GROUNDWATER MODEL OF CHEMICAL FATE AND TRANSPORT - DECAYING PULSE SOURCE.

Model Input Parameters

Parameter	Units	Name	Value	Remarks
Initial Sorce Concentration	[mg/L]	င္ပ	25	represents the source before remediation
Residual Concentration Post Remediation	[mg/L]	C,	4	assumed equal to the meximum detected residual soil concentration
Distance From Source to Receptor	[m]	×	50	550 feet distance from the source to the bay
Retarded Groundwater Seepage Velocity	[m/yr]	E	14	Darcy's law, no retardation: $u = k*ih = 350*0.01/0.25 = 14$
Retarded Dispersion Coefficient	[m²/yr]	D	231	$D = \alpha *_{u} = X/10*_{u} = 165/10*14$
Retarded Source Decay Rate Before Remediation	[1/yr]	. %	0.0693	10years degradation half life
Retarded Source Decay Rate Post Remediation	[1/yr]	×	0.0693	10 years degradation half life
Retarded Chemical Degradation Coefficient	[1/yr]	ىخ	0.0693	10 years degradation half life
Time at Which Remediation Took Place	[yr]	Tpulse	5	age of the source when remediation took place
Calculation Time Step	[yr]	Δt	1	concentration will be calculated at distance X every \(\Delta \) years
Time of Breakthough Calculation	[уг]	ť*	20	concentration vs. distance will be calculated at time t*
Distance Step for Calculation	[m]	Δх	25.0	concentration will be calculated at time t* every \(\Delta \text{x meters} \)

to assess the effect of remediation on receptor concentration. 1-D advection and dispersion, retardation and first-order decay are considered. This model is based on the solution of the groundwater transport equation given by Marino (1974), adapted to a decaying pulse source Marco Lobascio, San Francisco, California, August 1996.

warded Exameter

Receptor Concentration C(x=X,t) Vs. Time [mg/L]

Receptor Concentration C(x=X,t) Vs. Time [mg/L]

SCHEMATIC REPRESENTATION OF THE PULSE SOURCE

