ND	0.025	na	na	na	na	na	na	na	na
LF-B7-10	08/30/94	10	20	na	na	ND	na	520	7.4	30	14	78	na	na	na	na	na	na	na	na
LF-B8-2	08/30/94	2	50	na	na	5.0	na	3.4	0.2	ND	0.56	0.02	na	na	na	na	na	na	na	na
LF-B8-5	08/30/94	5	ND	na	na	ND	na	14	0.3	0.01	0.26	ND	na	na	na	na	na	na	na	na
LF-B8-10	08/30/94	10	20	na	na	ND	na	140	2.1	5.8	4	21	na	na	na	na	na	na	na	na
LF-B9-2	08/30/94	2	20	na	na	ND	na	2.8	0.33	0.005	0.41	0.07	na	na	na	na	na	na	na	na
LF-B9-5	08/30/94	5	ND	na	na	ND	na	40	1.2	0.013	2.6	0.15	na	na	na	na	na	na	na	na
LF-B9-10	08/30/94	10	20	na	na	ND	na	190	4.3	11	5.5	28	na	na	na	na	na	na	na	na
LF-B10-2	08/30/94	2	150	na	na	ND	na	29	0.038	0.048	0.18	1.2	na	na	na	na	na	na	na	na
LF-B10-5	08/30/94	5	30	na	na	ND	na	13	ND	0.02	0.05	ND	na	na	na	na	na	na	na	na
LF-B10-10	08/30/94	10	ND	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B11-2	08/30/94	2	20	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B11-5	08/30/94	5	ND	na	na	ND	na	1	ND	ND	ND	ND	na	na	na	na	na	na	na	na

Page 8 of 9 SJC

Sample ID	Date Sampled	Sample Depth	TRPH	Motor Oil	Mineral Spirits	TPHd	Kero- sene	TPHg	Ben- zene	Tolu- ene	Ethyl Benzene	Total Xvlenes	p-isopro- pyltoluene		tert-Butyl- benzene	sec-Butyl- benzene	Naph- thalene	Other VOCs	PCBs	Lead
	•	ft. BGS	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
LF-B11-10	08/30/94	10	40	na	na	ND	na	250	1.1	0.35	4.4	21	na	na	na	na	na	na	na	na
LF-B12-2	08/30/94	2	30	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B12-5	08/30/94	5	ND	na	na	ND	na	0.9	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B12-10	08/30/94	10	30	na	na	ND	na	160	0.97	0.19	4.1	20	na	na	na	na	na	na	na	na
LF-B13-2	08/30/94	2	600	na	na	220	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B13-5	08/30/94	5	40	na	na	10	na	4.2	ND	ND	0.02	ND	na	na	na	na	na	na	na	na
LF-B13-10	08/30/94	10	20	na	na	3.0	na	6.9	0.36	ND	0.45	0.13	na	na	na	na	na	na	na	na
LF-B14-2	08/30/94	2	410	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B14-5	08/30/94	5	ND	na	na	ND	na	1.6	0.01	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B14-10	08/30/94	10	ND	na	na	ND	na	2.9	0.006	ND	0.01	ND	na	na	na	na	na	na	na	na
LF-B15-2	08/30/94	2	420	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B15-5	08/30/94	5	ND	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B15-10	08/30/94	10	20	na	na	ND	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B16-2	08/30/94	2	50	na	na	10	na	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na
LF-B16-5	08/30/94	5	ND	na	na	ND	na	28	0.16	ND	0.96	0.037	na	na	na	na	na	na	na	na
LF-B16-10	08/30/94	10	20	na	na	ND	na	130	2.5	5.4	2.6	15	na	na	na	na	na	na	na	na

Concentrations in bold script exceed the 2008 San Francisco Bay Area RWQCB's Residential Environmental Screening Levels in shallow or deep soils, as appropriate, where groundwater is not a source of drinking water.

NOTES:

- (1) Data Source: Levine-Fricke 1994, 1993
- (2) Data Source: Woodward-Clyde International-Americas 1997, 1998
- (3) Data Source: Aqua Science Engineers, Inc. 2005a,b
- (4) Data Source: Clayton Group Services 2007, 2004a,b, 2003, 2002
- (5) Data Source: Hageman-Aquiar, Inc. 1992
- (6) Data Source: URS 2006, 2007a
- (7) Data Source: The San Joaquin Company 2005
- (8) Data Source: SEACOR Science and Engineering Analysis Corporation 1992
- (9) Data Source: Environmental Resource Management 2006
- (10) ND = Not Detected above the Method Detection Limit (MDL).
- (11) na = not analyzed
- (12) Laboratory reports pattern is closer to mineral spirits or Stoddard solvent.

TABLE 4
DEPTHS TO GROUNDWATER

Well No.	Date Measured	Casing Elevation ft. MSL	Groundwater Depth ft.	Groundwater Elevation ft. MSL
WCEW-1		41.73		
	05/19/04		7.88	33.85
	11/08/04		7.13	34.60
	04/15/07		7.39	34.34
	06/21/07		7.74	33.99
	08/09/07		8.00	33.73
	09/21/09		7.64	34.09
	00/21/00		7.04	04.00
MW-2		44.40		
	05/19/04		5.98	38.42
	11/08/04		4.94	39.46
	04/15/07		4.86	39.54
	06/21/07		5.62	38.78
	08/09/07		5.42	38.98
	09/21/09		6.35	38.05
MW-3		45.49		
	05/19/04		5.66	39.83
	11/08/04		5.89	39.60
	04/15/07		5.25	40.24
	06/21/07		5.95	39.54
	08/09/07		6.57	38.92
	09/21/09		5.42	40.07
MW-4		47.31		
10100 -	05/19/04	47.51	6.19	41.12
	11/08/04		5.81	41.50
	09/21/09		7.42	39.89
MW-5		42.51		
	05/19/04		7.39	35.12
	11/08/04		7.09	35.42
	04/15/07		6.92	35.59
	06/21/07		7.50	35.01
	08/09/07		7.42	35.09
	09/21/09		6.01	36.50
MW-6 ²		43.35		
	05/19/04		7.16	36.19
	11/08/04		6.93	36.42
MW-6A		43.18		
IVIVV-OA	09/21/09	43.10	6.16	37.02
MW-7	05/40/04	44.75	0.40	00.05
	05/19/04		8.40	36.35
	11/08/04		8.10	36.65
	09/21/09		6.01	38.74

Well No.	Date Measured	Casing Elevation ft. MSL	Groundwater Depth ft.	Groundwater Elevation ft. MSL
MW-8	05/19/04 11/08/04 09/21/09	48.38	9.65 9.05 7.58	38.73 39.33 40.80
MW-9	09/21/09	47.85	7.91	39.94
MW-10	09/21/09	45.66	5.72	39.94
MW-11	09/21/09	45.10	7.43	37.67
MW-12	09/21/09	42.93	5.72	37.21
MW-13	09/21/09	45.56	7.61	37.95
MW-14	09/21/09	45.19	7.38	37.81
MW-15	09/21/09	43.55	6.55	37.00
MW-16A	09/21/09	44.50	7.00	37.50
MW-16B	09/21/09	44.59	7.24	37.35
MW-16C	09/21/09	44.48	7.61	36.87
URS Off-site We	ells			
URS MW-1	09/21/09	42.21	8.15	34.06
URS MW-2	09/21/09	40.83	8.63	32.20
URS MW-3	09/21/09	40.54	9.89	30.65
URS MW-4	09/21/09	41.41	9.81	31.60
URS MW-5	09/21/09	43.93	5.84	38.09
LFMW-LF-4	09/21/09	40.76	7.71	33.05

Well No.	Date Measured	Casing Elevation ft. MSL	Groundwater Depth ft.	Groundwater Elevation ft. MSL
Temporary Wel	lls 2004			
MWT-1	05/19/04 11/08/04	42.98	8.43 6.82	34.55 36.16
MWT-2	05/19/04 11/08/04	45.28	7.69 7.17	37.59 38.11
MWT-3	05/19/04 11/08/04	47.64	7.64 7.66	40.00 39.98
MWT-4	05/19/04 11/08/04	44.74	8.43 7.99	36.31 36.75
MWT-5	05/19/04 11/08/04	47.10	9.07 8.84	38.03 38.26
MWT-6	05/19/04 11/08/04	45.21	9.05 8.73	36.16 36.48
MWT-7 ¹	05/19/04 11/08/04	46.61 45.69	9.90 8.60	36.71 37.09
MWT-8	05/19/04 11/08/04	47.23	9.65 9.31	37.58 37.92
MWT-9	05/19/04 11/08/04	45.78	8.70 8.23	37.08 37.55
MWT-10	05/19/04 11/08/04	47.22	9.53 9.03	37.69 38.19
MWT-11	11/08/04	46.63	9.71	36.92
MWT-12	11/08/04	47.97	10.79	37.18
MWT-13	11/08/04	48.16	10.65	37.51
MWT-14	11/08/04	47.85	9.63	38.22

Notes:

- MWT-7 casing truncated by vandals. Elevation resurveyed on 11/10/04
 MW-6 damaged during construction. Replaced by MW-6A on 09/27/08

TABLE 5

RESULTS OF ANALYSES OF GROUNDWATER SAMPLES RECOVERED FROM TRENCHES, PITS AND WELLS
ON THE OAK WALK SITE

		Petrole	um Hydro	carbons	Е	STEX Cor	mpounds	;		Fuel O	xygen	ates					Other	Volatile C	Organic Co	mpound	3			Р	NAs
Sample ID	Date Sam- pled	TPHd (diesel) μg/L	Mineral Spirits μg/L	TPHg (gasoline) μg/L	Ben- zene μg/L	Tolu- ene μg/L	Ethyl- ben- zene μg/L	Total Xy- lenes μg/L	MTBE μg/L	TAME μg/L		DIPE μg/L		n-Bu- tylben- zene μg/L			•	p-Isopro- pylben- zene μg/L	p-Isopro- pyltol- uene μg/L	n-pro pylben- zene μg/L	methyl-	methyl-	52 Other VOCs by 8260B μg/L	tha-	15 Other PNAs by 8270C μg/L
Trenches																									
T3-W	12/03/03	2,300 ³	na	6,300 ⁵	ND	ND	31	30	ND	na	na	na	na	100	47	ND	ND	23	ND	230	320	110	ND	12	ND
T7-W	12/02/03	ND	na	ND	ND	ND	ND	ND	ND	na	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
T-10W	09/24/07	6,100	9,100	70,000	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
W11	08/08/07	4,500	5,800	1,800	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
Groundwa	ter Extraction	on Pit																							
GEP-1A GEP-1B	09/26/07 10/04/07	54,000 530	81,000 810	8,200 1,100	1.4 ND	3.6 ND	ND ND	2.2 ND	1.9 ND	na na	na na	na na	na na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Monitoring	Wells																								
WCEW-1	05/19/04 09/24/09	ND 1,600	600 ⁶ 390	3,700 1,400	90 1.5	0.66 ND	48 1.2	56 ND	170 150	na ND	na ND	na ND	na 21	ND na	8.7 na	ND na	12 na	1.8 na	ND na	31 na	14 na	5.6 na	ND na	8.3 na	ND na
MW-2	05/19/04 09/18/07 09/24/09	ND 1,400 400	2,100 ⁶ 1,500 350	49,000 8,300 4,000	7,900 1,500 1,500	2,100 ND ND	980 340 520	8,300 21 ND	770 84 47	na na ND	na na ND	na na ND	na na ND	100 na na	ND na na	ND na na	ND na na	ND na na	ND na na	ND na na	1,600 na na	460 na na	ND na na	490 na na	ND na na
MW-3	05/19/04 09/24/09	ND 110	420 ⁶ ND	1,300 ND	ND ND	ND ND	ND ND	1.1 ND	5.8 2.4	na ND	na ND	na ND	na ND	14 na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	12 na	ND na	ND na	ND na
MW-4	05/19/04 09/22/09	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	na ND	na ND	na ND	na ND	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na
MW-5	05/19/04 09/24/09	ND 220	330 ⁶ 250	2,600 ⁵ 430	ND ND	ND ND	ND ND	ND ND	17 0.77	na ND	na ND	na ND	na ND	ND na	ND na	2.5 na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na
MW-6*	05/19/04	ND	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

		Petrole	um Hydro	carbons	E	STEX Co	mpounds	3		Fuel O	xygen	ates					Other	Volatile C	rganic Co	ompound	s			Р	NAs
Sample ID	Date Sam- pled	TPHd (diesel) μg/L	Mineral Spirits μg/L	TPHg (gasoline) μg/L	Ben- zene μg/L	Tolu- ene μg/L	Ethyl- ben- zene μg/L	Total Xy- lenes μg/L	MTBE μg/L	TAME μg/L	ETBE μg/L	DIPE μg/L		n-Bu- tylben- zene μg/L			-	p-Isopro- pylben- zene μg/L	p-Isopro- pyItol- uene μg/L	n-pro pylben- zene μg/L	1,2,4-tri- methyl- benzene μg/L	methyl-	52 Other VOCs by 8260B μg/L	Naph- tha- lene μg/L	15 Other PNAs by 8270C μg/L
MW-6A	09/22/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
MW-7	05/19/04 09/22/09	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	na ND	na ND	na ND	na ND	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na
MW-8	05/19/04 09/22/09	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	na ND	na ND	na ND	na ND	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na
MW-9	09/24/09	78	ND	190	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
MW-10	09/22/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
MW-11	09/24/09	ND	ND	70	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
MW-12	09/22/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
MW-13	09/22/09	66	ND	130	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
MW-14	09/22/09	72	ND	68	ND	ND	ND	ND	13	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
MW-15	09/22/09	ND	ND	51	ND	ND	ND	ND	2.6	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
MW-16A	09/22/09	2,400	4,100	64,000	18,000	2,500	3,000	11,000	830	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
MW-16B	09/22/09	410	480	4,000	1,600	18	150	170	500	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
MW-16C	09/22/09	ND	ND	270	ND	ND	ND	ND	230	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
URS Wells 10																									
URS-MW-1	09/21/09	90	83	120	ND	ND	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
URS-MW-2	09/21/09	210	ND	ND	ND	ND	ND	ND	49	ND	ND	ND	40	na	na	na	na	na	na	na	na	na	na	na	na
URS-MW-3	09/21/09	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
URS-MW-4	09/21/09	110	ND	ND	ND	ND	ND	ND	56	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
URS-MW-5	09/21/09	1,100	99	150	ND	ND	ND	ND	63	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
LF-MW-LF-4	09/21/09	1,600	320	490	ND	ND	7.9	ND	2.0	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na
Temporary V	Vells																								
MWT-1	5/19/04	ND	74 ⁶	350	ND	ND	ND	ND	ND	na	na	na	na	8.0	ND	ND	1.0	ND	ND	1.0	ND	ND	ND	ND	ND
MWT-2	5/19/04	ND	3,200 ⁶	28,000	460	ND	1,200	2,700	66	na	na	na	na	100	ND	ND	ND	ND	ND	310	1,600	490	ND	340	ND
MWT-3	5/19/04	ND	450	1,000 5	ND	ND	ND	ND	ND	na	na	na	na	ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND

		Petrole	um Hydro	carbons		BTEX Cor	npounds	i	Fuel Oxygenates								Other	Volatile C	rganic Co	mpound	S			Р	NAs
Sample ID	Date Sam- pled	TPHd (diesel) μg/L	Mineral Spirits μg/L	TPHg (gasoline) μg/L	Ben- zene μg/L	Tolu- ene μg/L	Ethyl- ben- zene μg/L	Total Xy- lenes μg/L	MTBE μg/L	TAME μg/L		DIPE μg/L			sec-Bu- tylben- zene μg/L			p-Isopro- pylben- zene μg/L	p-Isopro- pyItol- uene μg/L	n-pro pylben- zene μg/L	1,2,4-tri- methyl- benzene μg/L	methyl-	52 Other VOCs by 8260B μg/L	Naph- tha- lene μg/L	15 Other PNAs by 8270C μg/L
MWT-4	5/19/04	ND	88 ⁶	540 ⁵	ND	ND	ND	ND	ND	na	na	na	na	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-5	5/19/04	ND	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-6 ⁹	5/19/04	ND	980	4,200 ⁵	ND	ND	ND	ND	ND	na	na	na	na	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-7	5/19/04	ND	3,200	56,000 ⁵	0.78	ND	ND	ND	ND	na	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-8	5/19/04	ND	370	800 ⁵	ND	ND	ND	ND	ND	na	na	na	na	ND	ND	1.6	ND	ND	ND	ND	0.70	ND	ND	ND	ND
MWT-9	5/19/04	ND	ND	ND	ND	ND	ND	ND	0.79	na	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MWT-10	5/19/04	ND	ND	59 ⁵	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-11	11/6/04	ND	3,500 ⁷	930 ⁸	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-12	11/6/04	ND	830 ⁷	1,400 ⁸	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-13	11/6/04	ND	440 ⁷	1,100 ⁵	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
MWT-14	11/6/04	ND	1,200 ⁷	4,600 ⁵	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na

Concentrations in bold script exceed the 2008 San Francisco Bay Area RWQCB's Residential Environmental Screening Levels in shallow soils where groundwater is not a source of drinking water.

Notes:

- (1) ND = Not Detected above the Method Detection Limit (MDL).
- (2) na = Not Analyzed.
- (3) The laboratory reports that the detected hydrocarbon does not match its diesel standard.
- (4) Laboratory Method 8260B tests for 66 Volatile Organic Comppunds. Only those detected are presented on this table.
- (5) The laboratory reports that the detected hydrocarbon does not match its gasoline standard.
- (6) The laboratory reports that the detected hydrocarbon does not match its mineral spirits standard.
- (7) Quantity of unknown hydrocarbons in sample based on Mineral Spirits
- (8) Quantity of unknown hydrocarbons in sample based on gasoline
- (9) Monitoring Well MW-6 was destroyed on November 11, 2007 and replaced with Monitoring Well MW-6A on September 27, 2008
- (10) Data from URS

TABLE 6

RESULTS OF ANALYSES OF GROUNDWATER SAMPLES RECOVERED FROM OFF-SITE LOCATIONS

	[Petrole	eum Hydroc	arbons										V	olatile Orga	anic Compound	s				
Sample ID	Date Sampled	TRPH μg/L	Motor Oil μg/L	TEPH μg/L	TPHd μg/L	Mineral Spirits μg/L	TPPH μg/L	TPHg μg/L	Ben- zene μg/L	Tolu- ene μg/L	Ethyl Benzene μg/L	Total Xylenes μg/L	MTBE μg/L			sec-Butyl Benzene μg/L		1,2,4-Trimethyl benzene μg/L	Isopropyl benzene µg/L		1,1-Dichloro ethene μg/L	cis-1,2 Di- chloroethene μg/L	
Dunne Pai	int Site 3,4,5	µg/∟	μg/∟	μg/∟	μg/∟	µу/с	µу/∟	μg/∟	μg/∟	μg/L	ду∟	μg/L	µу/∟	μg/L	μg/∟	μg/∟	μg/∟	μg/L	μg/∟	μg/L	μg/∟	μg/L	μg/L
B-12 B-14	11/04/02 11/04/02	na ¹¹ na	260 ¹² ND	na na	17,000 220,000	na na	na na	9,200 170,000	63 ND	13 2.0	ND ¹⁰ ND	26 ND	ND ND	38 30	ND ND	52 ND	47 ND	6.5 ND	120 ND	ND ND	ND ND	ND ND	n-Propylbenzene 47 DIPE 2.4
B-15 B-16	11/04/02 11/04/02	na na	ND ND	na na	16,000 1,200,000	na na	na na	4,000 150,000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.3 6.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	Carbon Disulfide 2.4 ND ND
OB-1	06/27/03	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OB-2	06/30/03	na	na	na	na	12,000	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OB-3	06/27/03	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OB-4	06/27/03	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OB-5	06/27/03	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OB-6	06/27/03	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Trichloroethene 15;
OB-7	06/27/03	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Tetrachloroethene 11 ND
OB-8	06/27/03	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OB-9	06/27/03	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OB-10	06/30/03	na	na	na	na	5,800	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CW-1	11/12/03	na	na	na	na	85 ND	na	na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	03/12/04 06/15/04	na na	na na	na na	na na	ND	na na	na na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/14/04	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CW-2	11/12/03 03/12/04	na na	na na	na na	na na	ND ND	na na	na na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	06/15/04 09/14/04	na na	na na	na na	na na	ND ND	na na	na na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
CW-3	11/12/03	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	TCE 5.1
	03/12/04	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	06/15/04 09/14/04	na na	na na	na na	na na	ND ND	na na	na na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MW-D1	08/26/88	na	na	na	na	1,000	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
WWV-D1	01/18/89	na	na	na	na	ND	na	na	na	2.0	ND	1.1	na	na	na	na	na	na	na	na	na	na	na
	04/24/89	na	na	na	na	ND	na	na	na	ND	ND	1.8	na	na	na	na	na	na	na	na	na	na	na
	02/21/90 06/10/92	na	na	na na	ND ND	ND ND	ND ND	na	ND ND	ND ND	0.4 ND	1.3 ND	na	na	na na	na	na	na na	na na	na	na	na	na
	06/10/92	na na	na na	na 220	na na	na na	230	na na	ND ND	ND	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
	09/24/93	na	na	na	na	ND	na	ND	na	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na
	09/29/93	na	na	na	na	110	na	na	na	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na
	12/14/99	na	na	na	na	ND	na	na	na	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na
	11/12/03 03/12/04	na	na na	na	na na	85 260	na na	na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	06/15/04	na na	na	na na	na	100	na	na na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
	09/14/04	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-D2	08/26/88 01/18/89	na na	na na	na na	na na	1,600 ND	na na	na na	na na	na 6.3	na ND	na 12	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
	01/18/89	na na	na na	na na	na na	ND ND	na na	na na	na na	6.3 ND	ND ND	12 7.7	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
	02/21/90	na	na	na	na	300	na	na	na	ND	0.3	1.5	na	na	na	na	na	na	na	na	na	na	na
	06/10/92	na	na	ND	na	76	ND	na	na	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na
	06/10/93	na	na	9,100	ND	na	6,200	na	na	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na
	09/24/93	na	na	ND	ND	ND 220	ND	na	na	ND ND	ND ND	ND ND	na	na	na	na	na	na	na	na	na	na	na
	09/29/93	na	na	na	na	220	na	na	na	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na

Sample ID	Date Sampled	TRPH	Motor Oil	TEPH	TPHd	Mineral Spirits	ТРРН	TPHg	Ben- zene	Tolu- ene	Ethyl Benzene			thalene	Benzene	Benzene	Benzene	1,2,4-Trimethyl benzene	benzene	Chloride	1,1-Dichloro ethene	chloroethene	VOCs
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	12/10/98	na	na	na	ND	180	95	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na	na
	12/14/99	na	na	na	na	100	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
	11/12/03 03/12/04	na na	na na	na na	na na	1,400 330	na na	na na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	06/15/04	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/14/04	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-1-W	02/10/05	na	na	na	na	330	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
D-1-W	02/10/03	IIa	IIa	IIa	IIa	330	IIa	IIa	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-2-W	02/10/05	na	na	na	na	220	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-4-W	02/10/05	na	na	na	na	1,600	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-5-W	02/10/05	na	na	na	na	7,200	na	na	ND	ND	ND	ND	ND	ND	5.3	ND	ND	ND	ND	ND	ND	ND	ND
B-6-W	02/10/05	na	na	na	na	47,000	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Boysen Pa	-: O:4- 3.5	5.9																					
boysen	airit Site																						
MW-B1	09/30/91	na	na	18,000	ND	na	29,000	na	5	6	250	980	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	06/10/93	na	na	27,000	na	na 42.000	57,000	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/29/93 05/28/03	na na	na na	na 1,100,000	na na	43,000 26,000	na 37,000	na na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	06/15/04	na	na	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL		. LNAPL		LNAPL	LNAPL	ND	IND	LNAPL	LNAPL	LNAPL	LNAPL
	09/14/04	na	na	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL		LNAPL		LNAPL	LNAPL	ND	ND	LNAPL	LNAPL	LNAPL	LNAPL
	12/16/04	na	na	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL		LNAPL		LNAPL	LNAPL	ND	ND	LNAPL	LNAPL	LNAPL	LNAPL
	03/30/04	na	na	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	. LNAPL	LNAPL	LNAPL	LNAPL	ND ND	ND ND	LNAPL	LNAPL	LNAPL	LNAPL
MW-B2	06/10/93	na	na	3,800	na	na	510	na	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND
	09/29/93	na	na	na	na	290,000	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/10/98 12/14/99	na na	na na	ND na	ND na	150,000 630	2,400 na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND ND	ND ND	ND na	ND na	ND na	ND na
	05/28/03	na	na	22,000	na	26,000	1,600	na	ND	ND	ND	ND	ND	ND	3.2	3.2	ND	ND	ND	ND	ND	ND	ND
	06/15/04	na	na	na	na	3,000	na	na	ND	ND	ND	ND	ND	ND	ND	ND	33	ND	ND	ND	ND	ND	ND
	09/14/05	na	na	na	na	410	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/16/04	na	na	na	na	480	na	na	ND	ND	ND	ND	ND	ND	1.8	1.4	ND	ND	ND	ND	ND	ND	ND
	03/30/05 06/27/05	na na	na na	na na	na na	14,000	na na	na na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.8 5.9	4.1 4.7	ND ND	ND ND	ND ND	2.2	ND ND	0.57 ND	ND ND
		IId	IId		IId	4,300		IId									ND						
MW-B3	06/10/93	na	na	1,700	na	na	1,400	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/29/93	na	na	na	na	2,400	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/10/98 12/14/99	na na	na na	ND na	ND na	120 ND	830 na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND ND	ND ND	ND na	ND na	ND na	ND na
	05/28/03	na	na	ND	na	ND	ND	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	06/15/04	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/14/05	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/16/04	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	03/30/05 06/27/05	na na	na na	na na	na na	ND ND	na na	na na	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND TCE 3.4;
MW-B4	06/10/93	na	na	36,000	na	na	36,000	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,1,1-Trichloroethene 0.5
IVIVV-D4	09/29/93	na	na	na	na	1,400	na	na	ND	ND	ND	ND	na	na	ND	ND	ND	na	na	ND	ND	ND	ND ND
	12/10/98	na	na	na	1,000	7,500	2,700	ND	ND	ND	ND	ND	na	na	ND	ND	ND	na	na	ND	ND	ND	ND
	12/14/99	na	na	na	na	5,100	na	na	na	na	na	na	na	na	na	na	na	na	na	na	ND	na	na
	05/28/03	na	na	7,000	na	990	14,000	na	ND	ND	ND	ND	na	na	2.8	ND	ND	na	na	1.8	ND	ND	ND
MW-B4	06/15/04	na	na	na	na	1,300	na	na	ND	ND	ND	ND	na	na	ND	ND	ND	na	na	ND	ND	ND	ND
cont.	09/14/05 12/16/04	na na	na na	na na	na na	400 450	na na	na na	ND ND	ND ND	ND ND	ND ND	na na	na na	ND 4.6	ND ND	ND ND	na na	na na	ND ND	ND ND	ND ND	ND ND
	03/30/05	na	na	na	na	3,000	na	na	ND	ND	ND	ND	na	na	6.5	2.0	ND	na	na	1.3	ND	ND	ND
	06/27/05	na	na	na	na	2,800	na	na	ND	ND	ND	ND	na	na	7.1	3.0	ND	na	na	1.9	ND	ND	TCE 3.4
																							1,1,1-Trichloroethene 0.5
BES-1	04/21/94	na	na	18,000	na	12,000	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	12/10/98 12/14/99	na na	na na	ND na	na na	78,000 na	ND na	na na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND na	ND ND	ND na	ND na
	05/28/03	na na	na na	na 19,000	na na	na na	na 84,000	na na	na ND	na ND	na ND	na ND	na ND	na ND	na 4	na ND	na ND	na ND	na ND	na 20	1.5	na 17	rans-1,2 Dichlorothene 2.1
	06/18/03	na	na	na	na	120,000	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	18	ND	14	ND
	06/15/04	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL		LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL
		LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL		LNAPL		LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL
		LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL			. LNAPL . LNAPL		LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL	LNAPL LNAPL
	03/30/05		LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL		LNAPL	LNAPL	LNAPL				LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL
	30/2//03	LIVAI L	_14/11 L	LIVAI L	LIMIL	LITTI L	LINEAL L	LIVAI L	LIVAI L	LINNI L	LIN/AI L	ZIV/II. L	LIVACL	_ LIVAI L	LINNIL	214711 2	LINNIL	LIVAI L	LINAI L	LINAI L	LIVALL	LIVAI L	L L

Sample ID	Date Sampled	TRPH	Motor Oil	ТЕРН	TPHd	Mineral Spirits	ТРРН	TPHg	Ben- zene	Tolu- ene	Ethyl Benzene	Xylenes		thalene	Benzene	Benzene	Benzene	1,2,4-Trimethyl benzene	benzene	Chloride	ethene	cis-1,2 Di-	VOCs
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-LD4	09/30/91	na	na	na	na	na	na	na	2.0	3.1	9.0	2.4	na	na	na	na	na	na	na	na	na	na	na
	04/06/93 09/29/93	na na	na na	21,000 na	na na	na 700	1,100 na	na na	ND ND	ND ND	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na	na na
	12/10/98	na	na	na	170	130	83	ND	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na
	12/14/99 01/13/00	na na	na na	na na	na na	440,000 630,000	na na	na na	na na	na na	na na	na na	ND ND	ND ND	na na	na na	na na	na na	na na	na na	na na	na na	na na
BH-A	2004	na	na	na	na	54	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-B	2004	na	na	na	na	1,700,000	na	na	ND	ND	ND	ND	ND	ND	ND	ND	9.0	ND	ND	ND	ND	ND	ND
BH-C	2004	na	na	na	na	230	na	na	ND	ND	ND	ND	ND	ND	ND	2.2	ND	ND	ND	0.51	ND	4.7	ND
BH-E	2004	na	na	na	na	3,600	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-F	2004	na	na	na	na	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-G	2004	na	na	na	na	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	TCE 0.57
ВН-Н	2004	na	na	na	na	1,200,000	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-I	2004	na	na	na	na	57,000	na	na	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND	n-Propylbenzene 20
BH-J	2004	na	na	na	na	1,600,000	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ВН-К	2004	na	na	na	na	1,300	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-L	2004	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-M	2004	na	na	na	na	72	na	na	ND	0.64	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-N	2004	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
вн-о	2004	na	na	na	na	ND	na	na	1.6	26	2.4	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-P	2004	na	na	na	na	680	na	na	ND	0.57	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-Q	2004	na	na	na	na	110,000	na	na	ND	ND	ND	ND	ND	ND	6.1	ND	ND	ND	ND	ND	ND	ND	ND
BH-R	2004	na	na	na	na	880,000	na	na	ND	ND	ND	ND	ND	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND
BH-S	2004	na	na	na	na	520	na	na	ND	0.64	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
вн-т	2004	na	na	na	na	11,000	na	na	0.7	12	1.2	6.8	ND	ND	2.0	ND	ND	0.93	ND	ND	ND	ND	ND
BH-U	2004	na	na	na	na	1,600	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-W	2004	na	na	na	na	870,000	na	na	ND	ND	ND	ND	ND	2.6	1.0	ND	ND	4.0	ND	ND	ND	ND	ND
BH-X	2004	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-Y	2004	na	na	na	na	1,400,000	na	na	ND	12	ND	12	ND	41	46	ND	ND	ND	ND	ND	ND	ND	ND
BH-Z	2004	na	na	na	na	59,000	na	na	ND	11	ND	7.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-AA	2004	na	na	na	na	2,000,000	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-BB	2004	na	na	na	na	1,100,000	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-DD	Aug. 2005	na	na	na	na	970	na	na	ND	2.9	0.58	3.8	ND	ND	ND	ND	ND	0.78	ND	ND	ND	ND	ND
BH-EE	Aug. 2005	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-FF	Aug. 2005	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-II-16-20' BH-II-23-27' BH-II-45-50'	Aug. 2005 Aug. 2005 Aug. 2005	na na na	na na na	na na na	na na na	160 56 68	na na na	na na na	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
BH-JJ	Aug. 2005		na	na	na	520	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample ID	Date Sampled	TRPH μg/L	Motor Oil μg/L	TEPH μg/L	TPHd μg/L	Mineral Spirits μg/L	TPPH μg/L	TPHg μg/L	Ben- zene μg/L	Tolu- ene μg/L	Ethyl Benzene μg/L	Total Xylenes μg/L			tert-Butyl Benzene μg/L		n-Butyl Benzene μg/L	1,2,4-Trimethyl benzene μg/L	Isopropyl benzene μg/L	Vinyl Chloride μg/L	1,1-Dichloro ethene µg/L		Other VOCs µg/L
BH-KK	Aug. 2005	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-LL	Aug. 2005	na	na	na	na	ND	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-MM	Aug. 2005	na	na	na	na	3,500	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BH-NN	Aug. 2005	na	na	na	na	ND	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
B-1	05/31/06	na	na	na	ND	ND	na	460	ND	0.65	ND	2.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Acetone 47
B-2	05/30/06	na	na	na	ND	ND	na	120	ND	0.52	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Acetone 20
B-4	06/07/06	na	na	na	na	na	na	na	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Celis Site 1	1,2,6																						
LF-LFMW-1	08/07/93	11	ND	na	41,000	na	na	100,000	13,000	9,400	3,100	14,000	na	na	na	na	na	na	na	na	na	na	na
LF-LFMW-2	08/07/93	ND	ND	na	95	na	na	13,000	2,400	2,900	500	2,000	na	na	na	na	na	na	na	na	na	na	na
LF-LFMW-3	08/07/93	ND	ND	na	780	na	na	11,000	1,500	5,100	2,900	5,000	na	na	na	na	na	na	na	na	na	na	na
LF-LFMW-4	01/28/94 09/26/97	na na	160 ND	na na	1,400 480	na na	na	18,000 3,200	1,000 44	1,900 6.6	880 49	4,700.0 180	na ND	na 17	na na	na na	na na	na na	na na	na na	na na	na na	na na
	09/26/97	na	na	na	620	260	na na	450	3.5	ND	11	1.8	6.2	na	na								na
						450		780		ND						na	na na	na	na	na	na	na	
	10/31/07	na	na	na	3,400		na		1.3		15	1.1	5.7	na	na	na		na	na	na	na	na	na
	01/18/08	na	na	na	1,000	500	na	970	4.1	ND	17	8.0	5.0	na	na	na	na	na	na	na	na	na	na
	09/21/09	na	na	na	1,600	320	na	490	ND	ND	7.9	ND	2.0	na	na	na	na	na	na	na	na	na	na
	00/00/07																						NB
WCEW-1	09/26/97	na	ND	na	180,000	na	na	110,000	2,800	4,900	3,100	12,000	ND	120	na	na	na	na	na	na	na	na	ND
	12/05/97	na	ND	na	95	na	na	4,700	2,100	1,800	2,500	10,000	340	170	na	na	na	na	na	na	na	na	ND
	03/13/98	na	ND 550	na	780 780	na	na	7,700	2,500	1,300	1,000 910	3,400	570	421	na	na	na	na	na	na	na	na	ND
	06/02/98	na		na		na	na	3,400	2,100	460		2,990	350	1,000	na	na	na	na	na	na	na	na	ND
	5/19/20045	na	na	na	ND	600	na	3,700	90	0.66	48	56	170	8.3	ND	8.7	ND	14	12	ND	ND	ND	1,3,5 Trimethylbenzene 5.6; p-Isopropylbenzene 1.8 n-Propylbenzene 31
SB-1-15-20	02/06/06	na	na	na	310	110	na	220	ND	ND	ND	ND	5.2	ND	ND	8.7	ND	ND	ND	ND	ND	ND	ND
URS-MW-1	07/10/07	na	na	na	580	550	na	960	ND	ND	ND	ND	1.7	na	na	na	na	na	na	na	na	na	na
	10/31/07	na	na	na	670	150	na	270	ND	ND	ND	ND	1.3	na	na	na	na	na	na	na	na	na	na
	01/18/08	na	na	na	220	79	na	150	ND	ND	ND	ND	1.1	na	na	na	na	na	na	na	na	na	na
	09/21/09	na	na	na	90	83	na	120	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na
URS-MW-2	07/10/07	na	na	na	240	ND	na	ND	ND	ND	ND	ND	140	ND	ND	ND	ND	ND	ND	ND	ND	ND	TBA 18
	10/31/07	na	na	na	180	ND	na	ND	ND	4.4	ND	5.1	160	na	na	na	na	na	na	na	na	na	na
	01/18/08	na	na	na	170	ND	na	ND	ND	ND	ND	ND	160	na	na	na	na	na	na	na	na	na	na
	09/21/09	na	na	na	210	ND	na	ND	ND	ND	ND	ND	49	na	na	na	na	na	na	na	na	na	na
URS-MW-3	07/10/07	na	na	na	ND	ND	na	ND	ND	ND	ND	ND	1.3	na	na	na	na	na	na	na	na	na	na
	10/31/07	na	na	na	50	ND	na	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na
	01/18/08	na	na	na	ND	ND	na	ND	ND	ND	ND	ND	ND	na	na	na	na	na	na	na	na	na	na
	09/21/09	na	na	na	ND	ND	na	ND	ND	ND	ND	ND	1.9	na	na	na	na	na	na	na	na	na	na
URS-MW-4	07/10/07	na	na	na	110	ND	na	ND	ND	ND	ND	ND	82	na	na	na	na	na	na	na	na	na	na
	10/31/07	na	na	na	170	ND	na	ND	ND	ND	ND	ND	7.2	na	na	na	na	na	na	na	na	na	na
	01/18/08	na	na	na	110	ND	na	ND	ND	ND	ND	ND	3.9	na	na	na	na	na	na	na	na	na	na
	09/21/09	na	na	na	110	ND	na	ND	ND	ND	ND	ND	56	na	na	na	na	na	na	na	na	na	na
URS-MW-5	09/21/09	na	na	na	1,100	99	na	150	ND	ND	ND	ND	63.0	na	na	na	na	na	na	na	na	na	na

Sample ID	Date Sampled	TRPH μg/L	Motor Oil μg/L	TEPH μg/L	TPHd μg/L	Mineral Spirits μg/L	TPPH μg/L	TPHg μg/L	Ben- zene μg/L	Tolu- ene μg/L	Ethyl Benzene μg/L						n-Butyl Benzene μg/L	1,2,4-Trimethyl benzene μg/L	Isopropyl benzene μg/L	Vinyl Chloride μg/L	1,1-Dichloro ethene μg/L	cis-1,2 Di- chloroethene μg/L	
San Franci	sco Bread	I Site 1,6,	7,8																				
SMW-1	09/11/92	na	na	na	200	na	na	1,400	470	45	43	100	na	na	na	na	na	na	na	na	na	na	na
	12/03/92	na	na	na	na	na	na	ND	ND	ND	1.6	ND	na	na	na	na	na	na	na	na	na	na	na
	03/04/93	na	na	na	na	na	na	700	1.1	ND	ND	1.1	na	na	na	na	na	na	na	na	na	na	na
	06/04/93	na	na	na	na	na	na	2,900	340	58	50	140	na	na	na	na	na	na	na	na	na	na	na
	09/02/93	na	na	na	na	na	na	1,500	340	ND	ND	140	na	na	na	na	na	na	na	na	na	na	na
	12/01/93	na	na	na	na	na	na	810	170	23	22	39	na	na	na	na	na	na	na	na	na	na	na
	03/08/94	na	na	na	na	na	na	5,800	1,700	430	230	490	na	na	na	na	na	na	na	na	na	na	na
MW-3	05/19/04	na	na	na	ND	420	na	1,300	ND	ND	ND	1.1	5.8	ND	ND	ND	14	ND	ND	ND	ND	ND	1,3,5 Trimethylbenzene 12
URS-MW-5	07/10/07	na	na	na	820	160	na	270	0.6	ND	22	ND	99	na	na	na	na	na	na	na	na	na	na
	10/31/07	na	na	na	1,400	1,400	na	2,500	3.9	ND	270	ND	47	na	na	na	na	na	na	na	na	na	na
	01/18/08	na	na	na	2,000	540	na	1,000	3.3	ND	110	ND	49	na	na	na	na	na	na	na	na	na	na

Concentrations in bold script exceed the 2008 San Francisco Bay Area RWQCB's Residential Environmental Screening Levels in shallow soils where groundwater is not a source of drinking water.

- (1) Data Source: Levine-Fricke 1994, 1993
 (2) Data Source: Woodward-Clyde International-Americas 1997, 1998
 (3) Data Source: Aqua Science Engineers, Inc. 2005a, b
 (4) Data Source: Clayton Group Services 2007, 2004a,b, 2003, 2002
 (5) Data Source: Hageman-Aquiar, Inc. 1992
 (6) Data Source: URS 2006, 2007a, 2009

- (6) Data Source: URS 2006, 2007a, 2009

 (7) Data Source: The San Jacquin Company 2005

 (8) Data Source: SEACOR Science and Engineering Analysis Corporation 1992

 (9) Data Source: Environmental Resource Management 2006

 (10) ND = Not Detected above the Method Detection Limit (MDL).

 (11) na = Not Analyzed.

TABLE 7

Table 7

RESULTS OF ANALYSES OF SOIL SAMPLES RECOVERED FROM FLOORS OF REMEDIAL EXCAVATIONS

August 10 - 30, 2007

Sample ID	Date Sampled	Elevation NAVD ft.	TPHd (diesel) mg/Kg	Mineral Spirits mg/Kg	TPHg (gasoline) mg/Kg	Benzene mg/Kg	Toluene	Ethylben- zene mg/Kg	Total Xy- lenes mg/Kg
Remedial E	xcavation	No. 1							
W275N08 W275N30 W275N55 W275N80 W275N105 W305N08 W305N30 W305N55 W305N115 W335N80 W335N30 W335N30 W335N55 W335N80	08/28/07 08/28/07 08/30/07 08/30/07 08/28/07 08/28/07 08/28/07 08/28/07 08/28/07 08/28/07 08/28/07 08/28/07 08/28/07	36.62 36.73 36.06 36.73 36.74 36.13 36.04 36.10 35.29 36.47 35.69 35.66 34.96 35.50 35.40	3.0 29 32 18 54 ND 3.1 4.1 8.2 ND ND 42 6.5 ND 100	1.7 40 26 19 ND ND 4.1 5.7 10 ND ND 57 8.4 ND	9.7 510 140 85 1.7 1.9 130 59 0.32 ND ND 140 7.7 ND 120	ND 0.97 ND ND 0.014 ND	ND 2.8 ND ND 0.048 ND 2.0 ND	ND 8.5 ND ND 0.087 ND 1.8 ND	ND 51 ND ND 0.57 ND 9.3 2.6 ND ND ND ND ND ND
Remedial E	xcavation	No. 2							
W0N0 W0N25 W0N35 W0N50 W0N65 W15N61 W25N0 W25N25 W25N50 W25N75 W50N0 W50N50 W50N75 W75N0 W75N25 W75N50 W75N50 W75N75 W100N0 W100N25 W100N50	08/14/07 08/14/07 08/14/07 08/14/07 08/14/07 08/10/07 08/14/07 08/14/07 08/17/07 08/22/07 08/17/07 08/22/07 08/22/07 08/22/07 08/17/07 08/23/07 08/23/07 08/17/07	40.81 40.54 40.42 40.25 40.81 40.57 39.47 39.94 40.71 41.05 39.95 40.41 40.61 40.22 40.19 40.92 40.38 40.72 40.23	28 ND ND ND ND ND ND ND 3.0 ND ND 19 26 ND ND 13 18 ND	6.3 ND ND ND ND ND ND ND ND ND ND 14 15 ND	3.2 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N

Page 1 of 2

	Date	Elevation	TPHd	Mineral	TPHg	Benzene	Toluene	Ethylben-	Total Xy-
Sample ID	Sampled	NAVD	(diesel)	Spirits	(gasoline)			zene	lenes
		ft.	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
W100N75	08/17/07	40.21	ND	ND	ND	ND	ND	ND	ND
W125N0	08/23/07	40.54	7.1	9.2	72	ND	ND	1.2	3.9
W125N25	08/27/07	40.36	32	31	100	ND	ND	ND	ND
W125N50	08/27/07	39.72	9.3	7.6	150	ND	ND	ND	ND
W125N75	08/17/07	40.53	ND	ND	ND	ND	ND	ND	ND
W150N0	08/23/07	39.65	10	9.9	96	ND	ND	1.1	3.2
W150N25	08/23/07	40.09	18	21	290	ND	ND	6.0	8.2
W150N50	08/17/07	39.32	ND	ND	ND	ND	ND	ND	ND
W175N0	08/23/07	39.93	2.6	1.6	2.9	ND	ND	ND	ND
W175N25	08/23/07	40.39	2.8	2.4	9.0	0.020	ND	0.11	0.0099
W175N50	08/27/07	39.89	ND	ND	ND	ND	ND	ND	2.4
W175N75	08/27/07	39.13	ND	ND	ND	ND	ND	ND	ND
W200N0	08/27/07	40.30	ND	ND	0.47	ND	ND	ND	ND
W200N50	08/27/07	40.06	5.6	5.2	93	ND	ND	1.6	ND
W200N75	08/27/07	39.92	940	1300	5100	ND	ND	50	270
W213N25	08/27/07	40.76	6.8	5.4	6.5	ND	ND	0.055	ND

Notes:

Page 2 of 2

⁽¹⁾ Concentrations in **bold** script exceed the 2008 San Francisco Bay Area RWQCB's Environmental Screening Levels for residential property in shallow soils where groundwater is not a source of drinking water.

⁽²⁾ ND = Not Detected above the Method Detection Limit (MDL).

TABLE 8

TABLE 8

RWQCB TIER 1 CONCENTRATION LIMITS (ESLs) FOR CHEMICALS OF CONCERN IN SHALLOW SOIL, GROUNDWATER AND SOIL GAS AT SITES WHERE SGROUNDWATER IS NOT A SOURCE OF DRINKING WATER Shallow = <3m BGS for soil; <1.5m BGS for soil gas.

	Limiting Concentrations to Protect Human Health Soil Groundwater Soil Gas for Vapor Intrus				
Chemical of Concern	Residential mg/Kg	Commercial mg/Kg	Resid. or Comm. μg/L	Residential μg/m³	Commercial μg/m³
Acetone	0.50	0.50	1,500	666,000	1,800,000
Aroclor® 1260 (PCBs)	0.22	0.74	0.014	n/a	n/a
Antimony	6.3	40	30	n/a	n/a
Arsenic	0.39	1.6	36	n/a	n/a
Barium	750	1,500	1,000	n/a	n/a
Benzene	0.12	0.27	46	84	280
Beryllium	4.0	8.0	0.53	n/a	n/a
2-Butatone (Metyl Ethyl Ketone)	13	13	14,000	1,000,000	2,900,000
n-Butylbenzene (1-Phenylbutane)	ne	ne	ne	ne	ne
sec-Butylbenzene (Butyl Benzene)	ne	ne	ne	ne	ne
tert-Butylbenzene	ne	ne	ne	ne	ne
Cadmium	1.7	7.4	0.25	n/a	n/a
Chromium III	750	750	180	n/a	n/a
Chromium VI	8.0	8.0	11	n/a	n/a
Cobalt	40	80	3.0	n/a	n/a
Copper	230	230	3.1	n/a	n/a
Dibromoethane (EDB)	ne	ne	ne	ne	ne
Ethyl benzene	2.3	4.7	43	980	3,300
Lead	200	750	2.5	n/a	n/a
Mercury	1.3	10	0.025	n/a	n/a
2-Methylnaphthalene	0.25	0.25	2.1	ne	ne
4-Methylphenol	ne	ne	ne	ne	ne
Methyl Teritary Butyl Ether	8.4	8.4	1,800	9,400	31,000
Methylene Chloride	7.2	17	2,200	5,200	17,000
Page 1 of 2	Shallow				SJC

	Limiting Concentrations to Protect Human Health				
	Sc		Groundwater		Vapor Intrusion
Chemical of Concern	Residential	Commercial	Resid. or Comm.	Residential	Commercial
	mg/Kg	mg/Kg	μg/L	μ g /m³	μ g /m ³
Molybdenum	40	40	240	n/a	n/a
Naphthalene	1.3	2.8	24	72	240
Nickel	150	150	8.2	n/a	n/a
Isopropylbenzene (Cumene)	ne	ne	ne	ne	ne
p-Isopropylbenzene	ne	ne	ne	ne	ne
p-Isopropyltoluene (p-Cymene)	ne	ne	ne	ne	ne
n-Propylbenzene (Isocumene)	ne	ne	ne	ne	ne
Selinium	10	10	5.0	n/a	n/a
Silver	20	40	0.19	n/a	n/a
Tetrachlorethene	0.47	0.90	120	410	4100
Thallium	1.3	16	4.0	n/a	n/a
Toluene	9.3	9.3	130	63,000	180,000
TPHd, TPHms (Diesel and Mineral Spirits)	100	180	210	10,000	29,000
TPHg (Gasoline)	100	180	210	10,000	29,000
Trichloroethene	1.9	4.1	360	1,200	4,100
1,2,4 Trimethylbenzene	ne	ne	ne	ne	ne
1,3,5 Trimethylbenzene	ne	ne	ne	ne	ne
Vanadium	16	200	19	n/a	n/a
Xylene Isomers (Total)	11.0	11.0	100	21,000	58,000
Zinc	600	600	81	n/a	n/a

Notes:

n/a = not applicable to soil gas

ne = not established in the RWQCB ESL guidance document (California Regional Water Quality Control Board San Francisco Bay Region (2008), Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. California Regional Water Quality Control Board San Francisco Bay Region INTERIM FINAL. November 2007 (Revised May 2008).

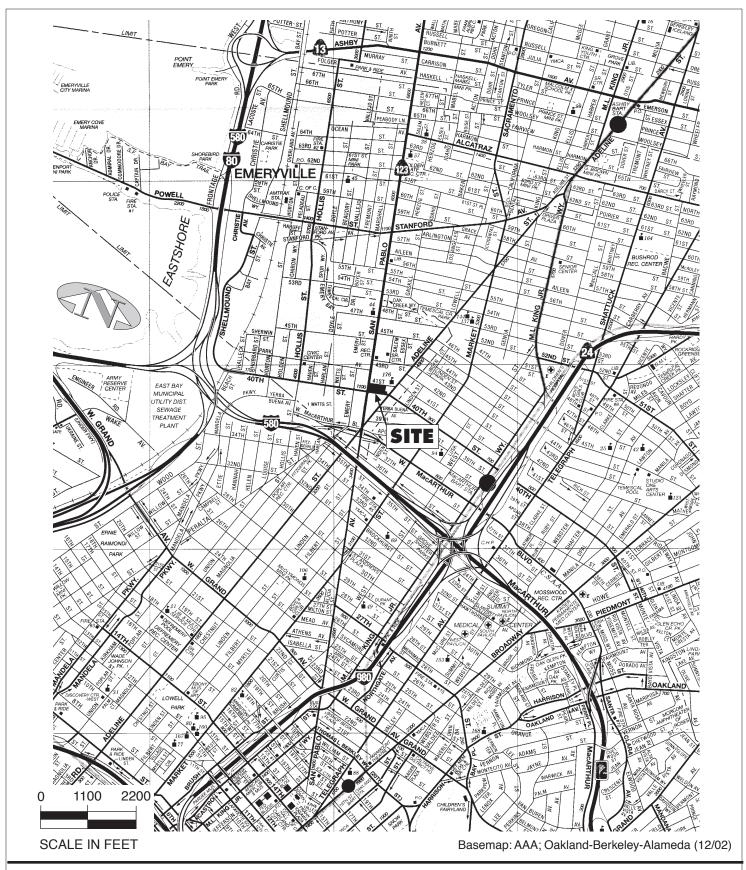
TABLE 9

TABLE 9

RWQCB TIER 1 CONCENTRATION LIMITS (ESLs) FOR CHEMICALS OF CONCERN IN DEEP SOIL, GROUNDWATER AND SOIL GAS AT SITES WHERE SGROUNDWATER IS NOT A SOURCE OF DRINKING WATER Deep = >3m BGS for soil; >1.5m BGS for soil gas.

Limiting Concentrations to Protect Human Health Groundwater Soil Gas for Vapor Intrusion **Chemical of Concern** Residential Residential Commercial Resid. or Comm. Commercial $\mu g/m^3$ $\mu g/m^3$ mg/Kg mg/Kg μg/L Acetone 0.50 0.50 666,000 1,500 1,800,000 Aroclor® 1260 (PCBs) 6.3 6.3 0.014 n/a n/a Antimony 310 310 30 n/a n/a 36 Arsenic 15 15 n/a n/a Barium 2,500 2,600 1,000 n/a n/a Benzene 2.0 2.0 46 84 280 Beryllium 98 98 0.53 n/a n/a 2-Butatone (Metyl Ethyl Ketone) 13 13 14,000 1.000.000 2.900.000 n-Butylbenzene (1-Phenylbutane) ne ne ne ne ne sec-Butylbenzene (Butyl Benzene) ne ne ne ne ne tert-Butylbenzene ne ne ne ne ne Cadmium 39 39 0.25 n/a n/a Chromium III 5,000 180 2,500 n/a n/a Chromium VI 0.53 0.53 11 n/a n/a Cobalt 94 94 3.0 n/a n/a Copper 2,500 5,000 3.1 n/a n/a Dibromoethane (EDB) ne ne ne ne ne Ethyl benzene 4.7 980 3,300 4.7 43 Lead 750 750 2.5 n/a n/a Mercury 58 58 0.025 n/a n/a 2-Methylnaphthalene 0.25 0.25 2.1 ne ne 4-Methylphenol ne ne ne ne ne Methyl Teritary Butyl Ether 8.4 8.4 1,800 9,400 31,000 Methylene Chloride 34 34 2,200 5,200 17,000

Deep = >3m BGS for soil; >1.5m BGS for soil gas.

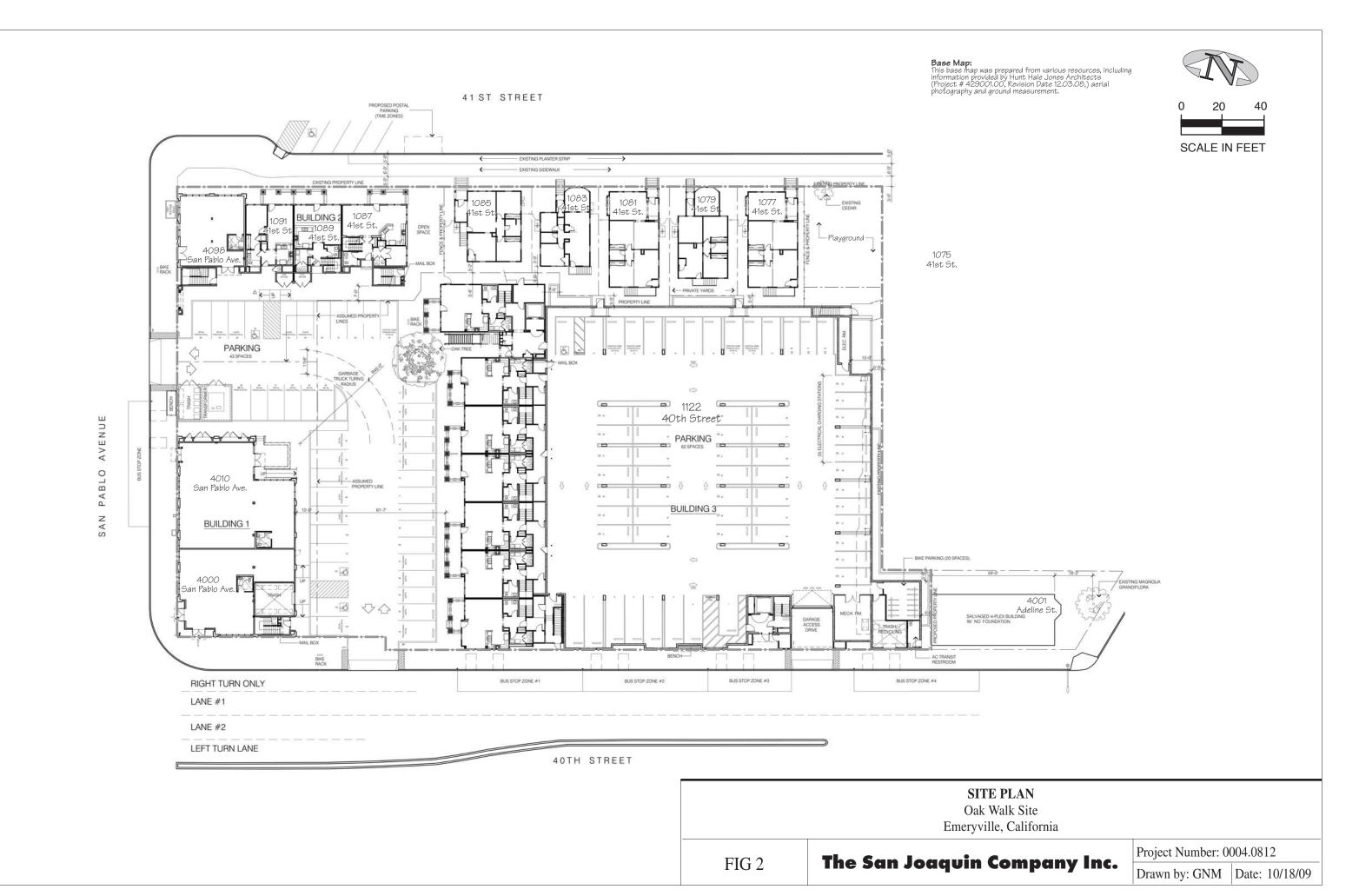

	Limiting Concentrations to Protect Human Health Soil Groundwater Soil Gas for Vapor Intrusion					
Chemical of Concern	Residential	Commercial	Resid. or Comm.	Residential $\mu g/m^3$	Commercial μg/m ³	
	mg/Kg	mg/Kg	μg/L	μ g/m $^{\circ}$	μg/m²	
Molybdenum	2,500	3,900	240	n/a	n/a	
Naphthalene	4.8	4.8	24	72	240	
Nickel	260	260	8.2	n/a	n/a	
Isopropylbenzene (Cumene)	ne	ne	ne	ne	ne	
p-Isopropylbenzene	ne	ne	ne	ne	ne	
p-Isopropyltoluene (p-Cymene)	ne	ne	ne	ne	ne	
n-Propylbenzene (Isocumene)	ne	ne	ne	ne	ne	
Selinium	2,500	3,900	5.0	n/a	n/a	
Silver	2,500	3,900	0.19	n/a	n/a	
Tetrachlorethene	17	17	120	410	4100	
Thallium	62	62	4.0	n/a	n/a	
Toluene	9.3	9.3	130	63,000	180,000	
TPHd, TPHms (Diesel and Mineral Spirits)	180	180	210	10,000	29,000	
TPHg (Gasoline)	180	180	210	10,000	29,000	
Trichloroethene	33	33	360	1,200	4,100	
1,2,4 Trimethylbenzene	ne	ne	ne	ne	ne	
1,3,5 Trimethylbenzene	ne	ne	ne	ne	ne	
Vanadium	770	770	19	n/a	n/a	
Xylene Isomers (Total)	11	11	100	21,000	58,000	
Zinc	2,500	5,000	81	n/a	n/a	

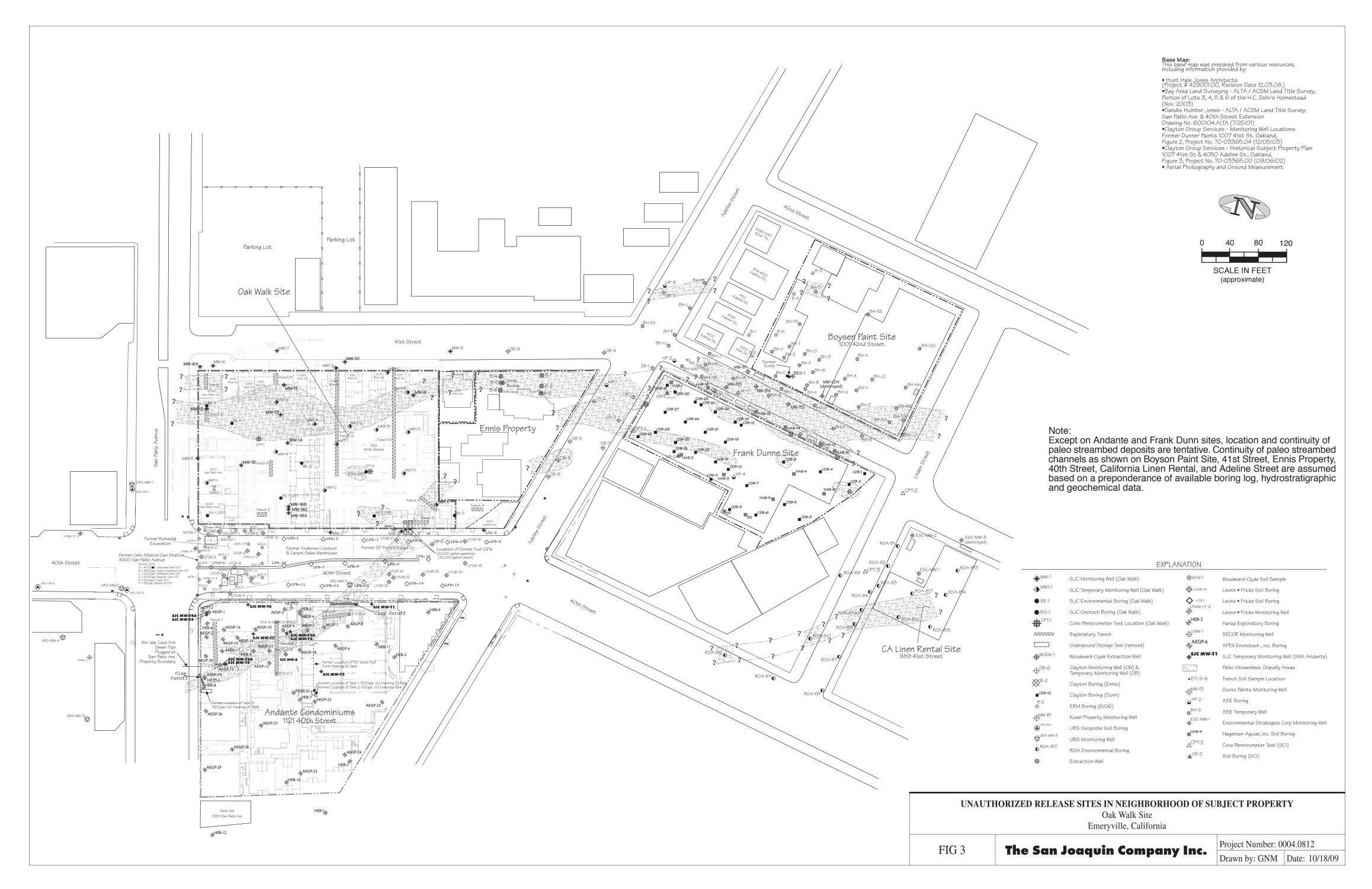
Notes:

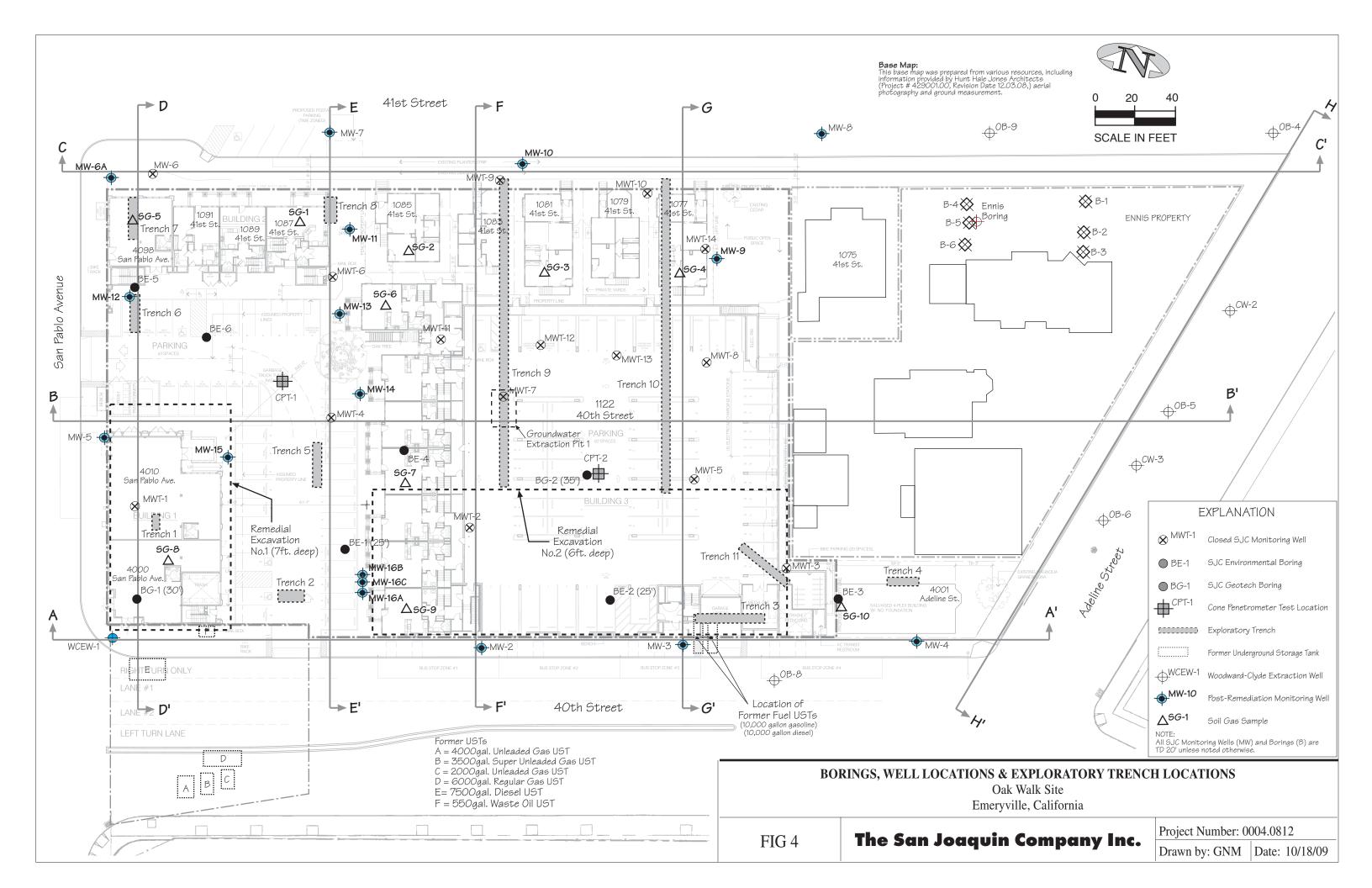
n/a = not applicable to soil gas

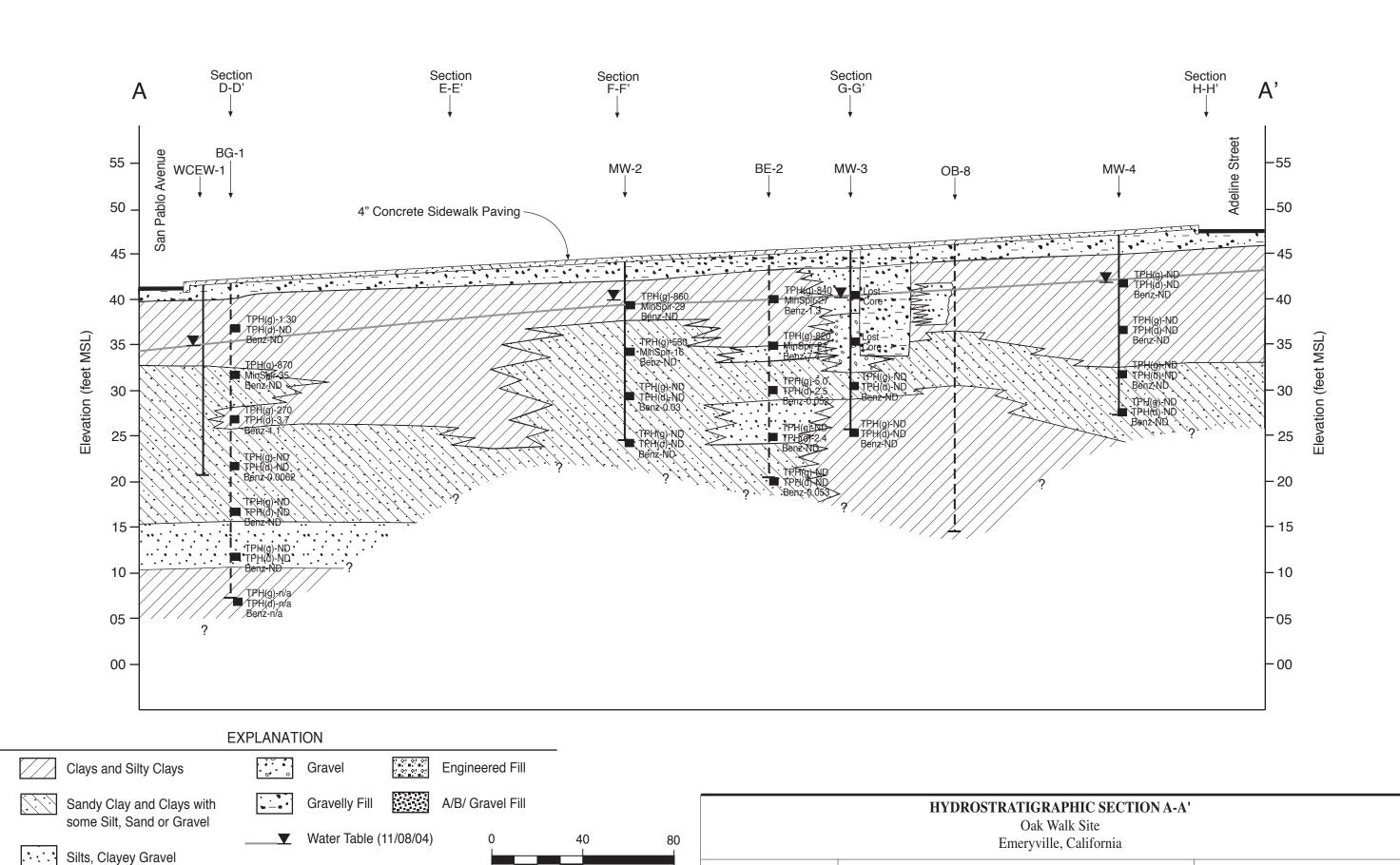
ne = not established in the RWQCB ESL guidance document (California Regional Water Quality Control Board San Francisco Bay Region (2008), *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater.* California Regional Water Quality Control Board San Francisco Bay Region INTERIM FINAL. November 2007 (Revised May 2008).

FIGURES


SITE LOCATION


Oak Walk Site Emeryville, California


The San Joaquin Company Inc.

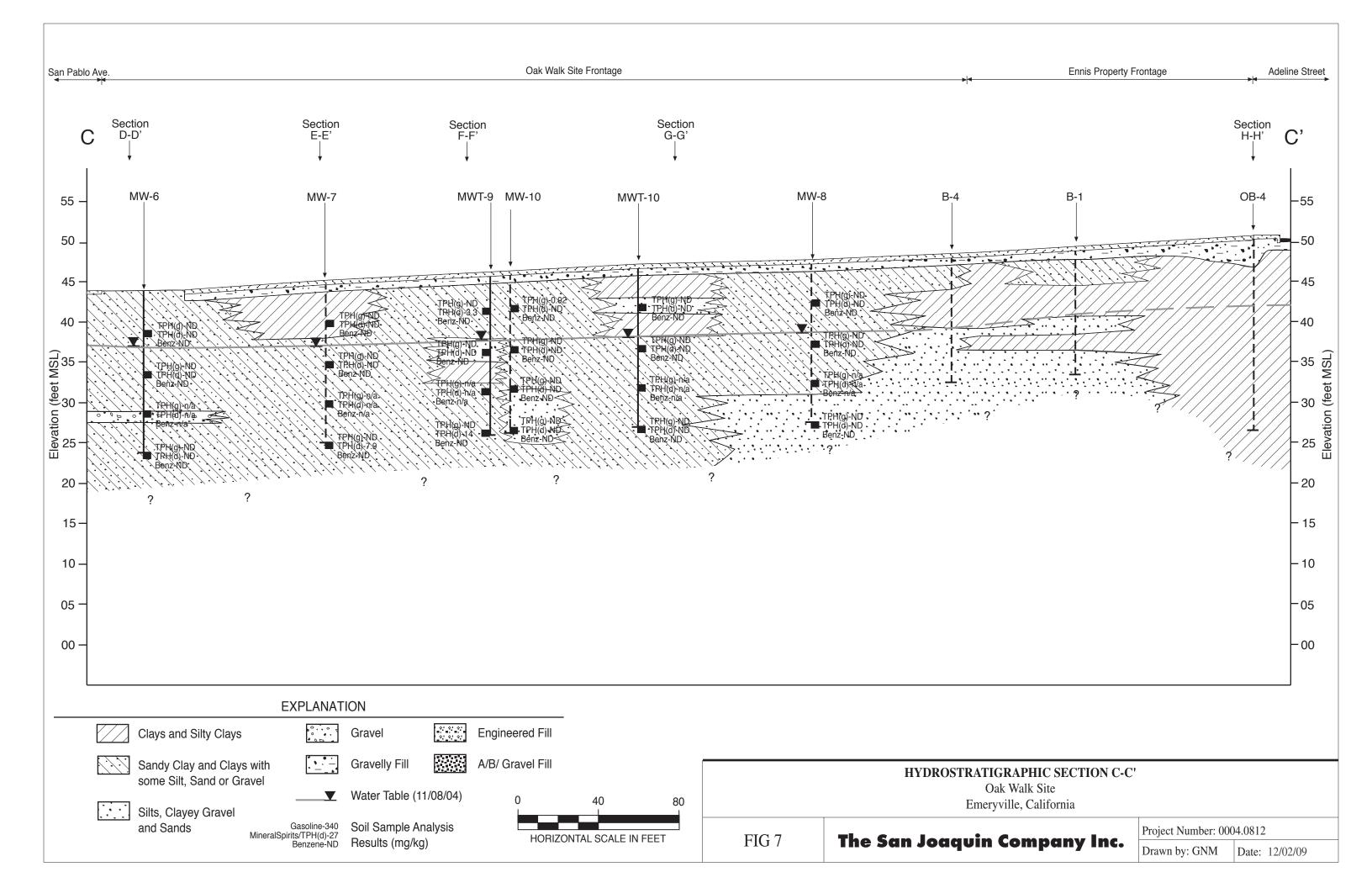

Project Number: 0004.0812

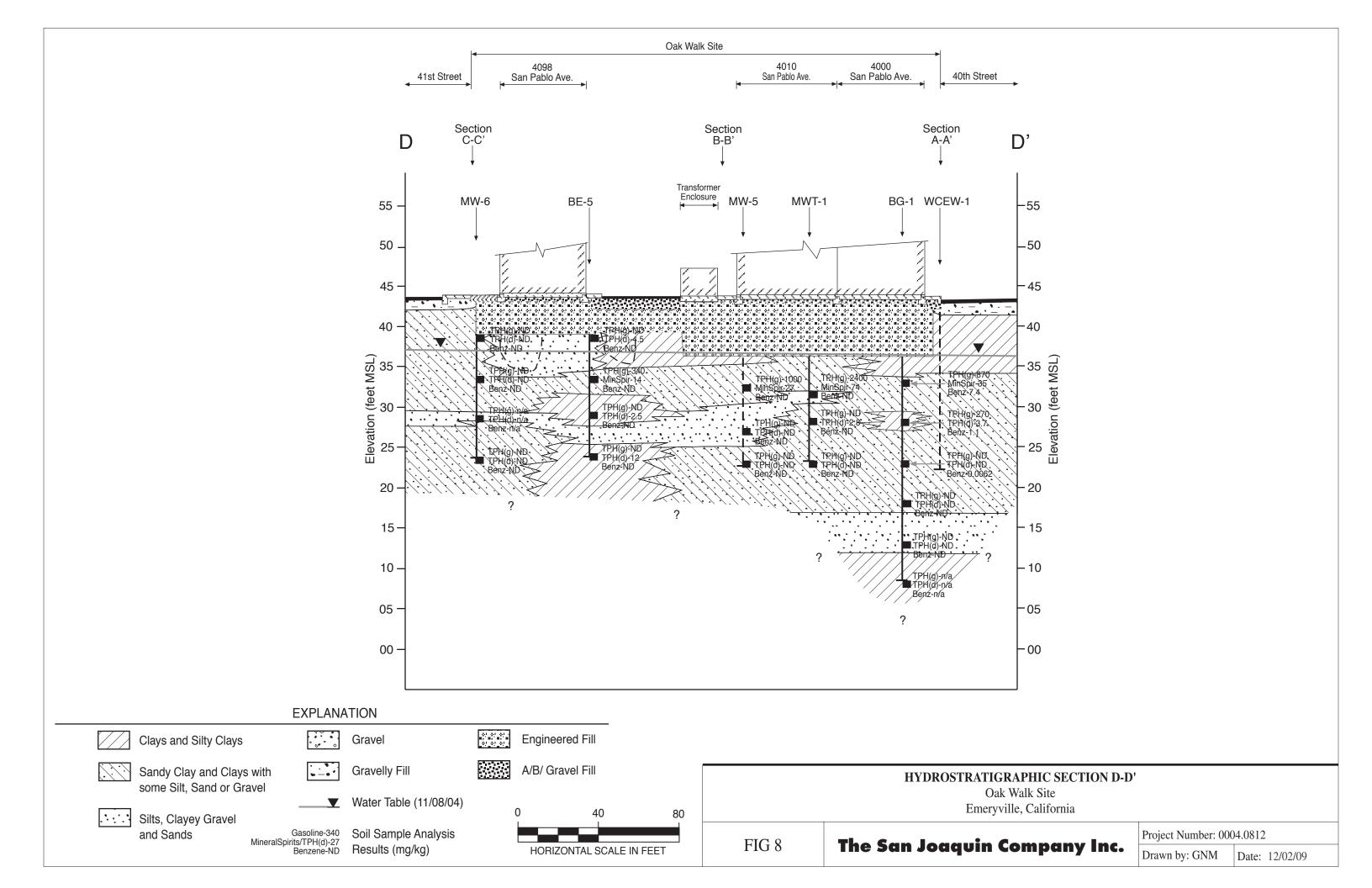
Drawn by: GNM Date: 10/18/09

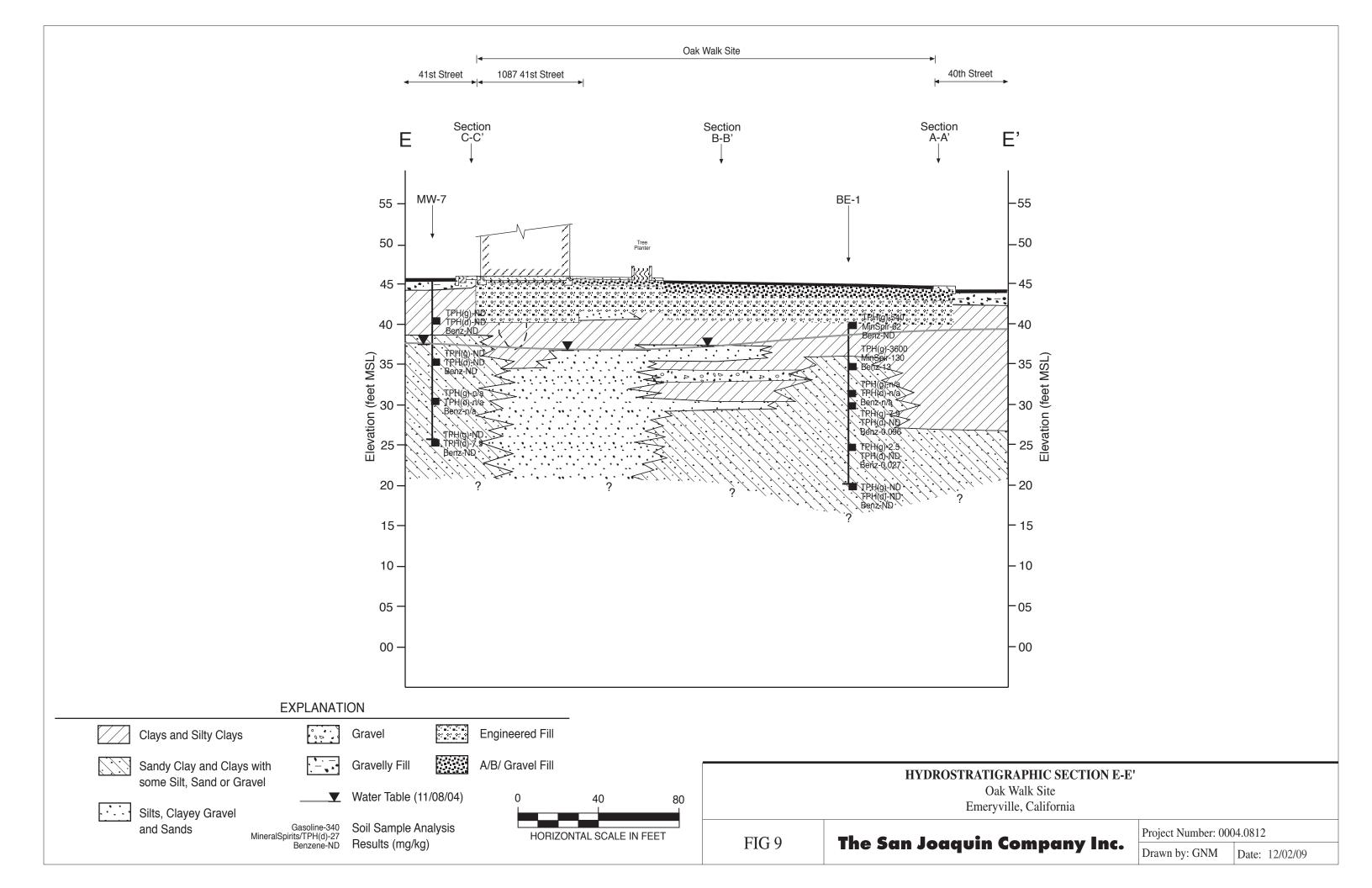
HORIZONTAL SCALE IN FEET

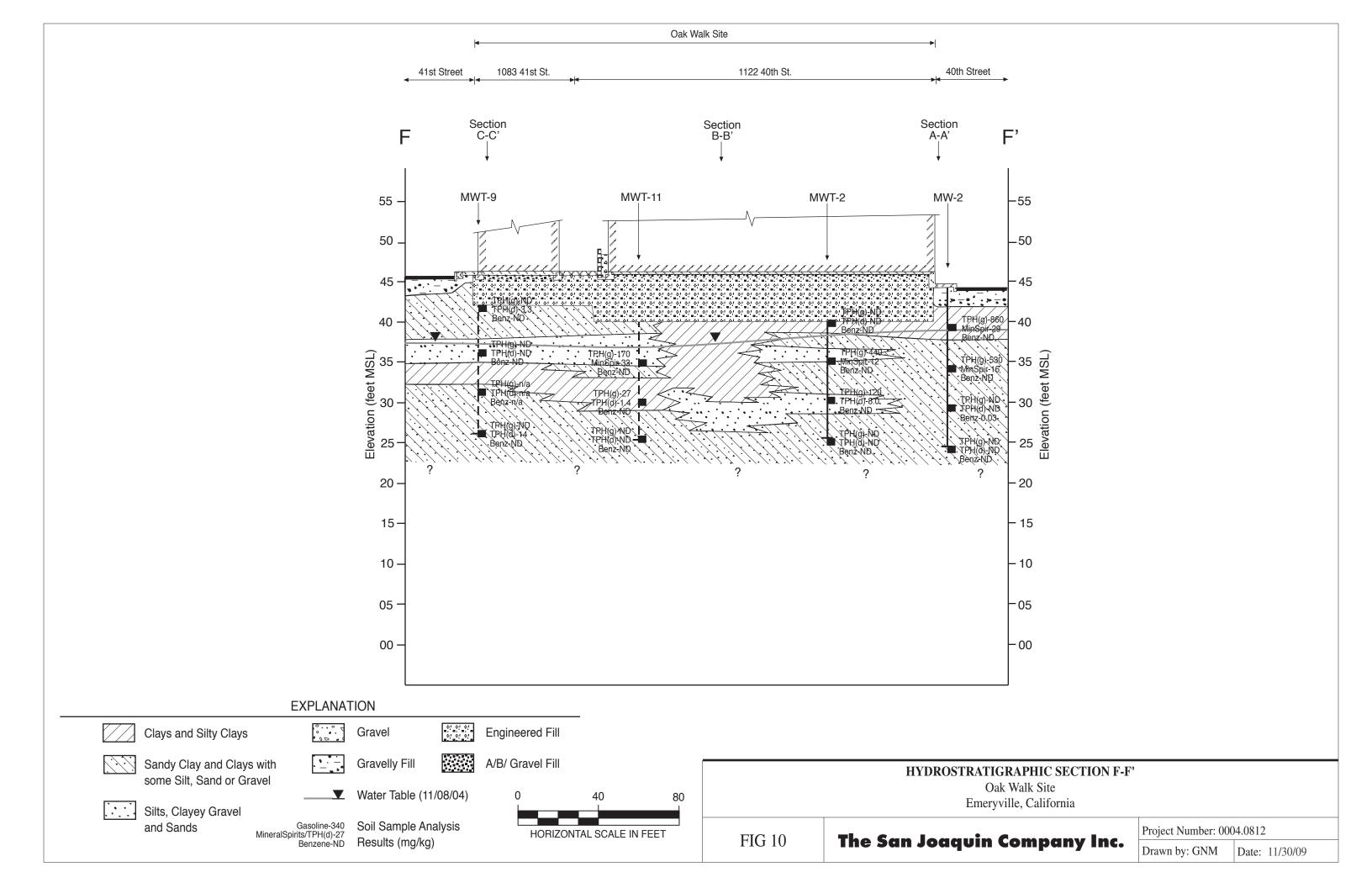
Gasoline-340 MineralSpirits/TPH(d)-27 Benzene-ND Soil Sample Analysis

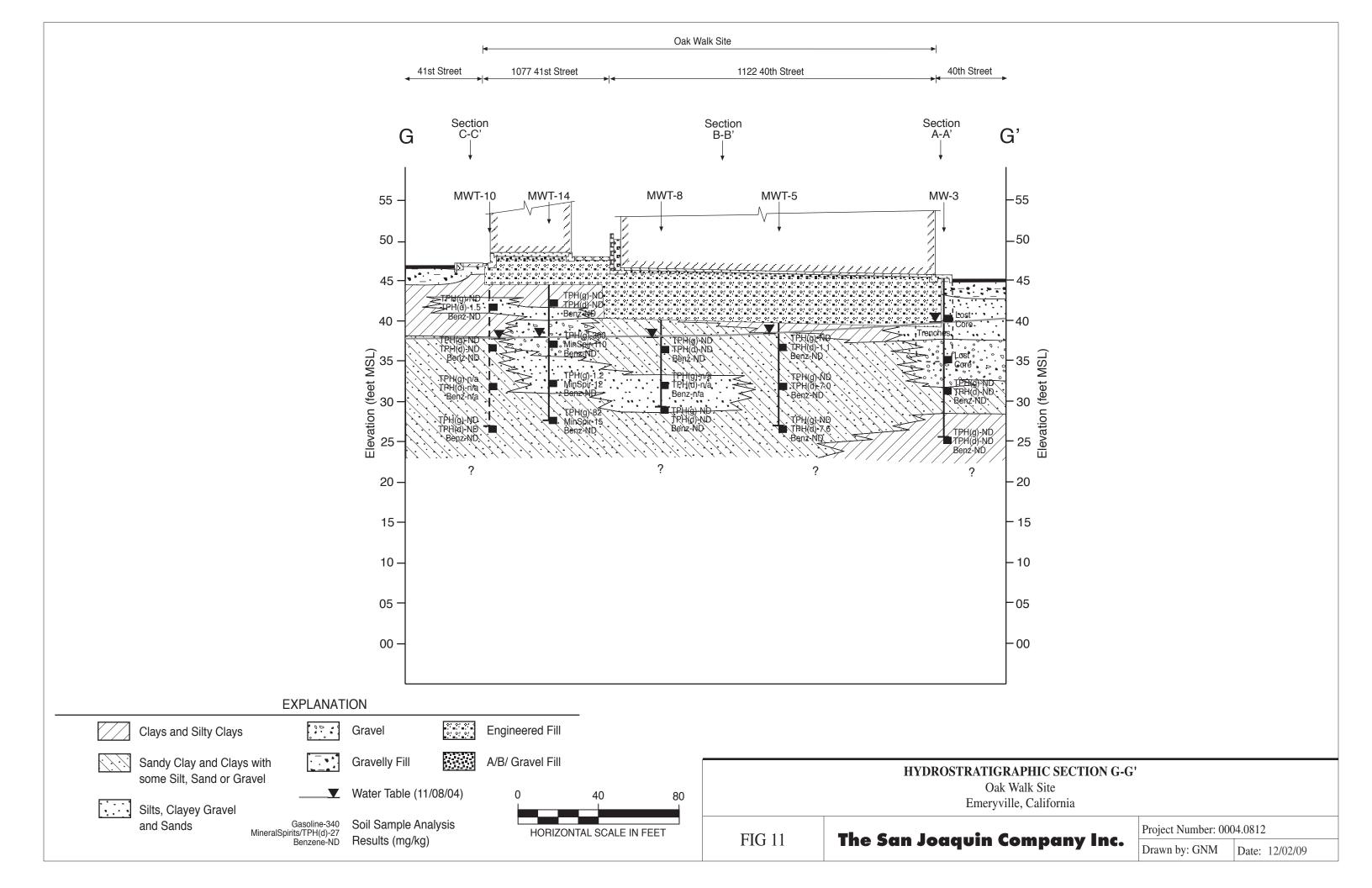
Results (mg/kg)

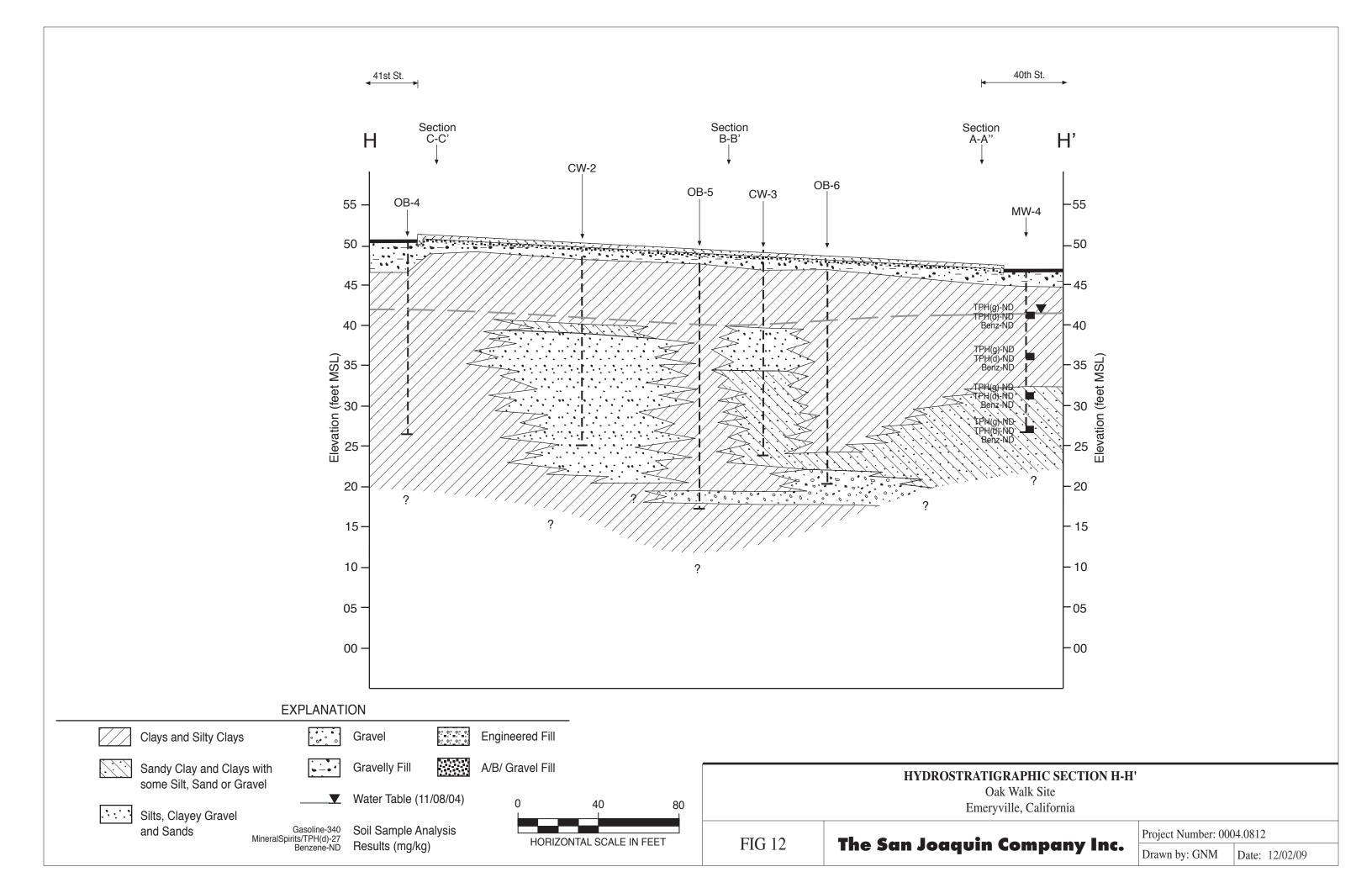

and Sands

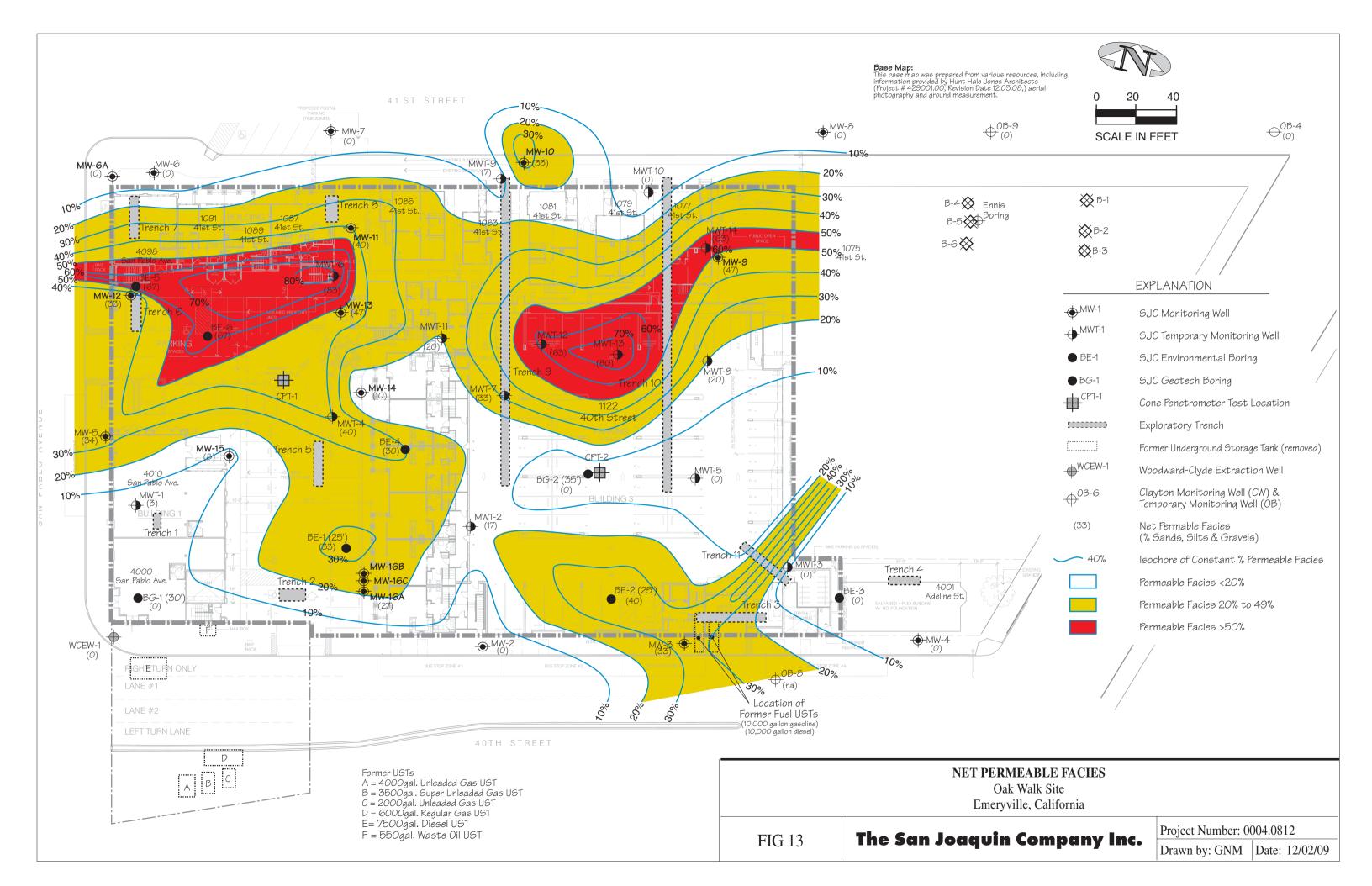

FIG 5 The San Joaquin Company Inc.

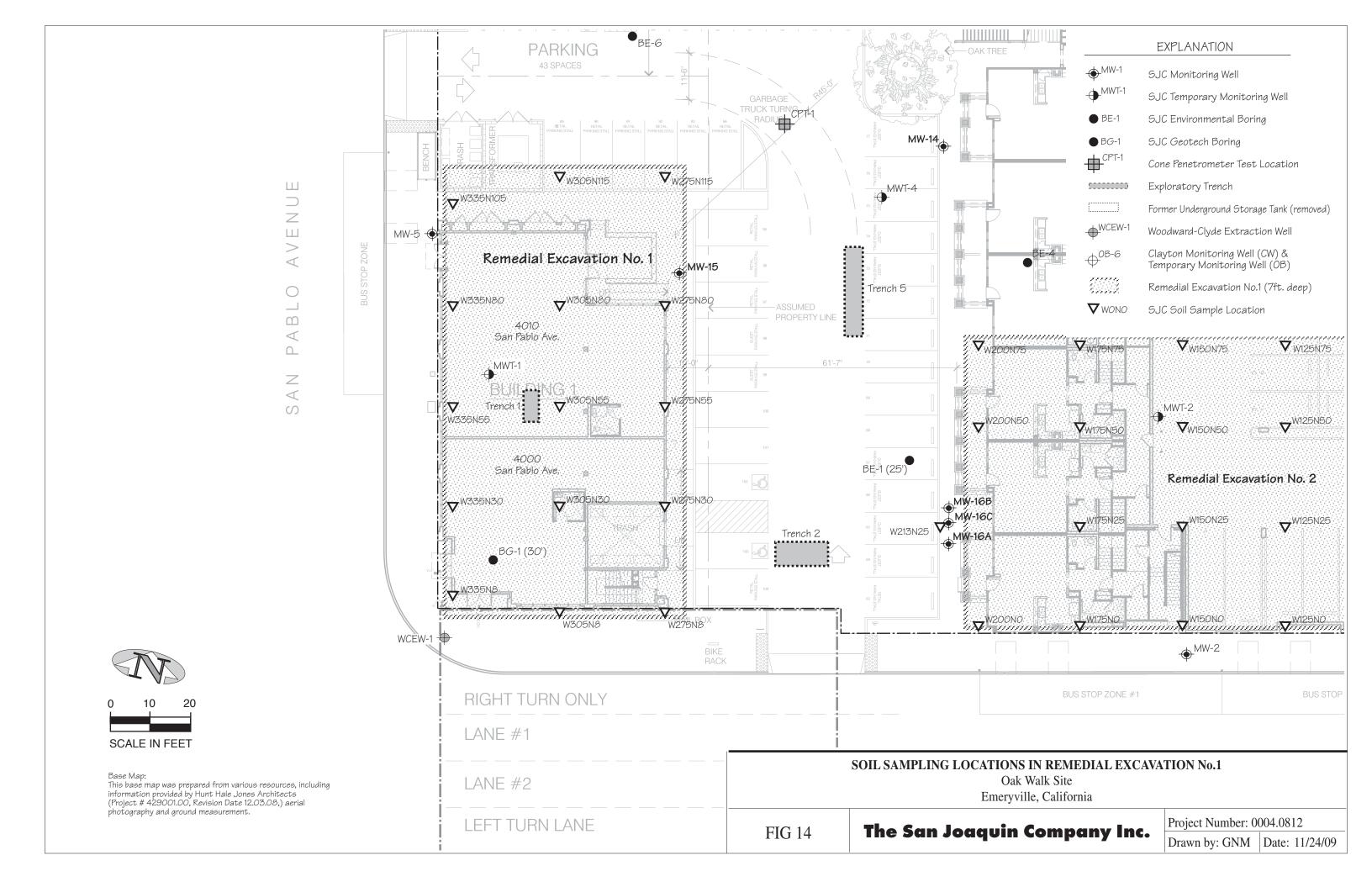

Project Number: 0004.0812

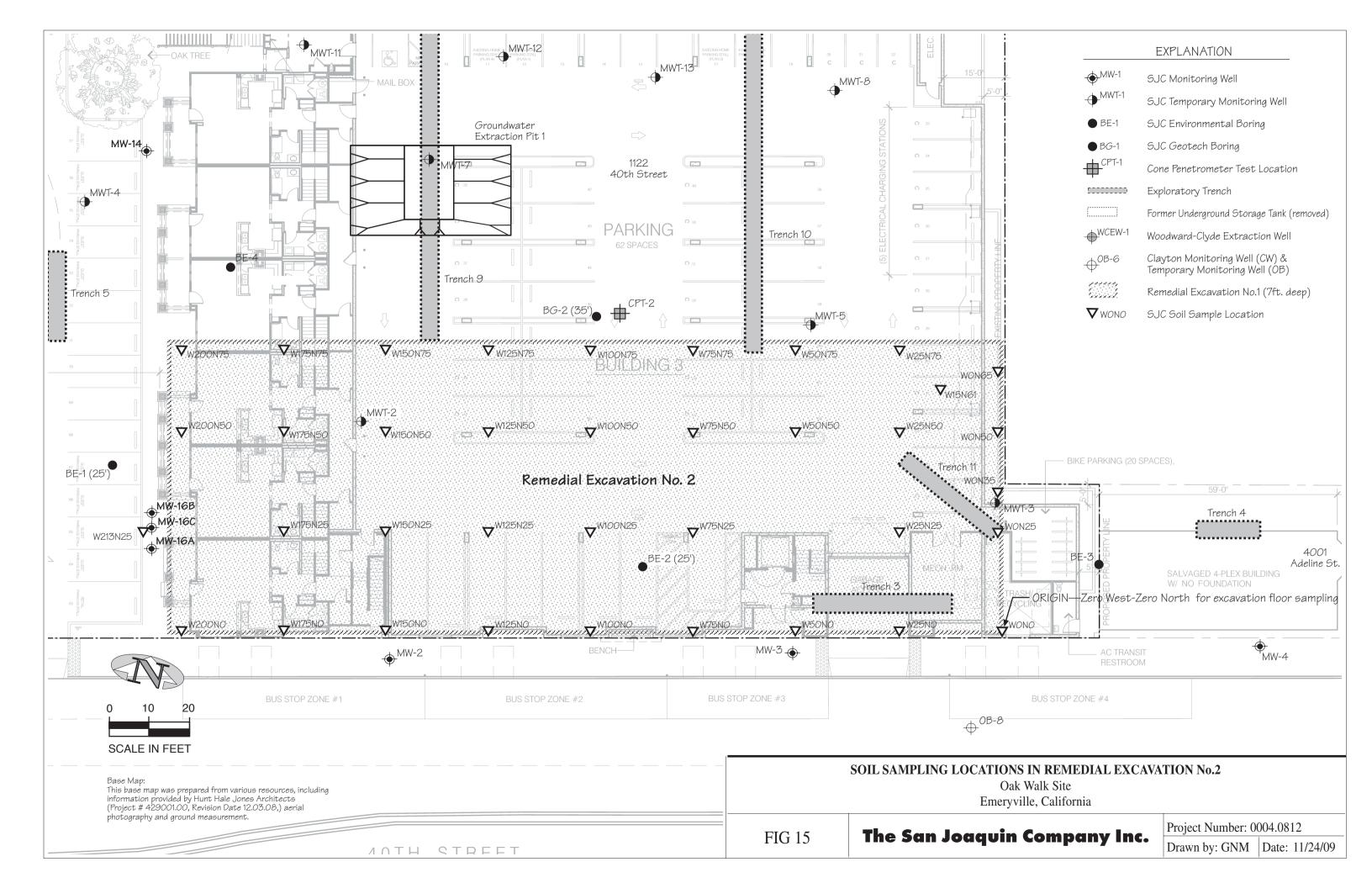

Drawn by: GNM Date: 11/30/09

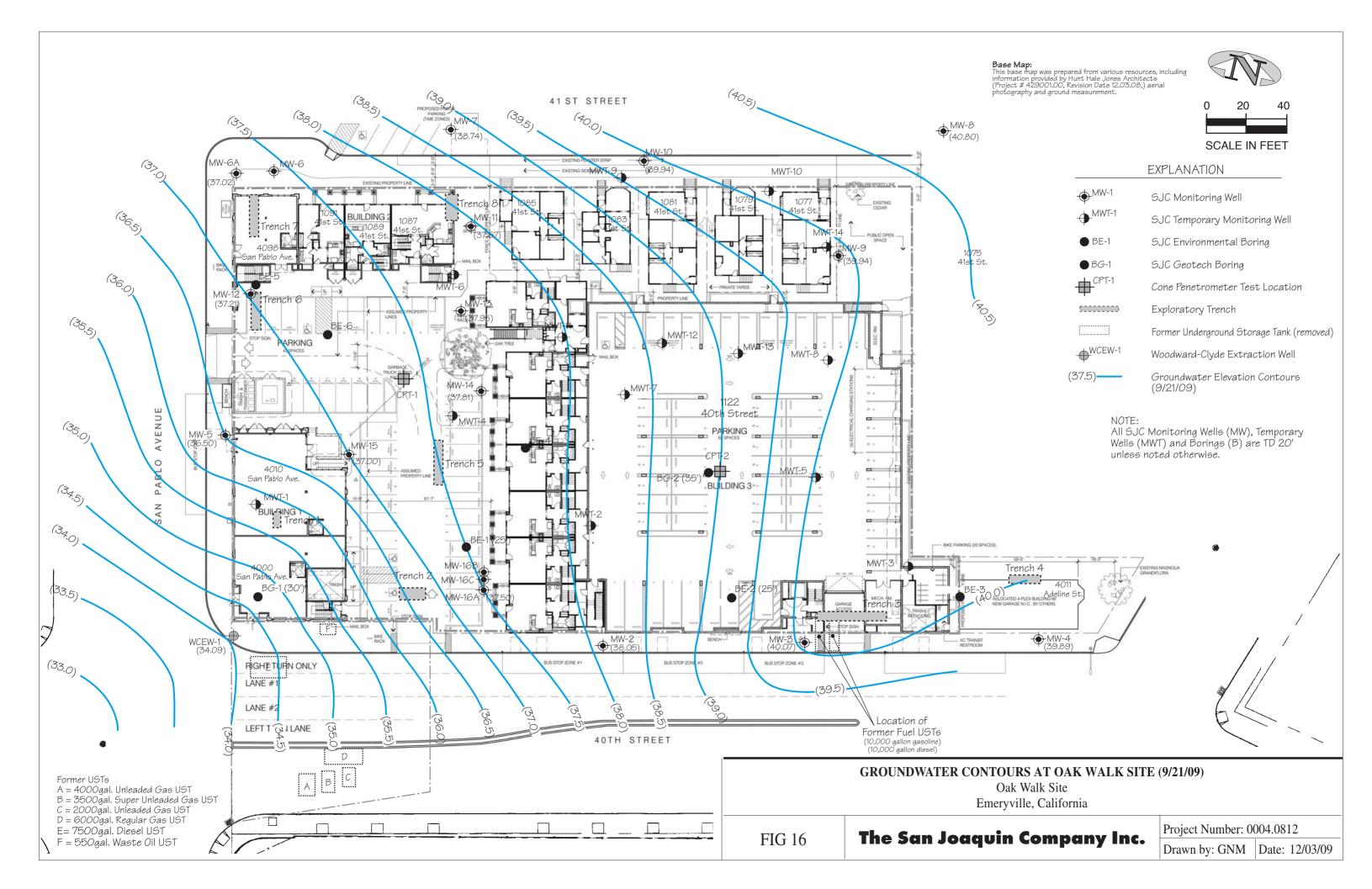


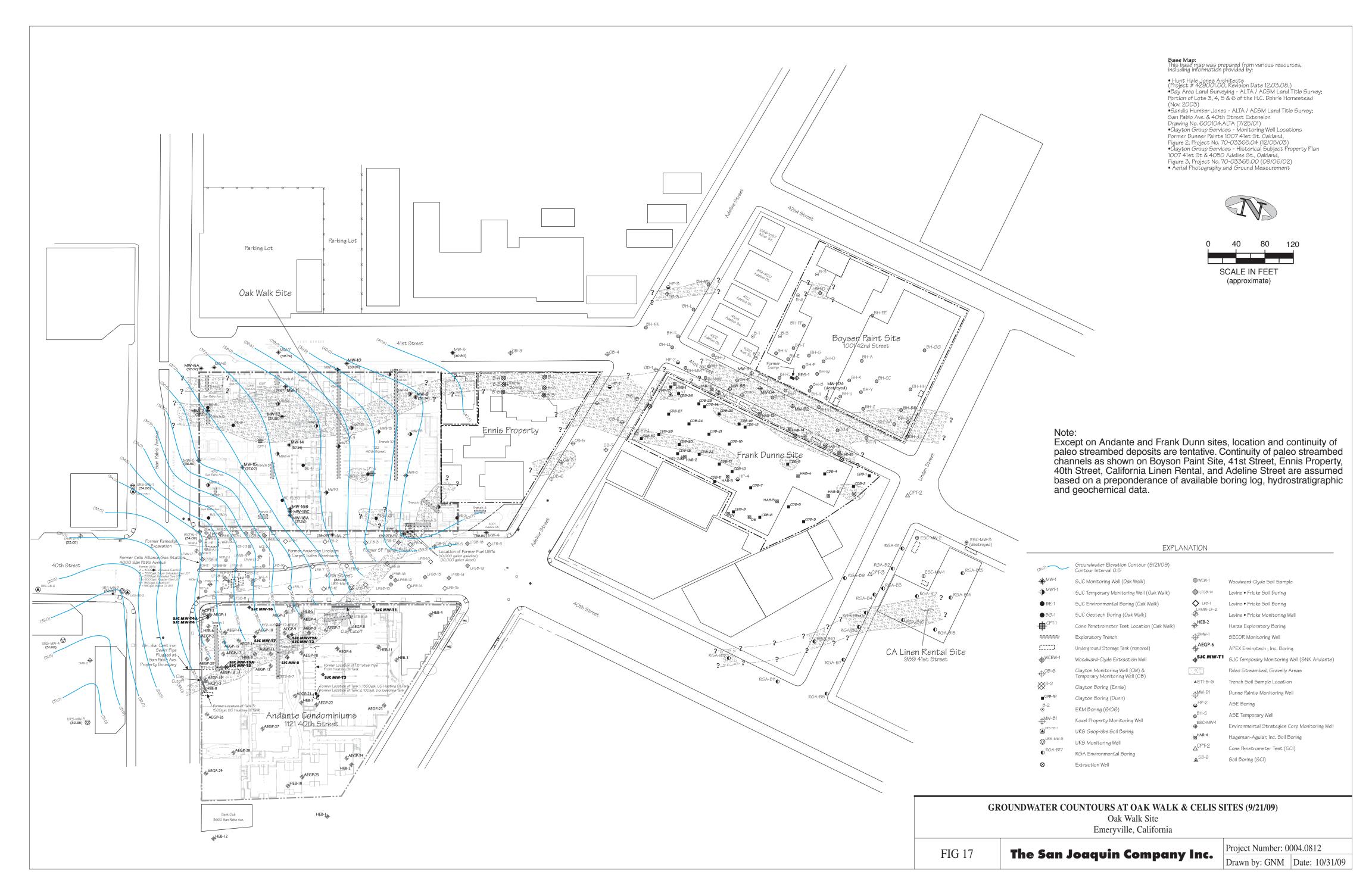


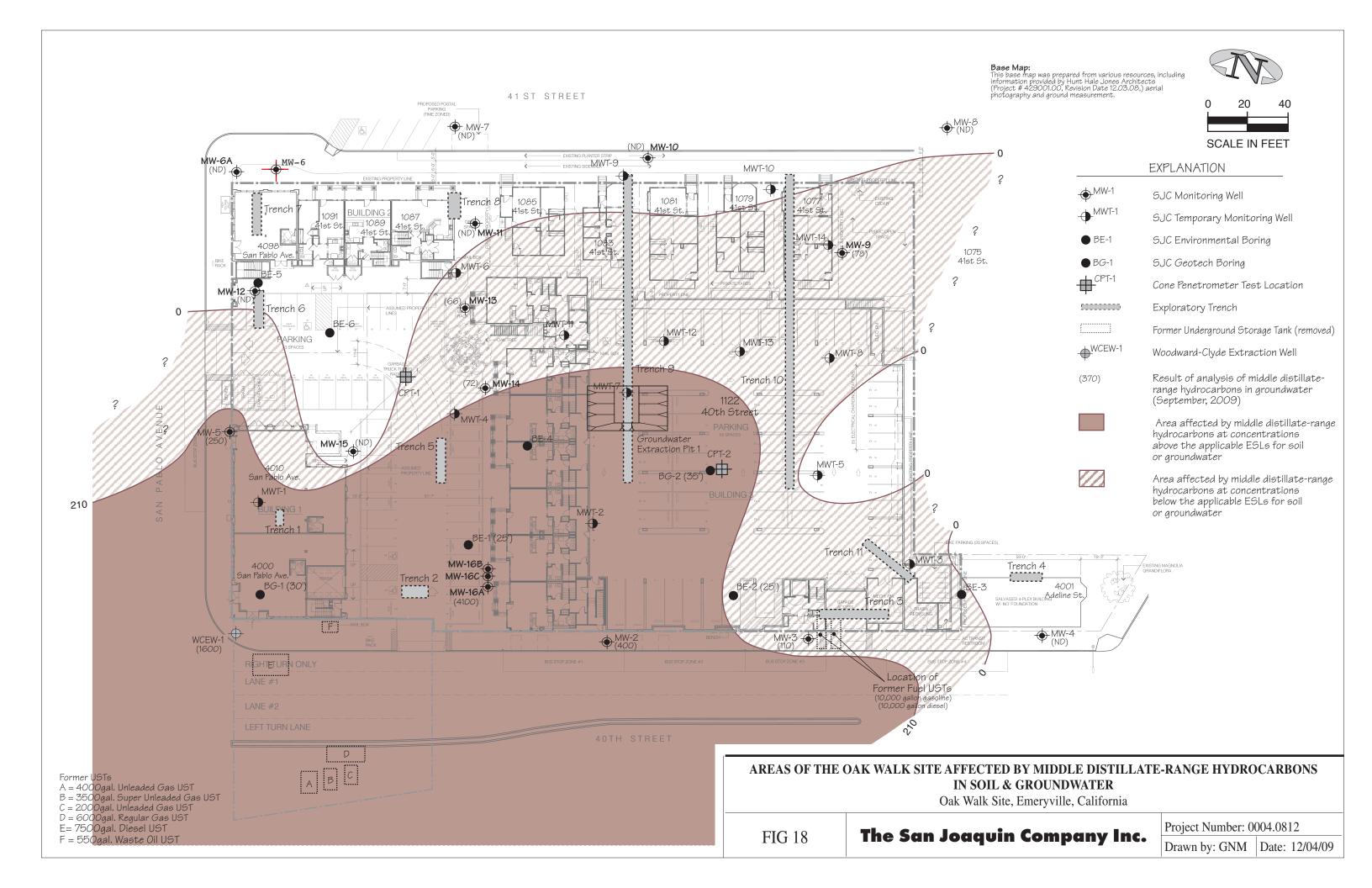


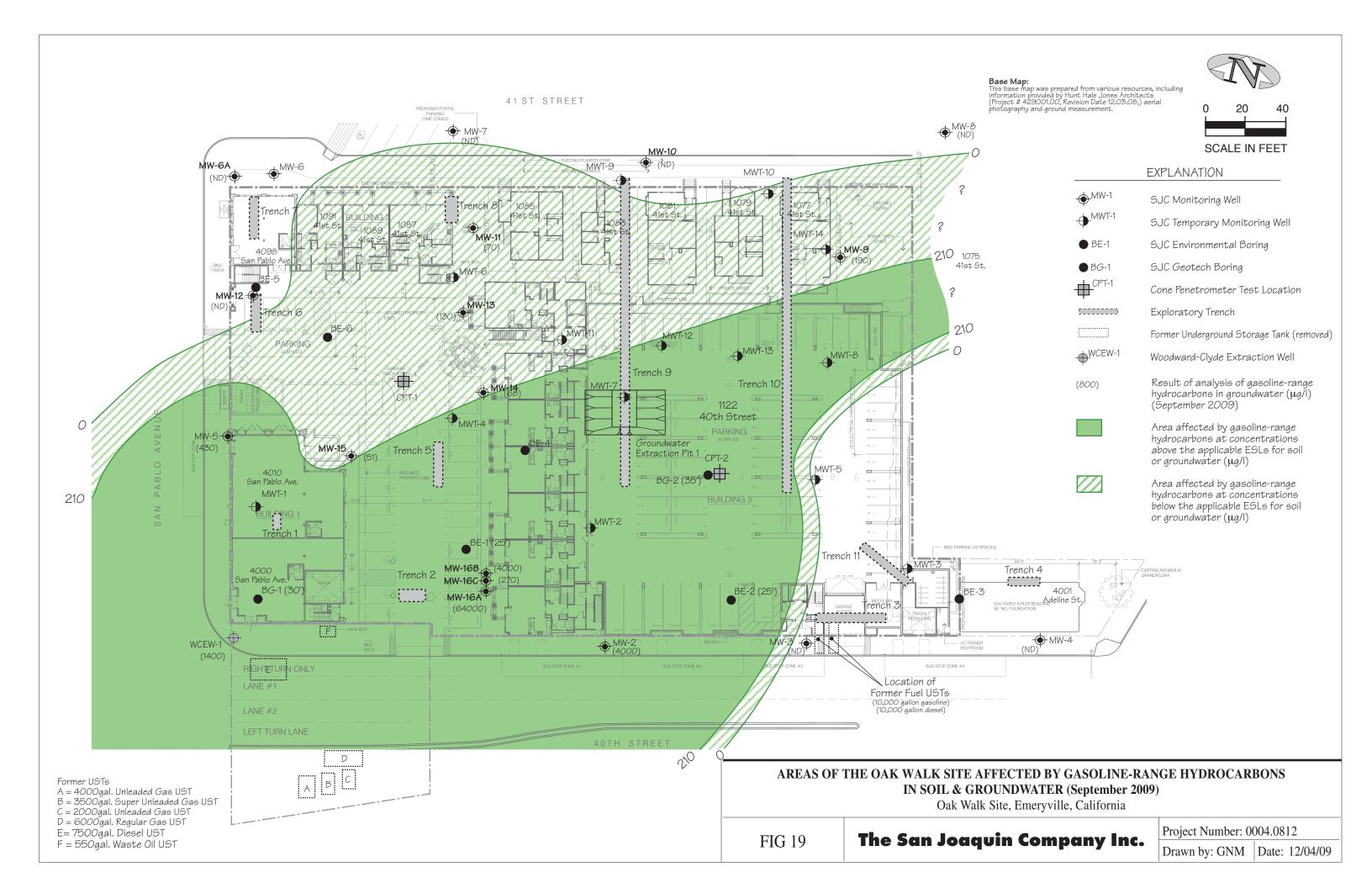


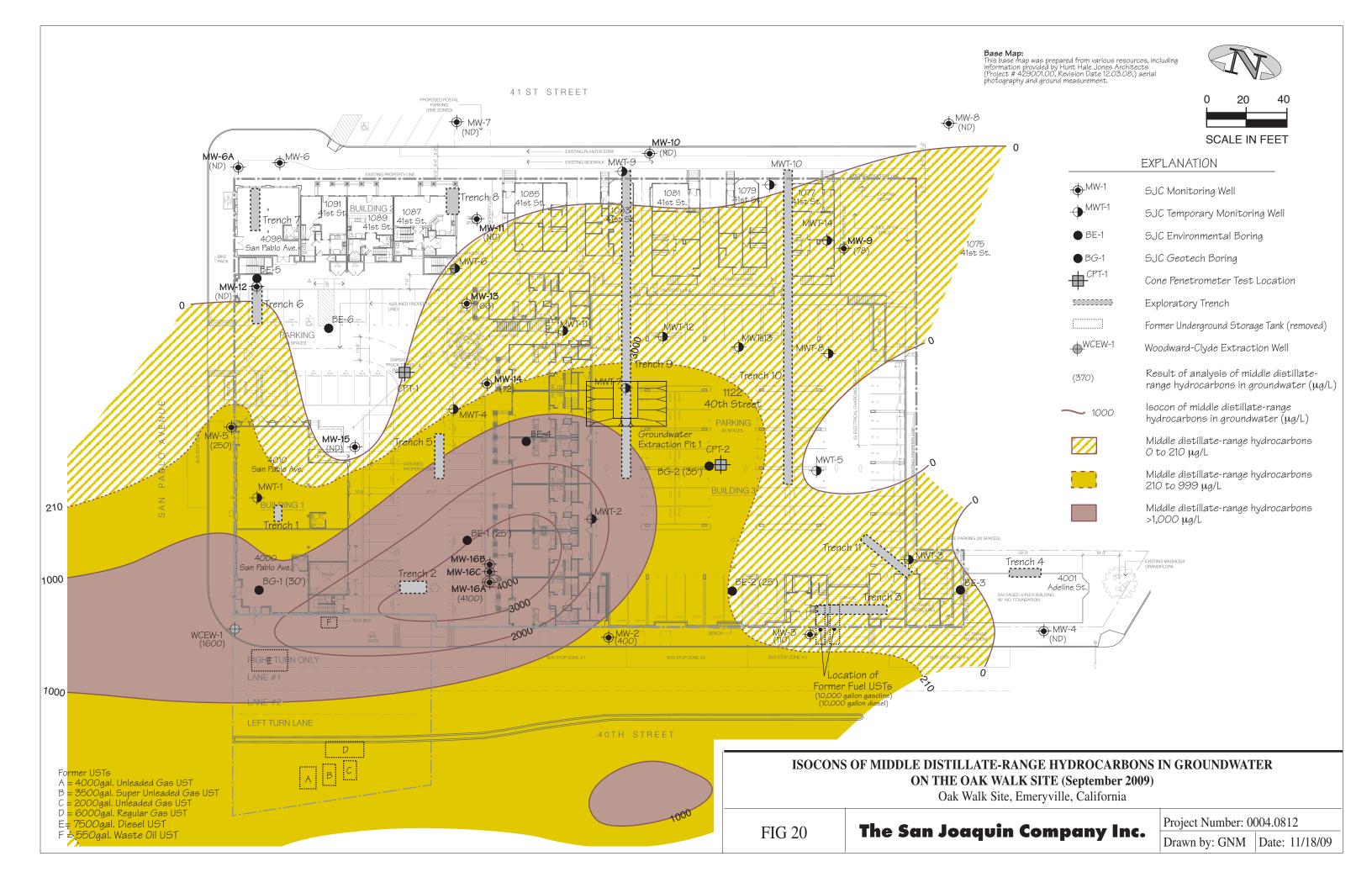


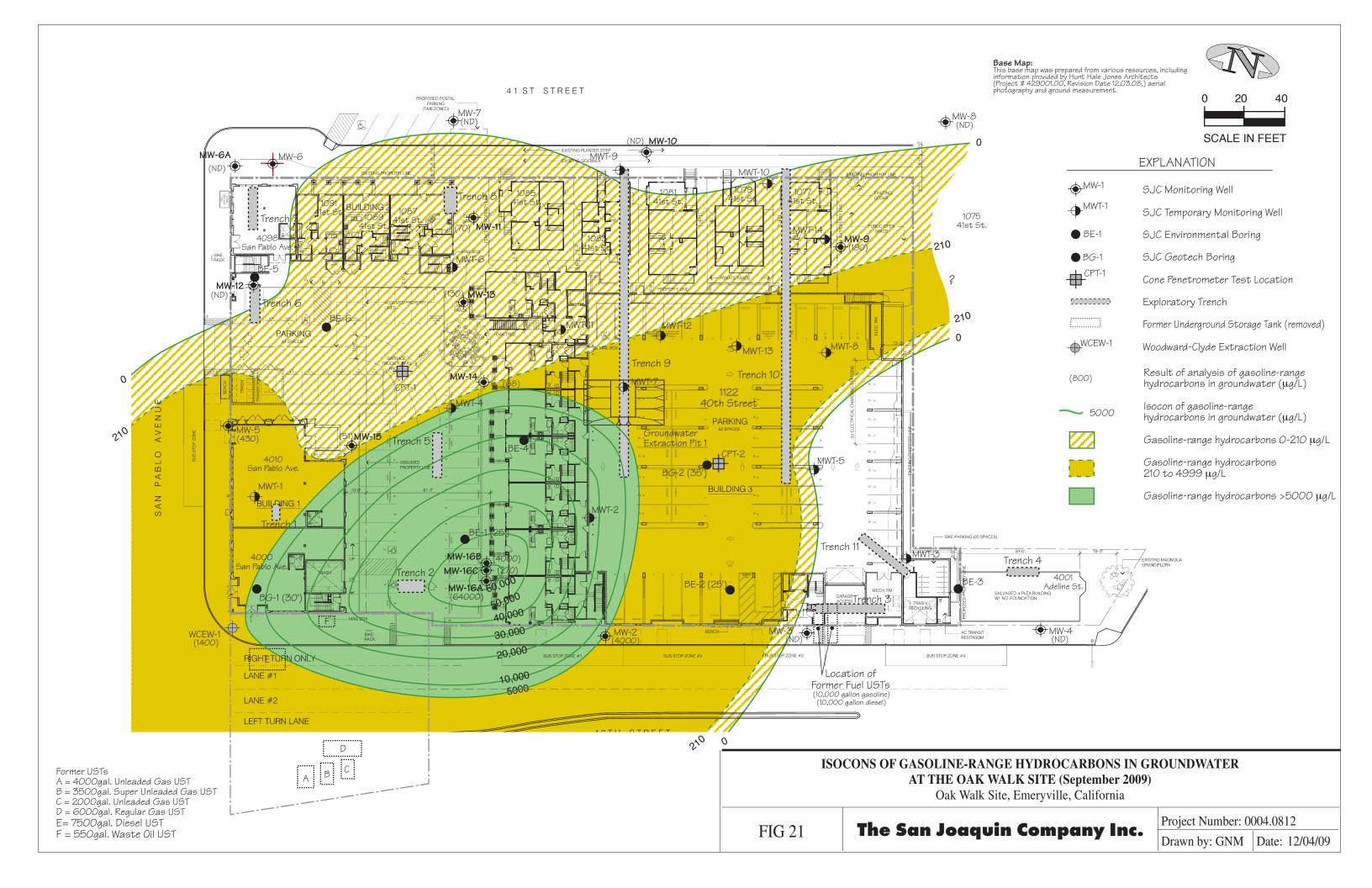


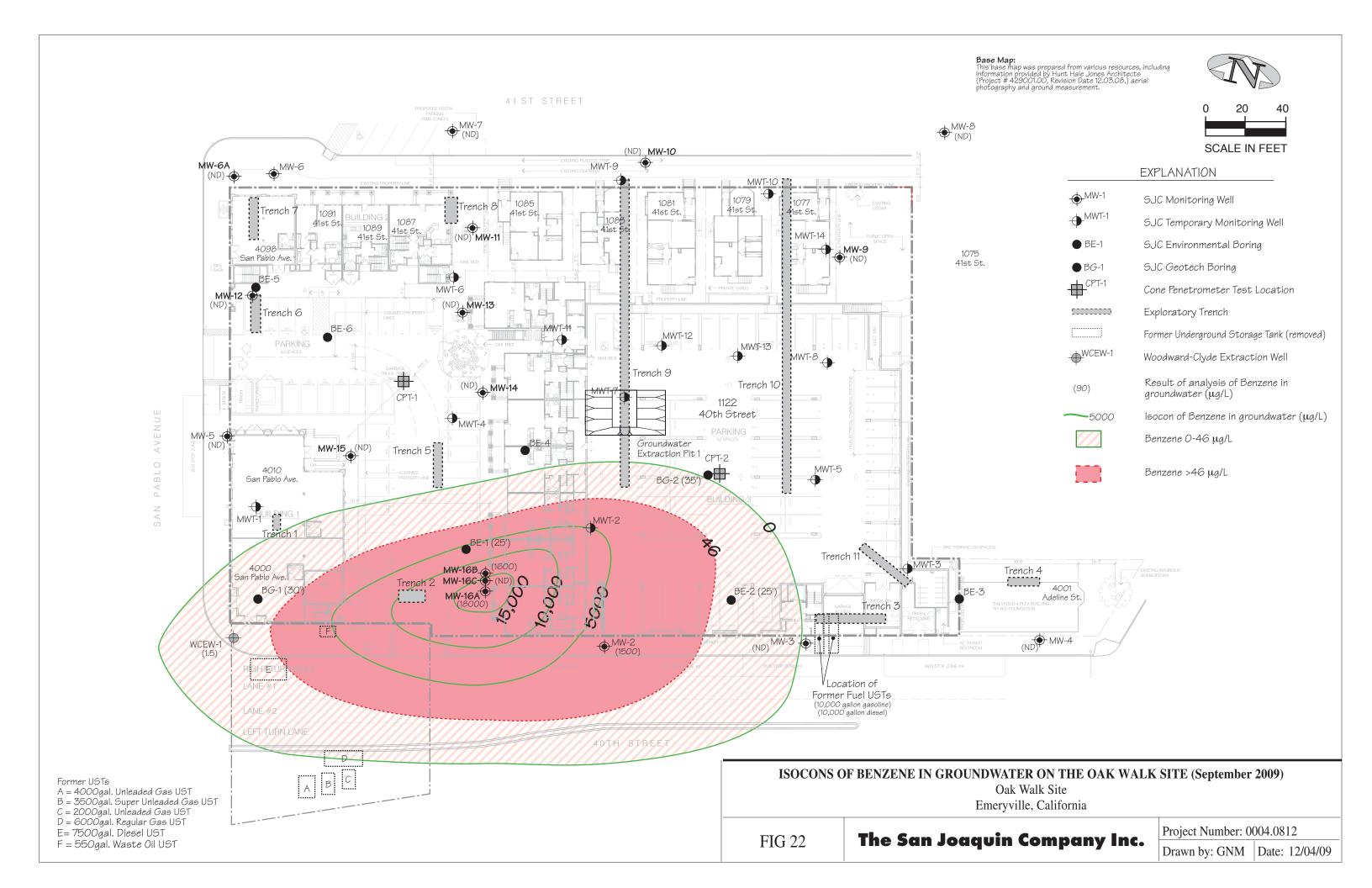


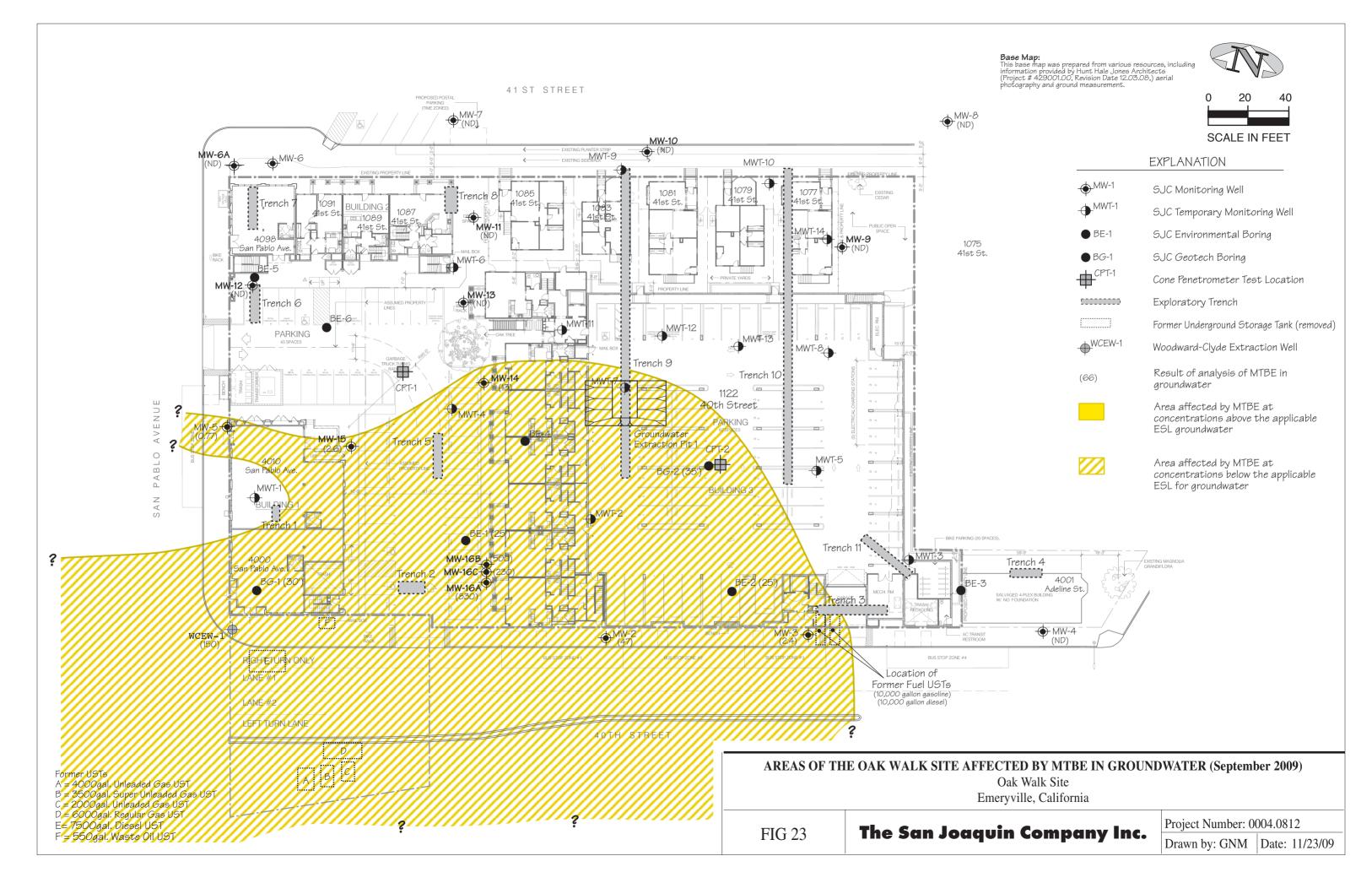


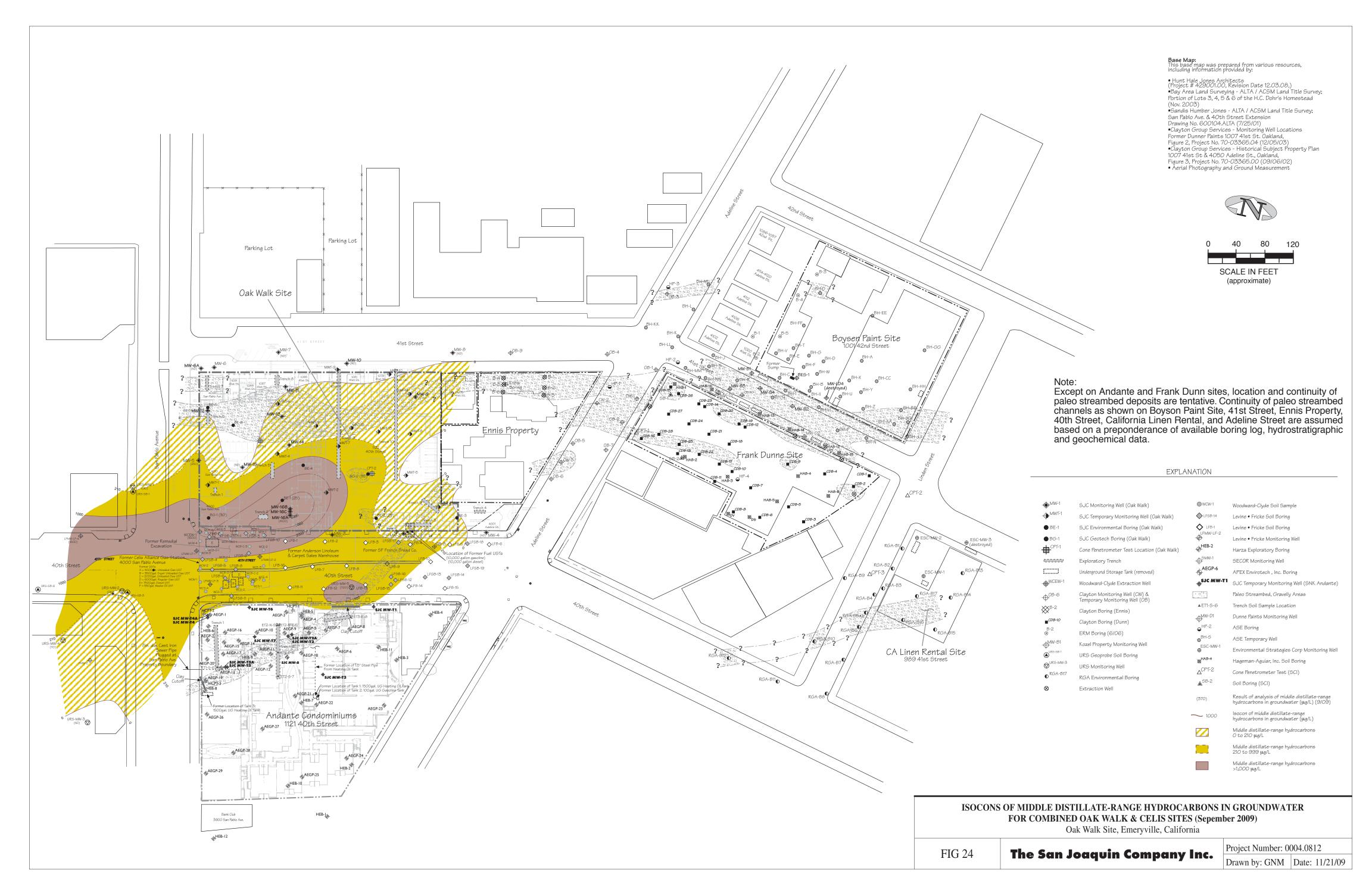


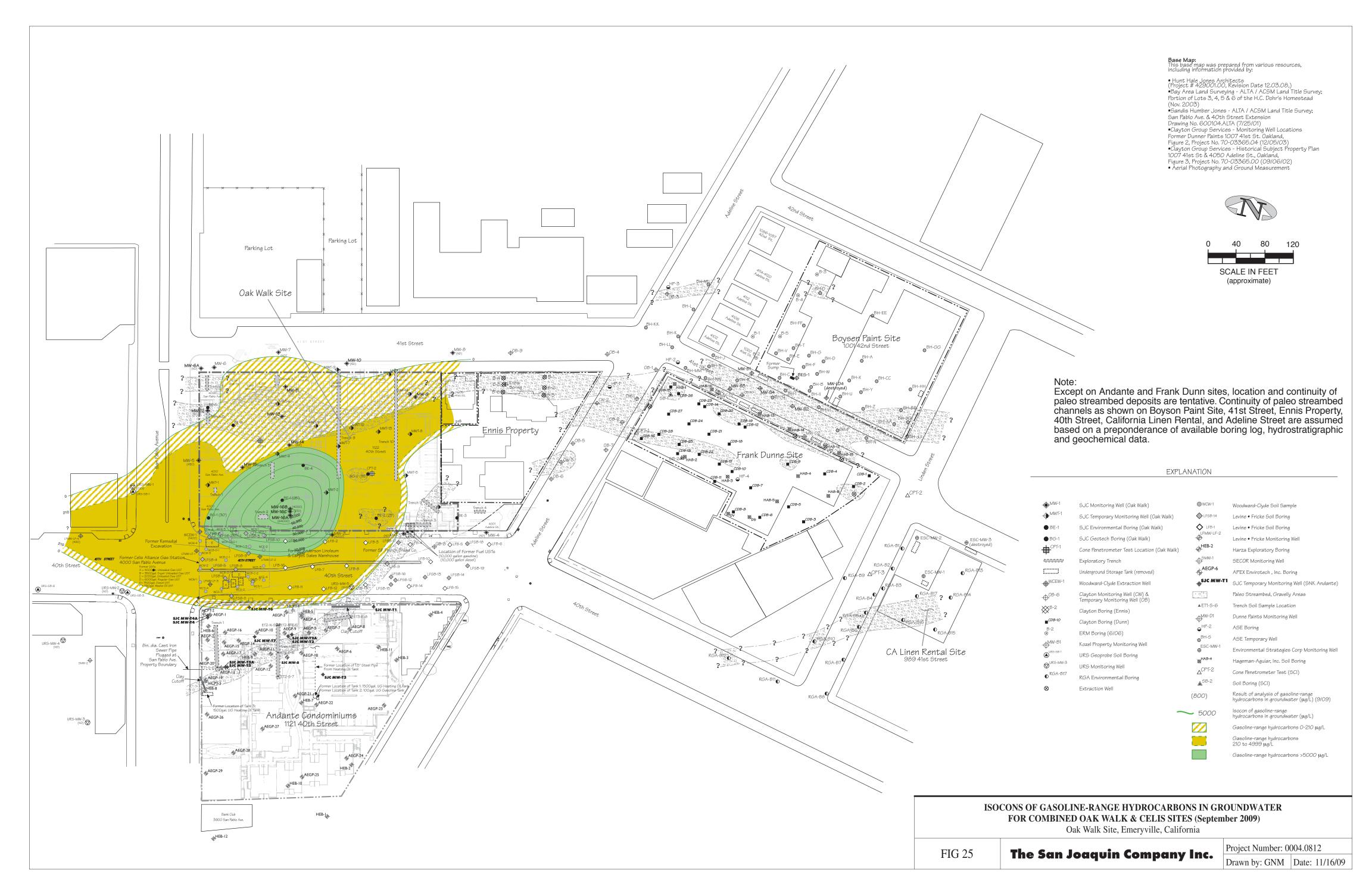


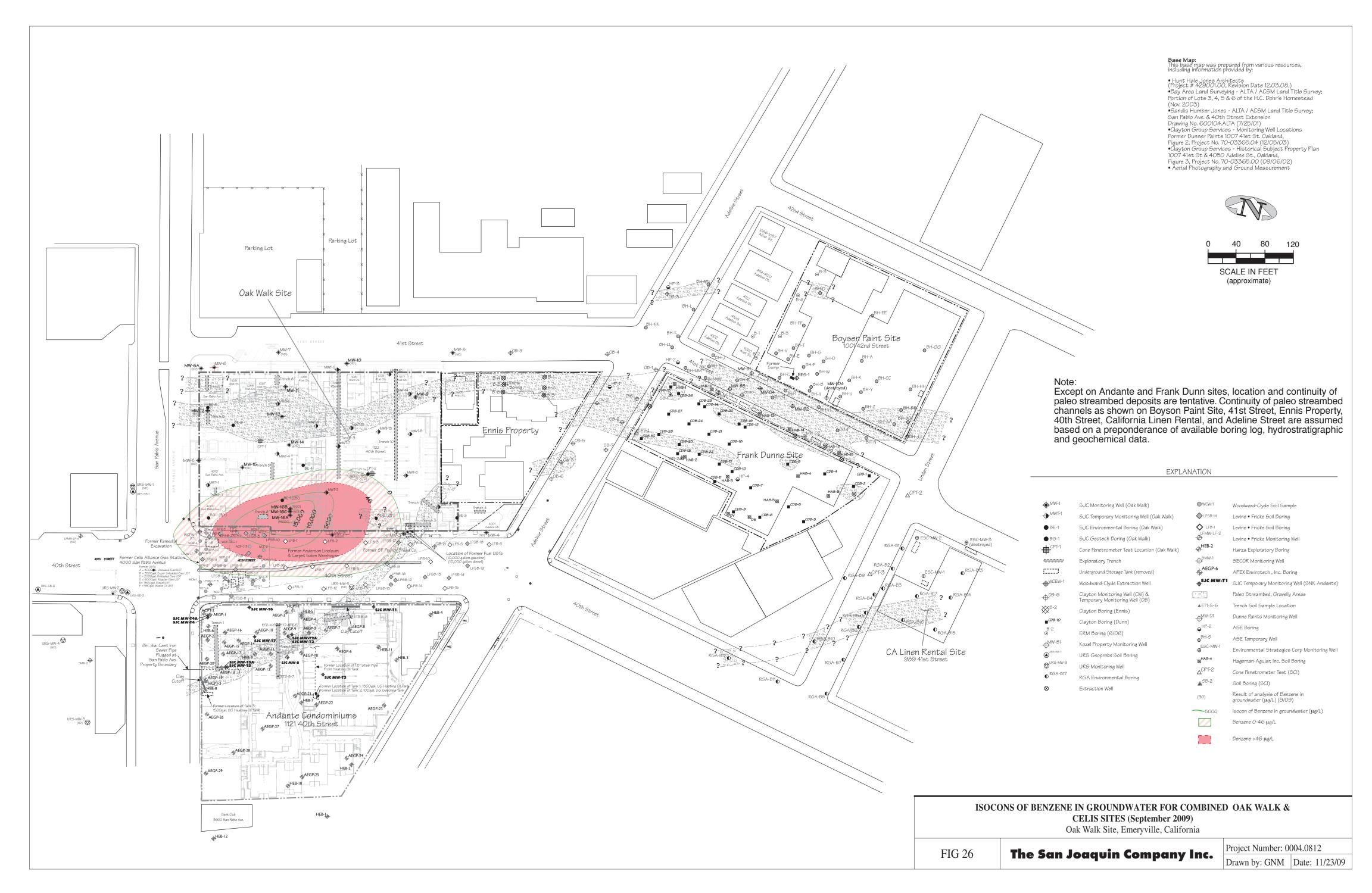


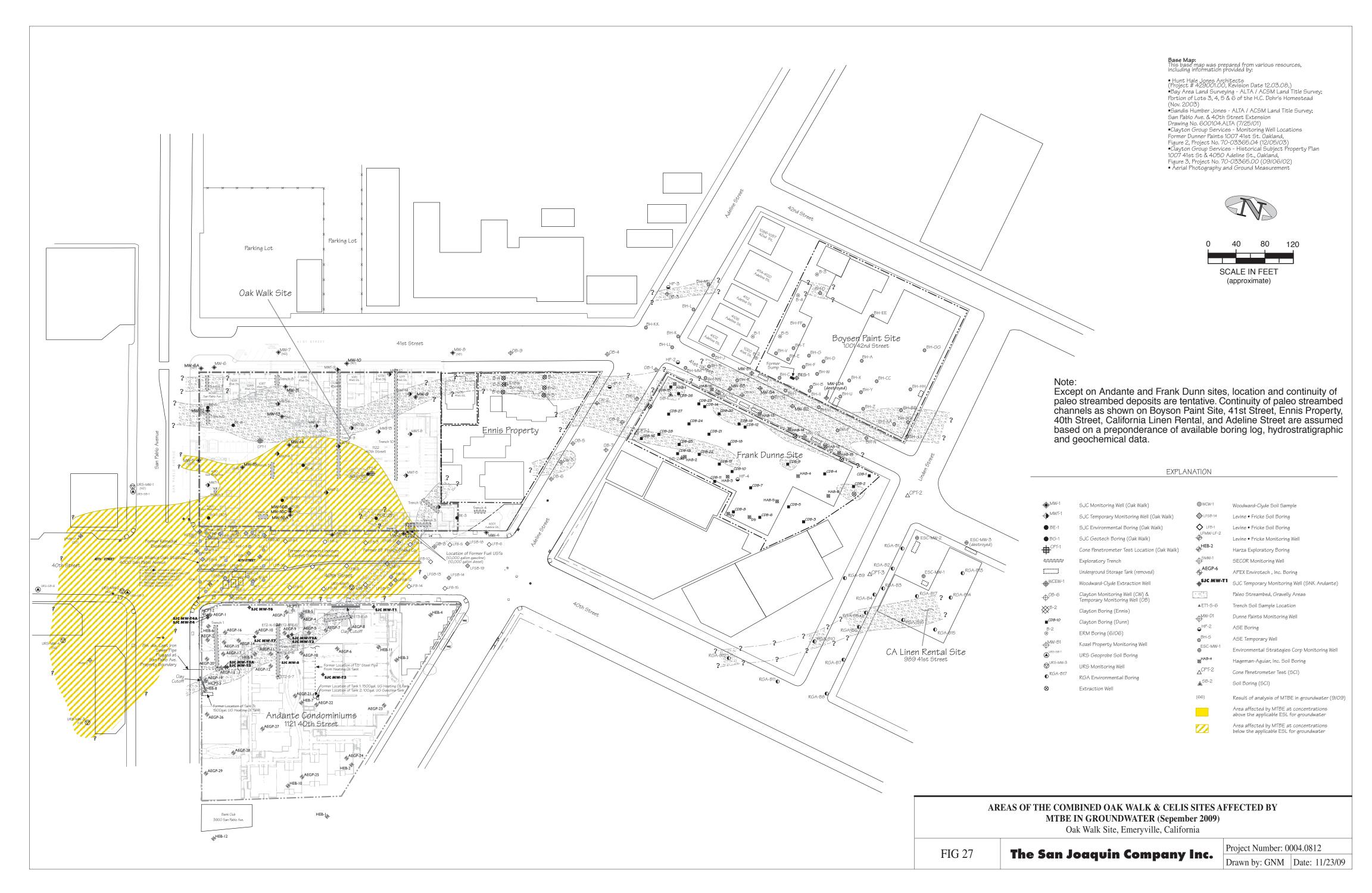












APPENDIX A

Field Notes

Field Notes September 22-24, 2009 ¹

Oalk Walk Site, Emeryville, California Global ID: T06019705080

Well No.	Date	рН	Temperature	Conductivity μmhos/cm		
WCEW-1	09/24/09	7.27 7.09 7.14 7.00	23.5 23.8 24.4 24.4	8500 8510 8770 8370		
MW-2	09/24/09	7.60	22.1	8000 ³		
MW-3	09/24/09	7.35 7.04 6.76 6.73 6.66 6.65	23.5 24.9 25.0 25.1 25.1 25.1	8470 8760 8170 6420 7680 7930		
MW-4	09/22/09	7.80 7.01 6.87	23.7 22.8 22.6	7850 6280 6329		
MW-5	09/24/09	7.97 7.02 7.00	21.5 21.2 21.2	5250 5190 5190		
MW-6A	09/22/09	8.50 7.46 7.19 7.10 6.99	21.7 21.4 21.4 21.1 20.9	2420 2240 2250 2390 2430		
MW-7	09/22/09	6.83 8.40 7.05 6.90 6.85	22.9 22.6 22.5 22.3 22.1	4390 5480 4830 4170 4180		
MW-8	09/22/09	6.88 6.80 6.85 6.82	22.3 21.9 22.6 21.4	6560 6390 6080 6030		
MW-9	09/24/09	710 7.30 7.01 6.97	19.8 19.7 19.8 19.7	5460 5970 5650 5630		

Page 1 of 2 SJC

Well No.	Date	рН	Temperature O C	Conductivity μmhos/cm		
MW-10	09/22/09	7.16 6.93 6.89 6.89	30.1 20.3 20.2 20.2	4450 4690 4910 4930		
MW-11	09/24/09	7.39 7.20 7.12 7.09	18.6 18.6 18.6 18.5	5280 5300 5310 5320		
MW-12	09/22/09	8.21 7.28 7.15	20.9 20.5 20.5	5759 4790 4650		
MW-13	09/22/09	7.23 7.12 7.05	19.5 19.3 19.1	5250 5190 5130		
MW-14	09/22/09	7.32 7.00 6.84 6.86	22.1 21.2 20.7 20.0	8130 7240 7210 7150		
MW-15	09/22/09	7.24 6.94 6.72 6.74	20.9 20.4 19.8 19.7	9200 8310 9740 10040		
MW-16A	09/22/09	7.16 6.98	22.5 22.4	1319 ³ 1261		
MW-16B	09/22/09	7.20 6.88 6.85 6.88	21.8 21.5 20.9 20.9	1275 1252 1245 1211 ³		
MW-16C	09/22/09	8.96	21.9	1439 ³		

Notes:

- 1. Except as noted, all sampled wells purged a minimum of 15 gallons
- 2. n/s = Not Sampled
- 3. Well pumped dry before 15 gallons purged

Page 2 of 2 SJC

APPENDIX B

Waste Manifest

MASTER MANAPORT CA C 0 0 2 6 6 9 2 5 2 factor 2	Please	print or type. (Form designed for use on elite (12-pit	Inkl to many the state of the s		•		_			4	•
To Semantic Plants Sem	ITIU	NIFURM HAZARDOUS 1. Generator III Number		2 Page 1 of 1 3	Emanana D			Fe	orm Approve	d. OMB No	2050-
BAYROCK CASC (SEE) BOYOLK STETE EXX DESCRIPTION OF THE SEED OF TH	1115	WASTE MANIFEST C & C O C 3 C A C O C 3 Em				4. Manife	4. Manifest Tracking Number				
SUCCIAN'S STEE 620 CA 94612 STRENGOTH TOCKNING STEE 50 PART STEED ASSERT PENNING ASSERTANCES C. AS D 2 2 2 7 7 0 3 6 C. AS D 3 0 0 1 3 3 5 2 C. AS D 2 2 2 7 7 0 3 6 C. AS D 2 2 2 7 7 0 3 6 C. AS D 2 2 2 7 7 0 3 6 C. AS D 2 2 2 7 7 0 3 6 C. AS D 3 0 0 1 3 3 5 2 C. AS D 3 0 0 0 1 3 3 5 2 C. AS D 3 0 0 0 1 3 3 5 2 C. AS D 3 0 0 0 1 3 3 5 2 C. AS D 3 0 0 0 1		BAYROCK OAKS 11 C		Ger	erator's Site Addre	S (if different	than malling and	<u> </u>	142	<u>5 J</u>	<u>JK</u>
Section Sect	III	ISUU CLAY ST STE B20					Hanning add				
ASSETY EMPROPARIES T. Transporter Company Man (1) E. Derganger Carbony Man (1) E. Derganger C	Ge	nerator's Phone: 540 872 8000	A 94812	ĒM	ERYVILLE	OARE		Λά	04000		
Transporter Company Name C	6.1	reisponer 1 Company Name	7-1			<u> </u>			94000		
DEMPANO / NETDOOR DEMPANO / NE	7.7	MISSORY ENVIRONMENTAL SERVICE	ES	<u> </u>	•	**					_
DEMPNNO / REPLOCATION OF THE ALARCEM STREET FROM / POWER OF THE ALARCEM STREET 14. Special for state of the control of the con	111	1		- ८८	· ·		U.S. EPA ID	Number	. 2	70	3 6
EXCEPT FOR COLORS AND A CONTROL OF THE PROPERTY OF THE PROPERT	8.0	esignated Facility Name and Site Address									
SIONSY-7100 CA SUZZE SECONSY-7100 CA TO 9 0 0 1 3 3 5 2 SECONSY-7100 CA SUZZE SECONSY-7100 CA TO 9 0 0 1 3 3 5 2 SECONSY-7100 CA SUZZE SECONSY-7100 CA TO 9 0 0 1 3 3 5 2 SECONSY-7100 CA TO 9 0 0 1 3 3 5 2 SECONSY-7100 CA SUZZE NO. Type Cannot SECONSY-7100 CA SUZZE NO. Type Cannot SECONSY-7100 CA SUZZE NO. TYPE CANNOT CA		DEMENNO / KERDOON 2000 NORTH ALAMEDA OTRICET	j				U.S. EPA ID	Number			
8 D. LLS DOT Descriptions Challed in Proper Brighing Name, Hazard Class, ID Number. 10. Containers 11. Containers 11. Containers 11. Containers 11. Containers 12. Marie Codes 12. Marie Codes 12. Marie Codes 13. Marie Codes 14. Special Harding Instructions and Additional Hormatics 15. Codes 16. Special Harding Instructions and Additional Hormatics 16. Special Harding Instructions and Additional Hormatics 17. Marie Codes 18. Special Harding Instructions and Additional Hormatics 18. Special Harding Instructions Additional Harding Instruct	Fact	COMPION DA	90222	-,		45.0	Martin de la Servicio			·	
14. Special Necking Interpretations and Additional Information 15. MON-RORA HAZARDOUS WASTE, LIQUID (OLLY WATER) 16. DO 1 TT 300 G 17. Special Necking Interpretations and Additional Information 16. Special Necking Interpretations and Additional Information 16. Special Necking Interpretations and Additional Information 17. Special Necking Interpretations and Additional Information 18. Special Necking Interpretations and Additional Information of Interpretations and Additional Information and Interpretations and Interpr		9b. U.S. DOT Description (including Process Chiles		endy .			· CA	T C C	0 0 1	3 3 8	5 2
MON-RORA HAZARDOUS WASTE, LIQUID (OLLY WATER) 14. Species Marriage transportant Additional Princension NAUBRIGGS 4981 1/1719 * PRIOPILE SIGNI PRIORITATION PRIOPILE SIGNI PRIORITATION PRIORITAT	НМ	and Packing Group (if any))	me, riazard Class, ID Number,	4			41. Robal 42.11-8				
14. Special Hankling Instructions and Additional Information ANEXICAL Special Price Price Properties and Instruction and Inst	뚱	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	in the same of the same			Countity	WL/vol.	10.	ANNERS COOR	•
14. Special Handling Instructions and Additional Information NAESIGE 9611/PY* PROPRIE #981 PERSONAL PROTECTIVE ECURPARNY ### PROPRIED TO 100 100 100 100 100 100 100 100 100 10	\$	NON-RORA HAZARDOUS WASTE, LIC	OUID (OILY WATER)	r.	}		حمصا	1.30	223		
14. Special Harwing Instruction and Additional Information NAESIGE 9611/PY* PROPRIE #281 POP BODIES 2021 15. SPECIAL PROPROTIONAL EPOCHECH #281 15. SPECIAL PROPROTIONAL EPOCHECH #281 15. SPECIAL PROPROTIONAL EPOCHECH EPOCHECH Pop Bodies Pop Bo		2.	<u></u>		001	TT	<u> </u>	G			
14. Special Hericiting Institutions and Additional Information AMERICAN OBS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5]		Profession 1	R:			1 12	11		
PERSONAL PROTECTIVE EQUIPMENT BYPEROPALATE POS ABBILITARY BYPEROPALATE	11-	3.			NAME OF THE PARTY						
PERSONAL PROTECTIVE EQUIPMENT BYPEROPALATE POS ABBILITARY BYPEROPALATE	$\parallel \parallel$		· Canada		1		7				
PERSONAL PROTECTIVE EQUIPMENT BY PROJECTIVE E				The second		· .					
PERSONAL PROTECTIVE EQUIPMENT BYPEROPALATE POS ABBILITARY BYPEROPALATE		4.				,,					
PERSONAL PROTECTIVE EQUIPMENT BYPEROPALATE POS ABBDIL 202 1 15. GRIEFATOR SOFFEROR'S CEXTIFECTION. Thereby decire that the contents of this consequent are fully and accommistly dissorbed above by the proper athybring terms, and are cleared and behavior property and and are in all employment property condition for transport according to applicable informational governmental regulations. It export adjoinant and in the Primary Epotes. It certify that the contents of this consequence of property in the seast emission statement is entitled in the Primary Epotes. It certify that the seast resintancian elaboration and to the Primary I certify that the seast resintancian elaboration and to the Primary I certify that the seast resintancian elaboration entitled in AP CERT 2012.7(9) (if I am a large quantity generated) or (b) (if I am a series quantity generated) is from the Primary Separation of Consent and I certify that the seast resintancian elaboration elaborates in the Primary Separation of Consent and I certify that the seast resintancian elaboration elaborates in the Primary Separation of Primary Separation (in (1) (if I am a large quantity (if I am a large quantity generated) is from the Primary Separation of Consent and I certify the Primary Separation of Primary Separation (in (2) (if I am a large quantity Separation of Consent and I certify the Primary Separation of Consent and I certify the Primary Separation of Consent and I certified the Primary Separation of Conse		1	. 1		N / 1	- N.			- 1	Ī	
PERSONAL PROTECTIVE EQUIPMENT BY PROJECTIVE INTERVITY OF A DROIT OF A DR	14. Sp	ecial Handling Instructions and Additional Information									
### Troined Sectification Section Section Section Section Section Section Sectification Section Section		WERG# OB1 9471 * Pohel E done		14	- (the second second	e de la companya de l
September of Perinad Present Centrification Inspect of the consignment are fully and accessed described above by the proper altrophy name, and are described, packaged, and are in all mapped in proper condition for temporal according to applicable international and national povermental regulations, if export abjument and I am the Perinary Exporter, I cent'ty test the contents of this consignment centering to the same of the accessory of the accessory of the accessory of the same of the accessory	11 1	PERSONAL PROTECTIVE FOI IPLEDIT		EK ADDITI	UNAL EPA (ODEs: 6	181:, NON	E APP	ROPRIAT	E	
Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) or (i) if it am a small quantity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) or (i) if it am a small quantity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimizator statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate the seate of the s	i i 15. 🛢	ENERATOR MOFFEEDOR'S CERTIFICATION				•	•				•
Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) or (i) if it am a small quantity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) or (i) if it am a small quantity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimization statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate minimizator statement blendfilled in 40 CFR 252.27(a) (if I am a large quartity generator) is true. Contribute the seate the seate of the s) fr	arted and lebeled/plecarded, and are in all respects in prop	care that the contents of this own or condition for transport accordin	eignment are fully a to to applicable into	ind sometaly deep	evode bedro	by the proper ship	ping name,	and are class	fied, peckage	eď,
16. International Shipments	10	pertify that the waste minimization statement identified in 48	in to the terms of the ettached EP CFR 262.27(a) (if I am a large ou	Admoviedgment	of Consent.	- Protesta	·	ector ship	ment and I an	n the Primary	У.
Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed Typed Name Committee	Content			Signature	4	drawnih Bous	rator) is true.			Day	V
Transporter algrature (for exports only): IT. Transporter Acknowledgment of Receipt of Marierials Transporter Acknowledgment of Receipt of Marierials Transporter Printed Proped Name Signature Signature Signature Signature Signature Month Day Year 18. Discrepancy Indication Space Coleratory Data leaving U.S.: Transporter Acknowledgment (Receipt of Marierials Transporter Acknowledgment (Receipt of Marierials Transporter Acknowledgment (Receipt of Marierials Transporter Printed Proped Name Signature Signature Month Day Year It. Discrepancy Indication Space Coleratory Month Day Year It. Discrepancy Indication Space Coleratory Month Day Year It. Signature of Attended Facility (or Generator) Month Day Year 19. Hazardous Weste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1. 2. 3. 4. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest succept as noted in Item 18a Signature Signature Month Day Year Form 8700-22 (Rev. 3-05) Previous editions are obsolete.	2 16. Inte	we so let out the tree to	·	1 2	٠٠٠ حـ	<u>تر ح</u>	د کنے سا		. 110	107 1	179
17. Transporter Acknowledgment of Receipt of Marterials Transporter 1 Printed/Typed Name Signalum Transporter 2 Printed/Typed Name Signalum Transporter 2 Printed/Typed Name Signalum Month Dey Year 18. Discrepancy 18a. Discrepancy Indication Space	Transp	orter signature (for exports only):		ort from U.S.	Port of entry	r/exit:			<u></u>		<u>-</u>
18a. Discrepancy Indication Space	17. Tran	sporter Acknowledgment of Receipt of Materials	#		/ Data leaving	U.S.:					
18a. Discrepancy Indication Space		PRIN ADMINA		Signature	1.17	1 1			Month	Day	Year
18a. Discrepancy Indication Space	Transpo	rter 2 Printed/Typed Name		-Pu	WH C	WAR			IIO	102.1	ሰኞ
18a. Discrepancy Indication Space	_			i siðulamla					Month	Day	Year
18b. Alternate Facility (or Generator) Full Rejection Full Rejection Full Rejection Full Rejection										11	
18b. Alternate Facility (or Generator) 18b. Alternate Facility (or Generator) 18c. Signature of Atternate Facility (or Generator) 19. Hazardous Weste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 2. 3. 4. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous meterials covered by the manifest except as noted in Item 18a Signature Signature Signature North Day Year Form 8700-22 (Rev. 3-05) Previous editions are obsolete.	188. UIS	Crapancy Indication Space Cuantity	Туре	Г	Residue	Г	Desired Dade of	· .		T	
18c. Signature of Alternate Facility (or Generator) 19. Hazardous Wasta Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 2. 3. 4. 20. Designated Facility Owner or Querator: Certification of receipt of hazardous meterials covered by the manifest assorpt as noted in Item 18a Signature Signature Signature Acoustic Certification of receipt of hazardous meterials covered by the manifest assorpt as noted in Item 18a Form 8700-22 (Rev. 3-05) Previous editions are obsolete.	Ĺ	<u> </u>					caren tenjeci	DOR .	ـــا	Fuli Rejectio	on
18c. Signature of Alternate Facility (or Generator) 19. Hazardous Weste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 2. 3. 4. 20. Designated Facility Owner or Quention: Certification of receipt of hazardous meterials covered by the manifest associet as noted in Item 18a Signature Signature Signature Acoustic Control Dev. Year Form 8700-22 (Rev. 3-05) Previous editions are obsolete.	18b. Alta	male Facility (or Generator)		Mar	nifesi Reference N		HE EDITOR	.			
18c. Signature of Alternate Facility (or Generator) 19. Hazardous Weste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 2. 3. 4. 20. Designated Facility Owner or Quention: Certification of receipt of hazardous meterials covered by the manifest associet as noted in Item 18a Signature Signature Signature Acoustic Control Dev. Year Form 8700-22 (Rev. 3-05) Previous editions are obsolete.	Far@h/a	Dhona		•	m.		U.S. CITA ED MUN	nper .			
19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 2. 3. 4. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest ascept as noted in item 18a Signature Signature Form 8700-22 (Rev. 3-05) Previous editions are obsolete.						1					
20. Designated Facility Owner or Operator: Certification of receipt of hazardous meterials covered by the manifest succept at noted in Itaen 18a Signature Form 8700-22 (Rev. 3-05) Previous editions are obsolete.	[•					Month	Day	Year
20. Designated Facility Owner or Operator: Certification of receipt of hazardous meterials covered by the manifest assorpt at noted in Item 18a Printed type A Printed Printe	19. Hazar	dous Waste Report Management Method Codes (i.e., codes	s for hezerdous waste freatment,	disposal, and recyc	ling systems)		·				
Form 8700-22 (Rev. 3-05) Previous editions are obsolete.	l" <i>-</i>	2.			-,	·	4.				
Form 8700-22 (Rev. 3-05) Previous editions are obsolete.	20. Desig	nated Facility Owner or Operator: Certification of recoint of the	Azamnya metadala pasa a a		,						ĺ
Form 8700-22 (Rev. 3-05) Previous editions are obsolete.	Printedly	DIAL D CIA		Signature	st noted in Hern 18	8	1				
	Form A70	01-22 (Ray 3.05) Posters (III)			4/1 /	19/	WIL	,	I I I J	Dey . [Year
	01	- Control of the cont		1				TPA	NSPORT	Le- (

APPENDIX C

Certificates of Analysis

ANALYTICAL REPORT

Job Number: 720-22841-1

Job Description: Bay Rock Oak Walk Emeryville

For:

San Joaquin Company Inc 1120 Hollywood Ave Suite 3 Oakland, CA 94602-1459

Attention: Mr. Dai Watkins

Surmider Sidhu

Approved for release. Surinder Sidhu Customer Service Manager 10/5/2009 11:25 AM

Surinder Sidhu
Customer Service Manager
surinder.sidhu@testamericainc.com
10/05/2009

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

Job Narrative 720-J22841-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B/CA_LUFTMS: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MW-16C (720-22841-18).

No other analytical or quality issues were noted.

GC Semi VOA

Method(s) 8015B: Capric acid surrogate recovery for the following sample(s) was outside control limits: MW-16A (720-22841-16). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8015B: Capric acid surrogate recovery for the following sample(s) was outside control limits: WCEW-1 (720-22841-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: San Joaquin Company Inc Job Number: 720-22841-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-22841-1	WCEW-1				
Benzene		1.5	0.50	ug/L	8260B/CA_LUFTMS
Gasoline Range Org	ganics (GRO)-C5-C12	1400	50	ug/L	8260B/CA_LUFTMS
MTBE		150	0.50	ug/L	8260B/CA_LUFTMS
Ethylbenzene		1.2	0.50	ug/L	8260B/CA_LUFTMS
TBA		21	5.0	ug/L	8260B/CA_LUFTMS
Silica Gel Cleanup					
Diesel Range Organ	nics [C10-C28]	1600	63	ug/L	8015B
Mineral Spirit Range		390	63	ug/L	8015B
				J	
720-22841-2	MW-2				
Benzene		1500	10	ug/L	8260B/CA_LUFTMS
	ganics (GRO)-C5-C12	4900	1000	ug/L	8260B/CA_LUFTMS
MTBE	January (2001)	47	10	ug/L	8260B/CA_LUFTMS
Ethylbenzene		520	10	ug/L	8260B/CA_LUFTMS
Silica Gel Cleanup					
Diesel Range Organ	nice [C10 C28]	400	64	ug/l	8015B
Mineral Spirit Range		350	64	ug/L ug/L	8015B
Willeral Opini Italige	organics [09-010]	330	04	ug/L	00130
720-22841-3	MW-3				
MTBE		2.4	0.50	ug/L	8260B/CA_LUFTMS
Silica Gel Cleanup					
Diesel Range Organ	nics [C10-C28]	110	63	ug/L	8015B
720-22841-5	MW-5				
Gasoline Range Org	ganics (GRO)-C5-C12	430	50	ug/L	8260B/CA_LUFTMS
MTBE	5 (,	0.77	0.50	ug/L	8260B/CA_LUFTMS
Silica Gel Cleanup				· ·	_
Diesel Range Organ	nion (C10, C20)	220	62	ug/l	8015B
Mineral Spirit Range		220 250	63 63	ug/L ug/L	8015B
Willeral Spilit Kange	e Organics [C9-C13]	250	03	ug/L	00135
720-22841-9	MW-9				
	ganics (GRO)-C5-C12	190	50	ug/L	8260B/CA_LUFTMS
Silica Gel Cleanup	nice (C10 C29)	70	62	ua/l	8015B
Diesel Range Organ	1165 [6 10-626]	78	63	ug/L	8015B

EXECUTIVE SUMMARY - Detections

Job Number: 720-22841-1

Client: San Joaquin Company Inc

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-22841-11	MW-11				
Gasoline Range Org	ganics (GRO)-C5-C12	70	50	ug/L	8260B/CA_LUFTMS
720-22841-13	MW-13				
Gasoline Range Org	ganics (GRO)-C5-C12	130	50	ug/L	8260B/CA_LUFTMS
Silica Gel Cleanup Diesel Range Organ		66	63	ug/L	8015B
720-22841-14	MW-14				
Gasoline Range Org	ganics (GRO)-C5-C12	68	50	ug/L	8260B/CA_LUFTMS
MTBE		13	0.50	ug/L	8260B/CA_LUFTMS
Silica Gel Cleanup					
Diesel Range Organ	nics [C10-C28]	72	64	ug/L	8015B
720-22841-15	MW-15				
Gasoline Range Org	ganics (GRO)-C5-C12	51	50	ug/L	8260B/CA_LUFTMS
MTBE		2.6	0.50	ug/L	8260B/CA_LUFTMS
720-22841-16	MW-16A				
Benzene		18000	50	ug/L	8260B/CA_LUFTMS
Gasoline Range Org	ganics (GRO)-C5-C12	64000	5000	ug/L	8260B/CA_LUFTMS
Toluene		2500	50	ug/L	8260B/CA_LUFTMS
Xylenes, Total		11000	100	ug/L	8260B/CA_LUFTMS
MTBE		830	50	ug/L	8260B/CA_LUFTMS
Ethylbenzene		3000	50	ug/L	8260B/CA_LUFTMS
Silica Gel Cleanup					
Diesel Range Organ		2400	63	ug/L	8015B
Mineral Spirit Range	e Organics [C9-C13]	4100	63	ug/L	8015B

EXECUTIVE SUMMARY - Detections

Client: San Joaquin Company Inc Job Number: 720-22841-1

Lab Sample ID Client Sample ID		Reporting		
Analyte	Result / Qualifier	Limit	Units	Method
720-22841-17 MW-16B				
Benzene	1600	10	ug/L	8260B/CA_LUFTMS
Gasoline Range Organics (GRO)-C5-C12	4000	1000	ug/L	8260B/CA_LUFTMS
Toluene	18	10	ug/L	8260B/CA_LUFTMS
Xylenes, Total	170	20	ug/L	8260B/CA_LUFTMS
MTBE	500	10	ug/L	8260B/CA_LUFTMS
Ethylbenzene	150	10	ug/L	8260B/CA_LUFTMS
Silica Gel Cleanup				
Diesel Range Organics [C10-C28]	410	64	ug/L	8015B
Mineral Spirit Range Organics [C9-C13]	480	64	ug/L	8015B
720-22841-18 MW-16C				
Gasoline Range Organics (GRO)-C5-C12	270	250	ug/L	8260B/CA LUFTMS
MTBE	230	2.5	ug/L	8260B/CA_LUFTMS

METHOD SUMMARY

Client: San Joaquin Company Inc Job Number: 720-22841-1

Description	Lab Location	Method	d Preparation Method		
Matrix: Water					
Volatile Organic Compounds by GC/MS Purge and Trap	TAL SF TAL SF	SW846 8260E	B/CA_LUFTMS SW846 5030B		
Diesel Range Organics (DRO) (GC) Liquid-Liquid Extraction (Separatory Funnel)	TAL SF TAL SF	SW846 8015E	3 SW846 3510C SGC		

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: San Joaquin Company Inc Job Number: 720-22841-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-22841-1	WCEW-1	Water	09/24/2009 1126	09/25/2009 1204
720-22841-2	MW-2	Water	09/24/2009 1333	09/25/2009 1204
720-22841-3	MW-3	Water	09/24/2009 1045	09/25/2009 1204
720-22841-4	MW-4	Water	09/24/2009 1312	09/25/2009 1204
720-22841-5	MW-5	Water	09/24/2009 1201	09/25/2009 1204
720-22841-6	MW-6A	Water	09/24/2009 1235	09/25/2009 1204
720-22841-7	MW-7	Water	09/24/2009 1020	09/25/2009 1204
720-22841-8	MW-8	Water	09/24/2009 1105	09/25/2009 1204
720-22841-9	MW-9	Water	09/24/2009 0926	09/25/2009 1204
720-22841-10	MW-10	Water	09/24/2009 1133	09/25/2009 1204
720-22841-11	MW-11	Water	09/24/2009 1004	09/25/2009 1204
720-22841-12	MW-12	Water	09/22/2009 1507	09/25/2009 1204
720-22841-13	MW-13	Water	09/22/2009 1603	09/25/2009 1204
720-22841-14	MW-14	Water	09/22/2009 1635	09/25/2009 1204
720-22841-15	MW-15	Water	09/22/2009 1700	09/25/2009 1204
720-22841-16	MW-16A	Water	09/22/2009 1844	09/25/2009 1204
720-22841-17	MW-16B	Water	09/22/2009 1815	09/25/2009 1204
720-22841-18	MW-16C	Water	09/22/2009 1737	09/25/2009 1204

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: WCEW-1

Lab Sample ID: 720-22841-1 Date Sampled: 09/24/2009 1126

Client Matrix: Water Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: **SAT 3900C**

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: Initial Weight/Volume: 40 mL 09/28/2009 1500 Date Analyzed: Final Weight/Volume: 40 mL

	· ···a······a·························			
Result (ug/L)	Qualifier	RL		
1.5		0.50		
1400		50		
ND		0.50		
ND		1.0		
150		0.50		
1.2		0.50		
ND		0.50		
21		5.0		
ND		1.0		
ND		0.50		
%Rec	Qualifier	Acceptance Limits		
98		70 - 130		
88		67 - 130		
	1.5 1400 ND ND 150 1.2 ND 21 ND ND ND	Result (ug/L) Qualifier 1.5 1400 ND ND 150 1.2 ND 21 ND ND ND V Rec Qualifier		

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-22841-2
 Date Sampled: 09/24/2009 1333

 Client Matrix:
 Water
 Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58760 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09290

Dilution: 20 Initial Weight/Volume: 40 mL Date Analyzed: 09/29/2009 1950 Final Weight/Volume: 40 mL

Qualifier	RL 10 1000 10
Qualifier	10 1000
	1000
	10
	10
	20
	10
	10
	10
	100
	20
	10
Qualifier	Acceptance Limits
	70 - 130
	67 - 130
	Qualifier

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-22841-3
 Date Sampled: 09/24/2009 1045

 Client Matrix:
 Water
 Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58760 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09290

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/29/2009 1926 Final Weight/Volume: 40 mL

Date Prepared: 09/29/2009 1926			
Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	ND		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	2.4		0.50
Ethylbenzene	ND		0.50
TAME	ND		0.50
TBA	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	94		70 - 130
1,2-Dichloroethane-d4 (Surr)	103		67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-22841-4
 Date Sampled: 09/24/2009 1312

 Client Matrix:
 Water
 Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/28/2009 1614 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	ND		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	ND		0.50
Ethylbenzene	ND		0.50
TAME	ND		0.50
TBA	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	98		70 - 130
1,2-Dichloroethane-d4 (Surr)	90		67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-5

 Lab Sample ID:
 720-22841-5
 Date Sampled: 09/24/2009 1201

 Client Matrix:
 Water
 Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/28/2009 1638 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	430		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	0.77		0.50
Ethylbenzene	ND		0.50
TAME	ND		0.50
ТВА	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	97		70 - 130
1,2-Dichloroethane-d4 (Surr)	92		67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-6A

 Lab Sample ID:
 720-22841-6
 Date Sampled: 09/24/2009 1235

 Client Matrix:
 Water
 Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 09/28/2009 1841 Final Weight/Volume: 40 mL

Date Analyzed. 09/20/2009 1041		Fillal W	veigniv volume. 40 mL
Date Prepared: 09/28/2009 1841			
Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	ND		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	ND		0.50
Ethylbenzene	ND		0.50
TAME	ND		0.50
TBA	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	96		70 - 130
1,2-Dichloroethane-d4 (Surr)	101		67 - 130

Job Number: 720-22841-1 Client: San Joaquin Company Inc

Client Sample ID: MW-7

Lab Sample ID: 720-22841-7 Date Sampled: 09/24/2009 1020 Client Matrix:

Water Date Received: 09/25/2009 1204

8260B/CA	_LUFTMS \	/olatile	Organic	Compounds	by	GC/MS
----------	-----------	----------	---------	-----------	----	-------

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: **SAT 3900C**

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: Initial Weight/Volume: 40 mL

Date Analyzed: 09/28/2009 1906 Final Weight/Volume: 40 mL

09/28/2009 1906 Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	ND		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	ND		0.50
Ethylbenzene	ND		0.50
TAME	ND		0.50
TBA	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	92		70 - 130
1,2-Dichloroethane-d4 (Surr)	93		67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-8

 Lab Sample ID:
 720-22841-8
 Date Sampled: 09/24/2009 1105

 Client Matrix:
 Water
 Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: 1.0 Initial Weight/Volume: 40 mL
Date Analyzed: 09/28/2009 1929 Final Weight/Volume: 40 mL

Date Analyzed.	Tillar veight volume. 40 me			
Date Prepared: 09/28/2009 1929				
Analyte	Result (ug/L)	Qualifier	RL	
Benzene	ND		0.50	
Gasoline Range Organics (GRO)-C5-C12	ND		50	
Toluene	ND		0.50	
Xylenes, Total	ND		1.0	
MTBE	ND		0.50	
Ethylbenzene	ND		0.50	
TAME	ND		0.50	
TBA	ND		5.0	
DIPE	ND		1.0	
Ethyl-tert-butyl ether	ND		0.50	
Surrogate	%Rec	Qualifier	Acceptance Limits	
Toluene-d8 (Surr)	97		70 - 130	
1,2-Dichloroethane-d4 (Surr)	100		67 - 130	

Job Number: 720-22841-1 Client: San Joaquin Company Inc

Client Sample ID: MW-9

Lab Sample ID: 720-22841-9 Date Sampled: 09/24/2009 0926 Client Matrix: Water Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: **SAT 3900C**

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: Initial Weight/Volume: 40 mL 09/28/2009 1954 Date Analyzed: Final Weight/Volume: 40 mL

Date Prepared: 09/28/2009 1954			
Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	190		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	ND		0.50
Ethylbenzene	ND		0.50
TAME	ND		0.50
TBA	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	97		70 - 130
1,2-Dichloroethane-d4 (Surr)	90		67 - 130

Job Number: 720-22841-1 Client: San Joaquin Company Inc

Client Sample ID: MW-10

Lab Sample ID: 720-22841-10 Date Sampled: 09/24/2009 1133 Client Matrix: Water Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: **SAT 3900C**

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: Initial Weight/Volume: 40 mL 09/28/2009 2020 Date Analyzed: Final Weight/Volume: 40 mL

Date Prepared: 09/28/2009 2020			
Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	ND		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	ND		0.50
Ethylbenzene	ND		0.50
TAME	ND		0.50
TBA	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	102		70 - 130
1,2-Dichloroethane-d4 (Surr)	92		67 - 130

67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-11

1,2-Dichloroethane-d4 (Surr)

Lab Sample ID: 720-22841-11 Date Sampled: 09/24/2009 1004

Client Matrix: Water Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/28/2009 2045 Final Weight/Volume: 40 mL

101

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	70		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	ND		0.50
Ethylbenzene	ND		0.50
TAME	ND		0.50
TBA	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	98		70 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-12

Lab Sample ID: 720-22841-12 Date Sampled: 09/22/2009 1507

Client Matrix: Water Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58760 Instrument ID: **SAT 3900C**

Preparation: 5030B Lab File ID: e:\data\200909\09290

Dilution: Initial Weight/Volume: 40 mL 09/29/2009 2154 Date Analyzed: Final Weight/Volume: 40 mL

Date Prepared: 09/29/2009 2154			
Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	ND		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	ND		0.50
Ethylbenzene	ND		0.50
TAME	ND		0.50
TBA	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	100		70 - 130
1,2-Dichloroethane-d4 (Surr)	105		67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-13

 Lab Sample ID:
 720-22841-13
 Date Sampled: 09/22/2009 1603

 Client Matrix:
 Water
 Date Received: 09/25/2009 1204

Matrix: Water Date Received: 09/25/2009 12

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/28/2009 2109 Final Weight/Volume: 40 mL

Date Prepared: 09/28/2009 2109			
Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	130		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	ND		0.50
Ethylbenzene	ND		0.50
ТАМЕ	ND		0.50
ГВА	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	100		70 - 130
1,2-Dichloroethane-d4 (Surr)	92		67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-14

Lab Sample ID: 720-22841-14 Date Sampled: 09/22/2009 1635

Client Matrix: Water Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/28/2009 2134 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	68		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	13		0.50
Ethylbenzene	ND		0.50
TAME	ND		0.50
TBA	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	95		70 - 130
1,2-Dichloroethane-d4 (Surr)	97		67 - 130

Job Number: 720-22841-1 Client: San Joaquin Company Inc

Client Sample ID: MW-15

Lab Sample ID: 720-22841-15 Date Sampled: 09/22/2009 1700 Client Matrix: Water Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58517 Instrument ID: **SAT 3900C**

Preparation: 5030B Lab File ID: e:\data\200909\09280

Dilution: Initial Weight/Volume: 40 mL 09/28/2009 2159 Date Analyzed: Final Weight/Volume: 40 mL

Date Prepared: 09/28/2009 2159			
Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	51		50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
MTBE	2.6		0.50
Ethylbenzene	ND		0.50
TAME	ND		0.50
TBA	ND		5.0
DIPE	ND		1.0
Ethyl-tert-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	99		70 - 130
1,2-Dichloroethane-d4 (Surr)	98		67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-16A

Lab Sample ID: 720-22841-16 Date Sampled: 09/22/2009 1844

Client Matrix: Water Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58760 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09290

Dilution: 100 Initial Weight/Volume: 40 mL Date Analyzed: 09/29/2009 2218 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	18000		50
Gasoline Range Organics (GRO)-C5-C12	64000		5000
Toluene	2500		50
Xylenes, Total	11000		100
MTBE	830		50
Ethylbenzene	3000		50
TAME	ND		50
TBA	ND		500
DIPE	ND		100
Ethyl-tert-butyl ether	ND		50
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	97		70 - 130
1,2-Dichloroethane-d4 (Surr)	80		67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-16B

Lab Sample ID: 720-22841-17 Date Sampled: 09/22/2009 1815

Client Matrix: Water Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58760 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09290

Dilution: 20 Initial Weight/Volume: 40 mL Date Analyzed: 09/29/2009 2243 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	1600		10
Gasoline Range Organics (GRO)-C5-C12	4000		1000
Toluene	18		10
Xylenes, Total	170		20
MTBE	500		10
Ethylbenzene	150		10
TAME	ND		10
TBA	ND		100
DIPE	ND		20
Ethyl-tert-butyl ether	ND		10
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	98		70 - 130
1,2-Dichloroethane-d4 (Surr)	88		67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-16C

Lab Sample ID: 720-22841-18 Date Sampled: 09/22/2009 1737

Client Matrix: Water Date Received: 09/25/2009 1204

8260B/CA_LUFTMS Volatile Organic Compounds by GC/MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-58760 Instrument ID: SAT 3900C

Preparation: 5030B Lab File ID: e:\data\200909\09290

Dilution: 5.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/29/2009 2308 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		2.5
Gasoline Range Organics (GRO)-C5-C12	270		250
Toluene	ND		2.5
Xylenes, Total	ND		5.0
MTBE	230		2.5
Ethylbenzene	ND		2.5
TAME	ND		2.5
TBA	ND		25
DIPE	ND		5.0
Ethyl-tert-butyl ether	ND		2.5
Surrogate	%Rec	Qualifier	Acceptance Limits
Toluene-d8 (Surr)	95		70 - 130
1,2-Dichloroethane-d4 (Surr)	98		67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: WCEW-1

Lab Sample ID: 720-22841-1 Date Sampled: 09/24/2009 1126

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Preparation: 3510C SGC

Dilution: 1.0

Date Analyzed: 10/02/2009 0220

Date Prepared: 09/30/2009 1318 Analysis Batch: 720-58713

Prep Batch: 720-58670

Instrument ID: Initial Weight/Volume:

Final Weight/Volume: 5 mL Injection Volume: 1 uL Result Type: **PRIMARY**

CHDRO5

990 mL

Qualifier Analyte Result (ug/L) RL Diesel Range Organics [C10-C28] 1600 63 Mineral Spirit Range Organics [C9-C13] 390 63

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) Х 0 - 5 8 31 - 150 p-Terphenyl 73

CHDRO5

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-2

Lab Sample ID: 720-22841-2 Date Sampled: 09/24/2009 1333

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Analysis Batch: 720-58713 Instrument ID: Preparation: 3510C SGC Prep Batch: 720-58670 Initial Weight/Volume:

980 mL Final Weight/Volume: Dilution: 1.0 5 mL

Date Analyzed: 10/02/2009 0246 Injection Volume: 1 uL Date Prepared: 09/30/2009 1318 Result Type: **PRIMARY**

Qualifier Analyte Result (ug/L) RL Diesel Range Organics [C10-C28] 400 64

Mineral Spirit Range Organics [C9-C13] 350 64

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 - 5 31 - 150 p-Terphenyl 83

CHDRO5

990 mL

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-3

Lab Sample ID: 720-22841-3 Date Sampled: 09/24/2009 1045

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Analysis Batch: 720-58713 Instrument ID: Preparation: 3510C SGC Prep Batch: 720-58670 Initial Weight/Volume:

Dilution: 1.0

Final Weight/Volume: 5 mL Date Analyzed: 10/02/2009 0313 Injection Volume: 1 uL Date Prepared: 09/30/2009 1318 Result Type: **PRIMARY**

Qualifier Analyte Result (ug/L) RL Diesel Range Organics [C10-C28] 110 63 Mineral Spirit Range Organics [C9-C13] ND 63

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 0 - 5 31 - 150 p-Terphenyl 82

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-4

Lab Sample ID: 720-22841-4 Date Sampled: 09/24/2009 1312

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Analysis Batch: 720-58713 Instrument ID: CHDRO5 Preparation: 3510C SGC Prep Batch: 720-58670 Initial Weight/Volume: 990 mL

Dilution: 1.0

Final Weight/Volume: 5 mL Date Analyzed: 10/02/2009 0340 Injection Volume: 1 uL Date Prepared: 09/30/2009 1318 Result Type: **PRIMARY**

Qualifier Analyte Result (ug/L) RL Diesel Range Organics [C10-C28] ND 63 Mineral Spirit Range Organics [C9-C13] ND 63

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 0 - 5 31 - 150 p-Terphenyl 79

CHDRO5

990 mL

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-5

Lab Sample ID: 720-22841-5 Date Sampled: 09/24/2009 1201

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method:8015BAnalysis Batch: 720-58635Instrument ID:Preparation:3510C SGCPrep Batch: 720-58575Initial Weight/Volume:

Dilution: 1.0 Final Weight/Volume: 5 mL
Date Analyzed: 09/30/2009 1415 Injection Volume: 1 uL

Date Prepared: 09/29/2009 2026 Result Type: PRIMARY

AnalyteResult (ug/L)QualifierRLDiesel Range Organics [C10-C28]22063Mineral Spirit Range Organics [C9-C13]25063

Surrogate%RecQualifierAcceptance LimitsCapric Acid (Surr)00 - 5p-Terphenyl8531 - 150

CHDRO5

980 mL

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-6A

Lab Sample ID: 720-22841-6 Date Sampled: 09/24/2009 1235

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Analysis Batch: 720-58713 Instrument ID: Preparation: 3510C SGC Prep Batch: 720-58670 Initial Weight/Volume:

Dilution: 1.0

Final Weight/Volume: 5 mL Date Analyzed: 10/02/2009 0407 Injection Volume: 1 uL Date Prepared: 09/30/2009 1318 Result Type: **PRIMARY**

Qualifier Result (ug/L) RL

Analyte Diesel Range Organics [C10-C28] ND 64 Mineral Spirit Range Organics [C9-C13] ND 64

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 0 - 5

31 - 150 p-Terphenyl 78

CHDRO5

990 mL

5 mL

Final Weight/Volume:

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-7

Lab Sample ID: 720-22841-7 Date Sampled: 09/24/2009 1020

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Analysis Batch: 720-58713 Instrument ID: Preparation: 3510C SGC Prep Batch: 720-58670 Initial Weight/Volume:

Dilution: 1.0

Date Analyzed: 10/02/2009 0434 Injection Volume: 1 uL

Date Prepared: 09/30/2009 1318 Result Type: **PRIMARY**

Qualifier Analyte Result (ug/L) RL Diesel Range Organics [C10-C28] ND 63 Mineral Spirit Range Organics [C9-C13] ND 63

Surrogate %Rec Qualifier Acceptance Limits

Capric Acid (Surr) 0 0 - 5 31 - 150 p-Terphenyl 78

CHDRO5

990 mL

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-8

Lab Sample ID: 720-22841-8 Date Sampled: 09/24/2009 1105

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method:8015BAnalysis Batch: 720-58713Instrument ID:Preparation:3510C SGCPrep Batch: 720-58670Initial Weight/Volume:

Dilution: 1.0 Final Weight/Volume: 5 mL
Date Analyzed: 10/02/2009 0501 Injection Volume: 1 uL

Date Prepared: 09/30/2009 1318 Result Type: PRIMARY

Analyte Result (ug/L) Qualifier RL

Diesel Range Organics [C10-C28] ND 63

Mineral Spirit Range Organics [C9-C13] ND 63

Surrogate%RecQualifierAcceptance LimitsCapric Acid (Surr)00 - 5

p-Terphenyl 73 31 - 150

CHDRO5

990 mL

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-9

Lab Sample ID: 720-22841-9 Date Sampled: 09/24/2009 0926

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method:8015BAnalysis Batch: 720-58713Instrument ID:Preparation:3510C SGCPrep Batch: 720-58670Initial Weight/Volume:

Dilution: 1.0 Final Weight/Volume: 5 mL

Date Analyzed: 10/02/2009 0528 Injection Volume: 1 uL

Date Prepared: 09/30/2009 1318 Result Type: PRIMARY

AnalyteResult (ug/L)QualifierRLDiesel Range Organics [C10-C28]7863Mineral Spirit Range Organics [C9-C13]ND63

Surrogate %Rec Qualifier Acceptance Limits

 Capric Acid (Surr)
 0
 0 - 5

 p-Terphenyl
 77
 31 - 150

CHDRO5

980 mL

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-10

Lab Sample ID: 720-22841-10 Date Sampled: 09/24/2009 1133

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method:8015BAnalysis Batch: 720-58713Instrument ID:Preparation:3510C SGCPrep Batch: 720-58670Initial Weight/Volume:

Dilution: 1.0 Final Weight/Volume: 5 mL
Date Analyzed: 10/02/2009 0554 Injection Volume: 1 uL

Date Prepared: 09/30/2009 1318 Result Type: PRIMARY

Analyte Result (ug/L) Qualifier RL

Diesel Range Organics [C10-C28] ND 64

Mineral Spirit Range Organics [C9-C13] ND 64

Surrogate%RecQualifierAcceptance LimitsCapric Acid (Surr)00 - 5

p-Terphenyl 79 31 - 150

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-11

Lab Sample ID: 720-22841-11 Date Sampled: 09/24/2009 1004

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method:8015BAnalysis Batch: 720-58713Instrument ID:CHDRO5Preparation:3510C SGCPrep Batch: 720-58670Initial Weight/Volume:980 mL

Dilution: 1.0 Final Weight/Volume: 5 mL

 Date Analyzed:
 10/02/2009 0622
 Injection Volume:
 1 uL

 Date Prepared:
 09/30/2009 1318
 Result Type:
 PRIMARY

Analyte Result (ug/L) Qualifier RL

Diesel Range Organics [C10-C28] ND 64

Mineral Spirit Range Organics [C9-C13] ND 64

Surrogate %Rec Qualifier Acceptance Limits

 Capric Acid (Surr)
 0
 0 - 5

 p-Terphenyl
 77
 31 - 150

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-12

Lab Sample ID: 720-22841-12 Date Sampled: 09/22/2009 1507

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Preparation: 3510C SGC

Dilution: 1.0

Date Analyzed: 10/02/2009 0340 Date Prepared: 09/30/2009 1318 Analysis Batch: 720-58712

Prep Batch: 720-58670

Instrument ID: CHDRO5 Initial Weight/Volume:

980 mL 5 mL

Final Weight/Volume: Injection Volume: 1 uL Result Type: **PRIMARY**

Qualifier Analyte Result (ug/L) RL Diesel Range Organics [C10-C28] ND 64 Mineral Spirit Range Organics [C9-C13] ND 64

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 0 - 5 31 - 150 p-Terphenyl 83

CHDRO5

990 mL

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-13

Lab Sample ID: 720-22841-13 Date Sampled: 09/22/2009 1603

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method:8015BAnalysis Batch: 720-58712Instrument ID:Preparation:3510C SGCPrep Batch: 720-58670Initial Weight/Volume:

Dilution: 1.0 Final Weight/Volume: 5 mL
Date Analyzed: 10/02/2009 0407 Injection Volume: 1 uL

Date Prepared: 09/30/2009 1318 Result Type: PRIMARY

Analyte Result (ug/L) Qualifier RL

Diesel Range Organics [C10-C28] 66 63

Mineral Spirit Range Organics [C9-C13] ND 63

Surrogate %Rec Qualifier Acceptance Limits

 Capric Acid (Surr)
 0
 0 - 5

 p-Terphenyl
 80
 31 - 150

CHDRO5

980 mL

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-14

Lab Sample ID: 720-22841-14 Date Sampled: 09/22/2009 1635

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method:8015BAnalysis Batch: 720-58712Instrument ID:Preparation:3510C SGCPrep Batch: 720-58670Initial Weight/Volume:

Dilution: 1.0

Date Analyzed: 10/02/2009 0434

Date Prepared: 09/30/2009 1318

Final Weight/Volume: 5 mL Injection Volume: 1 uL Result Type: PRIMARY

Analyte Result (ug/L) Qualifier RL
Diesel Range Organics [C10-C28] 72 64
Mineral Spirit Range Organics [C9-C13] ND 64

Surrogate%RecQualifierAcceptance LimitsCapric Acid (Surr)10 - 5p-Terphenyl7331 - 150

CHDRO5

980 mL

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-15

Lab Sample ID: 720-22841-15 Date Sampled: 09/22/2009 1700

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Analysis Batch: 720-58712 Instrument ID: Preparation: 3510C SGC Prep Batch: 720-58670 Initial Weight/Volume:

Final Weight/Volume: Dilution: 1.0 5 mL Date Analyzed: 10/02/2009 0501 Injection Volume: 1 uL

Date Prepared: 09/30/2009 1318 Result Type: **PRIMARY**

Qualifier Analyte Result (ug/L) RL Diesel Range Organics [C10-C28] ND 64 Mineral Spirit Range Organics [C9-C13] ND 64

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 0 - 5 31 - 150 p-Terphenyl 86

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-16A

Lab Sample ID: 720-22841-16 Date Sampled: 09/22/2009 1844

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Preparation: 3510C SGC

Dilution: 1.0

Date Analyzed: 10/02/2009 0528

Date Prepared: 09/30/2009 1318 Analysis Batch: 720-58712

Prep Batch: 720-58670

Instrument ID: CHDRO5 Initial Weight/Volume: Final Weight/Volume:

990 mL 5 mL

Injection Volume: 1 uL Result Type: **PRIMARY**

Analyte Result (ug/L) Qualifier RL Diesel Range Organics [C10-C28] 2400 63 Mineral Spirit Range Organics [C9-C13] 4100 63

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) Х 0 - 5 6 31 - 150 p-Terphenyl 79

CHDRO5

970 mL

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-16B

Lab Sample ID: 720-22841-17 Date Sampled: 09/22/2009 1815

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method:8015BAnalysis Batch: 720-58712Instrument ID:Preparation:3510C SGCPrep Batch: 720-58670Initial Weight/Volume:

Dilution: 1.0 Final Weight/Volume: 5 mL
Date Analyzed: 10/02/2009 0554 Injection Volume: 1 uL

Date Prepared: 09/30/2009 1318 Result Type: PRIMARY

Analyte Result (ug/L) Qualifier RL

Diesel Range Organics [C10-C28] 410 64

Mineral Spirit Range Organics [C9-C13] 480 64

Surrogate%RecQualifierAcceptance LimitsCapric Acid (Surr)00 - 5

p-Terphenyl 86 31 - 150

CHDRO5

Client: San Joaquin Company Inc Job Number: 720-22841-1

Client Sample ID: MW-16C

09/30/2009 1442

Lab Sample ID: 720-22841-18 Date Sampled: 09/22/2009 1737

Client Matrix: Water Date Received: 09/25/2009 1204

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Analysis Batch: 720-58635 Instrument ID: Preparation: 3510C SGC Prep Batch: 720-58575 Dilution: 1.0

Initial Weight/Volume: 990 mL Final Weight/Volume: 5 mL Injection Volume: 1 uL

Date Analyzed: Date Prepared: 09/29/2009 2026 Result Type: **PRIMARY**

Qualifier Analyte Result (ug/L) RL Diesel Range Organics [C10-C28] ND 63 Mineral Spirit Range Organics [C9-C13] ND 63

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 0 - 5 31 - 150 p-Terphenyl 56

DATA REPORTING QUALIFIERS

Client: San Joaquin Company Inc Job Number: 720-22841-1

Lab Section	Qualifier	Description
GC/MS VOA		
	4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.
GC Semi VOA		
	X	Surrogate exceeds the control limits

Client: San Joaquin Company Inc Job Number: 720-22841-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-58517					
LCS 720-58517/2	Lab Control Sample	T	Water	8260B/CA_LUFT	
LCSD 720-58517/1	Lab Control Sample Duplicate	T	Water	8260B/CA_LUFT	
MB 720-58517/3	Method Blank	T	Water	8260B/CA_LUFT	
720-22841-1	WCEW-1	T	Water	8260B/CA_LUFT	
720-22841-4	MW-4	T	Water	8260B/CA_LUFT	
720-22841-5	MW-5	Т	Water	8260B/CA_LUFT	
720-22841-6	MW-6A	Т	Water	8260B/CA_LUFT	
720-22841-7	MW-7	Т	Water	8260B/CA_LUFT	
720-22841-8	MW-8	Т	Water	8260B/CA_LUFT	
720-22841-9	MW-9	Т	Water	8260B/CA_LUFT	
720-22841-10	MW-10	T	Water	8260B/CA_LUFT	
720-22841-11	MW-11	Т	Water	8260B/CA_LUFT	
720-22841-A-12 MSMS	Matrix Spike	T	Water	8260B/CA_LUFT	
720-22841-A-12 MSDMSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	
720-22841-13	MW-13	Т	Water	8260B/CA_LUFT	
720-22841-14	MW-14	Т	Water	8260B/CA_LUFT	
720-22841-15	MW-15	Т	Water	8260B/CA_LUFT	
Analysis Batch:720-58760					
LCS 720-58760/2	Lab Control Sample	Т	Water	8260B/CA LUFT	
_CSD 720-58760/1	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-58760/3	Method Blank	Т	Water	8260B/CA_LUFT	
720-22841-2	MW-2	Т	Water	8260B/CA_LUFT	
720-22841-2MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-22841-2MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	
720-22841-3	MW-3	Т	Water	8260B/CA_LUFT	
720-22841-12	MW-12	Т	Water	8260B/CA LUFT	
720-22841-16	MW-16A	Т	Water	8260B/CA LUFT	
720-22841-17	MW-16B	Т	Water	8260B/CA_LUFT	
720-22841-18	MW-16C	Т	Water	8260B/CA_LUFT	

Report Basis

T = Total

Client: San Joaquin Company Inc Job Number: 720-22841-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC Semi VOA	One in Campie is		Onent matrix	Metriod	Trep Batem
Prep Batch: 720-58575 LCS 720-58575/2-A	Lab Control Sample	Α	Water	3510C SGC	
.CSD 720-58575/3-A	Lab Control Sample Duplicate	A	Water	3510C SGC	
MB 720-58575/1-A	Method Blank	A	Water	3510C SGC	
20-22841-5	MW-5	A	Water	3510C SGC	
720-22841-18	MW-16C	A	Water	3510C SGC	
20-220-1-10	10100	A	water	33100 300	
Analysis Batch:720-58635					
.CS 720-58575/2-A	Lab Control Sample	Α	Water	8015B	720-58575
CSD 720-58575/3-A	Lab Control Sample Duplicate	Α	Water	8015B	720-58575
ИВ 720-58575/1-A	Method Blank	Α	Water	8015B	720-58575
720-22841-5	MW-5	Α	Water	8015B	720-58575
720-22841-18	MW-16C	Α	Water	8015B	720-58575
Prep Batch: 720-58670					
.CS 720-58670/2-A	Lab Control Sample	Α	Water	3510C SGC	
CSD 720-58670/3-A	Lab Control Sample Duplicate	A	Water	3510C SGC	
/IB 720-58670/1-A	Method Blank	A	Water	3510C SGC	
720-22841-1	WCEW-1	A	Water	3510C SGC	
20-22841-2	MW-2	A	Water	3510C SGC	
720-22841-3	MW-3	A	Water	3510C SGC	
720-22841-4	MW-4	Α	Water	3510C SGC	
720-22841-6	MW-6A	A	Water	3510C SGC	
20-22841-7	MW-7	Α	Water	3510C SGC	
720-22841-8	MW-8	A	Water	3510C SGC	
720-22841-9	MW-9	Α	Water	3510C SGC	
20-22841-10	MW-10	A	Water	3510C SGC	
720-22841-11	MW-11	A	Water	3510C SGC	
720-22841-12	MW-12	Α	Water	3510C SGC	
20-22841-13	MW-13	A	Water	3510C SGC	
720-22841-14	MW-14	Α	Water	3510C SGC	
720-22841-15	MW-15	Α	Water	3510C SGC	
720-22841-16	MW-16A	A	Water	3510C SGC	
720-22841-17	MW-16B	A	Water	3510C SGC	
-	-	-			
Analysis Batch:720-58712					
'20-22841-12	MW-12	Α	Water	8015B	720-58670
20-22841-13	MW-13	Α	Water	8015B	720-58670
20-22841-14	MW-14	Α	Water	8015B	720-58670
720-22841-15	MW-15	Α	Water	8015B	720-58670
720-22841-16	MW-16A	Α	Water	8015B	720-58670
720-22841-17	MW-16B	Α	Water	8015B	720-58670

Client: San Joaquin Company Inc Job Number: 720-22841-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Analysis Batch:720-5871	3				
LCS 720-58670/2-A	Lab Control Sample	Α	Water	8015B	720-58670
LCSD 720-58670/3-A	Lab Control Sample Duplicate	Α	Water	8015B	720-58670
MB 720-58670/1-A	Method Blank	Α	Water	8015B	720-58670
720-22841-1	WCEW-1	Α	Water	8015B	720-58670
720-22841-2	MW-2	Α	Water	8015B	720-58670
720-22841-3	MW-3	Α	Water	8015B	720-58670
720-22841-4	MW-4	Α	Water	8015B	720-58670
720-22841-6	MW-6A	Α	Water	8015B	720-58670
720-22841-7	MW-7	Α	Water	8015B	720-58670
720-22841-8	MW-8	Α	Water	8015B	720-58670
720-22841-9	MW-9	Α	Water	8015B	720-58670
720-22841-10	MW-10	Α	Water	8015B	720-58670
720-22841-11	MW-11	Α	Water	8015B	720-58670

Report Basis

A = Silica Gel Cleanup

Client: San Joaquin Company Inc Job Number: 720-22841-1

Method Blank - Batch: 720-58517 Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-58517/3 Analysis Batch: 720-58517 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: e:\data\200909\092809\mb-wa

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 09/28/2009 1320 Final Weight/Volume: 40 mL

Qual RL Analyte Result ND 0.50 Benzene Gasoline Range Organics (GRO)-C5-C12 ND 50 Toluene ND 0.50 Xylenes, Total ND 1.0 MTBE ND 0.50 Ethylbenzene ND 0.50 **TAME** ND 0.50 TBA ND 5.0 DIPE ND 1.0 Ethyl-tert-butyl ether ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 97 70 - 130 1,2-Dichloroethane-d4 (Surr) 97 67 - 130

Calculations are performed before rounding to avoid round-off errors in calculated results.

Date Prepared:

09/28/2009 1320

Client: San Joaquin Company Inc Job Number: 720-22841-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-58517 Preparation: 5030B

LCS Lab Sample ID: LCS 720-58517/2 Analysis Batch: 720-58517 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: e:\data\200909\092809\ls-wa-

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 09/28/2009 1345 Final Weight/Volume: 40 mL Date Prepared: 09/28/2009 1345

LCSD Lab Sample ID: LCSD 720-58517/1 Analysis Batch: 720-58517 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: e:\data\200909\092809\ld-wa-9-

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 09/28/2009 1410 Final Weight/Volume: 40 mL

% Rec. **RPD** RPD Limit LCS Qual Analyte LCS LCSD Limit LCSD Qual Benzene 87 82 72 - 120 20 5 Gasoline Range Organics (GRO)-C5-C12 62 59 36 - 130 4 20 59 - 120 Toluene 78 79 1 20 MTBE 91 82 64 - 130 11 20 LCS % Rec LCSD % Rec Surrogate Acceptance Limits Toluene-d8 (Surr) 99 101 70 - 130 1,2-Dichloroethane-d4 (Surr) 91 87 67 - 130

Calculations are performed before rounding to avoid round-off errors in calculated results.

Date Prepared:

09/28/2009 1410

Client: San Joaquin Company Inc Job Number: 720-22841-1

Matrix Spike/ Method: 8260B/CA LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-58517 Preparation: 5030B

MS Lab Sample ID: 720-22841-A-12 MS Analysis Batch: 720-58517 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: e:\data\200909\092809\sa-w

Dilution: 50 Initial Weight/Volume: 40 mL 09/28/2009 1728 Date Analyzed: Final Weight/Volume: 40 mL

Date Prepared: 09/28/2009 1728

MSD Lab Sample ID: 720-22841-A-12 MSD Instrument ID: Varian 3900C Analysis Batch: 720-58517

Client Matrix: Water Prep Batch: N/A Lab File ID: e:\data\200909\092809\sa-wa-

Dilution: 50 Initial Weight/Volume: 40 mL Date Analyzed: 09/28/2009 1752 Final Weight/Volume: 40 mL 09/28/2009 1752

% Rec. RPD Analyte MS MSD Limit **RPD Limit** MS Qual MSD Qual 58 - 134 Benzene 80 20 83 4 Gasoline Range Organics (GRO)-C5-C12 60 57 43 - 130 5 20 74 72 - 130 9 20 Toluene 81 MTBE 86 82 22 - 185 4 20 MS % Rec Surrogate MSD % Rec Acceptance Limits 70 - 130 Toluene-d8 (Surr) 96 97 1,2-Dichloroethane-d4 (Surr) 92 111 67 - 130

Calculations are performed before rounding to avoid round-off errors in calculated results.

Date Prepared:

Client: San Joaquin Company Inc Job Number: 720-22841-1

Method Blank - Batch: 720-58760 Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-58760/3 Analysis Batch: 720-58760 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: e:\data\200909\092909\mb-wa

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 09/29/2009 1723 Final Weight/Volume: 40 mL

Date Analyzed: 09/29/2009 1723

Date Prepared: 09/29/2009 1723

Qual RL Analyte Result ND 0.50 Benzene Gasoline Range Organics (GRO)-C5-C12 ND 50 Toluene ND 0.50 Xylenes, Total ND 1.0 MTBE ND 0.50 Ethylbenzene ND 0.50 **TAME** ND 0.50 TBA ND 5.0 DIPE ND 1.0 Ethyl-tert-butyl ether ND 0.50 Surrogate % Rec Acceptance Limits Toluene-d8 (Surr) 96 70 - 130 1,2-Dichloroethane-d4 (Surr) 94 67 - 130

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: San Joaquin Company Inc Job Number: 720-22841-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-58760 Preparation: 5030B

LCS Lab Sample ID: LCS 720-58760/2 Analysis Batch: 720-58760 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: e:\data\200909\092909\ls-wa-

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 09/29/2009 1747 Final Weight/Volume: 40 mL Date Prepared: 09/29/2009 1747

LCSD Lab Sample ID: LCSD 720-58760/1 Analysis Batch: 720-58760 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: e:\data\200909\092909\ld-wa-9-

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 09/29/2009 1812 Final Weight/Volume: 40 mL
Date Prepared: 09/29/2009 1812

% Rec. **RPD** RPD Limit LCS Qual Analyte LCS LCSD Limit LCSD Qual Benzene 85 72 - 120 20 90 5 Gasoline Range Organics (GRO)-C5-C12 65 63 36 - 130 3 20 Toluene 80 78 59 - 120 3 20 MTBE 94 90 64 - 130 4 20 LCS % Rec Surrogate LCSD % Rec Acceptance Limits Toluene-d8 (Surr) 96 100 70 - 130 1,2-Dichloroethane-d4 (Surr) 84 103 67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-58760 Preparation: 5030B

MS Lab Sample ID: 720-22841-2 Analysis Batch: 720-58760 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: e:\data\200909\092909\sa-w

Dilution: 20 Initial Weight/Volume: 40 mL
Date Analyzed: 09/29/2009 2015 Final Weight/Volume: 40 mL

 Date Analyzed:
 09/29/2009
 2015
 Final Weight/Volume:
 40 mL

 Date Prepared:
 09/29/2009
 2015
 40 mL

MSD Lab Sample ID: 720-22841-2 Analysis Batch: 720-58760 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: e:\data\200909\092909\sa-wa-

Dilution: 20 Initial Weight/Volume: 40 mL

 Date Analyzed:
 09/29/2009 2040
 Final Weight/Volume:
 40 mL

 Date Prepared:
 09/29/2009 2040

% Rec. RPD Analyte MS MSD Limit **RPD Limit** MS Qual MSD Qual 58 - 134 Benzene 480 5 20 400 4 Gasoline Range Organics (GRO)-C5-C12 69 63 43 - 130 8 20 77 72 - 130 8 20 Toluene 83 MTBE 118 111 22 - 185 4 20 Surrogate MS % Rec MSD % Rec Acceptance Limits 70 - 130 Toluene-d8 (Surr) 97 99 1,2-Dichloroethane-d4 (Surr) 73 102 67 - 130

Client: San Joaquin Company Inc Job Number: 720-22841-1

Method Blank - Batch: 720-58575 Method: 8015B

> Preparation: 3510C SGC Silica Gel Cleanup

Lab Sample ID: MB 720-58575/1-A Analysis Batch: 720-58635

Client Matrix: Prep Batch: 720-58575 Water

Dilution: 1.0 Units: ug/L

Date Prepared: 09/29/2009 1244

09/30/2009 1202 Date Analyzed:

Instrument ID: HP DRO5 Lab File ID: 5b0930012.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 5 mL

Injection Volume: 1 uL Column ID: **PRIMARY**

Analyte Result Qual RL Diesel Range Organics [C10-C28] ND 62 Mineral Spirit Range Organics [C9-C13] ND 62

Surrogate % Rec Acceptance Limits Capric Acid (Surr) 0 0 - 5 96 31 - 150 p-Terphenyl

Lab Control Sample/ Method: 8015B

Lab Control Sample Duplicate Recovery Report - Batch: 720-58575 Preparation: 3510C SGC

Silica Gel Cleanup

LCS Lab Sample ID: LCS 720-58575/2-A Instrument ID: HP DRO5 Analysis Batch: 720-58635 Client Matrix: Water Prep Batch: 720-58575 Lab File ID: 5b0930010.d Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL

09/30/2009 1107 Date Analyzed: Final Weight/Volume: 5 mL 09/29/2009 1244 Date Prepared: Injection Volume: 1 uL Column ID: **PRIMARY**

LCSD Lab Sample ID: LCSD 720-58575/3-A Analysis Batch: 720-58635 Instrument ID: HP DRO5 Client Matrix: Water Prep Batch: 720-58575 Lab File ID: 5b0930011.d

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL 09/30/2009 1135 Date Analyzed: Final Weight/Volume: 5 mL 09/29/2009 1244 Date Prepared: Injection Volume: 1 uL

Column ID: **PRIMARY**

% Rec. LCS RPD Analyte **LCSD** Limit **RPD Limit** LCS Qual LCSD Qual Diesel Range Organics [C10-C28] 65 76 32 - 119 16 35 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 99 97 31 - 150

Calculations are performed before rounding to avoid round-off errors in calculated results.

p-Terphenyl

PRIMARY

Method: 8015B

Column ID:

Client: San Joaquin Company Inc Job Number: 720-22841-1

				Preparation: 3510C SGC Silica Gel Cleanup		
Lab Sample ID:	MB 720-58670/1-A	Analysis Batch:	720-58713	Instrument ID:	HP DRO5	
	and the second s					

Method Blank - Batch: 720-58670

Client Matrix: Water Prep Batch: 720-58670 Lab File ID: 5b1001040.d Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL 10/02/2009 0059 Date Analyzed: Final Weight/Volume: 5 mL Date Prepared: 09/30/2009 1318 Injection Volume: 1 uL

Analyte Result Qual RL Diesel Range Organics [C10-C28] ND 62 Mineral Spirit Range Organics [C9-C13] ND 62 Surrogate % Rec Acceptance Limits 0 Capric Acid (Surr) 0 - 5

97 p-Terphenyl 31 - 150

Lab Control Sample/ Method: 8015B Lab Control Sample Duplicate Recovery Report - Batch: 720-58670 Preparation: 3510C SGC Silica Gel Cleanup

LCS Lab Sample ID: LCS 720-58670/2-A Instrument ID: HP DRO5 Analysis Batch: 720-58713 Client Matrix: Water Prep Batch: 720-58670 Lab File ID: 5b1001041.d Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL Date Analyzed: 10/02/2009 0126 Final Weight/Volume: 5 mL

09/30/2009 1318 Date Prepared: Injection Volume: 1 uL Column ID: **PRIMARY**

LCSD Lab Sample ID: LCSD 720-58670/3-A Analysis Batch: 720-58713 Instrument ID: HP DRO5 Client Matrix: Water Prep Batch: 720-58670 Lab File ID: 5b1001042.d Dilution: 1.0 Units: ug/L Initial Weight/Volume: 1000 mL 10/02/2009 0153 Date Analyzed: Final Weight/Volume: 5 mL

09/30/2009 1318 Date Prepared: Injection Volume: 1 uL Column ID: **PRIMARY**

% Rec. LCS Limit RPD Analyte LCSD **RPD Limit** LCS Qual LCSD Qual Diesel Range Organics [C10-C28] 78 74 32 - 119 6 35 LCS % Rec LCSD % Rec Surrogate Acceptance Limits 92 104 31 - 150 p-Terphenyl

Calculations are performed before rounding to avoid round-off errors in calculated results.

THE SAN JOAQUIN COMPANY INC.

Transmit results to office checked below:

33233 South Koster Road, Tracy, CA 95304 Voice: (209) 832-2910 Fax: (209) 833-1288

1120 Hollywood Ave. No. 3, Oakland, CA 94602 Voice (510) 336-9118 Fax: (510) 336-9119

Cample Tune Field Donth to Casing Flow

Sample Hazards: Low to high concentrations of fuel hydrocarbons and solvents

Project: Bay Rock - Oak Walk Emeryville Project No.: 0004.087 Project Mgr.: DJW

Sampling Team: DJW/AO/SM

SITE GLOBAL I.D. No.: T06019705080

CHAIN OF CUSTODY / REQUEST FOR ANALYSIS

119277

Laboratory: •	TestAmerica
	[일본] 이번 프로젝트 시간 (**** 그렇지만 그리고 있다.)

CARRIER: THE SAN JOAQUIN COMPANY INC.

Expedited

Special

WAYBILL NO.: N/A

Analyses Degreeted

Priority: Routine

	Number	Type	Point	GW in ft.	in ft.	Sampled	Sampled	Analyses Requested	Lab. No.
	WCEW-1	water	WCEW-1		41.73	09/24/09		ALL SAMPLES:	FRE +TO
_ [MW-2		MW-2		44.40	09/21/09	1333	TPHS, BTEX+TBA, UTSE, DIPE	, ELDC
Dage	MW-3		MW-3		45.49	09/24/09	1045		AND
	MW-4		MW-4		47.31	09/22/09	1312	Analyze all samples for:	TPHOLE
ח	MW-5		MW-5		42.51	09/21/09	1201		1
2	MW-6A		MW-6A		43.18	09/22/09	1235	TPH(g)+BTEX+ TBA, MTBE, DIPE, ETBE & TAME;	Hineral
	MW-7		MW-7		44.75	09/12/09	1020	TPH(d) + Mineral Spirits using silica gel cleanup	Spicitz
1	MW-8		MW-8		48.38	09/22/09	1105	1111(a) - Winicial Opinio using smear ger eledniap	isnox:
	MW-9		MW-9		47.85	09/21/09	0926		0 1
	MW-10		MW-10		45.66	09/ Dy09	1133		silicage
	MW-11		MW-11		45.10	09/21/09	1004		clean UP
	MW-12		MW-12		42,93	09/23/09	1507		
	MW-13	*	MW-13		45.56	09/22/09	1603		

Notes: Pricing per Bay Ro	ock Emeryville Agreement	GEOTRA	CKER ZIP FII	E REQUIRED	<u>.</u>		, 5.
CUSTODY RECORD	Print Name	Company	Date Received	Time Received	Date Relinquished Ti	me Relinquished	Signature
Originator:	DJ. Watkins	San Joaquin Co	1		9-25-03	12:04	V. site
Received/ Relinquished by	doan Mullen	tod Amer	9-25-09	1704			- 1
Received/ Relinquished by	Ž	*				12	
Received/ Relinquished by	r:						
Received at Laboratory by	*						
							Rev. 09

THE SAN JOAQUIN COMPANY INC.

Transmit results to office checked below:

33233 South Koster Road, Tracy, CA 95304 Voice: (209) 832-2910 Fax: (209) 833-1288

☑ 1120 Hollywood Ave. No. 3, Oakland, CA 94602 Voice (510) 336-9118 Fax: (510) 336-9119

Project: Bay Rock - Oak Walk Emeryville Project No.: 0004.087 Project Mgr.: DJW

Sampling Team: DJW/AO/SM

SITE GLOBAL I.D. No.: T06019705080

CHAIN OF CUSTODY / REQUEST FOR **ANALYSIS**

LABORATORY: TestAmerica

THE SAN JOAQUIN COMPANY INC. CARRIER:

WAYBILL NO.: N/A

	Sample Number	Type	Field Point	Depth to GW in ft.	Casing Elev. in ft.	Date Sampled	Time Sampled	Analyses Requested	Lab. No.
	MW-14	water	MW-14		45.19	09/22/09	1635	All SAMPLES: TPHG+BTEX+ HTBE+	TBA+ DIPE
ъ	MW-15		MW-15		43.55	09/22/09	1700	0	ETROE +
age	MW-16A		MW-16A		44.50	09/ 22/09	1844		FIBE+ TAME
D	MW-16B		MW-16B		44.59	09/22/09	1815	Analyze all samples for:	2
57	MW-16C	+	MW-16C		44.48	09/11/09	1737		AND
O Hi								TPH(g)+BTEX+ TBA, MTBE, DIPE, ETBE & TAME;	THA +
50								TPH(d) + Mineral Spirits using silica gel cleanup	mineral.
									Spirits
									vainer
							9	9	lica gel
									lean of

Sample Hazards: Low to h	igh concentrations of fuel l	Pric	ority: Routine 🗹	Expedited \square	Special 🗖		
Notes: Pricing per Bay Roc	k Emeryville Agreement	GEOTR	ACKER ZIP FII	LE REQUIRED	<u>).</u>		5.28
CUSTODY RECORD	Print Name	Company	Date Received	Time Received	Date Relinquished	Time Relinquished	Signature
Originator:	DJ Watkins	San Joaquin Co			09/25/03	12:04	D. J. widey
Received/ Relinquished by:	Loan Mulley	tell	9-25-09	1204	, , , , , , , , , , , , , , , , , , ,		
Received/ Relinquished by:				file of the second			
Received/ Relinquished by:							
Received at Laboratory by:							

Rev. 09/09

Login Sample Receipt Check List

Client: San Joaquin Company Inc Job Number: 720-22841-1

Login Number: 22841 List Source: TestAmerica San Francisco

Creator: Mullen, Joan List Number: 1

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Is the Field Sampler's name present on COC?	True
Sample Preservation Verified	True