SOIL TESTING REPORT FOR 1829 CLEMENT AVENUE ALAMEDA, CALIFORNIA

FORNIA AND



# Kaldveer Associates Geoscience Consultants

Peter Kaldveer, P.E., G.E. President

Richard Short, P.E., G.E. Executive Vice President

Ronald L. Bajuniemi, P.E., G.E. Vice President Engineering

Patrick Stevens, P.E., G.E. Associate

David Hoexter, C.E.G., R.E.A. Associate

Michael McRae, P.E.

William Bender, P.E., S.E., A.I.A. Associate

Dawn Rinaldi, P.E.

Barbara L. Potter, P.E.

Randy P. Rowley, R.E.A.

Polly L. Worrell, R.E.A.

Mr. Loren Smith 3527 Magnolia Drive Alameda, California 94501

RE: SOIL TESTING REPORT

April 4, 1990

KE1179-1, 15849

1829 CLEMENT AVENUE ALAMEDA, CALIFORNIA

Dear Mr. Smith:

Kaldveer Associates is pleased to submit our soil testing report for the property at 1829 Clement Avenue, in Alameda, California. The enclosed report contains a description of our investigation, results of soil sample analyses, and our conclusions and recommendations regarding site environmental quality.

We appreciate the opportunity to provide services to you on this project and trust this report meets your needs at this time. If you have any questions or require additional information, please don't hesitate to call.

Very truly yours,

KALDVEER ASSOCIATES, INC

Dennis Laduzinsky

Senior Engineering Geologist

David F. Hoexter, C.E.G./R.E.A.

Manager, Environmental/Geological

Services Associate

DL/DFH:pv

Copies: Addressee (5)

SOIL TESTING REPORT

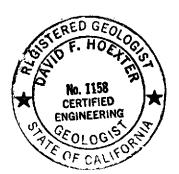
For 1829 CLEMENT AVENUE ALAMEDA, CALIFORNIA

To Mr. Loren Smith 3527 Magnolia Drive Alameda, California 94501

Ву

KALDVEER ASSOCIATES, INC.

Dennis Laduzinsky


Senior Engineering Geologist

David F. Hoexter, C.E.G./R.E.A.

Manager, Environmental/Geological

Services Associate

April, 1990



# TABLE OF CONTENTS

Page No.

| Letter of Transmittal                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TITLE PAGE                                                                                                                                                                                                 |
| TABLE OF CONTENTS                                                                                                                                                                                          |
| I. INTRODUCTION                                                                                                                                                                                            |
| II. CONCLUSIONS AND RECOMMENDATIONS                                                                                                                                                                        |
| III. SCOPE OF SERVICES                                                                                                                                                                                     |
| IV. FIELD INVESTIGATION                                                                                                                                                                                    |
| V. ANALYTICAL RESULTS                                                                                                                                                                                      |
|                                                                                                                                                                                                            |
| VI. DISCUSSION                                                                                                                                                                                             |
| TABLE 1 - ANALYTICAL RESULTS - EAST END OF BUILDING TABLE 2 - ANALYTICAL RESULTS - SURFACE SAMPLES - WEST END OF BUILDING TABLE 3 - ANALYTICAL RESULTS - WEST END OF BUILDING FIGURE 1 - SITE LOCATION MAP |
| FIGURE 2 - SITE PLAN<br>FIGURE 3 - CRAWL SPACE FEATURES                                                                                                                                                    |
| APPENDIX A - BORING LOGS AND WELL CONSTRUCTION DETAILS                                                                                                                                                     |
| APPENDIX B - LABORATORY RESULTS                                                                                                                                                                            |

FOR
1829 CLEMENT AVENUE
ALAMEDA, CALIFORNIA

#### I. INTRODUCTION

This report presents the results of an investigation of soil quality at 1829 Clement Avenue in Alameda, California. The site location is shown on the Site Vicinity Map, Figure 1.

The purpose of this investigation has been to collect shallow soil samples from beneath the existing building to evaluate the potential presence of contaminants in the subsurface related to the former operation of the site as a photo-chemical machining job shop. This investigation included the drilling and sampling of 13 shallow soil borings and collection of seven surface soil and sediment samples, with analysis of the samples for cyanide, arsenic, beryllium, chromium, copper, molybdenum, lead, phenols, and pH. The work was authorized by Mr. Loren Smith, formerly of Kem-Mil-Co.

It is understood that the site was operated as a photo-chemical machining shop from 1967 to 1988. Prior to 1984, process rinse waters were reportedly discharged to the sanitary sewer. In 1984 a process water recovery and treatment system was installed to treat waste waters to East Bay Municipal Utilities District standards prior to discharge to the sewer. On October 19, 1988, the County of Alameda Health Care Services Agency issued a Notice of Violation for the property, citing several violations of the California Health and Safety Code, and Title 22 of the California Code of Regulations, including soil discoloration and apparent accumulation of hazardous waste in the subfloor area of the It is assumed that the discoloration was related to leaks in the subfloor sewer lines and other waste piping as indicated in the violation notice.

In response to concerns by the property owners, Blymyer Engineers Inc. (BEI) conducted a preliminary assessment of the subfloor soils. The results of that investigation, as outlined in the September 28, 1988 BEI report, indicated the presence of relatively high levels of cyanide, arsenic, and chromium, and low soil pH in the shallow soil beneath the floor. The present investigation was conducted as a follow-up investigation to define the vertical and lateral extent of soil contamination beneath the building.

noch rosk

Specific chemical constituents analyzed for in this investigation are based on the chemicals of concern indicated in the initial analyses performed by BEI.

# II. CONCLUSIONS AND RECOMMENDATIONS

#### A. Conclusions

Based on the information collected to-date it appears that significant quantities of cyanide or metals are restricted to the  $n^{4/3}$  top 3 to 6 inches of soil beneath the former etch process areas at the western portion of the building, and to a dried sediment on top of the asphalt paving beneath the eastern portion of the building.

Surface soil samples collected from beneath the western portion of the building contained from 120 to 1300 parts per million (ppm) cyanide. The average concentration for seven samples was 680 ppm. In contrast, samples collected at a depth of 0.5 feet in this area contained from 2.1 to 7.8 ppm cyanide, with one additional sample containing 150 ppm. Samples from depths of 3.0 and 6.5 feet all contained less than 2 ppm. Concentrations of other metals appear to represent normal background concentrations which the exception of the 0.5 foot sample from Boring B6 which contained 1100 ppm lead. Low pH soils (pH = 2.4 to 3.6) were encountered only in the 0.5 foot deep samples.

A sample of dried sediment collected from the surface of the asphalt paving beneath the eastern portion of the building is the only sample from the treatment room area found to contain high quantities of cyanide or metals. The sediment sample contained 1100 ppm cyanide, 800 ppm chromium, and 2900 ppm copper. values for copper and chromium exceed the State TTLC. Samples from a depth of 0.5 feet below the asphalt beneath the treatment room contained 160 and 26 ppm cyanide, and samples from the three to six contained between 1.5 and 24 ppm Concentrations of metals are within the range of normally occurring background levels. Phenols were found at a concentration of 0.94 ppmain the surface sediment sample, and at a concentration of 0.52ppm in one soil sample from a depth of seven feet. Soil samples had a measured pH between 5.4 and 8.7.

#### B. Recommendations

On the basis of the chemical analyses performed during this investigation, it is recommended that the upper three to six inches of surface soils beneath the etch process rooms at the western portion of the building be removed from the site. It is also recommended that the dried sediment be removed from the surface of the asphalt paving beneath the eastern portion of the building.

UHAS 225 2 7!

داد

#### III. SCOPE OF SERVICES

The work performed during this investigation consisted of the following tasks:

- 1. Drilling 13 soil borings to depths of up to seven feet for soil sample collection.
- 2. Collecting seven surface soil and sediment samples.
- 3. Analysis of soil samples by a contract analytical laboratory.
- Preparation of this report.

# IV. FIELD INVESTIGATION A. Site Description

The site is located at the Alameda Marina as shown on Figure 1. The site is developed as a two-story wood-frame building with raised wood floors. The southern building line adjoins the public sidewalk at Clement Street, and the remaining area around the building is covered by asphalt paving, as shown on the Site Plan, Figure 2. A small addition to the western end of the building is underlain by a concrete slab.

Former process areas of the building include three rooms on the western end that were used as metal-etching process rooms (Figure 2). One room on the eastern end of the building served as a store room, and another was used as a treatment room for process water prior to sewer discharge. The crawl-space beneath the eastern portion of the building is underlain by about 1.5 inches of asphalt paving.

#### B. Drilling and Soil Sampling

The field investigation was conducted between February 11 and March 9, 1990 and consisted of drilling 13 soil borings and collecting seven surface samples at the approximate locations shown on Figure 2. Borings B-1, B-2, B-3 and B-4 were drilled using a 3-inch diameter hand auger. The remaining soil borings were drilled with a minute-man drill rig equipped with 3-inch diameter solid-stem augers. The soil borings were advanced to depths of approximately 6.5 to 7.0 feet. Soils encountered during drilling were classified in the field by a Kaldveer geologist by visual examination in accordance with the Unified Soil Classification System (Figure A-1). Logs of the borings are presented in Appendix A.

Soil samples were collected from the borings at approximate depths of 0.5, 3.0, and 6.5 to 7.0 feet below ground surface. Samples collected at the three to seven foot depths in Borings B-1 through

B-4 were obtained as bulk samples from the hand auger and placed in brass tubes. Samples collected from Borings B-5 through B-13 were obtained with a hand driven 2-inch I.D. Modified California sampler containing thin brass liners. The augers were steamcleaned prior to drilling each boring, and the sampler and brass liners were thoroughly cleaned with TSP (trisodium phosphate) detergent between samples to reduce the potential for crosscontamination. The shallow soil borings were backfilled with neat cement upon completion.

Samples collected for possible chemical analysis were collected in 2-inch diameter, 6-inch long, brass liners. These samples were examined for logging, sealed with aluminum foil-lined lids, labeled and immediately placed in refrigerated storage. A chain-of-custody form was initiated in the field and accompanied the samples to a California Department of Health Services certified laboratory.

# Subsurface Conditions

The surficial soils at the eastern end of the building consist of 1.5 inches of asphalt on top of 3.5 feet of silty sand, underlain by about 1.5 feet of clayey sand, followed by more silty sand to a depth of about 7.5 feet. Soils beneath the western portion of the building consist of about five feet of silty sand underlain by clayey sand to the total depth explored of about seven feet.

Ground water was encountered at a depth of approximately six feet

at the time of drilling and attailed. at the time of drilling and stabilized water levels were measured at a depth of approximately three to four feet should be later later.

The attached boring logs and related information (Appendix A) depict location-specific subsurface conditions encountered during our field investigation. The approximate locations of the borings were determined by tape measure and should be considered accurate only to the degree implied by the method used. The passage of time could result in changes in the surface or subsurface conditions due to natural occurrences or human intervention.

# Sampling Plan Rationale

The soil sampling plan was based on a review of the site with representatives of the Alameda County Department of Environmental Health. As shown on Figure 3, the building foundation consists of a perimeter footing with continuous interior footings. the observable distribution of discolored soils beneath the raised floor, it appears that the concrete footings have acted as barriers to the lateral migration of process fluids released from the subfloor piping. In addition, the asphalt beneath the eastern end of the building appears to have limited the vertical migration of contaminants in this area.

The sampling plan consisted of placing two borings in each of the process etch rooms and the treatment room. Samples from the 0.5, 3.0 and 6.5 to 7.0 foot depths from each pair of borings were composited prior to analysis. Borings B-4, B-5, B-6 and B-7 were placed on the opposite side of the interior footing wall to evaluate whether the footing wall acted as an effective barrier to  $\mathfrak{h}^{\flat}$ lateral fluid migration. Samples from the 0.5, 3.0 and 6.5 to 7.0 foot depths from these borings were analyzed individually. Boring B-2 was placed in the area of a former floor drain in the treatment  $^{\mathfrak{h}}$ Samples from this boring were also analyzed individually.

At the request of the Alameda County Department of Environmental Health, the surface drainage characteristics of the asphalt-covered crawl space area beneath the eastern portion of the building was investigated by releasing about 15 gallons of water to the asphalt As indicated on Figure 3, drainage patterns on the asphalt surface are toward the southern perimeter footing and toward the west.

Surface sample 8-1 was collected from an approximately 3-inch thick build-up of dry sediment on the asphalt surface beneath the eastern portion of the building. The sediment surface had a distinct mudcracked appearance, indicating that process fluids probably collected on the asphalt surface and evaporated slowly, leaving behind a sediment residue that slowly dried out, forming mud-Surface samples S-2 through S-7 were collected from the immediate soil surface beneath the western etch process rooms to evaluate surficial soil quality in this area.

## ANALYTICAL RESULTS

#### A. Laboratory Procedures

Soil samples were analyzed by Med-Tox Associates of Pleasant Hill, California and Sequoia Analytical of Redwood City, California. The laboratories are certified by the California Department of Health Twenty-eight soil samples Services for the analyses performed. were analyzed for cyanide, arsenic, beryllium, chromium, copper, molybdenum, lead, phenols, and pH. Six additional surface samples were analyzed for cyanide, chromium, copper and molybdenum. of the surface samples were collected as duplicates and analyzed at two different laboratories.

#### Analytical Results

Results of the soil sample analyses are presented on Tables 1, 2 and 3 and are attached to this report as Appendix B. distribution of chemical constituents are discussed by specific building area in the following sections.

# 1. Treatment Room Area - East End of Building

Analytical results for samples from the eastern portion of the building are presented on Table 1. Surface sample S-1, the sample of the dry sediment atop the asphalt-covered area, contained the highest levels of constituents detected during this investigation. Cyanide was measured at 1100 parts per million (ppm), copper at 2900 ppm, and chromium at 800 ppm. The levels for copper and chromium exceed the respective Total Threshold Limit Concentration (TTLC) designation for hazardous waste (TTLC levels have not been established for cyanide). In addition, the sample contained lead at 120 ppm, molybdenum at 630 ppm, beryllium at 53 ppm and arsenic at 14 ppm. Phenols were measured at 0.94 ppm and the pH was 9.0.

Soil samples collected below the asphalt did not contain significant quantities of metals, phenols, or cyanide. The composite samples from Borings B1 and B2 contained 160 ppm cyanide at the 0.5 foot depth, 24 ppm at 3.0 feet, and 4.7 ppm at 6.0 feet. Boring B3 contained cyanide at 26 ppm, 13 ppm, and 22 ppm at the 0.5, 3.0, and 6.0 foot depths, respectively. Samples from Boring B4, outside the footing line, contained 7.1 ppm, 1.5 ppm, and 3.2 ppm cyanide at the 0.5, 3.0, and 7.0 foot depths, respectively. The measured concentrations of metals in these samples all appear to represent normally occurring background levels. Phenols were not detected with the exception of 0.52 ppm measured in the 7.0 foot sample from boring B4 and 0.94 ppm detected in sediment sample S-1. Soil pH ranged from 5.4 to 8.7.

#### 2. Etch Process Room Area - West End of Building

Analytical results for six samples (S-2 through S-7) collected from the immediate soil surface beneath the etch process rooms are shown on Table 2. Three of the samples, S-2, S-5, and S-6, were split into duplicate samples in the field and analyzed separately by Med-Tox Associates and Sequoia Analytical Laboratory. With the exception of the 0.5 foot sample from Boring B6, these surface samples were the only samples from the etch process room areas found to contain significantly elevated levels of chemical constituents.

The duplicate samples are in acceptable agreement for chemical constituents with the possible exception of the cyanide results. Chromium is reported at concentrations of 55 ppm and 61 ppm by Med-Tox and Sequoia, respectively, for Sample S-2. Copper and molybdenum are reported at 120 vs. 100 and 11 vs. 12 ppm, respectively, for the sample. For cyanide however, Med-Tox reports 240 ppm whereas Sequoia reports 510 ppm. The discrepancy cannot be explained by the laboratories. Similarly, for Sample S-5, Med-Tox reports 270 ppm cyanide, and Sequoia reports 1100 ppm cyanide. The laboratories also disagree on copper concentration with Med-Tox reporting 9000 ppm and Sequoia reporting 900 ppm. The

laboratories agree on chromium and molybdenum, reporting 260 vs. 280 and 170 vs. 120 ppm, respectively, for Med-Tox and Sequoia.

The third duplicate sample (S-6) shows close agreement for all constituents. Cyanide is reported at 1300 ppm (Med-Tox) and 1200 ppm (Sequoia), chromium at 80 ppm (Med-Tox) and 92 ppm (Sequoia), copper at 320 ppm (Med-Tox) and 270 ppm (Sequoia), and molybdenum at 170 ppm (Med-Tox) and 160 ppm (Sequoia).

The remaining surface samples were analyzed only at Med-Tox Associates. Samples S-3, S-4, and S-7 were reported to contain 120, 650, and 1100 ppm cyanide, respectively. Sample S-3 contained 54 ppm chromium, 180 ppm copper, and molybdenum was not detected. Sample S-4 contained 150 ppm chromium, 410 ppm copper, and 140 ppm molybdenum. Sample S-7 contained 120 ppm chromium, 480 ppm copper, and 500 ppm molybdenum. All concentrations of metals are well below the respective TTLC.

Significant concentrations of metals were not found to be present in any of the remaining samples with the exception of the 0.5 foot sample in Boring B6. This sample contained 1100 ppm lead and 130 ppm copper. All other results for metals were within the range of normally occurring background levels. Cyanide was present in the 0.5 foot deep sample from Borings B12, B13 at a concentration of 150 ppm. However, all other samples were found to contain less than 8 ppm, and most of the samples contained less than 1 ppm. The sample from the 3-foot depth in Borings B12, B13 contained 0.2 ppm cyanide.

Phenols were detected in six of the 18 soil samples from this area analyzed for phenols. The maximum concentration detected was 2.82 ppm. Soil pH was measured at between 2.4 and 3.6 for samples at the 0.5 foot depth beneath the etch rooms. All other samples recorded a pH between 6.2 and 8.2.

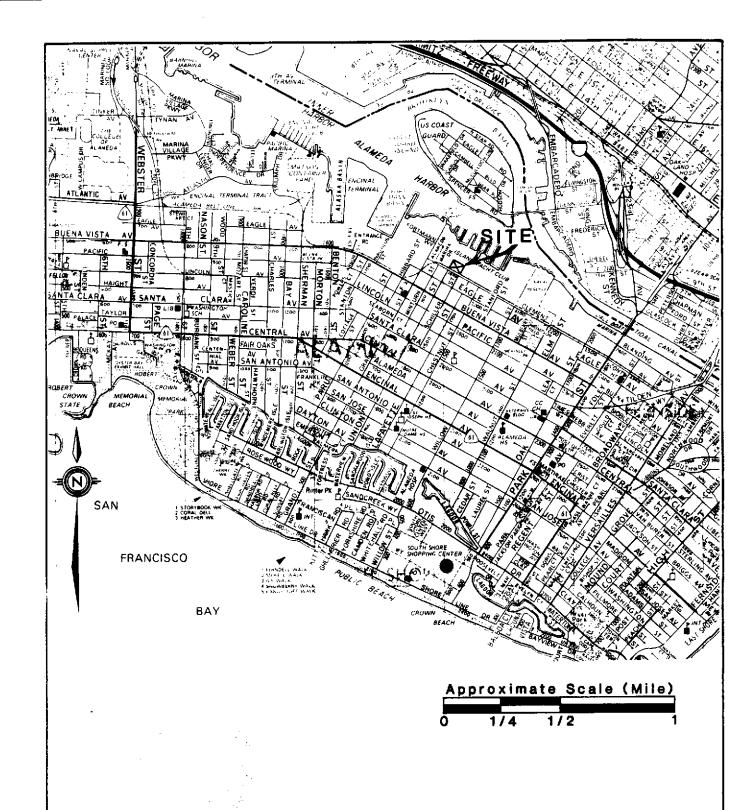
#### VI. DISCUSSION

Based on the analytical results received to date, it appears that elevated levels of cyanide and metals occur only in the top three to six inches of surface soil beneath the etch process rooms at the western end of the building, and in the ponded sediment atop the asphalt surface covering beneath the eastern portion of the building. Surface samples from the beneath the etch process rooms contained from 120 to 1300 ppm cyanide. Chromium was measured at 55 to 280 ppm and molybdenum at ND to 500 ppm. One sample was reported to contain 9000 ppm copper, and the remaining samples contained between 100 and 480 ppm. In contrast, samples from the 0.5 foot depths in this same area (Borings B8 and 9, B10 and 11, B12 and 13) contained 7.8, 3.5, and 150 ppm cyanide. Samples from the 3.0 and 6.5 foot depths contained less than 2 ppm. None of the samples from the western end of the building contained significant

quantities of metals with the exception of the 0.5 foot sample from Boring B6 (outside the interior footing line) which contained 1100 ppm lead. However, the 3.0 and 6.5 foot samples from this boring contained only 2 ppm lead. In addition, lead is not known to have been used in the photo etching process.

The surface sediment sample collected from the top of the asphalt paving beneath the eastern portion of the building is the only sample from this area found to contain significant quantities of chemical constituents. The sample contained 1100 ppm cyanide, 2900 ppm copper, and 800 ppm chromium. The measured concentrations of copper and chromium exceed the State TTLC. In addition, the sample contained 53 ppm beryllium and 630 ppm molybdenum. Samples collected at the 0.5 foot depth beneath the asphalt contained 160 and 26 ppm cyanide and normal background levels of metals (Borings B1, B2 and B3). The 3.0 and 6.0 foot samples from these borings contained between 4.7 and 22 ppm cyanide, again with normal background levels of metals.

The samples from Boring B4, placed outside the interior footing wall, contained 7.1, 1.5, and 3.2 ppm cyanide at the 0.5, 3 and 7 foot depths, respectively. All metals were measured at low levels, and sample at the 7 foot depth contained phenols at 0.52 ppm.


In summary, it appears that only the surficial soils at the west end of the building and the sediment atop the asphalt at the eastern end of the building have been significantly impacted by release of process fluids.

#### VII. LIMITATIONS

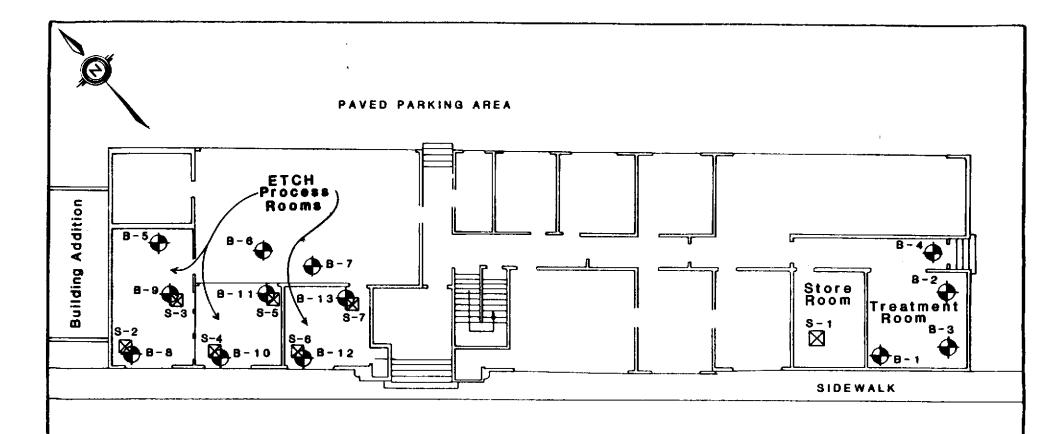
Our services have been performed in accordance with generally accepted engineering and environmental principles and practices within the area at the time of our investigation. No other warranty, either expressed or implied as to the professional advice provided is made. It should be recognized that certain limitations are inherent in the evaluation of subsurface conditions, and that certain conditions may not be detected during an investigation of this type. If you wish to reduce the level of uncertainty associated with this study, we should be contacted for additional consultation.

The analysis and conclusions contained in this report are based on the site conditions as they existed at the time of our reconnaissance. Changes in the information or the data obtained or in the proposed land use could result in changes in our conclusions. If such changes do occur, we should be advised so that we can review our report in light of those changes.

\* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*



Base: Thomas Bros Maps, Alameda County, Page 11, 1988.




SITE LOCATION MAP

1829 CLEMENT AVENUE Alameda, California

| PROJECT NO. | DATE       |
|-------------|------------|
| KE1179-1    | April 1990 |

Figure



— Clement Avenue –

APPROXIMATE SCALE IN FEET



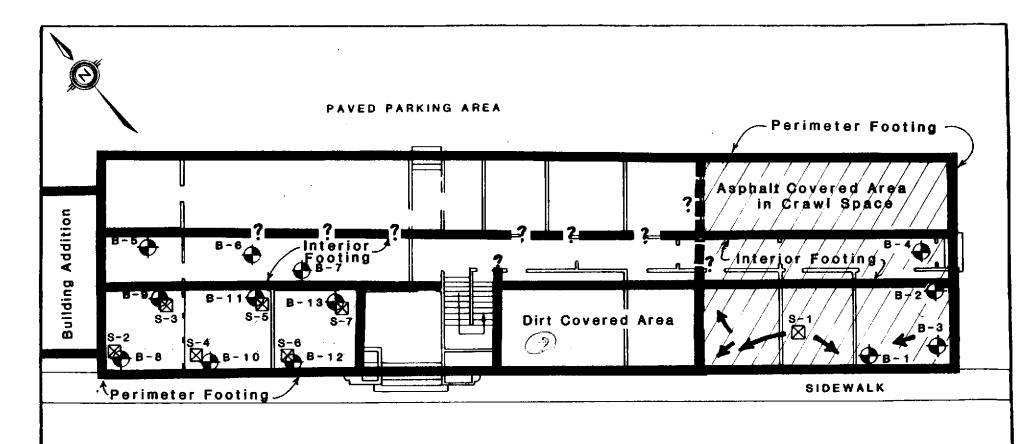
# LEGEND

Approximate Location
of Exploratory Boring

S-1
Surface Sample



# SITE PLAN


1829 CLEMENT AVENUE Alameda, California

2

|            | ameda, Cairi | OTHILE   |
|------------|--------------|----------|
| PROJECT NO | DATE         | Figure   |
|            | T            | i ridura |

April 1990

KE1179-1



---- Clement Avenue -

APPROXIMATE SCALE IN FEET



# LEGEND



Surface Sample

Apparent Drainage Flow Pattern on Asphalt Covered Area



Kaldveer Associates
Geoscience Consultants
A California Corporation

CRAWL SPACE FEATURES

1829 CLEMENT AVENUE Alameda, California

| PROJECT NO | DATE       | Fial |
|------------|------------|------|
| KE1179-1   | April 1990 | Tige |

jure 3

TABLE 1

ANALYTICAL RESULTS

TREATMENT ROOM AREA - EAST END OF BUILDING (results reported in parts per million, mg/kg)

| Sample                |      |     |    | Const | ituent | (1)  |      |             |        |
|-----------------------|------|-----|----|-------|--------|------|------|-------------|--------|
| Location<br>and Depth | CN   | As  | Ве | Cr    | Cu     | Мо   | Pb_  | рН          | Phenol |
| S-1                   | 1100 | 14  | 53 | 800   | 2900   | 630  | 120  | 9.0         | 0.94   |
| B1,B2-0.5             | 160  | 6.6 | ND | 28    | 4      | 23   | 4    | 7.2         | ND     |
| B1,B2-3               | 24   | 1.0 | ND | 42    | 13     | 4    | 2    | 6.9         | ND     |
| B1,B2-6               | 4.7  | ND  | ND | 35    | 8      | 4    | 2    | 7.7         | ND     |
| B3-0.5                | 26   | ND  | ND | 31    | 4      | ND   | 3    | 6.6         | ND     |
| в3-3                  | 13   | 0.6 | ND | 47    | 18     | 5    | 2    | 8.7         | , ND   |
| в3-6                  | 22   | ND  | ND | 28    | 9      | 3    | 2    | 7.8         | ND     |
| B4-0.5                | 7.1  | ND  | ND | 30    | 8      | 3    | 4    | 5 <b>.4</b> | ND     |
| B4-3                  | 1.5  | 1.6 | ND | 33    | 7      | 3    | 1    | 7.6         | ND     |
| B4-7                  | 3.2  | ND  | ND | 37    | 13     | 3    | 2    | 7.8         | 0.52   |
| TTLC                  |      | 500 | 75 | 500   | 2500   | 3500 | 1000 |             |        |

# Notes:

- (1) Constituents = CN-cyanide, As-arsenic, Be-beryllium, Cr-chromium, Cu-copper, Mo-molybdenum, Pb-lead.
- ND = Not detected, see Appendix B for specific laboratory detection limits.
- TTLC = Total Threshold Limit Concentration for designation as hazardous waste.

TABLE 2

ANALYTICAL RESULTS - SURFACE SAMPLES
ETCH PROCESS ROOM AREA - WEST END OF BUILDING
(results reported in parts per million, mg/kg)

# Constituent (1)

| Sample<br>Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CN   | Cr              | Cu   | Мо   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|------|------|
| The state of the s | , ,  |                 |      |      |
| S-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 240  | 55∕             | 120  | 11   |
| S-2D(2/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 510  | .61 °           | 100  | 12   |
| s-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120  | 54              | 180  | ND   |
| S-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 650  | 150 V           | 410  | 140  |
| S-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 270  | 260             | 9000 | 170  |
| S-5D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1100 | 280             | 900  | 120  |
| S-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1300 | 80              | 320  | 170  |
| S-6D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1200 | <sup>5</sup> 92 | 270  | 160  |
| S-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1100 | ີ120ີ           | 480  | 500  |
| And the second s | ~    | 200             |      |      |
| TTLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 500             | 2500 | 3500 |

#### Notes:

- (1) Constituents = CN-cyanide, Cr-chromium, Cu-copper, Mo-molybdenum
- (2) Sample designation S-2D denotes a duplicate of sample S-2
- ND = Not detected, see Appendix B for specific laboratory
   detection limits
- TTLC = Total Threshold Limit Concentration for designation as hazardous waste

TABLE 3

ANALYTICAL RESULTS - SUBSURFACE SAMPLES
ETCH PROCESS ROOM AREA - WEST END OF BUILDING
(results reported in parts per million, mg/kg)

KW : VII AS &

| Sample                |     |     |     | Const | ituent | (1)  |          |     |        |
|-----------------------|-----|-----|-----|-------|--------|------|----------|-----|--------|
| Location<br>and Depth | CN  | As  | Be  | Cr/   | Cu     | Mo   | Pb       | рН  | Phenol |
| B5-0.5                | 0.3 | 1.3 | 0.2 | 24    | 6      | ND   | 9        | 6.7 | ND     |
| B5-3                  | 0.2 | 1.6 | ND  | 23    | 3      | ND   | ND       | 7.9 | ND     |
| B5-6                  | 0.2 | 0.6 | ND  | 26    | 7      | ND   | ( 194, 2 | 7.8 | ND     |
| B6-0.5                | 2.1 | 4.9 | 0.3 | 38    | 130    | ND   | 1100     | 6.2 | ND     |
| B6-3                  | 1.9 | ND  | 0.5 | 52    | 10     | ND   | 2        | 7.1 | 2.82   |
| B6-6.5                | ND  | ND  | 0.2 | 26    | 6      | ND   | 2        | 7.9 | ND     |
| B7-0.5                | 0.2 | 1.3 | ND  | 26    | 6      | ND   | 6        | 7.0 | 0.65   |
| в7-3                  | 2.0 | 2.5 | ND  | 25    | 5      | ND   | 1        | 8.0 | ND     |
| B7-6.5                | 0.6 | ND  | 0.3 | 32    | 8      | ND   | 2        | 7.7 | 1.19   |
| B8&9-0.5              | 7.8 | 9.3 | ND  | 36    | 26     | ND   | 23       | 2.4 | ND     |
| B8&9-3                | 0.3 | 1.5 | 0.3 | 40    | 26     | ND   | 4        | 7.5 | ND     |
| B8&9-6.5              | 0.2 | 0.9 | 0.3 | 32    | 11     | ND   | <->2     | 7.6 | 0.72   |
| B10&11-0.5            | 3.5 | 14  | 0.4 | 42    | 51     | ND   | 52       | 3.6 | 0.44   |
| B10&11-3              | 0.6 | 0.6 | 0.6 | 35    | 15     | ND   | 2        | 6.3 | ND     |
| B10&11-6.5            | 0.8 | ND  | 0.2 | 31    | 10     | ND   | 2        | 8.0 | ND     |
| B12&13-0.5            | 150 | 68  | ND  | 85    | 30     | ND   | 23       | 3.3 | ND     |
| B12&13-3              | 0.2 | 3.4 | 1.4 | 39    | 52     | ND   | 15       | 8.2 | ND     |
| B12&13-6.5            | 0.4 | ND  | ND  | 33    | 10     | ND   | 1        | 8.2 | 2.23   |
| TTLC                  |     | 500 | 75  | 500   | 2500   | 3500 | 1000     |     |        |

#### Notes:

(1) Constituents = CN-cyanide, As-arsenic, Be-beryllium, Cr-chromium, Cu-copper, Mo-molybdenum, Pb-lead.

ND = Not detected, see Appendix B for specific laboratory detection limits.

TTLC = Total Threshold Limit Concentration for designation as hazardous waste.

Ab-TILE

| DAILL RIG Soil Probe Auger (1")                                                                                                                 | SURFACE            | ELEVATION 2                    | ' Belo       | ow Floo                                   | r              | LOGGE                                    | D BY                    | РВН                  |                                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------|--------------|-------------------------------------------|----------------|------------------------------------------|-------------------------|----------------------|------------------------------------------------|--|
| DEPTH TO GROUNDWATER ±6 Feet                                                                                                                    | BORING DIAMETER 2" |                                |              |                                           |                | DATE D                                   | RILLED                  | 2/11/9               | 0                                              |  |
| DESCRIPTION AND CLASSIFIC                                                                                                                       | CATION             | DEPTH                          | LEA          | TANCE S/FT.)                              | ren<br>NT (*.) | NSITY<br>:}                              | FINED<br>ESSIVE<br>NGTH |                      |                                                |  |
| DESCRIPTION AND REMARKS                                                                                                                         | COLOR              | CONSIST.                       | SOIL<br>TYPE | (FEET)                                    | SAMPLER        | PENETRATION<br>RESISTANCE<br>(BLOWS/FT.) | WATER<br>CONTENT (*     | DRY DENSITY<br>(PCF) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH<br>(KSF) |  |
| 1.5" asphaltic tar covering                                                                                                                     |                    |                                |              |                                           |                |                                          |                         |                      |                                                |  |
| Silty sandy BASE MATERIAL, minor gravel and clay, damp to moist                                                                                 | brown              | medium<br>dense                | SM           | 1 -                                       |                |                                          |                         |                      |                                                |  |
| SAND, minor silt,(fine grained sand) slight blue/green discoloration in sample, dry to damp                                                     | black              | loose                          | SM           | 2                                         |                |                                          |                         |                      | :                                              |  |
| Silty SAND (fine-to-medium grained) damp to moist                                                                                               | brown              | medium<br>dense                | SM           | 3 -                                       |                |                                          |                         |                      |                                                |  |
| Clayey SAND (fine grained sand), mois<br>to very moist                                                                                          | brown              | firm-<br>stiff                 | \$C          | - 4 -                                     |                |                                          | <b>\</b>                | After<br>4 hrs.      |                                                |  |
| Silty SAND with clay (fine- to medium grained sand)                                                                                             | brown              | loose<br>to<br>mediun<br>dense | SM           | 5 -<br>                                   |                | <br> <br> -<br>                          | 모                       | First                |                                                |  |
| clayey zones                                                                                                                                    | _                  |                                |              | 6                                         |                |                                          | -                       | Water                |                                                |  |
| Total Depth = 6.5 Feet  Note: The stratification lines represe the approximate boundaries between soil types and the transition may be gradual. | nt                 |                                |              | 7 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 |                |                                          |                         |                      |                                                |  |
|                                                                                                                                                 |                    |                                |              | 10                                        | 1_             |                                          |                         |                      | <u> </u>                                       |  |
|                                                                                                                                                 | _  -               |                                |              | ATOR'                                     |                |                                          |                         | )G                   |                                                |  |
| Kaldveer Associate Geoscience Consultar A California Corporation                                                                                | nts                | 1<br>                          |              | ameda,                                    |                |                                          |                         |                      |                                                |  |
| A California Corporation                                                                                                                        | PROJECT NO. DAT    |                                |              |                                           |                | E BORING                                 |                         |                      |                                                |  |

PROJECT NO.

KE1179-1

DATE

April 1990

BORING

NO.

B-1

| OAILL RIG Hand Auger                                                                                                                             | SURFACE | ELEVATION 2                    | ' Belo       | w Floor                                          | .   1   | LOGGE                                    | BY                    | РВН              |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------|--------------|--------------------------------------------------|---------|------------------------------------------|-----------------------|------------------|------------------------------------------------|
| DEPTH TO GROUNDWATER 51611                                                                                                                       |         |                                |              | inches                                           |         | DATE DE                                  | RILLED                | 2/11/9           | 0                                              |
| DESCRIPTION AND CLASSIFIC                                                                                                                        | CATION  |                                |              | DEPTH                                            | LEA     | PENETRATION<br>RESISTANCE<br>(BLOWS/FT.) | WATER<br>CONTENT (**) | ENSITY<br>F.J    | UNCONFINED<br>COMPRESSIVE<br>STRENGTH<br>(KSF) |
| DESCRIPTION AND REMARKS                                                                                                                          | COLOR   | CONSIST.                       | SOIL<br>TYPE | (FEET)                                           | SAMPLER | PENET!<br>RESIS<br>(BLOW                 | CONTE                 | DRY DENSIT       | UNICOP<br>COMPR<br>STRE.                       |
| Silty sand BASE MATERIAL below 1.5 inch Asphalt                                                                                                  | brown   |                                | SM           |                                                  |         |                                          |                       |                  |                                                |
| Silty SAND, (fine, poorly sorted sand),<br>discolored green, moist                                                                               | black   | medium<br>dense                | SM           | - 1<br>- 1<br>                                   |         |                                          |                       | 497              |                                                |
| Silty SAND, (fine sand), very moist to wet                                                                                                       | brown   | loose<br>to<br>medium<br>dense | SM           | 3 7                                              | X       |                                          | 7                     | After<br>3.5 hrs |                                                |
| increasing silty clay Silty, clayey, SAND, (medium-to-coars grained sand) poorly sorted, very moist to wet                                       | e brown | medium<br>dense                | SC           | 5 7 7 6 7                                        | X       |                                          | \$                    | First<br>Water   |                                                |
| Total Depth = 6.5 Feet  Note: The stratification lines represer the approximate boundaries between soil types and the transition may be gradual. | 1       |                                |              | 7 - 7 - 8 - 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10 |         |                                          |                       |                  |                                                |
|                                                                                                                                                  |         | EXP                            | LOR          | ATORY                                            | В       | ORIN                                     | G LC                  | G                |                                                |
|                                                                                                                                                  |         |                                | 020          | CLEAMEN                                          | 17      | AMEN                                     | 115                   |                  |                                                |



|             |             |        |     | _ |
|-------------|-------------|--------|-----|---|
| PROJECT NO. | DATE        | BORING | D 2 |   |
| KE1179-1    | 'April 1990 | NO.    | B-2 |   |

| DAILL RIG Hand Auger 2.5"                                                                                                                                                               | SURFACE       | LEVATION                    | 2' bel       | low floc                | or                    | LOGGE                                    | DBY                     | DML                  |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------|--------------|-------------------------|-----------------------|------------------------------------------|-------------------------|----------------------|----------------------------------------|
| DEPTH TO GROUNDWATER 5 Feet                                                                                                                                                             | BORING DI     | AMETER 2                    | な inc        | hes                     |                       | DATE D                                   | AILLED                  | 2/11/                | 90                                     |
| DESCRIPTION AND CLASSIFIC                                                                                                                                                               | ATION         | DEPTH                       | LEA          | ATION<br>MINGE<br>S/FT) | WATER<br>CONTENT (**) | MSITY<br>3                               | COMPRESSIVE<br>STRENGTH |                      |                                        |
| DESCRIPTION AND REMARKS                                                                                                                                                                 | COLOR         | CONSIST.                    | SOIL<br>TYPE | 7                       | SAMPLER               | PENETRATION<br>RESISTANCE<br>(BLOWS/FT.) | WA                      | DAY DENSITY<br>(PCF) | UNICONFINED<br>COMPRESSIVE<br>STRENGTH |
| 1.5" Asphalt type tar covering                                                                                                                                                          |               |                             |              |                         |                       |                                          |                         |                      |                                        |
| Silty sandy BASE MATERIAL with gravel and clay                                                                                                                                          | brown         |                             | SM           | -<br>-                  | ////                  |                                          |                         | <u> </u><br>         |                                        |
| Slightly silty SAND, fine-medium-<br>grained, moist                                                                                                                                     | dark<br>brown | loose                       | SM           | 1 -                     | 1111                  |                                          |                         |                      |                                        |
| Silty SAND, fine-medium-grained, wet.<br>no recovery in driven sample tube.<br>Sample obtained with hand auger and<br>placed in tube.                                                   | brown         | loose to<br>medium<br>dense | SM           | 2 -                     |                       | <br>                                     |                         |                      |                                        |
|                                                                                                                                                                                         |               |                             |              | 3 -                     | X                     |                                          |                         |                      |                                        |
| Clayey SAND, to sandy clay medium-<br>grained sand, very moist to wet grading<br>to less clay with depth                                                                                | brown         | medium<br>dense to<br>stiff | 1            | 4 -                     |                       |                                          |                         |                      |                                        |
| Silty SAND, fine-medium-grained sand, saturated. No recovery in driven sampl tube.                                                                                                      |               | loose                       |              | 5 -                     | X                     |                                          | 모                       | First<br>Water       |                                        |
| Sample placed in tube from hand auger Total Depth = 6.5 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. |               |                             |              | 7 - 7 - 8 - 9 9         |                       |                                          |                         |                      |                                        |
|                                                                                                                                                                                         |               | EXP                         | LOF          | ATOR'                   | Y B                   | ORIN                                     | G LC                    | )G                   | <u>.l</u>                              |
| Kaldveer Associate Geoscience Consultan                                                                                                                                                 |               |                             | 182          | 9 CLEN<br>Alamed        |                       |                                          |                         |                      |                                        |
| A California Corporation                                                                                                                                                                |               | MOJECT NO.                  |              | DA                      | ŤĒ                    |                                          | BORIN                   |                      | . =                                    |
|                                                                                                                                                                                         | E 17.1        | E 1 1 70-1                  |              |                         |                       | 1                                        | NΩ                      | R-3                  |                                        |

KE1179-1

B-3

NO.

April 1990

| DAILL RIG Minute Man                                                                                                                            | SURFACE E | LEVATION 3                     | Belo         | w Floo        | r       | LOGGE                                    | BY                   | РВН                                   |                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|--------------|---------------|---------|------------------------------------------|----------------------|---------------------------------------|------------------------------------------------|
|                                                                                                                                                 | BORING DI |                                | DATE DI      | RILLED        | 2/11/90 | )                                        |                      |                                       |                                                |
| DESCRIPTION AND CLASSIFIC                                                                                                                       | ATION     |                                |              | DEPTH         |         |                                          |                      |                                       |                                                |
| DESCRIPTION AND REMARKS                                                                                                                         | COLOR     | CONSIST.                       | SOIL<br>TYPE | (FEET)        | SAMPLER | PENETRATION<br>RESISTANCE<br>(BLOWS/FT.) | WATER<br>CONTENT (*) | DRY DENSITY<br>(PCF)                  | UNCONFINED<br>COMPRESSIVE<br>STRENGTH<br>(KSF) |
| 1.5 inches Asphaltic Tar covering                                                                                                               |           |                                |              |               | -       |                                          |                      |                                       |                                                |
| Silty sandy BASE MATERIAL, minor gravel and clay, damp to moist                                                                                 | brown     |                                | SM           | <br><br>- 1 - |         |                                          |                      |                                       |                                                |
| SAND, minor silt, fine grained sand,<br>blue-green discoloration in sample, dam                                                                 | black     | loose<br>to<br>medium<br>dense | SM           | <br><br>- 2 - |         |                                          |                      |                                       |                                                |
| Silty SAND, (fine-to-medium grained) damp to moist. No recovery in sampler. Sample taken from hand auger and placed in brass tube.              | brown     | loose-                         | SM           | - 3 -         | X       |                                          |                      |                                       |                                                |
| Clayey SAND (fine-to-medium grained) moist                                                                                                      | brown     | firm<br>stiff                  | sc           | 4 -           |         |                                          | Ţ                    | After<br>3 hrs.                       |                                                |
| Silty SAND with clay (fine-to-medium grained sand)                                                                                              | brown     | loose<br>to<br>medium<br>dense | SM           | 5 -           |         |                                          |                      |                                       |                                                |
| possible clayey zone                                                                                                                            |           |                                |              | 6 -<br>       |         |                                          | ₽                    | First                                 |                                                |
|                                                                                                                                                 |           |                                |              | <u></u>       | X       |                                          | -                    | Water                                 |                                                |
| Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. |           |                                |              | 8 -           |         |                                          |                      |                                       |                                                |
|                                                                                                                                                 |           | EVE                            |              | 10            |         | OBIN                                     |                      | )                                     |                                                |
| Kaldveer Associate Geoscience Consultant                                                                                                        |           |                                | 1829         | CLEME         | NT      | AVEN                                     | IUE                  | ,G                                    |                                                |
| A California Corporation                                                                                                                        |           |                                |              |               |         |                                          |                      | · · · · · · · · · · · · · · · · · · · |                                                |

DATE

April 1990

BORING

NO.

B-4

PROJECT NO.

KE1179-1

| DAILL RIG Minute Man                                                                                                                          | SURFACE                | ELEVATION       | 3' Be        | low Floo                  | LOGG                                 | GED BY                         | РВН                  |                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|--------------|---------------------------|--------------------------------------|--------------------------------|----------------------|---------------------------------------|
| DEPTH TO GROUNDWATER 6 Feet                                                                                                                   | BORING C               | HAMETER         | 3"           |                           | T                                    | DRILLEC                        | 2/17/9               | 0                                     |
| DESCRIPTION AND CLASSIFIE                                                                                                                     | CATION                 |                 |              | DEPTH                     | ER<br>NTION<br>NNCE                  | /FT.)                          | ISITY                | INED<br>SSIVE<br>GTH                  |
| DESCRIPTION AND REMARKS                                                                                                                       | COLOR                  | CONSIST.        | SOIL<br>TYPE | (FEET)                    | SAMPLER<br>PENETRATION<br>RESISTANCE | (BLOWS/FT.) WATER CONTENT (**) | DRY DENSITY<br>(PCF) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH |
| Silty SAND, (fine-to-coarse sand), dam<br>trace orgainic material                                                                             | dark<br>brown<br>black | loose           | SM           | 1 2                       |                                      |                                |                      |                                       |
| Silty SAND with minor clay, very moist<br>to damp, rust discoloration in vertical<br>veins                                                    | brown                  | medium<br>dense | s SM         | 3 - 4 5 - 5               |                                      | *                              | After 2 hrs.         |                                       |
| Silty, clayey SAND (fine-to-medium) slight rust discoloration, very moist to wet                                                              | brown                  | medium<br>dense | SM<br>SM     | 6                         |                                      | 모                              | First<br>Water       |                                       |
| Total Depth = 7 Feet  Note: The stratification lines representhe approximate boundaries between soil types and the transition may be gradual. | t                      |                 |              | 8 - 9 - 10 - 10 - 10 - 10 |                                      |                                |                      |                                       |
|                                                                                                                                               |                        | EXP             | LORA         | ATORY                     | BORII                                | NG LO                          | G                    | <del></del>                           |
| Kaldveer Associate Geoscience Consultan                                                                                                       | es<br>ts               |                 |              | CLEMEN<br>ameda, C        |                                      |                                |                      |                                       |
| A California Corporation                                                                                                                      |                        | ROJECT NO.      | I            | DATÉ                      |                                      | BORING                         | B-5                  |                                       |

KE1179-1

NO.

April 1990

8-5

| DRILL AIG Minute Man                                                                                                                            | SURF                                                | ACE E   | LEVATION        | 3' Be        | low Floo                                 | ) <del> </del> | LOGGE                                    | D BY                  | РВН                  |                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------|-----------------|--------------|------------------------------------------|----------------|------------------------------------------|-----------------------|----------------------|------------------------------------------------|
| DEPTH TO GROUNDWATER 6 Feet                                                                                                                     | BORII                                               | NG DI   | AMETER          | 3"           |                                          |                | DATE 0                                   | AILLED                | 2/17/9               | 0                                              |
| DESCRIPTION AND CLASSIFIC                                                                                                                       | CATIO                                               | N       |                 |              | DEPTH                                    | LER            | TANCE (S/FT.)                            | WATER<br>CONTENT (*0) | INSITY<br>1)         | INCONFINED<br>OMPRESSIVE<br>STRENGTH<br>(KSF)  |
| DESCRIPTION AND REMARKS                                                                                                                         | CO                                                  | LOR     | CONSIST.        | SOIL<br>TYPE | i i                                      | SAMPLER        | PENETRATION<br>RESISTANCE<br>(BLOWS/FT.) | WA                    | DRY DENSITY<br>(PCF) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH<br>(KSF) |
| Silty SAND, trace organic debris, damp                                                                                                          | bla<br>wit<br>son<br>bro                            | h<br>ne | loose           | SM           |                                          |                |                                          |                       |                      |                                                |
| Silty SAND with minor clay (fine-to-<br>coarse grained sand), moist to very<br>moist, rust colored sand in veritcal veir                        | bro                                                 | wn      | medium<br>dense | SM           | 3                                        |                |                                          |                       |                      |                                                |
| Silty clayey SAND (fine-to-coarse sand slight discoloration in seams (seam fille                                                                |                                                     | own     | medium<br>dense | SC<br>SM     | 5 -                                      |                |                                          | ¥                     | After                | <b>9.</b>                                      |
| with clayey silt), very moist to saturate                                                                                                       |                                                     |         |                 |              | 6 7                                      |                |                                          | 모                     | First<br>Water       |                                                |
| Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. | ıt                                                  |         |                 |              | 8 - 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10 |                |                                          |                       |                      |                                                |
|                                                                                                                                                 |                                                     |         | EXP             | LOR          | ATORY                                    | 8              | ORIN                                     | G LC                  | G                    | <u> </u>                                       |
| Kaldveer Associate Geoscience Consultar A California Corporation                                                                                |                                                     |         |                 |              | CLEME<br>lameda,                         |                |                                          |                       |                      |                                                |
| A Sumovina doriginario                                                                                                                          | PROJECT NO. DATE BORING KE1179-1 April 1990 NO. B-6 |         |                 |              |                                          |                |                                          |                       |                      |                                                |

| DRILL RIG Minute Man                                                                                                                            | SURFACE                | ELEVATION | 3¹ Be        | low Flo       | or      | LOGGE                                    | ЭВҮ                   | РВН                  | <del></del>                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|--------------|---------------|---------|------------------------------------------|-----------------------|----------------------|------------------------------------------------|
| DEPTH TO GROUNDWATER 6 Feet                                                                                                                     | BORING D               | IAMETER   | 3"           |               | $\perp$ | DATE D                                   |                       | 4) (1)2              |                                                |
| DESCRIPTION AND CLASSIFIC                                                                                                                       | CATION                 |           | <b>,</b>     | DEPTH         | SAMPLER | PENETRATION<br>RESISTANCE<br>(BLOWS/FT.) | WATER<br>CONTENT (*4) | DRY DENSITY<br>(PCF) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH<br>IKSF) |
| DESCRIPTION AND REMARKS                                                                                                                         | COLOR                  | CONSIST.  | SOIL<br>TYPE | (FEET)        | SAM     | PENET<br>RESIS<br>(BLOV                  | CONT                  | DRY D                | UNCO<br>COMPI<br>STRI                          |
| Silty, SAND (fine- to coarse-grained) organic debris, damp                                                                                      | damp<br>brown<br>black | loose     | SM           | <br><br>- 1 - |         |                                          |                       |                      |                                                |
|                                                                                                                                                 |                        |           |              | - 2 -         |         |                                          |                       |                      |                                                |
| Silty SAND (fine sand) moist to very moist                                                                                                      | brown                  | mediun    | SM           | 3 -           |         |                                          |                       |                      |                                                |
| Silty, clayey SAND (fine- to coarse san                                                                                                         | d) brown               | mediun    | sc           | - 5 -         |         |                                          | <b>₹</b>              | After<br>1 hr.       |                                                |
| discoloration in clay seam around tree root, (green to black), very moist to saturated                                                          |                        | dense     |              | - 6           |         |                                          | 모                     | First                |                                                |
|                                                                                                                                                 |                        |           |              | 7 -           |         |                                          |                       | Water                |                                                |
| Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. |                        |           |              | 8 -           |         |                                          |                       |                      |                                                |
|                                                                                                                                                 |                        |           |              | 9 -           |         |                                          |                       |                      |                                                |
|                                                                                                                                                 |                        | EXP       | LOR          | ATORY         | / B     | ORIN                                     | G LC                  | G                    |                                                |



Kaldveer Associates Geoscience Consultants A California Corporation

|             | _          |         |
|-------------|------------|---------|
| PROJECT NO. | DATE       | BORING  |
| KE1179-1    | April 1990 | NO. B_7 |

| DESCRIPTION AND CLASSIFICATION  DESCRIPTION AND REMARKS  COLOR  CONSIST  SOIL  TYPE  Silty SAND (fine grained sand) damp, slight green-brown discoloration  Silty SAND, minor clay (fine-to-coarse grained sand), moist to very moist, rust discoloration in veins  Silty, clayey SAND (fine-to-coarse grained sand) very moist to wet. Green brown discoloration in clay filled seams  DEPTH (FEET)  OESCRIPTION AND REMARKS  COLOR  CONSIST  SOIL  TYPE  DEPTH (FEET)  OSA  DONE  SILTY SAND, minor clay (fine-to-coarse grained sand) very moist to very moist, rust dense  DEFTH (FEET)  Town  Medium SC dense  SC dense  Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. | RILL RIG Minute Man SURFA                                                                                        | ACE ELEVATION 3 | Below Floor                    | LOGGE                                      | D BY                  | PBH                  |                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------|--------------------------------------------|-----------------------|----------------------|------------------------------------------------|
| Silty SAND (fine grained sand) damp, slight green-brown discoloration  Silty SAND, minor clay (fine-to-coarse grained sand), moist to very moist, rust discoloration in veins  Silty, clayey SAND (fine-to-coarse grained sand) very moist to wet. Green brown discoloration in clay filled seams  Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | IG DIAMETER 31  | 11                             | DATED                                      | RILLED                | 2/17/                | 90                                             |
| Silty SAND, minor clay (fine-to-coarse grained sand), moist to very moist, rust discoloration in veins  Silty, clayey SAND (fine-to-coarse grained sand) very moist to wet. Green brown discoloration in clay filled seams  Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be                                                                                                                                                                                                                                                                                                                                                                                                            | DESCRIPTION AND CLASSIFICATION                                                                                   | ¥               | DEPTH                          | LER<br>IATION<br>TANCE<br>S/FT.)           | WATER<br>CONTENT (*.) | NSITY<br>(           | FINED<br>ESSIVE<br>NGTH                        |
| slight green-brown discoloration black  Silty SAND, minor clay (fine-to-coarse grained sand), moist to very moist, rust discoloration in veins  Silty, clayey SAND (fine-to-coarse grained sand) very moist to wet. Green brown discoloration in clay filled seams  Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be                                                                                                                                                                                                                                                                                                                                                                    | DESCRIPTION AND REMARKS COLO                                                                                     | OR CONSIST.     | SOIL (FEET)                    | SAMPLER PENETRATION RESISTANCE (BLOWS/FT.) | WAI                   | DRY DENSITY<br>(PCF) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH<br>(KSF) |
| grained sand), moist to very moist, rust discoloration in veins  - 2  Silty, clayey SAND (fine-to-coarse grained sand) very moist to wet. Green brown discoloration in clay filled seams  Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be  dense  - 2  - 3  - 4  - 4  - 5  - 6  - 6  - 7  - 7  - 8                                                                                                                                                                                                                                                                                                                                                                                     | light green-brown discoloration brow                                                                             | wn              |                                |                                            |                       |                      |                                                |
| grained sand) very moist to wet. Green brown discoloration in clay filled seams  5  Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be  dense  7  8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rained sand), moist to very moist, rust                                                                          |                 | - 2                            |                                            | *                     | After<br>2 hrs.      |                                                |
| Note: The stratification lines represent the approximate boundaries between soil types and the transition may be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rained sand) very moist to wet. Green                                                                            |                 | 5 -                            |                                            | ₹.                    | First<br>Water       |                                                |
| - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: The stratification lines represent the approximate boundaries between soil types and the transition may be |                 | 7<br>- 8<br>- 8<br>- 9<br>- 10 |                                            |                       |                      |                                                |



Kaldveer Associates Geoscience Consultants A California Corporation

| PROJECT NO. | DATE       | BORING | ,   |
|-------------|------------|--------|-----|
| KE1179-1    | April 1990 | NO.    | B-8 |

| DAILL RIG Minute Man                                                                                                                      | SURFACE                | ELEVATION 3     | ' Belo | w Floor              |         | LOGGE                         | D BY                  | РВН                  |                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|--------|----------------------|---------|-------------------------------|-----------------------|----------------------|------------------------------------------------|
| DEPTH TO GROUNDWATER 6 Feet                                                                                                               | BORING D               | IAMETER         | 3"     |                      |         | DATE D                        | RILLED                | 2/17/9               | 0                                              |
| DESCRIPTION AND CLASSIFIC                                                                                                                 | CATION                 |                 |        | DEPTH                | EA.     | ATION<br>ANCE<br>S/FT.)       | ER<br>(T (*)          | VSITY                | FINED<br>SSIVE<br>IGTH                         |
| DESCRIPTION AND REMARKS                                                                                                                   | COLOR                  | CONSIST.        | SOIL   | 1                    | SAMPLER | PENETRA<br>RESISTA<br>(BLOWS) | WATER<br>CONTENT (**) | DRY DENSITY<br>(PCF) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH<br>(KSF) |
| Silty SAND, (fine grained sand), trace organic debris, damp, green discoloration in sample                                                | black<br>dark<br>brown | loose           | SM     |                      |         |                               |                       |                      |                                                |
| Silty SAND with minor clay, (fine to<br>coarse grained sand), green-brown dis-<br>coloration in clay seams, moist to very<br>moist        | brown                  | medium<br>dense | SM     | 3 - 4 - 5 -          |         |                               | =                     | After<br>2 hrs.      |                                                |
| Silty, clayey SAND, (fine to coarse san very moist to wet                                                                                 | d) brown               | medium<br>dense | SC     | 6 7                  |         |                               | 후                     | First<br>Water       |                                                |
| Total Depth = 7 Feet  Note: Stratification lines represent the approximate boundaries between soil types and the transition may be gradua |                        |                 |        | 8 - 9 - 10 - 10 - 10 |         |                               |                       |                      |                                                |
|                                                                                                                                           |                        | EXP             | LOR    | ATORY                | В       | ORIN                          | G LC                  | G                    |                                                |



Kaldveer Associates Geoscience Consultants

A California Corporation

| PROJECT NO. | DATE       | BORING |     |  |
|-------------|------------|--------|-----|--|
| KE1179-1    | April 1990 | NO.    | B-9 |  |

| DAILL RIG Minute Man                                                                                                                            | SURFACE I              | ELEVATION 3               | 3' Bel       | ow Floo         | $\prod$                   | LOGGE                                    | BY               | РВН                  |                                       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|--------------|-----------------|---------------------------|------------------------------------------|------------------|----------------------|---------------------------------------|--|--|
| DEPTH TO GROUNDWATER 6 Feet                                                                                                                     | BORING DI              |                           |              |                 |                           | DATE DE                                  | RILLED           | 2/17/9               | 0                                     |  |  |
| DESCRIPTION AND CLASSIFIC                                                                                                                       | ATION                  |                           |              | DEPTH           | LEA                       | ATION<br>ANCE<br>S/FT.)                  | IER<br>NT (**)   | NSITY<br>)           | FINED<br>SSIVE<br>4GTH                |  |  |
| DESCRIPTION AND REMARKS                                                                                                                         | COLOR                  | CONSIST.                  | SOIL<br>TYPE | T I             | SAMPLER                   | PENETRATION<br>RESISTANCE<br>(BLOWS/FT.) | WATER<br>CONTENT | DRY DENSITY<br>(PCF) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH |  |  |
| Silty SAND, (fine-to-coarse grained sand), traces organic material, dry to damp, green-blue discoloration in sample                             | brown<br>black         | loose                     | SM           |                 |                           |                                          |                  |                      |                                       |  |  |
| Silty SAND with minor clay, (fine-to-medium grained sand), moist to very moist                                                                  | brown                  | loose-<br>medium<br>dense | SM           | 3 -             |                           |                                          | <b>₹</b>         | After                |                                       |  |  |
| Silty, clayey SAND (fine-to-coarse grained sand), wet to saturated, green-blue discoloration in clay-filled seams                               | brown                  | medium<br>dense           | SC           | 5 -             |                           |                                          | \$               | First<br>Water       |                                       |  |  |
| Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. |                        |                           |              | 7 - 8           |                           |                                          |                  |                      |                                       |  |  |
|                                                                                                                                                 | EXPLORATORY BORING LOG |                           |              |                 |                           |                                          |                  |                      |                                       |  |  |
| Kaldveer Associate Geoscience Consultant                                                                                                        |                        | 1                         |              | LEMEN<br>ameda, |                           |                                          | VENUE<br>ifornia |                      |                                       |  |  |
| A California Corporation                                                                                                                        | }                      | ROJECT NO.<br>E1179-1     | I            | DAT<br>April 19 | DATE BORING 1990 NO. B-10 |                                          |                  |                      |                                       |  |  |

| ORILL RIG Minute Man                                                                                                                            | SURFACE                                      | ELEVATION 3     | 3' Bel | ow Floo          | r       | LOGGE                                    | DBY              | РВН                  |                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------|--------|------------------|---------|------------------------------------------|------------------|----------------------|---------------------------------------|
| DEPTH TO GROUNDWATER 7 Feet                                                                                                                     | BORING DI                                    |                 |        |                  |         | DATE D                                   | RILLED           | 2/17/                | 90                                    |
| DESCRIPTION AND CLASSIFIC                                                                                                                       | CATION                                       |                 |        | DEPTH            | EЯ      | ATION<br>ANCE                            | ER<br>(T (*.)    | NSITY<br>)           | FINED<br>SSIVE<br>IGTH                |
| DESCRIPTION AND REMARKS                                                                                                                         | COLOR                                        | CONSIST.        | SOIL   | 1                | SAMPLEA | PENETRATION<br>RESISTANCE<br>(BLOWS/FT.) | WATER<br>CONTENT | DRY DENSITY<br>(PCF) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH |
| Silty SAND, (fine-to-coarse sand), trace organic debris, dry to damp, green/blue discoloration                                                  |                                              | loose           | SM     | 1 -              |         |                                          |                  |                      |                                       |
| Silty SAND with minor clay (fine-to-coarse grained grained sand), moist to very moist                                                           | brown                                        | medium<br>dense | SM     | 3 -              |         |                                          | ¥                | After<br>3 hrs.      |                                       |
| Silty, clayey SAND, (fine grained sand) very moist to wet, rust colored sandy silt filled veins                                                 | brown                                        | medium<br>dense | SC     | 5 -              |         |                                          | 포                | First<br>Water       |                                       |
| Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. | t                                            |                 |        | 8 -              |         |                                          |                  |                      |                                       |
|                                                                                                                                                 |                                              | EXP             | LOR    | ATORY            | / B     | ORIN                                     | G LO             | G                    | ·                                     |
| Kaldveer Associate Geoscience Consultan                                                                                                         |                                              |                 |        | CLEME<br>lameda, |         |                                          |                  |                      |                                       |
| A California Corporation                                                                                                                        | Alameda, California  PROJECT NO. DATE BORING |                 |        |                  |         |                                          |                  |                      |                                       |

PROJECT NO.

KE1179-1

April 1990

BORING

NO.

8-11

| DAILL RIG Minute Man                                                                                                                          | SURFACE  | ELEVATION 3               | ' Bel          | ow Floor                                | ۱.      | OGGE                                     | ВУ               | РВН                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------|----------------|-----------------------------------------|---------|------------------------------------------|------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH TO GROUNDWATER 6 Feet                                                                                                                   | BORING D | AMETER 3                  | H              |                                         | 0       | ATE DI                                   | RILLED           | 2/17/                | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DESCRIPTION AND CLASSIFI                                                                                                                      | CATION   |                           |                | DEPTH                                   | E.B     | ATION<br>ANCE<br>S/FT.)                  | ER 47 (*.)       | NSITY<br>J           | FINED<br>SSIVE<br>IGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DESCRIPTION AND REMARKS                                                                                                                       | COLOR    | CONSIST.                  | SOIL<br>TYPE   | 7 ł                                     | SAMPLER | PENETRATION<br>RESISTANCE<br>(BLOWS/FT.) | WATER<br>CONTENT | DRY DENSITY<br>(PCF) | UNCONFINED<br>COMPRESSIVE<br>STRENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ilty SAND, (fine sand) damp to moist, green discoloring in sample                                                                             | black    | loose-<br>medium<br>dense | SM             | - 1 -                                   |         |                                          |                  |                      | Transition of the control of the con |
| Silty SAND, (fine sand), moist to very<br>moist                                                                                               | brown    | medium<br>dense           | SM             | 3 - 4 -                                 |         |                                          | *                | After<br>5 hrs.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clayey silty SAND, (fine sand), moist t                                                                                                       | o brown  | medium<br>dense           | SC             | 5 -                                     |         |                                          |                  | First<br>Water       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Depth = 7 Feet  Note: The stratification lines represe the approximate boundaries between soil types and the transition may be gradual. | n        |                           |                | 7 - 7 - 8 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - |         |                                          |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                               | 1        | EXP                       | LOR            | ATORY                                   | ВС      | RING                                     | G LO             | G                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Kaldveer Associate Geoscience Consulta                                                                                                        |          | 1                         |                | CLEMEN<br>ameda,                        |         |                                          |                  |                      | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A California Corporation                                                                                                                      |          | ROJECT NO.                | <del>- T</del> | DATE                                    | :       |                                          | ORING            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

KE1179-1

B-12

NO.

April 1990

| DAILL RIG Minute Man                                                                                                                            | SURFAC | E ELEVATION     | 3¹ Be        | low Floo | LOGGE                                              | DBY              | РВН             |                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|--------------|----------|----------------------------------------------------|------------------|-----------------|-------------------------------------|
| DEPTH TO GROUNDWATER 6 Feet                                                                                                                     | BORING | DIAMETER        | 3"           |          | DATE D                                             | RILLED           | 2/17/9          | 0                                   |
| DESCRIPTION AND CLASSIFIC                                                                                                                       | CATION |                 |              | DEPTH    | ATION<br>ANCE<br>S/FT.)                            | ER<br>47 (*a)    | VSITY           | SSAVE<br>GTH                        |
| DESCRIPTION AND REMARKS                                                                                                                         | COLOF  | CONSIST.        | SOIL<br>TYPE | (FEET)   | SAMPLER<br>PENETRATION<br>RESISTANCE<br>(BLOWS/FT) | WATER<br>CONTENT | DRY DENSI       | UNCONFINE<br>COMPRESSIV<br>STRENGTH |
| Silty SAND (fine-to-coarse grained sand<br>minor organic material, dry to damp,<br>slight green-blue discoloration                              | black  | loose           | SM           | 1 1      |                                                    |                  |                 |                                     |
| Silty, clayey SAND, (fine sand), very moist to wet                                                                                              | brown  | medium<br>dense | SC           | 3 - 4    |                                                    | ¥                | After<br>4 hrs. |                                     |
| Clayey SAND with minor silt, (fine-to-coarse grained sand), wet to saturated, slight green-blue discoloration in clay filled veins              | brown  | medium<br>dense | SC           | 5 1 6 1  |                                                    | <del>\$</del>    | First<br>Water  |                                     |
| Total Depth = 7 Feet  Note: The stratification lines represent the approximate boundaries between soil types and the transition may be gradual. |        |                 |              | 8        |                                                    |                  |                 |                                     |
|                                                                                                                                                 |        | EXP             | OR/          | TORY     | BORING                                             | G LO             | G               | ·                                   |



Kaldveer Associates
Geoscience Consultants
A California Corporation

| PROJECT NO. | DATE       | BORING   |
|-------------|------------|----------|
| KE1179-1    | April 1990 | NO. B-13 |

# APPENDIX B LABORATORY REPORTS



# **ENVIRONMENTAL & OCCUPATIONAL HEALTH SERVICES**

3440 Vincent Road ● Pleasant Hill. CA 94523 ● (415) 930-9090

# LABORATORY ANALYSIS REPORT

KALDVEER ASSOCIATES, INC.

425 ROLAND WAY

OAKLAND, CA 94621

ATTN: DENNIS LADUZINSKY

CLIENT PROJECT NO: KE1179-1

REPORT DATE: 03/27/90

DATE SAMPLED: 02/11/90

DATE RECEIVED: 02/12/90

MED-TOX JOB NO: 9002074

ANALYSIS OF: SOIL SAMPLES FOR ARSENIC, BERYLLIUM, CHROMIUM,

COPPER, MOLYBDENUM, LEAD, pH, CYANIDE AND PHENOLS

| Sample Identii<br>Client Id. | fication<br>Lab No. | Arsenic<br>(mg/kg) | Beryllium<br>(mg/kg) | Chrowium<br>(mg/kg) | Copper<br>(mg/kg) | Molybdenum<br>(mg/kg) | Lead<br>(mg/kg) | pH<br>(S.U.) |
|------------------------------|---------------------|--------------------|----------------------|---------------------|-------------------|-----------------------|-----------------|--------------|
| 5-1                          | 01A                 | 14                 | 53                   | 800                 | 2,900 /           | 630                   | 120             | 9.0          |
| 31-0.5 <b>,82-0.5</b>        |                     | 6.5                | NO                   | 28                  | 4                 | 23                    | 4               | 7.2          |
| 31-3.82-3                    | 03A                 | 1.0                | ND                   | 42                  | 13                | 4                     | 2               | 6.9          |
| B1-6,B2-6                    | 04A                 | ND                 | ND                   | 35                  | 8                 | 4                     | 2               | 7.7          |
| 33-0.5                       | 05A                 | ND                 | ND                   | 31                  | 4                 | ND                    | 3               | 5. <b>5</b>  |
| 13-3                         | 06A                 | 0.6                | ND                   | 47                  | 18                | 5                     | 2               | 8.7          |
| 13-6                         | 07A                 | ND                 | ND                   | 28                  | 9                 | 3                     | 2               | 7.8          |
| 4-0.5                        | 08A                 | NO                 | ND                   | 30                  | 8                 | 3                     | 4               | 5.4          |
| 34-3                         | 09A                 | 1.6                | ND                   | 33                  | 7                 | 3                     | 1               | 7.6          |
| 34-7                         | 10A                 | ND                 | ND                   | 37                  | 13                | 3                     | 2               | 7.8          |
| etection Lim                 | it                  | 0.5                | 0.2                  | 1                   | 1                 | 3                     | 1               | NA           |
| EPA Method                   |                     | 7060               | 7090                 | 7190                | 7210              | 7480                  | 7420            | 9045         |
| (nstrument:                  |                     | V12                | V22                  | V22                 | V22               | V22                   | V22             | ISE          |

ND = Not Detected
NA = Not Applicable

Jack Sheets, Manager Inorganic Laboratory

Results FAXed to Dennis Laduzinsky 02/16/90 & 02/20/90 Revision of report dated 02/23/90



PAGE 2 OF 2

KALDVEER ASSOCIATES, INC.

CLIENT PROJECT NO: KE1179-1

REPORT DATE: 03/27/90

MED-TOX JOB NO: 9002074

| Sample Identi<br>Client Id. |     | Cyanide <sup>*</sup><br>(mg/kg) | Phenols*<br>(mg/kg) |
|-----------------------------|-----|---------------------------------|---------------------|
| <u> </u>                    | 014 | 2 100                           | 0.9                 |
| S-1<br>D1 0 5 00 0 5        | 01A | 1,100<br>160                    | ND                  |
| B1-0.5,B2-0.5               |     |                                 | ND                  |
| B1-3,B2-3                   | 03A | 24                              |                     |
| B1-6,B2-6                   | 04A | 4.6                             | МD                  |
| B3-0.5                      | 05A | 26                              | ND                  |
| B3-3                        | 06A | 13                              | ND                  |
| B3-6                        | 07A | 22                              | ND                  |
| B4-0.5                      | 08A | 7.1                             | ND                  |
| B4-3                        | 09A | 1.5                             | ND                  |
| B4 - 7                      | 10A | 3.2                             | 0.5                 |
| Detection lim               | iit | 0.1                             | 0.4                 |
| EPA Method                  |     | 9010                            | 9065                |

<sup>\*</sup> Subcontracted to a DOHS certified laboratory

R-4,5-F

# MED-TOX ASSOCIATES, INC. ANALYTICAL REQUEST/CHAIN OF CUSTODY FORM (Complete Information on Opposite Side)

| Page | - 1 | ٥f   | - 1 |
|------|-----|------|-----|
| rage |     | O.T. |     |

Date: 2-12-90

ANALYSES

| SAMPLER(S): | Deunis | Laduzins | ky . |
|-------------|--------|----------|------|
|             |        |          |      |

CLIENT Kaldueer Associates
CLIENT JOB REF.: KE1179-1
LAB PROJECT NO: 900 2074

(lab use only)

\*Tubes with arrows should be analyzed from the

| K Tubes with a arrow en      | ,710 w.S<br>A                                    | ENOUID DE C.                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          |              |                                                  |              | ر د/      | /      | <b>[</b>  | / <del>*</del> - | ر محج /                               | / ,          | / /         | \&<br>&<br>\& | / /          | / /          | / /                        |
|------------------------------|--------------------------------------------------|------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|-----------|--------|-----------|------------------|---------------------------------------|--------------|-------------|---------------|--------------|--------------|----------------------------|
| CLIENT SAMPLE IDENTIFICATION | DATE                                             | Lab Number<br>(lab use only) | AIR<br>VOLUME<br>(Liters)                        | NO.<br>CONT. | SAMPLE<br>TYPE<br>*                              | گر<br>کی/    | A 11/2 A  | Ser A  | <u> </u>  |                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |              | 2 A         |               |              | $\angle$     | COMMENTS/<br>INTERFERENCES |
| C = A                        | 2-11-90                                          | 014                          |                                                  | 1            | Sediment                                         | X            | X         | X      | X         | ×                | X                                     | ×            | $\times$    | X             |              |              |                            |
| <u>S-1</u>                   |                                                  |                              |                                                  |              | Soll                                             | $\bigvee$    | $\bigvee$ | $\sum$ | $\bigvee$ | $\sum  a $       | $\searrow$                            | $\Delta Z$   | $\searrow$  | $\Delta Z$    |              | ļ            | 2 composite of 2           |
| B1-0.5                       | <del>   </del>                                   | 024                          | <u> </u>                                         |              |                                                  | $\nabla$     | X         |        |           |                  | $\triangle$                           | $\triangle$  | $\triangle$ | $\triangle$   |              |              | <u> </u>                   |
| 8 2-0.5                      | 1                                                | <del></del>                  | <del> </del>                                     | 1            |                                                  | $\setminus$  |           |        | Y         | $\searrow$       | $\searrow$                            | $\Delta$     | $\searrow$  | $\square$     |              | <u> </u>     | 2 composite of 2           |
| 81-3                         | <del>                                     </del> | 03A                          | <del></del>                                      | ,            |                                                  | 不            | $\Lambda$ | X      |           |                  | $\triangle$                           |              | $\triangle$ |               |              | 1            | J                          |
| 83-3                         | <del>                                     </del> | > 04A                        | <del> </del>                                     | 2            | <del>                                     </del> | ×            | X         | X      | X         | X                | X                                     | X            | と           | X             |              |              | composite of 2             |
| 82-6,81-6                    | <del> </del>                                     | 054                          | <del> </del>                                     | 1            |                                                  | $\mathbf{x}$ | X         | X      | X         | X                | X                                     | X            | X           |               |              |              |                            |
| 83-0.5                       | ╂╾╍╄╼╌                                           | 064                          |                                                  | 1            |                                                  | ×            | X         | X      | X         | X                | X                                     | X            | X           | X             |              | <u> </u>     |                            |
| 83.3                         | ╂╼╍╌╂╼╼╌                                         | 074                          |                                                  | 1            |                                                  | ×            | X         | X      | X         | X                | X                                     | メ            |             | $\times$      |              | <b> </b>     |                            |
| B3-6                         | <del>  </del>                                    | 08/4                         | - <del> </del>                                   | 1            |                                                  | ×            | X         | X      | X         | X                | X                                     | X            |             | X             | <u> </u>     | ļ            |                            |
| B4-0.5                       | <del></del>                                      | 094                          |                                                  | 1            | 1-1-                                             | X            | X         | X      | X         | X                | X                                     | X            | X           | X             | <b> </b>     | <u> </u>     |                            |
| B4-3                         | ┼-╁                                              | 10 A                         |                                                  |              | V                                                | X            | ×         | X      | X         | X                | X                                     | X            | 7           | X             | ļ            | ļ            | <u></u>                    |
| 04-7                         | <del> </del>                                     | 707                          | <del>                                     </del> |              |                                                  |              |           |        |           |                  | <u> </u>                              |              |             | <b> </b>      |              | <b>}</b>     |                            |
|                              | <del> </del>                                     |                              | <del> </del>                                     |              |                                                  |              |           |        |           |                  |                                       | <b>!</b>     |             | <del> </del>  |              | ļ            |                            |
|                              | <del></del>                                      |                              |                                                  |              |                                                  |              |           |        |           |                  | <u> </u>                              | ļ            | <u> </u>    | ļ             | <u> </u>     | <del> </del> |                            |
|                              | ┪                                                |                              |                                                  |              |                                                  |              |           |        |           |                  |                                       |              | <b> </b> _  | <b>↓</b> —    | <del> </del> |              |                            |
|                              | ┤───                                             |                              |                                                  |              |                                                  |              |           |        |           |                  |                                       | <u> </u>     | ļ           | <del> </del>  | <u> </u>     | <del> </del> | <u> </u>                   |
|                              |                                                  |                              |                                                  |              |                                                  |              |           |        |           | <u> </u>         | <u> </u>                              | <b> </b>     | —           | <b> </b> -    | ├            | <del> </del> | <u> </u>                   |
|                              |                                                  |                              |                                                  |              |                                                  |              |           |        |           | <b> </b>         | <u> </u>                              | <del> </del> | <b> </b> -  | <del> </del>  | ├──          | -            |                            |
|                              | <del>                                     </del> |                              |                                                  |              |                                                  | <u> </u>     |           |        |           | <b> </b>         | <b> </b>                              | <b> </b>     | <b>⊢</b> —  | <del> </del>  | ├            | -            |                            |

ONE WEEK TAT.

| Relinquished by:                | Date     | Time          | Received by: (Signature) | Date          | T1me |
|---------------------------------|----------|---------------|--------------------------|---------------|------|
| (Signature) Relinquished by:    | Date     | Time          | Received by:             | Date          | Time |
| (Signature) Dispatched by:      |          | 70904<br>Time |                          | Date<br>12/90 | Time |
| (Signature) Method of Shipment: | <u> </u> |               | Lab Comments:            |               |      |





MAR 2 9 1990

# **ENVIRONMENTAL & OCCUPATIONAL HEALTH SERVICES**

3440 Vincent Road ● Pleasant Hill, CA 94523 ● (415) 930-9090

## LABORATORY ANALYSIS REPORT

KALDVEER ASSOCIATES, INC.

425 ROLAND WAY

OAKLAND, CA 94621

ATTN: DENNIS LADUZINSKY

CLIENT PROJECT NO: KE1179-1

**REPORT DATE:** 03/27/90

DATE SAMPLED: 02/17/90

DATE RECEIVED: 02/17/90

MED-TOX JOB NO: 9002134

ANALYSIS OF: SOIL SAMPLES FOR ARSENIC, BERYLLIUM, CHROMIUM,

COPPER, MOLYBDENUM, LEAD, pH, CYANIDE, AND PHÉNOLS

| Sample Identif | ication | Arsenic | Beryllium | Chrowi um        | Copper  | Mo1 ybdenum | Lead    | pН         |
|----------------|---------|---------|-----------|------------------|---------|-------------|---------|------------|
| Client Id.     | Lab No. | (mg/kg) | (mg/kg)   | ( <b>m</b> g/kg) | (mg/kg) | (mg/kg)     | (mg/kg) | (S.U.)<br> |
| B-7-0.5        | 01A     | 1.3     | ND        | 26               | 6       | ND          | 6       | 7.0        |
| 8-7-3'         | 02A     | 2.5     | ND        | 25               | 5       | ND          | 1       | 8.0        |
| 8-7-6.5'       | 03A     | NO      | 0.3       | 32               | 8       | ND          | 2       | 7.7        |
| B-6-0.5'       | 04A     | 4.9     | 0.3       | 38               | 130     | ND          | 1,100   | 6.2        |
| B-6-3'         | 05A     | ND      | 0.5       | 52               | 10      | ND          | 2       | 7.1        |
| B-6-6.5        | 06A     | ND      | 0.2       | 26               | 6       | ND          | 2       | 7.9        |
| 8-5-0.5        | 07A     | 1.3     | 0.2       | 24               | 6       | ND          | 9       | 6.7        |
| B-5-3°         | 08A     | 1.6     | ND        | 23               | 3       | ND          | ND      | 7.9        |
| B-5-6.5'       | 09A     | 0.6     | ND        | 26               | 7       | ND          | 2       | 7.8        |
| Detection Limi | it      | 0.5     | 0.2       | 1                | 1       | 3           | 1       | NA         |
| EPA Method     |         | 7060    | 7090      | 7190             | 7210    | 7480        | 7420    | 9045       |
| Instrument:    |         | V12     | V22       | ¥22              | V22     | V22         | V22     | ISE        |

ND = Not Detected NA = Not Applicable

Yack Sheets, Manager Inorganic Laboratory

Results FAXed to Dennis Laduzinsky 03/06/90 Revision of report dated 03/07/90



PAGE 2 OF 3

KALDVEER ASSOCIATES, INC.

**REPORT DATE: 03/27/90** 

CLIENT PROJECT NO: KE1179-1

MED-TOX JOB NO: 9002134

| Sample Identif       | ication     | Arsenic | Beryllium . | Chromium         | Copper  | Ho1 ybdenum | Lead             | pН     |
|----------------------|-------------|---------|-------------|------------------|---------|-------------|------------------|--------|
| Client Id.           | Lab No.     | (mg/kg) | (mg/kg)     | ( <b>e</b> g/kg) | (mg/kg) | (mg/kg)     | ( <b>=</b> g/kg) | (S.U.) |
| Composites           |             |         |             |                  | . •     |             |                  |        |
| B-8-9-0.5'           | 10 <b>A</b> | 9.3     | ND          | 36               | 26      | · · ND      | 23               | 2.4    |
| B-8-9-3'             | 11A         | 1.5     | 0.3         | 40               | 26      | ND          | 4                | 7.5    |
| B-8-9-6.5'           | 12A         | 0.9     | 0.3         | 32               | 11      | ND          | 2                | 7.6    |
| 8-10-11- <b>0</b> .5 | 13 <b>A</b> | 14      | 0.4         | 42               | 51      | ND          | 52               | 3.6    |
| B-10-11-3'           | 14A         | 0.6     | 0.6         | 35               | 15      | NO          | 2                | 6.3    |
| B-10-11-6.5'         | 15A         | ND      | 0.2         | 31               | 10      | ND          | 2                | 8.0    |
| B-12-13-0.5°         | 16 <b>A</b> | 6.8     | ND          | 85               | 30      | ND          | 23               | 3.3    |
| B-12-13-3'           | 17A         | 3.4     | 1.4         | 39               | 52      | ND          | 15               | 8.2    |
| B-12-13-6.5          | 18 <b>A</b> | ND      | NO          | 33               | 10      | ND          | 1                | 8.2    |
| Detection Limi       | it          | 0.5     | 0.2         | 1                | 1       | 3           | 1                | NA     |
| EPA Method           |             | 7060    | 7090        | 7190             | 7210    | 7480        | 7420             | 9045   |
| Instrument:          |             | V12     | V22         | V22              | V22     | V22         | V22              | ISE    |

ND = Nat Detected

NA = Not Applicable



PAGE 3 OF 3

KALDVEER ASSOCIATES, INC.

REPORT DATE: 03/27/90

CLIENT PROJECT NO: KE1179-1

MED-TOX JOB NO: 9002134

| Sample Identi          | fication | Cyanide* | Phenols* |
|------------------------|----------|----------|----------|
| Client Id.             | Lab No.  | (mg/kg)  | (mg/kg)  |
| B-7-0.5'               | 01A      | 0.2      | 0.6      |
| B-7-3'                 | 02A      | 2.0      | ND       |
| B-7-6.5'               | 03A      | 0.6      | 1.2      |
| B-6-0.5'               | 04A      | 2.1      | ND       |
| B-6-3'                 | 05A      | 1.9      | 2.8      |
| B-6-6.5'               | 06A      | ND       | ND       |
| B-5-0.5'               | 07A      | 0.3      | ND       |
| B-5-3'                 | 08A      | 0.2      | ND       |
| B-5-6.5'<br>Composites | 09A      | 0.2      | ND       |
| B-8-9-0.5'             | 10A      | 7.8      | ND       |
| B-8-9-3'               | 11A      | 0.3      | GN       |
| B-8-9-6.5'             | 12A      | 0.2      | 0.7      |
| B-10-11-0.5'           | 13A      | 3.5      | 0.4      |
| B-10-11-3'             |          | 0.6      | ND       |
| B-10-11-6.5'           |          | 0.8      | ND       |
| B-12-13-0.5'           |          | 150      | ND       |
| B-12-13-3'             |          | 0.2      | ND       |
| B-12-13-6.5'           |          | 0.4      | 2.2      |
| Detection lim          | nit      | 0.1      | 0.4      |
| EPA Method             |          | 9010     | 9065     |

ND = Not Detected

<sup>\*</sup> Subcontracted to a DOHS certified laboratory

| Project Nu             | mber                        |               | Proje            | ect Name       |             |                                 |                  |                                                  |                |                   | 7                   | $\overline{}$                |                   | $\overline{}$        |              |                                                                            |                           | / <del>[]</del> |                |               | }                           | Ì          |
|------------------------|-----------------------------|---------------|------------------|----------------|-------------|---------------------------------|------------------|--------------------------------------------------|----------------|-------------------|---------------------|------------------------------|-------------------|----------------------|--------------|----------------------------------------------------------------------------|---------------------------|-----------------|----------------|---------------|-----------------------------|------------|
| KE KE                  |                             |               |                  |                |             |                                 | ı                |                                                  |                | .5                |                     |                              |                   | /                    | /,           |                                                                            |                           | /3/             | /              |               | - {                         | l          |
| 1179-                  |                             |               |                  |                |             |                                 |                  | jo                                               | 40 Kr          | <i>i</i> /        | <i>'</i>            | / /                          | / /               | / /                  | /5/          | /                                                                          | / /                       | /૭//            |                |               |                             | 1          |
|                        |                             | Lbatau        | Ш-               |                |             |                                 |                  | 6 E                                              | S              | 7/                |                     | <b>/</b> .                   | £/                | ٤/,                  | <i>\$</i> /  |                                                                            |                           | •//             |                |               |                             | , I        |
| Sampler's              | . \<br>. \                  | miteu,        |                  |                |             |                                 |                  | F 2                                              | 27             | / w               | بر /                | 13                           | / :               | / 3                  | /            | ھ./                                                                        | زگر //                    | / /             |                |               | }                           | , <b>1</b> |
| P.B                    | - 1-40                      | ) D S O ~     | _                |                |             | •                               |                  | Number /Type<br>Containers                       | \ <b>*</b> /   | / خ               | \ <sub>4</sub> }/   | ゚゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゚゙゙゙゙゙゙゙゚ | 9/                | الإ                  | <i>a</i> /   | <i>a</i> /                                                                 | . ?/                      | / '             | Remarks        |               | 1                           |            |
|                        |                             | - <del></del> | 1                | - <del></del>  | <del></del> |                                 | Τ                | 3                                                | ذ / [          | A 2 / A A         | B/SE/               |                              |                   | £/30/37              | 1/.9         | 6                                                                          |                           |                 |                |               |                             |            |
| Boring                 | l                           | 1             |                  |                |             | or Denth                        | Sample<br>Number |                                                  |                | \ <u>A</u>        | 700                 | <u> </u>                     | <u> </u>          |                      | _4           |                                                                            | 7                         |                 | 7              |               |                             |            |
| Number                 | Date                        | Time          | Soil             | Water          |             | S (FEET)                        | 8-7-05           | VBEAS!                                           | ×              | ×                 | ×                   | ×                            | ×                 | <u> </u>             | ×            | ×                                                                          | <u> </u>                  |                 |                |               |                             | 1          |
| B-7                    | 2/17                        | <del> </del>  | <del>  }</del> - | <u> </u>       | o.<br>3'    |                                 | 8-7-3            |                                                  | ×              | Х                 | ×                   | ×                            | ×                 | ×                    | ×            | ×                                                                          | ×                         | <u> 21</u>      |                |               |                             | 1          |
| B-7                    |                             |               | <del>}</del> -}- |                |             | 2 ′                             | 3-7-6/2          |                                                  | ×              | <b>×</b> _        | ×                   | X                            | X                 | X                    | ×            | X                                                                          | <u>×</u>                  | 3,              |                |               |                             | 1          |
| 3-7                    |                             | ļ             | <del>-</del>     | ļ              |             |                                 | B-6-0.5          |                                                  | 1 ×            | ×                 | ×                   | ×                            | ٨                 | ×                    | X            |                                                                            | ×                         | 4/              |                |               |                             | 1          |
| 3-6                    |                             | <u> </u>      | ╁╌┟╌             | <del> </del> - | Θ.          |                                 | B-6-3'           | 1                                                | ×.             | ×                 | 7                   | <u>×</u>                     | <u> </u>          | Х                    | X            | 쓰                                                                          | ×                         | 5/              |                |               |                             | ┨          |
| 3-6                    |                             |               | ╁╼┼╌             | <del>-</del>   | 3'          | 1/2 '                           | 3-6-6/2          | 1                                                | ×              | ×                 | ×                   | ×                            | ×                 | X                    | ×            | ×                                                                          | ×                         | <u></u>         |                |               |                             | ┨          |
| 8-6                    |                             |               |                  | <del></del>    | <u></u>     |                                 | 8.5.0.5          | <del>                                     </del> | Y              | 7-                | حا                  | <u> </u>                     | <u></u>           | 4                    | ×            | ×                                                                          | ×                         | 1               |                | <del></del> . |                             | -          |
| B-5                    |                             | _             | <b></b>          |                | <u> </u>    | , <u>s</u> '                    | B-5-3'           |                                                  | ×              | ×                 | <u> </u>            | <u> </u>                     | ×                 | ×                    | ×            | ×                                                                          | ×                         | <u> X</u>       |                |               |                             | ┨          |
| 3-5                    |                             |               |                  | <del> </del>   |             |                                 | 8-5-61/2         | 1-1-                                             | ×              | \ <b>x</b>        | ×                   | <u> </u>                     | ×                 | <u>&gt;</u>          | Ľ            | ×                                                                          | Ľ                         | 9               | /4             | 96            |                             | 101        |
| B - 5                  | _                           |               |                  |                |             |                                 | B-8-0-5          |                                                  | V              | V                 | N                   | V                            | $\mathbf{N}$      | X.                   | X.           | X                                                                          | X                         | 7-500           | 4705 ITE       |               | TWO                         | 1          |
| B-8.                   |                             |               |                  | <b></b> -      |             |                                 | 6-9-0            | .1 1                                             |                | ·下                | V                   | <u> </u>                     | 杁                 | <u> </u>             |              | $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                           |                 |                | • 6           |                             | ┨".        |
| 0-9                    |                             |               |                  |                | <del></del> | 31                              | G-8-3'           |                                                  | $\overline{L}$ | $\Lambda$         | $\perp$             | $\lambda\lambda$             | $\mathbf{A}$      | V                    | Ŋ.           | X                                                                          | W                         | 100             | <u>1905 ιπ</u> |               | TWO                         | - // F     |
| B-8                    |                             |               |                  |                |             | 3'                              | · B-9-3          | 17                                               | T              | 丕                 | $\Delta$            | 丛                            | ΔL                | $1 \nabla$           | Į()          | V                                                                          | $\langle \lambda \rangle$ |                 |                |               | •F                          | ┥_         |
| 3-9                    |                             |               |                  | _}             |             |                                 | · R-8-67         | 17                                               |                | $\sqrt{1}$        | 2                   | $\Delta$                     | $\Delta$          | $\mathbf{X}$         | X            | X                                                                          | X                         | <u>&gt; - د</u> | ~~305          | CT3.          | ME TWO                      | 4/2/       |
| B-8                    | _\\/_                       |               | ₩                |                |             | 6'/2'                           | - 6-9-67         | ·                                                | 77             | abla C            | $\Lambda_{\Lambda}$ | 业                            | 小                 | $\overline{\Lambda}$ | <del>小</del> | 小,                                                                         | 1                         | <u> </u>        |                |               |                             |            |
| 0.9                    |                             |               | _ <u>  v</u>     |                | _+          | (5 1/2<br>Received by: (A)      |                  | <u>*1</u>                                        |                |                   |                     |                              |                   |                      |              |                                                                            |                           |                 |                |               |                             |            |
| Relipquish             | ed by (                     | Signatyf      | (e)              | Date/1         |             | Inclute                         |                  |                                                  |                | ihip<br>Fo:       | 4                   | $\lambda\lambda$             | . <del>G</del> .S | 2 7                  | ~ა           | <u> </u>                                                                   |                           |                 |                |               | •                           |            |
| 11/17                  | (b.)                        |               | <u> </u>         |                | 1730        | Received by: (S                 | (coature)        |                                                  | ┤ '            | 10.               |                     |                              |                   |                      |              |                                                                            |                           |                 |                |               |                             |            |
| Relinquish             | ed by:                      | (Signatu      | re)              | Ďate/T         | 'tme        | Hecelong par in                 | Augranas         |                                                  | l l            |                   |                     |                              |                   |                      |              |                                                                            |                           |                 |                |               | •                           |            |
|                        |                             |               |                  | į              |             |                                 |                  |                                                  |                |                   |                     |                              | ^                 |                      |              |                                                                            |                           |                 |                |               |                             |            |
| Relinquisi             | ned by:                     | (Signatu      | re)              | Date/          | Cime emi?   | Received for Lat<br>(Signature) | oratory by:      |                                                  | - [            |                   | Atten               |                              |                   | 5 <u>0</u>           | -79          | 770                                                                        | <u> </u>                  |                 |                |               | -                           |            |
| Ne man                 |                             |               | - 1              | 1              |             | 1, ,                            |                  |                                                  |                |                   | Phon                |                              |                   |                      |              |                                                                            |                           |                 |                |               | •                           |            |
| L                      |                             |               |                  |                | L           | Kaldveer Associ                 | 1                | 1                                                | -              | A                 |                     |                              |                   |                      | . <b></b> -  | -d                                                                         | ما می                     | . r             |                |               |                             | -          |
| Requested<br>Turnarous | <b>և</b><br>ուս <i>Ըշ</i> տ | MACI          | PA               | ennis s        | AO USINE    | Kaldveer Assor<br>Contact:      | e. HBUNI         | 2 has                                            | <u> </u>       | <del>&gt; ٢</del> | Plea ـ<br>س         | عداداد<br>مداداد             | ar As             | social               | res<br>respo | ine.                                                                       |                           | •               | 24             |               | 1 ali a a                   | t          |
| Time:                  |                             |               |                  | ENING          |             |                                 |                  |                                                  |                |                   | *                   | GI WY W                      | land '            |                      | ,            |                                                                            |                           | 1               |                | <u> </u>      | idveer Asso<br>oscience Cor | CHILDI     |

Rumarks:

Winte - Kaldveer Associates

Normal TAT per D. Laduzinsky Yellow - Analytical Laboratory

Kaldveer Associates, Inc. 425 Roland Way Oakland, California 94621 (415) 568-4001



| Project Nur      |                                                  | ,            | Proj                                             | ect Name     |                                  |                              | <b>,</b>                    |                | 1. S. | /                                            | /,                                     | \<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                         | \<br>\{\xi\$                     |                         |                |                |             |
|------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|----------------------------------|------------------------------|-----------------------------|----------------|-------------------------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------|-------------------------|----------------------------------|-------------------------|----------------|----------------|-------------|
| Sampler's I      |                                                  |              | e~                                               |              |                                  |                              | Number / Type<br>Containers | Parket State   |                                           | 8 8 K                                        |                                        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \     |                         |                                  |                         | ]<br> -<br> ע  | Remarks        |             |
| Boring<br>Number | Date                                             | Time         | Soil                                             | Water        | Sample Location or Depth         | Sample<br>Number<br>3-10-0.5 | 1/83A3S                     | I/             |                                           | 7/ A                                         | 9 y                                    | <b>!</b> {                                | / v                     |                                  | / a                     | / <del>1</del> | COMPOSITE OF T | رامي        |
| 3-10             | 2/17                                             | ļ            | <u>×</u>                                         | <b></b>      | 0.5                              | 3-10-0.5                     | /L,~&@                      | 1              | X                                         | X                                            | X                                      | X                                         | X                       | X                                | X                       | M              |                |             |
| 5-11             | <del>                                     </del> | <u> </u>     | <del>                                     </del> | ļ            | 0.5'                             | B-11-0.5                     | -                           | 17             | K                                         |                                              |                                        |                                           | abla                    | $\nabla$                         | $\nabla$                |                | COMPOSITE OF   | Tu 0        |
| 3-10             |                                                  | ļ            | ╁╼┾╾                                             | <del> </del> | 3'                               | B-10-3'                      |                             | 大              | X                                         | M                                            |                                        | N                                         | $\Delta$                | $\Delta$                         | $\triangle$             | $\Delta$       |                |             |
| 3-11             |                                                  | <del> </del> | ┨                                                | <del> </del> |                                  | B-10:6/2                     |                             | K/             | <b>K</b> /                                | V                                            | abla                                   | V                                         | $\setminus$             | Х                                | $\nabla$                | $\Delta$       | Composite of   | 7240        |
| 3-10             | <del></del>                                      | -            | +                                                |              | 6 1/2 -                          | B-11-6'/                     |                             |                |                                           |                                              |                                        | $\mathbb{Z}$                              | $\triangle$             | $\triangle$                      | $\triangle$             | $\triangle$    | <u> </u>       |             |
| 3-11             | <b>┼┼</b> -                                      | -            | <del>}                                    </del> |              | 6 / 4                            | 18-11-674                    | 1-1-                        | 1              | 1                                         |                                              |                                        |                                           |                         |                                  |                         |                |                |             |
|                  | <b></b> -                                        |              | ╁┷┼╌                                             |              | 0.5'                             | B-12-0.5                     | 1                           | $\nabla$       | V                                         | V                                            | V                                      | V                                         | $\bigvee$               | $\mathbf{X}$                     | М                       | $\bigvee$      | Composite OF   | <u>72⊶0</u> |
| -13              | ╁╼╁─                                             | ┼            | ╁╌┼╌                                             | +            | 0.5                              | R · 13 · 0 · 5               | , i                         | $\mathcal{I}X$ |                                           | $\Delta$                                     | $\nabla$                               | $\triangle$                               | $\triangle$             | $ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$ | $\langle C \rangle$     |                | V              |             |
| . 13             | ╁╼╁╾                                             |              |                                                  |              | o-3' -                           | B-12-3'                      |                             | $\mathbb{Z}$   | $\Delta$                                  | $\bigvee$                                    | $\Delta Z$                             | $ \mathbf{X} $                            | $\bigvee$               | X                                | X.                      | X              | CUMPOSITE OF   | TW0         |
| 3-12             | ╅┼                                               | ┼            | ╂╂                                               |              | 3'                               | B·13·3'                      |                             |                | $\Delta$                                  | $\mathbb{Z}$                                 | 忆                                      | $\langle \cdot \rangle$                   | $\langle \cdot \rangle$ | (-)                              | $\langle \cdot \rangle$ | $\Gamma$       | <del>/</del>   |             |
| 3 - 13           | ++-                                              | <del> </del> | ++-                                              |              |                                  | B - 12-61/2                  |                             | $\mathbb{Z}$   | $\mathbb{Z}$                              | $\mathbf{M}$                                 | $1 \sim$                               | 1X                                        | $\bigvee$               | X                                | X                       | X              | COMPOSITE OF   | <u> No</u>  |
| B - 12           | <del>   //</del> -                               |              | <del>     </del>                                 |              |                                  | 3-13-6/                      |                             | $\Delta$       | $\Delta$                                  | $\nabla$                                     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | $\Lambda$                                 | $\triangle$             | $\langle C \rangle$              | <u> </u>                | V              | ·/             | <del></del> |
| 13-13            | <u> </u>                                         | ┼─           | -₩-                                              |              |                                  |                              |                             |                |                                           | <u> </u>                                     | <b></b> _                              | <u> </u>                                  |                         | <u> </u>                         | <b>├</b>                | ļ              |                |             |
|                  |                                                  | <del></del>  |                                                  |              |                                  |                              |                             |                |                                           | <u>.                                    </u> | <u> </u>                               | <u> </u>                                  |                         | <u> </u>                         | ↓                       | <u></u>        | <u> </u>       |             |
| Reindung         | IM                                               |              | 1/1                                              | Date/T       | 730 ( Inches                     | excl-                        |                             |                | hip<br>'o:                                | _                                            | 1/6                                    | o I                                       | <u>z</u> x              |                                  |                         |                |                |             |
| Relinquishe      | a by: (:                                         | ai duarai    | -"                                               |              |                                  |                              |                             | _              |                                           | _                                            |                                        | <del></del>                               | -                       |                                  |                         |                |                |             |
| Relinquishe      | d by: (                                          | Signatur     | e)                                               | Date/T       | Received for Labo<br>(Signature) | oratory by:                  |                             |                |                                           |                                              | tion:_<br>No:_                         |                                           |                         |                                  |                         |                |                |             |

425 Roland Way Oakland, California 94621 (415) 568-4001

Yellow - Analytical Laboratory White - Kaldveer Associates

Remarks:



# **ENVIRONMENTAL & OCCUPATIONAL HEALTH SERVICES**

3440 Vincent Road ● Pleasant Hill, CA 94523 ● (415) 930-9090

## LABORATORY ANALYSIS REPORT

KALDVEER ASSOCIATES, INC.

425 ROLAND WAY

OAKLAND, CA 94621

DENNIS LADUZINSKY ATTN:

CLIENT PROJECT NO: KE1179-1

REPORT DATE: 03/27/90

DATE SAMPLED: 03/09/90

DATE RECEIVED: 03/09/90

MED-TOX JOB NO: 9003058

SOIL SAMPLES FOR CHROMIUM, COPPER, MOLYBDENUM, ANALYSIS OF:

AND CYANIDE

| Sample I<br>Client I                   | dentification<br>d. Lab No.            | Chromium<br>(mg/kg)                 | Copper<br>(mg/kg)                        | Molybdenum<br>(mg/kg)                | Cyanide*<br>(mg/kg)               |
|----------------------------------------|----------------------------------------|-------------------------------------|------------------------------------------|--------------------------------------|-----------------------------------|
| S-2<br>S-3<br>S-4<br>S-5<br>S-6<br>S-7 | 01A<br>02A<br>03A<br>04A<br>05A<br>06A | 55<br>54<br>150<br>260<br>80<br>120 | 120<br>180<br>410<br>9,000<br>320<br>480 | 11<br>ND<br>140<br>170<br>170<br>500 | 240<br>120<br>650<br>270<br>1,300 |
| Detectio                               | n limit                                | 1                                   | 1                                        | 3                                    | 0.1                               |
| Method                                 |                                        | 7190                                | 7210                                     | 7480                                 | 9010                              |

Subcontracted to a DOHS certified laboratory

Sheets, Manager Inorganic Laboratory

Results FAXed to Dennis Laduzinsky 03/16/90 Revision of report dated 03/20/90

SEATTLE

|                        |              |               |              |                                                  |               |               | o                              | HAIN-OF CU       | ISTODY RE                      | CORD          |                                                        |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |
|------------------------|--------------|---------------|--------------|--------------------------------------------------|---------------|---------------|--------------------------------|------------------|--------------------------------|---------------|--------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|
| KE 117 Sampler's D. Lo | 9 -<br>Nam   | e (pr         |              | A                                                | ect Nam       | eda           |                                |                  | Number / Type of<br>Containers | And Andrew    | A A C. A. C. A. P. |                                        | הלקים ליני<br>הלקים ליני<br>הלקים ליני | E CONTRACTOR OF THE PROPERTY O |               | Remarks                         |
| Boring<br>Number       | D            | ate           | Time         | Soil                                             | Water         | Sample        | Location or Depth              | Sample<br>Number |                                |               |                                                        | 0/0                                    | )/                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |
|                        | 3/           | 1/10          |              | X                                                |               |               | 5-2                            | ļ                | وتعاد                          | ×             | 17                                                     | ×                                      | *                                      | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | ·····                           |
|                        | ╀            | -             | ļ            | -}                                               |               |               | 5-3                            | ļ                |                                | ×             | メイ                                                     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | <u>×</u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |
|                        | ╁-           | <del> </del>  | <u> </u>     | ╢                                                | ļ             | <del></del>   | 5-4                            | <del> </del>     | <del>-   -  </del>             | <u>≻</u><br>≻ | \ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>         | ×                                      | ×                                      | <del>   </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                 |
|                        | ╁            | ╂-            | <del> </del> | <del>                                     </del> | <del> </del>  | 1             | 5- <i>5</i><br>5-6             | <u> </u>         | 11                             | 1             | ×                                                      | _                                      | +                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |
| <del></del>            | Τ,           | <b>t</b>      |              | 11.                                              | <del> </del>  |               | 5 - 7                          | 1                | 1                              | 18            | ×                                                      | X                                      | x-                                     | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                 |
|                        | +            | <u> </u>      |              | V                                                |               | † · · · · · · | Z                              |                  |                                | 1_            |                                                        |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |
|                        |              |               |              |                                                  |               |               |                                |                  |                                |               | <u> </u>                                               | <b> </b>                               |                                        | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                 |
|                        | $\downarrow$ |               | <b> </b>     | ļ                                                | <u> </u>      |               |                                |                  | <b>↓</b>                       | -             | -                                                      | ├                                      | ļ                                      | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                 |
|                        | -            |               | <del> </del> |                                                  | · <del></del> | +             |                                | <del></del>      | <del>- </del>                  | +-            | +                                                      | ╂                                      | <del> </del>                           | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                 |
|                        | +-           |               | <del></del>  | <u> </u>                                         | <del> </del>  | -             |                                |                  | +                              | +             | ╁                                                      | ╁                                      | <del> </del>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>      |                                 |
|                        | ╁╴           |               | <del> </del> | ┼                                                |               | <del> </del>  |                                | 1                | · · · · · ·                    | †             | †                                                      |                                        |                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>   |                                 |
|                        | +            |               | <b>†</b>     | <del></del>                                      | 1             | ļ             |                                | 1                |                                | 1             | 1                                                      |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |
|                        | T            |               |              |                                                  |               |               |                                |                  |                                |               |                                                        |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |
| linguished             | d by         | ; (S)         | gnature      | •                                                | Date/T        | ime           | Received by: (Sign             | nature)          |                                | S             | htp<br>o:                                              |                                        | ı                                      | Med.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tox           |                                 |
| linguished             | d by         | : (SI         | gnature      | )                                                | Date/T        | lane .        | Received by: (Sign             | nature)          |                                |               |                                                        |                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |
| linguisher             | d by         | راهر<br>مراهد | gnature      |                                                  | Date/T        | 2:55          | Received for Labor (Signature) | aver             | ton                            |               | 5                                                      | hone)                                  | No:_                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |
| quested<br>ornaround   |              |               | As           | AP                                               |               | Pm            | Kaldveer Assoc.<br>Contact:    | Denni            | Lad                            | 214           | sky                                                    | Pleas                                  | e add                                  | ress corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | spondence to: |                                 |
| me:<br>:marks:         |              |               |              |                                                  |               |               |                                |                  |                                |               | /                                                      | Kal<br>425<br>Oal                      | dveer<br>Rola<br>Gland,                | Associate<br>nd Way<br>Californi<br>4001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s, Inc.       | Kaidveer Assa<br>Georgeonee Cor |

Yellow Analytical Laboratory

White - Kaldveer Associates



Lab Number:

Kaldveer Associates, Inc. 425 Roland Way

Client Project ID:

Alameda Soil, KE1179-1, (S-2D)

Sampled: Mar 9, 1990 Received: Mar 12, 1990

Oakland, CA 94621 Attention: Dennis Laduzinsky Sample Descript:

Extracted: Analyzed:

Mar 15, 1990 Mar 15, 1990

003-1579

Reported:

Mar 17, 1990

### LABORATORY ANALYSIS

**Detection Limit** Sample Results Analyte mg/kg mg/kg

| Cvenice    | 517 |
|------------|-----|
|            |     |
| Molybdenum |     |
| Copper     |     |
| Chromium   |     |

Analytes reported as N.D. were not present above the stated limit of detection.

**SEQUOIA ANALYTICAL** 

lane Diane Elich Lawver Project Manager

31579.KAL < 1>



Kaldveer Associates, Inc. 425 Roland Way

Oakland, CA 94621 Attention: Dennis Laduzinsky

Client Project ID: Alameda

Soil, KE1179-1, (S-6D) Sample Descript:

Lab Number: 003-1581

Sampled: Mar 9, 1990 Received: Mar 12, 1990

Mar 15, 1990 Extracted: Mar 15, 1990 Mar 17, 1990 Analyzed:

Reported:

#### LABORATORY ANALYSIS

Sample Results **Detection Limit Analyte** mg/kg mg/kg

| Cyanida 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Louis design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>* ***********************************</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C (C - C C )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>200 00 000000 0000 00000 0000 0000 000</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lebille seasone to propose the propose of the propo | Projette 2000 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (190) (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (190) (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900)(190)(1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 (1900 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chromium 9.25 manuscrimentum 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$_434_434_434_4344444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Analytes reported as N.D. were not present above the stated limit of detection.

**SEQUOIA ANALYTICAL** 

Diane Elich Lawver Project Manager

31579.KAL <4>



# SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Kaldveer Associates, Inc.

425 Roland Way Oakland, CA 94621

Attention: Dennis Laduzinsky

Client Project ID: Sample Descript:

Lab Number:

Alameda

Soil, KE1179-1, (S-5D)

003-1580

Sampled: Received:

Mar 9, 1990 Mar 12, 1990 Mar 15, 1990

Extracted: Analyzed: Mar 15, 1990 Mar 17, 1990 Reported:

## LABORATORY ANALYSIS

Analyte

**Detection Limit** mg/kg

Sample Results mg/kg

| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 4 7 7                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| UNITED BORROWS CONTROL OF CONTROL |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| HOVDCONUT LOCALISATION LOCALISA |                                                  |
| NEG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6667 - 7 . Y. 1000000000000000000000000000000000 |
| CODDS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Chromium V.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |

Analytes reported as N.D. were not present above the stated limit of detection.

**SEQUOIA ANALYTICAL** 

Diane Elich Lawker Project Manager

31579.KAL <3>



Kaldveer Associates, Inc.

Client Project ID: Alameda

425 Roland Way Oakland, CA 94621

Attention: Dennis Laduzinsky

QC Sample Group: 0031579 - 81

Reported: Mar 17, 1990

### **QUALITY CONTROL DATA REPORT**

| ANALYTE                                                                   | Cyanide                                                 | Molybdenum                                                | Copper                                                    | Chromium                                                  |     |
|---------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----|
| Method:<br>Analyst:<br>Reporting Units:<br>Date Analyzed:<br>QC Sample #: | EPA 9010<br>A. Chu<br>mg/kg<br>Mar 14, 1990<br>002-2544 | EPA 6010<br>9. Oliver<br>mg/L<br>Mar 15, 1990<br>003-1375 | EPA 6010<br>B. Oliver<br>mg/L<br>Mar 15, 1990<br>003-1375 | EPA 6010<br>B. Oliver<br>mg/L<br>Mar 15, 1990<br>003-1375 |     |
| Sample Conc.:                                                             | 2.5                                                     | N.D.                                                      | 0.59                                                      | 0.095                                                     |     |
| Spike Conc.<br>Added:                                                     | 1.0                                                     | 1.0                                                       | 1.0                                                       | 1.0                                                       |     |
| Conc. Matrix<br>Spike:                                                    | 3.4                                                     | 0.98                                                      | 1.5                                                       | 1.1                                                       |     |
| Matrix Spike<br>% Recovery:                                               | 90                                                      | 98                                                        | 91                                                        | 100                                                       |     |
| Conc. Matrix<br>Spike Dup.:                                               | 3.3                                                     | 1.1                                                       | 1.6                                                       | 1,2                                                       |     |
| Matrix Spike<br>Duplicate<br>% Recovery:                                  | 82                                                      | . 110                                                     | 100                                                       | 110                                                       |     |
| Relative<br>% Difference:                                                 | 9.3                                                     | 12                                                        | 6.5                                                       | 8.7                                                       | · · |

**SEQUOIA ANALYTICAL** 

Diane Elich Lawver

Project Manager

Relative

% Recovery:

Conc. of M.S. - Conc. of Sample x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

|                                                |                  |                |                                              |                                       |          |                                 | CHAIN-OF C       | USTODY RE                   | CORD                                             |           |                                                  |                  |                |                                                  |                                       |
|------------------------------------------------|------------------|----------------|----------------------------------------------|---------------------------------------|----------|---------------------------------|------------------|-----------------------------|--------------------------------------------------|-----------|--------------------------------------------------|------------------|----------------|--------------------------------------------------|---------------------------------------|
| Project Nu                                     |                  | <br>           |                                              | ect Name                              | l a      |                                 |                  |                             | Remarks  Remarks                                 |           |                                                  |                  |                |                                                  |                                       |
| L                                              |                  |                |                                              | ama                                   | 14       |                                 |                  | , š                         |                                                  | 5/        | 1. /                                             | (3)/             | Ž              | 7 / /                                            |                                       |
| Sampler's                                      | rade (pr         |                | sky                                          |                                       |          |                                 |                  | Number / Type<br>Containers | Andrew                                           | 1 0 2 7 Z |                                                  |                  |                | Remarks                                          |                                       |
| Boring<br>Number                               | Date             | Time           | Soil                                         | Water                                 |          | Location or Depth               | Sample<br>Number |                             | / Ú                                              | Ž         | <sup>2</sup> /Ú                                  | 1/5/             |                |                                                  |                                       |
|                                                | 3 9/10           |                | ×                                            |                                       | S        | 5-2D                            |                  | 7 K 25                      | ×                                                | メメ        |                                                  | 쏬                |                |                                                  |                                       |
|                                                | 1-1-             | <u> </u>       | <u> </u>                                     |                                       |          |                                 |                  |                             | 13                                               | ×         | <b>↓</b> —                                       |                  |                | <del></del>                                      | <del></del>                           |
|                                                | V                | <u> </u>       | ¥                                            |                                       | 5        | 5-6D                            |                  | $  \boldsymbol{\iota}  $    | X                                                | 1         | X                                                | <u>4</u>         | +              |                                                  |                                       |
|                                                | <del>  -</del> - | <del> </del>   | <u> </u>                                     | <del> </del> -                        |          |                                 |                  | <b>-</b>                    | <del>                                     </del> |           | <del>                                     </del> |                  | -              |                                                  |                                       |
|                                                |                  | <del> </del> - |                                              |                                       |          |                                 | <del>-</del>     |                             | <del>                                     </del> |           |                                                  |                  |                |                                                  |                                       |
|                                                | <del> </del>     | <u> </u>       | i —                                          | <del> </del>                          |          |                                 | <b></b>          |                             | 1                                                |           | <b> </b>                                         |                  |                |                                                  | · · · · · · · · · · · · · · · · · · · |
|                                                | <del> </del>     | <u> </u>       |                                              | · · · · · · · · · · · · · · · · · · · |          |                                 | <b></b>          |                             | 1                                                |           |                                                  |                  |                |                                                  |                                       |
|                                                | 1                |                |                                              | 1                                     |          |                                 |                  |                             |                                                  |           |                                                  |                  |                |                                                  |                                       |
|                                                |                  |                |                                              | 1                                     |          |                                 |                  |                             | <u> </u>                                         |           |                                                  | $\perp$          |                |                                                  |                                       |
|                                                |                  |                |                                              |                                       | ļ        |                                 |                  | .                           | ــــــــــــــــــــــــــــــــــــــ           |           | <b> </b>                                         |                  |                |                                                  |                                       |
|                                                |                  | ļ              | ļ                                            | ļ                                     | ļ        |                                 |                  |                             | <b></b>                                          |           | <del>                                     </del> |                  |                |                                                  |                                       |
|                                                |                  |                | ļ                                            | ļ                                     |          |                                 | <u> </u>         | •                           | <del> </del>                                     | ļ         | ┥                                                |                  |                | <del>                                     </del> |                                       |
|                                                | <b></b>          | <b></b>        | ļ                                            | <del> </del>                          | <u> </u> |                                 |                  |                             | <del> </del>                                     |           | ╂─┤                                              | $\dashv$         | +              |                                                  |                                       |
|                                                | <u></u>          | 1              | <u>.                                    </u> | Date/Tis                              | i        | Received by: (Si                |                  |                             | +                                                | L         | 11                                               |                  |                |                                                  |                                       |
| Relinquished                                   | 1 by: (81        | gnature        | '                                            | Date/III                              | jag      | RECEIVED BY. (DI                | Augraies         |                             | Sh<br>To                                         |           |                                                  |                  | 50             | quoia Analytical                                 | <u></u>                               |
| Relinquished                                   | t by: (Si        | gnature        | )                                            | Date/Tin                              | 12       | Received by: (Si                | gnature)         |                             |                                                  |           |                                                  |                  |                | U /                                              |                                       |
| Refinquished                                   | by: UM           | gnature        | ,<br>-3/12                                   | Date/Tin                              | . 30     | Received for Lab<br>(Signature) |                  | <u> </u>                    |                                                  |           |                                                  |                  |                |                                                  |                                       |
| Requested /<br>Turnaround<br>Time:<br>Remarks: | 3                | 7              | 7                                            |                                       |          | Kaldveer Assoc<br>Contact:      |                  |                             | 2149                                             | ,ky       | Kald<br>425                                      | veer A<br>Roland | ssocial<br>Way | respondence to:<br>tes, Inc.                     | Kaldveer Associ                       |

Yellow Analytical Laboratory

Winte - Kaldveer Associates