RECEIVED

April 20, 2006

ALAMEDA COUNTY ENVIRONMENTAL HEALTH

Remedial Excavation Report and Closure Request

Former Standard Oil Service Station (Site #30-4291) 3884 First Street Livermore, Alameda County, California

April 18, 2006

Prepared by:

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Cambria Project No. 31J-2036

Prepared at the request of:

Mr. Jerry Wickham Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

All work performed by Cambria Environmental Technology, Inc. for the subject site was conducted under my supervision. To the best of my knowledge, the data contained herein are true and accurate and satisfy the scope of work prescribed by the client for this project. The data, findings, recommendations, specifications or professional opinions presented herein were prepared in accordance with generally accepted professional engineering and geologic practice. We make no other warranty, either expressed or implied.

Robert C. Fozz

Cambria Environmental Technology, Inc.

Robert C. Foss, P.G. # 7445 Associate Geologist

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

Taure Di

Laura Genin Project Geologist

Table of Contents

1	INTRODUCTION	. 1
3	SITE BACKGROUND	. 2
4	ENVIRONMENTAL HISTORY	. 2
5	PRE-OCTOBER 2004 HYDROCARBON DISTRIBUTION IN SOIL	. 4
6	PRE-OCTOBER 2004 HYDROCARBON DISTRIBUTION IN GROUNDWATER	. 5
7	REMEDIAL EXCAVATION ACTIVITIES	. 5
8	CURRENT HYDROCARBON DISTRIBUTION IN SOIL	. 8
9	REGULATORY STATUS REVIEW AND RECOMMENDATIONS	. 9
10	CONCLUSIONS AND RECOMENDATIONS	12

Figures

- 1 Vicinity Map
- 2 Excavation Limits
- 3 Soil Sample Locations EX-1
- 4 Soil Sample Locations EX-2
- 5 Soil Sample Locations EX-3
- 6 Soil Sample Locations EXP

Tables

1 - Analytic Results for Soil

Attachments

- A Regulatory Correspondence
- **B** Aerial Photographs
- C Historical Analytic Data
- D Boring Logs
- E Summary Sheets Soil Disposal at Landfill
- F Underground Storage Tank Removal Report
- $G-Compaction \ Testing \ Report$
- H Laboratory Analytic Reports

1 INTRODUCTION

On behalf of Chevron Environmental Management Company (Chevron), Cambria Environmental Technology, Inc. (Cambria) has prepared this report documenting recent remedial excavation activities at the site of a former Standard Oil Service Station (Chevron Site #30-4291), located at 3884 First Street, Livermore, California (Figure 1). This work was performed in general accordance with Cambria's January 18, 2006 *Soil Management Plan* (SMP). Alameda County Environmental Health Services (ACEHS) approved the SMP with additional comments and recommendations in a letter dated January 14, 2006. A copy of this letter is included as Attachment A for your reference.

As approved in the January 24, 2006 letter from ACEHS (Attachment A), Cambria proposed to remediate the site by removing petroleum hydrocarbon-impacted soil containing residual hydrocarbons above environmental screening levels (ESLs) for residential land use, and to allow natural attenuation of remaining hydrocarbons. In the SMP, Cambria proposed to excavate petroleum hydrocarbon-impacted soil to approximately 20 feet below grade (fbg) where previously identified and to the extent feasible.

The primary objective of excavation at the site was removal of petroleum hydrocarbon impacted soils and to replace the excavated soil with compacted, engineered fill. The following report discusses the project summary, site background, remedial excavation activities, conclusions, and related items.

2 PROJECT SUMMARY

Three areas on the property had been identified by previous investigation as containing elevated hydrocarbon concentrations; the first area was located within the first generation tankpit; the second area was identified as the second generation tankpit and northern dispenser island; the third area was identified in the center of the site in the area of a previously unknown underground storage tank (UST) (Figure 2). The remediation project primarily involved soil excavation (hydrocarbon source removal) and the placement and compaction of clean imported backfill.

The extent of each excavation is depicted on Figure 2. Excavations were extended to a maximum of 20 fbg. Approximately 522 tons, or 370 cubic yards (yd³), of petroleum hydrocarbon-impacted soil was removed from the area of the first generation USTs (EX-1). Approximately 2,600 tons, or 1,846 yd³, of soil was removed from the second generation USTs and northern dispenser island (EX-2). Approximately 1,480 tons, or 1,050 yd³, of soil was removed from the center portion of the site (EX-3) where the orphan UST, oil water separator, and product lines were encountered. Approximately 211

tons or 149 yd³ was removed during product piping and vent line removal. Excavated soil was transported for disposal to Vasco Road Landfill.

3 SITE BACKGROUND

Site Description: The site is a former gasoline service station, occupying a triangular shaped lot at the intersection of Portola Avenue and First Street in Livermore, California. Local topography is relatively flat, gradually sloping toward the southeast, at an approximate elevation of 520 ft above mean sea level (Figure 1). The surrounding area is comprised of commercial properties to the south, east and west and residential properties to the north and further west.

Site History: According to records acquired from ACEHS, Chevron, doing business as Standard Oil Company, leased the property from approximately 1936 through 1973, and possibly as late as 1975. Although no definite construction date is available, aerial photographs indicate the service station facilities were present on the site from as early as 1939 through, at least, August 1973. During this time two separate service station configurations were observed in aerial photographs (Attachment B). The original facilities were located on the eastern end of the site, with another structure, possibly a residence, on the western portion of the site. This site configuration is seen through the May 1969 aerial photograph and also on Standard Oil Company's 1971 Demolition Plan. Chevron also produced a March 1971 Ground and Grade Plan illustrating the proposed new facilities. The August 1973 photograph shows the reconstructed service station and indicates a reconfiguration of the intersection of Portels. Avenue and First Street. The redevalened facilities incorporated the area previously

of Portola Avenue and First Street. The redeveloped facilities incorporated the area previously occupied by the structure mentioned above. A 1978 aerial photograph indicates a vacant lot with all facilities removed. The site appears to have continuously operated as part of an auto dealership from 1979 through 2005.

4 ENVIRONMENTAL HISTORY

December 1999 Soil Boring Investigation: Tom Edwards & Associates prepared a *Preliminary Site Investigation Report*, dated December 1999, in which a series of six soil borings were advanced at locations across the site to investigate the extent of hydrocarbons in soils. It was reported that boring locations were based on surface geophysical surveys. Soil samples were collected and analyzed for total petroleum hydrocarbons as gasoline (TPHg), total petroleum hydrocarbons as diesel (TPHd), total petroleum hydrocarbons as motor oil (TPHmo) and total recoverable petroleum hydrocarbons (TRPH). Additionally, three soil samples from one boring were selected for analysis of benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA method 8260B. Analytic results of soil samples indicated low concentrations of TPHg and TPHd in boring B-2, located near the eastern end of the triangular lot, within the area labeled as "SS BLDG" on the original station facilities plan. Boring B-2

contained maximum concentrations of TPHg and TPHd at 10 feet below grade (fbg) at 630 and 280 milligrams per kilogram (mg/kg), respectively. TRPH and TPHmo were detected at maximum concentrations in B-2 in shallow samples collected at 5 fbg at 40,000 and 39,000 mg/kg, respectively. These concentrations decreased to 10,000 and 14,000 mg/kg, respectively, at 10 fbg and were, essentially, below detection limits at 15 fbg. BTEX constituents were detected in boring B-2 in the 5-foot sample from this boring at concentrations of 0.03, 0.62, 1.2 and 6.8 mg/kg, respectively. Low concentrations of ethylbenzene and xylenes were detected in the 10-foot sample from boring B-2 and no BTEX constituents were detected in the 15-foot sample from this boring. Boring locations are presented on Figure 2.

 \bigcirc

October 2004 Well Survey Report: According to a well survey report submitted by Cambria in October 2004, two clusters of monitoring wells are located approximately 435 feet northeast of the site. A municipal well is located approximately 1,200 feet south of the site. Five wells have been identified between one-quarter to one-half mile from the site. Four of these wells are identified as monitoring wells and one is a well of unknown use. The well of unknown use is located approximately 2,300 feet east of the site and was likely installed for industrial purposes, as its owner was identified as Coast Mfg. & Supply Co. Seven additional wells were identified beyond a one-half mile radius of the site. Two of these are municipal wells, one is a domestic well, one is unknown, and three are monitoring wells.

May 2005 Subsurface Investigation Report: Eighteen borings were completed as SB-7 through SB-24. Seventeen of the borings were completed by direct push technology and one (SB-24) was completed by hollow-stem auger. The first water-bearing zone was encountered, in Geoprobe borings, at depths of 23.5 to 28 fbg. The greatest concentrations of TPHg in soil were detected in the vicinity of the second generation dispenser island located along Portola Avenue (Figure 2). A maximum TPHg concentration of 2,900 mg/kg was detected in boring B-8 at 19.5 fbg. Soil samples obtained from beneath the collected water samples were dry, which suggests a perched water bearing zone. TPHg, benzene and toluene were detected in a grab groundwater sample from boring B-9 at maximum concentrations of 78,000, 13,000 and 20,000 micrograms per liter (ug/L), respectively.

September 2005 Additional Subsurface Investigation Report: Twelve cone petrometer test (CPT) borings were completed as CPT-1 through CPT-12. The first water-bearing zone was encountered, in borings, at depths of 35-40 fbg. TPH-g was detected at maximum concentrations of 3,500 mg/kg in CPT-12 at 16 fbg, located in the area of the first generation USTs. TPH-d was detected at 330 mg/kg in CPT-12 at 16 fbg. However, laboratory notes indicate that the observed sample pattern is not typical of #2 fuel/diesel and may represent weathered gasoline. Volatile constituents were detected at maximum concentrations of 1.3 mg/kg benzene, 0.98 mg/kg toluene, 14 mg/kg total xylenes in CPT-3 at 16 fbg, located in the second generation tankpits. TPH-d and TPH-g were encountered above

RWQCB ESL's for residential soils of 100 mg/kg to a maximum depth of 31 fbg in CPT-12. BTEX constituents were encountered above RWQCB ESL's for residential soils (see table A, pg 11) to a maximum depth of 50.5 fbg in CPT-3 and 31 fbg in CPT-12. MTBE was not detected above method reporting limits in soil samples. Historical analytic data are attached as Attachment C.

Subsurface Lithology: During the excavation, soils at the site were noted to be comprised of a reddish brown, firm, moderately permeable gravelly silt to approximately 6 fbg. This material is underlain by a strong brown (Munsell color chart 7.5 YR 6/3), stiff, low permeability silt and clayey silt to the total excavated depth of 20 fbg. In previous investigations a medium dense clayey silt was encountered between 35-45 fbg. Below 45 fbg, a very stiff silt/clayey silt was encountered across the site to approximately 80 fbg. Below 80 fbg lies stiff, fine-grained cemented sand. Borings logs are attached as Attachment D

Hydrogeology: According to Zone 7 Water Agency's *Draft Groundwater Management Plan for Livermore-Amador Groundwater Basin*, dated August 2005, the Livermore Valley is comprised of two aquifer zones. The upper aquifer zone is comprised of sandy and sandy clayey gravels which are encountered between 20 and 150 fbg. The lower aquifer consists of semi-confined to confined, coarse grained water-bearing units, interbedded with relatively impermeable, fine-grained units. A silty clay aquitard approximately 50 feet thick separates these zones.

During investigations conducted prior to 2006, discontinuous perched water-bearing zones were encountered between 23-28 fbg and 35-45 fbg. Groundwater was not encountered during excavation activities. Neither the upper or lower regional aquifers, as described by the Zone 7 Groundwater Management Plan, were encountered during site investigations or excavation.

5 PRE-EXCAVATION HYDROCARBON DISTRIBUTION IN SOIL

Based on the historic site use and previous laboratory analyses, hydrocarbons in the soil are composed primarily of highly weathered gasoline, diesel and heavier range hydrocarbons. Previous investigations by Cambria (2004 through 2005) indicate there were three areas of significant hydrocarbons in subsurface soil: 1) the first generation tankpit, 2) the second generation tankpit and northern dispenser island, and 3) the center portion of the site in the vicinity of the previously unknown use-oil UST. The highest heavier range hydrocarbon detected in soil was 39,000 mg/kg (December 1999, Tom Edwards & Associates) TPH-motor oil in B-2 in the vicinity of the former unknown use-oil UST at 5 fbg. Samples collected from boring B-20 contained the highest concentration of TPHd concentration in soil at 1,100 mg/kg, at 11.5 fbg (May 2005, Cambria). The highest TPHg concentration detected in soil was 3,500 mg/kg, in boring CPT-12, located in the vicinity of the first generation tankpit at 16 fbg. The highest benzene concentration detected in soil

was 1.3 mg/kg in boring CPT-3, located in the vicinity of the second generation tankpit at 16 fbg (September 2005, Cambria). MTBE has not been detected in soil samples. Historical soil analytic tables are presented in Attachment C.

6 PRE-EXCAVATION HYDROCARBON DISTRIBUTION IN GRAB GROUNDWATER SAMPLES

The hydrocarbon compounds detected in grab groundwater samples have been primarily diesel, gasoline and BTEX constituents. The maximum concentration of TPHd encountered in groundwater was 15,000 micrograms per liter (ug/L) which was noted in the laboratory report as "The observed sample pattern includes #2 fuel/diesel and an additional pattern which elutes later in the DRO range", in boring CPT-12 (September 2005, Cambria). The maximum concentration of TPHg encountered in groundwater was 78,000 ug/L in B-9. The maximum concentrations of BTEX encountered in groundwater were 13,000 ug/L benzene, 20,000 ug/L toluene, 2,200 ug/L ethylbenzene, and 6,000 ug/L total xylenes, respectively, in boring B-9 (May 2005, Cambria). MTBE has not been detected in grab groundwater samples. Historical analytic tables are presented in Attachment C.

7 REMEDIAL EXCAVATION ACTIVITIES

To avoid damaging underground utilities during excavation activities, a private utility locating company, California Utility Surveys, conducted an onsite survey on February 13, 2006. Excavation of impacted soil began on February 21, 2006, and all site work, was completed on March 21, 2006. The extent of each site excavation is shown on Figure 2. The entire construction site was surrounded by chain-link fencing to prohibit public access. Cambria personnel were on site during all site activities to monitor excavation progress and air quality for dust and volatile hydrocarbons.

Excavations were kept a safe distance from sidewalks to prevent potential caving. Excavated soil was either direct loaded onto trucks for transport offsite or stockpiled atop and covered with plastic sheeting. Straw waddles, hay bails and sand bags were placed along the driveways on the southern (downslope) portion of the site to prevent runoff during rain. Additionally, sand bags were placed around storm drains and sediment screens were placed in the storm drains to prohibit potential sediment runoff from entering the drains.

All three excavated areas were backfilled and compacted to approximately match the pre-excavation ground surface. The finished grades were covered with approximately 6 inches of gravel to control potential erosion until site redevelopment occurs. Within the excavation limits, petroleum hydrocarbon-impacted soil was removed to a maximum depth of approximately 20 fbg. Approximately 3,400 yd³ (4,800 tons) of petroleum hydrocarbon-impacted soil were hauled from the site (Attachment E). Based on analytic data, Vasco Road Landfill, a Chevron-approved facility in Livermore, California, pre-approved acceptance of the excavated soil.

Excavation 1 (EX-1): The remedial excavation activities were initiated at the corner of Portola Road and First Street (EX-1) in the vicinity of the first generation USTs. The excavation was bounded on the south by First Street and on the north and east by Portola Avenue. EX-1 was approximately 27-feet long, 28-feet wide and 20-feet deep. Confirmation soil samples were collected on February 22, 2006 (Figure 3). The excavated area was encompassed by a 1 to 1 sloped area for slope stability along the top 7 feet of the excavation. An approximate total of 370 yd³ of hydrocarbon impacted soil was removed from EX-1. Groundwater was not encountered within the excavation.

Excavation 2 (EX-2): On February 24, 2006, soil excavation began in EX-2, encompassing the area of the second generation USTs and northern dispenser island. During soil removal, previous station debris was observed to approximately 12 fbg in the area of the second generation USTs. The debris consisted of concrete footings, asphalt, and old product lines. Cambria removed the debris along with hydrocarbon impacted soil. Confirmation soil samples were collected on February 27-28 and March 1, 2006 (Figure 4). The excavation limits were approximately 36-feet wide, by 26-feet long and 20-feet deep. In the area of the former tank fill, the excavation extended to only 12 fbg because soil was not found to be impacted in the fill area below this depth. An approximate total of 1,846 yd³ of hydrocarbon impacted soil was removed from EX-2. Groundwater was not encountered within the excavation.

During excavation activities, vent lines from the second generation USTs were located, as well as product distribution lines from the former USTs to the southern dispenser island. The vent and product distribution lines were removed and transported off-site.

Excavation 3 (EX-3): On March 8, 2006, excavation activities began in the vicinity of borings B-2, B-3 and B-20, where analytic data indicated the presence of heavier range hydrocarbons. After removing approximately 2 yd³ of soil in the vicinity of B-2, an orphan 350-gallon UST was discovered. Work was stopped until the tank removal activity could be properly permitted and the UST removed. An *Underground Storage Tank Removal Report* (Attachment F) was submitted to the Livermore-Pleasanton Fire Department on April 13, 2006. During tank removal, one confirmation sample (EX-3-1) was collected from beneath the UST (Figure 5). Subsequent to the orphan tank removal, an oil

water separator was encountered during over excavation activities. The location of the oil water separator was documented and then transported offsite. A sample (EX-3-2) was collected from beneath the oil-water separator at approximately 4 fbg. An approximate total of 1,050 yd^3 of hydrocarbon impacted soil was removed from EX-2. Groundwater was not encountered within the excavation.

Excavation of In-place Pipeline and Magnetic Anomalies: During excavation of the second generation USTs and northern dispenser island, vent lines and a former product line from the USTs to the former southern dispenser island were discovered in place. The lines were removed on March 8, 2006 and disposed with the orphan UST as requested by John Rigter of the Livermore-Pleasanton Fire Department. The lines were buried approximately 3 fbg. Confirmation samples were collected every 20 feet along the pipelines after removal (Figure 6).

After discovery of the orphan UST, California Utility Surveys was called back to identify other potential USTs or lines. Three magnetic anomalies were identified as possible USTs (Figure 3). These locations were excavated to 5 fbg. No tanks or additional piping were discovered. The magnetic anomalies were likely the result of electrical wires, abandoned sewer laterals, and irrigation piping encountered beneath these areas.

Backfill and Compaction: After the petroleum hydrocarbon-impacted soil was removed from the site or stockpiled onsite, the excavations were backfilled using a layer of ³/₄-inch Class II aggregate baserock (AB) to provide a consistent layer of base material. The baserock was placed from the bottom of the excavations to approximately 6 fbg. Geotextile (filter) fabric consisting of Mirafi 140N was placed atop the baserock. Clean "fill sand" was imported to the site, placed atop the filter fabric, and compacted in approximately 12- to 18-inch inch lifts with a Bomag sheepsfoot roller until the desired finished grades were achieved.

Michelucci & Associates, Inc. of Santa Rosa, California was retained by the excavation contractor to provide observation and compaction testing services during the project. A copy of the compaction testing report is presented in Attachment G.

Sampling Methodology: Cambria designated impacted soils using: past soil analytic results, photo ionization detector (PID) readings, visual observations, and confirmation samples. Cambria collected confirmation soil samples from the bottom and sidewalls of each excavation to document residual petroleum hydrocarbon-impacted soil left in place. The bottom confirmation samples were collected in roughly a 15-ft square grid pattern, while sidewall samples were collected approximately every 15 linear feet at approximately 8 and 15 fbg.

Confirmation samples were collected by inserting a 6-inch brass tube into soil brought to the surface from the appropriate depth in the excavation bucket. The samples were trimmed, capped with Teflon tape and plastic end caps, labeled, placed on ice, and transported under chain-of-custody to McCampbell Analytical of Pacheco, California, a State-certified analytic laboratory, for 24-hour turnaround. Selected samples were analyzed for:

- TPHg by Modified EPA Method 8015.
- TPHd by Modified EPA Method 8015.
- BTEX by EPA Method 8260B.

Samples collected from EX-3 were additionally analyzed for:

• CAM-17 metals by EPA Method 6010C.

Tabulated soil sample results, representing residual hydrocarbons at the base and sidewalls of the excavations, are presented as Table 1. The laboratory report of soil sample analyses is included as Attachment H.

8 CURRENT HYDROCARBON DISTRIBUTION IN SOIL

Although the remedial excavation activities removed a large quantity of petroleum hydrocarbonimpacted soil, isolated pockets of hydrocarbons are still present in the subsurface. Hydrocarbonimpacted soil remains in place beneath the sidewalk on First Street and below 20 fbg in excavations EX-1 and EX-3.

Hydrocarbon concentrations in EX-1 soil samples exceeded cleanup goals in 3 samples. EX-1-4@17 fbg contained TPHg, benzene and toluene, which exceed cleanup goals at concentrations of 1,100 mg/kg, 0.56 mg/kg and 3.1 mg/kg, respectively. EX-1-5@11 fbg contained TPHg, benzene, toluene, and total xylenes which exceed cleanup goals at concentrations of 1,500 mg/kg, 0.96 mg/kg, 11 mg/kg and 30 mg/kg, respectively. EX-1-8@12 fbg contained TPHg and toluene concentrations which exceed cleanup goals at concentrations of 2,100 mg/kg and 3.7 mg/kg, respectively. Each of the samples that exceed cleanup goals were collected from the southern wall of the excavation which could not be extended due to the proximity of First Street. The excavation bottom sample collected (EX-1-1@18 fbg) contained hydrocarbons below the soil cleanup goals (Table 1).

Hydrocarbon concentrations in EX-2 soil samples originally exceeded cleanup goals in seven sidewall samples on the northern and eastern edges of the excavation. The excavation was extended by 3 feet in both directions. Subsequent samples indicated petroleum hydrocarbons were below soil cleanup

goals, with the exception of the bottom sample EX-2-28 collected at 20 fbg, which contained 0.87 mg/kg benzene.

Hydrocarbon concentrations in EX-3 soil samples did not exceed cleanup goals. EX-3-1@ 4 fbg was a regulatory compliance sample collected from beneath the orphan UST. EX-3-2 @ 9 fbg was collected from beneath the oil water separator. Both of these locations were excavated. No additional samples contained hydrocarbons above proposed cleanup goals.

Regulatory compliance samples collected from beneath the vent lines and product lines at the site did not contain hydrocarbons above method detection limits.

0

9 REGULATORY STATUS REVIEW AND RECOMMENDATIONS

The site appears to meet the Regional Water Quality Control Board (RWQCB) San Francisco Bay Region criteria for a low-risk fuel site. As described by the April 1, 1996 RWQCB memorandum, *Regional Board Supplemental Instructions to State Water Board December 8, 1995, Interim Guidance on Required Cleanup at Low-Risk Fuel Sites*, a low-risk groundwater case has the following general characteristics:

- The leak has been stopped and ongoing sources, have been removed or remediated;
- The site has been adequately characterized;
- The dissolved hydrocarbon plume is not migrating;
- No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted; and
- The site presents no significant risk to human health or the environment.

Each of the low-risk groundwater case characteristics, as they relate to the site, is discussed below.

The Leak Has Stopped and Ongoing Sources, Including Free Product, Have Been Removed: Both the first and second generation tankpits have been excavated. A third excavation uncovered an orphan tank which was removed and disposed of. No soil samples collected, through several phases of investigation, have contained hydrocarbon concentrations indicative of light non-aqueous phase liquids (LNAPL). LNAPL has never been observed in samples collected from borings and dissolved hydrocarbon concentrations in grab groundwater samples collected from borings across the site do not suggest the presence of LNAPL.

The Site Has Been Adequately Characterized: A total of 36 soil borings to a maximum depth of 90 fbg have been advanced across the site prior to excavation. Additionally, areas with hydrocarbon impact exceeding ESLs located onsite and above 20 fbg have been remediated via excavation. The area of the first generation USTs and dispenser islands have been characterized by samples collected from the May and September 2005 subsurface investigations as well as confirmation samples collected from EX-1. EX-1 confirmation soil samples indicate that soils beneath the First Street sidewalk still contained hydrocarbons above ESLs, with a maximum concentration of 2,100 mg/kg TPH-g at 12 fbg. EX-1 soil samples collected from the north, east and west excavation walls and a bottom sample did not contain petroleum hydrocarbons above ESLs.

Residual hydrocarbon impact around the second generation USTs has been characterized by samples collected from the sidewalls and bottom of EX-2. The final round of confirmation sampling found benzene concentrations above ESLs in three soil samples collected at 20 fbg. The maximum benzene concentration was collected from EX-2-28 located in center of the excavation at 20 fbg at 0.87 mg/kg. No additional samples contained hydrocarbons above residential ESLs. These concentrations will diminish over time.

Residual hydrocarbon impact around the orphan UST has been characterized by samples collected from EX-3 sidewalls. Confirmation soil samples from EX-3 did not contain hydrocarbons above residential ESLs.

The Dissolved Hydrocarbon Plume Is Not Migrating: Groundwater samples collected from open holes often took 1-2 hours to collect due to low formation permeability. Grab groundwater samples were collected when possible and analyzed for TPHg, TPHd, TPHmo, and BTEX constituents. TPHg was detected at a maximum concentration of 13,000 ug/L in a sample collected from CPT-3 at 43 fbg. Volatile constituents were detected at maximum concentrations of 1,600 ug/L benzene, 240 ug/L toluene, 640 ug/L ethylbenzene and 660 ug/L total xylenes in CPT-3 at 43 fbg. CPT-3 was located in the center of EX-2. TPHd was detected at a maximum concentration of 78,000 ug/L in B-9 at 28 fbg, also located in the center of EX-2. TPHd was detected in CPT-3 at 2,900 ug/L at 43 fbg, indicating attenuation with depth. CPT-12, located in EX-1, contained TPH-d and TPH-g at 9,800 ug/L and 15,000 ug/L, respectively. MTBE has not been detected in grab groundwater samples. CPT-6 and CPT-1 water samples, collected in the inferred downgradient direction from EX-1, EX-2 and EX-3 did not contain hydrocarbons above ESLs for residential land use.

Water Wells, Deeper Drinking Water Aquifers, Surface Water, or Other Sensitive Receptors are Not Likely to be Impacted: One municipal well is located approximately 1,200 feet south of the site. Due to low concentrations detected in CPT-6, located downgradient of the former first generation tankpit, offsite migration appears to be limited. During investigations conducted prior to 2006, discontinuous

perched water bearing zones were encountered between 23-28 fbg and 35-45 fbg. Groundwater was not encountered during excavation activities. Neither the upper or lower regional aquifers, as described by the Zone 7 Groundwater Management Plan, were encountered during site investigations.

The Site Presents No Significant Risk to Human Health or the Environment: To assess the potential health risks to occupants of the site and adjacent properties, Cambria compared hydrocarbon concentrations in soil and groundwater with water quality objectives from environmental screening levels (ESLs) developed by the Regional Water Quality Control Board (RWQCB) San Francisco Bay Region¹. The following table details ESLs for soil in residential areas where groundwater is a current or potential source of drinking water.

				Table A			
	S	Summary	of Envir	onmental Sc	reening Lev	rels	
Groundwa	ter is a Cur	rent or P	otential	Source of Dr	inking Wate	r- Residential Land	Use
Ceiling Value ESL Concentrations							
TPHmo TPHd TPHg Benzene Toluene Ethylbenzene Xylens							
Shallow Soils (<3m bgs) in mg/kg	500	100	100	0.044	2.9	3.3	2.3
Deep Soils (>3m bgs) in mg/kg	1000	100	100	0.044	2.9	3.3	2.3

Hydrocarbon impacts in soil have been removed to 20 fbg onsite where accessible. Hydrocarbons above ESLs as indicated by grab groundwater samples have been very localized and are likely to naturally attenuate now that impacted soil has been excavated. Land use in the immediate vicinity will be parking and landscaping, which isolates residuals from surface occupants. MTBE has never been detected in soil or groundwater samples collected from the site. Therefore, the extent of

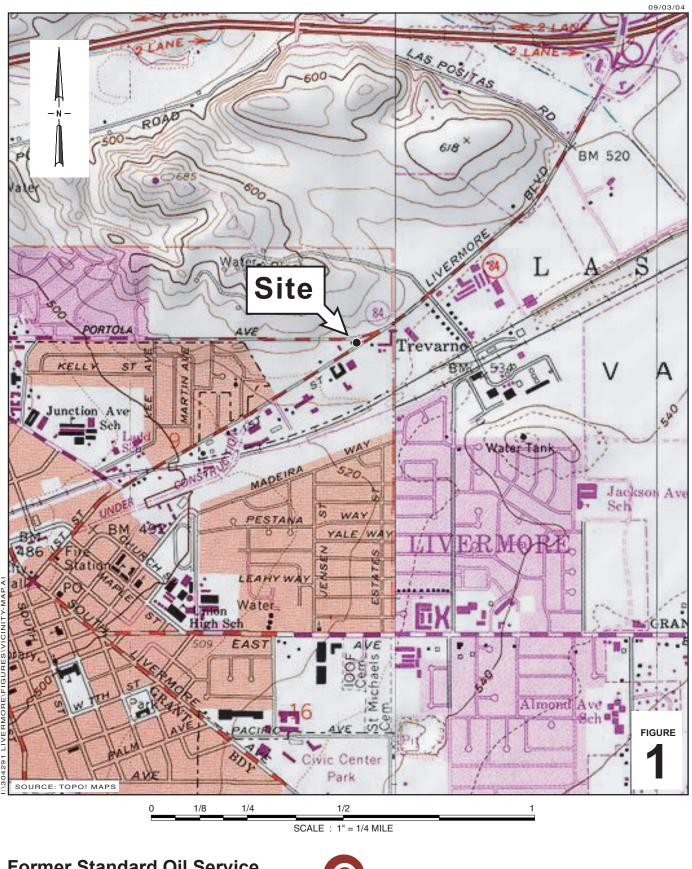
¹ RWQCB Application of Risk-Based Screening Levels and Decision Making to Sites With Impacted Soil and Groundwater, Volume 1, Summary Tier 1 Lookup Tables, Interim Final February 2005, for Residential Land Use, Where Groundwater is a Current or Potential Source of Drinking Water

hydrocarbons has been defined to the degree necessary to determine that the site does not presents a threat to human health or the environment.

10 CONCLUSIONS AND RECOMENDATIONS

The majority of petroleum hydrocarbon-impacted soil at the site was removed during the February and March 2006 excavation. Therefore the remediation objectives were achieved. Petroleum hydrocarbon-impacted soil above ESLs for residential land use may still exist beneath the First Street sidewalk and at depths greater than 20 fbg.

Approximately 3,400 yd³ of petroleum hydrocarbon-impacted soil were removed from the site and transported to Chevron-approved landfill for proper disposal. Because groundwater is not an issue at this site, and proposed development plans indicate the excavated areas are to be used for parking, a community center and a small park, residual hydrocarbons beneath the sidewalk and deeper than 20 fbg will not have a significant impact on future residents or the environment. Additionally, groundwater has not been encountered beneath this site, with the exception of discontinuous perched zones. Therefore, Cambria proposes that the site be reviewed for closure and a "No Further Action" letter be issued for the site.

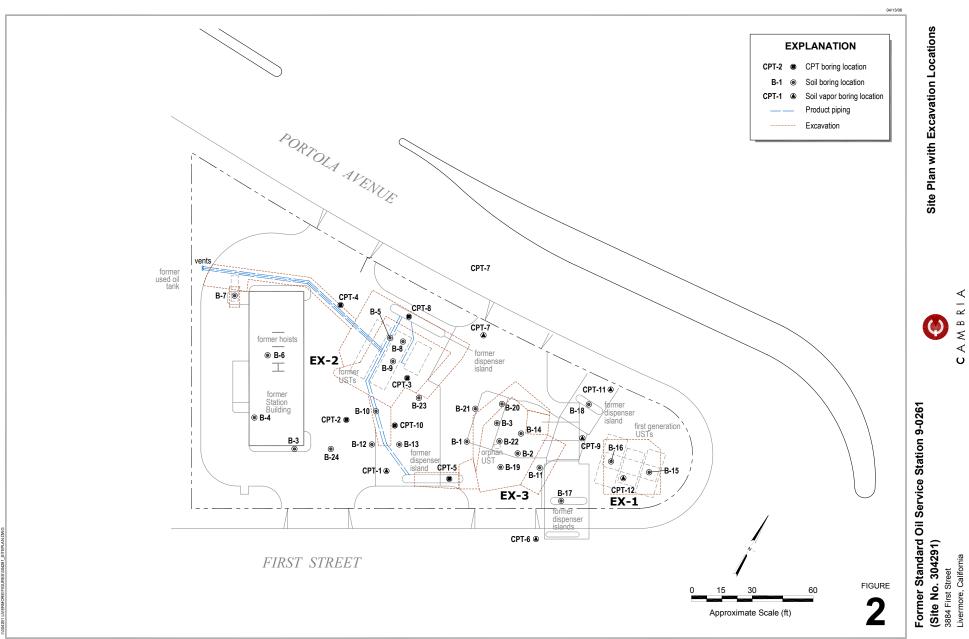


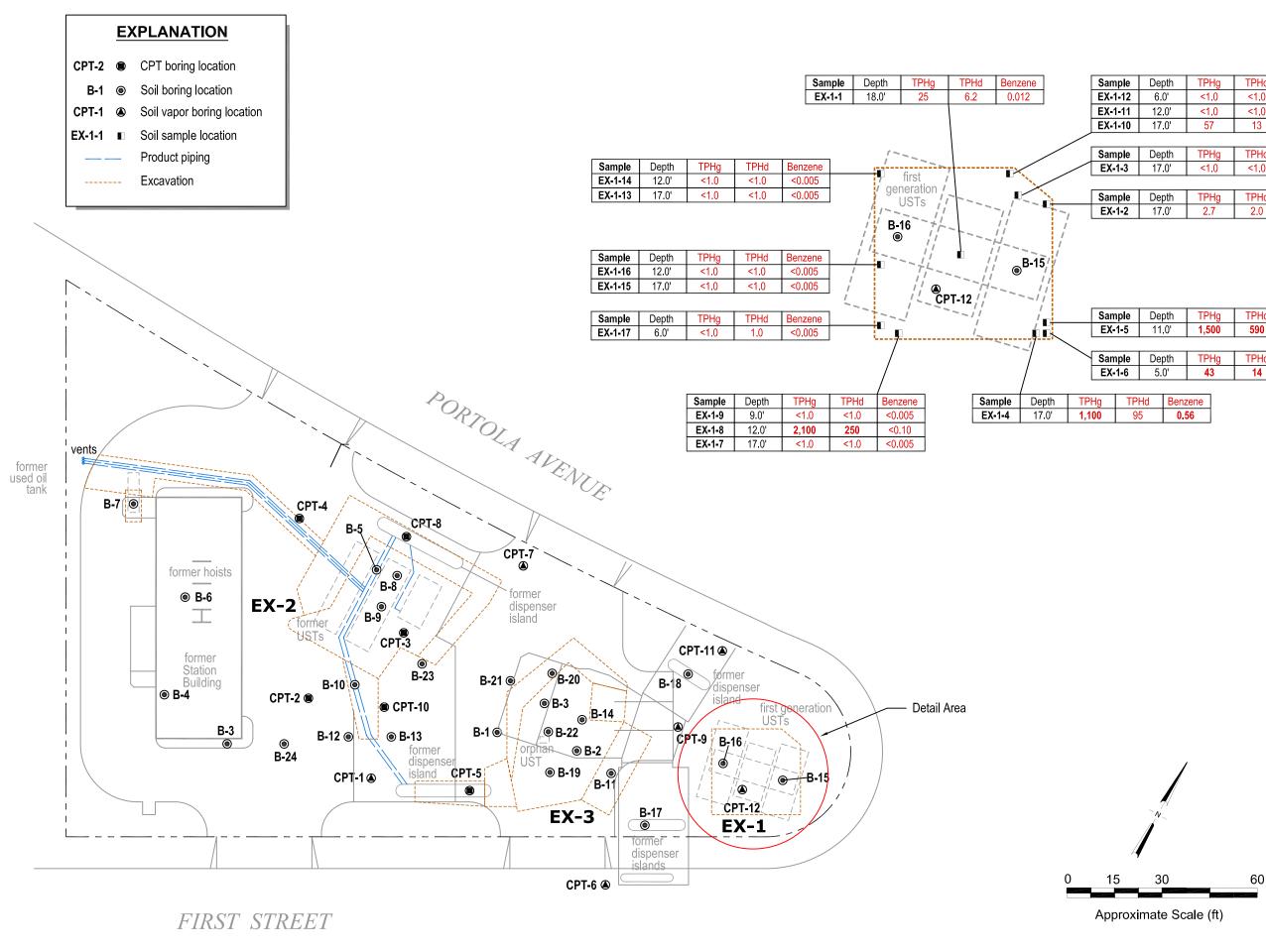
cc:

STRATA (Mark Inglis, Chevron) Ms. Susan Gallardo, GeoMatrix Consultants, Inc., 2101 Webster Street, 12th Floor, Oakland, CA 94612 Mr. Steven Clowdsley, Real Estate Consulting, 1561 Ramona Way, Alamo, CA 94507 Alameda County Database

FIGURES

Former Standard Oil Service Station 9-0261 (Site No. 304291)




Vicinity Map

3884 First Street

Livermore, California

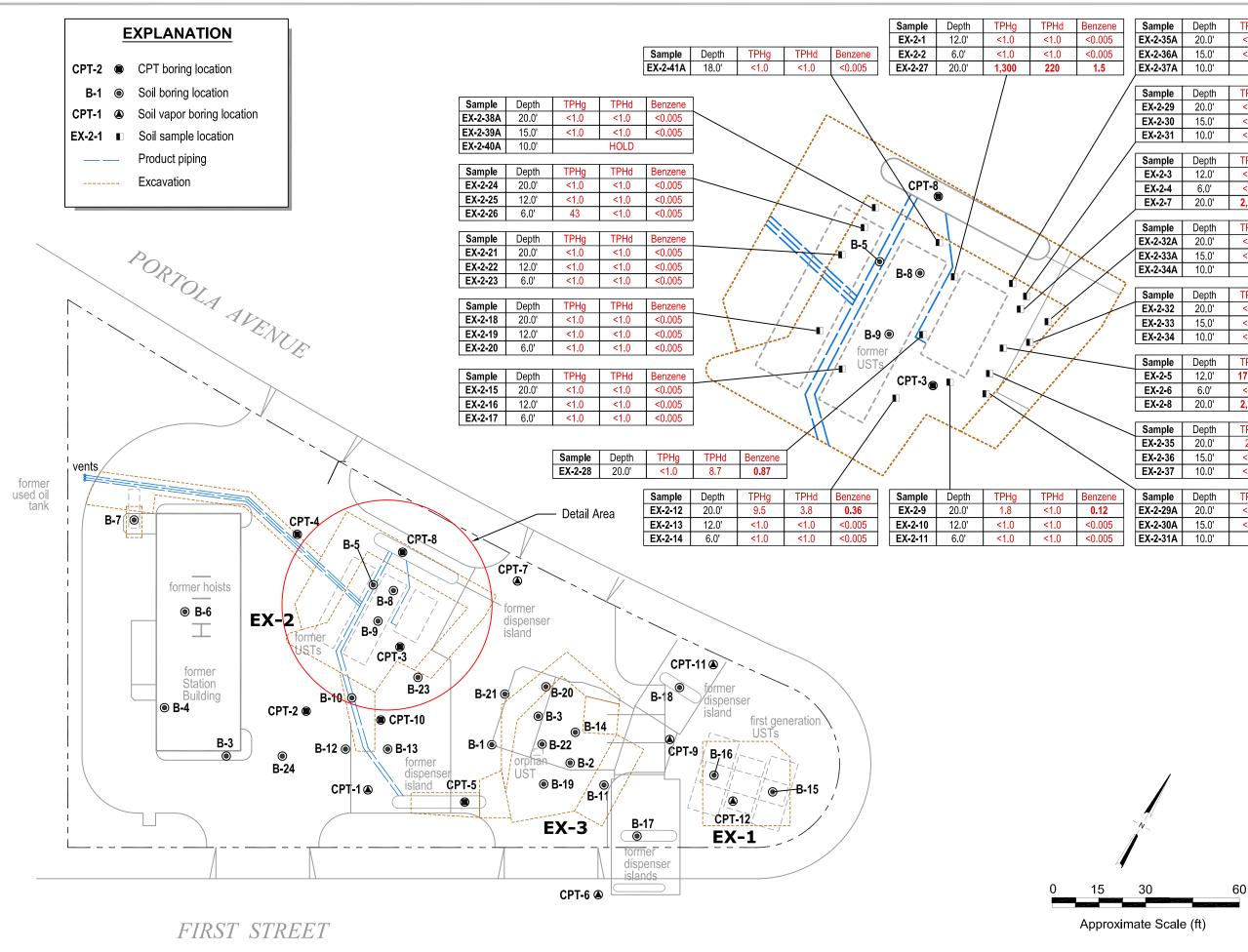
CAMBRIA

е	Depth	TPHg	TPHd	Benzene
12	6.0'	<1.0	<1.0	<0.005
11	12.0'	<1.0	<1.0	<0.005
10	17.0'	57	13	<0.010
е	Depth	TPHg	TPHd	Benzene
3	17.0'	<1.0	<1.0	<0.005
le	Depth	TPHg	TPHd	Benzene
~	17.0'	0.7	2,0	<0.005
2	17.0	2.7	2.0	<0.005

le	Depth 11.0'		TP	Чg	TP	Hd	Benzene	
5	11.0'		1,500		590		0.96	
е	De	Depth		TPHg		Hd	Benzene	
6	5.	0'	43		14		0.019	
TP	Hd	Benz	zene					

EX-1 Soil Sample Locations with Analytical Results

 \triangleleft AMBRI Ο



Station 9-0261 Former Standard Oil Service

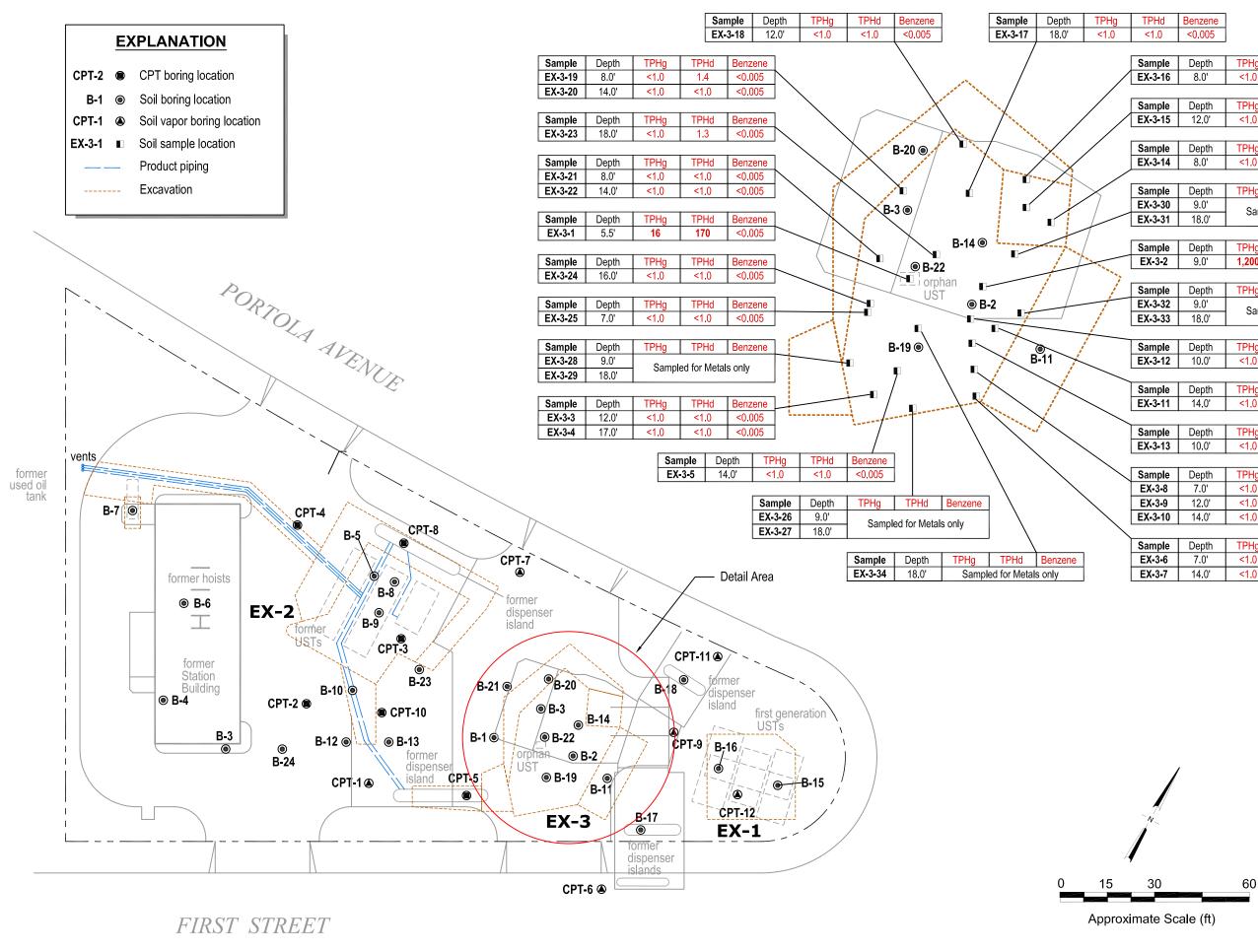
FIGURE

3

(Site No. 304291) 3884 First Street Livermore, California

04/12/06

				04/1
	_ _ <i>u</i>	TDU	TDUU	
Sample	Depth	TPHg	TPHd	Benzene
EX-2-35A	20.0'	<1.0	<1.0	< 0.005
EX-2-36A	15.0'	<1.0	<1.0	<0.005
EX-2-37A	10.0'		HOLD	
Sample	Depth	TPHg	TPHd	Benzene
EX-2-29	20.0'	<1.0	<1.0	< 0.005
EX-2-30	15.0'	<1.0	<1.0	< 0.005
EX 2-31	10.0'	<1.0	<1.0	< 0.005
Sample	Depth	TPHg	TPHd	Benzene
EX-2-3	12.0'	<1.0	<1.0	< 0.005
EX-2-4	6.0'	<1.0	<1.0	< 0.005
EX-2-7	20.0'	2,000	580	8.2
		TPU	TRUL	
Sample	Depth	TPHg	TPHd	Benzene
EX-2-32A	20.0'	<1.0	<1.0	< 0.005
EX-2-33A	15.0'	<1.0	<1.0	< 0.005
EX-2-34A	10.0'		HOLD	
Sample	Depth	TPHg	TPHd	Benzene
EX 2 32	20.0'	<1.0	<1.0	0,077
EX-2-33	15.0'	<1.0	<1.0	< 0,005
EX-2-34	10.0'	<1.0	<1.0	< 0.005
Sample	Depth	TPHg	TPHd	Benzene
EX-2-5	12.0'	17,000	1,600	68
EX-2-6	6.0'	<1.0	<1.0	< 0.005
EX-2-8	20.0'	2,300	84	28
	Denth	TPHa	трна	Renzene
Sample	Depth 20 0'	TPHg	TPHd <1.0	_
Sample EX-2-35	20.0'	2.5	<1.0	0.25
Sample EX-2-35 EX-2-36	20.0' 15.0'	2.5 <1.0	<1.0 <1.0	0.25 <0.005
Sample EX-2-35	20.0'	2.5	<1.0	0.25
Sample EX-2-35 EX-2-36	20.0' 15.0'	2.5 <1.0	<1.0 <1.0	0.25 <0.005 <0.005
Sample EX-2-35 EX-2-36 EX-2-37	20.0' 15.0' 10.0'	2.5 <1.0 <1.0	<1.0 <1.0 <1.0	0.25 <0.005 <0.005
Sample EX-2-35 EX-2-36 EX-2-37 Sample	20.0' 15.0' 10.0' Depth	2.5 <1.0 <1.0 TPHg	<1.0 <1.0 <1.0 TPHd	<0.005 <0.005 Benzene

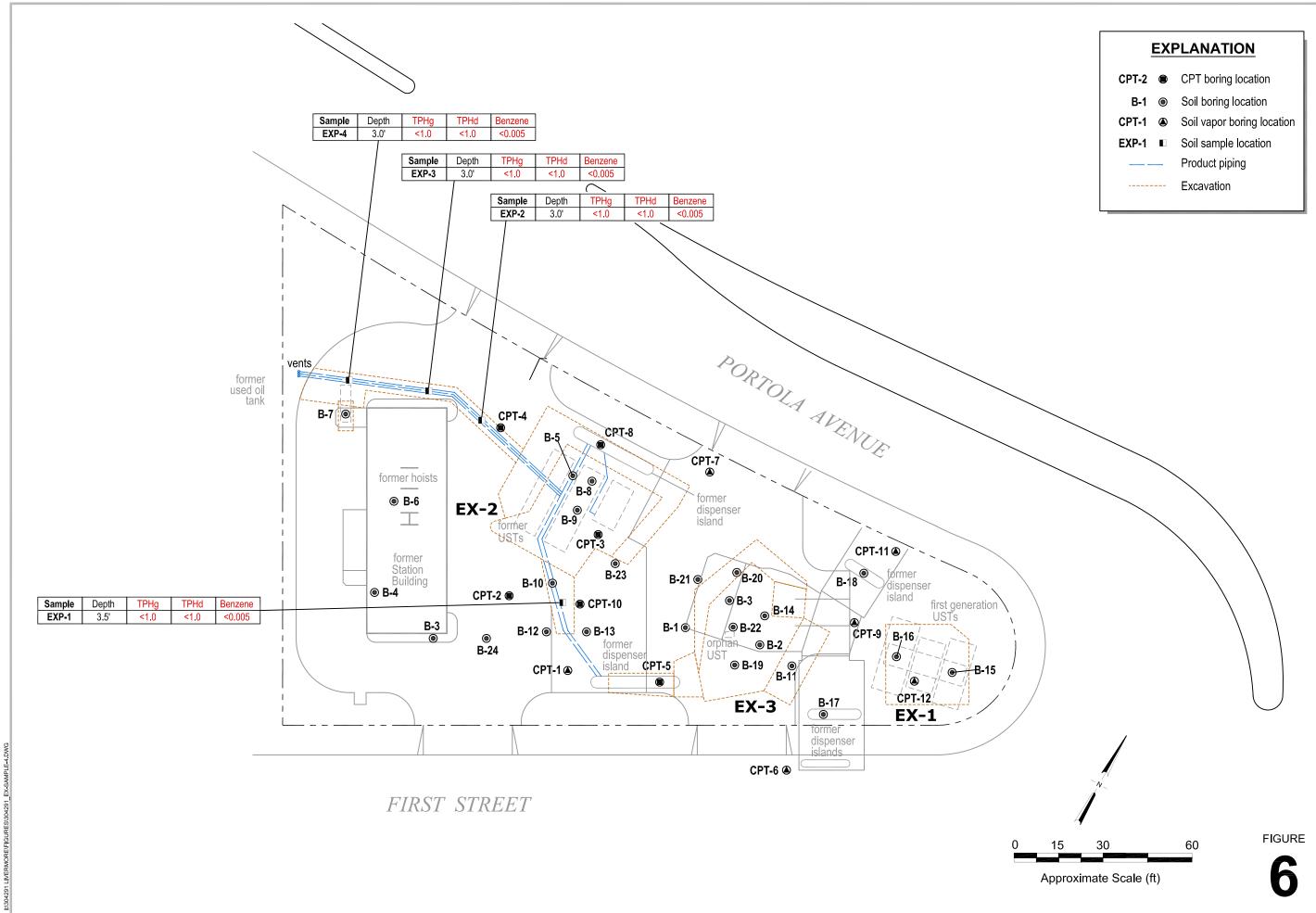

 \triangleleft R _ 8 ≷ ∢ Ο

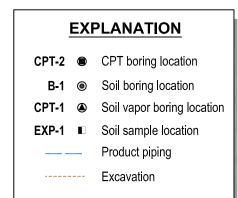
FIGURE

9-0261 Station Former Standard Oil Service

(Site No. 304291) 3884 First Street Livermore, California

g	TPHd	Benzene			
)	<1.0	<0.005			
	Sample	Depth	TPHg	TPHd	Benzene
	EX-3-16	8.0'	<1.0	<1.0	< 0.005
	Sample	Depth	TPHg	TPHd	Benzene
	EX-3-15	12.0'	<1.0	<1.0	< 0.005
	Sample	Depth	TPHg	TPHd	Benzene
	EX-3-14	8.0'	<1.0	<1.0	< 0.005
/					
	Sample	Depth	TPHg	TPHd	Benzene
	EX-3-30	9.0'	Sampl	ed for Metal	o only
	EX-3-31	18.0'	Sample		s only
	Sample	Depth	TPHg	TPHd	Benzene
	EX-3-2	9.0'	1,200	1,800	<0.5
3					
	Sample	Depth	TPHg	TPHd	Benzene
	EX-3-32	9.0'	Sample	ed for Metal	e only
	EX-3-33	18.0'	Sampi		SOINY
	Sample	Depth	TPHg	TPHd	Benzene
	EX-3-12	10.0'	<1.0	<1.0	<0.005
<u> </u>					
	Sample	Depth	TPHg	TPHd	Benzene
	EX-3-11	14.0'	<1.0	<1.0	<0.005
	Sample	Depth	TPHg	TPHd	Benzene
	EX-3-13	10.0'	<1.0	<1.0	<0.005
\searrow	Sample	Depth	TPHg	TPHd	Benzene
	EX-3-8	7.0'	<1.0	<1.0	<0.005
	EX-3-9	12.0'	<1.0	<1.0	<0.005
	EX-3-10	14.0'	<1.0	3.3	<0.005
\mathbf{i}					
	Sample	Depth	TPHg	TPHd	Benzene
	EX-3-6	7.0'	<1.0	<1.0	< 0.005
	EX-3-7	14.0'	<1.0	<1.0	<0.005


 \triangleleft ____ 2 ≷ ₿ \triangleleft Ο



Station 9-0261 Former Standard Oil Service

(Site No. 304291) 3884 First Street Livermore, California

FIGURE 5

TABLES

ample ID	Sample	Sample	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	O+G
	Date	Depth	<	(concer	trations reported in	mg/kg)	>		
EX-1-1	2/24/2006	18	25 ^{am}	6.2 ⁿ	0.012	0.012	< 0.005	< 0.005	NA
EX-1-2	2/24/2006	17	2.7 ^g	2.0 ⁿ	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-1-3	2/24/2006	17	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-1-4	2/24/2006	17	1100 ^{am}	95 ⁿ	0.56	3.1	< 0.10	2.1	NA
EX-1-5	2/24/2006	11	1500 ^{bm}	590 ^{db}	0.96	11	< 0.50	30	NA
EX-1-6	2/24/2006	5	43 ^{bm}	14^{dg}	0.019	0.23	< 0.010	0.78	NA
EX-1-7	2/24/2006	17	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-1-8	2/24/2006	12	2100 ^{bm}	250 ^{nb}	< 0.10	3.7	< 0.10	1.1	NA
EX-1-9	2/24/2006	9	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-1-10	2/24/2006	17	57 ^{gm}	13 ⁿ	< 0.010	< 0.010	< 0.010	< 0.010	NA
EX-1-11	2/24/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-1-12	2/24/2006	6	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-1-13	2/24/2006	17	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-1-14	2/24/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-1-15	2/24/2006	17	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-1-16	2/24/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-1-17	2/24/2006	6	<1.0	1.0 ^{fb}	<0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-1	2/24/2006	12	<1.0	<1.0	<0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-2	2/24/2006	6	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-3	2/24/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-4	2/24/2006	6	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-5	2/24/2006	12	17,000 ^a	1,600 ^d	68	800	230	1,000	NA
EX-2-6	2/24/2006	6	<1.0	<1.0	< 0.005	0.011	< 0.005	0.011	NA
EX-2-7	2/27/2006	20	2,000^a	580 ^{d,b}	8.2	77	33	140	NA
EX-2-8	2/27/2006	20	2,300 ^a	84 ^d	28	40	190	170	NA
EX-2-9	2/27/2006	20	1.8 ^a	<1.0	0.12	0.017	< 0.005	0.014	NA
EX-2-10	2/27/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-11	2/27/2006	6	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-12	2/27/2006	20	9.5 ^a	3.8 ^d	0.36	0.13	<.02	0.4	NA
EX-2-13	2/27/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-14	2/27/2006	6	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-15	2/27/2006	20	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-16	2/27/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA

Sample ID	Sample	Sample	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	O+G
	Date	Depth	<	(concen	trations reported in 1	ng/kg)	>		
EX-2-17	2/27/2006	6	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-18	2/27/2006	20	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-19	2/27/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-20	2/27/2006	6	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-21	2/27/2006	20	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-22	2/27/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-23	2/27/2006	6	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-24	2/27/2006	20	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-25	2/27/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-26	2/27/2006	6	43 ^a	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-27	2/27/2006	20	1,300 ^a	220 ^{d,b}	1.5	9.9	14	82	NA
EX-2-28	2/27/2006	20	<1.0	8.7 ^d	0.87	0.36	2.1	1.7	NA
EX-2-29	2/28/2006	20	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-30	2/28/2006	15	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-31	2/28/2006	10	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-32	2/28/2006	20	<1.0	<1.0	0.077	0.017	< 0.005	< 0.005	NA
EX-2-33	2/28/2006	15	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-34	2/28/2006	10	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-35	2/28/2006	20	2.5 ^a	<1.0	0.25	0.06	< 0.01	< 0.01	NA
EX-2-36	2/28/2006	15	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-37	2/28/2006	10	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-29A	3/1/2006	20	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-30A	3/1/2006	15	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-31A	3/1/2006	10	HOLD						
EX-2-32A	3/1/2006	20	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-33A	3/1/2006	15	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-34A	3/1/2006	10	HOLD						
EX-2-35A	3/1/2006	20	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-36A	3/1/2006	15	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-37A	3/1/2006	10	HOLD						
EX-2-38A	3/1/2006	20	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-39A	3/1/2006	15	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EX-2-40A	3/1/2006	10	HOLD						
EX-2-41A	3/1/2006	18	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA

Sample ID	Sample	Sample	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	O+G
	Date	Depth	<	(concen	trations reported in	mg/kg)	>		
EX3-1	3/8/2006	5.5	16 ^{g,m}	170 ^{g,b}	< 0.005	<0.005/0.11		0.18 ^p /0.11 ^q	1,300
EX3-2	3/15/2006	9	1,200 ^{g,m}	1,800 ^{k,g}	< 0.5	< 0.5	< 0.5	<0.5	<50
EX3-3	3/15/2006	5	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-4	3/15/2006	10	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-5	3/15/2006	14	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-6	3/15/2006	7	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-7	3/15/2006	14	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-8	3/15/2006	7	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-9	3/15/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-10	3/15/2006	14	<1.0	3.3 ^{k,g}	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-11	3/15/2006	14	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-12	3/15/2006	10	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-13	3/15/2006	10	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-14	3/15/2006	8	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-15	3/15/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-16	3/15/2006	8	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-17	3/15/2006	18	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-18	3/15/2006	12	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-19	3/15/2006	8	<1.0	1.4 ^{g,b}	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-20	3/15/2006	14	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-21	3/15/2006	8	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-22	3/15/2006	14	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-23	3/15/2006	18	<1.0	1.3 ^g	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-24	3/15/2006	16	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EX3-25	3/15/2006	7	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	<50
EXP1	3/8/2006	3.5	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EXP2	3/8/2006	3	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EXP3	3/8/2006	3	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
EXP4	3/8/2006	3	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
ESL's	for soils <3fbg (Resi	dential)	100	100	0.044	2.9	3.3	2.3	
ESL's i	for soils >3fbg (Resid	dential)	100	100	0.044	2.9	3.3	2.3	

Table 1. Analytical	l Results for Excav	ation Activities -	Former Standard Oi	l Station 30-4291, 3	884 First St., Liverm	ore, California			
Sample ID	Sample	Sample	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	O+G
	Date	Depth	<	(concer	ntrations reported in 1	mg/kg)	>		
Abbreviations/Notes:									
Total petroleum hydroca	rbons as gasoline (TPH	g) analyzed using modi	fied EPA Method 8015.						
Total petroleum hydroca	rbons as diesel (TPHd)	analyzed using modifie	ed EPA Method 8015.						
Benzene, toluene, ethylb	enzene, xylenes (BTEX) and Volatile Organic	Compounds (VOCs) anal	yzed using EPA Method	1 8260B.				
Semi-volatile organics (S	SVOCs) analyzed by EP	A Method 8270C.							
Polychlorinated bipheny	ls (PCBs) analyzed by E	EPA Method 8082.							
Oil and Grease (O+G) ar	nalyzed by EPA Method	SM 5520E/F.							
mg/kg = milligrams per l	kilogram.								
<n =="" detected<="" not="" results="" td=""><td>d above method detectio</td><td>n limits n.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></n>	d above method detectio	n limits n.							
NA = Not analyzed.									
=unmodified or weakly	y modified diesel is sign	ificant							
= diesel range compou	nds are significant; no r	ecognizable pattern							
l = gasoline range comp	ounds are significant								
g = oil range compounds	are significant								
k = kerosene/kerosene ra	inge								
n = fuel oil									
n = stoddard solvent/min	neral spirit								
o = Analytical Method S									
q = Analytical Method S	W8021B/8015Cm								

2 4 1 4			10:18: .: 20.420	91, 3884 First St., Liv	<u> </u>		(Camb
Sample ID	Sample	Sample	Cadmium	Chromium	Lead	Mercury	Nickel	Zinc
	Date	Depth						
EX3-1	3/8/2006	5.5	<1.5	64	34	NA	200	45
EX3-1 EX3-2	3/15/2006	9	<1.5	67	6.2	NA	120	43 59
EX3-2 EX3-3	3/15/2006	5	<1.5	66	5.6	NA	170	5) 74
EX3-3	3/15/2006	10	<1.5	76	8.8	NA	200	58
EX3-4 EX3-5	3/15/2006	10	<1.5	67	3.3 7.6	NA	180	50
EX3-6	3/15/2006	7	NA	NA	NA	NA	NA	NA
EX3-0 EX3-7	3/15/2006	14	NA	NA	NA	NA	NA	NA
EX3-7 EX3-8	3/15/2006	7	NA	NA	NA	NA	NA	NA
EX3-0 EX3-9	3/15/2006	12	NA	NA	NA	NA	NA	NA
EX3-10	3/15/2006	12	NA	NA	NA	NA	NA	NA
EX3-10	3/15/2006	14	NA	NA	NA	NA	NA	NA
EX3-12	3/15/2006	10	NA	NA	NA	NA	NA	NA
EX3-12 EX3-13	3/15/2006	10	<1.5	69	8.1	NA	180	48
EX3-13 EX3-14	3/15/2006	8	NA	NA	NA	NA	NA	NA
EX3-14 EX3-15	3/15/2006	12	NA	NA	NA	NA	NA	NA
EX3-16	3/15/2006	8	NA	NA	NA	NA	NA	NA
EX3-17	3/15/2006	18	NA	NA	NA	NA	NA	NA
EX3-18	3/15/2006	12	NA	NA	NA	NA	NA	NA
EX3-19	3/15/2006	8	NA	NA	NA	NA	NA	NA
EX3-20	3/15/2006	14	NA	NA	NA	NA	NA	NA
EX3-21	3/15/2006	8	NA	NA	NA	NA	NA	NA
EX3-22	3/15/2006	14	NA	NA	NA	NA	NA	NA
EX3-22	3/15/2006	18	NA	NA	NA	NA	NA	NA
EX3-24	3/15/2006	16	NA	NA	NA	NA	NA	NA
EX3-25	3/15/2006	7	NA	NA	NA	NA	NA	NA
EX3-26	3/17/2006	8	NA	84	NA	NA	NA	NA
EX3-27	3/17/2006	18	NA	100	NA	NA	NA	NA
EX3-28	3/17/2006	9	NA	84	NA	NA	NA	NA
EX3-29	3/17/2006	18	NA	78	NA	NA	NA	NA
EX3-30	3/17/2006	9	NA	96	NA	NA	NA	NA
EX3-31	3/17/2006	18	NA	92	NA	NA	NA	NA
EX3-32	3/17/2006	9	NA	78	NA	NA	NA	NA
EX3-33	3/17/2006	18	NA	96	NA	NA	NA	NA
EX3-34	3/17/2006	18	NA	74	NA	NA	NA	NA

Abbreviations/Notes:

Luft 5 metals analyzed by EPA method 6010C

mg/kg = milligrams per kilogram.

 \leq n = Results not detected above method detection limits n.

NA = Not analyzed.

ATTACHMENT A

Regulatory Correspondence

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

January 24, 2006

JAN 26 2006

AGENCY

J. Mark Inglis ChevronTexaco 6001 Bollinger Canyon Rd., K2256 P.O. Box 6012 San Ramon, CA 94583-2324

Mary Harvey Hexcel Corporation 75 N. Mines Road Livermore, CA 94550

Bruce Qvale First Street LLC 3800 First Street Livermore, CA 94550

Subject: Fuel Leak Case No. RO0002611, Livermore Honda, 3884 First Street, Livermore, CA

Dear Mr. Inglis, Mr. Qvale, and Ms. Harvey:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the subject site and the document entitled, "Workplan for Site Excavation," dated January 18, 2006. The work plan was prepared on behalf of Chevron Environmental Management Company by Cambria Environmental Technology, Inc and presents plans to excavate petroleum-impacted soil within three areas of the site. ACEH concurs with the proposed plan to excavate petroleumimpacted soil within three proposed areas of the site. However, high concentrations of petroleum hydrocarbons were also detected in shallow soil in the area of boring B-2. Therefore, soil excavation of the area around boring B-2 is required in addition to the three areas proposed in the Work Plan (please see technical comment 1).

We request that you address the following technical comments, perform the proposed work, and send us the reports requested below.

TECHNICAL COMMENTS

1. Area of Boring B-2. The boring log for boring B-2 describes petroleum odor in the soil from 2 to 15 feet below ground surface (bgs). The soil sample collected from a depth of 5 feet bgs in boring B-2 contained an estimated concentration of 40,000 milligrams per kilogram (mg/kg) of total recoverable petroleum hydrocarbons (TRPH). The soil sample collected from a depth of 10 feet bgs had an estimated concentration of 14,000 mg/kg of TRPH. Petroleum hydrocarbons were not detected in the soil sample collected at a depth of 15 feet bgs in boring B-2. Due to the elevated concentrations of petroleum hydrocarbons detected in shallow soil in the area of boring B-2, excavation is to be conducted to remove visibly stained and odorous shallow soil in the area surrounding boring B-2. Please present the results of soil excavation, removal, and confirmation sampling in the area of boring B-2 in the report requested below.

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

J. Mark Inglis, Bruce Qvale, and Mary Harvey January 24, 2006 Page 2

2. Soil Confirmation Sampling. The Work Plan indicates that, "Confirmation soil samples from sidewalls and the excavation base will be collected where soils appear clean." This statement is ambiguous and should be revised to, "when soils appear clean." In no case shall confirmation soil samples be collected preferentially from locations within the excavation where soils appear clean. The excavations are to be continued to remove areas of visibly stained and odorous soils to an extent that does not jeopardize worker or public safety prior to confirmation sampling. Confirmation soil samples are to be collected from the sidewalls at horizontal intervals no greater than 15 feet at approximate depths where soil contamination was previously observed in the excavation. The number of soil samples collected from the bottom of the excavation is to be based on the size of the excavation but should be no less than a minimum of four confirmation soil samples from the base of each excavation. Please present results of the soil confirmation sampling in the report requested below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Mr. Jerry Wickham), according to the following schedule:

• May 3, 2006 – Soil Removal and Confirmation Sampling Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail.

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and <u>other</u> data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (<u>http://www.swrcb.ca.gov/ust/cleanup/electronic_reporting</u>).

In order to facilitate electronic correspondence, we request that you provide up to date electronic mail addresses for all responsible and interested parties. Please provide current electronic mail

J. Mark Inglis, Bruce Qvale, and Mary Harvey January 24, 2006 Page 3

addresses and notify us of future changes to electronic mail addresses by sending an electronic mail message to me at jerry.wickham@acgov.org.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6791.

Sincerely,

Jerry Wickham, P.G. Hazardous Materials Specialist

J. Mark Inglis, Bruce Qvale, and Mary Harvey January 24, 2006 Page 4

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

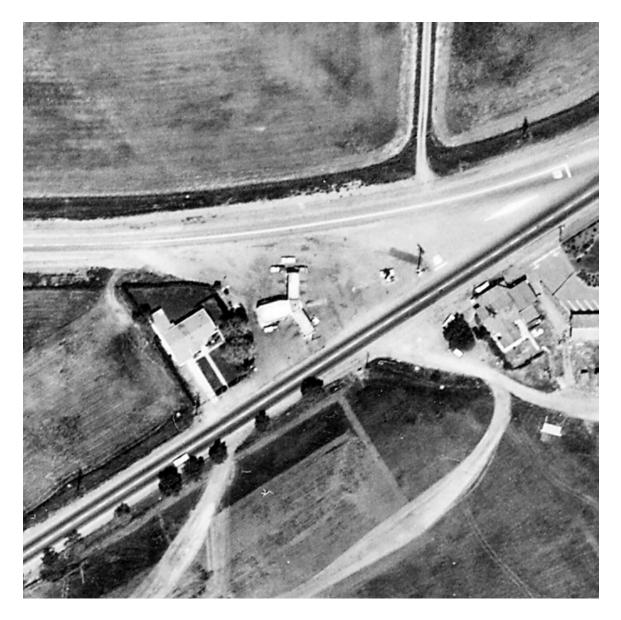
cc: Laura Genin, Cambria Environmental Technology, Inc., 5900 Hollis Street, Suite A Emeryville, CA 94608

Robert Foss, Cambria Environmental Technology, Inc., 5900 Hollis Street, Suite A Emeryville, CA 94608

Matt Katen, QIC 80201, Zone 7 Water Agency, 100 North Canyons Parkway Livermore, CA 94551

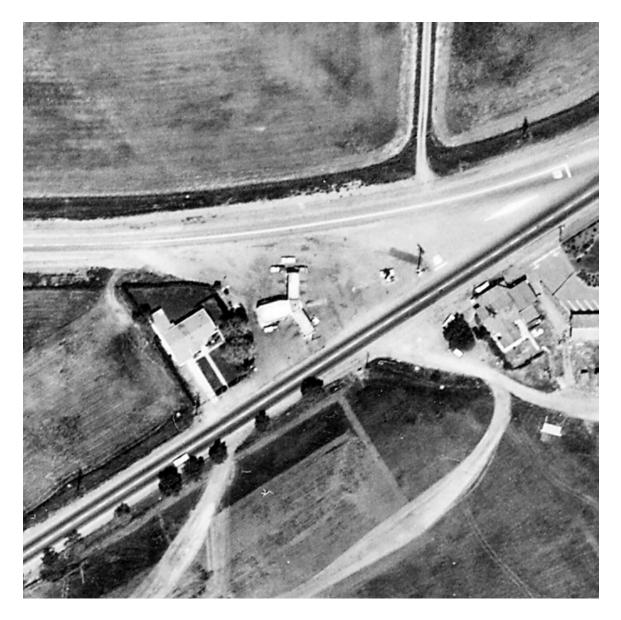
Danielle Stefani, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 9456

Stephen Clowdsley, Real Estate Consulting, 1561 Ramona Way, Alamo, CA 94507


Donna Drogos, ACEH Jerry Wickham, ACEH File

ATTACHMENT B

AEIRAL PHOTOGRAPHS


5/16/1957

4/16/1959

4/25/1966

5/16/1969

8/24/1973

5/5/1978

4/30/1980

5/7/1984

ATTACHMENT C

Historical Analytic Data

Boring	Date	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Notes
	Sampled	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
B-7	4/4/2005	5.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
B-7	4/4/2005	15.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-7	4/4/2005	19.5	<10	NA	<1.0	0.001	0.003	< 0.001	0.002	< 0.0005	
B-7	4/4/2005	23.5									HOLD
B-7	4/4/2005	27.5									HOLD
B-8	4/4/2005	5.0	<10	NA	<1.0	< 0.0005	0.002	0.001	0.004	< 0.0005	disturbed
B-8	4/4/2005	11.5	440	NA	1400	< 0.063	2.5	6.8	35	< 0.063	
B-8	4/4/2005	15.5									HOLD
B-8	4/4/2005	19.5	26	NA	2900	0.98	19	7.7	37	< 0.062	
B-8	4/4/2005	23.5									HOLD
B-8	4/4/2005	27.5	<10	NA	<1.0	0.014	0.027	0.006	0.025	< 0.0005	
B-9	4/4/2005	5.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
B-9	4/4/2005	11.5	1100	NA	1300	0.12	14	14	85	< 0.063	
B-9	4/4/2005	15.5									HOLD
B-9	4/4/2005	23.5									HOLD
B-9	4/4/2005	27.5	<10	NA	17	0.005	0.003	0.002	0.004	< 0.0005	
B-10	4/4/2005	5.0									HOLD
B-10	4/4/2005	15.5	<10	NA	<1.0	0.002	0.005	< 0.001	0.002	< 0.0005	
B-10	4/4/2005	19.5	<10	NA	<1.0	0.0007	0.003	0.001	0.003	< 0.0005	
B-10	4/4/2005	23.5									HOLD
B-10	4/4/2005	27.5									HOLD
B-11	4/4/2005	5.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
B-11	4/21/2005	11.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-11	4/21/2005	15.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	

Boring	Date	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Notes
	Sampled	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
B-11	4/21/2005	19.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-11	4/21/2005	23.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-12	4/4/2005	5.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	0.001	< 0.0005	disturbed
B-12	4/4/2005	11.5	<10	NA	<1.0	0.0009	0.002	< 0.001	0.001	< 0.0005	
B-12	4/4/2005	15.5									HOLD
B-12	4/4/2005	19.5									HOLD
B-13	4/4/2005	5.0	<10	NA	<1.0	< 0.0005	0.001	< 0.001	0.001	< 0.0005	disturbed
B-13	4/4/2005	11.5	<10	NA	<1.0	< 0.0005	0.001	< 0.001	0.001	< 0.0005	
B-13	4/4/2005	15.5									HOLD
B-13	4/4/2005	19.5	<10	NA	<1.0	0.0005	0.001	< 0.001	0.001	< 0.0005	
B-13	4/4/2005	23.5									HOLD
B-13	4/4/2005	27.5									HOLD
B-13	4/4/2005	29.5									HOLD
B-14	4/4/2005	5.0	83	NA	<1.0	< 0.0005	0.001	0.001	0.004	< 0.0005	disturbed
B-14	4/21/2005	15.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-15	4/21/2005	5.0	15	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
B-13 B-15	4/21/2003	5.0 11.5	13	NA	<1.0 <1.0	<0.0003	<0.001	<0.001	< 0.001	<0.0003	uistuibeu
B-13 B-15	4/21/2003	11.5	69	NA				0.22	<0.001	< 0.0005	
D-13	4/21/2003	19.0	09	INA	6.4	< 0.0005	< 0.001	0.22	<0.001	<0.0003	
B-16	4/21/2005	5.0	30	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
B-16	4/21/2005	11.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-16	4/21/2005	15.5	74	NA	94	0.09	< 0.001	2.8	0.8	< 0.0005	
-					-						
B-17	4/21/2005	5.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
						0.0000	0.001	0.001	0.001	0.0000	

Boring	Date	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Notes
	Sampled	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
B-17	4/21/2005	11.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-17	4/21/2005	15.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-17	4/21/2005	19.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-17	4/21/2005	23.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-17	4/21/2005	27.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-17	4/21/2005	31.5	11	NA	44	0.007	< 0.005	0.073	< 0.008	< 0.003	
D 10	4/21/2005	5.0	<10	NT A	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	l'atan la sal
B-18	4/21/2005	5.0	<10	NA	<1.0	<0.0005	<0.001	<0.001	< 0.001	<0.0005	disturbed
B-18	4/21/2005	11.5	<10	NA	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	
B-18	4/21/2005	15.5	<10	NA	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	
B-18	4/21/2005	19.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-18	4/21/2005	23.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-18	4/21/2005	27.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-19	4/21/2005	5.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
B-19	4/21/2005	11.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-19	4/21/2005	15.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-20	4/21/2005	5.0	400	NA	66	< 0.003	< 0.005	< 0.005	< 0.005	< 0.003	disturbed
В-20 В-20	4/21/2003	11.5	400 1100	NA	160	< 0.0005	<0.003 <0.001	<0.003	< 0.003	< 0.003	aistuibea
	4/21/2003			NA	1900	< 0.0005	<0.001 <0.001	<0.001	<0.001 0.006	< 0.0003	
B-20	4/21/2003	15.0	820	INA	1900	<0.0003	<0.001	<0.001	0.000	<0.0003	
B-21	4/22/2005	11.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-21	4/22/2005	15.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-22	4/21/2005	5.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
В-22 В-22	4/21/2003	11.5	<10 <10	NA	<1.0	< 0.0005	<0.001	<0.001	< 0.001	< 0.0005	uistuibeu
В-22 В-22	4/22/2003	11.5	<10 <10	NA	<1.0 <1.0	< 0.0005	<0.001 <0.001	<0.001	< 0.001	< 0.0003	
D-22	4/22/2005	13.3	<10	INA	<1.0	~0.0005	~0.001	~0.001	~0.001	~0.0005	

Boring	Date	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Notes
	Sampled	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
B-23	4/22/2005	11.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-23	4/22/2005	15.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-24	4/22/2005	11.5	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-24	4/22/2005	16.5									HOLD
B-24	4/22/2005	21.0									HOLD
B-24	4/22/2005	26.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-24	4/22/2005	31.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
B-24	4/22/2005	36.0									HOLD
B-24	4/22/2005	41.0	<10	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-1	9/8/2005	5-5.5	<10	<23d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
CPT-1	9/8/2005	10.0-10.5	<10	<26d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-1	9/8/2005	15.0-15.5	<10	<21d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-1	9/8/2005	20.0-20.5	<10	<24d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-1	9/8/2005	25.0-25.5	<10	<24d	11	< 0.002	< 0.005	< 0.005	< 0.005	< 0.002	
CPT-1	9/8/2005	30.0-30.5	<10	<26d	<1.0a	0.0008	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-1	9/8/2005	40.0-40.5	<10	<25d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-1	9/8/2005	50.0-50.5	<10	<26d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-1	9/8/2005	60.0-60.5	<10	<24d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-1	9/8/2005	70.0-70.5	<10	<28d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-1	9/8/2005	80.0-80.5	<20d	<30d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-2	9/8/2005	5.0-5.5	23	220	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
CPT-2	9/12/2005	10.5-11.0	<10	<10	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-2	9/12/2005	15.5-16.0	<10	<14d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-2	9/12/2005	20.5-21.0									HOLD
CPT-2	9/12/2005	25.5-26.0	<10	<13d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	

Boring	Date	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Notes
	Sampled	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
CPT-2	9/12/2005	31.5-32.0									HOLD
CPT-2	9/12/2005	40.5-41.0	<10	<11d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-2	9/12/2005	50.5-51.0									HOLD
CPT-3	9/8/2005	5.0-5.5	<10	<35d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
CPT-3	9/8/2005	11.5-12.0	40	79	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-3	9/8/2005	15.5-16.0	24c	<200d	59ab	1.3	0.98	4.0	14	< 0.062	
CPT-3	9/8/2005	20.5-21.0	<10	<30d	55ab	0.015	0.017	0.16	0.62	< 0.003	
CPT-3	9/8/2005	30.0-30.5	<10	<30d	1.6a	0.001	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-3	9/8/2005	40.0-40.5	<10	<30d	3.0a	0.12	0.038	0.038	0.14	< 0.0005	
CPT-3	9/8/2005	50.0-50.5	<20d	<30d	<1.0a	0.052	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-3	9/8/2005	60.0-60.5	<10	<30d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-4	9/8/2005	5.0-5.5	<10	<27d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
CPT-4	9/12/2005	10.5-11.0	<10	<12d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-4	9/12/2005	15.5-16.0	<10	<13d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-4	9/12/2005	20.5-21.0									HOLD
CPT-4	9/12/2005	25.5-26.0	<10	<17d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-4	9/12/2005	30.5-31.0									HOLD
CPT-4	9/12/2005	39.5-40.0									HOLD
CPT-4	9/12/2005	50.5-51.0									HOLD
CPT-4	9/12/2005	60.5-61.0									HOLD
CPT-5	9/8/2005	4.5-5.0	<10	<30d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
CPT-5A	9/15/2005	9.5-10.0									HOLD
CPT-5A	9/15/2005	14.5-15.0	<10	<10	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-5A	9/15/2005	19.5-20.0									HOLD
CPT-5A	9/15/2005	24.5-25.0	<13d	<10	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-5A	9/15/2005	29.5-30.0									HOLD

Boring	Date	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Notes
	Sampled	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
CPT-5A	9/15/2005	39.5-40.0	<10	<10	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-5A	9/15/2005	54.5-55.0									HOLD
CPT-6	9/15/2005	3.5-4.0	44c	160	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
CPT-6	9/15/2005	9.5-10.0	<10	<41d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-6	9/15/2005	14.5-15.0	<10	<16d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-6	9/15/2005	19.5-20.0									HOLD
CPT-6	9/13/2005	24.5-25.0	<10	<63d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-6	9/13/2005	29.5-30.0									HOLD
CPT-6	9/13/2005	40.5-41.0	<10	<67d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-7	9/12/2005	5.0-5.5	<10	<35d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-7	9/13/2005	10.0-10.5	<10	<13d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-7	9/13/2005	15.0-15.5									HOLD
CPT-7	9/13/2005	20.5-21.0	<10	<18d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-7	9/13/2005	25.5-26.0									HOLD
CPT-7	9/13/2005	30.5-31.0									HOLD
CPT-7	9/13/2005	39.5-40.0									HOLD
CPT-7	9/13/2005	49.5-50.0									HOLD
CPT-8	9/8/2005	4.5-5.0	<10	<30d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-8	9/13/2005	10.0-10.5	<10	<11d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-8	9/13/2005	15.0-15.5	<10	<18d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-8	9/13/2005	20.0-20.5	<10	<10	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-8	9/13/2005	25.0-25.5									HOLD
CPT-8	9/13/2005	30.0-30.5	<10	<21d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-8	9/13/2005	40.0-40.5	<10	<12d	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-8	9/13/2005	50.5-51.0									HOLD

Boring	Date	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Notes
	Sampled	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
CPT-9	9/8/2005	5.0-5.5	<10	34	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
CPT-9	9/16/2005	10.5-11.0	<10	NA	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-9	9/16/2005	15.5-16.0									HOLD
CPT-9	9/16/2005	20.5-21.0	<10	NA	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-9	9/16/2005	25.5-26.0	<10	NA	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-9	9/16/2005	30.5-31.0									HOLD
CPT-9	9/16/2005	40.5-41.0	<10	NA	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-10	9/14/2005	10.0-10.5	<10	<10	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
	9/14/2005	15.0-15.5	<10e	NA	<1.0e	<0.0005e	<0.001e	<0.001e	<0.001e	<0.0005e	
	9/14/2005	20.0-20.5	<10e	NA	<1.0e	<0.0005e	<0.001e	<0.001e	<0.001e	<0.0005e	
CPT-10	9/14/2005	25.0-25.5	<10	<10	<1.0a	0.029	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-10	9/14/2005	30.0-30.5									HOLD
CPT-10	9/14/2005	40.0-40.5	<10	<10	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
	9/14/2005	4.5-5.0	27c	170	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
	9/19/2005	10.5-11.0									HOLD
	9/19/2005	15.5-16.0									HOLD
	9/19/2005	19.5-20.0	<10		<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
	9/19/2005	25.5-26.0									HOLD
	9/19/2005	30.5-31.0									HOLD
	9/19/2005	40.5-41.0	<10		<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
	9/19/2005	48.5-49.0									HOLD
	9/19/2005	60.5-61.0									HOLD
	9/19/2005	71.5-72.0									HOLD
	9/14/2005	4.5-5.0	22c	62	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	disturbed
	9/16/2005	10.0-10.5	120c	NA	1,000ab	< 0.062	< 0.12	< 0.12	< 0.12	< 0.062	
CPT-12	9/16/2005	15.5-16.0	330c	NA	3,500ab	0.13	< 0.13	9.4	4.7	<0063	

Boring	Date	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Notes
	Sampled	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
CPT-12	9/16/2005	20.5-21.0	70c	NA	580ab	< 0.063	< 0.13	1.5	< 0.13	< 0.063	
CPT-12	9/16/2005	25.5-26.0	49c	NA	550ab	< 0.0005	< 0.001	0.021	< 0.001	< 0.0005	
CPT-12	9/16/2005	30.5-31.0	150cd	NA	1,600ab	0.067	< 0.13	0.94	0.14	< 0.063	
CPT-12	9/16/2005	40.5-41.0	<10	NA	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	
CPT-12	9/16/2005	50.5-51.0	<10d	NA	<1.0a	0.001	< 0.001	0.002	< 0.001	< 0.0005	
CPT-12	9/16/2005	60.5-61.0	<10	NA	<1.0a	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	

Sample	Date	Depth	TPHd	TPHd with	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
	Sampled	(feet)	(ug/L)	Silica Gel (ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
B-7	4/4/2005		NA	NA	NA	<50	<0.5	< 0.5	<0.5	< 0.5	< 0.5
B-9	4/4/2005		NA	NA	NA	78000	13000	20000	2200	6000	<25
B-10	4/4/2005		2600	NA	NA	1900	7700	46	360	270	<10
B-15	4/21/2005		920	NA	NA	82	1	1	2	3	<0.5
B-16	4/20/2005		410	NA	NA	<50	<0.5	<0.5	<0.5	<0.5	<0.5
B-17	4/20/2005		2200	NA	NA	4300	17	2	41	64	<0.5
B-18	4/20/2005		380	NA	NA	<100	<0.5	9	0.6	3	<0.5
B-24	4/20/2005		<290	NA	NA	180	<0.5	<0.5	<0.5	<0.5	<0.5
CPT-1-W-45	9/8/2005	43-45	420	370	NA	66	4	<0.5	<0.5	<0.5	<0.5
CPT-3-W-43	9/9/2005	41-43	3,300	2,900	NA	13,000	1,600	240	640	660	<3.0
CPT-4-W-44	9/12/2005	40-44	210bc	220bc	210e	<50a	<0.5	<0.5	<0.5	<0.5	<0.5
CPT-6-W-48	9/13/2005	44-48	80bc	92bc	85e	<50a	2	<0.5	<0.5	<0.5	<0.5
CPT-7-W-35	9/13/2005	31-35	340cf	NA	410e	<50ad	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
CPT-7-W-55	9/13/2005	51-55	NA	NA	NA	<50	NA	NA	NA	NA	NA
CPT-8-W-56	9/14/2005	51-56	160bc	100bc	170e	<50a	<0.5	<0.5	<0.5	<0.5	<0.5
CPT-9-W-45	9/16/2005	41-45	NA	NA	NA	<50a	<2	<2	<2	<2	<2
CPT-11-W-45	9/16/2005	41-45	330f	NA	190e	<50a	<2	<2	<2	<2	<2
CPT-12-W-26	9/16/2005	26-30	14000e	15000ce	4500e	9800a	73	4	110	6	<2
CPT-12-W-40	9/16/2005	36-40	NA	NA	NA	6600a	120	<2	51	5	<2

Groundwater Analytical Data - Former Chevron Station 30-4291 3884 First Street, Livermore, California

Abbreviations / Notes

TPHg - Total petroleum hydrocarbons

TPHd - Total petroleum hydrocarbons

TPHmo - Total petroleum

MTBE - Methyl tertiary butyl ether

MTBE by EPA Method 8260B

ND<X = not detected at or above laboratory detection limit

NA = not applicable. Samples not analyzed for the choosen constituent due to slow recharge of groundwater.

a - The reported concentrations of TPHg does not include MTBE or other gasoline constituents eluting prior to the C6 (n-hexane) TPHg range start time.

b - Due to the nature of the sample matrxi, a reduced aliquot was used for analysis. The reporting limits were raised accordingly.

c - The observed sample pattern includes #2 fuel/diesel and an additional pattern which eludes later in the DRO range.

d - The vial submitted for volatile analysis did not have a pH ≤ 2 at the time of analysis. Due to the volatile nature of the Analytes, it is not appropriate for the laboratory to adjust the pH at the time of sample receipt. The pH of the sample was pH = 7.

e - Due to insufficent sample size, we were unable to report our usual reporting limits. The values reported represent the

lowest reporting limits obtainable.

f - Due to limited sample volume, the sample was not analyzed with a silica gel cleanup.

Sample	Sample	Sample	TPHg	В	Т	Е	m,p-X	o-X	MTBE	2-Propanol
ID	Date	Depth (fbg)	uG/m3	uG/m3	uG/m3	uG/m3	uG/m3	uG/m3	uG/m3	uG/m3
CPT-5A	9/15/2005	9.5	960	<26	<31	<36	<36	<36	<30	<20
CPT-5A	9/15/2005	15	1,100	<25	38	<38	<38	<38	<32	<22
CPT-5A	9/15/2005	20	1,100	<25	40	<34	<34	<34	<28	<19
CPT-8*	9/14/2005	9.5	460,000	<16,000	<19,000	<22,000	<22,000	<22,000	<18,000	920,000
CPT-8	9/14/2005	15	1,000	<28	<33	<38	<38	<38	<32	62
CPT-8	9/14/2005	20	4,700	<27	<32	<37	<37	<37	<31	<21
CPT-10	9/14/2005	9.5	1,400	<25	<29	<34	<34	<34	<28	350
CPT-10	9/14/2005	15	830	<26	<30	<35	<35	<35	<26	170
CPT-10	9/14/2005	20	2,300	<26	<31	<36	<36	<36	<30	41
CPT-2	9/14/2005	9.5	3,200	40	48	<39	<39	<39	<32	<22
CPT-2	9/14/2005	15	1,100	<26	<31	<36	<36	<36	<30	<20
CPT-2	9/14/2005	20	900	<28	<34	<39	<39	<39	<32	<22
CPT-3	9/9/2005	9.5	4,200	<30	68	<40	<41	<41	<34	<23
CPT-3	9/9/2005	15	410,000	220,000	3,800	4,900	8,800	1,200	<37	<25
CPT-3	9/9/2005	20	640,000	58,000	7,500	3,600	6,200	860	<120	<81
CPT-4	9/12/2005	9.5	2,600	<29	<34	<40	<40	<40	<33	<22
CPT-4	9/12/2005	15	1,100	<25	<30	<34	<34	<34	<28	<19
CPT-4	9/12/2005	20	1,100	<25	<29	<34	<34	<34	<28	<19
Shallow Soil	Gas Screening	Residential	26000	85	63,000	420,000	150,000	150,000	9,400	
	evels	Commercial	72000	290	180.000	1,200,000	410.000	410.000	31,000	

Abbreviations/Notes:

ug/m3 - micrograms per meter cubed.

* Reporting limits were raised due to exceeding amount of field equipment check 2-Propanol.

Shallow Soil Gas Screening Levels based on Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table E-2. Shallow Soil Gas Screening levels for Evaluation of Potential Vapor Intrusion Concerns, Regional Water Quality Control Board San Francisco Bay Region, February 2005.

Bold annalytes were detected above the Shallow Soil Gas Screening Levels for Residential Use.

<x.xxx = Not detected above method detection limit

fbg = Feet below grade

Soil Analytical Data - Former Chevron Station 30-4291 3884 First Street, Livermore, California

Boring	Date	Depth	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Notes
	Sampled	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
ESL's for	soils <3fbg	(Residential)	100	500	100	0.044	2.9	3.3	2.3	0.023	
ESL's for	soils >3fbg	(Residential)	100	500	100	0.044	2.9	3.3	2.3	0.023	

Abbreviations / Notes

TPHg - Total petroleum hydrocarbons as gasoline

TPHd - Total petroleum hydrocarbons as diesel

TPHmo - Total petroleum hydrocarbons as motor oil

MTBE - Methyl tertiary butyl ether

TPHg by EPA Method 8015

TPHd by EPA Method 8015

BTEX by EPA Methods 8060B

MTBE by EPA Methods 8260B

ND<X = not detected at or above laboratory reporting limit

NA = not analyzed for constituent.

Sample depths listed in approximate feet below grade (fbg).

a - The analysis for volatiles was performed on a sample which was preserved in methanol. The reporting limits were adjusted appropriately. The reported concentration of TPHg does not include MTBE or ther gasoline constituents eluting prior C6 (n-hexane) TPHg range start time.

b - A poor surrogate recovery was observed due to the dilution needed to perform the analysis.

c - The observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range earlier than #2 fuel.

d - Due to insufficient sample size, we were unable to report our usual reporting limits. The values reported represent the lowest reporting limits possible.

e - Samples were analyzed outside of holding time.

HOLD - Samples were collected and sent to the laboratory, but no analysis was performed.

ATTACHMENT D

Boring Logs

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-10
JOB/SITE NAME	Site #304291	DRILLING STARTED 04-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 05-Apr-05
PROJECT NUMBER_	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered) 26.0 ft (05-Apr-05)
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
					ML		Asphalt; cleared to 8 fbg with air knife. Sandy SILT with Gravel Brown; dry; 70% silt, 15% sand, 10% gravel, 5% clay; low plasticity; moderate estimated permeability.	0.4		
		B10@5	Ì	5 	ML		<u>Gravelly Sandy SIL</u>T Dark brown; dry; 50% silt, 30% sand, 20% gravel; low plasticity; high estimated permeability.	5.0		
				- · - ·	ML		No recovery from 8-12 fbg. Sandy Gravelly SILT Light brown; dry; 50% silt, 25%	10.0		
					ML		sand, 25% gravel; high estimated permeability.			
		B10@ 15.5		 	ML		<u>Clayey SILT</u> : Brown; dry; 80% silt, 20% clay; low-moderate plasticity; moderate estimated permeability.	14.5		 Portland Type I/II
		B10@ 19.5		 20 <i></i>	ML		SILT with Clay and Sand Brown; dry; 80% silt, 10% clay, 10% coarse sand; low plasticity; low estimated permeability.	18.0		
		B10@ 23.5			ML		<u>Clayey SILT with Sand</u> Gray brown; dry; very stiff; 70% silt, 20% clay, 10% coarse sand; low plasticity; low estimated permeability.	23.0		
		B10@ 27.5			CL ML ML		Sandy Silty CLAY Gray brown; wet; 40% clay, 35% silt, 25% sand; medium plastic; high estimated permeability. Clayey SILT with Sand Brown; dry; 70% silt, 20% clay, 10% sand; low plasticity; moderate estimated permeability.	 ∑ 26.0 27.5 28.0 		Bottom of Boring @ 28 ft
										PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-11
JOB/SITE NAME	Site #304291	DRILLING STARTED 05-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 05-Apr-05
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

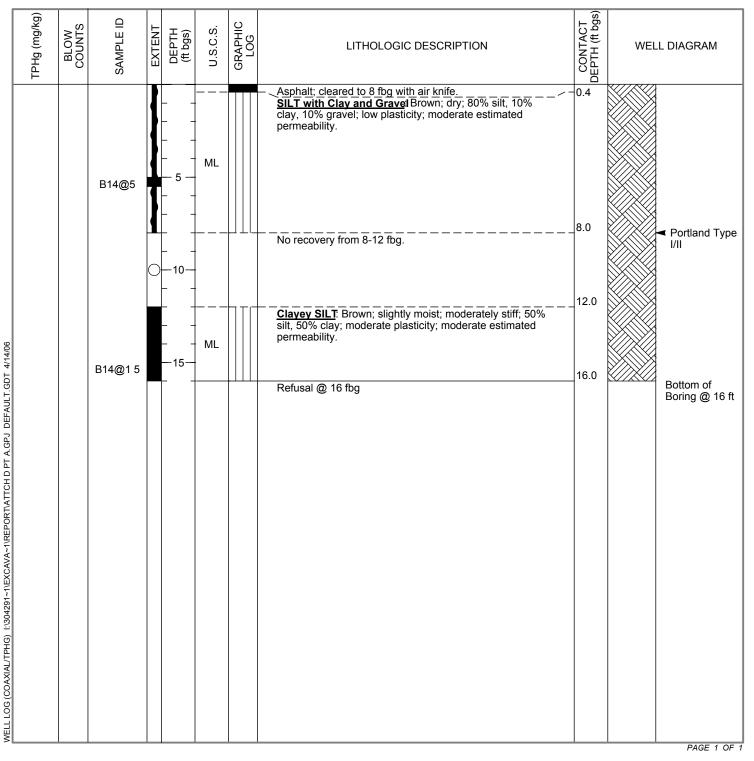
	TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEI	L DIAGRAM
WELL LOG (COAXIAL/TPHG) 1:\304291~1\EXCAVA~1\REPORT\ATTCH D PT A.GPJ DEFAULT.GDT 4/14/06	TPHQ		B11@5 B11@ 11.5 B11@ 15.5 B11@ 19.5 B11@ 23.5		$\Box =$	ML ML	C C C C C C C C C C C C C C C C C C C	Asphalt; cleared to 8 fbg with air knife. SILT with Clay and Gravel Brown; dry; 80% silt, 10% clay, 10% gravel; moderate plasticity; moderate estimated permeability. Silty CLAY Brown; dry; 60% clay, 40% silt; moderate plasticity; moderate estimated permeability. Clayer SILT Brown; dry; moderately stiff, 60% silt, 40% clay; moderate plasticity; moderate estimated permeability.	0.4 8.0 10.0		Portland Type I/II Bottom of Boring @ 24 ft
MELL LOG (C											PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-12
JOB/SITE NAME	Site #304291	DRILLING STARTED 05-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 05-Apr-05
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
PH4T		WY B12@5 B12@ 11.5 B12@ 15.5 B12@ 19.5			ML ML		 Asphalt: cleared to 8 fbg with air knife. SILT with Clay and Gravet Brown; dry; 80% silt, 10% clay; low plasticity; moderate estimated permeability. Clayev SILT: Tan; dry; 80% silt, 20% clay; low plasticity; moderate estimated permeability. Clayev SILT: Medium brown; moist; soft; 75% silt, 25% clay; low plasticity; moderate estimated permeability. 	20.0		 Portland Type I/II Bottom of Boring @ 20 ft
										PAGE 1 OF 1

BORING/WELL LOG


CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-13
JOB/SITE NAME	Site #304291	DRILLING STARTED
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVALNA; NA
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

	TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
			B13@5			ML		ASPHALT <u>Clavey SILT with Grave</u> l Brown; moist; 80% silt, 15% clay, 5% gravel; low plasticicity, moderate estimated permiablility. <u>SILT with Clay and Grave</u> l Brown; dry; 80% silt, 10% clay, 10% gravel; moderate plasticity; moderate estimated	8.0		
/06			B13@ 11.5		 10 	ML		 clay, 10% gravel; moderate plasticity; moderate estimated permeability. <u>Clayey SILT with Sand</u> Brown; dry, 60% silt, 30% clay, 10% gravel, low plastic, moderate estimated permiability. 	10.0		
.GPJ DEFAULT.GDT 4/14			B13@ 15.5			ML					 Portland Type I/II
1-1\EXCAVA~1\REPORT\ATTCH D PT A.GPJ DEFAULT.GDT 4/14/06			B13@ 19.5 B13@ 23.5		—20— 						
WELL LOG (COAXIAL/TPHG) 1:\304291~1\EXCAN			B13@ 27.5 B13@ 29.5		 - 30	ML		SILT: Orange Brown; dry; 95% silt, trace clay; non plastic to low plastic, very low estimated permiablility.	29.0 30.0		Bottom of Boring @ 30 ft
MELL LOG (CC											PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-14
JOB/SITE NAME	Site #304291	DRILLING STARTED 05-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 05-Apr-05
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME	B-15		
JOB/SITE NAME	Site #304291	DRILLING STARTED	20-Apr-05		
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED	21-Apr-05		
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT D	ATE (YIELD)	NA	
DRILLER	Gregg Drilling	GROUND SURFACE ELE	VATION	Not Surveyed	
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVAT	Not Surv	veyed	
BORING DIAMETER	2"	SCREENED INTERVAL	NA; NA		
LOGGED BY	M. Terry	DEPTH TO WATER (First	Encountered	I) 6.0 ft (20-Apr-05)	$\underline{\nabla}$
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Stati	c)	16.00ft (21-Apr-05)	Ţ

	TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
WELL LOG (COAXIAL/TPHG) 1:304281~1/EXCAVA~1/REPORTATTCH D PT A.GPJ DEFAULT.GDT 4/14/06			B15@5 11.5 B15@1 4			ML CL SC		Boring located in area landscaped with sand, large rocks and shrubs; cleared to 8 fbg with air knife. Gravelly SILT Brown; dry; some asphalt chunks; 70% silt, 20% gravel, 10% clay; moderate estimated permeability. Clayey SILT: Gray; dry; 60% silt, 40% clay; low plasticity; moderate estimated permeability. Silty CLAY Brown; dry; 60% clay, 40% silt; moderate plasticity; moderate estimated permeability. SAND with Clay and Silt Brown; wet; 80% coarse sand, 10% silt, 10% interbedded clay; high estimated permeability. Clayey SILT: Gray green; moist; 50% silt, 50% clay; moderate plasticity; moderate estimated permeability. Stopped @ 19 fbg water in hole.	1 ⊻ 1 1 1	1.0 3.0 9.5 11.0 14.0		Portland Type I/II Bottom of Boring @ 19 ft

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-16	
JOB/SITE NAME	Site #304291	DRILLING STARTED 20-Apr-05	
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 21-Apr-05	
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD	NA NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Su	rveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA	\
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered	d) 8.0 ft (20-Apr-05) ⊻
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static)	16.00ft (21-Apr-05)

Bite@s - <td< th=""><th></th><th>TPHg (mg/kg)</th><th>BLOW COUNTS</th><th>SAMPLE ID</th><th>EXTENT</th><th>DEPTH (ft bgs)</th><th>U.S.C.S.</th><th>GRAPHIC LOG</th><th>LITHOLOGIC DESCRIPTION</th><th>CONTACT DEPTH (ft bgs)</th><th>WEL</th><th>L DIAGRAM</th></td<>		TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
B16@ 11.5 B16.				B16@5		 _ 5			Clayey SILT with Gravel Orange; dry; 70% silt, 20% clay, 10% gravel; low plasticity: moderate estimated	1.0		
11.5 <u>Silty CLAY</u> Dark gray; moist; 75% clay, 25% silt; moderate plasticity; moderate estimated permeability.				P16@		 - 10 	ML		Very little recovery from 8-12 fbg; mostly silt; very wet. $\overline{\underline{V}}$			✓ Portland Type I/II
	.GDT 4/14/06			11.5 B16@		 15	CL					Bottom of
	ELL LOG (COAXIAL/TPHG) 1:304291~1/EXCAVA~1/REPORTATTCH D PT A GPJ_DEFAULT											Boring @ 16 ft

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-17
JOB/SITE NAME	Site #304291	DRILLING STARTED 20-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 21-Apr-05
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered) 26.0 ft (21-Apr-05)
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
		B17@5		 5	ML ML ML		Boring located in area landscaped with sand, large rocks and shrubs; cleared to 8 fbg with air knife. <u>Clayey SILT with Gravel</u> Dark brown; dry; 70% silt, 15% clay, 10% gravel, 5% sand; low plasticity; moderate estimated permeability. <u>Sandy SILT</u> Light brown; dry; crumbly; 80% silt, 15% sand, 5% clay; moderate estimated permeability. <u>Clayey SILT with Gravel</u> Dark brown; dry; 70% silt, 20% clay, 10% gravel, moderate estimated permeability.	1.0 2.0 4.0		
			{	 	ML		SILT with Sand, Clay and GraveIDark brown; dry; 70% silt, 10% sand, 10% clay, 10% gravel; moderate estimated permeability.	8.0		
		B17@ 11.5			ML		Sandy Gravelly SILT Light brown; dry; 45% silt, 25% sand, 25% gravel, 5% clay; high estimated permeability.	13.0		
1-1\EXCAVA-1\REPORTATTCH D PT A.GPJ DEFAULT.GDT 4/14/06	B17@ 15.5 B17@ 19.5 B17@ 23.5		 15 	ML ML ML		<u>Clayey, Gravelly SILT with Sand</u> Brown; dry; 50% silt, 25% gravel, 15% clay, 10% sand; moderate estimated permeability. <u>Clayey SILT</u> Olive; dry; 75% silt, 20% clay, 5% coarse sand; low plasticity; moderate estimated permeability. <u>SILT</u> : Gray; dry; 95% silt, 5% clay; low plasticity; moderate estimated permeability. <u>Clayey SILT</u> Light gray; dry; smooth; 75% silt, 25% clay; low plasticity; moderate estimated permeability.	14.5 15.0 16.0		✓ Portland Type I/II	
TTCH D PT A.GPJ		– B17@ —; 19.5 – –	 20 	ML						
VA~1\REPORT\A		B17@ 23.5	-	 25	-		77	26.0		
		B17@ 27.5		 30	SM		Silty SAND Gray brown; wet; 50% sand, 50% silt; high estimated permeability. Clayey SILT Light brown; dry; stiff; 50% silt, 45% clay, 5% sand; low plasticity; low estimated permeability.	27.0		
WELL LOG (COAXIAL/TPHG) 1:30429		B17@ 31.5						_32.0		Bottom of Boring @ 32 ft
MELL LI										PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-18
JOB/SITE NAME	Site #304291	DRILLING STARTED 20-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 21-Apr-05
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered) 24.0 ft (21-Apr-05)
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL	_ DIAGRAM
		B18@5		 - 5 	ML ML		 Boring located in area landscaped with sand, large rocks and shrubs; cleared to 8 fbg with air knife. <u>Gravelly. Sandy SILT</u> Tan; dry; 60% silt, 20% gravel, 20% sand; high estimated permeability. <u>Clayey SILT with Gravel</u> Orange; dry; stiff; 60% silt, 30% clay, 10% gravel; low plasticity; moderate estimated permeability. 	1.0 3.0		
		D10@		 10	CL		Silty CLAY : Medium brown; dry; moderately stiff; 60% clay, 40% silt; moderate plasticity; low estimated permeability.	8.0		
JLT.GDT 4/14/06		B18@ 11.5 B18@ 15.5		 - 15 	-		<u>Clayey SILT</u> : Dark brown; dry; 60% silt, 40% clay; low plasticity; low estimated permeability.			 Portland Type I/II
~1\EXCAVA~1\REPORT\ATTCH D PT A.GPJ DEFAULT.GDT 4/14/06		B18@ 19.5		 - 20 	ML					
1\EXCAVA~1\REPORT\A		B18@ 23.5		 25 	CL		Silty CLAY with Sand Gray brown; wet; soft; 50% clay, 40% silt, 10% sand; low-moderate plasticity; moderate estimated permeability.	24.0		
WELL LOG (COAXIAL/TPHG) 1:304291~		B18@ 27.5				<u> </u>		28.0		Bottom of Boring @ 28 ft
MELL LOG (C										PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-19
JOB/SITE NAME	Site #304291	DRILLING STARTED 21-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 21-Apr-05
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

	TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL DIAGRAM
WELL LOG (COAXIAL/TPHG) 1:304291~1\EXCAVA~1\REPORTATTCH D PT A.GPJ DEFAULT.GDT 4/14/06			B19@5 B19@ 11.5 B19@ 15.5			ML		Asphalt; cleared to 8 fbg with air knife. Gravelly, Sandy SiLT Brown; dry; 60% silt, 20% gravel, 20% sand, high estimated permeability. Clayey SILT: Brown; dry; 50% silt, 45% clay, 5% sand; low- medium plasticity; moderate estimated permeability. Clayey SILT: Brown; dry; very stiff; 75% silt, 25% clay; low plasticity; low estimated permeability.	о <u>щ</u> -0.4 8.0 12.0 16.0	Portland Type I/II Bottom of Boring @ 16 ft
										PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-20
JOB/SITE NAME	Site #304291	DRILLING STARTED 21-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 21-Apr-05
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

	TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
WELL LOG (COAXIALTPHG) 1:304291~1\EXCAVA~1\REPORT\ATTCH D PT A.GPJ DEFAULT.GDT 4/14/06			 ₭ ₩ ₩			J ML		 <u>Asphalt: cleared to 8 fbg with air knife.</u> <u>Gravelly SILT</u>: Orange brown; dry; 70% silt, 25% gravel, 5% clay; high estimated permeability. <u>Clayey SILT</u>: Gray brown; dry; very stiff; 50% silt, 50% clay; low plasticity; low estimated permeability. Change in color at 13.5 fbg to Dark Gray. 	<u>В.0</u> 8.0		Portland Type I/II Bottom of Boring @ 16 ft
Ň											PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-21
JOB/SITE NAME	Site #304291	DRILLING STARTED 22-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 22-Apr-05
PROJECT NUMBER_	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	Dan Glaze	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL	DIAGRAM
		S B21@5 B21@11.5 B21@15.5		- - - - - - - - - - - - - - - - - - -	ML CL CL CL		Asphalt. Gravelly SiLT Orange brown; dry; 70% silt, 25% gravel, 5% clay; high estimated permeability. Gravelly, Silty CLAY with SandReddish brown; dry; stiff; 40% clay, 25% silt, 20% gravel, 15% sand; moderate estimated permeability. Silty CLAY Reddish brown; dry; stiff; 60% clay, 40% silt; moderate plasticity; low estimated permeability. Gravelly Silty CLAY with SandBrown; dry; stiff; 40% clay, 25% silt, 20% gravel, 15% sand; high estimated permeability. Silty CLAY Silty CLAY with SandBrown; dry; stiff; 40% clay, 25% silt, 20% gravel, 15% sand; high estimated permeability. Silty CLAY Silty CLAY with SandBrown; dry; stiff; 40% clay, 25% silt, 20% gravel, 15% sand; high estimated permeability. Silty CLAY Silty CLAY with SandBrown; dry; stiff; 40% clay, 40% silt; moderate plasticity; low estimated permeability.	ощ – 0.4 8.0 11.0 14.0 15.0 16.0		Portland Type I/II Bottom of Boring @ 16 ft
										PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-22
JOB/SITE NAME	Site #304291	DRILLING STARTED 22-Apr-05
	3884 First Street, Livermore, CA	DRILLING COMPLETED 22-Apr-05
PROJECT NUMBER_	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	Dan Glaze	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
	BL COL	B22@5 B22@ 11.5 B22@ 15.5		□] JJ 		GRA	Asphalt. Gravelly SiLT Orange brown; dry; 70% silt, 25% gravel, 5% clay; high estimated permeability. Gravelly, Silty CLAY with SandReddish brown; dry; stiff; 40% clay, 25% silt, 20% gravel, 15% sand; moderate estimated permeability. Silty CLAY Reddish brown; dry; stiff; 60% clay, 40% silt; low-moderate plasticity; low estimated permeability. Gravelly, Silty CLAY with SandReddish brown; dry; stiff; 60% clay, 40% silt; low-moderate plasticity; low estimated permeability. Silty CLAY Reddish brown; dry; stiff; 60% clay, 40% silt; low-moderate plasticity; low estimated permeability. Silty CLAY Brown; dry; stiff; 60% clay, 40% silt; moderate plasticity; low estimated permeability. Silty CLAY Brown; dry; stiff; 60% clay, 40% silt; moderate plasticity; low estimated permeability.	8.0 11.0 13.0 14.0		 Portland Type I/II Bottom of Boring @ 16 ft
										PAGE 1 OF 1

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-23
JOB/SITE NAME	Site #304291	DRILLING STARTED 22-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 22-Apr-05
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	Dan Glaze	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

	TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
WELL LOG (COAXIAL/TPHG) 1:304291~1/EXCAVA~1/REPORT/ATTCH D PT A.GPJ DEFAULT.GDT 4/14/06			B23@ 11.5 B23@ 15.5			CL CL CL		Asphalt. Cleared to 8 fbg with air knife. Gravelly, Silty CLAY with SandBrown; dry; stiff; 40% clay, 25% silt, 20% gravel, 15% sand; low estimated permeability. Gravelly, Silty CLAY Brown; dry; stiff; 45% clay, 30% silt, 25% gravel; low plasticity; high estimated permeability. Gravelly, Silty CLAY Brown; dry; stiff; 40% clay, 30% silt, 25% gravel; low plasticity; high estimated permeability. Gravelly, Silty CLAY Brown; dry; stiff; 40% clay, 30% silt, 25% gravel, 5% sand; low plasticity; high estimated permeability. Silty CLAY Brown; dry; stiff; 65% clay, 35% silt; moderate plasticity; low estimated permeability.	8.0 10.0 11.0 15.0 16.0		Portland Type I/II Bottom of Boring @ 16 ft

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-24
JOB/SITE NAME	Site #304291	DRILLING STARTED 22-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 22-Apr-05
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	8"	SCREENED INTERVAL NA; NA
LOGGED BY	Dan Glaze	DEPTH TO WATER (First Encountered) 30.0 ft (22-Apr-05)
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) 33.00ft (22-Apr-05)

	TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL DIAGRAM
					 - 5	 ML		— <u>Asphalt</u> Orange brown; dry; 70% silt, 25% gravel, <u>Gravelly SILT</u> Orange brown; dry; 70% silt, 25% gravel, 5% clay; high estimated permeability.	0.4	
o			B24@ 11.5		 - 10 			<u>Clayey SILT</u> : Light brown; dry; stiff; 70% silt, 30% clay; low plasticity; moderate estimated permeability.	8.0	
WELL LOG (COAXIAL/TPHG) 1:\304291~1\EXCAVA~1\REPORT\ATTCH D PT A.GPJ DEFAULT.GDT 4/14/06			B24@16			ML				
VA~1\REPORT\ATTCH D P1			B24@2 1 B24@		 	ML		<u>Clayey SILT with Grave</u>l Light brown; dry; stiff; 60% silt, 30% clay, 10% gravel; low-medium plasticity; moderate estimated permeability.	22.0	Portland Type I/II
/TPHG) I:\304291~1\EXCA			25.5		 			Silty Gravelly CLAY Brown gray; dry; stiff; 50% clay, 30% silt, 20% gravel; moderate estimated permeability. ∑	-	
WELL LOG (COAXIAL			B24@3 1		 - 35			Silty CLAY Brown; moist; stiff; 60% clay, 40% silt; moderate plasticity; low estimated permeability. ▼ Continued Next Page		PAGE 1 OF 2

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME	B-24						
JOB/SITE NAME	Site #304291	DRILLING STARTED	22-Apr-05						
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED	22-Apr-05						
Continued from Previous Page									

	TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
			B24@3 6 B24@4 1		 - 40	CL			41.5		
			024@41						• -		Bottom of Boring @ 41.5 ft
GPJ DEFAULI.GD1 4/14/06											
A~1\KEPOKI\ALICH D PL A.											
WELL LOG (COAXIAL/TPHG) 1:\304291~1\EXCAVA~1\REPORTATICH D PT A.GPJ_DEFAULT.GDT_4/14/06											
											PAGE 2 OF 2

BORING/WELL LOG

CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-7
JOB/SITE NAME	Site #304291	DRILLING STARTED 04-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 04-Apr-05
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered) 23.5 ft (04-Apr-05)
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

	TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL DIAGRAM
			B7@5		 - 5	ML		Asphalt; cleared to 8 fbg with hand auger. <u>Gravelly Sandy SILT</u> Brown; dry; 50% silt, 25% sand; 25% gravel; moderate estimated permeability.	-0.4	
					 10 	- - -		No recovery from 8'-12' due to rock in shoe of geoprobe.	8.0	
~1\EXCAVA~1\REPORT\ATTCH D PT A.GPJ DEFAULT.GDT 4/14/06			B7@15		 - 15 	 ML		SILT with Clay Brown; dry; 90% silt, 10% clay; low plasticity; low estimated permeability; stiffer w/slightly more clay from 14'-16'. Clayey SILT: Brown; dry; very stiff; 80% silt, 20% clay; low-moderate plasticity; low estimated permeability.	16.0	Portland Type
ICH D PT A.GPJ D			B7@19 .5		 20 	ML		<u>SILT with Clay</u> Brown; dry; 90% silt, 10% clay; low plasticity; low estimated permeability.	20.0	
VA~1\REPORT\AT			B7@23 .5		 25	ML ML		<u>Gravelly SILT</u> Light gray; moist; 80% silt, 15% gravel; 5% clay; moderate estimated permeability. <u>Sandy SILT</u> : Light gray; wet; 75% silt, 20% fine sand; 5% clay; moderate estimated permeability.	23.5	
WELL LOG (COAXIAL/TPHG) 1:\304291~1\EXCA			B7@27 .5			ML		SILT with Clay Light gray; dry; very stiff; 90% silt, 10% clay; low plasticity; low estimated permeability.	27.0 28.0	Bottom of Boring @ 28 ft
WELL LOG (COA)										PAGE 1 OF 1

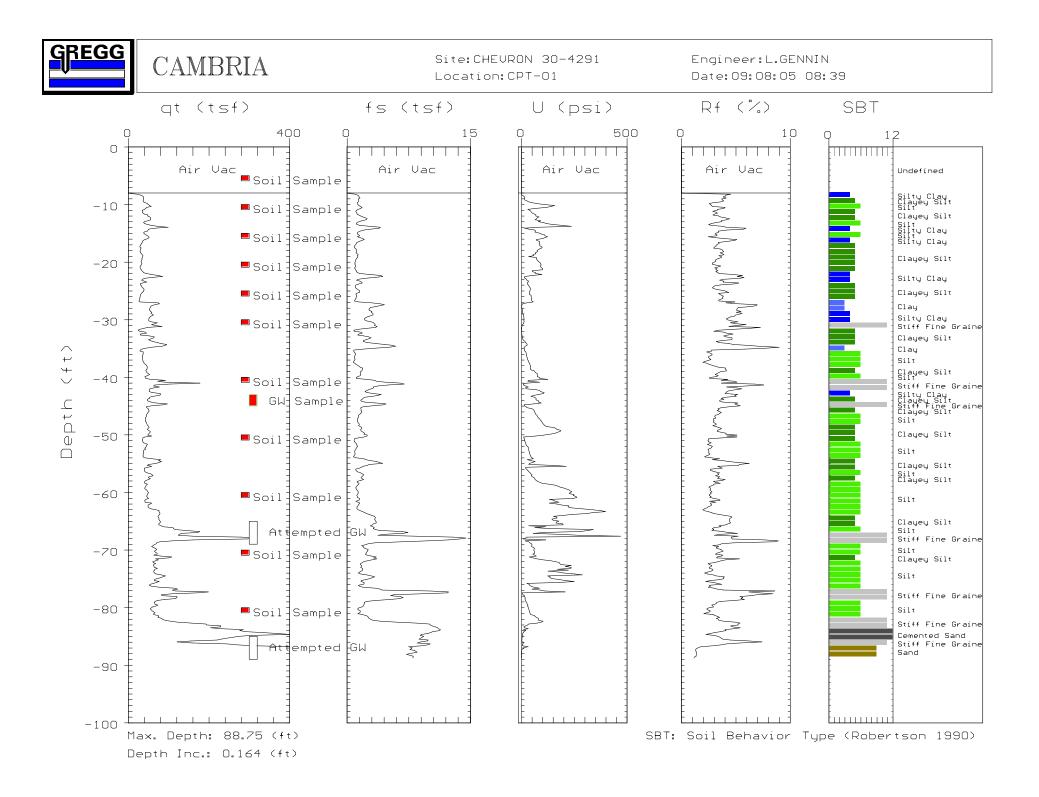
Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

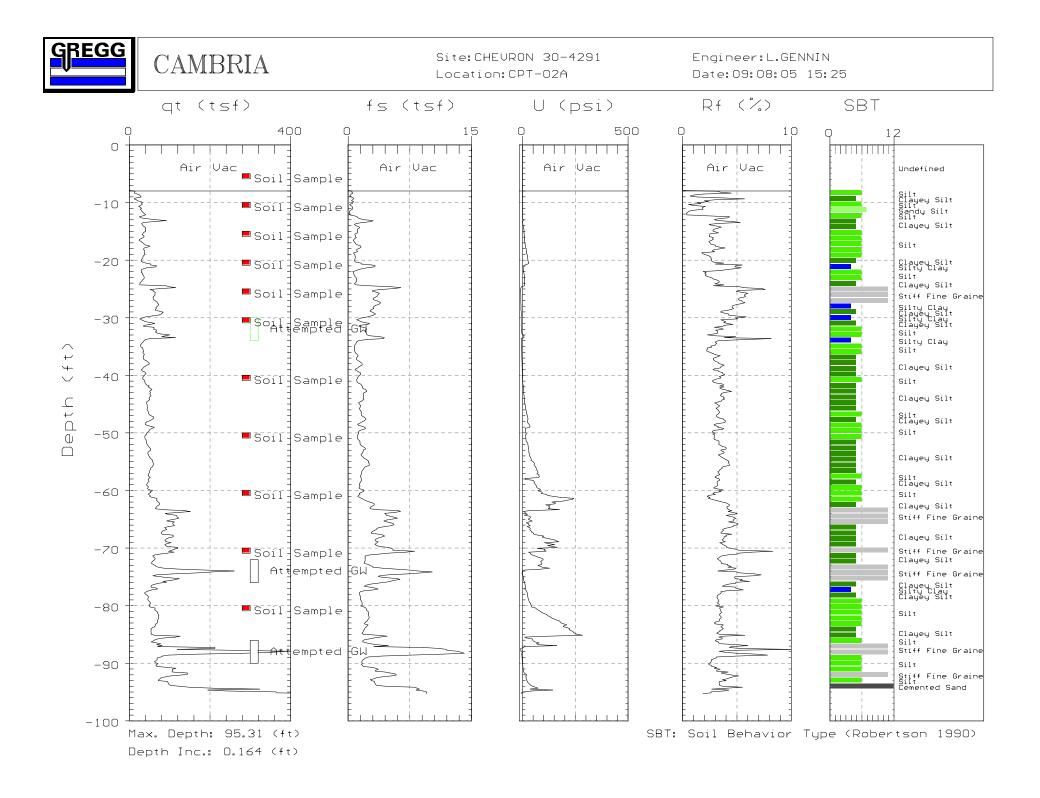
BORING/WELL LOG

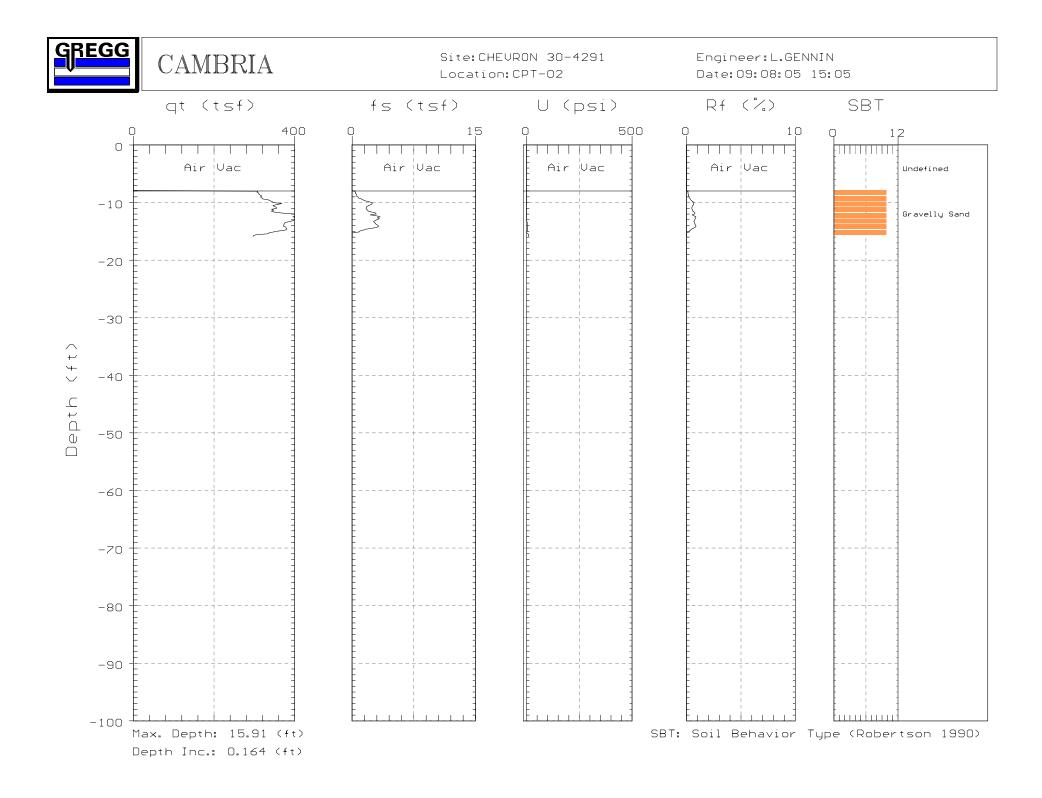
CLIENT NAME	Chevron Envrionmental Management Co.	BORING/WELL NAME B-8
JOB/SITE NAME	Site #304291	DRILLING STARTED 04-Apr-05
LOCATION	3884 First Street, Livermore, CA	DRILLING COMPLETED 05-Apr-05
PROJECT NUMBER	31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA; NA
LOGGED BY	M. Terry	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	B. Foss, RG # 7445	DEPTH TO WATER (Static) NA

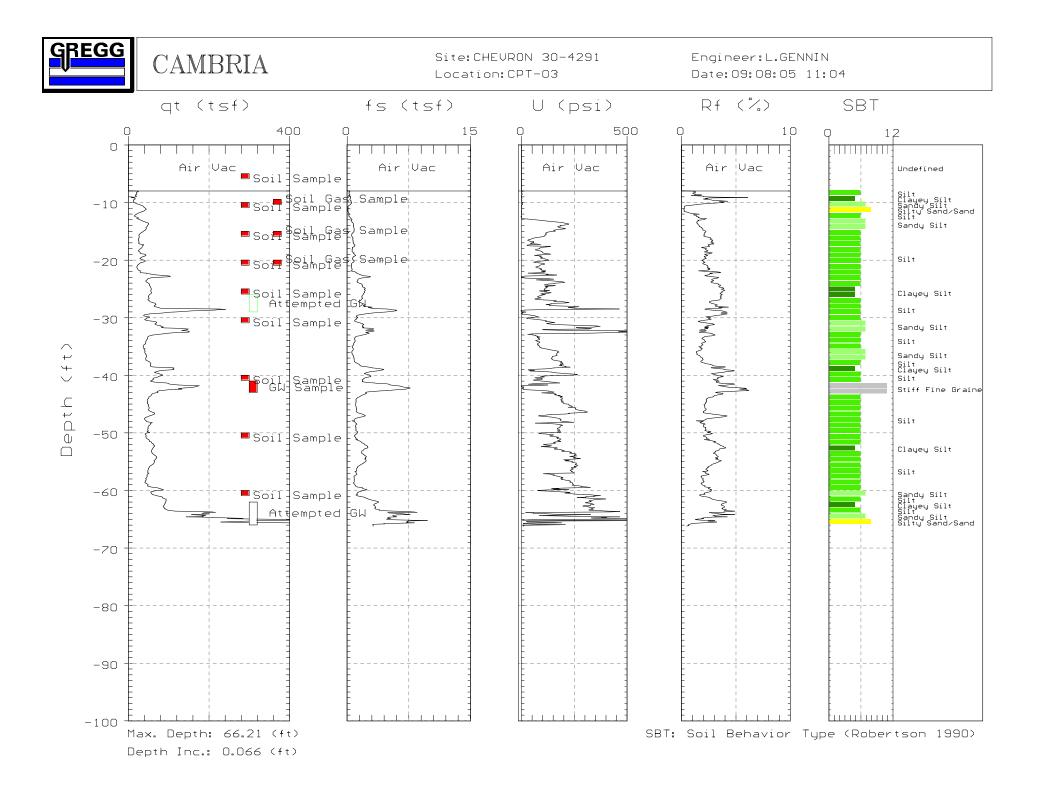
REMARKS

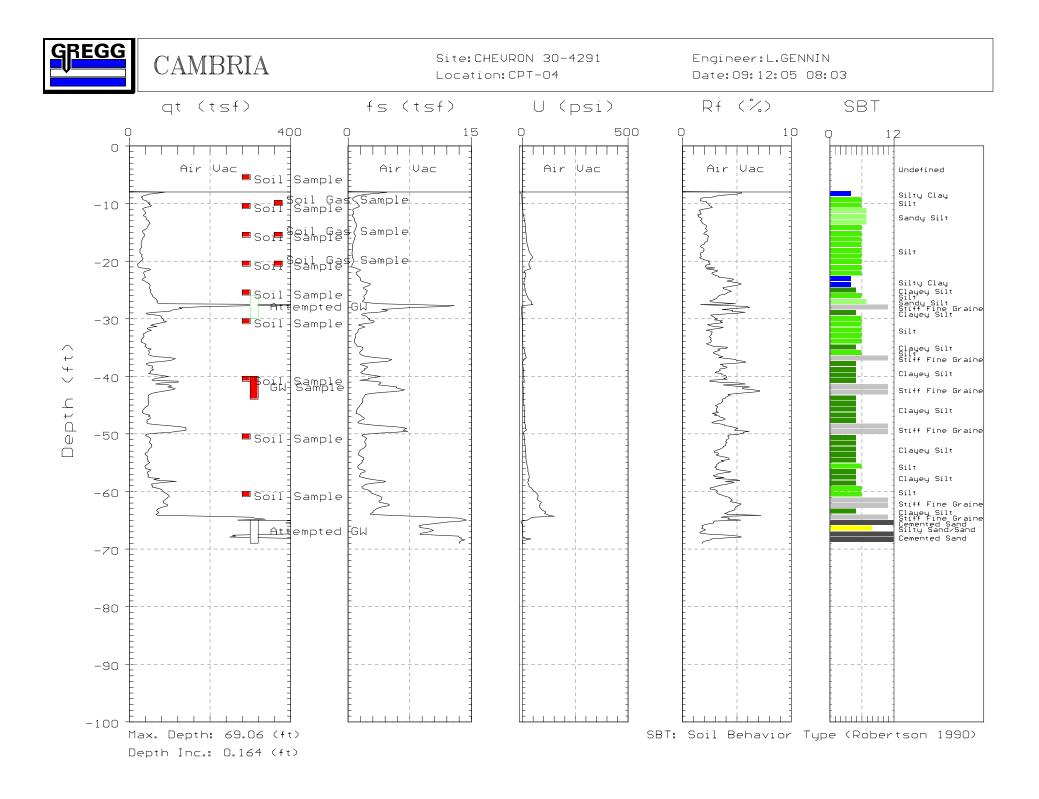
TPHg (mg/kg)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL DIAGRAM
		B8@5		 - 5	ML		Asphalt; cleared to 8 fbg with hand auger. <u>Gravelly Sandy SILT</u> Brown; dry; 50% silt, 25% sand; 25% gravel; moderate estimated permeability.	-0.4	
				 10	GW ML		Silty Sandy GRAVEL Brown; dry; 50% gravel, 25% sand, 20% silt, 5% clay; no plasticity; high estimated permeability. Clayey SILT: Brown; dry; 70% silt, 30% clay; moderate plasticity; moderate estimated permeability.	8.0 10.0 12.0	
DT 4/14/06		B8@11 .5 B8@15 .5		 - 15	GW		Silty Sandy GRAVEL Brown; dry; 50% gravel, 25% sand, 20% silt, 5% clay; no plasticity; high estimated permeability. Clayey SILT Brown; dry; 70% silt, 30% clay; moderate plasticity; moderate estimated permeability.	13.5	Portland Type
		B8@19 .5		 - 20	ML		<u>Clayey SILT</u> : Brown; dry; 60% silt, 40% clay; moderate plasticity; low estimated permeability.	18.0	
VA~1\REPORT\ATTCH		B8@23 .5		 25	ML		<u>Sandy SILT</u> : Light brown; wet; 50% silt, 45% fine sand, 5% clay; moderate estimated permeability.	23.0	
		B8@27 .5			ML CL		<u>Clayey SILT</u> : Tan; moist; 65% silt, 35% clay; moderate plasticity; low estimated permeability. <u>Silty CLAY</u> : Brown orange; dry; very stiff; 60% clay, 40% silt; moderate plasticity; low estimated permeability.	27.0 28.0	Bottom of Boring @ 28 ft
WELL LOG (COAXIAL/TPHG) 1:30429									PAGE 1 OF 1

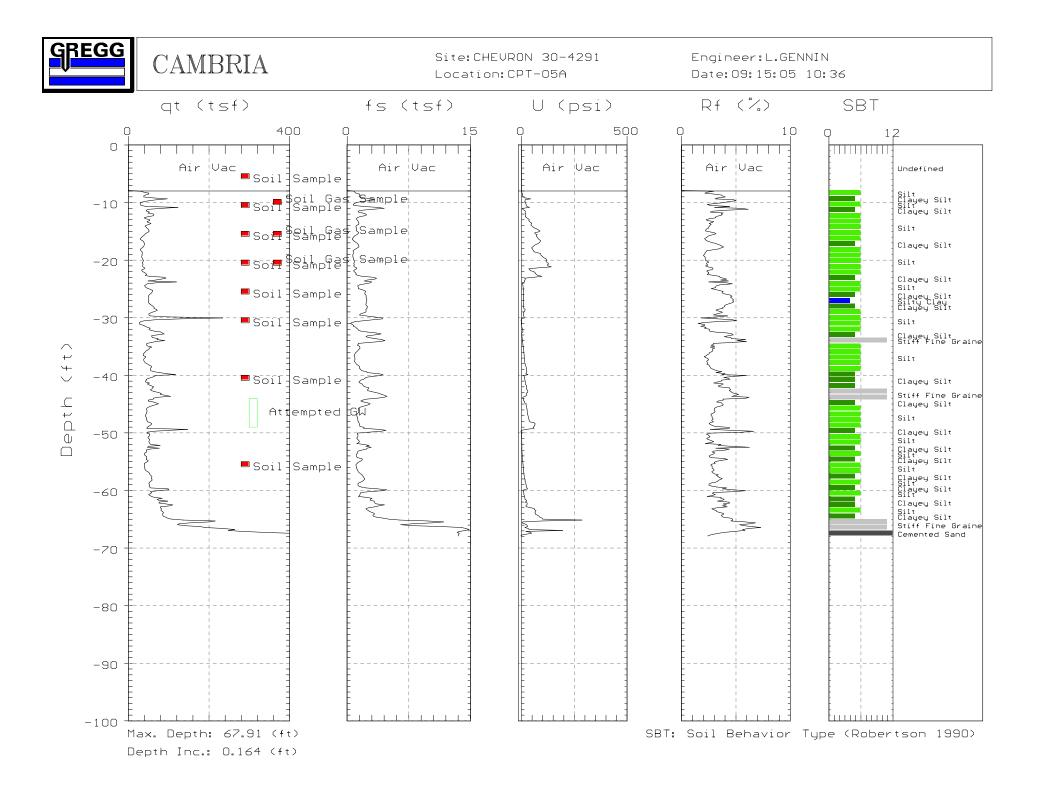

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

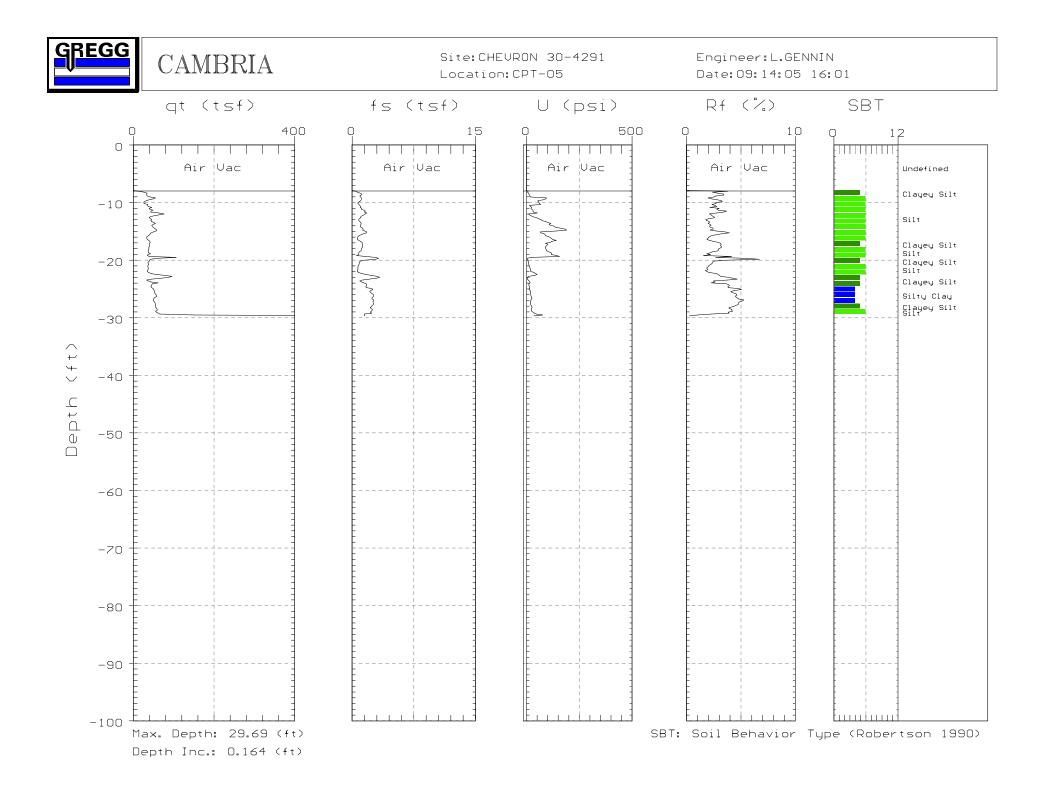

BORING/WELL LOG

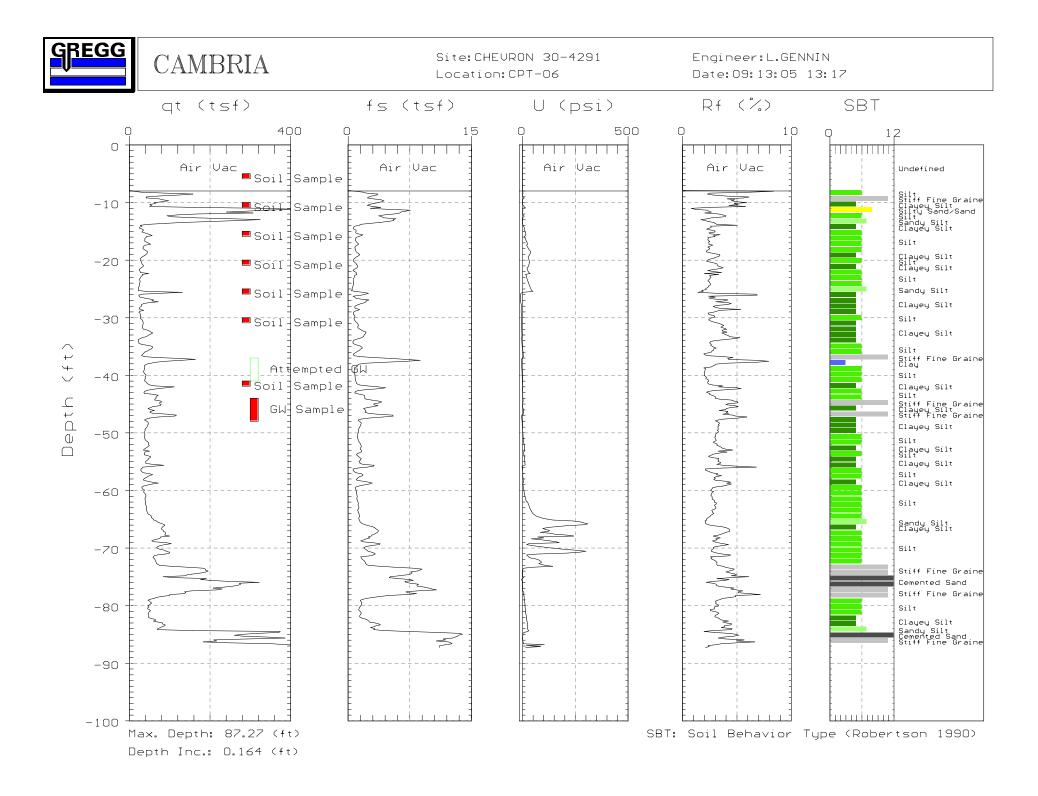

Chevron Envrionmental Management Co.	BORING/WELL NAME B-9
Site #304291	DRILLING STARTED 04-Apr-05
3884 First Street, Livermore, CA	DRILLING COMPLETED 05-Apr-05
31H-2036	WELL DEVELOPMENT DATE (YIELD) NA
Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
2"	SCREENED INTERVAL NA; NA
M. Terry	DEPTH TO WATER (First Encountered) NA
B. Foss, RG # 7445	DEPTH TO WATER (Static) NA
	Site #304291 3884 First Street, Livermore, CA 31H-2036 Gregg Drilling Hydraulic push 2" M. Terry

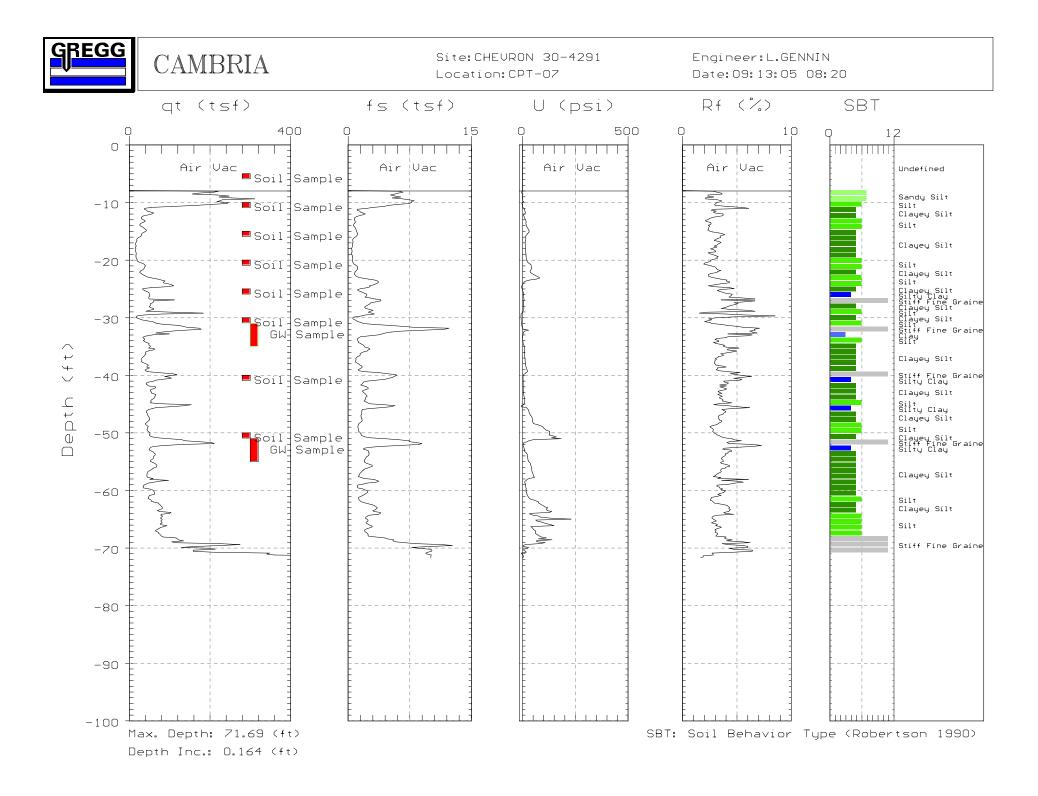

REMARKS

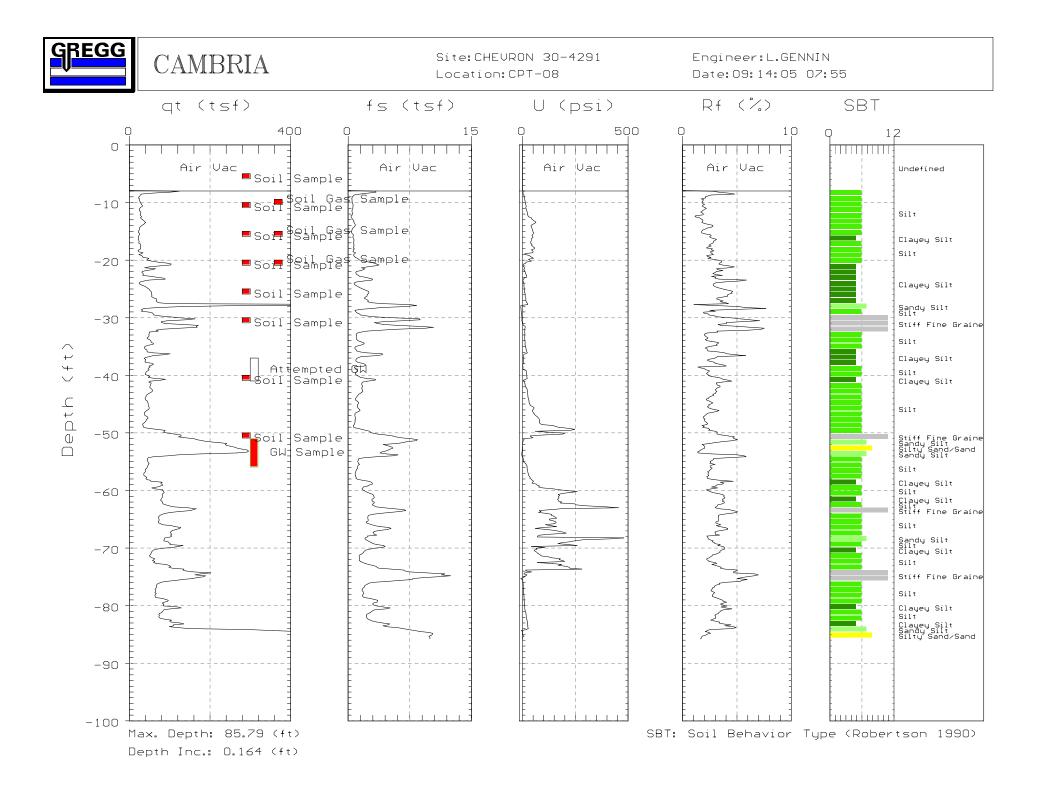

BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL DIAGRAM
	B8@5			ML		ASPHALT: <u>Gravelly SILT</u> Light Brown; dry; 70% silt, 25% gravel, 5% clay; moderate estimated permiablility, petrolium odor.	0.4	
	B8@11.5					<u>SILT with Clay</u> Brown; dry; 90% silt, 10% clay; low plastic, moderate estimated permiablility, petrolium odor. @15-16 fbg: As above but stiff, odor and black streaking.	12.0	
	B8@15 .5 B8@19 .5		 20 	ML			10.0	
	B8@23 .5		 25 	CL SC		@23-24 fbg: As above with increase in silt to 95% silt, 5% <u>clay, low plasticity, moderate estimated permiability.</u>	24.0 26.0 27.5	
	въщ27.5			<u></u>		<u>Clayey SIL1</u> : Orange Brown; moist; 60% silt, 40% clay, medium plastic, low estimated permiablility.	128.0	Bottom of Boring @ 28
	COUN	B8@5 B8@11.5 B8@15.5 B8@19.5 B8@23.5	B8@5 B8@11.5 B8@15.5 B8@19.5	B8@5	B8@5 -5 - ML 	B8@5 - 5 - ML 	B8@11.5 SILT with Clay Brown; dry; 70% silt, 25% gravel, 5% clay; moderate estimated permiability, petrolium odor. B8@11.5 ML SILT with Clay Brown; dry; 90% silt, 10% clay; low plastic, moderate estimated permiability, petrolium odor. B8@15.5 ML B8@23.5 ML SILT with Clay Brown; dry; 90% silt, 10% clay; low plasticly, moderate estimated permiability, petrolium odor. @15-16 fbg: As above but stiff, odor and black streaking. B8@23.5 ML SILT with Clay Underate estimated permiability, sandy CLAY Olive Brown; wei; 55% clay, 25% sand, 20% silt, moderate estimated permability, no dor. SIHy SAND with Clay Olive Brown; moist; 55% sand, 25% sand, 25% silt, 10% clay, ligh estimated permability, no dor. B8@27.5 ML	B8@5 ASPHALT: Gravely SILT Light Brown; dry; 70% silt, 25% gravel, 5% clay; moderate estimated permiability, petrolium odor. 0.4 B8@5 5 ML Gravely SILT with Clay Brown; dry; 90% silt, 10% clay; low plastic, moderate estimated permiability, petrolium odor. 12.0 B8@11.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <t< td=""></t<>

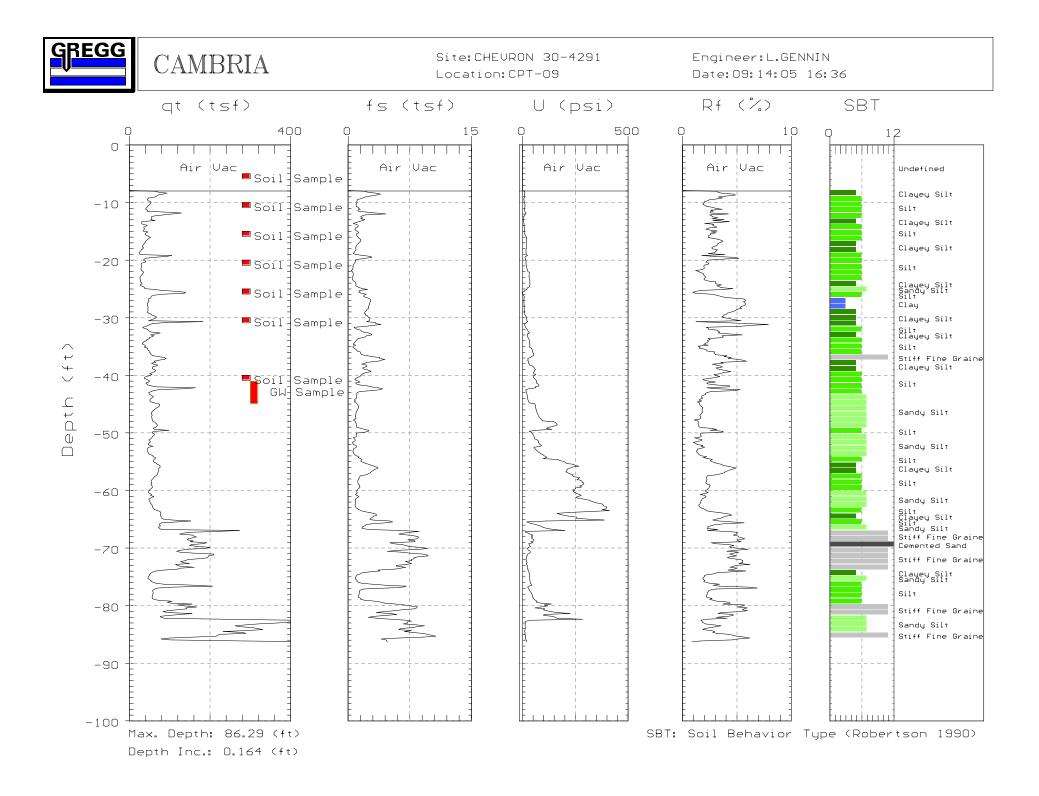


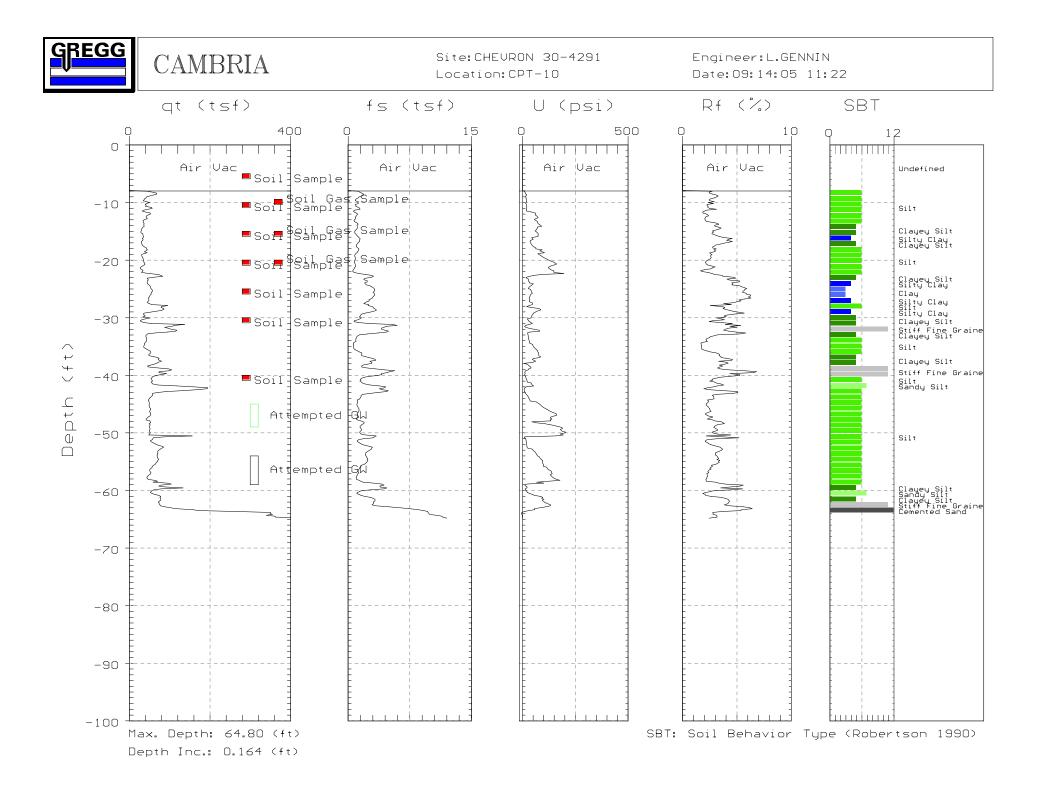


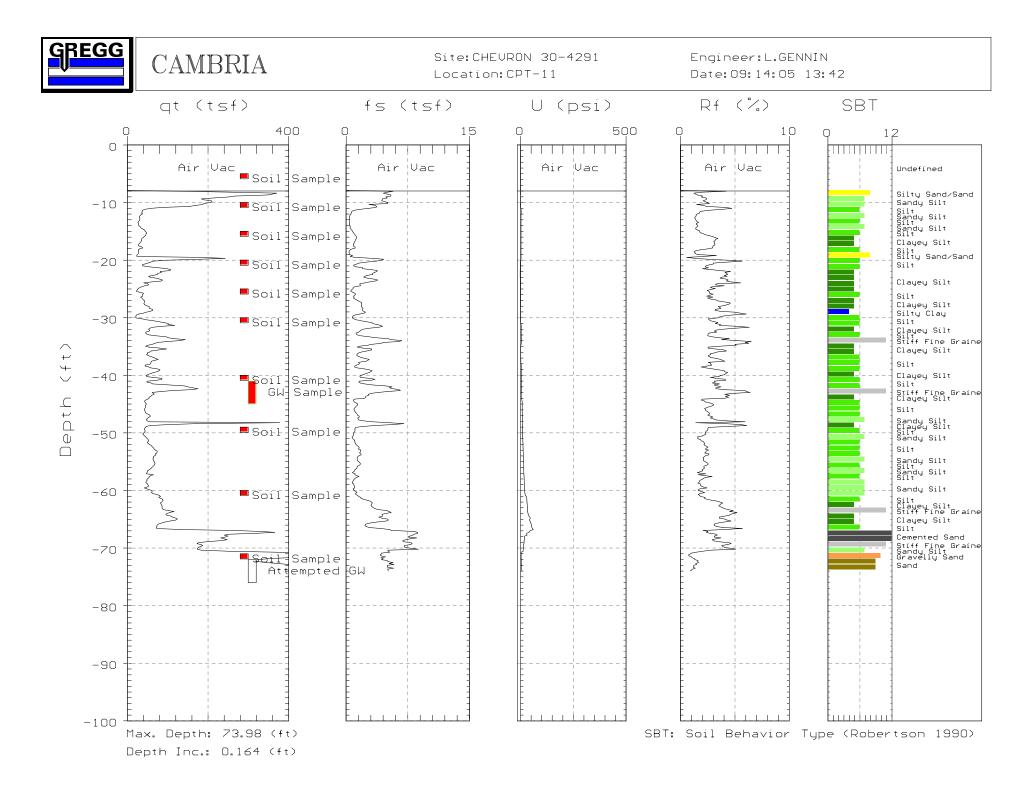


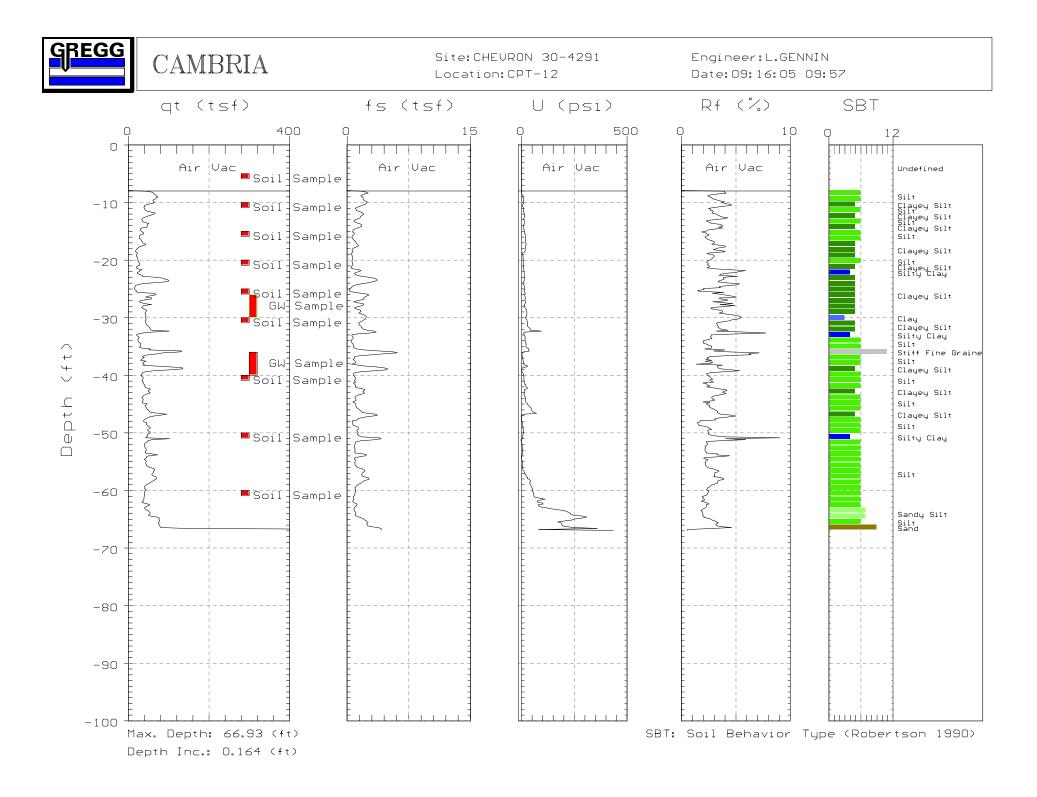












ATTACHMENT E

Summary Sheets – Soil Disposal at Landfill

7

Integrated Wastestream Management, Inc. 1945 Concourse Drive, San Jose, CA 95131 Phone: 408-433-1990 Fax: 408-433-9521

ATTACHMENT "B"

95810-BS

Chevron #30-4219 3884 1st Street, Livermore, CA Soil (Profile #1003558) Disposed at Vasco Road Landfill,Livermore, CA

	Removal/Disposal Date	Tons	Ticket No.	Manifest No.	Hauler
1	2/23/2006	23.29	736132	1 of 238	IWM
2	2/23/2006	20.21	736134	2 of 2 38	IWM
3	2/23/2006	19.88	736137	3 of 238	IWM
4	2/23/2006	20.04	736141	4 of 238	IWM
5	2/23/2006	17.67	736172	5 of 238	IWM
6	2/23/2006	18.58	736183	6 of 238	IWM
7	2/23/2006	19.4	736186	7 of 238	IWM
8	2/23/2006	17.71	736191	8 of 238	IWM
9	2/23/2006	18.16	736222	9 of 238	IWM
10	2/23/2006	20.03	736224	10 of 238	IWM
11	2/23/2006	20.55	736227	11 of 238	IWM
12	2/23/2006	20.08	736239	12 of 238	IWM
13	2/23/2006	18.85	736275	13 of 238	IWM
14	2/23/2006	18.9	736292	14 of 238	IWM
15	2/23/2006	19.22	736293	15 of 238	IWM
16	2/23/2006	16.95	736300	16 of 238	IWM
17	2/23/2006	20.03	736328	17 of 238	IWM
18	2/23/2006	19.54	736334	18 of 238	IWM
19	2/23/2006	19.1	736336	19 of 238	IWM
20	2/23/2006	18.59	736347	20 of 238	IWM
21	2/23/2006	18.61	736384	21 of 238	IWM
22	2/23/2006	19.5	736385	22 of 238	IWM
23	2/23/2006	17.87	736386	23 of 238	IWM
24	2/23/2006	17.39	736396	24 of 238	IWM
25	2/23/2006	20.42	736414	25 of 238	IWM
26	2/23/2006	21.28	736423	26 of 238	IWM
27	2/23/2006	20.32	736427	27 of 238	IWM
28	2/24/2006	15.11	736521	28 of 238	IWM
29	2/24/2006	15.38	736524	29 of 238	IWM
30	2/24/2006	15.99	736531	30 of 238	IVVM
31	2/24/2006	16	736533	31 of 238	IWM
32	2/24/2006	16.39	736536	32 of 238	IWM
33	2/24/2006	15.83	736558	33 of 238	IWM
34	2/24/2006	20.32	736561	34 of 238	IWM
35	2/24/2006	19.79	736579	35 of 238	IWM
36	2/24/2006	19,16	736582	36 of 238	IWM
37	2/24/2006	19.38	736586	37 of 238	IWM
38	2/24/2006	17.3	736590	38 of 238	IWM
39	2/24/2006	17.94	736599	39 of 238	IWM
40	2/24/2006	21.52	736617	40 of 238	IWM
41	2/24/2006	21.1	736625	41 of 238	IWM
42	2/24/2006	21.54	736630	42 of 238	IWM
43	2/24/2006	21.51	736641	43 of 238	IWM
44	2/24/2006	22.34	736647	44 of 238	IWM
45	2/24/2006	21.67	736665	45 of 238	IWM
	212-712000		,	-70 01 200	. 4 4 1 4 1
	Subtotal [860 44	1		

Subtotal

ATTACHMENT "B"

95810-BS

Chevron #30-4219 3884 1st Street, Livermore, CA Soil (Profile #1003558) Disposed at Vasco Road Landfill,Livermore, CA

46 2/24/2006 18.25 736680 46 of 238 IVVM 47 2/24/2006 19.92 736696 47 of 238 IVVM 48 2/24/2006 17.03 736712 49 of 238 IVVM 50 2/24/2006 17.03 736712 49 of 238 IVVM 51 2/24/2006 18.9 736754 53 of 238 IVVM 52 2/24/2006 19.32 736754 53 of 238 IVVM 53 2/24/2006 18.18 736767 55 of 238 IVVM 54 2/24/2006 18.05 736769 56 of 238 IVVM 55 2/24/2006 18.04 736789 58 of 238 IVVM 56 2/24/2006 17.06 736799 59 of 238 IVVM 59 2/24/2006 17.83 736808 61 of 238 IVVM 61 2/24/2006 17.83 736809 62 of 238 IVVM 62 2/24/2006 17.83 736809 <th></th> <th>Removal/Disposal Date</th> <th>Tons</th> <th>Ticket No.</th> <th>Manifest No.</th> <th>Hauler</th>		Removal/Disposal Date	Tons	Ticket No.	Manifest No.	Hauler
48 2/24/2006 19.54 736598 49 of 238 WMM 49 2/24/2006 17.03 736712 49 of 238 IVVM 50 2/24/2006 17.97 736718 50 of 238 IVVM 51 2/24/2006 18.9 736754 52 of 238 IVVM 53 2/24/2006 19.32 736754 53 of 238 IVVM 54 2/24/2006 18.18 736767 55 of 238 IVVM 55 2/24/2006 18.18 736767 55 of 238 IVVM 56 2/24/2006 18.05 736772 57 of 238 IVVM 58 2/24/2006 17.06 736789 58 of 238 IVVM 59 2/24/2006 17.83 736808 61 of 238 IVVM 61 2/24/2006 17.83 736809 62 of 238 IVVM 62 2/24/2006 17.83 736809 62 of 238 IVVM 63 2/27/2006 14.22 737245	46	2/24/2006	18.25	736680	46 of 238	IWM
49 2/24/2006 17.03 736712 49 of 238 IVVM 50 2/24/2006 17.97 736718 50 of 238 IVVM 51 2/24/2006 21.54 736720 51 of 238 IVVM 53 2/24/2006 19.32 736756 52 of 238 IVVM 54 2/24/2006 18.18 736767 55 of 238 IVVM 55 2/24/2006 18.18 736769 56 of 238 IVVM 56 2/24/2006 18.05 736772 57 of 238 IVVM 57 2/24/2006 17.06 736789 58 of 238 IVVM 59 2/24/2006 17.06 736799 59 of 238 IVVM 61 2/24/2006 17.8 736809 62 of 238 IVVM 62 2/24/2006 17.5 736809 62 of 238 IVVM 63 2/24/2006 17.5 736809 62 of 238 IVVM 64 2/27/2006 14.59 737249	47	2/24/2006	19.92	736696	47 of 238	IWM
50 2/24/2006 17.97 736718 50 of 238 IWM 51 2/24/2006 18.9 736720 51 of 238 IWM 53 2/24/2006 21.54 736745 52 of 238 IWM 53 2/24/2006 20.98 736754 53 of 238 IWM 54 2/24/2006 18.18 736767 55 of 238 IWM 56 2/24/2006 18.05 736769 56 of 238 IWM 58 2/24/2006 18.04 736789 59 of 238 IWM 59 2/24/2006 17.06 736799 59 of 238 IWM 60 2/24/2006 17.8 736809 62 of 238 IWM 62 2/24/2006 17.8 736809 62 of 238 IWM 63 2/24/2006 17.8 736809 62 of 238 IWM 64 2/27/2006 14.59 737245 64 of 238 IWM 65 2/27/2006 15.52 737256 6	48	2/24/2006	19.54	736698	48 of 238	IWM
51 22/2/2006 18.9 736720 51 of 238 IVVM 52 2/24/2006 21.54 736745 52 of 238 IVVM 53 2/24/2006 20.98 736754 53 of 238 IVVM 54 2/24/2006 18.18 736769 56 of 238 IVVM 56 2/24/2006 18.05 736772 57 of 238 IVVM 58 2/24/2006 18.05 736779 59 of 238 IVVM 59 2/24/2006 17.06 736799 59 of 238 IVVM 61 2/24/2006 17.05 736809 61 of 238 IVVM 62 2/24/2006 17.83 736809 62 of 238 IVVM 63 2/24/2006 14.08 736818 63 of 238 IVVM 64 2/27/2006 14.59 737245 64 of 238 IVVM 65 2/27/2006 14.22 737253 68 of 238 IVVM 66 2/27/2006 15.55 737265 <td>49</td> <td>2/24/2006</td> <td>17.03</td> <td>736712</td> <td>49 of 238</td> <td>IWM</td>	49	2/24/2006	17.03	736712	49 of 238	IWM
52 2/24/2006 21.54 736745 52 of 238 IWM 53 2/24/2006 19.32 736754 53 of 238 IWM 55 2/24/2006 18.18 736767 56 of 238 IWM 55 2/24/2006 18.05 736769 56 of 238 IWM 56 2/24/2006 18.05 736772 57 of 238 IWM 58 2/24/2006 17.05 736789 56 of 238 IWM 59 2/24/2006 17.06 736799 59 of 238 IWM 60 2/24/2006 17.63 736809 62 of 238 IWM 61 2/24/2006 17.6 736809 62 of 238 IWM 62 2/24/2006 14.05 73674 66 of 238 IWM 63 2/24/2006 14.02 737245 64 of 238 IWM 64 2/27/2006 15.32 737252 67 of 238 IWM 67 2/27/2006 15.95 737261 <td< td=""><td>50</td><td>2/24/2006</td><td>17.97</td><td>736718</td><td>50 of 238</td><td>IWM</td></td<>	50	2/24/2006	17.97	736718	50 of 238	IWM
53 2/24/2006 19.32 736754 53 of 238 IVM 54 2/24/2006 20.98 736756 54 of 238 IVM 55 2/24/2006 18.18 736767 55 of 238 IVM 56 2/24/2006 18.05 736772 57 of 238 IVM 57 2/24/2006 18.05 736772 57 of 238 IVM 58 2/24/2006 17.05 736809 56 of 238 IVM 60 2/24/2006 17.05 736809 61 of 238 IVM 61 2/24/2006 17.83 736809 62 of 238 IVM 62 2/24/2006 17.6 736809 62 of 238 IVM 63 2/24/2006 17.1 737249 65 of 238 IVM 64 2/27/2006 14.22 737249 65 of 238 IVM 66 2/27/2006 14.02 737252 67 of 238 IVM 67 2/27/2006 15.95 737261 <td< td=""><td>51</td><td>2/21/2006</td><td></td><td>736720</td><td>51 of 238</td><td>IWM</td></td<>	51	2/21/2006		736720	51 of 238	IWM
64 2/24/2006 20.98 736756 64 of 238 IWM 55 2/24/2006 18.18 736767 55 of 238 IWM 57 2/24/2006 18.05 736772 57 of 238 IWM 58 2/24/2006 18.05 736772 57 of 238 IWM 59 2/24/2006 17.06 736799 59 of 238 IWM 60 2/24/2006 17.06 736808 61 of 238 IWM 61 2/24/2006 17.6 736809 62 of 238 IWM 62 2/24/2006 17.6 736809 62 of 238 IWM 63 2/24/2006 14.08 736818 63 of 238 IWM 64 2/27/2006 14.22 737245 64 of 238 IWM 66 2/27/2006 14.02 737252 67 of 238 IWM 67 2/27/2006 15.95 737261 70 of 238 IWM 68 2/27/2006 15.95 737261 <td< td=""><td>52</td><td>2/24/2006</td><td>21.54</td><td>736745</td><td>52 of 238</td><td>IWM</td></td<>	52	2/24/2006	21.54	736745	52 of 238	IWM
55 2/24/2006 18.18 736767 55 of 238 IVM 56 2/24/2006 15.07 736769 56 of 238 IVM 57 2/24/2006 18.05 736772 57 of 238 IVM 58 2/24/2006 18.44 736789 58 of 238 IVM 60 2/24/2006 17.06 736799 59 of 238 IVM 61 2/24/2006 17.83 736808 61 of 238 IVM 62 2/24/2006 17.6 736809 62 of 238 IVM 63 2/24/2006 14.55 737245 64 of 238 IVM 64 2/27/2006 14.52 737249 65 of 238 IVM 65 2/27/2006 17.21 737252 67 of 238 IVM 67 2/27/2006 15.55 737265 69 of 238 IVM 68 2/27/2006 15.95 737265 69 of 238 IVM 71 2/27/2006 15.95 737265 <t< td=""><td>53</td><td>2/24/2006</td><td>19.32</td><td>736754</td><td>53 of 238</td><td>IWM</td></t<>	53	2/24/2006	19.32	736754	53 of 238	IWM
56 2/24/2006 15.07 736769 56 of 238 IVM 57 2/24/2006 18.05 736772 57 of 238 IVM 58 2/24/2006 18.05 736789 58 of 238 IVM 59 2/24/2006 17.06 736799 59 of 238 IVM 60 2/24/2006 17.83 736808 61 of 238 IVM 61 2/24/2006 17.6 736809 62 of 238 IVM 62 2/24/2006 17.6 736809 62 of 238 IVM 63 2/24/2006 14.08 736818 63 of 238 IVM 64 2/27/2006 14.22 737245 66 of 238 IVM 65 2/27/2006 15.32 737251 66 of 238 IVM 68 2/27/2006 15.95 737263 68 of 238 IVM 69 2/27/2006 15.95 737261 70 of 238 IVM 71 2/27/2006 15.85 737287 <td< td=""><td>54</td><td>2/24/2006</td><td>20.98</td><td>736756</td><td>54 of 238</td><td>IWM</td></td<>	54	2/24/2006	20.98	736756	54 of 238	IWM
57 2/24/2006 18.05 736772 57 of 238 IVM 58 2/24/2006 18.44 736789 58 of 238 IVM 59 2/24/2006 17.06 736799 59 of 238 IVM 60 2/24/2006 17.06 736809 60 of 238 IVM 61 2/24/2006 17.6 736809 62 of 238 IVM 62 2/24/2006 17.6 736809 62 of 238 IVM 63 2/27/2006 14.08 738618 63 of 238 IVM 64 2/27/2006 14.22 737245 64 of 238 IVM 66 2/27/2006 15.32 737251 66 of 238 IVM 67 2/27/2006 15.95 737256 69 of 238 IVM 68 2/27/2006 15.95 737261 70 of 238 IVM 71 2/27/2006 15.95 737287 71 of 238 IVM 73 2/27/2006 15.44 737291 <td< td=""><td>55</td><td>2/24/2006</td><td>18.18</td><td>736767</td><td>55 of 238</td><td>IWM</td></td<>	55	2/24/2006	18.18	736767	55 of 238	IWM
58 2/24/2006 18.44 736789 58 of 238 IVM 59 2/24/2006 17.06 736799 59 of 238 IVM 60 2/24/2006 15.04 736800 60 of 238 IVM 61 2/24/2006 17.83 736809 62 of 238 IVM 62 2/24/2006 17.6 736809 62 of 238 IVM 63 2/24/2006 14.08 736818 63 of 238 IVM 64 2/27/2006 14.22 737245 64 of 238 IVM 65 2/27/2006 14.02 737252 67 of 238 IVM 66 2/27/2006 15.95 737252 67 of 238 IVM 69 2/27/2006 15.95 737261 70 of 238 IVM 71 2/27/2006 15.95 737287 71 of 238 IVM 72 2/27/2006 15.81 737291 73 of 238 IVM 73 2/27/2006 15.81 737303 <t< td=""><td>56</td><td>2/24/2006</td><td>15.07</td><td>736769</td><td>56 of 238</td><td>IWM</td></t<>	56	2/24/2006	15.07	736769	56 of 238	IWM
59 2/24/2006 17.06 736799 59 of 238 IWM 60 2/24/2006 15.04 736800 60 of 238 IWM 61 2/24/2006 17.83 736808 61 of 238 IWM 62 2/24/2006 17.6 736809 62 of 238 IWM 63 2/24/2006 14.08 736818 63 of 238 IWM 64 2/27/2006 14.22 737249 65 of 238 IWM 65 2/27/2006 15.32 737251 66 of 238 IWM 66 2/27/2006 15.95 737252 67 of 238 IWM 68 2/27/2006 15.95 737256 69 of 238 IWM 69 2/27/2006 15.95 737287 71 of 238 IWM 71 2/27/2006 15.55 737288 72 of 238 IWM 72 2/27/2006 15.81 737303 74 of 238 IWM 73 2/27/2006 15.81 737303 <t< td=""><td>57</td><td>2/24/2006</td><td>18.05</td><td>736772</td><td>57 of 238</td><td>IWM</td></t<>	57	2/24/2006	18.05	736772	57 of 238	IWM
60 2/24/2006 15.04 736800 60 of 238 IVM 61 2/24/2006 17.83 736808 61 of 238 IVM 62 2/24/2006 17.6 736809 62 of 238 IVM 63 2/24/2006 14.08 736818 63 of 238 IVM 64 2/27/2006 14.59 737245 64 of 238 IVM 65 2/27/2006 14.22 737249 65 of 238 IVM 66 2/27/2006 17.21 737252 67 of 238 IVM 67 2/27/2006 15.95 737263 68 of 238 IVM 68 2/27/2006 15.95 737263 68 of 238 IVM 69 2/27/2006 15.95 737261 70 of 238 IVM 71 2/27/2006 15.55 737287 71 of 238 IVM 72 2/27/2006 15.81 737293 74 of 238 IVM 73 2/27/2006 15.81 737293 <t< td=""><td>58</td><td>2/24/2006</td><td>18.44</td><td>736789</td><td>58 of 238</td><td>IWM</td></t<>	58	2/24/2006	18.44	736789	58 of 238	IWM
61 2/24/2006 17.83 736908 61 of 238 IWM 62 2/24/2006 17.6 736809 62 of 238 IVM 63 2/24/2006 14.08 736818 63 of 238 IVM 64 2/27/2006 14.22 737245 64 of 238 IVM 65 2/27/2006 14.22 737249 65 of 238 IVM 66 2/27/2006 15.32 737251 66 of 238 IVM 67 2/27/2006 17.21 737253 68 of 238 IVM 68 2/27/2006 15.95 737261 70 of 238 IVM 69 2/27/2006 15.55 737287 71 of 238 IVM 71 2/27/2006 15.55 737287 71 of 238 IVM 72 2/27/2006 15.44 737291 73 of 238 IVM 73 2/27/2006 15.81 737303 75 of 238 IVM 74 2/27/2006 15.81 737303 <t< td=""><td>59</td><td>2/24/2006</td><td>17.06</td><td>736799</td><td>59 of 238</td><td>IWM</td></t<>	59	2/24/2006	17.06	736799	59 of 238	IWM
62 2/24/2006 17.6 736809 62 of 238 IWM 63 2/24/2006 14.08 736818 63 of 238 IWM 64 2/27/2006 14.59 737245 64 of 238 IWM 65 2/27/2006 14.22 737249 65 of 238 IWM 66 2/27/2006 15.32 737251 66 of 238 IWM 67 2/27/2006 17.21 737252 67 of 238 IWM 68 2/27/2006 15.95 737253 68 of 238 IWM 69 2/27/2006 15.95 737261 70 of 238 IWM 70 2/27/2006 15.55 737287 71 of 238 IWM 71 2/27/2006 15.44 737291 73 of 238 IWM 73 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.81 737303 <t< td=""><td>60</td><td>2/24/2006</td><td>15.04</td><td>736800</td><td>60 of 238</td><td>IWM</td></t<>	60	2/24/2006	15.04	736800	60 of 238	IWM
63 2/24/2006 14.08 736818 63 of 238 IWM 64 2/27/2006 14.59 737245 64 of 238 IWM 65 2/27/2006 14.22 737249 65 of 238 IWM 66 2/27/2006 15.32 737251 66 of 238 IWM 67 2/27/2006 17.21 737252 67 of 238 IWM 68 2/27/2006 15.95 737253 68 of 238 IWM 69 2/27/2006 15.95 737261 70 of 238 IWM 71 2/27/2006 15.55 737287 71 of 238 IWM 73 2/27/2006 15.44 737291 73 of 238 IWM 74 2/27/2006 15.81 737303 75 of 238 IWM 75 2/27/2006 15.81 737303 75 of 238 IWM 75 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.81 737330 <	61	2/24/2006		736808	61 of 238	łWM
64 2/27/2006 14.59 737245 64 of 238 IVVM 65 2/27/2006 14.22 737249 65 of 238 IVVM 66 2/27/2006 15.32 737251 66 of 238 IVVM 67 2/27/2006 17.21 737252 67 of 238 IVVM 68 2/27/2006 14.02 737253 68 of 238 IVVM 69 2/27/2006 15.95 737256 69 of 238 IVVM 70 2/27/2006 15.55 737261 70 of 238 IVVM 71 2/27/2006 15.55 737287 71 of 238 IVVM 73 2/27/2006 15.44 737291 73 of 238 IVVM 73 2/27/2006 15.81 737303 75 of 238 IVVM 74 2/27/2006 15.81 737303 76 of 238 IVVM 76 2/27/2006 15.31 737303 76 of 238 IVVM 78 2/27/2006 16.01 737323 <td>62</td> <td>2/24/2006</td> <td>17.6</td> <td>736809</td> <td>62 of 238</td> <td>IWM</td>	62	2/24/2006	17.6	736809	62 of 238	IWM
65 2/27/2006 14.22 737249 65 of 238 IWM 66 2/27/2006 15.32 737251 66 of 238 IWM 67 2/27/2006 17.21 737252 67 of 238 IWM 68 2/27/2006 14.02 737253 68 of 238 IWM 69 2/27/2006 15.95 737256 69 of 238 IWM 70 2/27/2006 15.95 737261 70 of 238 IWM 71 2/27/2006 15.55 737287 71 of 238 IWM 72 2/27/2006 15.44 737293 74 of 238 IWM 73 2/27/2006 15.81 737303 75 of 238 IWM 74 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.31 737303 75 of 238 IWM 76 2/27/2006 14.36 737330 78 of 238 IWM 78 2/27/2006 14.98 737352 <	63	2/24/2006	14.08	736818	63 of 238	IWM
66 2/27/2006 15.32 737251 66 of 238 IWM 67 2/27/2006 17.21 737252 67 of 238 IWM 68 2/27/2006 14.02 737253 68 of 238 IWM 69 2/27/2006 15.95 737256 69 of 238 IWM 70 2/27/2006 18.05 737261 70 of 238 IWM 71 2/27/2006 15.55 737287 71 of 238 IWM 73 2/27/2006 15.44 737291 73 of 238 IWM 73 2/27/2006 15.44 737293 74 of 238 IWM 74 2/27/2006 15.81 737303 75 of 238 IWM 75 2/27/2006 15.81 737303 75 of 238 IWM 78 2/27/2006 16.01 737323 77 of 238 IWM 79 2/27/2006 14.36 737330 78 of 238 IWM 80 2/27/2006 15.15 737352 <	64	2/27/2006		737245		
67 2/27/2006 17.21 737252 67 of 238 IWM 68 2/27/2006 14.02 737253 68 of 238 IWM 69 2/27/2006 15.95 737256 69 of 238 IWM 70 2/27/2006 15.95 737261 70 of 238 IWM 71 2/27/2006 15.55 737287 71 of 238 IWM 72 2/27/2006 15.44 737291 73 of 238 IWM 73 2/27/2006 15.84 737293 74 of 238 IWM 74 2/27/2006 15.81 737303 75 of 238 IWM 75 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.81 737303 75 of 238 IWM 78 2/27/2006 16.01 737323 77 of 238 IWM 79 2/27/2006 14.36 737330 78 of 238 IWM 80 2/27/2006 14.98 737339 79 of 238 IWM 81 2/27/2006 15.66 737355	65	2/27/2006		737249		
68 2/27/2006 14.02 737253 68 of 238 IWM 69 2/27/2006 15.95 737256 69 of 238 IWM 70 2/27/2006 18.05 737261 70 of 238 IWM 71 2/27/2006 15.55 737287 71 of 238 IWM 72 2/27/2006 15.44 737291 73 of 238 IWM 73 2/27/2006 15.81 737293 74 of 238 IWM 74 2/27/2006 15.81 737303 75 of 238 IWM 75 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.81 737303 75 of 238 IWM 77 2/27/2006 16.01 737323 77 of 238 IWM 78 2/27/2006 14.36 737330 78 of 238 IWM 80 2/27/2006 14.98 737352 81 of 238 IWM 81 2/27/2006 15.66 737355 <		2/27/2006				
69 2/27/2006 15.95 737256 69 of 238 IWM 70 2/27/2006 18.05 737261 70 of 238 IWM 71 2/27/2006 15.55 737287 71 of 238 IWM 72 2/27/2006 14.65 737288 72 of 238 IWM 73 2/27/2006 15.44 737291 73 of 238 IWM 74 2/27/2006 15.81 737303 75 of 238 IWM 75 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.31 737304 76 of 238 IWM 77 2/27/2006 16.01 737323 77 of 238 IWM 78 2/27/2006 14.36 73730 78 of 238 IWM 79 2/27/2006 14.98 737339 79 of 238 IWM 80 2/27/2006 19.39 737342 80 of 238 IWM 81 2/27/2006 15.66 737353 <t< td=""><td>67</td><td>2/27/2006</td><td></td><td></td><td></td><td></td></t<>	67	2/27/2006				
70 2/27/2006 18.05 737261 70 of 238 IWM 71 2/27/2006 15.55 737287 71 of 238 IWM 72 2/27/2006 14.65 737288 72 of 238 IWM 73 2/27/2006 15.44 737291 73 of 238 IWM 74 2/27/2006 15.81 737303 75 of 238 IWM 75 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.81 737303 75 of 238 IWM 77 2/27/2006 16.01 737323 77 of 238 IWM 77 2/27/2006 14.36 73730 78 of 238 IWM 78 2/27/2006 14.98 737330 78 of 238 IWM 80 2/27/2006 19.39 737342 80 of 238 IWM 81 2/27/2006 15.66 737353 82 of 238 IWM 82 2/27/2006 15.15 737355 <t< td=""><td></td><td>2/27/2006</td><td></td><td></td><td></td><td></td></t<>		2/27/2006				
71 2/27/2006 15.55 737287 71 of 238 IWM 72 2/27/2006 14.65 737288 72 of 238 IWM 73 2/27/2006 15.44 737291 73 of 238 IWM 74 2/27/2006 15.44 737293 74 of 238 IWM 75 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.31 737303 75 of 238 IWM 77 2/27/2006 16.01 737323 77 of 238 IWM 78 2/27/2006 14.36 737330 78 of 238 IWM 79 2/27/2006 14.36 737330 78 of 238 IWM 80 2/27/2006 14.98 737339 79 of 238 IWM 81 2/27/2006 19.39 737342 80 of 238 IWM 82 2/27/2006 15.66 737353 82 of 238 IWM 83 2/27/2006 15.15 737355 83 of 238 IWM 84 2/27/2006 15.15 737355	69	2/27/2006				
72 2/27/2006 14.65 737288 72 of 238 IWM 73 2/27/2006 15.44 737291 73 of 238 IWM 74 2/27/2006 13.38 737293 74 of 238 IWM 75 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.31 737303 75 of 238 IWM 77 2/27/2006 16.01 737323 77 of 238 IWM 78 2/27/2006 14.36 737300 78 of 238 IWM 79 2/27/2006 14.98 737330 78 of 238 IWM 80 2/27/2006 14.98 737339 79 of 238 IWM 81 2/27/2006 19.39 737342 80 of 238 IWM 82 2/27/2006 15.66 737355 83 of 238 IWM 83 2/27/2006 15.15 737373 84 of 238 IWM 84 2/27/2006 17.51 737373 84 of 238 IWM 85 2/27/2006 18.13 737378	70		18.05			
73 2/27/2006 15.44 737291 73 of 238 IWM 74 2/27/2006 13.38 737293 74 of 238 IWM 75 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.31 737304 76 of 238 IWM 77 2/27/2006 16.01 737323 77 of 238 IWM 78 2/27/2006 14.36 737330 78 of 238 IWM 79 2/27/2006 14.98 737339 79 of 238 IWM 80 2/27/2006 19.39 737342 80 of 238 IWM 81 2/27/2006 15.66 737352 81 of 238 IWM 82 2/27/2006 15.15 737355 83 of 238 IWM 83 2/27/2006 15.15 737355 83 of 238 IWM 84 2/27/2006 15.15 737373 84 of 238 IWM 85 2/27/2006 18.13 737378 85 of 238 IWM 86 2/27/2006 18.58 737366	71	2/27/2006				
74 2/27/2006 13.38 737293 74 of 238 IVVM 75 2/27/2006 15.81 737303 75 of 238 IVVM 76 2/27/2006 15.31 737304 76 of 238 IVVM 77 2/27/2006 16.01 737323 77 of 238 IVVM 78 2/27/2006 14.36 737330 78 of 238 IVVM 79 2/27/2006 14.98 737339 79 of 238 IVVM 80 2/27/2006 19.39 737342 80 of 238 IVVM 81 2/27/2006 19.39 737352 81 of 238 IVVM 82 2/27/2006 15.66 737353 82 of 238 IVVM 83 2/27/2006 15.15 737355 83 of 238 IVVM 84 2/27/2006 17.51 737373 84 of 238 IVVM 85 2/27/2006 18.13 737378 85 of 238 IVVM 86 2/27/2006 18.58 737386 86 of 238 IVVM 87 2/27/2006 18.34 7	72	2/27/2006				
75 2/27/2006 15.81 737303 75 of 238 IWM 76 2/27/2006 15.31 737304 76 of 238 IWM 77 2/27/2006 16.01 737323 77 of 238 IWM 78 2/27/2006 14.36 737330 78 of 238 IWM 79 2/27/2006 14.98 737339 79 of 238 IWM 80 2/27/2006 19.39 737342 80 of 238 IWM 81 2/27/2006 19.39 737352 81 of 238 IWM 81 2/27/2006 15.66 737353 82 of 238 IWM 82 2/27/2006 15.66 737353 82 of 238 IWM 83 2/27/2006 15.15 737355 83 of 238 IWM 84 2/27/2006 15.15 737373 84 of 238 IWM 85 2/27/2006 18.13 737386 86 of 238 IWM 86 2/27/2006 18.34 737389 87 of 238 IWM 87 2/27/2006 18.34 737394	73	2/27/2006				
76 2/27/2006 15.31 737304 76 of 238 IWM 77 2/27/2006 16.01 737323 77 of 238 IWM 78 2/27/2006 14.36 737330 78 of 238 IWM 79 2/27/2006 14.98 737339 79 of 238 IWM 80 2/27/2006 19.39 737342 80 of 238 IWM 81 2/27/2006 19.39 737352 81 of 238 IWM 81 2/27/2006 15.66 737352 81 of 238 IWM 82 2/27/2006 15.66 737355 83 of 238 IWM 83 2/27/2006 15.15 737355 83 of 238 IWM 84 2/27/2006 15.15 737373 84 of 238 IWM 85 2/27/2006 18.13 737378 85 of 238 IWM 86 2/27/2006 18.58 737366 86 of 238 IWM 87 2/27/2006 18.34 737394 88 of 238 IWM 88 2/27/2006 19.44 737394	74	2/27/2006				
772/27/200616.0173732377 of 238IWM782/27/200614.3673733078 of 238IWM792/27/200614.9873733979 of 238IWM802/27/200619.3973734280 of 238IWM812/27/200620.6773735281 of 238IWM822/27/200615.6673735382 of 238IWM832/27/200615.1573735583 of 238IWM842/27/200615.1573737384 of 238IWM852/27/200618.1373737885 of 238IWM862/27/200618.5873738686 of 238IWM872/27/200618.3473738987 of 238IWM882/27/200619.4473739488 of 238IWM892/27/200620.1273739989 of 238IWM	75	2/27/2006				
78 2/27/2006 14.36 737330 78 of 238 IV/M 79 2/27/2006 14.98 737339 79 of 238 IV/M 80 2/27/2006 19.39 737342 80 of 238 IV/M 81 2/27/2006 20.67 737352 81 of 238 IV/M 82 2/27/2006 15.66 737353 82 of 238 IV/M 83 2/27/2006 15.66 737355 83 of 238 IV/M 84 2/27/2006 15.15 737373 84 of 238 IV/M 85 2/27/2006 18.13 737378 85 of 238 IV/M 86 2/27/2006 18.58 737386 86 of 238 IV/M 87 2/27/2006 18.34 737389 87 of 238 IV/M 88 2/27/2006 18.34 737394 88 of 238 IV/M 89 2/27/2006 19.44 737394 88 of 238 IV/M	76	2/27/2006				
792/27/200614.9873733979 of 238IWM802/27/200619.3973734280 of 238IWM812/27/200620.6773735281 of 238IWM822/27/200615.6673735382 of 238IWM832/27/200615.1573735583 of 238IWM842/27/200617.5173737384 of 238IWM852/27/200618.1373737885 of 238IWM862/27/200618.5873738686 of 238IWM872/27/200618.3473738987 of 238IWM882/27/200619.4473739488 of 238IWM892/27/200620.1273739989 of 238IWM	77	2/27/2006				
80 2/27/2006 19.39 737342 80 of 238 IWM 81 2/27/2006 20.67 737352 81 of 238 IWM 82 2/27/2006 15.66 737353 82 of 238 IWM 83 2/27/2006 15.15 737355 83 of 238 IWM 84 2/27/2006 15.15 737373 84 of 238 IWM 85 2/27/2006 18.13 737378 85 of 238 IWM 86 2/27/2006 18.58 737386 86 of 238 IWM 87 2/27/2006 18.34 737389 87 of 238 IWM 88 2/27/2006 19.44 737394 88 of 238 IWM 89 2/27/2006 20.12 737399 89 of 238 IWM	78					
81 2/27/2006 20.67 737352 81 of 238 IWM 82 2/27/2006 15.66 737353 82 of 238 IWM 83 2/27/2006 15.15 737355 83 of 238 IWM 84 2/27/2006 17.51 737373 84 of 238 IWM 85 2/27/2006 18.13 737378 85 of 238 IWM 86 2/27/2006 18.58 737386 86 of 238 IWM 87 2/27/2006 18.34 737389 87 of 238 IWM 88 2/27/2006 19.44 737394 88 of 238 IWM 89 2/27/2006 20.12 737399 89 of 238 IWM	79	2/27/2006				
82 2/27/2006 15.66 737353 82 of 238 IWM 83 2/27/2006 15.15 737355 83 of 238 IWM 84 2/27/2006 17.51 737373 84 of 238 IWM 85 2/27/2006 18.13 737378 85 of 238 IWM 86 2/27/2006 18.58 737386 86 of 238 IWM 87 2/27/2006 18.34 737389 87 of 238 IWM 88 2/27/2006 19.44 737394 88 of 238 IWM 89 2/27/2006 20.12 737399 89 of 238 IWM	80	2/27/2006				
B3 2/27/2006 15.15 737355 83 of 238 IWM 84 2/27/2006 17.51 737373 84 of 238 IWM 85 2/27/2006 18.13 737378 85 of 238 IWM 86 2/27/2006 18.58 737366 66 of 238 IWM 87 2/27/2006 18.34 737389 87 of 238 IWM 88 2/27/2006 19.44 737394 88 of 238 IWM 89 2/27/2006 20.12 737399 89 of 238 IWM	81	2/27/2006				
84 2/27/2006 17.51 737373 84 of 238 IWM 85 2/27/2006 18.13 737378 85 of 238 IWM 86 2/27/2006 18.58 737366 86 of 238 IWM 87 2/27/2006 18.34 737389 87 of 238 IWM 88 2/27/2006 19.44 737394 88 of 238 IWM 89 2/27/2006 20.12 737399 89 of 238 IWM	82	2/27/2006				
85 2/27/2006 18.13 737378 85 of 238 IWM 86 2/27/2006 18.58 737386 86 of 238 IWM 87 2/27/2006 18.34 737389 87 of 238 IWM 88 2/27/2006 19.44 737394 88 of 238 IWM 89 2/27/2006 20.12 737399 89 of 238 IWM	83	2/27/2006				
86 2/27/2006 18.58 737385 86 of 238 IWM 87 2/27/2006 18.34 737389 87 of 238 IWM 88 2/27/2006 19.44 737394 88 of 238 IWM 89 2/27/2006 20.12 737399 89 of 238 IWM						
87 2/27/2006 18.34 737389 87 of 238 IWM 88 2/27/2006 19.44 737394 88 of 238 IWM 89 2/27/2006 20.12 737399 89 of 238 IWM	85	2/27/2006				
BB 2/27/2006 19.44 737394 88 of 238 IWM 89 2/27/2006 20.12 737399 89 of 238 IWM	86	2/27/2006				
89 2/27/2006 20.12 737399 89 of 238 IWM	87	2/27/2006				
	88	2/27/2006	19.44	737394		
	89	2/27/2006	20.12	737399		
		2/27/2006	17.88	737400	90 of 238	IWM

Subtotal

770.52

Page 2 of 6

.

Integrated Wastestream Management, Inc. 1945 Concourse Drive, San Jose, CA 95131 Phone: 408-433-1990 Fax: 408-433-9521

IWM INC

ATTACHMENT "B"

95810-BS

Chevron #30 4219 3884 1st Street, Livermore, CA Soil (Profile #1003558) Disposed at Vasco Road Landfill,Livermore, CA

	Removal/Disposal Date	Tons	Ticket No.	Manifest No.	Hauler
91	2/27/2006	17.44	737417	91 of 238	IWM
92	2/27/2006	16.21	737431	92 of 238	IWM
93	2/27/2006	19,13	737441	93 of 238	IWM
94	2/2//2006	20.91	737444	94 of 238	IVVM
95	2/27/2006	20.63	737447	95 of 238	IWM
96	2/27/2006	17.9	737453	96 of 238	IWM
97	2/27/2006	16.91	737457	97 of 238	IWM
98	2/27/2006	20.02	737462	98 of 238	IVVM
99	2/27/2006	20.93	737470	99 of 238	IWM
100	2/27/2006	19.76	737481	100 of 238	IWM
101	2/27/2006	17.78	737486	101 of 238	IWM
102	2/27/2006	20.8	737491	102 of 238	IWM
103	2/27/2006	14.8	737496	103 of 238	IWM
104	2/27/2006	16.4	737498	104 of 238	IWM
105	2/27/2006	17.49	737503	105 of 238	IWM
106	2/28/2006	14.59	737577	106 of 238	IWM
107	2/28/2006	17.55	737582	107 of 238	IWM
108	2/28/2006	16.67	737584	108 of 238	IWM
109	2/28/2006	16.63	737586	109 of 238	IWM
110	2/28/2006	18.03	737613	110 of 238	IWM
111	2/28/2006	16.26	737621	111 of 238	IWM
112	2/28/2006	13.96	737642	112 of 238	IWM
113	2/28/2006	17.85	737643	113 of 238	IWM
114	2/28/2006	19.76	737671	114 of 238	IWM
115	2/28/2006	17.67	737675	115 of 238	IWM
116	2/28/2006	17.84	737686	116 of 238	IWM
117	2/28/2006	17.75	737687	117 of 238	IWM
118	2/28/2006	14.27	737705	118 of 238	IWM
119	2/28/2006	15.51	737709	119 of 238	IWM
120	2/28/2006	15.87	737724	120 of 238	iWM
121	2/28/2006	15.26	737726	121 of 238	IWM
122	2/28/2006	19.18	737760	122 of 238	IWM
123	2/28/2006	19.1	737765	123 of 238	IWM
124	2/28/2006	18	737780	124 of 238	IWM
125	2/28/2006	19.13	737781	125 of 238	IWM
126	3/2/2006	18.7	738209	126 of 238	IWM
127	3/2/2006	17.96	738215	127 of 238	IWM
128	3/2/2006	19.53	738223	128 of 238	IWM
129	3/2/2006	20.21	738227	129 of 238	IWM
130	3/2/2006	18.46	738233	130 of 238	IWM
131	3/2/2006	18.07	738235	131 of 238	IWM
132	3/2/2006	17.08	738271	132 of 238	IWM
133	3/2/2006	18 29	738275	133 of 238	IWM
134	3/2/2006	20.25	738 276	134 of 238	IWM
135	3/2/2006	19.44	738279	135 of 238	IVVM
	••••				

Subtotal

805.98

ATTACHMENT "B"

95810-BS

Chevron #30-4219 3884 1st Street, Livermore, CA Soil (Profile #1003558) Disposed at Vasco Road Landfill,Livermore, CA

	Removal/Disposal Date	Tons	Ticket No.	Manifest No.	Hauler
136	3/2/2006	17.92	738289	136 of 238	IWM
137	3/2/2006	18.56	738294	137 of 238	IWM
138	3/2/2006	20.26	738312	138 of 238	IWM
139	3/2/2006	19.52	738334	139 of 238	IWM
140	3/2/2006	20.64	738336	140 of 238	IWM
141	3/2/2006	20.22	738338	141 of 238	IWM
142	3/2/2006	19.95	7383 42	142 of 238	IWM
143	3/2/2006	19.79	738345	143 of 238	IWM
144	3/2/2006	20.4	738356	144 of 238	IWM
145	3/2/2006	21.17	738365	145 of 238	IWM
146	3/2/2006	20.7	738368	146 of 238	IWM
147	3/2/2006	18.47	738373	147 of 238	IWM
148	3/2/2006	19.96	738379	148 of 238	IWM
149	3/2/2006	20.15	738381	149 of 238	IWM
150	3/2/2006	19.04	738412	150 of 238	IWM
151	3/2/2006	21.1	738413	151 of 238	IWM
152	3/2/2006	20.12	738422	152 of 238	IWM
153	3/2/2006	21.69	738425	153 of 238	IWM
154	3/2/2006	18.9	738432	154 of 238	IWM
155	3/2/2006	21.98	738434	155 of 238	IWM
156	3/2/2006	21.64	738449	156 of 238	IWM
157	3/2/2006	18.37	738455	157 of 238	IWM
158	3/2/2006	21.8	738462	158 of 238	IWM
159	3/2/2006	18.33	738465	159 of 238	IWM
160	3/2/2006	18.15	738471	160 of 238	IWM
161	3/2/2006	16.34	738474	101 of 238	IWM
162	3/3/2006	20.29	738512	162 of 238	IWM
163	3/3/2006	16.96	738544	163 of 238	IWM
164	3/3/2006	14.64	738546	164 of 238	IWM
165	3/3/2006	17.22	738548	165 of 238	IWM
166	3/3/2006	14.33	738550	166 of 238	IWM
167	3/3/2006	12.75	738578	167 of 238	1VVM
168	3/3/2006	13.21	738582	168 of 238	IWM
169	3/3/2006	13.23	738591	169 of 238	IWM
170	3/3/2006	11.3 <u>8</u> 1	738594	170 of 238	IWM
171	3/8/2006	16.12	/38630	171 of 238	IVVM
172	3/9/2006	14.83	739954	172 of 238	IWM
173	3/9/2006	13.47	739960	173 of 238	IWM
174	3/9/2006	16.53	739966	174 of 238	IWM
175	3/9/2006	15.63	740010	175 of 238	IWM
176	3/9/2006	18.81	740016	176 of 238	IVVM
177	3/9/2006	20.08	740023	177 of 238	IWM
178	3/9/2006	16.55	740074	178 of 238	IWM
179	3/9/2006	16.83	740084	179 of 238	IWM
180	3/9/2006	19.18	740131	180 of 238	IWM
		لد	_		
	Outstatel	017.01	1		

Subtotal

817.21

1

r.

Integrated Wastestream Management, Inc. 1945 Concourse Drive, San Jose, CA 95131 Phone: 408-433-1990 Fax: 408-433-9521

ATTACHMENT "B"

95810-BS

Chevron #30-4219 3884 1st Street, Livermore, CA Soil (Profile #1003558) Disposed at Vasco Road Landfill,Livermore, CA

	Removal/Disposal Date	Tons	Ticket No.	Manifest No.	Hauler
181	3/9/2006	18.07	740145	181 of 238	IWM
182	3/9/2006	13.5 9	740191	182 of 238	IWM
183	3/9/2006	11.25	740200	183 of 238	IWM
184	3/15/2006	17.43	741455	184 of 238	IWM
185	3/15/2006	18.53	741513	185 of 238	IWM
186	3/15/2006	18.27	741555	186 of 238	IWM
187	3/15/2006	18.38	741608	187 of 238	IWM
188	3/15/2006	20.69	741649	188 of 238	. IWM
18 9	3/15/2006	18,53	741656	189 of 238	IWM
190	3/15/2006	21.46	741659	190 of 238	1 WM
191	3/15/2006	18.13	741664	191 of 238	IWM
192	3/15/2006	18.59	741665	192 of 238	IWM
193	3/15/2006	19.17	741669	193 of 238	IWM
194	3/15/2006	17.42	741670	194 of 238	IWM
195	3/15/2006	19.09	741673	195 of 238	IWM
196	3/15/2006	20.13	741706	196 of 238	IWM
197	3/15/2006	17.91	741709	197 of 238	IWM
198	3/15/2006	19.02	741718	198 of 238	IWM
199	3/15/2006	17.06	741721	199 of 238	IWM
200	3/15/2006	16.89	741726	200 of 238	IWM
201	3/15/2006	16.05	741731	201 of 238	IWM
202	3/15/2006	17.51	741732	202 of 238	IWM
203	3/15/2006	17.88	741735	203 of 238	IWM
204	3/15/2006	19.15	741760	204 of 238	IWM
205	3/15/2006	15.91	741762	205 of 238	IWM
206	3/15/2006	17.36	741765	206 of 238	IWM
207	3/15/2006	18.98	741767	207 of 238	iWM
208	3/15/2006	16.4	741768	208 of 238	IWM
209	3/15/2006	18.03	741775	209 of 238	IWM
210	3/15/2006	14.97	741778	210 of 238	IWM
211	3/15/2006	17.01	741780	211 of 238	IWM
212	3/16/2006	16.38	741829	212 of 238	IWM
213	3/16/2006	19.79	741835	213 of 238	IWM
214	3/16/2006	21.63	741872	214 of 238	IWM
215	3/16/2006	18.91	741880	215 of 238	IWM
216	3/16/2006	17.35	741884	216 of 238	IWM
217	3/16/2006	19.76	741923	217 of 238	IWM
218	3/16/2006	17.56	741933	218 of 238	IWM
219	3/16/2006	19.77	741980	219 of 238	IWM
220	3/16/2006	15.34	741987	220 of 238	IWM
221	3/17/2006	18.58	742204	221 of 238	1₩M
222	3/17/2006	17.62	742208	222 of 238	IWM
223	3/17/2006	16.83	742242	223 of 238	IVVM
224	3/17/2006	17.59	742244	224 of 238	IWM
225	3/17/2006	19.01	742251	225 of 238	IWM

Subtotal

. . .

ATTACHMENT "B"

95810-BS

Chovron #30 4219 3884 1st Street, Livermore, CA Soil (Profile #1003558) Disposed at Vasco Road Landfill,Livermore, CA

	Removal/Disposal Date	Tons	Ticket No.	Manifest No.	Hauler
226	3/17/2006	18.77	742257	226 of 238	IWM
227	3/17/2006	19.93	742264	227 of 238	IWM
228	3/17/2006	15.08	742285	228 of 238	IWM
229	3/17/2006	17.91	742298	229 of 238	IWM
230	3/17/2006	14.51	742300	230 of 238	IWM
231	3/17/2006	19.08	742304	231 of 238	IWM
232	3/17/2006	19.37	742305	232 of 238	IWM
233	3/17/2006	16.83	742320	233 of 238	IWM
234	3/17/2006	17.04	742325	234 of 238	IWM
235	3/17/2006	15.62	742327	235 of 238	IWM
236	3/17/2006	17.93	742330	236 of 238	IWM
237	3/17/2006	14.44	742349	237 of 238	IWM
238	3/17/2006	18.43	742369	238 of 238	IWM
	Subtotal	224.94]		

Total

ATTACHMENT "B"

95847-BS

Chevron #30 4219 3884 1st Street, Livermore, CA Soil (Waste Oil - Profile #1003588) Disposed at Vasco Road Landfill.Livermore, CA

,	Removal/Disposal Date	Tons	Ticket No.	Manifest No.	Hauler
1	3/15/2006	16.48	7 4142 4	1 of 28	IWM
2 3	3/15/2006	17.75	741426	2 of 28	IWM
3	3/15/2006	18.9	741428	3 of 28	IWM
4	3/15/2006	18.43	741430	4 of 28	IWM
5	3/15/2006	17.86	741433	5 of 28	IWM
6	3/15/2006	15.21	741438	6 of 28	IWM
7	3/15/2006	15.94	741451	7 of 28	IWM
8	3/15/2006	17.09	741465	8 of 28	IWM
9	3/15/2006	1 5 .87	741468	9 of 28	IWM
10	3/15/2006	15.4	741470	10 of 28	IWM
11	3/15/2006	16.96	741477	11 of 28	IWM
12	3/15/2006	15.56	741481	12 of 28	IWM
13	3/15/2006	16.13	741488	13 of 28	IWM
14	3/15/2006	16.54	741512	14 of 28	IWM
15	3/15/2006	17.95	741524	15 of 28	IWM
16	3/15/2006	18 5	741532	16 of 28	IVVM
17	3/15/2006	18.47	741536	17 of 28	IWM
18	3/15/2006	18	741537	18 of 28	IWM
19	3/15/2006	18	741545	19 of 28	IWM
20	3/15/2006	18.01	741551	20 of 28	IWM
21	3/15/2006	20,48	741557	21 of 28	IWM
22	3/15/2006	18.81	741590	22 of 28	IWM
23	3/15/2006	18.56	741595	23 of 28	IWM
24	3/15/2006	18.08	741599	24 of 28	IWM
25	3/15/2006	19.87	741602	25 of 28	IWM
26	3/15/2006	19.78	741603	26 of 28	IVVM
27	3/15/2006	16.93	741605	27 of 28	IWM
28	3/15/2006	19.19	741618	28 of 28	IWM
		10.4 8-	T		

Subtotai

494.75

Total

ATTACHMENT F

Underground Storage Tank Removal Report

April 13, 2006

CAMBRIA

Mr. John Rigter Livermore-Pleasanton Fire Department Hazardous Materials Inspector 3560 Nevada Street Pleasanton, California 94566

Re: Used-Oil Underground Storage Tank and Product Piping Removal and Compliance Sampling Report Former Standard Oil Service Station, Chevron Site #30-4291 3884 First Street Livermore, California

Dear Mr. Rigter:

On behalf of Chevron Environmental Management Company (Chevron), Cambria Environmental Technology, Inc. (Cambria), is submitting documentation of the removal of a used-oil underground storage tank (UST) at the above referenced site (Figure 1). Presented below are site background, UST removal activities, compliance sampling and analytic results, and an unauthorized release report.

SITE BACKGROUND

The site is a former gasoline service station, occupying a triangular shaped lot at the intersection of Portola Avenue and First Street in Livermore, California. Local topography is relatively flat, gradually sloping toward the southeast, at an approximate elevation of 520 ft above mean sea level (Figure 1). The surrounding area is comprised of commercial properties to the south, east and west and residential properties to the north and further west.

In February 2006, Cambria conducted a remedial excavation to remove residual petroleum hydrocarbon-impacted soil. On March 8, 2006, a previously unknown used-oil UST was discovered on the south central portion of the site in the vicinity of boring B-2 (Figure 2). This UST appears to have been associated with the first-generation service station facilities. Additionally, product lines and vent lines associated with the second generation USTs were discovered.

Cambria Environmental Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

CAMBRIA

UST, VENT AND PRODUCT LINE REMOVAL

The UST was discovered during excavation of impacted soil identified and defined by previous investigations. The 4-foot diameter, 350-gallon used-oil UST was approximately half full of a thick, black sludge. The top of the tank was punctured by the back hoe during excavation activities. However, none of the tank contents spilled as a result of this. No additional holes were observed in the tank. Tank removal photographs are included as Attachment A.

Excavation activities were immediately halted after discovery of the tank. Alameda County Environmental Health Services (ACEHS) and Livermore-Pleasanton Fire Department (LPFD) were called and advised of the discovery. ACEHS's Mr. Jerry Wickham informed Cambria that the tank removal oversight was the jurisdiction of the LPFD.

Mr. John Rigter of the LPFD observed tank, vent and product line removal activities. The tank contents were vacuumed out and the inside of the tank was cleaned with pressurized water. The water was then vacuumed out and dry ice was inserted into the tank. The oxygen level and lower explosive limit were monitored until they had reduced to acceptable levels and the tank was removed and transported to a Chevron-approved disposal facility under EPA ID number CAC002601166. Approximately 600 lbs of debris (used-oil tank and piping) and 200 gallons of product mixed with water were disposed. Waste manifests and the Underground Tank Closure Checklist are included as Attachment B.

COMPLIANCE SAMPLING

After tank removal, and under the direction of LPFD, one regulatory compliance sample was collected from beneath the UST, one sample was collected from beneath the product line, and three samples were collected from beneath the vent lines. The samples were trimmed, capped with Teflon tape and plastic end caps, labeled, placed on ice, and transported under chain-of-custody to McCampbell Analytical of Pacheco, California, a state-certified analytical laboratory, for 24-turnaround.

The UST sample was analyzed for the following:

- Polynuclear Aromatic Hydrocarbons (PAHs) by EPA method 8270D;
- Polychlorinated Biphenyls (PCBs) by EPA method 8082A;

CAMBRIA

- LUFT 5 Metals by EPA method 6010C;
- Total petroleum hydrocarbons as oil and grease with silica gel cleanup by EPA method 5520;
- Volatile Organic Compounds (VOCs) by method 8260B;
- Total petroleum hydrocarbons as gasoline (TPHg) by method 8015;
- TPH as diesel (TPHd) by method 8015 with silica gel cleanup.

The product piping and vent line samples were analyzed for the following:

- Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by method 8260B;
- Total petroleum hydrocarbons as gasoline (TPHg) by method 8015;
- TPH as diesel (TPHd) by method 8015 with silica gel cleanup.

Analytic Results: Low concentrations of PAHs (anthracene, bonzo (g,h,i) perylene, chrysene, fluoranthene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene and pyrene) were detected. Chromium, lead, nickel and zinc were detected at 64 mg/kg, 43 mg/kg, 200 mg/kg and 45 mg/kg respectively. Total oil and grease was detected at 1,300 mg/kg. VOCs were detected with n-butyl benzene at 0.020 mg/kg, naphthalene at 0.036 mg/kg, n-propyl benzene at 0.011 mg/kg, 1,3,5-trimethylbenzne at 0.014 mg/kg, total xylenes at 0.018 mg/kg, sec-butyl benzene at 0.014 mg/kg and 1,2,4-trimethylbenzene at 0.0050 mg/kg. TPH-g and TPH-d were detected at 16 mg/kg and 170 mg/kg, respectively. PCBs were not detected above method reporting limits. Analyzed constituents were not detected above method reporting limits in samples collected beneath the product piping or vent lines. Copies of the laboratory analytic reports are presented as Attachment C.

CAMBRIA

UNAUTHORIZED RELEASE REPORT

Soil sample analytic results confirm the release of hydrocarbons in the vicinity of this first generation used-oil UST. An unauthorized release form was submitted to Livermore-Pleasanton Fire Department (Attachment D).

Soil exhibiting unusual staining or other evidence of hydrocarbon impact was excavated from the tank area. Excavation activities are detailed in Cambria's *Remedial Excavation Report*, dated April 14, 2006.

Please call Ms. Laura Genin at (510) 420-3367 if you have any questions or comments.

Sincerely,

Cambria Environmental Technology, Inc.

aura Di

Laura Genin Project Geologist

Robert Joss

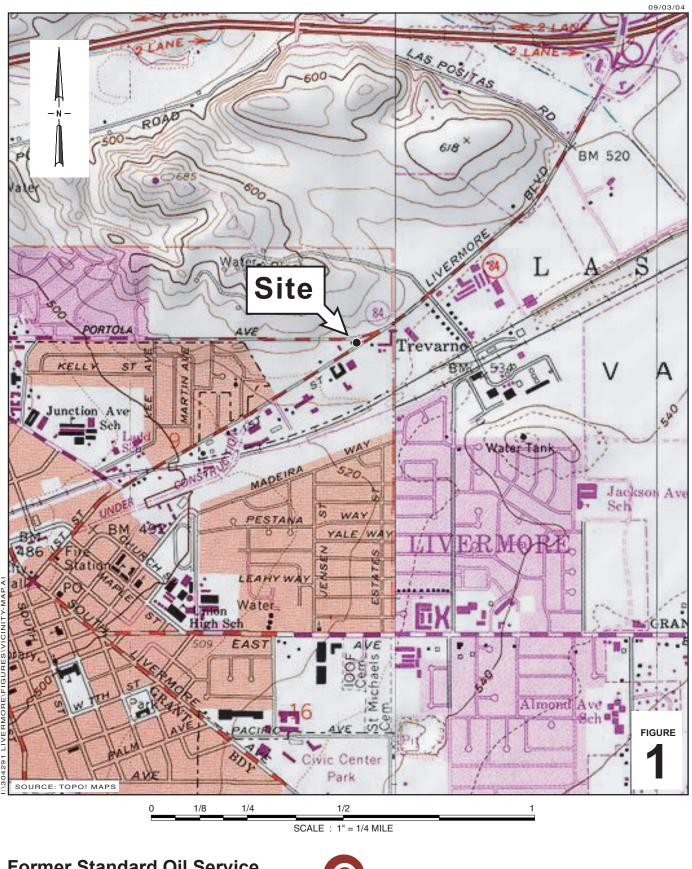
Robert Foss, P.G. #7445 Associate Geologist

Figures: 1 – Vicinity Map 2 – Site Plan

Attachments: A – Photographs

- B Waste Manifests and Underground Tank Closure Checklist
- C Laboratory Analytical Reports
- D Unauthorized Release Report

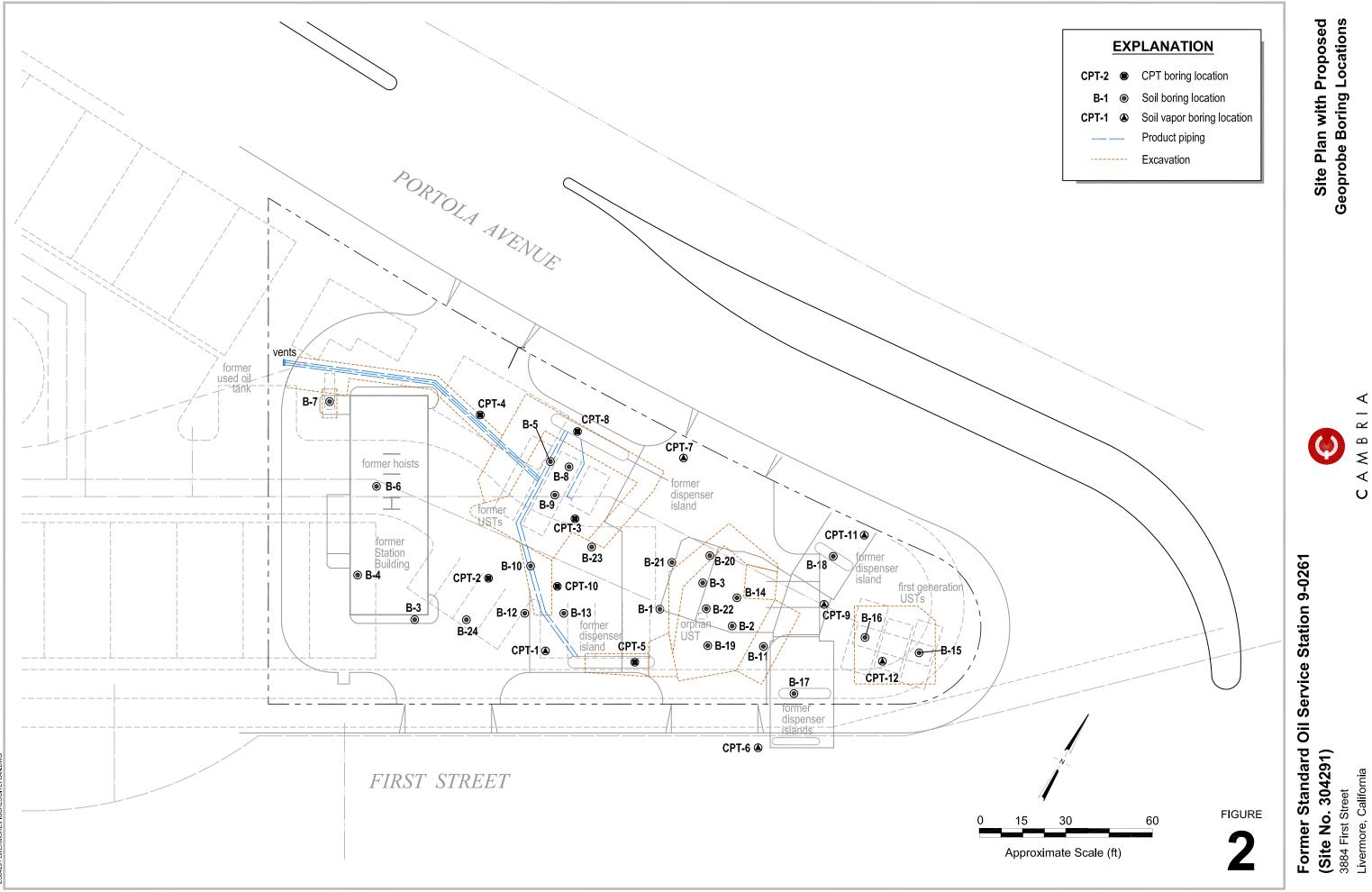
cc:


STRATA (Mark Inglis, Chevron Products Company, 6001 Bollinger Canyon Road, K2256, San Ramon, CA, 94583)
Mr. Steven Clowdsley, Real Estate Consulting, 1561 Ramona Way, Alamo, CA 94507
Alameda County Database

i:\304291 livermore\excavation\30-4291 ust removal 032006.doc

FIGURES

Former Standard Oil Service Station 9-0261 (Site No. 304291)

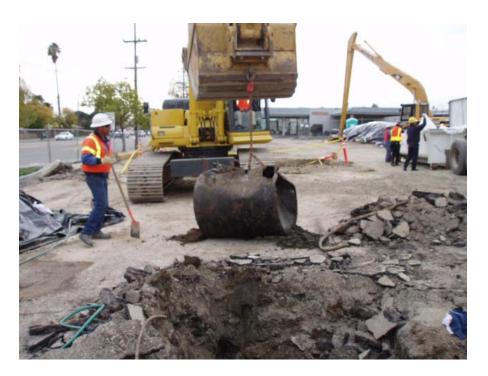


Vicinity Map

3884 First Street

Livermore, California

CAMBRIA


 \triangleleft CAMBRI

ATTACHMENT A

Photographs

Photograph #1: Tank being cleaned.

Photograph #2: Tank as it is being removed from the ground. The hole located at the top right corner was caused during excavation activities, prior to knowledge of the tank.

Photograph #3: Picture of the tank from the side.

Photograph #4: Tank being loaded into the waste bin for disposal offsite.

Photograph #5: Visible staining in soil around tank area.

ATTACHMENT B

Waste Manifests and Underground Tank Closure Checklist

	f California—Environmental Protection Agency ,pproved OMB No. 2050–0039 (Expires 9-30-99) print or type. Form designed for use on elite (12-pi		ons on back a	of page	6.		nt of Toxic Substances Co acramento, California			
	UNIFORM HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No.	Manifest Document	1 No.	2. Page 1		n in the shaded areas ired by Federal law.			
	3. Generator's Name and Mailing Address	heuron Products Com	pany		Manifest Document	^{1 Number} 2479234				
	4. Generator's Phone (925) 842 5. Transporter 1 Company Name	CACOP2601166 heuron Products Com D. D. Box 6004 an Ramon, Co 9458 - 5931 6. US EPA ID Number	23		Generator's ID					
	Ecology Control Za 7. Transporter & Company Name	dustries KAD98201 8. USEPAID Number	31011 1713	D. Transc S. E. State T	ransporter's ID [<u>Res</u>					
				· · · · ·	orter's Phone					
	2 Designated Facility Name and Site Address Romic Environment 2081 Bay Road			H. Facilit						
	11. US DOT Description (including Proper Shipp		12. Con No.		<u>(50</u> 3. 13. Total Quantity	<u>24- 10</u> 14. Unit Wt/Vol	1. Waste Number			
G		D, M.D.S., NA 1993	001	TIT	00200	Q	State 7.3 EPA/Other NE			
	Ь. С					 J	State EPA/Other			
A T O	c.						State EPA/Other			
- R	d.						State			
	L. Additional Descriptions for Materials Listed A	have - 0 1 it i all		K. Handl	ing Codes for Wast	es Listed Abo	EPA/Other			
5	J. Additional Descriptions for Materials Listed A Pro File #53918910	EK67+128		a.		Ь.	-98.27 ⁴			
	$I=C_{T}$ Jol # 52 15. Special Handling Instructions and Addition	Information		с.		d.				
	Site Address 388	84 1st St, Liverma	ore, Cq							
		leclare that the contents of this consignment are fully a ts in proper condition for transport by highway accou								
	practicable and that I have selected the pro	that I have a program in place to reduce the volum acticable method of treatment, storage, or disposal c quantity generator, I have made a good faith effort t	urrently available to	me which	minimizes the prese	ent and tuture	e threat to human health			
	Printed/Typed Name Printed/Typed Name The Although Although C 17. Transporter 1 Acknowledgement of Receipt	Signature Forth	m/z		د. مصبح	Mor	the Day Yes			
с т	Printed/Typed Name HEASCHEL ColLIN	5 Signature	the 2			м ^{ог} С	th 3 ∂ ^{Day} 8 0 ^{Yec}			
	1 13. Humsponer z Acknowledgemen of Receipt					Mor	nth Day Yea			
	Printed/Typed Name	Signature								
TRANSPORTER FAC	Printed/Typed Name 19. Discrepancy Indication Space	Signature								

DO NOT WRITE BELOW THIS LINE.

Contraction of the second

10.000

行いは、「は、「大学」加強ななないないないので、などのないないないないないない。

States and

Mar.20. 2006	1:46PM ecology control	industries	No.5841 P. 6
DAY OR NIGHT	CERTIF	ICATE	
TELEPHONE	CERTIFIED SERV	ICES COMPANY	CUSTOMER CHEVRON
(510) 235-1393	255 Parr Boulevard · Rich	mond, California 94801	JOB. NO 52T3007
			3884 1 ST Street Livermore, Ca
FO	R [.] ECOLOGY CONTROL INC	TANK NO ⁻ <u>32976</u>	
LO	CATION RICHMOND	DATE:3/13/06TIME:	3:45pm
TEST METHOD [,] <u>VI</u>	SUAL GASTECH/1314 SMPN	LAST PRODUCT WAS	<u>TE OIL</u>
	t I have personally determined tha		he American Petroleum Institute and

This is to certify that I have personally determined that this is in accordance with the American Petroleum Institute and have found the condition to be in accordance with its assigned designation. This certificate is based on conditions existing at the time the inspection herein set forth was completed and is issued subject to compliance with all gualifications and instructions.

TANK SIZE 350 GALLON

CONDITION: SAFE FOR FIRE

REMARKS: 0XYGEN 20.9% LOWER EXPLOSIVE LIMIT LESS THAN 0.1% ECOLOGY CONTROL INDUSTRIES

HEREBY CERTIFIES THAT THE ABOVE NUMBERED TANK HAS BEEN CUT OPEN, PROCESSED

AND THEREFORE DESTROYED AT OUR PERMITTED HAZARDOUS WASTE FACILITY.

ECOLOGY CONTROL INDUSTRIES HAS THE APPROPRIATE PERMITS FOR AND HAS ACCEPTED

THE TANK SHIPPED TO US FOR PROCESSING.

In the event of any physical or atmospheric changes affecting the gas-free conditions of the above tanks, or it in any doubt, immediately stop all hot work and contact the undersigned. This permit is valid for 24 hours if no physical or atmospheric changes occur

STANDARD SAFETY DESIGNATION

SAFE FOR MEN: Means that in the compartment or space so designated (a) The oxygen content of the atmosphere is at least 19.5 percent by volume; and that (b) Toxic materials in the atmosphere are within permissible concentrations; and (c) In the judgment of the Inspector's certificate.

SAFE FOR FIRE: Means that in the compartment so designated (a) The concentration of flammable materials in the atmosphere is below 10 percent of the lower explosive limit; and that (b) in the judgment of the Inspector, the residues are not capable of producing a higher concentration that permitted under existing atmospheric conditions in the presence of fire and while maintained as directed on the Inspector's certificate, and further, (c) All adjacent spaces have either been cleaned sufficiently to prevent the spread of fire, are satisfactorily inerted, or in the case of fuel tanks, have been treated as deemed necessary by the Inspector.

The undersigned representative acknowledges receipt of this certificate and understands the conditions and limitations under which it was issued

REPRESENTATIVE

TITLE

James L

State of California—Environmental Protection Agency
Form Approved OMB No. 2050-0039 (Expires 9-30-99)
District the former designed for the state of the state o

See Instructions on back of page 6.

	UNIFORM HAZARDOUS	1. Generator's			est Docume		2. Page 1		n in the shaded areas vired by Federal law.					
	4. Generator's Phone (925)	KARIO	0216101111	669	2 2									
	3. Generator's Name and Mailing Address Attu: Kathy Morris	heuron f	LOOMCTS CO	om pan	У	A. State	A. State Manifest Document Number 24792297							
	S.	an Ram	on, Ca			B. State	Generator's ID							
		- 5931												
	5. Transporter 1 Company Name		6. US EPA ID Numbe	r		C. State	Transporter's ID [<u>Res</u>	erved.]						
	Ecology Control Industries			2 0 3 0	17	3 D. Trans	porter's Phone	510 23	15-1393					
	7. Transporter 2 Company Name		8. US EPA ID Numbe	r		E. State	Transporter's ID [<u>Res</u>	erved.]						
						F. Trans	porter's Phone	·						
	9. Designated Facility Name and Site Address ECOLOGY CONTROL INDU	STRIES	10. US EPA ID Numbe	r		G. State	Facility's ID	1 1						
	255 PARR BOULEVARD	Sand 2 C No 8 Services				H. Facili	ty's Phone	_ 1						
	RICHMOND CA 94801		CADDS	3 4 6 6	<u> 3 9 </u>	2	510	235-139	13					
	11. US DOT Description (including Proper Ship	oping Name, Hazard	Class, and ID Number)		12. C	ontainers Type	13. Total Quantity	14. Unit Wt/Vol	I. Waste Number					
	Non-RCRA, Hazardous V-a	iste, Solid (EMI	PTY STORAGE TA	MK (S))			, ,		State 512					
l G					Acres	- 18- 1 S- 6	01000	Þ	EPA/OHNON					
E	b.	====== .			001	TF		- <u>+</u> *	State					
N E														
RA		<u> </u>							EPA/Other					
T	с.								State					
O R									EPA/Other					
1	d.						<u> </u>		State					
									EPA/Other					
	L. Additional Descriptions for Materials Listed	Ahovo	· · ·			K Hand	ling Codes for Waste	e listed Abe						
	J. Additional Descriptions for Materials Listed . a. QTY 1 Empty Storage Tank	K.		н 1		a.	ing codes for waste	b.	5 4 6					
	# <u>32976</u> b.							d.						
			-			c.		a.						
		al Information	e à verse au service	la maral I d		Tation is contend	se or volu							
	15. Special Handling Instructions and Addition	പന്നാന്പന്നെ കൗട്ട്രംക്കെക്കെ	անուն հանձեն հարձն են՝ ԳՈւն տասաստանան	54.85525252.2.1	(800)	321-5	479 (ECI D	ispate	ran (n. 1995). The main states of the states					
	Mear appropriate prot	ective equ	y telephone n	USEDEX :										
	Near appropriate prot approximate. 24 hour SITE ADDRESS: 38 84	ective equ emergency /s.7 57	y telephone n Liver More	unber 2 - Ca										
	Mear appropriate prot approximate. 24 hour SITE ADDRESS: 3884 ECI Job #: 527 30 16. GENERATOR'S CERTIFICATION: Thereby	ective equation $\frac{1}{5}, \frac{1}{5}, 1$	y telephone m Liver More tents of this consignment are	e fully and accu	urately des	ribed above	by proper shipping n	ame and ar	e classified, packed,					
	Mear appropriate prot approximate. 24 hour SITE ADDRESS: 3884 ECI Job #: 527 30	ective equation $\frac{1}{5}, \frac{1}{5}, 1$	y telephone m Liver More tents of this consignment are	e fully and accu	urately des	ribed above	by proper shipping n	ame and ar	e classified, packed,					
	Hear appropriate prot approximate. 24 hour SITE ADDRESS: 3884 ECI Job \$: 527 30 16. GENERATOR'S CERTIFICATION: Thereby marked, and labeled, and are in all respe	ective equ emergenc /s.y.st 0 0 declare that the cont icts in proper conditi for that I have a proper	y telephone m Liver More tents of this consignment are ion for transport by highwa	e fully and accu according to e volume and	urately des applicabl	cribed above e internation waste gener	by proper shipping n al and national gove ated to the dearee l	ame and ard rnment regu	e classified, packed, Ilations. nined to be economica					
	Hear appropriate prot approximate. 24 hour SITE ADDRESS: 3884 ECI Job \$: 527 30, 16. GENERATOR'S CERTIFICATION: Thereby marked, and labeled, and are in all respe	ective equ emergence /s.7 57 O declare that the cont ints in proper condition for that I have a proper racticable method of	y telephone m the local state of this consignment are ion for transport by highwa gram in place to reduce the f treatment, storage, or dis	e fully and accu y according to e volume and posal currently	urately des papplicabl toxicity of vavailable	cribed above e internation waste genera to me which	by proper shipping n al and national gove ated to the degree I minimizes the prese	ame and ard rnment regu have determ nt and futur	e classified, packed, lations. nined to be economica e threat to human hea					
	 Hear appropriate prot approximate. 24 hour SITE ADDRESS: 38 4 ECI Job \$: 527 30. 16. GENERATOR'S CERTIFICATION: I hereby marked, and labeled, and are in all respective marked, and labeled, and are in all respective practicable and that I have selected the p and the environment; OR, if I am a small available to me and that I can afford. Printed/Typed Marge 	ective equ emergence /s.7 57 O declare that the cont ints in proper condition for that I have a proper racticable method of	y telephone m the local state of this consignment are ion for transport by highwa gram in place to reduce the f treatment, storage, or dis	e fully and accu y according to e volume and posal currently	urately des papplicabl toxicity of vavailable	cribed above e internation waste genera to me which	by proper shipping n al and national gove ated to the degree I minimizes the prese	ame and ard rnment regu have determ nt and futur	e classified, packed, lations. nined to be economica e threat to human hea nagement method that					
	 HEAR APPROPRIATE Prot approximate. 24 hour SITE ADDRESS: 38 44 ECI Job \$: 507 300 16. GENERATOR'S CERTIFICATION: Thereby marked, and labeled, and are in all respective interval of the selected the p and the environment; OR, if I am a small available to me and that I can afford. Printed/Typed Name With Comparison of the selected for the p and the environment; OR, if I am a small available to me and that I can afford. Printed/Typed Name With Comparison of the selected for the p and the environment; OR, if I am a small available to me and that I can afford. 	ective equ emergence (5.7 57) declare that the cont ists in proper condition for that I have a proper racticable method of quantity generator,	tents of this consignment are ion for transport by highway gram in place to reduce the treatment, storage, or dis 1 have made a good faith	e fully and accu y according to e volume and posal currently	urately des papplicabl toxicity of vavailable	cribed above e internation waste genera to me which	by proper shipping n al and national gove ated to the degree I minimizes the prese	ame and ard rnment regu have determ nt and futur st waste ma	e classified, packed, lations. nined to be economica e threat to human hea nagement method that					
TRA	 Hear appropriate prot approximate. 24 hour SITE ADDRESS: 38 4 ECI Job \$: 527 30. 16. GENERATOR'S CERTIFICATION: I hereby marked, and labeled, and are in all respective marked, and labeled, and are in all respective practicable and that I have selected the p and the environment; OR, if I am a small available to me and that I can afford. Printed/Typed Marge 	ective equ emergence (5.7 57) declare that the cont ists in proper condition for that I have a proper racticable method of quantity generator,	tents of this consignment are ion for transport by highway gram in place to reduce the treatment, storage, or dis 1 have made a good faith	e fully and accu y according to e volume and posal currently	urately des papplicabl toxicity of vavailable	cribed above e internation waste genera to me which	by proper shipping n al and national gove ated to the degree I minimizes the prese	ame and ard rnment regu have determ nt and futur st waste ma	e classified, packed, lations. nined to be economica e threat to human heal nagement method that					
TRANSP	 Mear appropriate prot approximate. 24 hour 3 LTE ADDRESS: 38 4 ECI Job \$: \$27 30, 16. GENERATOR'S CERTIFICATION: Thereby marked, and labeled, and are in all respective in the environment; OR, if I am a small available to me and that I can afford. Printed/Typed Name 	declare that the cont declare that the cont is in proper condition for that I have a progracticable method of quantity generator, www.www. declare that the cont set of Materials	rents of this consignment are ion for transport by highwa gram in place to reduce the treatment, storage, or dis I have made a good faith Signature	e fully and accu y according to e volume and posal currently	urately des papplicabl toxicity of vavailable	cribed above e internation waste genera to me which	by proper shipping n al and national gove ated to the degree I minimizes the prese	ame and ard rnment regu have determ nt and futur st waste mai	e classified, packed, lations. nined to be economical e threat to human heal nagement method that					
	 HEAR APPROPRIATE Prot approximate. 24 hour SITE ADDRESS: 38 44 ECI Job \$: 507300 16. GENERATOR'S CERTIFICATION: I hereby marked, and labeled, and are in all respective intervention of the selected the p and the environment; OR, if I am a small available to me and that I can afford. Printed/Typed Name Wald A. Market Market Wald A. Market Market Market I Acknowledgement of Receip 	declare that the cont declare that the cont is in proper condition for that I have a progracticable method of quantity generator, www.www. declare that the cont set of Materials	rents of this consignment are ion for transport by highwa gram in place to reduce the treatment, storage, or dis I have made a good faith Signature	e fully and accu y according to e volume and posal currently	urately des papplicabl toxicity of vavailable	cribed above e internation waste genera to me which	by proper shipping n al and national gove ated to the degree I minimizes the prese	ame and ard rnment regu have determ nt and futur st waste mai	e classified, packed, lations. nined to be economical e threat to human heal nagement method that					
Ö	 HEAR APPROPRIAGE PROT APPROXIMATE: 24 HOUR SITE ADDRESS: 3844 ECT Job #: 527 300 16. GENERATOR'S CERTIFICATION: I hereby marked, and labeled, and are in all respect If I am a large quantity generator, I certil practicable and that I have selected the p and the environment; 00, if I am a small available to me and that I can afford. Printed/Typed Name Printed/Typed Name CRE Support 2 Acknowledgement of Receip Printed/Typed Name 18. Transparter 2 Acknowledgement of Receip Printed/Typed Name 	declare that the cont declare that the cont is in proper condition for that I have a progracticable method of quantity generator, www.www. declare that the cont set of Materials	y the Lephone m tents of this consignment are ion for transport by highwa gram in place to reduce the treatment, storage, or dis I have made a good faith Signature Signature	e fully and accu y according to e volume and posal currently	urately des papplicabl toxicity of vavailable	cribed above e internation waste genera to me which	by proper shipping n al and national gove ated to the degree I minimizes the prese	ame and ard rnment regu have determ nt and futur- st waste mai Moi	e classified, packed, lations. nined to be economical e threat to human heal nagement method that nth Day M					
O R T E R	 NEAR APPROPRIATE Prot approximate. 24 hour SITE ADDRESS: 58 4 ECI Job \$: 507300 16. GENERATOR'S CERTIFICATION: I hereby marked, and labeled, and are in all respective if I am a large quantity generator, I certific practicable and that I have selected the p and the environment; OR, if I am a small available to me and that I can afford. Printed/Typed Name Printed/Typed Name Printed/Typed Name CERCE Printed/Typed Name Printed/Typed Name P	declare that the cont declare that the cont is in proper condition for that I have a progracticable method of quantity generator, www.www. declare that the cont set of Materials	y the Lephone m tents of this consignment are ion for transport by highwa gram in place to reduce the treatment, storage, or dis I have made a good faith Signature Signature	e fully and accu y according to e volume and posal currently	urately des papplicabl toxicity of vavailable	cribed above e internation waste genera to me which	by proper shipping n al and national gove ated to the degree I minimizes the prese	ame and ard rnment regu have determ nt and futur- st waste mai Moi	e classified, packed, lations. nined to be economica e threat to human heal nagement method that nth Day nth Day					
ORTER FAC	 HEAR APPROPRIAGE PROT APPROXIMATE: 24 HOUR SITE ADDRESS: 3844 ECT Job #: 527 300 16. GENERATOR'S CERTIFICATION: I hereby marked, and labeled, and are in all respect If I am a large quantity generator, I certil practicable and that I have selected the p and the environment; 00, if I am a small available to me and that I can afford. Printed/Typed Name Printed/Typed Name CRE Support 2 Acknowledgement of Receip Printed/Typed Name 18. Transparter 2 Acknowledgement of Receip Printed/Typed Name 	declare that the cont declare that the cont is in proper condition for that I have a progracticable method of quantity generator, www.www. declare that the cont set of Materials	y the Lephone m tents of this consignment are ion for transport by highwa gram in place to reduce the treatment, storage, or dis I have made a good faith Signature Signature	e fully and accu y according to e volume and posal currently	urately des papplicabl toxicity of vavailable	cribed above e internation waste genera to me which	by proper shipping n al and national gove ated to the degree I minimizes the prese	ame and ard rnment regu have determ nt and futur- st waste mai Moi	e classified, packed, lations. nined to be economica e threat to human hea nagement method that nth Day nth Day					
B R T E R F A C I L	 NEAR APPEOPLIAGE PLOT APPEORINATE. 24 HOUR SUTE ADDRESS: S84 ECI Job #: S97 300 16. GENERATOR'S CERTIFICATION: I hereby marked, and labeled, and are in all respective If I am a large quantity generator, I certific practicable and that I have selected the p and the environment; OR, if I am a small available to me and that I can afford. Printed/Typed Name Printed/Typed Name Ref (CI/C/L) 18. Transparter 2 Acknowledgement of Receip Printed/Typed Name 19. Discrepancy Indication Space 	ective equ emergence (5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	y the Lephone of this consignment are in place to reduce the transport by highway area in place to reduce the treatment, storage, or dis I have made a good faith Signature Signature Signature Signature	e fully and accur y according to e volume and posal durrently effort to minin grad	inately desp papplicabl toxicity of vovailable nize www mp// nize	ribed above e internation waste gener to me which soste generati	by proper shipping n al and national gove ated to the degree I minimizes the prese	ame and ard rnment regu have determ nt and futur- st waste mai Moi	e classified, packed, lations. nined to be economical e threat to human heal nagement method that nth Day I					
B R T E R F A C I	 HEAR APPROPRIAGE PROT APPROXIMATE: 24 HOUR SITE ADDRESS: 3844 ECT Job #: 527 300 16. GENERATOR'S CERTIFICATION: I hereby marked, and labeled, and are in all respect If I am a large quantity generator, I certil practicable and that I have selected the p and the environment; 00, if I am a small available to me and that I can afford. Printed/Typed Name Printed/Typed Name CRE Support 2 Acknowledgement of Receip Printed/Typed Name 18. Transparter 2 Acknowledgement of Receip Printed/Typed Name 	ective equ emergence (5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	y the Lephone of this consignment are in place to reduce the transport by highway area in place to reduce the treatment, storage, or dis I have made a good faith Signature Signature Signature Signature	e fully and accur y according to e volume and posal durrently effort to minin grad	inately desp papplicabl toxicity of vovailable nize www mp// nize	ribed above e internation waste gener to me which soste generati	by proper shipping n al and national gove ated to the degree I minimizes the prese	ame and ard rnment regu have determ nt and futur- st waste mai Moi	e classified, packed, llations. nined to be economical e threat to human heal nagement method that nth Day Y					

Mar.20. 2006 1:46PM

		Tank Proc TANK	essing ¹ JOB #: CERTIFICATI	527300 ON	? Page	1 of 1	
**********************************	*************************************				**************************************		***
LOCATION: <u>K</u>	Vermore	_ EPA I.D.#:_ (AC 002 0 ST #: <u>-2479</u>	601 166	_EPA Waste Coo		
	TANK 1	TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	
TANK #:	32976					<u>, , , , , , , , , , , , , , , , , </u>	
CAPACITY: DIAMETER:	<u>3500</u> 40''			<u> </u>			
LENGTH:	4						
STEEL/GLASS: LAST CONTAIN	<u>5 T WY</u> ED: <u>Waste</u> 0,1	,					* . • .

LG = Leaded Gas, UG = Unleaded Gas, D = Diesel, UO = Used Oil, FO = Fuel Oil Specify the material Last Contained if other than above.

LAND DISPOSAL RESTRICTION NOTIFICATION FORM

The waste represented on this manifest is not generated by a chemical manufacturing plant, coke-by product recovery plant of petroleum refinery. As such, it is not regulated under 40 CFR Part 61, Subpart FF (NESHAPS for Benzene Operations).

Pursuant to 40 CFR 268.7 I am notifying Ecology Control Industries that the material described by the above manifest is a nonwastewater, Non-RCRA solid hazardous waste and not currently subject to EPA Land Disposal Restrictions.

Pursuant to CCR 22 66268.7 I am notifying Ecology Control Industries that the material described by the manifest is a metal containing Non-RCRA solid hazardous waste (662683.29(g)), and an organics containing Non-RCRA solid hazardous waste (66268.29(k)). The treatment standards for these wastes have been repealed. This waste is no longer subject to land disposal restrictions.

I am an authorized agent/representative of the generator. I certify that all information submitted in this and associated documents is complete and accurate to the best of my knowledge. The tanks on the transport equipment have been numbered to correspond with the information provided above. In the event that the tanks do not correspond to the form, I will pay any and all costs incurred in rectifying the discrepancies between the tank(s) and the form. In the event that the tank(s) contain excessive solids or liquids, I agree to pay the cost of preparation, transportation and disposal/recycling of the excess material according to the schedule of charges in effect at the time of receipt of the tank(s). Further, I will not hold Ecology Control Industries responsible for any damage to tanks which occurs after the tanks are removed from the ground.

AUTHORIZED	REPRESENTATIVE	
SIGNATURE:	HI MA	
PRINT NAME:_	THED A MENAN	
	7'm V	

DATE: 03-08-06 TITLE: AGANT FOR NHEVERON U.SA

		Livermore- Pla (925) 454-	3560 Nev easanton,	vada St. CA 9456	6	It			
	DEILOS UNDER CHEL COUNS UNDER	GROUNE) TANK	CLOSUI	RE CHE	CKLIST	ſ		
В	Business Name: <u>A=URON</u>	Dona	5 0	>	D	ate:	عامله		
	Business Address: 3884 F	iest si	i, Live	2 more			ig removed	:	
	Cank #1 Size:	AC		Contents: Contents:		DIMAS	EOIL		
	Size:			Contents:					
Т	Size:			Contents:					
1.	Tank closure permit has been obtained	l and is on sit	te. Yes	נ 🗆	NO -1N) PRCCA	229		
2.	Any changes from approved closure p			72012	JANT	Maches	S-File	DWG	
3.	A 40 B:C fire extinguisher on site?		Ves Yes	ז 🗖	No			Euis	146J
4.	A residual material removed from tan	k?	Ves Yes	ז 🖬	NO MIC	LiQuis	2		
	If yes, have residuals been properly co	ontained for	off-site tran	sport? 🖬		l No	.e		
	Name of Facility and location:	U-R	Chliman	0	havi	FSTE	£247	92342	2 3
5.	Observed receipt for dry ice?		Y es	ז 🗖	No			Uselu	LASTE
	<u></u>		#1	#	2	#3	#4		
	Number of pounds of dry ice in each	n tank?	25						
6.	Contractor has calibrated combustible	e gas detector	r in nresend	re of inspec	tor?	Tes	🗆 No		
	- 1 1) (j					
7.	Combustible gas readings/oxygen rea	dings:							
	Take three measurements, one near the		r and botto	m of tank a	nd report i	he finding	5:		
		% LEL	% LEL	% LEL	% O2	% O ₂	% O ₂	OK]
	Tank # # of Dry Ice 1 2	(top)	(mid)	(bottom)	(top)	(mid)	(bottom)	remove?	
	2								1
	3					ı			-
			1	I	I		.1	Ш	L
	Tank cannot be pulled if concentra oxygen concentration exceeds 5%.	tion of flam	mable vap	ors exceeds	20% of t	he LEL of	the materi	ial in the ta	ank or t
8.	After tank is removed, conditions of	tank(s) and p	piping:						
					Tank 1	Tank 2	Tank 3	Tank 4	
	Any corrosion of holes? - Ve								÷
	Was the tank wrapped?	ALT ON							
	Any discoloration of the soil in the t						4		
				~~~~ · · · · · · · · · · · · · · · · ·	SUEN ASE	ī			

Page	1	of	2

CM.5.11 UST Closure Checklist Rev. Date: 5/23/2003

ġ

ġ.

9.	Was there evidence of contamination which would trigger the 24-hour release reporting requirements? If yes I No If yes, was a blank copy provided to site operator? If yes I No
10	Has all obvious contamination been removed?  Yes  No
	Describe details of approximately how much and where it will be disposed of? NOT Frances
11	Is water observed in tank pit? Sample collected? Yes Yes No If <u>yes</u> , a sample of the water must be taken.
12.	Soil samples must be collected in the tank pit under each end of the tank, a minimum of two feet into native soil. Soil samples were collected according to the closure plan. Soil samples were collected under piping at 20 ft. intervals and/or fittings. Samples of the stockpile were taken to determine disposal options. Samples of the stockpile were taken to determine disposal options.
13	The samples were properly taken?If YesNoIf XesNoIf XesNoIf XesNoIf XesNoIf XesNoIf XesNoIf XesIf XesNoIf XesIf Xes
14	The tank pit must be filled with soil or properly barricaded to prevent unauthorized access. Was the tank pit filled with: $\Box$ new soil $\Box$ excavated backfill $-OR$ - Was the tank pit left open pending analytical results? $\Box$ Yes $\Box$ No Was the tank pit covered/barricaded? $\Box$ Yes $\Box$ No $\Box$ Yes $\Box$ Yes $\Box$ No $\Box$ Yes $\Box$ Yes
	Tanks loaded onto hauler vehicle have identifying numbers spray painted on them? The second state of the s
	(120m Previous (NAVA)
17	Manifest observed to be properly completed (name and address, EPA ID, hauler name, disposal site, signed and dated). Name and address of disposal site: $E(1 - R_1(M_1) M_2, E-5) \neq 2A79 \ge 297$
18	Were all containers, residual materials, tanks and associated piping transported off site and manifested?
	Diagram of tank pit, sample locations and ID
	* 20FT LT *70'-1 FURSTIST
19	Tanks properly cleaned and certified if transported as non-hazardous waste?  Yes No N/A
Sig	uned: <u>Lavra Gain</u> Date: <u>3306</u> Number of hours to complete : <u>A</u> Cambria Env, Riprising Chipron NSP= CTOR: JOIN RIGTER Page 2 of 2 CM.5.11 UST Closure Checklist Rev. Date: 5/23/2003

1

.

.

## ATTACHMENT C

Laboratory Analytic Reports

	McCAM	10 2nd A	L ANA VENUE SO CO, CA 94	OUTH,	#D7	LI	NC							т	UR	N.	AR		CH					ST	0	DY		COR			
Telephor	ne: (925) 798		CO, CA 94	333-33		ax:	(92	5) 7	98-1	622													R	USH	1	24 HR		48 HR	U	HR	5 DA
	- A - A						<u>.</u>						_	EI	)F I	Redi	uire	-	Coelt	the second second		_	-	D	Wr	ite O	n (D	W) N	lo		2.4
Report To: Dan			ł	Bill To	): G	ami	orig	-	Dar	16	1921	e	_	0	-	-	-	-	Analy	Sis	Requ	uest		_	-	-		Other		Com	nents
Company: Com		1 51-	1			_			-			_	_	Sa		(H)		140	3	2		B					2				l cesul
590	O Hollis 5	t. Ste	. 14			1		0				-	-	SEC		F/B		1	Diet	06130		DIFE, TON	0				Se,			to	in@ca 2e@-
	ryville		1	S-Mai	1: 0	910	120	@0	ami	brie	-0	11.1	cou	MITE		E&	=	-	0	0	. 0	1 th	831				V			Lgen	
Tele: (510),37			1	E-Mai Fax: ( Projec	510	) 6	120	-9	110				_	115)		520	1100	0	1-1	1		0	207	0			a chekant			dala	200-
Project #: 3042	91- DG	0.10	I I I	rojec	t Nai	me:	30	140	191-	DC	7		-	+ 8(		e (5	us (2	82400	(02	N N		erde,	82	8240,		~	1			blace	e-
Project Location:		First S	t. Liv	ermo	re	CA						_	_	020	-	reas	rboi	100	\$ 1	IZ		0	625	1		010	4				
Sampler Signatur	e:	-		-	-	-	_	_		1			_	02/8	Z	S C	rocs	40	602	, s	0	4	PA	40		0.276	1 7			See	<i>atta</i>
		SAM	PLING		S		MA	TR	IX			HOI		as (6	(8015)L	Dil	Hyd	2	E D	5	826	A	y El	5		/239	PNH			Fur 1	ist of
5 22 C			1	ers	aine					Ť	T			Da	el (8	En l	H	1	E) us	080	40	00	V's b	tals	als	421	2				
SAMPLE ID	LOCATION			# Containers	Type Containers									HAL	TPH as Diesel	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 CL	BIEX ONLY (EPA 692+8929)//4	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8320 MANE,	PAH's / PNA's by EPA 625 / 8270 / 8310	CAMALT Medals 670H	LUFT 5 Metals	Lead (7240/7421/239.2/6010) RCI	1				
(Field Point Name)		Date	Time	ont	e l	ter			dge		_	°	er	XE	3S	I Pc	I Pe	\$	0 *	608	624	3	1 s.]	TH.	15	3	2				
	1 8			U U	Typ	Wa	Soil	Air	Sludge	Ice	HCI	HNO ₃	Other	BTEX &	Hall	Lota	Lota	1	Bill	EPA	EPA		PAH	R	5	RCI	2				
Ex=3-1-5	5'	3.8.06	1710	1	5400	_	×	-	-	×	-		-	X	K	X	-		XX	-	1	×		X	X		X		-		
BI				1		$\mathbf{T}$		-		t				4	~			-	-	1		-		1		-	f				
				-		$\vdash$		-	2 0	+	-				-	-	+	-		1	8.0				-		+				
				-	-	-		-		+	-		_	-	-	-	-	-	-	-	-		-	-	-	-	-				
				-				_		+	_				_	_	_	_	_	_	_				_						
																														2012	
	1.																														
								-		+	1				-	-	+	-		-							+				
	-			-	-	+		-	-	+	-		-	-	-	-	-	-+		+	-	-	-		+		+			2012/11/2	
				<u> </u>	<u> </u>	-		-	-	+	-		-	-	-	_	-	-	_	-	-		_	-	+	_	-				
										1							_		-					_		_					
										$\top$										1											
								-	-	+			-	-	+		-	-		+				-	+	-	+				-
Relinquished By:		Date: /	Time:	Dace	Val B	1			_	_			-	_	_	_	_	_	_						_	_	_				
	P	3/9/2	1	R	ived B	bi	00	n	n	2 2	200	2/8	la														ZAO	0&G	IM	TALS	OTHER
h illa to	5	3/7/4/ Date:	1429 Time:	Dage	ived B	20	æ	10	00	U	1	1			CE/t			_					PRE	SER	VAT	TION	vaa	000	1011	arnuo	orner
recondenseed by:		Date:	. A tide:	Rece	iveu B	3.								G	00	DC	ONI	DITI	ION_		-	ł		ROP							
Relinquished By:		Data	Therese	Dec	land Th	15		_	_	_		_	4						BSEN							RS	TA	D			
renudarsned py:		Date:	Time:	Rece	ived B	y:								D	ed l	and	nul	'AI	CD L	1 LP			.rt	ROL	ICV.	ED IN	LA		<del></del> )		

### McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-1620				Wo	orkOrd	ler: (	6031	52		C	lientI	D: (	СЕТЕ		EDF	: NO			
Report to:							Bill to	):							Req	uested	TAT:		1 day
Dan Glaze		TEL:	(510) 420-07	00				Acco	unts	Paya	ble								
Cambria Env. Technolog	у	FAX:	(510) 420-91	70			(	Cam	bria E	Env.	Techr	nolog	у						
5900 Hollis St, Suite A	-	ProjectNo:	#304291-DG	; 3884 First St. Liv	ermore	С	!	5900	Holli	s St,	Ste.	A			Dat	e Recei	ived:	03/09	/2006
Emeryville, CA 94608		PO:						Emei	ryville	e, CA	9460	8			Date	e Print	ted:	03/09	/2006
											Requ	ested	d Tests	(See leg	end bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2		3	4		5	6	7	8	9	10	11	12
0603152-001	EX-3-1-5 5'		Soil	3/8/06 5:10:00 PM	1	В	A		А	A		А	Α	А					

#### Test Legend:

1	1,4-DIOXANE_S	2	5520E_SG_S	3	8082A_PCB_S	4 8260B	_S	5	8270D-PNA_S
6	G-MBTEX_S	7	LUFT_S	8		9		10	
11		12							

The following SampID: 0603152-001A contains testgroup. Please make sure all relevant testcodes are reported. Many thanks.

**Prepared by: Maria Venegas** 

#### Comments: <u>24hr Rush</u>

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Mo	cCampbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 94553- 925-798-1620 Fax : 925-798-162 mpbell.com E-mail: main@mccam	2	
Cambria Env.	Technology		#304291-DG; 3884	Date Sampled: 03/08/	/06	
5900 Hollis S	t, Suite A	First St. Livermon	re CA	Date Received: 03/09/	/06	
Emeryville, C	A 94608	Client Contact: I	Dan Glaze	Date Extracted: 03/09/	/06	
Emeryvine, C	A 74000	Client P.O.:		Date Analyzed: 03/10/	/06	
Extraction method:		-	and GC/MS SIM Mode nethods: SW8260B		rk Order:	0603152
Lab ID	Client ID	Matrix	1,4-Diox	ane	DF	% SS
001B	EX-3-1-5 5'	S	ND		1	106
Re	eporting Limit for DF =1;	W	NA		N	IA
	D means not detected at or above the reporting limit	S	0.02		m	g/kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than  $\sim 1$  vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCa	mpbell Analytic	cal, Inc.	Telephone :	South, #D7, Pacheco, CA 94553- 925-798-1620 Fax : 925-798-162 mpbell.com E-mail: main@mccam	2	
Cambria Env. Tecl	hnology		#304291-DG; 3884	Date Sampled: 03/08	/06	
5900 Hollis St, Sui	ite A	First St. Livermore	e CA	Date Received: 03/09/	/06	
Emeryville, CA 94	608	Client Contact: D	an Glaze	Date Extracted: 03/09	/06	
		Client P.O.:		Date Analyzed: 03/09	/06	
Analytical methods: SM5		um Oil & Grease	with Silica Gel Clean-	—	ork Order:	0603152
Lab ID	Client ID	Matrix	OG		DF	% SS
0603152-001A	EX-3-1-5 5'	S	1300		1	N/A
Reporting	Limit for DF =1;	W	NA		N	IA
ND means	not detected at or e reporting limit	S	50			/Kg

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/nonaqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

# surrogate diluted out of range or not applicable to this sample.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis.

McCampbell Ana	alytical, Inc	) •	Telephone	ue South, #D7, Pacheco, C. : 925-798-1620 Fax : 92: campbell.com E-mail: mair	5-798-1622	om
Cambria Env. Technology		5	04291-DG; 3884	Date Sampled:	03/08/06	
5900 Hollis St, Suite A	First St. I	Livermore CA	L	Date Received:	03/09/06	
Emeryville, CA 94608	Client Co	ontact: Dan C	Haze	Date Extracted:	03/09/06	
	Client P.0	0.:		Date Analyzed:	03/09/06	
Poly Extraction Method: SW3550C	-	phenyls (PCB alytical Method: SW	<b>(85) Aroclors by G</b>	C-ECD*	Work Ord	er: 0603152
Lab ID	0603152-001A					
Client ID	EX-3-1-5 5'				Reporting	Limit for
Matrix	S					5=1
DF	1				S	W
Compound	<u> </u>	Co	oncentration		mg/kg	ug/L
Aroclor1016	ND				0.025	NA
Aroclor1221	ND				0.025	NA
Aroclor1232	ND				0.025	NA
Aroclor1242	ND				0.025	NA
Aroclor1248	ND				0.025	NA
Aroclor1254	ND				0.025	NA
Aroclor1260	ND				0.025	NA
PCBs, total	ND				0.025	NA
	Surro	ogate Recover	ries (%)			
%SS:	110					
Comments	0				<u> </u>	
* water samples in µg/L, soil/sludge/solid sa and all TCLP & SPLP extracts are reported in	n mg/L.			ιg/filter, product/oil/nor	1-aqueous liqu	id samples

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or surrogate coelutes with another peak.

(a) PCB aroclor 1016; (b) PCB aroclor 1221; (c) PCB aroclor 1232; (d) PCB aroclor 1242; (e) PCB aroclor 1248; (f) PCB aroclor 1254; (g) PCB aroclor 1260; (h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

McCampbell	Analytica	l, Inc	•	Telephone	e : 925-798-1	07, Pacheco, CA 94553-5 520 Fax : 925-798-1622 n E-mail: main@mccamp			
Cambria Env. Technology			oject ID Livermo	: #304291-DG; 3884		Sampled: 03/08/			
5900 Hollis St, Suite A	_				_	Received: 03/09/0			
				Dan Glaze		Extracted: 03/09/0			
Emeryville, CA 94608	(	Client P.	0.:		Date A	Analyzed: 03/10/	)6		
	Volatile Orga	anics by	P&T a	nd GC/MS (Basic Tar	get List)	*			
Extraction Method: SW5030B		1	Analytical M	ethod: SW8260B		Work	Order: (	603152	
Lab ID				0603152-001	A				
Client ID				EX-3-1-5 5'					
Matrix				Soil					
Compound	Concentration	n* DF	Reportin Limit	g Compound		Concentration *	DF	Reportin Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (T	'AME)	ND	1.0	0.00	
Benzene	ND	1.0	0.00	Bromobenzene		ND	1.0	0.00	
Bromochloromethane	ND	1.0	0.00	Bromodichloromethane		ND	1.0	0.00	
Bromoform	ND	1.0	0.00	Bromomethane		ND	1.0	0.00	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05	
n-Butyl benzene	0.020					0.014	1.0	0.00	
tert-Butyl benzene	ND	1.0				ND	1.0	0.00	
Carbon Tetrachloride	ND	1.0				ND	1.0	0.00	
Chloroethane	ND	1.0		<i>y y</i>	r	ND	1.0	0.01	
Chloroform	ND	1.0				ND	1.0	0.00	
2-Chlorotoluene	ND	1.0				ND	1.0	0.00	
Dibromochloromethane	ND	1.0		· · · · · · · · · · · · · · · · · · ·	pane	ND	1.0	0.00	
1,2-Dibromoethane (EDB)	ND	1.0				ND	1.0	0.00	
1,2-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	1.0		,		ND ND	1.0	0.00	
1,1-Dichloroethane	ND	1.0				ND	1.0	0.00	
1,1-Dichloroethene	ND	1.0		, , , , , , , , , , , , , , , , , , , ,	)(11)	ND	1.0	0.00	
trans-1,2-Dichloroethene	ND	1.0				ND	1.0	0.00	
1,3-Dichloropropane	ND	1.0		· 11		ND	1.0	0.00	
1,1-Dichloropropene	ND	1.0				ND	1.0	0.00	
trans-1,3-Dichloropropene	ND	1.0	0.00			ND	1.0	0.00	
Ethanol	ND	1.0	0.25	Ethylbenzene		ND	1.0	0.00	
Ethyl tert-butyl ether (ETBE)	ND	1.0				ND	1.0	0.1	
Hexachlorobutadiene	ND	1.0	0.00	Hexachloroethane		ND	1.0	0.00	
2-Hexanone	ND	1.0				ND	1.0	0.00	
4-Isopropyl toluene	ND	1.0				ND	1.0	0.00	
Methylene chloride	ND	1.0			IIBK)	ND	1.0	0.00	
Naphthalene	0.036					ND	1.0	0.1	
n-Propyl benzene	0.011					ND	1.0	0.00	
1,1,1,2-Tetrachloroethane	ND	1.0				ND	1.0	0.00	
Tetrachloroethene	ND	1.0				ND	1.0	0.00	
1,2,3-Trichlorobenzene	ND	1.0				ND	1.0	0.00	
1,1,1-Trichloroethane Trichloroethene	ND ND	1.0				ND ND	1.0	0.00	
1,2,3-Trichloropropane	ND ND	1.0				0.0050	1.0	0.00	
1,3,5-Trimethylbenzene	0.014				0.0050 ND	1.0	0.00		
Xylenes	0.014								
y	0.010			te Recoveries (%)					
%SS1:		94		%SS2:		10	7		
%SS3:		105		/0002.		10	,		
	1	105							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than  $\sim 1$  vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell Ana	alytical, Inc.	Teleph	venue South, #D7, Pacheco one : 925-798-1620 Fax mccampbell.com E-mail: :	925-798-1622	om
Cambria Env. Technology		ID: #304291-DG; 388	4 Date Sampled	1: 03/08/06	
	First St. Liver	more CA	Date Receive	d· 03/09/06	
5900 Hollis St, Suite A					
Emeryville, CA 94608	Client Contact	: Dan Glaze	Date Extracte	ed: 03/09/06	
	Client P.O.:		Date Analyze	d: 03/10/06	
Polynuclear Arc Extraction Method: SW3550C	•	(PAHs / PNAs) using S Method: SW8270D	SIM Mode by GC	/MS* Work Orde	er: 060315
Lab ID	0603152-001A				
	EX 2.1.5.5				
Client ID	EX-3-1-5 5'			DF	=1
Matrix	S				
DF	5			S	W
Compound		Concentration		mg/kg	ug/L
Acenaphthene	ND<0.025			0.005	NA
Acenaphthylene	ND<0.025			0.005	NA
Anthracene	0.035			0.005	NA
Benzo(a)anthracene	0.068			0.005	NA
Benzo(a)pyrene	ND<0.025			0.005	NA
Benzo(b)fluoranthene	ND<0.025			0.005	NA
Benzo(g,h,i)perylene	0.041			0.005	NA
Benzo(k)fluoranthene	ND<0.025			0.005	NA
Chrysene	0.052			0.005	NA
Dibenzo(a,h)anthracene	ND<0.025			0.005	NA
Fluoranthene	0.084			0.005	NA
Fluorene	ND<0.025			0.005	NA
Indeno (1,2,3-cd) pyrene	ND<0.025			0.005	NA
1-Methylnaphthalene	0.21			0.005	NA
2-Methylnaphthalene	0.22			0.005	NA
Naphthalene	0.065			0.005	NA
Phenanthrene	0.16			0.005	NA
Pyrene	0.18			0.005	NA
	Surrogate	Recoveries (%)	1		
%SS1	120				
%SS2	117				
Comments					

* water samples in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/wipe$ , product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than  $\sim 1$  vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) estimated to be below this level based on our MDL study; r) results are reported on a dry weight basis.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A	McCampbell A	Analyti	cal, Inc.			Telep	hone : 925-798-162	, Pacheco, CA 9455 20 Fax : 925-798-1 E-mail: main@mcca	622		
5900 Hollis St, Suite A       Date Received: 03/09/06         Emeryville, CA 94608       Client Contact: Dan Glaze       Date Extracted: 03/09/06         Client P.O.:         Date Analyzed: 03/09/06         Client P.O.:         Work Order: 060         Client P.O.:         Date Analyzed: 03/09/06         Client P.O.:         Date Analyzed: 03/09/06         Client P.O.:         Date Analyzed: 03/09/06         Extraction method: SW5030B         Analytical methods: SW8021B/8015Cm         Vork Order: 060         Lab ID         Client ID         MTBE         Benzene         Toluene         Ethylbenzene         Toluene         Ethylbenzene	Cambria	a Env. Technology				#304	291-DG; 388	84 First St.	Date Sample	ed: 03/08/06	5	
Emeryville, CA 94608       Client P.O.:       Date Analyzed: 03/09/06         Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*         Extraction method: SW5030B       Analytical methods: SW8021B/8015Cm       Work Order: 060         Lab ID       Client ID       Matrix       TPH(g)       MTBE       Benzene       Toluene       Ethylbenzene       Xylenes       DF	5900 Ho	ollis St, Suite A		Livermore	e CA				Date Receive	ed: 03/09/06	5	
Client P.O.:       Date Analyzed: 03/09/06         Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*         Extraction method: SW5030B       Analytical methods: SW8021B/8015Cm       Work Order: 060         Lab ID       Client ID       Matrix       TPH(g)       MTBE       Benzene       Toluene       Ethylbenzene       Xylenes       DF	Emorra	illa CA 04608		Client Cor	ntact: Da	an Gla	aze		Date Extract	ed: 03/09/06	5	
Extraction method:     SW5030B     Analytical methods:     SW8021B/8015Cm     Work Order:     060       Lab ID     Client ID     Matrix     TPH(g)     MTBE     Benzene     Toluene     Ethylbenzene     Xylenes     DF	Lineryv	IIIE, CA 94008		Client P.C	0.:				Date Analyz	ed: 03/09/06	5	
Lab ID     Client ID     Matrix     TPH(g)     MTBE     Benzene     Toluene     Ethylbenzene     Xylenes     DF	Extraction		Range (Co		-			oline with B	FEX and MT		der: 06	03152
001A         EX-3-1-5 5'         S         16.g.m          ND         0.011         ND         0.011         1           Image:	Lab ID	Client ID	Matrix	TPH(g)	MTB	E	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
Image: series of the series	001A	EX-3-1-5 5'	S	16,g,m			ND	0.011	ND	0.011	1	82
Image: series of the series												
Image: series of the series												
Image: series of the series												
Image: state of the state of				Client P.O.: •C12) Volatile Hydro Analytical methods: TPH(g) MTBE								
Image: series of the series					Client P.O.: C12) Volatile Hydro Analytical methods: TPH(g) MTBE							
Image: state of the state of												

Reporting Limit for $DF = 1$ ; ND means not detected at or	W	NA	NA	NA	NA	NA	NA	1	ug/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

	McCampbe	ll Ana	alytio	cal,	Inc.	W	Telephone :	e South, #D7, Pache 925-798-1620 Fa mpbell.com E-mai	x : 925-798-1622		
Cambri	ia Env. Technology				ent Project ID: t St. Livermor		DG; 3884	Date Sampl	ed: 03/08/0	)6	
5900 H	Iollis St, Suite A			F1rs	i St. Livermoi	eCA		Date Receiv	ved: 03/09/0	)6	
Emervy	ville, CA 94608			Clie	ent Contact: I	Dan Glaze		Date Extrac	ted: 03/09/0	)6	
	,			Clie	ent P.O.:			Date Analyz	zed: 03/10/0	)6	
Extraction 1	method: SW3050B					5 Metals* nethods: 6010C			Work	Corder:	0603152
Lab ID	Client ID	Matrix	Extrac	tion	Cadmium	Chromium	Lead	Nickel	Zinc	DF	% SS
001A	EX-3-1-5 5'	S	TTL	.C	ND	64	34	200	45	1	101
	ting Limit for DE 1			~							<u> </u>
ND me	ting Limit for $DF = 1$ ; eans not detected at or we the reporting limit	W S	TTI TTI		NA 1.5	NA 1.5	NA 5.0	NA 1.5	NA 5.0		JA g/Kg
	mples are reported in µg/									_	

soil/sludge/solid samples in mg/kg, wipe samples in  $\mu$ g/wipe, filter samples in  $\mu$ g/filter.

# means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

DHS Certification No. 1644

____Angela Rydelius, Lab Manager

Mc	Campbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 94553- 925-798-1620 Fax : 925-798-162 mpbell.com E-mail: main@mccam	2	
Cambria Env.	Technology		#304291-DG; 3884	Date Sampled: 03/08/	/06	
5900 Hollis St	t, Suite A	First St. Livermore	eCA	Date Received: 03/09/	/06	
Emeryville, C.	A 94608	Client Contact: Da	an Glaze	Date Extracted: 03/09/	/06	
Enteryvine, C.	A 94000	Client P.O.:		Date Analyzed: 03/09/	/06	
	-		ctable Hydrocarbons a			
Extraction method: S		-	ethods: SW8015C		rk Order:	
Lab ID	Client ID	Matrix	TPH(d)		DF	% SS
0603152-001A	EX-3-1-5 5'	S	170,g,b		20	107

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

DHS Certification No. 1644

Telephor	McCAM 1 ne: (925) 798	10 2 nd AV PACHEC		UTH,	#D7 0 F	ax: (	(925)										10	JNJ	AII D TI	M	E	R	USH	1	24 H	IR		HR	۲2 آ	NULLESS - CONTRACTOR	DI 5 DAY
	bria > 16(1is 5- yville 6-0657 91-DG 3884 F		A E F P	ax: ( rojec	: d 510 t Nar	9 (a) ) 4: ne:	20-	. ca. 91	mb1 70	26	eni	v.co	8020 + 8015)		k Grease (5520 E&F/B&F)	rocarbons (418.1)			lysis						.2/6010)		1 2260 0	ther	E		ents results n @ cand $e @ -iie @ -ii$
SAMPLE ID (Field Point Name)	LOCATION	SAMF Date	Time	# Containers	Type Containers	er	CAN	Sludge		PRE	SEF	HNO3 Other Other	PH as	TPH as Diesel (8015)	Total Petroleum Oil 8	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	ELA 000 / 0000 LCD 3	EPA 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI	5.72.A X MA				
EXP1 - 3.5 EXP2 - 3 EXP3 - 3 EXP4 - 3	30 42 9/	3/8/06	10:20 11:42 11:45 11:45				XXXX			XXXX			XXXX	XXII													XXXX				
Relinquished By: Relinquished By: Relinquished By:	) AS	Date: Date: Date:	Time: 2-45p- Time: Time:	Rece	ived B	y:	1.0	2	V	a	Q			HE	OD (	SPA	CEA	ABS	N			API		PRL	ATE	DN_	OAS		ME	TALS	OTHER

. .

### McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

EXP4-3

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-10	620			W	orkOrd	ler: 0	603117		Clie	ntID: (	CETE		EDI	: NO			
Report to:							Bill to						Rec	jueste	d TAT:	1	day
Dan Glaze		TEL:	(510) 420-070	0			Ac	counts	Payable	Э							
Cambria Env. Te	echnology	FAX:	(510) 420-917	0			Ca	mbria I	Env. Te	chnolog	av						
5900 Hollis St, S	••	ProjectNo:	#304291-DG						is St, St				Dai	te Rec	eived:	03/08/	2006
Emeryville, CA		PO:							e, CA 94				Da	te Pri	nted:	03/08/	2006
									Req	uested	Tests	(See le	gend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	e Hold	1	2	3	4	5	6	7	8	9	10	11	12
0603117-001	EXP1- 3.5		Soil	03/08/2006		Α	A										
0603117-002	EXP2- 3		Soil	03/08/2006		A	A					1			1	+	
0603117-003	EXP3-3		Soil	03/08/2006	十百十	А	А					1			1	<u>†                                    </u>	

А

А

03/08/2006

#### Test Legend:

0603117-004

1	G-MBTEX_S
6	
11	

2	MBTEX-8260B_S	3
7		8
12		

Soil

3	
8	
-	

4	
9	

_	
5	
	-
10	

The following SampIDs: 0603117-001A, 0603117-002A, 0603117-003A, 0603117-004A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Prepared by: Rosa Venegas

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McC	Campbell Analy	tical, Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com				
Cambria Env. Te	echnology	Client Project ID:	#304291-DG	Date Sampled: 03/08/06			
5900 Hollis St, S	Suite A			Date Received: 03/0	08/06		
Emeryville, CA	94608	Client Contact: D	Dan Glaze	Date Extracted: 03/0	08/06		
	94000	Client P.O.:		Date Analyzed: 03/0	08/06		
Extraction method: SW5		-	atile Hydrocarbons as ( nethods: SW8015Cm		Work Order:	060311	
Lab ID	Client ID	Matrix	TPH(g	)	DF	% SS	
001A	EXP1- 3.5	S	ND		1	90	
002A	EXP2-3	S	ND		1	93	
003A	EXP3-3	S	ND		1	93	
004A EXP4- 3		S	ND		1	90	
	ting Limit for DF =1; eans not detected at or	W	NA			ЛА	
	ve the reporting limit	S	1.0		mg	g/Kg	

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/$ wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

DHS Certification No. 1644

McCampbell Ana	•	<ul><li>110 2nd Avenue South, #D7, Pacheco, CA 94553-5560</li><li>Telephone : 925-798-1620 Fax : 925-798-1622</li><li>Website: www.mccampbell.com E-mail: main@mccampbell.com</li></ul>						
Cambria Env. Technology	Client Pr	Client Project ID: #304291-DG			Date Sampled: 03/08/06			
5900 Hollis St, Suite A					Date Received:	03/08/06		
Emeryville, CA 94608	Client Co	ontact: Dan	n Glaz	e	Date Extracted:	03/08/06		
Emeryvine, CA 94008	Client P.	0.:			Date Analyzed:	03/08/06		
Extraction Method: SW5030B		E and BTE	-			Work Ord	er: 0603117	
Lab ID	0603117-001A	0603117-0	002A	0603117-003A	0603117-004A			
Client ID	EXP1- 3.5	EXP2-	3	EXP3- 3	EXP4- 3	Reporting Limit		
Matrix	S	S		S	S	DF =1		
DF	1	1		1	1	S	W	
Compound			Conce	entration	mg/kg	ug/L		
Benzene	ND	ND		ND	ND	0.005	NA	
Ethylbenzene	ND NE			ND	ND	0.005	NA	
Methyl-t-butyl ether (MTBE)	ND	ND		ND	ND	0.005	NA	
Toluene	ND	ND		ND	ND	0.005	NA	
Xylenes	ND	ND		ND	ND	0.005	NA	
	Surro	ogate Recov	veries	(%)				
%SS1:	96	96		95	95			
%SS2:	104	106		106	105			
70332.	106							
%\$\$3:	106	104		102	102			

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCa	mpbell Analyti	cal, Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com				
Cambria Env. Tec	hnology	Client Project ID:	#304291-DG	Date Sampled: 03/08/06			
5900 Hollis St, Su	ite A			Date Received: 03/08	Date Received: 03/08/06		
Emeryville, CA 94	1608	Client Contact: D	an Glaze	Date Extracted: 03/08	/06		
Lineryvine, CA 9-	1008	Client P.O.:		Date Analyzed: 03/08	/06-03/	09/06	
Extraction method: SW355			ctable Hydrocarbons a nethods: SW8015C		ork Order:	0603117	
Lab ID	Client ID	Matrix	TPH(d	)	DF	% SS	
0603117-001A	EXP1- 3.5	S	ND		1	89	
0603117-002A	EXP2- 3	S	ND			101	
0603117-003A	EXP3- 3	S	ND		1	89	
0603117-004A	EXP4- 3	S	ND		1	88	

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

DHS Certification No. 1644



### QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0603117

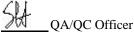
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSE
TPH(btex) [£]	ND	0.60	114	115	0.951	111	112	0.842	70 - 130	70 - 130
MTBE	ND	0.10	96	93.8	2.32	95	96.4	1.49	70 - 130	70 - 130
Benzene	ND	0.10	91.1	92.5	1.57	89.7	96.5	7.23	70 - 130	70 - 130
Toluene	ND	0.10	90.4	91.7	1.45	89.1	95.1	6.48	70 - 130	70 - 130
Ethylbenzene	ND	0.10	93.4	94.9	1.55	91.2	97.9	7.10	70 - 130	70 - 130
Xylenes	ND	0.30	95	99	4.12	91	99	8.42	70 - 130	70 - 130
%SS:	85	0.10	99	83	17.6	99	117	16.7	70 - 130	70 - 130

#### BATCH 20640 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0603117-001A	3/08/06 10:20 AM	3/08/06	3/08/06 9:41 PM	0603117-002A	3/08/06 11:42 AM	3/08/06	3/08/06 10:11 PM
0603117-003A	3/08/06 11:45 AM	3/08/06	3/08/06 10:40 PM	0603117-004A	3/08/06 11:47 AM	3/08/06	3/08/06 11:40 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.





### QC SUMMARY REPORT FOR SW8260B

W.O.	Sample	Matrix:	Soil	
------	--------	---------	------	--

QC Matrix: Soil

WorkOrder: 0603117

EPA Method: SW8260B	E	xtraction:	SW5030	В	Batch	nID: 20632		Spiked San	nple ID: 0603	3117-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
Benzene	ND	0.050	120	118	1.45	116	120	2.97	70 - 130	70 - 130
Methyl-t-butyl ether (MTBE)	ND	0.050	106	105	0.321	108	108	0	70 - 130	70 - 130
Toluene	ND	0.050	116	113	2.71	116	114	2.08	70 - 130	70 - 130
%SS1:	96	0.050	108	107	0.957	108	108	0	70 - 130	70 - 130
%SS2:	106	0.050	102	101	0.613	101	102	1.24	70 - 130	70 - 130
%SS3:	104	0.050	109	112	2.23	109	110	0.623	70 - 130	70 - 130
All target compounds in the Method NONE	d Blank of thi	s extractior	batch were	e ND less th	nan the method	RL with the	e following	exceptions:		

#### BATCH 20632 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0603117-001A	3/08/06 10:20 AM	3/08/06	3/08/06 4:34 PM	0603117-002A	3/08/06 11:42 AM	3/08/06	3/08/06 5:17 PM
0603117-003A	3/08/06 11:45 AM	3/08/06	3/08/06 6:00 PM	0603117-004A	3/08/06 11:47 AM	3/08/06	3/08/06 6:43 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

_QA/QC Officer



### QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0603117

EPA Method: SW8015C	E	xtraction:	SW3550	С	Batch	nID: 20642		Spiked San	nple ID: 0603	091-008B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
, and ju	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(d)	ND	20	106	107	1.31	107	108	1.03	70 - 130	70 - 130
%SS:	91	50	97	98	1.38	98	99	0.779	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 20642 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0603117-001A	3/08/06 10:20 AM	3/08/06	3/09/06 11:04 AM	0603117-002A	3/08/06 11:42 AM	3/08/06	3/09/06 11:04 AM
0603117-003A	3/08/06 11:45 AM	3/08/06	3/08/06 5:22 PM	0603117-004A	3/08/06 11:47 AM	3/08/06	3/08/06 6:30 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

## ATTACHMENT D

Unauthorized Release Report

	UNDERGROUND STORAGE TANK UNAUTHOR	IZED RE	ELEASE (LEAK)/ CONTAMINATION SI	TE REPORT
	RGENCY HAS STATE OFFICE OF EMERGENCY SERVIC REPORT BEEN FILED? Yes X No	ES	FOR LOCAL AGENCY USE ONLY I HEREBY CERTIFY THAT I AM A DESIGNATED GOVERNMENT REPORTED THIS INFORMATION TO LOCAL OFFICIALS PERSL	
			THE HEALTH AND SAFETY CODE.	JAN1 10 SECTION 25180.7 OF
	3-09-06			
Н	NAME OF INDIVIDUAL FILING REPORT	PHONE	SIGNED	DATE
~	Laura Genin	510-	420-0700 Jaura	Ena.
ED BY	REPRESENTING	10/0	COMPANY OR AGENCY NAME	
REPORTED	□ LOCAL AGENCY □ REGIONAL BOARD Ø OWNER/OPERATOR □ OTHER		Chevron Products Com	Dany
REF	ADDRESS			<u> </u>
	5900 Hullis St. Ste Astreet	Emer	ville city CA	STATE 94608 ZIP
BLE			"Chevron products Co."	PHONE
ONS!	Standard Oil Co. of Cal, Ur		Chevron Products Co.	
RESF	NAME Standurd Oil Co. of Cal. □Ur ADDRESS POBOX 6012 RM STREET 52256		Sam Raman	CA GUEQ3
	FACILITY NAME (IF APPLICABLE)		OPERATOR	STATE CA 94583 PHONE
N	NA		NA	NA
CATIC	ADDRESS		······································	
SITE LOCATION	3884 1St St. STREET Livermore		CITY CA	COUNTY Alumeda ZIP
S	CROSS STREET			
	Portula Local Agency NAME			PHONE
IMPLEMENTING AGENCIES			The Original	925-454-23377
EMEN	Livermore - Pleasanton Fire Dept REGIONAL BOARD		John Kiyfer	PHONE
AG				
	(1)	NAME		QUANTITY LOST (GALLONS)
VED	Waste oil			A Unknown
SUBSTANCES INVOLVED	(2)			
		<u></u>		
EMENT		ink Test ventory Co	Tank Removal     Invisance Co     Subsurface Monitoring     Other	onditions
	03-08-06 □ Inv		METHOD USED TO STOP DISCHARGE (CHECK ALL THAT AP	
DISCOVERY/ABA1		Unknown	Remove Contents A Close Tank - Remov	
scov	HAS DISCHARGE BEEN STOPPED?		Repair Tank     Change Procedure       Replace Tank     Other	
ö	x Yes □ No IF YES, DATE 0 3-08-06		Repair Piping	
йĒ	SOURCE OF DISCHARGE CAUSE(S	5)	d	
SOURCE/ CAUSE	Tank Leak Diping Leak Di Unknown Dother	rfill 🔲 Co	orrosion 🔲 Rupture/Failure 🔀 Unknown 🔲 Sp	ill 🔲 Other
CASE TYPE	CHECK ONE ONLY			
₽₽₽		ter - (C	HECK ONLY IF WATER WELLS HAVE ACTUAL	Y BEEN AFFECTED)
	CHECK ONE ONLY	sed (Clea	nup Completed or Unnecessary)	
CURRENT STATUS	Leak Being Confirmed Pollution	Character	ization	
CURI	Preliminary Site Assessment Workplan Submitted 🛛 🔀 Cleanup	anup moni Underway	toring in Progress とそくになんてい	
	Preliminary Site Assessment Underway			
REMEDIAL	Cap Site (CD)       Excavate & Treat (ET)         Contamination Barrier (CB)       No Action Required (NA)	🗖 Enh	atment at Hookup (HU) 🛛 Other anced Bio Degradation (IT)	
AC	□ Vacuum Extract (VE) □ Remove Free Product (FP) ☑ Excavate & Dispose (ED) □ Pump & Treat Groundwater (GT		lace Supply (RS) t Soil (VS)	
COMMENTS	Soil Removal and disposal is	Unia	er why.	
COMI				
_	L			

# ATTACHMENT G

**Compaction Testing Report** 

To be attached as an addendum at a later date.

# ATTACHMENT H

Laboratory Analytic Reports

	McCAM	10 2ªd A	VENUE SC	UTH,	#D7	LI	NC.							TU	RN	AR							SI	0	DY	T	E		<b>SD</b>	a	
Telephon	ne: (925) 798-		CO, CA 945	23-22		ax:	(925	) 79	8-16	522													USH		24 1			8 HR		72 HR	5 DAY
Report To: Dan (	Glaze		В	ill To	: 4	amb	ria	- D	an	66	120	9	ť	LDF	Rea	quire	_	_	_	_	juest	_	0		rite	Un		V) Other		Com	ments
Company: Com	brig														E														Τ	Ema	il result
	> Hollis Br	L. Ste	4			-							- 4	*	Grease (5520 E&F/B&F)					1	-	-								to	nin@car uze@- s@-1
Tele: (510),37	yville	8	E	-Mai	1: d	919	200	2 Ca	mb	Mis	-en	W.Cl	2		E&F	1)				00	5	831(								Lge	AINC
Project #: 3042			P	-Mai ax: ( rojec	510 t Nar	19	200	129	10	DG			19100	fctm	5520	(418,		_				EPA 625 / 8270 / 8310								del	uzel -
Project Location:	3884 IF	first S	+ Live	rmo	16	CA	30	10		24				-	ase (	SIIO		8020		DIEV	1	5/8			(0)					bfos	se-
Sampler Signature	e: Jan /	2			-								ocuare.	7007	Gree	ocarb		02 / 8		D N	0	A 62			2/601					K	
		SAME	PLING		ers	1	MAT	RI	x			HOD		015)	Oil &	Hydro		PA 6		1 876	240	by EP.			/239.					BTE)	6 648260
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other			HNO ₃	T DI ac	TPH as Diesel (8015)	Total Petroleum	Total Petroleum Hydrocarbons (418.1)	EPA 601/8010	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	EPA 608 / 8080 PCB's UNLY EPA 604 / 8040 / 8060 272	EPA 625 / 8270	PAH's/PNA's b	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI				only re TPH g BT	Hd) BX
Ex-1-1	18' 5 19-	2.22	930	T			X			R			1	X>	<					7								-		<u> </u>	
	17'	1	932				1			1				1 1																	
EX-1-3	17 1		935																												
Ex-1-4	17'5		940																												
Ex-1-5	n' 🥭 👘		942																												
E-1-6	5'2		945	6																											
	17'		9.50	deve																											
1977	12		9.52	5/0																											
Ex-1-9	9'		9.55	2																											
E×-1-10	ירו	2	1220	1																											
Ex-1-11	12		1225																												
5K-1-12	6		1230																												
2×-1-13	17'		1230																												
EX-1-14	12	T	1235	1			-			T			-	- 1						+	-										
Relinquished By:		Date:	Time:	Rece	ived B	Y:			a			2	Γ				/			1	0							T	L.		8
Bar/Mr		2/22/06	310	10	GI	Ill	er	l(	Π	v	C	1	-	ICE	C/t°	$\checkmark$	5			/	3	PRE	SER	RVA	TIC		OAS	0&G		METALS	OTHE
Relinquished By:		Date:	Time:	Rece	ived B	y:								GO	OD	CON						APP	ROP	PRL	ATE		/				
Relinquished By:		Date:	Time:	D	ived B			_	_	_	_	_	-			ORI				AD	-					INU	LAB				

	McCAM	IPBEL	L ANA	LYI	TICA	L	INC	2.				-							CH	[A]	IN	0	F	CU	ST	ro	D	N	RE	CC	)R	D		
		110 2 nd A PACHE	VENUE S	OUTH 4553-5	I, #D7 560									1	<b>FU</b>	RN	AF		UN					,	B									
Telepho	ne: (925) 798	8-1620	1			Fax	: (92	25) 7	98-1	622														RI	JSE	ł	241	HR	/	48 H	IR		2 HR	5 DAY
Report To: Dan	61920			Bill T	'o: (		hric	-	Dave	6	1		-	E	DF	Rec	luir		Coe	Statement and the statement of the state	Sector Se	_	-	No	)	W	rite	Or	1 (D	W)	_	-		
	abrig			Dill I	0. 0	an	0110	1 .	Dan	CT I	1921	e							Ana	uys	15 P	-	est				_		⊢	Ot	her		Con	ments
	0 66 ( is s	f. ste	2 A										-	X		3&F						2											Emo	11 (650 15
	syville				il: 0						-e	nv.	сон			Grease (5520 E&F/B&F)						PIND		310									Lae	nin@can
Tele: (510).3	16-065	7	1	Fax:	(510	))	120	-91	170	2			_	8015)/04		20 E	18.1)					0		0/83									1	
Project #: 3042	191-DG	5010	1	Proje	ct Na	me:	30	242	91-	De	7	_	_	+ 80		: (55	is (4		(02			X		827(									ag	4200 11
Project Location: Sampler Signatur	5007	First S	st. Liv	ermo	ore	CA		_			_	_	_	020		rcase	rhon		/ 802		NL	BIE		525/			(010)						bfos	se-
Sampler Signatur	C. Statu P	SAM	PLING	Т	1	Т	MA	TRI	v	1	MET	HOI	D	(602/8	(5	8	droca		602		B's 0	2 092		SPA 6			9.2/6						BTEX	6,8260
		SAM	TLING	2	ner	$\vdash$	IVIA	IR	A	PR	ESF	RVI	ED	Gas	(80]	n Oil	n Hy	0	(EPA		0 PC	0/87		by I	S		1/23						only	report
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	Ice	HCI	HNO ₃	Other	TPH as	TPH as Diesel (8015)	Total Petroleum Oil	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-I7 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI					TP4 B	ments ; 1 results nin@can e uze@-" s@-" by8260 report g+d rex
EX1-15	17.	2/22	1235	1	T	t	X		-	t				X	X							X		-					$\vdash$		-	-		
EX1-16	12'	1	1240	1		4	T							1	1							1		-			-					-		
EX1-17	(0	1	1240	1	SI		L							1	-				-			T		+		-	-	_			-	-		
0										$\top$			1									-	-	+								-		
																			-	+			+	+							-	-		
									-				1						+	+			+	+	-				$\vdash$	$\neg$	-	+		
													1				-		-	-	-	+	+	+	-	-	-	-		-	-	+	-	
													+				-		+	+	+	-	+	+	-		-	-		-	+	+		
									+			-	+				-	-	-	+	-	-	+	+	-	-	-		$\vdash$	-	-	+		
								-	-			-	+			-	-	+	+	-	+	+	+	+	+	-	-	-		-	-	+		
				-								-	+	-			-	-	-	-	+	-	+	+	+	-	-	-	-	-	-	+		
									-			+	+	-		-	-	-	-	-	-	-	+	+	-	-	-	-	-	-	-	+		
				-					-			+	+	-	-	-	-	-	-	+	-	-	+	+	+	-		-	-	+	-	+		
							-	-	+			-	+	+	-	-	-	+	-	+	+	-	+	+	-	-	-	-	-	-	-	+		
Relinquished By:		Date:	Time:	Rece	ived B	y:			-		_		+	_	_		_	-	-						-									
San Ve.		7/22/06	320	K	at	hl	ee	n	0	u	2el	7						/			1							V	DAS	08	G	M	TALS	OTHER
Relinquished By:		Date:	Time:	Rece	ived B	y:									CE/t		ONI	DIT	ION	~	/						TIO	N	4					8405307
Relinquished By:		Date:	Time:	Rece	ived B	y:	-	-	-	_	-		-	H	EA	D SI	AC	EA	BSE		AB	_	C	DNT	AI	NEI	RS_	v	LAB			2		

### McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798	8-1620			Wo	rkOrd	ler: 06	502390		Clie	ntID: (	CETE		EDF	: NO			
Report to:							Bill to:						Req	uested	TAT:	c	1 day
Dan Glaze	<b>-</b>	TEL:	(510) 420-070						Payable								
5900 Hollis S	/. Technology	FAX:	(510) 420-917 #304291-DG	0					Env. Teo s St, St	-	lУ		Dat	e Rece	ived	02/22/	/2006
Emeryville, C	•	PO:	#304291-DG						s Si, Si e, CA 94					e Print		02/22/	
									Re	quested	d Tests (	(See leg	end bel	ow)			
Sample ID	ClientSampIE	)	Matrix	<b>Collection Date</b>	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0602390-001	EX-1-1		Soil	2/22/06 9:30:00 AM		А	Α										
0602390-002	EX-1-2		Soil	2/22/06 9:32:00 AM		А	А										
0602390-003	EX-1-3		Soil	2/22/06 9:35:00 AM		А	Α									-	
0602390-004	EX-1-4		Soil	2/22/06 9:40:00 AM		А	Α									-	
0602390-005	EX-1-5		Soil	2/22/06 9:42:00 AM		А	А										
0602390-006	EX-1-6		Soil	2/22/06 9:45:00 AM		А	Α									-	
0602390-007	EX-1-7		Soil	2/22/06 9:50:00 AM		А	Α									-	
0602390-008	EX-1-8		Soil	2/22/06 9:52:00 AM		А	Α									-	
0602390-009	EX-1-9		Soil	2/22/06 9:55:00 AM		А	Α									-	
0602390-010	EX-1-10		Soil	2/22/06 12:20:00		А	Α									-	
0602390-011	EX-1-11		Soil	2/22/06 12:25:00		А	Α									-	
0602390-012	EX-1-12		Soil	2/22/06 12:30:00		А	Α										
0602390-013	EX-1-13		Soil	2/22/06 12:30:00		А	А										
0602390-014	EX-1-14		Soil	2/22/06 12:35:00		А	А										
0602390-015	EX-1-15		Soil	2/22/06 12:35:00		А	Α			1							

#### Test Legend:

1	G-MBTEX_S
6	
11	

MBTEX-8260B_S	3	3
	٤	3

4	
9	

5	
10	

The following SampIDs: 0602390-001A, 0602390-002A, 0602390-003A, 0602390-004A, 0602390-005A, 0602390-006A, 0602390-007A, 0602390-008A, 0602390-009A, 0602390-010A, 0602390-011A, 0602390-012A, 0602390-013A, 0602390-014A, 0602390-015A, 0602390-

2 7 12

Prepared by: Kathleen Owen

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

### McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

EX-1-17

12

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 79	8-1620			Wo	orkOrd	er: 06	02390		Cli	entID:	СЕТЕ		EDF	: NO			
Report to:						I	Bill to:						Req	uested	TAT:		1 day
Dan Glaze		TEL:	(510) 420-0700	)			Acc	ounts F	Payab	le							
Cambria Env	/. Technology	FAX:	(510) 420-9170	)			Can	nbria E	nv. Te	echnolog	у						
5900 Hollis	St, Suite A	ProjectNo	#304291-DG					) Hollis		-			Dat	e Rece	ived:	02/22/	/2006
Emeryville, 0	CA 94608	PO:					Eme	eryville	, CA 9	94608			Dat	e Print	ted:	02/22	/2006
									R	equeste	d Tests	(See leg	end bel	ow)			
Sample ID	ClientSamp	ID	Matrix	<b>Collection Date</b>	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0602390-016	EX-1-16		Soil	2/22/06 12:40:00		А	А										

А

А

2/22/06 12:40:00

#### Test Legend:

0602390-017

1	G-MBTEX_S
6	
11	

MBTEX-8260B_S	3	
	8	

Soil

8	3	
	8	

4	
9	

5	
10	

 Prepared by: Kathleen Owen

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. 110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com										
Cambria Env. Te	chnology	Client Project ID:	Client Project ID: #304291-DG Date San			mpled: 02/22/06				
5900 Hollis St, S	uite A			Date Received: 02/2	2/06					
		Client Contact: D	an Glaze	Date Extracted: 02/2						
Emeryville, CA 9	94008	Client P.O.:		Date Analyzed: 02/2	22/06-02/	23/06				
Extraction method: SW5			tile Hydrocarbons as ( hethods: SW8015Cm		Work Order:	0602390				
Lab ID	Client ID	Matrix	TPH(g	)	DF	% SS				
001A	EX-1-1	S	25,a,m	L	2	90				
002A	EX-1-2	S	2.7,g	1	91					
003A	EX-1-3	S	ND	1	82					
004A	EX-1-4	S	1100,a,1	67	94					
005A	EX-1-5	S	1500,b,t	200	116					
006A	EX-1-6	S	43,b,m	L	10	91				
007A	EX-1-7	S	ND	1	92					
008A	EX-1-8	S	2100,b,t	200	106					
009A	EX-1-9	S	ND		1	81				
010A	EX-1-10	S	57,g,m			119				
011A	EX-1-11	S	ND		1	88				
012A	EX-1-12	S	ND			99				
013A	EX-1-13	S	ND			80				
014A	EX-1-14	S	ND			81				
015A	EX-1-15	S	ND	1	83					
016A	EX-1-16	S	ND		1	82				
	ting Limit for DF =1;	W	NA			NA				
	eans not detected at or re the reporting limit	S	S 1.0							

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/wipe$ , product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

McCar	npbell Analytic	cal, Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com			
Cambria Env. Techr	nology	Client Project ID	: #304291-DG	Date Sampled: 02/22	/06	
5900 Hollis St, Suite	e A	A		Date Received: 02/22	/06	
Emeryville, CA 946	08	Client Contact: I	Dan Glaze	Date Extracted: 02/22	/06	
Linery vine, CA 940	00	Client P.O.:		Date Analyzed: 02/22	/06-02/	23/06
Extraction method: SW50301			atile Hydrocarbons as ( methods: SW8015Cm		ork Order:	0602390
Lab ID	Client ID	Matrix	TPH(g	)	DF	% SS
017A	EX-1-17	S	ND		1	85
						<u> </u>
						<u> </u>
Reporting	Limit for DF =1;	W	NA		N	IA
ND means	not detected at or e reporting limit	S	1.0			/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/$ wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

McCampbell An	alytical, Inc		Telephone :	e South, #D7, Pacheco, CA 925-798-1620 Fax : 925 mpbell.com E-mail: main	-798-1622	com	
Cambria Env. Technology	Client Pr	oject ID: #3042	91-DG	Date Sampled: 02/22/06			
5900 Hollis St, Suite A			Date Received:	02/22/06			
Emeryville, CA 94608	Client Co	ontact: Dan Glaz	e	Date Extracted:	02/22/06		
Emeryvine, CA 94008	0.:		Date Analyzed:	02/22/06-0	02/23/06		
Extraction Method: SW5030B	An	BTEX by GC/M alytical Method: SW826			Work Ord	ler: 060239	
Lab ID	0602390-002A	0602390-003A	0602390-004A				
Client ID	EX-1-1	EX-1-2	-2 EX-1-3	EX-1-4	EX-1-4 Reporting Limit for DF =1		
Matrix	S	S	S	S			
DF	1	1	1	20	S	W	
Compound		Concentration					
Benzene	0.012	ND	ND	0.56	0.005	NA	
Ethylbenzene	0.012	ND	ND	3.1	0.005	NA	
Toluene	ND	ND	ND	ND<0.10	0.005	NA	
Xylenes	ND	ND	ND	2.1	0.005	NA	
	Surre	ogate Recoveries	s (%)		•		
%SS1:	96	96	96	95			
%SS2:	104	108	110	103			
%SS3:	116	116 117 119		117			

McCampbell An	alytical, Inc	•	<ul> <li>110 2nd Avenue South, #D7, Pacheco, CA 94553-5560</li> <li>Telephone : 925-798-1620 Fax : 925-798-1622</li> <li>Website: www.mccampbell.com E-mail: main@mccampbell.com</li> </ul>				
Cambria Env. Technology	Client Pr	oject ID: #3042	291-DG	Date Sampled: 02/22/06			
5900 Hollis St, Suite A			Date Received:	02/22/06			
Emeryville, CA 94608	Client Co	ontact: Dan Gla	ze	Date Extracted:	02/22/06		
Emeryvine, CA 94000	0.:		Date Analyzed:	02/22/06-0	02/23/06		
Extraction Method: SW5030B		BTEX by GC/N alytical Method: SW826			Work Ord	ler: 0602390	
Lab ID	0602390-005A	0602390-006A	0602390-007A	0602390-008A			
Client ID	EX-1-5	EX-1-6	EX-1-7	EX-1-8	Reporting		
Matrix	S	S	S	S	DF =1		
DF	100	2	1	20	S	W	
Compound	Compound Concentration						
Benzene	0.96	0.019	ND	ND<0.10	0.005	NA	
Ethylbenzene	11	0.23	ND	3.7	0.005	NA	
Toluene	ND<0.50	ND<0.010	ND	ND<0.10	0.005	NA	
Xylenes	30	0.78	ND	1.1	0.005	NA	
	Surro	ogate Recoverie	s (%)			1	
%SS1:	106	102	101	101			
%SS2:	104	105	104	110			
%SS3:	112	112 115 11		117			
% <b>333</b> .							

McCampbell Ana	alytical, Inc	2.	Telephone :	South, #D7, Pacheco, CA 925-798-1620 Fax : 925 mpbell.com E-mail: main	-798-1622	com	
Cambria Env. Technology	Client Pr	oject ID: #3042	291-DG	Date Sampled: 02/22/06			
5900 Hollis St, Suite A			Date Received:	02/22/06			
Emeryville, CA 94608	Client Co	ontact: Dan Glaz	æ	Date Extracted:	02/22/06		
Emeryvine, CA 94008	0.:		Date Analyzed:	02/22/06-0	)2/23/06		
Extraction Method: SW5030B		BTEX by GC/M alytical Method: SW826			Work Ord	ler: 060239	
Lab ID	0602390-009A	0602390-010A	0602390-011A	0602390-012A			
Client ID	EX-1-9	EX-1-10	EX-1-11	EX-1-12	Reporting		
Matrix	S	S	S	S	DF =1		
DF	1	2	2 1		S	W	
Compound			mg/kg	ug/L			
Benzene	ND	ND<0.010	ND<0.010 ND		0.005	NA	
Ethylbenzene	ND	ND<0.010	ND	ND	0.005	NA	
Toluene	ND	ND<0.010	ND	ND	0.005	NA	
Xylenes	ND	ND<0.010	ND	ND	0.005	NA	
	Surro	ogate Recoveries	s (%)				
%SS1:	101	104	100	100			
%SS2:	106	102	106	104			
%SS3:	119	118	119	120			
Comments		j					

McCampbell Ana	alytical, Inc		<ul> <li>110 2nd Avenue South, #D7, Pacheco, CA 94553-5560</li> <li>Telephone : 925-798-1620 Fax : 925-798-1622</li> <li>Website: www.mccampbell.com E-mail: main@mccampbell.com</li> </ul>					
Cambria Env. Technology	Client Pr	oject ID: #3042	291-DG	Date Sampled: 02/22/06				
5900 Hollis St, Suite A			Date Received:	02/22/06				
Emeryville, CA 94608	ontact: Dan Glaz	ze	Date Extracted:	02/22/06				
	Client P.	0.:		Date Analyzed:	02/22/06-0	)2/23/06		
Extraction Method: SW5030B		BTEX by GC/N alytical Method: SW826			Work Ord	ler: 0602390		
Lab ID	0602390-013A	0602390-014A	0602390-015A	0602390-016A				
Client ID	EX-1-13	EX-1-14	EX-1-15	EX-1-16	Reporting			
Matrix	S	S	S	S	DF	F =1		
DF	1	1	1	1	S	W		
Compound		Conc	entration		mg/kg	ug/L		
Benzene	ND	ND	ND	ND	0.005	NA		
Ethylbenzene	ND	ND	ND	ND	0.005	NA		
Toluene	ND	ND	ND	ND	0.005	NA		
Xylenes	ND	ND	ND	ND	0.005	NA		
	Surro	ogate Recoverie	s (%)					
%SS1:	100	101	100	101				
%SS2:	104	104	105	105				
%SS3:	120	120	118	117				
Comments								

McCampbell Ana		<ul> <li>110 2nd Avenue South, #D7, Pacheco, CA 94553-5560</li> <li>Telephone : 925-798-1620 Fax : 925-798-1622</li> <li>Website: www.mccampbell.com E-mail: main@mccampbell.com</li> </ul>					
Cambria Env. Technology	Client Pro	oject ID:	#304291-DG	02/22/06			
5900 Hollis St, Suite A				Date Received:	02/22/06		
Emeryville, CA 94608	Client Co	ontact: Da	an Glaze	Date Extracted:	02/22/06		
Client P.O.:				Date Analyzed:	02/22/06-0	)2/23/06	
BTEX by GC/MS*           Extraction Method: SW5030B         Analytical Method: SW8260B         Work Order: 0602390							
Lab ID	0602390-017A						
Client ID	EX-1-17				Reporting		
Matrix	S				DF	=1	
DF	1				S	W	
Compound		Concentration				ug/L	
Benzene	ND				0.005	NA	
Ethylbenzene	ND				0.005	NA	
Toluene	ND				0.005	NA	
Xylenes	ND				0.005	NA	
	Surro	gate Rec	overies (%)				
%SS1:	100						
%SS2:	105						
%SS3:	114						
Comments							
* water and vapor samples are reported in μ extracts are reported in mg/L, wipe samples ND means not detected above the reporting	in µg/wipe.			ous liquid samples and	all TCLP & S	PLP	
# surrogate diluted out of range or coelutes				2.			

McCa	ampbell Analytic	cal, Inc.	<ul> <li>110 2nd Avenue South, #D7, Pacheco, CA 94553-5560</li> <li>Telephone : 925-798-1620 Fax : 925-798-1622</li> <li>Website: www.mccampbell.com E-mail: main@mccampbell.com</li> </ul>				
Cambria Env. Tec	hnology	Client Project II	Client Project ID: #304291-DG Date Sampled:				
5900 Hollis St, Su	iite A			Date Received: 02/22	/06		
Emeryville, CA 94	1609	Client Contact:	Dan Glaze	Date Extracted: 02/22	/06		
Emeryvine, CA 94	+008	Client P.O.:		Date Analyzed: 02/22	/06-02/	23/06	
			ractable Hydrocarbons				
Extraction method: SW35 Lab ID	Client ID	Analytica Matrix	l methods: SW8015C TPH(d		ork Order: DF	0602390 % SS	
			×	,			
0602390-001A	EX-1-1	S	6.2,n		1	86	
0602390-002A	EX-1-2	S	S 2.0,n				
0602390-003A	EX-1-3	S	S ND				
0602390-004A	EX-1-4	S	S 95,n				
0602390-005A	EX-1-5	S	S 590,d,b				
0602390-006A	EX-1-6	S	S 14,d,g			102	
0602390-007A	EX-1-7	S	ND		1	88	
0602390-008A	EX-1-8	S	250,n,l	)	1	100	
0602390-009A	EX-1-9	S	ND		1	86	
0602390-010A	EX-1-10	S	13,n		1	93	
0602390-011A	EX-1-11	S	ND		1	99	
0602390-012A	EX-1-12	S	ND			99	
0602390-013A	EX-1-13	S	ND		1	97	
0602390-014A	EX-1-14	S	ND		1	97	
0602390-015A	EX-1-15	S	ND		1	97	
0602390-016A	EX-1-16	S	ND		1	99	

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	
above the reporting limit	S	1.0	mg/Kg	

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

Ma	Campbell Analytic	cal, Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com			
Cambria Env.	Technology	Client Project ID:	#304291-DG	Date Sampled: 02/22	/06	
5900 Hollis St	t, Suite A			Date Received: 02/22	/06	
Emeryville, C	A 94608	Client Contact: D	an Glaze	Date Extracted: 02/22	/06	
		Client P.O.:		Date Analyzed: 02/22	/06-02/	23/06
Extraction method: 5			ctable Hydrocarbons a hethods: SW8015C		ork Order:	0602300
Lab ID	Client ID	Matrix	TPH(d)		DF	% SS
		111111/1	II II(u)			/0.00
0602390-017A	EX-1-17	S	1.0,f,b		1	97

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.



## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil		QC Matrix: Soil						WorkOrder: 0602390			
EPA Method: SW8021B/8015	iCm E	Extraction:	SW5030	В	BatchID: 20432			Spiked Sample ID: 0602390-003A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
, individ	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(btex) [£]	ND	0.60	114	113	0.866	118	116	1.75	70 - 130	70 - 130	
MTBE	ND	0.10	82.3	82.1	0.150	99.9	101	0.808	70 - 130	70 - 130	
Benzene	ND	0.10	101	96.7	4.23	93.5	96.7	3.37	70 - 130	70 - 130	
Toluene	ND	0.10	100	96.2	4.12	94.5	95.6	1.17	70 - 130	70 - 130	
Ethylbenzene	ND	0.10	104	99.4	4.06	98	100	2.33	70 - 130	70 - 130	
Xylenes	ND	0.30	103	100	3.28	103	100	3.28	70 - 130	70 - 130	
%SS:	82	0.10	102	99.8	1.67	96.5	97.2	0.728	70 - 130	70 - 130	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE											

### BATCH 20432 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602390-001A	2/22/06 9:30 AM	2/22/06	2/23/06 9:31 AM	0602390-002A	2/22/06 9:32 AM	2/22/06	2/23/06 12:07 PM
0602390-003A	2/22/06 9:35 AM	2/22/06	2/23/06 6:23 AM	0602390-004A	2/22/06 9:40 AM	2/22/06	2/23/06 10:31 AM
0602390-005A	2/22/06 9:42 AM	2/22/06	2/23/06 3:06 AM	0602390-006A	2/22/06 9:45 AM	2/22/06	2/23/06 3:39 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.



## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O.	Sample	Matrix:	Soil	
------	--------	---------	------	--

QC Matrix: Soil

WorkOrder: 0602390

Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(btex) [£]	ND	0.60	116	115	1.00	115	113	1.77	70 - 130	70 - 130
MTBE	ND	0.10	97.5	96.3	1.19	101	98.9	2.52	70 - 130	70 - 130
Benzene	ND	0.10	97.2	99.5	2.32	103	97.8	4.99	70 - 130	70 - 130
Toluene	ND	0.10	97.2	98.2	1.04	102	96.6	5.33	70 - 130	70 - 130
Ethylbenzene	ND	0.10	100	102	1.53	105	101	4.53	70 - 130	70 - 130
Xylenes	ND	0.30	100	103	3.28	103	103	0	70 - 130	70 - 130
%SS:	83	0.10	98	104	5.43	104	104	0	70 - 130	70 - 130

### BATCH 20444 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602390-007A	2/22/06 9:50 AM	2/22/06	2/23/06 11:34 AM	0602390-008A	2/22/06 9:52 AM	2/22/06	2/23/06 4:45 AM
0602390-009A	2/22/06 9:55 AM	2/22/06	2/22/06 7:50 PM	0602390-010A	2/22/06 12:20 PM	2/22/06	2/23/06 11:00 AM
0602390-011A	2/22/06 12:25 PM	2/22/06	2/23/06 3:45 AM	0602390-012A	2/22/06 12:30 PM	2/22/06	2/22/06 8:20 PM
0602390-013A	2/22/06 12:30 PM	2/22/06	2/22/06 8:50 PM	0602390-014A	2/22/06 12:35 PM	2/22/06	2/22/06 9:20 PM
0602390-015A	2/22/06 12:35 PM	2/22/06	2/22/06 9:49 PM	0602390-016A	2/22/06 12:40 PM	2/22/06	2/23/06 4:14 AM
0602390-017A	2/22/06 12:40 PM	2/22/06	2/22/06 10:19 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.



### QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0602390

EPA Method: SW8015C	E	xtraction:	SW3550	С	BatchID: 20424			Spiked Sample ID: 0602367-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	ND	20	107	106	0.343	94.7	106	11.7	70 - 130	70 - 130	
%SS:	99	50	103	103	0	96	100	3.63	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

### BATCH 20424 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602390-001A	2/22/06 9:30 AM	2/22/06	2/22/06 6:43 PM	0602390-002A	2/22/06 9:32 AM	2/22/06	2/22/06 7:52 PM
0602390-003A	2/22/06 9:35 AM	2/22/06	2/22/06 9:00 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.



### QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0602390

EPA Method: SW8015C	E	xtraction:	SW3550	С	BatchID: 20443			Spiked Sample ID: 0602390-015A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
TPH(d)	ND	20	99.6	102	2.02	102	102	0	70 - 130	70 - 130	
%SS:	97	50	92	94	2.73	94	93	0.556	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

### BATCH 20443 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602390-004A	2/22/06 9:40 AM	2/22/06	2/22/06 10:09 PM	0602390-005A	2/22/06 9:42 AM	2/22/06	2/22/06 11:17 PM
0602390-006A	2/22/06 9:45 AM	2/22/06	2/23/06 9:39 AM	0602390-007A	2/22/06 9:50 AM	2/22/06	2/23/06 2:42 AM
0602390-008A	2/22/06 9:52 AM	2/22/06	2/23/06 9:18 AM	0602390-009A	2/22/06 9:55 AM	2/22/06	2/23/06 7:16 AM
0602390-010A	2/22/06 12:20 PM	2/22/06	2/23/06 8:25 AM	0602390-011A	2/22/06 12:25 PM	2/22/06	2/22/06 6:43 PM
0602390-012A	2/22/06 12:30 PM	2/22/06	2/22/06 7:52 PM	0602390-013A	2/22/06 12:30 PM	2/22/06	2/22/06 9:00 PM
0602390-014A	2/22/06 12:35 PM	2/22/06	2/22/06 10:09 PM	0602390-015A	2/22/06 12:35 PM	2/22/06	2/22/06 11:17 PM
0602390-016A	2/22/06 12:40 PM	2/22/06	2/23/06 12:26 AM	0602390-017A	2/22/06 12:40 PM	2/22/06	2/23/06 1:34 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.



## QC SUMMARY REPORT FOR SW8260B

W.O. 3	Sample	Matrix:	Soil
--------	--------	---------	------

QC Matrix: Soil

WorkOrder: 0602390

EPA Method: SW8260B	bd: SW8260B Extraction: SW5030B					BatchID: 20403			Spiked Sample ID: 0602329-003A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD		
Benzene	0.98	0.050	NR	NR	NR	112	108	3.25	70 - 130	70 - 130		
Methyl-t-butyl ether (MTBE)	2.5	0.050	NR	NR	NR	101	101	0	70 - 130	70 - 130		
Toluene	0.81	0.050	NR	NR	NR	107	106	0.809	70 - 130	70 - 130		
%SS1:	105	0.050	102	103	1.44	101	102	1.31	70 - 130	70 - 130		
%SS2:	99	0.050	95	97	1.77	97	100	3.60	70 - 130	70 - 130		
%SS3:	105	0.050	95	100	5.56	101	94	7.66	70 - 130	70 - 130		
All target compounds in the Metho	d Blank of thi	s extractior	h batch were	e ND less tl	nan the method	RL with the	e following	g exceptions:				
NONE												

### BATCH 20403 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602390-001A	2/22/06 9:30 AM	2/22/06	2/22/06 9:39 PM	0602390-002A	2/22/06 9:32 AM	2/22/06	2/22/06 10:22 PM
0602390-003A	2/22/06 9:35 AM	2/22/06	2/23/06 12:30 AM	0602390-004A	2/22/06 9:40 AM	2/22/06	2/23/06 1:12 AM
0602390-005A	2/22/06 9:42 AM	2/22/06	2/23/06 8:44 AM	0602390-006A	2/22/06 9:45 AM	2/22/06	2/23/06 9:27 AM
0602390-007A	2/22/06 9:50 AM	2/22/06	2/23/06 12:04 AM	0602390-008A	2/22/06 9:52 AM	2/22/06	2/23/06 12:46 AM
0602390-009A	2/22/06 9:55 AM	2/22/06	2/23/06 1:29 AM	0602390-010A	2/22/06 12:20 PM	2/22/06	2/23/06 8:54 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.



## QC SUMMARY REPORT FOR SW8260B

W.O.	Sample	Matrix:	Soil
------	--------	---------	------

QC Matrix: Soil

WorkOrder: 0602390

Spiked mg/Kg 0.050 0.050	MS % Rec. 110 96.1	MSD % Rec. 111 95	MS-MSD % RPD 0.608	LCS % Rec. 105	LCSD % Rec. 113	LCS-LCSD % RPD 6.79	Acceptance MS / MSD 70 - 130	
0.050	110	111	0.608					LCS / LCSD
	-			105	113	6.79	70 - 130	70 120
0.050	96.1	05					70 - 130	70 - 130
		75	1.18	94.7	98.9	4.35	70 - 130	70 - 130
0.050	103	105	1.78	95	102	6.73	70 - 130	70 - 130
0.050	102	100	2.20	104	103	1.30	70 - 130	70 - 130
0.050	95	95	0	93	95	1.86	70 - 130	70 - 130
0.050	96	91	6.05	92	97	5.02	70 - 130	70 - 130
s extraction	n batch were	e ND less th	han the method	RL with the	e following	exceptions:		
	0.050	0.050         95           0.050         96	0.050         95         95           0.050         96         91	0.050         95         95         0           0.050         96         91         6.05	0.050         95         95         0         93           0.050         96         91         6.05         92	0.050         95         95         0         93         95           0.050         96         91         6.05         92         97	0.050         95         95         0         93         95         1.86	0.050         95         95         0         93         95         1.86         70 - 130           0.050         96         91         6.05         92         97         5.02         70 - 130

### BATCH 20445 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0602390-011A	2/22/06 12:25 PM	2/22/06	2/23/06 2:53 AM	0602390-012A	2/22/06 12:30 PM	2/22/06	2/23/06 3:35 AM
0602390-013A	2/22/06 12:30 PM	2/22/06	2/23/06 4:18 AM	0602390-014A	2/22/06 12:35 PM	2/22/06	2/23/06 5:00 AM
0602390-015A	2/22/06 12:35 PM	2/22/06	2/23/06 5:43 AM	0602390-016A	2/22/06 12:40 PM	2/22/06	2/23/06 6:25 AM
0602390-017A	2/22/06 12:40 PM	2/22/06	2/23/06 7:07 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

	McCAM	PBELI				LI	NC		_		-	Ì	Т	-				C	H	AIN	10			_	_	_		-	COI	RD	<u> </u>		
Telephor	1 ne: (925) 798		VENUE S CO, CA 94		60	ax:	(925	5) 798	8-16	22								OU	ND	TI (N	ME		-	USH	-	24 F	IR	4			72 HR	5 DA	Y
Report To: Dan			1	Bill To	»: G	amb	ria	- D	an	Gla	20	ģ.				-		Concession of the local division of the loca	and the second second	ysis	_	-						and the owner where the owner w	Othe	the state of the s		ments	
Company: Com																<u>e</u>					Τ										Em	ail resu	伤
	> 16 (1 is 5-	f. ste				_					_		_			B&															to	nin@ca laze@· ss @-	nt
	yville			E-Mai							en	1.00				SEF.	_	4	0920				625 / 8270 / 8310								1-9"	nineu	er
Tele: (510).37				Fax: (									- 3			201	20	é	6				3/0								de	azel.	-"
Project #: 3042	91-DG	- 1 -	1	rojec	t Nai	ne:	30	429	1-1	DG				8		e (5:	1S (4	100	E	2			827			_					iD	. @ -	15
Project Location:	30091 1	-irst s	t. Liv	ermo	re	CA		-	_	_			- 080			reas	rboi	007	6	NIC			525			010					D+0	ss e-	
Sampler Signatur	e: Dar	nz		_	_	-	_		_	M	ETH	IOD	- 30			& G	Iroca	200	700	3's C	09		EPA (			9.2/6					BJE	x678260	2
	¥.)	SAMI	PLING	~	ers	1	MA	TRIX	(			IVEI			8015	6	HÀ	V QC	VI.	PCE	/ 82					1/23					TTH	td 80	15
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soft	Air Sludge	Other	Ice	HCI	HNO ₃	TPH as		TPH as Diesel (8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	DIEA UNLI (ELA'0027 0020) EDA 200 / 0000	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI					report x, Gous, vesel	
EXZ-1	12	2/24/06	200	1	7		x			X			X	<	X			>	<										-				$\neg$
EX2-2	6	1	205										1	1																			
EX2-3	12		210		N.								T																				
Ex2-4	6		215		3								11		Π																		
EX2-5	12		215	$\square$	54		$^{+-}$			Ħ		-	Ħ	+	H	-	-		1	+	1				-	-		-		-	1		$\neg$
EX2-6	6	1	220	+	1		1			L			1					-											+				_
																											_						_
								+		_	-	+		-	-	_		-	-				_	_	_	_	-	_					_
Relinquished By:		Date: 2/24/0	Time: 545 ^{Pn}		ivea B		n	6	In	JU I	1									1								DAS	0&0	; ]:	MÉTALS	OTHE	R
Relinquished By: Relinquished By:		Date:	Time:	Recei	ived B	y:								GC HE	DOI	SP.	ACH		SEN	T_	_	A	PPI	ROP	RIA	TE S_	1	_		_			-
reconquisited by:		Date:	Time:	Recei	ved B	y:								DE	.cn		icity.	AIL	an r	N LA			PE	RSE	RV	e D	IN I	AB		_			

# McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-16	20			Wo	rkOrd	ler: 06	502448		Clie	entII	): C	сете		EDI	F: NO			
Report to:							Bill to:							Rec	juested	TAT:		1 day
Dan Glaze		TEL: (	(510) 420-070	0			Acc	ounts l	Payab	le								
Cambria Env. Te 5900 Hollis St, S Emeryville, CA	Suite A		(510) 420-917 #304291-DG	0			590	nbria E 0 Holli: eryville	s St, S	ste. A		y			te Rece te Print		02/24, 02/24,	
					[				R	eque	sted	Tests	(See le	gend be	low)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	!	5	6	7	8	9	10	11	12
0602448-001	EX2-1		Soil	2/24/06 2:00:00 PM	1	A	A											
0602448-002	EX2-2		Soil	2/24/06 2:05:00 PM		А	Α											
0602448-003	EX2-3		Soil	2/24/06 2:10:00 PM		А	Α											
0602448-004	EX2-4		Soil	2/24/06 2:15:00 PM		А	Α											
0602448-005	EX2-5		Soil	2/24/06 2:15:00 PM	1	А	Α											
0602448-006	EX2-6		Soil	2/24/06 2:20:00 PM	1	А	А											

### Test Legend:

1 8260B_S	2 G-MBTEX_S	3	4	5
6	7	8	9	10
11	12			

The following SampIDs: 0602448-001A, 0602448-002A, 0602448-003A, 0602448-004A, 0602448-005A, 0602448-006A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Prepared by: Kathleen Owen

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Ana	alytical, Inc	•	Telephone :	South, #D7, Pacheco, CA 925-798-1620 Fax : 925 mpbell.com E-mail: main	-798-1622	com
Cambria Env. Technology	Client Pr	oject ID: #3042	91-DG	Date Sampled:	02/24/06	
5900 Hollis St, Suite A				Date Received:	02/24/06	
Emeryville, CA 94608	Client Co	ontact: Dan Glaz	æ	Date Extracted:	02/24/06	
Emeryvine, CA 94008	Client P.	0.:		Date Analyzed:	02/24/06-0	)2/25/06
Extraction Method: SW5030B	An	BTEX by GC/N alytical Method: SW826			Work Ord	ler: 0602448
Lab ID	0602448-001A	0602448-002A	0602448-003A	0602448-004A		
Client ID	EX2-1	EX2-2	EX2-3	EX2-4	Reporting	
Matrix	S	S	S	S	DF	7=1
DF	1	1	1	1	S	W
Compound		Conce	entration		mg/kg	ug/L
Benzene	ND	ND	ND	ND	0.005	NA
Toluene	ND	ND	ND	ND	0.005	NA
Ethylbenzene	ND	ND	ND	ND	0.005	NA
Xylenes	ND	ND	ND	ND	0.005	NA
	Surro	ogate Recoveries	s (%)			1
%SS1:	101	100	101	101		
%SS2:	105	105	105	104		
%SS3:	119	118	116	117		
Comments						

McCampbell Ana	alytical, Inc	•	Telepho	enue South, #D7, Pacheco, C ne : 925-798-1620 Fax : 92 nccampbell.com E-mail: mai	25-798-1622	com
Cambria Env. Technology	Client Pr	oject ID: #304	291-DG	Date Sampled:	02/24/06	
5900 Hollis St, Suite A				Date Received:	02/24/06	
Emeryville, CA 94608	Client Co	ontact: Dan Gla	ze	Date Extracted:	02/24/06	
Emeryvnie, CA 94000	Client P.	0.:		Date Analyzed:	02/24/06-0	02/25/06
Extraction Method: SW5030B	An	BTEX by GC/ alytical Method: SW82			Work Ord	ler: 0602448
Lab ID	0602448-005A	0602448-006A				
Client ID	EX2-5	EX2-6				Limit for
Matrix	S	S			– DF	7=1
DF	4000	1			S	W
Compound		Con	centration		mg/kg	ug/L
Benzene	68	ND			0.005	NA
Toluene	800	0.011			0.005	NA
Ethylbenzene	230	ND			0.005	NA
Xylenes	1000	0.011			0.005	NA
	Surro	ogate Recoverie	es (%)			
%SS1:	103	100				
%SS2:	109	104				
%SS3:	116	114				
Comments						

McC	ampbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 9455 925-798-1620 Fax : 925-798-1 mpbell.com E-mail: main@mcc	622	
Cambria Env. Te	chnology	Client Project ID:	#304291-DG	Date Sampled: 02/2	4/06	
5900 Hollis St, S	uite A			Date Received: 02/2	4/06	
Emeryville, CA 9	1400	Client Contact: Da	an Glaze	Date Extracted: 02/2	4/06	
Emeryvine, CA 9	4008	Client P.O.:		Date Analyzed: 02/2	25/06-02/	27/06
Extraction method: SW5			tile Hydrocarbons as ( ethods: SW8015Cm		Work Order:	0602448
Lab ID	Client ID	Matrix	TPH(g)	)	DF	% SS
001A	EX2-1	S	ND		1	86
002A	EX2-2	S	ND		1	89
003A	EX2-3	S	ND		1	87
004A	EX2-4	S	ND		1	91
005A	EX2-5	S	17,000,	a	1000	109
006A	EX2-6	S	ND		1	85
	ing Limit for DF =1; ans not detected at or	W	NA		N	IA
	e the reporting limit	S	1.0		mg	/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/$ wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

McCa	ampbell Analyti	cal, Inc.	Telephone	e South, #D7, Pacheco, CA 94553 925-798-1620 Fax : 925-798-162 ampbell.com E-mail: main@mccan	22	
Cambria Env. Tec	hnology	Client Project ID:	#304291-DG	Date Sampled: 02/24	/06	
5900 Hollis St, Su	ite A			Date Received: 02/24	/06	
Emeryville, CA 94	1608	Client Contact: D	an Glaze	Date Extracted: 02/24	/06	
Emeryvine, CA 92	+008	Client P.O.:		Date Analyzed: 02/24	/06	
Extraction method: SW35		-	ctable Hydrocarbons a ethods: SW8015C		ork Order:	0602448
Lab ID	Client ID	Matrix	TPH(d	)	DF	% SS
0602448-001A	EX2-1	S	ND		1	100
0602448-002A	EX2-2	S	ND		1	100
0602448-003A	EX2-3	S	ND		1	104
0602448-004A	EX2-4	S	ND		1	103
0602448-005A	EX2-5	S	1600,0	I	10	97
0602448-006A	EX2-6	S	ND		1	99
<u> </u>						

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

Telepho	McCAM 1 ne: (925) 798	110 2 nd A PACHE	L ANA VENUE SO CO, CA 94	DUTH	#D7 60			798-	162	2						C ROU ed? C	ND	TI	ME			USH		24 F	IR IR	48		72 H	R
Report To: Dan	6/020	-	1	SII T	n: ()	anh	Die.	- Da	6	La		+	DF	Req	uire	the second s	naly	The other Designation of the local division of the local divisione	The second second	-	_	)	WI	rite	On	-	) N		
	brig		1	>m 1	0: 4	amo	119	Da	nc	192	e	+	1		-	-	thany	515 1	cequ	lest			-		+	-0	other	Co	m
	0 (6 ( 1 is B	f ste	A				_			-				&F)														En	
	syville	1.0.0	I	-Mai	1: 0	4/0	20 6	Cam	hre	6-0	av.r	0.4		EFB			0				2						1	1	rei
Tele: (510),37	and the second se	7	I	ax:	(510	JU	2.0-	917	0		10 10			0 E8	1	1	1		1		/83						1	1	1
Project #: 3042			I	roje	t Na	me:	304	1291	- D	6		108		552	(418	d	0				270							d	91
<b>Project Location:</b>	3884 1	First S	t. Live	ermo						-		1		Grease (5520 E&F/B&F)	ons			LY			EPA 625/8270/8310			6				t la diff	05
Sampler Signatur		No												Gre	cart			NO			A 62			/09/					
		SAM	PLING		3	1	MAT	RIX		MET	THOD		15)	Oil&	ydro		Į.	CB,	8260					39.2					
			1	ILS	iner	H			-	RES	ERVE	D é	(8015)	0 m	H u	0		30 PC	0/0	0	s by	Is	50	21/2					
SAMPLE ID (Field Point Name)	LOCATION			Containers	Containers						1	TPH	Diese	Total Petroleum	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BIEX ONLY ( <del>EPA 602 / 2020</del> ) EPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)			12		
(Field Foline (Valle)		Date	Time	on		Water	_	dge	ler	-	03	e e	TPH as Di	I Pe	I Pc	601	608	608	624	625	\s.	4-17	T 5	1(72					
				#	Type	Wa	Soil	Sludge	Other	HCI	HNO3	DUREN &	TPH	Tota	Tota	EPA	EPA	EPA	EPA	EPA	PAF	CAN	3	Leak	RCI				
Ex-2-29	20'	2.28	1320	1	9		X		+	X		7	-			-	4	1							+	-			_
E+-2-30	12'	2.28		1			×		+	×	$\square$	×	×				~									-			_
Ex-2-31	6	2.28	1334	1			×			×		1	-				(	-						-			++		_
Ex-2-32	20	2.28		1			×		+	×							2	-								-			-
E+-2-33	12	228			2		X		+	X						-	X	-							+	-			_
EX-2-34	6	278			eu		Ŷ		+	X		X				_	<	+					1		+	+	+		
Fx-2-35		2.28			See		X		+	5		X	X		-		×	+				-	-	-	+	+	+		_
	20				5		_		+	7					-			-			_	-	-	-	+				_
Ex-2-36		228		1			×		+	Y		X	-	-	-		(	-		-	-	-	-	-	+	_		_	_
Ex-2-37	6'	2.28	1336	1	-		+		_	X			Y		_	)	-	-		_	_	_	_	_	_	_			
							_								_					_	_								
~																													
()																													_
Relinquished By:	1	Date:	Time:	Rece	ived B	y:			-			+	-		-	-	-	-		_	_	-	-	_					_
Kan 12		2 28	2:35.	11	la	the	U	1	1	_	X	1			1	/									vo.	AS (	0&G	METAI	S
Relinquished By:		Date:	Time:	Rece	ived B	y:		-		C	9	1	ICE/		ON	DITI	ON	V			PPF					_	_		_
																EAL		T			ON				V				
Relinquished By:		Date:	Time:	Rece	ived B	V:							DEC	HLC	RI	NAT	D IN	IT.A	R		PE	RSE	RV	ED	IN L	AR			

# McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-162	20			Wol	rkOro	der: 06	602500		Cli	entID: (	CETE		EDF	: NO			
Report to:							Bill to:						Req	uested	TAT:		1 day
Dan Glaze		TEL:	(510) 420-070	00			Ace	counts	Payab	le							
Cambria Env. Te 5900 Hollis St, S Emeryville, CA	Suite A	FAX: ProjectNo: PO:	(510) 420-917 #304291-DG	70			590	mbria E )0 Holli eryville	s St, S		У			e Rece e Print			2006 2006
									R	equested	l Tests (	See leg	end bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0602500-001	EX-2-29		Soil	2/28/06 1:20:00 PM		A	A										
0602500-002	EX-2-30		Soil	2/28/06 1:22:00 PM		Α	Α								-	-	
0602500-003	EX-2-31		Soil	2/28/06 1:24:00 PM		Α	Α								-		
0602500-004	EX-2-32		Soil	2/28/06 1:26:00 PM		А	А										
0602500-005	EX-2-33		Soil	2/28/06 1:28:00 PM		А	А										
0602500-006	EX-2-34		Soil	2/28/06 1:30:00 PM		Α	А										
0602500-007	EX-2-35		Soil	2/28/06 1:32:00 PM		Α	А										
0602500-008	EX-2-36		Soil	2/28/06 1:34:00 PM		Α	А										
0602500-009	EX-2-37		Soil	2/28/06 1:36:00 PM		А	Α										

### Test Legend:

1	G-MBTEX_S
6	
11	

3	
8	

4	
9	

5	
10	

The following SampIDs: 0602500-001A, 0602500-002A, 0602500-003A, 0602500-004A, 0602500-005A, 0602500-006A, 0602500-007A, 0602500-008A, 0602500-009A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

MBTEX-8260B_S

2

7 12

**Prepared by: Maria Venegas** 

Comments: <u>24hr Rush</u>

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McC	ampbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 94553- 925-798-1620 Fax : 925-798-162 mpbell.com E-mail: main@mccan	22	l
Cambria Env. Te	echnology	Client Project ID:	#304291-DG	Date Sampled: 02/28	/06	
5900 Hollis St, S	buite A			Date Received: 02/28	/06	
Emograville CA (	0.4209	Client Contact: I	Dan Glaze	Date Extracted: 02/28	/06	
Emeryville, CA 9	94008	Client P.O.:		Date Analyzed: 02/28	/06-03/	01/06
Extraction method: SW5		0	atile Hydrocarbons as methods: SW8015Cm		ork Order:	0602500
Lab ID	Client ID	Matrix	TPH(g	)	DF	% SS
001A	EX-2-29	S	ND		1	93
002A	EX-2-30	S	ND		1	87
003A	EX-2-31	S	ND		1	83
004A	EX-2-32	S	ND		1	99
005A	EX-2-33	S	ND		1	85
006A	EX-2-34	S	ND		1	96
007A	EX-2-35	S	2.5,a		1	87
008A	EX-2-36	S	ND		1	82
009A	EX-2-37	S	ND		1	91
	ting Limit for $DF = 1$ ; eans not detected at or	W	NA			NA
	ve the reporting limit	S	1.0		mg	g/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/$ wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

	alytical, Inc	ו		925-798-1620 Fax : 925 mpbell.com E-mail: main		com
Cambria Env. Technology	Client Pr	oject ID: #3042	91-DG	Date Sampled:	02/28/06	
5900 Hollis St, Suite A				Date Received:	02/28/06	
Emeryville, CA 94608	Client Co	ontact: Dan Glaz	e	Date Extracted:	02/28/06	
Emeryvine, CA 94008	Client P.	0.:		Date Analyzed:	02/28/06	
Francisco Made de SW5020D		E and BTEX by			West-Ood	L
Extraction Method: SW5030B Lab ID	0602500-001A	alytical Method: SW8260 0602500-002A	0602500-003A	0602500-004A	work Ord	ler: 0602500
Client ID	EX-2-29	EX-2-30	EX-2-31	EX-2-32	Reporting	Limit for
Matrix	S	S	S	S	DF	7=1
DF	1	1	1	1	S	W
Compound		Conce	entration		mg/kg	ug/L
Benzene	ND	ND	ND	0.077	0.005	NA
Ethylbenzene	ND	ND	ND	0.017	0.005	NA
Toluene	ND	ND	ND	ND	0.005	NA
Xylenes	ND	ND	ND	ND	0.005	NA
	Surro	ogate Recoveries	s (%)		•	÷
%SS1:	86	102	103	91		
	100	103	103	92		
%SS2:			110	100		
%SS2: %SS3:	99	114	118	100		

				mpbell.com E-mail: main		.0111
Cambria Env. Technology	Client Pr	oject ID: #3042	91-DG	Date Sampled:	02/28/06	
5900 Hollis St, Suite A				Date Received:	02/28/06	
Emeryville, CA 94608	Client Co	ontact: Dan Glaz	e	Date Extracted:	02/28/06	
Lineryvine, CA 74000	Client P.	0.:		Date Analyzed:	02/28/06	
	MTBI	E and BTEX by	GC/MS*			
Extraction Method: SW5030B		alytical Method: SW8260			Work Ord	er: 0602500
Lab ID	0602500-005A	0602500-006A	0602500-007A	0602500-008A		
Client ID	EX-2-33	EX-2-34	EX-2-35	EX-2-36	Reporting	
Matrix	S	S	S	S	DF	F =1
DF	1	1	2	1	S	W
Compound		Conce	entration		mg/kg	ug/L
Benzene	ND	ND	0.25	ND	0.005	NA
Ethylbenzene	ND	ND	0.060	ND	0.005	NA
Toluene	ND	ND	ND<0.010	ND	0.005	NA
Xylenes	ND	ND	ND<0.010	ND	0.005	NA
	Surro	ogate Recoveries	(%)			
%SS1:	88	101	84	101		
%SS2:	101	102	99	102		
%SS3:	103	117	98	117		
Comments						
* water and vapor samples are reported in µg	/I soil/sludge/solid	samples in ma/ka pr	oduct/oil/non-aqueo	us liquid samples and	all TCI P & S	PI P

McCampbell An	alytical, Inc	ו		Telephone :	South, #D7, Pacheco, CA 925-798-1620 Fax : 925 mpbell.com E-mail: main	-798-1622	com
Cambria Env. Technology	Client Pr	oject ID:	#3042	91-DG	Date Sampled:	02/28/06	
5900 Hollis St, Suite A					Date Received:	02/28/06	
Emeryville, CA 94608	Client Co	ontact: Da	an Glaz	e	Date Extracted:	02/28/06	
	Client P.	0.:			Date Analyzed:	02/28/06	
Extraction Method: SW5030B		E and BT	-			Work Ord	ler: 0602500
Lab ID	0602500-009A						
Client ID	EX-2-37					Reporting	
Matrix	S					DF	-=1
DF	1					S	W
Compound			Conce	entration		mg/kg	ug/L
Benzene	ND					0.005	NA
Ethylbenzene	ND					0.005	NA
Toluene	ND					0.005	NA
Xylenes	ND					0.005	NA
	Surro	ogate Rec	overies	(%)			
%SS1:	101						
%SS2:	102						
%SS3:	114						
Comments							
* water and vapor samples are reported in μ extracts are reported in mg/L, wipe samples ND means not detected above the reporting	in µg/wipe.	-		-	us liquid samples and	all TCLP & S	PLP
# surrogate diluted out of range or coelutes v	with another peak; &)	low surroga	te due to	matrix interference.			

McC	Campbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 94553- 925-798-1620 Fax : 925-798-162 mpbell.com E-mail: main@mccan	22	
Cambria Env. Te	echnology	Client Project ID	#304291-DG	Date Sampled: 02/28	/06	
5900 Hollis St, S	Suite A			Date Received: 02/28	/06	
Emergenille CA	04609	Client Contact: D	Dan Glaze	Date Extracted: 02/28	/06	
Emeryville, CA	94008	Client P.O.:		Date Analyzed: 02/28	/06-03/	01/06
Extraction method: SW3	-		actable Hydrocarbons a nethods: SW8015C		ork Order:	0602500
Lab ID	Client ID	Matrix	TPH(d)		DF	% SS
0602500-001A	EX-2-29	S	ND		1	85
0602500-002A	EX-2-30	S	ND		1	88
0602500-003A	EX-2-31	S	ND		1	86
0602500-004A	EX-2-32	S	ND		1	85
0602500-005A	EX-2-33	S	ND		1	87
0602500-006A	EX-2-34	S	ND		1	87
0602500-007A	EX-2-35	S	ND		1	100
0602500-008A	EX-2-36	S	ND		1	99
0602500-009A	EX-2-37	S	ND		1	99

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

Telephor	McCAM 1 ne: (925) 798	10 2 ^{ad} A PACHE	L ANAI VENUE SO CO, CA 94	DUTH,	#D7 60				8-16	522							RC	UN	D'	TIN	Æ		R	USH	ı 🤞	24 1	HR				72 HR	S DAY
Report To: Dan	Glaze		E	Bill To	: C	amb	rig	- 1	an	66	120	_						An	alys	sis R	lequ	est							Oth	-	Com	ments
Company: Com															6				T												Ema	l result
	0 (6) (1 is 5-	f. ste	A												0.01	00																
	ryville		E	-Mai	1: d	9 9	200	200	mb	ria ·	-en	v.c	out		0.10	01							310								Lger	inecam
Tele: (510).37		7	F	C-Mai Fax: ( Projec	510	)4	20.	-91	70	-				NACI.	100		1.0						0/8								dal	200-
Project #: 3042			P	rojec	t Nar	ne:	304	129	11-1	DG			0	R	166	6	S (4	0		2			827								1,D	12eQ - 11
<b>Project Location:</b>	3884 F	First S	t. Live	rmo	re	CA					_		T ULUO	107	0000	Case	LDOUL	802		SI			25/			010		0	5		btos	s @ -
Sampler Signatur	e: //u	un	L'			_			_	_				3	0	5	LOCA	502		.s 0	0		A 6			.2/6		2	0			
		SAMI	PLING		SIL	1	MAT	FRE	X			HOD		0) 50	015		нуа	PA		CB	826		y El			/239		3	80 15			
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	All	Other					This of the state	TPH as Dicsel (8015) Total Periodation Oil & Granie (5520 E&E/0 &E)	Total Feroleum	10ial Fetroleum Hydrocarbons (418.1) EPA 601 / 8010	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624/8240/8260	EPA 625/8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	1	BIEX	OH	•		
Ex-2-29	20	3.1	1415	1	Spein		×			×				1	X													X	×			
Ex-2-30	15	3/1	1417				1			1					1														1			
Ex. 2-31	10	3.1	1419												1																Hold	/
Ex-2-32	20	3.1	1421				1								1																17-19	
Ex-2-33	15	3.1	1423																													
Ex-2-34	10	3.1	1425-												V													T	T		Hold	1
EY-2-35	20	3.1	1427																													
Ey-2-36	15	3.1	1429				T			T		+			1														T			
Ex-2-37	16	3.1	1431				1								1														T		Ho	d
Ex -2-38	20	3.1	1433				1			1				1	1		-					1						11	tt	-	110	
Ex-2-39	15	3.1	1435	1									-	1			+					+							++	-		
Ex-2-40	10	3.1	1437		1			-		1			+	1		-	-					+							+	-	Ho	d
EX-2-41	18	2.1		V	1		V			4					¢	+						1						J	1		1101	~
			1.1																													
Relinquished By:		Date:	Time:	Recei	ved B	ful	2	1	Ja	C	4	2	T					-									v	OAS	0&	G	METALS	OTHER
Relinquished By:		Date:	Time:	Recei	ved B	yl:							1		E/t°_ DOD EAD		NDI	TIO	N_	r				SER ROF			DN					
Relinquished By:		Date:	Time:	Recei	ved By	y:							1	DE	CH	LOI	RINA	TEI	D IN	LA	B		PE	RSI	RV	ED	IN	LAE				

# McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-16	20			Wo	rkOrd	ler: 0	603009		Clie	ntID: (	CETE		EDF	: NO			
Report to:							Bill to:						Req	uested	TAT:		1 day
Dan Glaze		TEL:	(510) 420-070	00			Acc	ounts	Payable	э							
Cambria Env. Te 5900 Hollis St, S Emeryville, CA	Suite A		(510) 420-917 #304291-DG;	70 3884 First St. Live	ermore	C	590	0 Holli	Env. Teo s St, St e, CA 94		У			e Rece e Prini			/2006 /2006
									Re	quested	l Tests	(See leg	end bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0603009-001	EX-2-29		Soil	3/1/06 2:15:00 PM		A	A							<u> </u>			
0603009-002	EX-2-30		Soil	3/1/06 2:17:00 PM		Α	А										
0603009-004	EX-2-32		Soil	3/1/06 2:21:00 PM		А	А										-
0603009-005	EX-2-33		Soil	3/1/06 2:23:00 PM		А	А										
0603009-007	EX-2-35		Soil	3/1/06 2:27:00 PM		А	А										
0603009-008	EX-2-36		Soil	3/1/06 2:29:00 PM		Α	А										
0603009-010	EX-2-38		Soil	3/1/06 2:33:00 PM		А	А										
0603009-011	EX-2-39		Soil	3/1/06 2:35:00 PM		А	А										
0603009-013	EX-2-41		Soil	3/1/06 2:39:00 PM		А	Α										

### Test Legend:

1	G-MBTEX_S
6	
11	

	3
8	 8

4	
9	

5	
10	

The following SampIDs: 0603009-001A, 0603009-002A, 0603009-004A, 0603009-005A, 0603009-007A, 0603009-008A, 0603009-010A, 0603009-011A, 0603009-013A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

MBTEX-8260B_S

2

7 12

**Prepared by: Maria Venegas** 

Comments: <u>24hr Rush</u>

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McC	Campbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 94553 925-798-1620 Fax : 925-798-16 mpbell.com E-mail: main@mccar	22	l
Cambria Env. Te	echnology		: #304291-DG; 3884	Date Sampled: 03/01	/06	
5900 Hollis St, S	Suite A	First St. Livermon	re CA	Date Received: 03/01	/06	
Emeryville, CA	94608	Client Contact: I	Dan Glaze	Date Extracted: 03/01	/06	
	, 1000	Client P.O.:		Date Analyzed: 03/01	/06-03/	02/06
Extraction method: SW:		•	atile Hydrocarbons as ( nethods: SW8015Cm		ork Order:	0603009
Lab ID	Client ID	Matrix	TPH(g	)	DF	% SS
001A	EX-2-29A	S	ND		1	81
002A	EX-2-30A	S	ND		1	96
004A	EX-2-32A	S	ND		1	98
005A	EX-2-33A	S	ND		1	94
007A	EX-2-35A	S	ND		1	94
008A	EX-2-36A	S	ND		1	91
010A	EX-2-38A	S	ND		1	82
011A	EX-2-39A	S	ND		1	86
013A	EX-2-41A	S	ND		1	82
ND m	rting Limit for DF =1; eans not detected at or ve the reporting limit	W S	NA 1.0			VA g/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/$ wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

Client I	main at ID: #20	1201 DC. 2004	02/01/06						
		i291-DG; 3884	-						
			Date Received:	03/01/06					
Client C	Contact: Dan Gl	aze	Date Extracted:	03/01/06					
Client I	P.O.:		Date Analyzed:	03/01/06-03/02/06					
MTE	BE and BTEX b	y GC/MS*							
А	nalytical Method: SW8	260B		Work Ord	ler: 0603009				
0603009-001A	0603009-002A	0603009-004A	0603009-005A						
EX-2-29	EX-2-30	EX-2-32	EX-2-33		g Limit for				
S	S	S	S	DF	F=1				
1	1	1	1	S	W				
	Con	centration	<u>.</u>	mg/kg	ug/L				
ND	ND	ND	ND	0.005	NA				
ND	ND	ND	ND	0.005	NA				
ND	ND	ND	ND	0.005	NA				
ND	ND	ND	ND	0.005	NA				
Sur	rogate Recoveri	es (%)							
91	89	89	92						
103	101	100	101						
103	103	101	103						
	First St         Client C         Client R         Client R         0603009-001A         EX-2-29         S         1         ND         ND         ND         ND         ND         ND         91         103	First St. Livermore CA           Client Contact: Dan Gla           Client P.O.:           MTBE and BTEX by           Anatytical Method: SW82           0603009-001A         0603009-002A           0603009-001A         0603009-002A           EX-2-29         EX-2-30           S         S           1         1           OND         ND           ND         ND           ND         ND           ND         ND           ND         ND           Surreate Recoveri         89           91         89           103         101	Client Contact: Dan Glaze         Client P.O.: <b>MTBE and BTEX by C/MS*</b> Anitytical Method: SW8260E         0603009-001A       0603009-002A       0603009-004A         0EX-2-29       EX-2-30       EX-2-32         S       S       S         1       1       1         D       ND       ND         ND       ND       ND         Surregate Recoveries (%)       100	First St. Livermore CA         Date Received: Date Received:           Client Contact: Dan Glaze         Date Extracted: Date Analyzed:           Client P.O.:         Date Analyzed:           MTBE and BTEX by GC/MS* Analytical Method: SW8260B           0603009-001A         0603009-002A         0603009-004A         0603009-005A           EX-2-29         EX-2-30         EX-2-32         EX-2-33           S         S         S         S           1         1         1         1           ND         ND         ND         ND           ND         ND         ND         ND	Interface of the second of the secon				

McCampbell Ana		•			925-798-1620 Fax : 925 mpbell.com E-mail: main		com				
Cambria Env. Technology		oject ID: #3		91-DG; 3884	Date Sampled:	03/01/06					
5900 Hollis St, Suite A	First St.	Livermore CA	ł		Date Received:	03/01/06					
Emeryville, CA 94608	Client Co	ontact: Dan C	Glaze		Date Extracted:	. 03/01/06					
Emeryvine, CA 94008	Client P.	0.:			Date Analyzed:	03/01/06-03/02/06					
	MTB	E and BTEX	by G	GC/MS*							
Extraction Method: SW5030B	An	alytical Method: SV	V8260I	В		Work Ord	ler: 060300				
Lab ID	0603009-007A	0603009-008	3A	0603009-010A	0603009-011A						
Client ID	EX-2-35	EX-2-36		EX-2-38	EX-2-39	Reporting					
Matrix	S	S		S	S	DF	5=1				
DF	1	1		1	1	S	W				
Compound		Co	once	ntration	<u>.</u>	mg/kg	ug/L				
Benzene	ND	ND		ND	ND	0.005	NA				
Ethylbenzene	ND	ND		ND	ND	0.005	NA				
Toluene	ND	ND		ND	ND	0.005	NA				
Xylenes	ND	ND		ND	ND	0.005	NA				
	Surro	ogate Recove	ries	(%)							
%SS1:	92	89		89	89						
%SS2:	103	102		102	102						
%SS3:	104	104		105	103						
Comments											
* water and vapor samples are reported in µg extracts are reported in mg/L, wipe samples i ND means not detected above the reporting I	n µg/wipe.			-	us liquid samples and	all TCLP & S	PLP				

McCampbell Ana	alytical, Inc.	•		Telephone :	e South, #D7, Pacheco, CA 925-798-1620 Fax : 925 mpbell.com E-mail: main	5-798-1622	com
Cambria Env. Technology				91-DG; 3884	Date Sampled:	03/01/06	
5900 Hollis St, Suite A	First St. L	Livermore	e CA		Date Received:	03/01/06	
Emeryville, CA 94608	Client Co	ontact: Da	an Glaz	e	Date Extracted:	03/01/06	
Emeryvine, err 94000	Client P.O	D.:			Date Analyzed:	03/01/06-0	03/02/06
Extraction Method: SW5030B		<b>and BT</b> lytical Metho	-	<b>GC/MS*</b> )B		Work Ord	ler: 0603009
Lab ID	0603009-013A						
Client ID	EX-2-41					Reporting	Limit for $F = 1$
Matrix	S					DF	· =1
DF	1					S	W
Compound			Conce	entration		mg/kg	ug/L
Benzene	ND					0.005	NA
Ethylbenzene	ND					0.005	NA
Toluene	ND					0.005	NA
Xylenes	ND					0.005	NA
	Surro	gate Rec	overies	(%)			
%SS1:	88						
%SS2:	101						
%SS3:	104						
Comments							
* water and vapor samples are reported in µg extracts are reported in mg/L, wipe samples i ND means not detected above the reporting I # surrogate diluted out of range or coelutes w	in μg/wipe. imit; N/A means anal	lyte not app	licable to	this analysis.		all TCLP & S	PLP

McCa	ampbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 94553- 925-798-1620 Fax : 925-798-162 impbell.com E-mail: main@mccan	22	l
Cambria Env. Teo	chnology		: #304291-DG; 3884	Date Sampled: 03/01	/06	
5900 Hollis St, St	uite A	First St. Livermo	re CA	Date Received: 03/01	/06	
Emeryville, CA 9	4608	Client Contact: I	Dan Glaze	Date Extracted: 03/01	/06	
Emeryvine, CA 9	4008	Client P.O.:		Date Analyzed: 03/01	/06-03/	02/06
Extraction method: SW35			actable Hydrocarbons a methods: SW8015C	We	ork Order:	0603009
Lab ID	Client ID	Matrix	TPH(d)	)	DF	% SS
0603009-001A	EX-2-29A	S	ND		1	100
0603009-002A	EX-2-30A	S	ND		1	86
0603009-004A	EX-2-32A	S	ND		1	85
0603009-005A	EX-2-33A	S	ND		1	85
0603009-007A	EX-2-35A	S	ND		1	97
0603009-008A	EX-2-36A	S	ND		1	100
0603009-010A	EX-2-38A	S	ND		1	99
0603009-011A	EX-2-39A	S	ND		1	104
0603009-013A	EX-2-41A	S	ND		1	99

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

	MeCAM	10 2nd AV	ANAI	UTH,	#D7	LI	NC.							T	UR	NA	AR			AIN TI			A	Ø	κ.	Z			COF D	Ψ	5	5 DAY
Telephor	ne: (925) 798	-1620			F	ax:	(925	5) 7	98-16	522				ED	FF	legu	ire	d? (	oel	t (N	orm	al)	N	0.28	W	ite	On	(DW		No	12 UK	<b>.</b>
Report To: Dan	Glaze		В	ill To	: 6	amb	ria	-	Dan	61	a26	2						_	-	ysis		_						(	Other	r	Com	nents
Company: Com																£															Emai	( resul
5900	0 (6) (1 is 5-	f. ste	A											4		Grease (5520 E&F/B&F)			0												to	inecan izee - is e -
Eme	ryville		E	-Mai ax: ( rojec	1: d	9/9	200	20	amb	Mia	-er	14.0	OW	<b></b>		REF	~		8400				8310								Lger	inc
Tele: (510).37	6-0657	К	F	ax: (	510	)4	20	-9	170	>			-	5		201	18.1	1	à				10/								dal	12el -
Project #: 3042	91-DG		P	rojec	t Nar	ne:	30	42	91-	DG	2		_	8		e (55	15 (4		E	>			82			_					6205	@ -
Project Location:		First S	F. Live	rmo	re	CA							_	020		reas	rpor			IZ			625			2010					Diez	
Sampler Signatur	e:			-		_		_		<b>—</b>			_	849	_	80	roca			De C	3		PA			9.2/						
		SAMI	PLING	w.	Iers	1	MA	TR	IX		ESE			(as	8015	lio	Hyd	_		DECE	0/82		byE	50		21/23						
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	<b>Type Containers</b>	Water	Soil	Air	Sludge Other	Ice	HCI	HNO ₃	Other	BTEX & TPH as (	TPH as Diesel (	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (BPA 602/ 8020)	EPA 608 / 8080 EPA 608 / 8080 PCB's ONI V	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by EPA 625 / 8270 /	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI					
EX2-7	20	2/27	250	T	T		×			X			2	X	Х				K													
EX2 -8	20		250			Γ	1			1				I	1				1													
Ex2-9	20		255																													
EX2-10	12		255																													
Ex2-11	6		300																													
EX2-12	20		300																													
EX2-13	12		305	01	a					T																						
EX2-14	6		305	2	Leeu					T																						
EX2-15	20		305	eer	3					Π																						
EX2-16	12		310	S	0					Π																						
EX2 -17	6		310	H	1																											
EX2-18	20		310	1						T																						
EX2 -19	12		320							T				T																		
EX2-20	6	1	320	L	L		1			4	-			1	1				1													
Relinquished By	Ψ	Date:	Time:	Rec	eived I	1	2		1	1	-	-																	1			1
Apr Alex		2/27	535.	1	1	In	10	2.	U	-	7	5			CE	to c	/	_				-	DD	FCF	RVA	TI		OAS	0&0	G	METALS	OTHE
Relinquished By:		Date:	Time:	Reco	eived I	By:								0	GOO	DDC		DIT			_		API	PRO NT/	PRI	ATI	E	/	-			
Relinquished By:		Date:	Time:	Rece	eived H	By:								L	DEC	HLO	OR	INAT	ED	INI	AB	e .	P	ERS	SER	VED	IN	LAB		-		
	62																															

	McCAM		L ANA			LI	NC			_	_	200	Τ															E	co	RI		_
Telepho	ne: (925) 798	PACHE	CO, CA 94	553-55	60	Fax:	(925	5) 79	8-1	622					RN								RU	USI	I.	241	HR		48 HR	5	72 HR	5 DAY
Report To: Dan	61000			Bill T									F	DF	Rec	luir	ed?	_	_	-		_	No	)	W	rite	On	_	_	No		
Company: Com			1	510 I O	0: 0	ame	TIG	- 1	lan	1	a2.		┢					An	alys	IS H	tequ	lest		-		-			Othe	er		ments
the second se	O Hollis S	f. ste	A							-					(ASE)			~													Emi	il result
Eme	ryville		I	E-Mai Fax: ( Projec	il: 0	9 9	200	200	imb	Nia	-er	w.c			& F/B			8260					01								Lae	nin@can (42e&-1 (5 @-11
Tele: (510),37	16-0657	7	I	ax:	(510	)4	20	-91	70	>					OE	8.1)		80					/ 83								-3	0
Project #: 3042	91-DG		I	rojec	et Na	me:	30	420	11-	De	7		0		(552	(41							\$270								dg	42ee
Project Location:	3884 1	First S	t. Liv	ermo	re	CA							8		28.Sc	pons		8020		ALY			157			(0)					bfos	s @ -"
Sampler Signatur	e:					_			_	_	_				Gre	ocar		100		s O			A 62			2/60						
		SAM	PLING		ers		MA	TRI	x			HOD		8015)	Oil & Grease (5520 E&F/B&F)	Hydr		110		PCB'	/ 826(		oy EP			/239.						
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other			HNO ₃	TPH as G	TPH as Diesel (8	E	Total Petroleum Hydrocarbons (418.1)	EPA 601/8010	BTEX ONLY (EPA 692/8020)	EPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI					
EX2-21	20	2/27	322	1	-		X			t			X	XL				×											+	+	+	
=x2-22	12	1	325	1			1						i	1	1			-								-			-	+	-	
Ex2 - 23	6		325				1		1	F		-	++	Ħ	-	-							-				-	-	-	+	-	
=x2-24	20		330		J		$\uparrow$		-			-	++	Ħ	-								-		-	-	-	-	-	+	-	
EX2-24 EX2-25	12		330		2		+		-			-	Ħ	H	-					-	-		+		-	-	+	-		+		
=x2-26	6		330		leev		+	+	+			-	H	+	-	-		+	-	-	-	-	-	-	-	-	-	-	-	+		
=x2-27	20		335		5		4	+	-	$\vdash$		-	++	++		-		+		-	-	-	-	-	-	-	-	-	-	+	-	
=x2-28.	20	+	340	1			F	+				-		1			-	1			-		+			-	+	-	+	+		
							_	_																								
				-				-	-	-	-	-	+	-	-		-	-	-	-	-	-	-	-	-	-	+	-	_	+	-	
								1				-							-	+		-	+				+		-	+	-	
Rèlinquishêd By		Date:	Time:	Rece	ived B	-			1																							
an Ale		2/27	535	1	11	in	1	1	1/	-	~	5															vo	AS	0&0	- 1	METALS	OTHER
Relinquished By:		Date:	Time:	Recei	ived B	y:	U.	-		_	-	_			OD (							A	RES	ROP	RIA	TE	N		Joard		ALLALS	UTHER
Relinquished By:		Date:	Time:	Recei	ived B	v:		_	_	_	_	_	-		DS						2		ON				IN L	AP	1			

## McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-1620				Wol	rkOrd	ler: 06	602479		Clie	ntID: (	CETE		EDF	: NO				
Report to: Dan Glaze Cambria Env. Technology 5900 Hollis St, Suite A Emeryville, CA 94608		TEL: FAX:	(510) 420-07						Payable		W		Req	uested	TAT:		1 day	
		FAX: (510) 420-9170 ProjectNo: #304291-DG; 3884 First St. Livermore C PO:			Cambria Env. Technology 5900 Hollis St, Ste. A Emeryville, CA 94608						Date Received: Date Printed:			02/27/2006 02/27/2006				
									Re	equested	l Tests (	s (See legend below)						
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	
0602479-001	EX2-7		Soil	2/27/06 2:50:00 PM		A	A											
0602479-002	EX2-8		Soil	2/27/06 2:50:00 PM		А	Α										-	
0602479-003	EX2-9		Soil	2/27/06 2:55:00 PM		А	Α											
0602479-004	EX2-10		Soil	2/27/06 2:55:00 PM		А	Α										-	
0602479-005	EX2-11		Soil	2/27/06 3:00:00 PM		А	А										-	
0602479-006	EX2-12		Soil	2/27/06 3:00:00 PM		А	А											
0602479-007	EX2-13		Soil	2/27/06 3:05:00 PM		А	А											
0602479-008	EX2-14		Soil	2/27/06 3:05:00 PM		А	А											
0602479-009	EX2-15		Soil	2/27/06 3:05:00 PM		А	А											
0602479-010	EX2-16		Soil	2/27/06 3:10:00 PM		А	А											
0602479-011	EX2-17		Soil	2/27/06 3:10:00 PM		А	А											
0602479-012	EX2-18		Soil	2/27/06 3:10:00 PM		А	А											
0602479-013	EX2-19		Soil	2/27/06 3:20:00 PM		А	Α											
0602479-014	EX2-20		Soil	2/27/06 3:20:00 PM		А	А											
0602479-015	EX2-21		Soil	2/27/06 3:25:00 PM		А	А											

### Test Legend:

1	G-MBTEX_S	
6		
11		

2

7 12

MBTEX-8260B_S	3	
	8	

4	
9	

5	
10	

The following SampIDs: 0602479-001A, 0602479-002A, 0602479-003A, 0602479-004A, 0602479-005A, 0602479-006A, 0602479-007A, 0602479-008A, 0602479-009A, 0602479-010A, 0602479-011A, 0602479-012A, 0602479-013A, 0602479-014A, 0602479-015A, 0602470-015A, 0602470-015A, 0602470-015A, 0602470-015A, 0602470-015A, 0602470

**Prepared by: Maria Venegas** 

Comments: <u>24hr Rush</u>

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

## McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-1620				Wo	rkOrd	ler: 06	502479		Clie	ntID: (	CETE		EDF	: NO			
Report to:							Bill to:						Req	uested	TAT:		1 day
Dan Glaze		TEL:	(510) 420-07	00			Aco	counts	Payable	Э							
Cambria Env. Technolog 5900 Hollis St, Suite A	-	(510) 420-9170 #304291-DG; 3884 First St. Livermore			Cambria Env. Technology e C 5900 Hollis St, Ste. A						Date Received:			02/27/2006			
Emeryville, CA 94608		PO:					Em	eryville	e, CA 94	608			Date Printed:		02/27/2006		
									Re	quested	l Tests	(See leg	gend bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0602479-016	EX2-22		Soil	2/27/06 3:25:00 PN	1	А	A										
0602479-017	EX2-23		Soil	2/27/06 3:30:00 PM	1	А	А										
0602479-018	EX2-24		Soil	2/27/06 3:30:00 PM	1	А	А										
0602479-019	EX2-25		Soil	2/27/06 3:30:00 PM	1	А	А										
0602479-020	EX2-26		Soil	2/27/06 3:30:00 PM	1	А	А										
0602479-021	EX2-27		Soil	2/27/06 3:35:00 PM	1	А	А										
0602479-022	EX2-28		Soil	2/27/06 3:40:00 PM	1	А	А										

### Test Legend:

1	G-MBTEX_S
6	
11	

2

7 12

MBTEX-8260B_S	]	3	
		8	

4	
9	

5	
10	

The following SampIDs: 0602479-001A, 0602479-002A, 0602479-003A, 0602479-004A, 0602479-005A, 0602479-006A, 0602479-007A, 0602479-008A, 0602479-009A, 0602479-010A, 0602479-011A, 0602479-012A, 0602479-013A, 0602479-014A, 0602479-015A, 0602470-015A, 0602470-015A, 0602470-015A, 0602470-015A, 0602470-015A, 0602470

**Prepared by: Maria Venegas** 

Comments: <u>24hr Rush</u>

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McC	ampbell Analy	tical, Inc.	Telephone :	e South, #D7, Pacheco, CA 945 925-798-1620 Fax : 925-798- mpbell.com E-mail: main@mcc	1622	l				
Cambria Env. Te	chnology					Date Sampled: 02/27/06				
5900 Hollis St, S	uite A	First St. Livermore	e CA	Date Received: 02/2	27/06					
Emorryville, CA (	1609	Client Contact: D	an Glaze	Date Extracted: 02/2	27/06					
Emeryville, CA 9	4008	Client P.O.:		Date Analyzed: 02/2	27/06-02/	28/06				
Extraction method: SW5		-	tile Hydrocarbons as ( ethods: SW8015Cm		Work Order:	0602479				
Lab ID	Client ID	Matrix	TPH(g	)	DF	% SS				
001A	EX2-7	S	2000,a	L	100	101				
002A	EX2-8	S	2300,a	L	100	90				
003A	EX2-9	S	1.8,a		1	75				
004A	EX2-10	S	ND		1	91				
005A	EX2-11	S	ND			92				
006A	EX2-12	S	9.5,a			84				
007A	EX2-13	S	ND		1	93				
008A	EX2-14	S	ND		1	94				
009A	EX2-15	S	ND		1	103				
010A	EX2-16	S	ND		1	94				
011A	EX2-17	S	ND		1	99				
012A	EX2-18	S	ND		1	88				
013A	EX2-19	S	ND		1	107				
014A	EX2-20	S	ND		1	84				
015A	EX2-21	S	ND		1	86				
016A	EX2-22	S	ND		1	86				
	ing Limit for $DF = 1$ ;	W	NA		N	JA				
	ans not detected at or e the reporting limit	S	1.0		mg	g/Kg				

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/wipe$ , product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

McC	ampbell Analyti	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 94: 925-798-1620 Fax : 925-798- mpbell.com E-mail: main@mc	1622			
Cambria Env. Te	chnology		#304291-DG; 3884	Date Sampled: 02/27/06				
5900 Hollis St, S	uite A	First St. Livermore	e CA	Date Received: 02/	27/06			
	24/09	Client Contact: D	an Glaze	Date Extracted: 02/	27/06			
Emeryville, CA 9	94008	Client P.O.:		Date Analyzed: 02/	27/06-02/	28/06		
Extraction method: SW5		-	tile Hydrocarbons as ( ethods: SW8015Cm	Gasoline*	Work Order:	0602479		
Lab ID	Client ID	Matrix	TPH(g	)	DF	% SS		
017A	EX2-23	S	ND		1	95		
018A	EX2-24	S	ND		1	81		
019A	EX2-25	S	ND		1	81		
020A	EX2-26	S	ND		1	84		
021A	EX2-27	S	1300,a			83		
022A	EX2-28	S	43,a		20	87		
	ting Limit for DF =1; eans not detected at or	W	NA		N	JA		
	the reporting limit	S	1.0		mg	g/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/$ wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

DHS Certification No. 1644

McCampbell Ana			Website: www.mcca	mpbell.com E-mail: main	@mccampbell.c	com
Cambria Env. Technology		oject ID: #3042 Livermore CA	91-DG; 3884	Date Sampled:	02/27/06	
5900 Hollis St, Suite A	Filst St. I	Liverniore CA		Date Received:	02/27/06	
Emeryville, CA 94608	Client Co	ontact: Dan Glaz	e	Date Extracted:	02/27/06	
Emeryvine, CA 94008	Client P.	0.:		Date Analyzed:	02/27/06-0	02/28/06
		BTEX by GC/M	[S*			
Extraction Method: SW5030B	Ana	alytical Method: SW826	)B		Work Ord	ler: 0602479
Lab ID	0602479-001A	0602479-002A	0602479-003A	0602479-004A		
Client ID	EX2-7	EX2-8	EX2-9	EX2-10	Reporting	
Matrix	S	S	S	S	DF	F =1
DF	1000	2000	1	1	S	W
Compound		Conce	entration	·	mg/kg	ug/L
Benzene	8.2	28	0.12	ND	0.005	NA
Ethylbenzene	33	40	0.017	ND	0.005	NA
Toluene	77	190	ND	ND	0.005	NA
Xylenes	140	170	0.014	ND	0.005	NA
	Surro	ogate Recoveries	(%)			I
%SS1:	86	85	85	84		
%SS2:	99	98	99	101		
%SS3:	97	98	101	100		
Comments						
* water and vapor samples are reported in $\mu g/$ extracts are reported in mg/L, wipe samples ir		samples in mg/kg, pr	oduct/oil/non-aqueo	us liquid samples and	all TCLP & S	PLP

Combrie Env. Technology	Client D	voie at ID: #2042	01 DC: 2994	Data Sampladi	02/27/06	
Cambria Env. Technology		oject ID: #3042 Livermore CA	91-DG; 3884	Date Sampled:		
5900 Hollis St, Suite A				Date Received:	02/27/06	
Emeryville, CA 94608	Client Co	ontact: Dan Glaz	e	Date Extracted:	02/27/06	
	Client P.	0.:		Date Analyzed:	02/27/06-0	02/28/06
		BTEX by GC/M	[S*			
Extraction Method: SW5030B	An	alytical Method: SW8260	)B		Work Ord	er: 060247
Lab ID	0602479-005A	0602479-006A	0602479-007A	0602479-008A		
Client ID	EX2-11	EX2-12	EX2-13	EX2-14	Reporting	
Matrix	S	S	S	S	DF	5=1
DF	1	4	1	1	S	W
Compound		Conce	entration		mg/kg	ug/L
Benzene	ND	0.36	ND	ND	0.005	NA
Ethylbenzene	ND	0.13	ND	ND	0.005	NA
Toluene	ND	ND<0.020	ND	ND	0.005	NA
Xylenes	ND	0.40	ND	ND	0.005	NA
	Surre	ogate Recoveries	(%)			
%SS1:	84	86	85	84		
%SS2:	100	98	99	100		
%SS3:	100	100	100	101		
Comments					<u> </u>	
* water and vapor samples are reported in µ	g/L_soil/sludge/solid	samples in mg/kg pr	oduct/oil/non-aqueo	us liquid samples and	all TCI P & S	PI P

Combria Env. Toobnology	Client Dr	rojaat ID: #2042	01 DC: $2994$	Data Sampladi	02/27/06	
Cambria Env. Technology		oject ID: #3042 Livermore CA	91-DO; 5884	Date Sampled:		
5900 Hollis St, Suite A				Date Received:	02/27/06	
Emeryville, CA 94608	Client Co	ontact: Dan Glaz	e	Date Extracted:	02/27/06	
	Client P.	0.:		Date Analyzed:	02/27/06-0	02/28/06
		BTEX by GC/M	S*			
Extraction Method: SW5030B	Ana	alytical Method: SW8260	)B		Work Ord	ler: 0602479
Lab ID	0602479-009A	0602479-010A	0602479-011A	0602479-012A		
Client ID	EX2-15	EX2-16	EX2-17	EX2-18	Reporting	
Matrix	S	S	S	S	DF	5=1
DF	1	1	1	1	S	W
Compound		Conce	entration	1	mg/kg	ug/L
Benzene	ND	ND	ND	ND	0.005	NA
Ethylbenzene	ND	ND	ND	ND	0.005	NA
Toluene	ND	ND	ND	ND	0.005	NA
Xylenes	ND	ND	ND	ND	0.005	NA
	Surro	ogate Recoveries	(%)			
%SS1:	85	85	96	99		
%SS2:	100	100	109	107		
%SS3:	102	102	120	117		
Comments						

3884Date Sampled:Date Received:Date Extracted:Date Analyzed:Date Analyzed:9-015A0602479-016A2-21EX2-22SS11n	02/27/06 02/27/06-0 02/27/06-0 Work Orde Reporting DF S	ler: 0602479
Date Extracted:Date Analyzed:'9-015A0602479-016A2-21EX2-22SS1	02/27/06 02/27/06-0 Work Orde Reporting DF S	ler: $0602479$ Limit for $S = 1$
Date Analyzed: 9-015A 0602479-016A 2-21 EX2-22 S S S 1 1 1	02/27/06-0 Work Orde Reporting DF S	ler: $0602479$ Limit for $S = 1$
'9-015A         0602479-016A           2-21         EX2-22           S         S           1         1	Work Orde Reporting DF S	ler: $0602479$ Limit for $S = 1$
2-21 EX2-22 S S 1 1	Reporting DF S	Limit for $F=1$
2-21 EX2-22 S S 1 1	Reporting DF S	Limit for $F=1$
2-21 EX2-22 S S 1 1	Reporting DF	5=1
S S 1 1	- DF	5=1
1 1	S	
		W
1	+	
	mg/kg	ug/L
ID ND	0.005	NA
96		
08 106		
16 117		
	D ND D ND D ND )2 96 )8 106 16 117	D ND 0.005 D ND 0.005 D ND 0.005 D ND 0.005 2 96 106

Combria Env. Toobnology	Client Dr	oject ID: #3042	01 DC: 2994	Data Sampladi	02/27/06	
Cambria Env. Technology		Livermore CA	91-DO; 3884	Date Sampled:		
5900 Hollis St, Suite A				Date Received:	02/27/06	
Emeryville, CA 94608	Client Co	ontact: Dan Glaz	e	Date Extracted:	02/27/06	
	Client P.	0.:		Date Analyzed:	02/27/06-0	02/28/06
		BTEX by GC/M	[S*			
Extraction Method: SW5030B	An	alytical Method: SW8260	)B		Work Ord	ler: 0602479
Lab ID	0602479-017A	0602479-018A	0602479-019A	0602479-020A		
Client ID	EX2-23	EX2-24	EX2-25	EX2-26	Reporting	
Matrix	S	S	S	S	DF	7=1
DF	1	1	1	1	S	W
Compound		Conce	entration		mg/kg	ug/L
Benzene	ND	ND	ND	ND	0.005	NA
Ethylbenzene	ND	ND	ND	ND	0.005	NA
Toluene	ND	ND	ND	ND	0.005	NA
Xylenes	ND	ND	ND	ND	0.005	NA
	Surro	ogate Recoveries	s (%)			
%SS1:	102	101	101	101		
%SS2:	102	102	102	103		
	115	116	116	115		
%SS3:		1	1			
%SS3: Comments						

Cambria Env. Technology	Client Pr	oject ID: #3042	91-DG; 3884	Date Sampled:	02/27/06	
5900 Hollis St, Suite A	First St.	Livermore CA		Date Received:	02/27/06	
	Client C	ontact: Dan Glaz	e	Date Extracted:	02/27/06	
Emeryville, CA 94608	Client P.	0.:		Date Analyzed:	02/27/06-0	)2/28/06
Extraction Method: SW5030B		BTEX by GC/M alytical Method: SW8260			Work Ord	ler: 060247
Lab ID	0602479-021A	0602479-022A				
Client ID	EX2-27	EX2-28			- Reporting	Limit for
Matrix	S	S				7=1
DF	200	20			S	W
Compound		Conce	entration		mg/kg	ug/L
Benzene	1.5	0.87			0.005	NA
Ethylbenzene	14	0.36			0.005	NA
Toluene	9.9	2.1			0.005	NA
Xylenes	82	1.7			0.005	NA
	Surr	ogate Recoveries	(%)	I.		
%SS1:	82	104				
%SS2:	100	101				
%SS3:	98	110				
		1	1		+	

McCa	mpbell Analy	tical, Inc.	Telephone	e South, #D7, Pacheco, CA 94553 925-798-1620 Fax : 925-798-16 ampbell.com E-mail: main@mccar	22	
Cambria Env. Tech	nnology		: #304291-DG; 3884	Date Sampled: 02/27	//06	
5900 Hollis St, Sui	te A	First St. Livermo	re CA	Date Received: 02/27	//06	
	<b>C</b> 09	Client Contact: I	Dan Glaze	Date Extracted: 02/27	/06	
Emeryville, CA 94	008	Client P.O.:		Date Analyzed: 02/27	/06-02/	28/06
	Diesel Ra	ange (C10-C23) Extra	actable Hydrocarbons	as Diesel*		
Extraction method: SW355	0C	Analytical	methods: SW8015C	W	ork Order:	0602479
Lab ID	Client ID	Matrix	TPH(d	)	DF	% SS
0602479-001A	EX2-7	S	580,d,l	)	1	108
0602479-002A	EX2-8	S	84,d		1	89
0602479-003A	EX2-9	S	ND		1	103
0602479-004A	EX2-10	S	ND		1	97
0602479-005A	EX2-11	S	ND		1	85
0602479-006A	EX2-12	S	3.8,d		1	100
0602479-007A	EX2-13	S	ND		1	87
0602479-008A	EX2-14	S	ND		1	100
0602479-009A	EX2-15	S	ND		1	86
0602479-010A	EX2-16	S	ND		1	88
0602479-011A	EX2-17	S	ND		1	103
0602479-012A	EX2-18	S	ND		1	106
0602479-013A	EX2-19	S	ND		1	107
0602479-014A	EX2-20	S	ND		1	103
0602479-015A	EX2-21	S	ND		1	91
0602479-016A	EX2-22	S	ND		1	91

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

McC	Campbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 94553- 925-798-1620 Fax : 925-798-162 mpbell.com E-mail: main@mccan	22	
Cambria Env. T	echnology		#304291-DG; 3884	Date Sampled: 02/27	/06	
5900 Hollis St, S	Suite A	First St. Livermon	e CA	Date Received: 02/27	/06	
Emeryville, CA	94608	Client Contact: I	Dan Glaze	Date Extracted: 02/27	/06	
Lineryvine, CA	7-000	Client P.O.:		Date Analyzed: 02/27	/06-02/	28/06
Extraction method: SW			nethods: SW8015C		ork Order:	0602479
Lab ID	Client ID	Matrix	TPH(d)		DF	% SS
0602479-017A	EX2-23	S	ND		1	88
0602479-018A	EX2-24	S	ND		1	98
0602479-019A	EX2-25	S	ND		1	106
0602479-020A	EX2-26	S	ND		1	90
0602479-021A	EX2-27	S	220,d,b		1	118
0602479-022A	EX2-28	S	8.7,d		1	105

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

DHS Certification No. 1644

		10 2 nd AV	ENUE SOL	JTH, #	<b>#D7</b>	LIN	NC.							T	IR	NA	R	CI OUN		AIN				S.		D	YI	REO		RD	0			
Telephon	e: (925) 798-		O, CA 9455	3-556		ax: (	(925)	798	8-16	22								d? Co					Ŕ	USI	H		HR e Or	1 (D)	48 HI W)	R No	72 H	R	5 DA'	Y
Report To: Dan (		- 200	Bi	ll To	: Co	imb	rig	D	an	6 la	ze		1	_		-	_	the second s	1000	ysis I			1	-	-	-	-		Oth	ier		omm		
Company: Com	oria 11 (1: 01	1 540	1						-				-			&F)															E	mail	resu	
	y wille	SPEI		Mail	: d	4/03	00 6	CA	mbi	Nis -	Pin	V.0	out			EF/B		8210	2			ANA	8310								L	geni	ee ee	e
Tele: (510).37					510						0.1	uic		8015)MTB		0 E8	8.1)	68	5			A/P	1/83									1	.0.	_ 11
Project #: 3042	21-DG				t Nan					DG				8015		(552	(41					PAHI	625 / 8270 /								0	gia	Q	-
Project Location:	3884 F	First St												20+		case	pons	208		ALY		ind.	25/			(010)					b	foss	C -	-
Sampler Signature	: Dar G	lare		*										02/80		c Gre	ocar	100		s Of	0		11			.2/60								
		SAMP	LING		ers	I	MAT	RI	K	M PRE		HOI RVE	D D	Gas (602/8020	8015)	Oil &	Hydr	SPA 6		PCB'	/ 826	aloc	by EP			1/239.								
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	Containers	<b>Type Containers</b>	Water	_	Sludge	Other		1	HNO ₃		BTEX & TPH as (	TPH as Diesel (8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 RTFX ONLY (EPA 602 / 8020)		EPA 608 / 8080 EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8270 900	PAH's / PNA's by EPA	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	I							
			100	) #	Tyl	W	Soil	Sluc	ot	Ice	HCI	H	ð	BH	TPI	Tot	Tot	EP.		EP	EP.	EP	PA	CA	LU	Lei	RCI							
FK3-2-9	9'	3/15	747	1			X			X			P	R	X	X	_	>	×			7	4	+	X	-	-				-		-	
TX3-3-5	101	3/15	1453	1			*			X		_		×	×	X	_	×		-	-	2	9	-	X	-	-	-			-	-		
XB-4-10	10	3/15	1457	1			×			×				X	X	X		7	4			1	9		X	-							1	
EX3-5-14	14'	31,5	1603	1			×			X				X	X	X		1	4			)	0		X	-	-							-
EX3-6-7	1.7/	31.5	1604	(			×			X				X	¥	X		1	6						1									
EX 3-7-14	14'	51,5	1609	1			X			r				×	×	X		1	0					1									-	
× 3-8-7	.7.	31,5	161)	1			×			X				X	1	X		Y	0															
EX 291-12	12-	3/15	1412	-1			X			X			1	X	X	X		y	0					T										
EX3-10-14	14'	3/15	10H	1			X	1		X				X	×	x		4	0					P										
EX 3 -11-11	int	3/15	107	1			x	+	1	5			1	X	Y	V		1	0					1										
×2 10.19	10/	21	1013	1			Y	-		2				1>	5	X			P			1		T				1			T		1	-
5× 3-12-10		3115	161	1			2	-	-	X				X	×	1			×		-	>	<	1	X						T		1	
EX 3-13-10	10	31.6	1618	1	-		E		-	X			-	-	X	X		the second s	0		-	ŕ	-	ť	F	-	-	1			-			1
223-14-0	1	-21.5	1620	1			x	-	-	Ŕ				Y	X	x		_	2		1	1	1	+	T	+	1	1			-		-	-
Relinquished By:	12'	Date:	Time:	Rece	ived E	iv:	1	-	-	10			-	/	-	1	-		-	_		_	-	1	-	-		-	-		-			
		3/13/00	625	A	al	hl	en	0	we	m							V	/			/							VOAS	s o	0&G	MET	ALS	OTH	ER
Relinquished By:		Date:	Time:	/	eived E	-		-					-		CE/		ion	DITI	0	, V			PR	ESI	ERV	AT	TE	7	_					
			A Second											I	HEA	DS	PAG	CE AI	BSI	ENT_	_	_	CC	DNT	AIN	ER	S_	-						
Relinquished By:		Date:	Time:	Rece	eived H	Sy:	-			1				I	DEC	HL	ORJ	INAT	ED	INL	AB_		_1	PER	SEF	RVE	DI	N LA	B		-			

	Macan	DDEL	ANTAT	VT	IC.	TT	NIC	_			-	7.	-	-	-			-			INT	01		TT	OT	-			T	00	DE	-	1	2
	McCAM	10 2 nd AV	L AINAL	UTH,	#D7	LI	NC	•								Tag							. (	~	21	U	È	1	Œ	-	RI	, n	0	
		PACHEO	CO, CA 94	553-55	50		(0.0.1			(00				1	UI	<1N	AF	103	JIN.	U I	IIV	IE			SH		24 H	-	4	18 H)	R	72 HR		10000
Telephon	ne: (925) 798	-1620			F	ax:	(925	5) 75	98-1	622				E	DF	Req	uire	ed?	Coe	elt (	Noi	rma	1)	No					(D)		No		5.02	
Report To: Dan	Glaze		В	ill To	: C	amb	rig	- 1	Dan	6	laz	e							All and a second second	alysi	Contraction of the local division of the loc	_	Manual Property lies							Oth	er		nments	
	ubria	and the														F)																Em	ail res	。因
	O Hollis 5-	f. ste		1		-			1					142		(5520 E&F/B&F)			0					_										
	ryville			-Mai							a-e	nv.	COM			E&F	-		3					8270/8310								19	luze e	e
Tele: (510).37		1		'ax: (									_	15)		5201	18.1		00					10/1								do	lazel	-"
Project #: 3042	191-DG	- 1-	P	rojec	t Nar	ne:	30	420	91-	DO	5		_	+ 801		e (5:	ns (4		20)		2			82			-					16	ss @	_11
Project Location:			t. Live	rmo	re	CA	-	-			-	-	-	1020		Grease	arboi		180		AINO			625/			5010					pro	55 C	
Sampler Signatur	mpler Signature: Dan 6420								T	MET	гно	D	602/8	6	Se	Iroca		602		3's C	60		EPA			9.2/6				-				
	M								RES			s Gas (	(8015	m Oil	m Hyo	0	(EPA	0	O PCI	0/82			lls	s	21/23									
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	Loo	HCI	HNO ₃	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA 602/8020)	EPA 608 / 8080	EPA 608 / 8080 PCB's	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI						
5x3-16	8-	3/15	1622	1			X			5				X	×	X			X				1		-					1				-
Ex2-17	10%	3115	1624	1			X			X	-			X	×	×			X					1										
EX3-18	12	31,5	1626	1			K			X		1		x	X	×			X					1										
EV7-20	8'	210	1628	1			X	-	-	5	-	-			×	×			×				-											
5- 3- 7L	14	21.6	1/20	1			X	+	+	5		+		X	X	X			X			-	-	+	1		-			-	-	-		
3 22	8	3/13	1020	1			A	-	+	11		+		C	X	A			Y	-	-	-	-	-		-				-	-	-		
DRJ-RA	141	3/13	163-	FI.			X	-	-	1	-	-		C.	X	X	-		-		-	-	+	-	.	-				-	-	-		
EX 3-19	17	315	1627	'			X	-	-	X	-	-	-	X	X	2			×	-	-	-	-	-		-	-	-		8)	-		5.000	
5×3-23	18	3/15	1634				X	-	-	X	-	-		×	×	X			4	-	_	_	-	-		_					-	-		_
EX3-24	16	3/15	1630	1			X	_	_	X	-	-		×	X	X			x					_	4	_								
EX3-25 .	7'	315	1637	1			X			7	1			X	X	X			+					1	1									
	1	3115		1-	-		X			1	-			-1	X	No									1		1							
		3/15		1			×			1	2			1	15	1									*									
		215		1			×			12	0			30	5	×									P									
The state of the second second		3100		1			×			0	(			X	Y	×									K									
Relinquished By:		Date:	Time: 635	Rece	Wed B	76	ur	10	m	u	1	-			,		V	/				_		_					OAS	0	&G	METAL	s oth	HER
Relinquished By:		Date:	Time:		ived B			-						(		DD					~		A	PP	ROJ	PRL	ATI	E	/	4				-
Relinquished By:		Date:	Time:															INAT			-	B							LAF	-	-			

# McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-	-1620			Wo	rkOrd	ler: 06	503273		Clie	ntID: (	CETE		EDF	: NO			
Report to: Dan Glaze Cambria Env. 5900 Hollis St Emeryville, C/	t, Suite A	TEL: FAX: ProjectNo: PO:	(510) 420-070 (510) 420-917 #304291-DG				Ca 590	mbria E )0 Holli:	Payable Inv. Tee s St, St , CA 94	chnolog e. A	У		Date	uested e Recei e Print	ived:	03/15	1 day //2006 //2006
					[				Re	quested	Tests	See lea	end bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0603273-001	EX3-2-9		Soil	3/15/06 7:47:00 AM	1	A	А	А	A	A							
0603273-002	EX3-3-5			3/15/06 2:50:00 PM		А	Α	Α	Α	А							
0603273-003	EX3-4-10		Soil	3/15/06 2:57:00 PM		А	Α	Α	Α	А							
0603273-004	EX3-5-14		Soil	3/15/06 4:03:00 PM		А	Α	Α	Α	А							
0603273-005	EX3-6-7		Soil	3/15/06 4:04:00 PM	1	А		Α		А							
0603273-006	EX3-7-14		Soil	3/15/06 4:09:00 PM	1	А		А		А							
0603273-007	EX3-8-7		Soil	3/15/06 4:11:00 PM	1	А		Α		А							
0603273-008	EX3-9-12		Soil	3/15/06 4:12:00 PM	1	А		А		А							
0603273-009	EX3-10-14		Soil	3/15/06 4:14:00 PM	1	А		А		А							
0603273-010	EX3-11-14		Soil	3/15/06 4:15:00 PM	1	А		А		А							
0603273-011	EX3-12-10		Soil	3/15/06 4:17:00 PM	1	А		Α		А							
0603273-012	EX3-13-10		Soil	3/15/06 4:18:00 PM	1	А	А	Α	А	А							
0603273-013	EX3-14-8		Soil	3/15/06 4:20:00 PM	1	А		Α		А							
0603273-014	EX3-15-12		Soil	3/15/06 4:21:00 PM	1	А		Α		А							
0603273-015	EX3-16		Soil	3/15/06 4:22:00 PM		А		А		А							

### Test Legend:

1	5520E_SG_S
6	
11	

8270D_S	

2

7

12

3	G-MBTEX_S	
8		

4	LUFT_S
9	

5 MBTEX-8260B_S

The following SampIDs: 0603273-001A, 0603273-002A, 0603273-003A, 0603273-004A, 0603273-005A, 0603273-006A, 0603273-007A, 0603273-008A, 0603273-009A, 0603273-010A, 0603273-011A, 0603273-012A, 0603273-013A, 0603273-014A, 0603273-015A, 0603273-005A, 060320, 06030A, 06030A, 060320A, 060320A, 06030A, 060320A, 060320A, 060320A,

Prepared by: Kathleen Owen

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

## McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-162	20			Wor	•kOro	der: 06	603273		Clie	entID: (	CETE		EDF	: NO			
Report to:							Bill to:						Requ	uested	TAT:		1 day
Dan Glaze		TEL:	(510) 420-070	00			Ac	counts I	Payabl	е							
Cambria Env. Te 5900 Hollis St, S Emeryville, CA	Suite A	FAX: ProjectNo: PO:	(510) 420-917 #304291-DG	70			590	mbria E 00 Hollis ieryville	s St, S		у			e Rece e Print		03/15/ 03/16/	
									R	equested	Tests (	See leg	end belo	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0603273-016	EX3-17		Soil	3/15/06 4:24:00 PM		A		A		Α							T
0603273-017	EX3-18		Soil	3/15/06 4:26:00 PM		A		A		A							
0603273-018	EX3-20		Soil	3/15/06 4:28:00 PM		A	-	A		A					-	+	
0603273-019	EX3-21		Soil	3/15/06 4:30:00 PM		A	_	A		A					-		
0603273-020	EX3-22		Soil	3/15/06 4:32:00 PM		Α		А		А							
0603273-021	EX3-19		Soil	3/15/06 4:27:00 PM		Α		А		А						1	
0603273-022	EX3-23		Soil	3/15/06 4:34:00 PM		Α		А		А							
0603273-023	EX3-24		Soil	3/15/06 4:36:00 PM		Α		А		А							
0603273-024	EX3-25		Soil	3/15/06 4:37:00 PM		А		А		А							

### Test Legend:

1	5520E_SG_S
6	
11	

8270D_S	

2

7 12

G-MBTEX_S

4	LUFT_S
9	

5	MBTEX-8260B_S
10	

The following SampIDs: 0603273-001A, 0603273-002A, 0603273-003A, 0603273-004A, 0603273-005A, 0603273-006A, 0603273-007A, 0603273-008A, 0603273-009A, 0603273-010A, 0603273-011A, 0603273-012A, 0603273-013A, 0603273-014A, 0603273-015A, 0603273-005A, 060320, 06030A, 06030A, 060320A, 060320A, 06030A, 060320A, 060320A, 060320A,

Prepared by: Kathleen Owen

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCa	mpbell Analyt	ical, Inc.	Telephone :	e South, #D7, Pacheco, CA 94553 925-798-1620 Fax : 925-798-16 mpbell.com E-mail: main@mccar	22		
Cambria Env. Tec	hnology	Client Project ID:	#304291-DG	Date Sampled: 03/15	1: 03/15/06		
5900 Hollis St, Su	ite A			Date Received: 03/15	5/06		
		Client Contact: D	Dan Glaze	Date Extracted: 03/15			
Emeryville, CA 94	1008	Client P.O.:		Date Analyzed: 03/16/06			
Analytical methods: SM5		oleum Oil & Grease	with Silica Gel Clean-	-	ork Order:	0603273	
Lab ID	Client ID	Matrix	POG		DF	% SS	
0603273-001A	EX3-2-9	S	990		1	N/A	
0603273-002A	EX3-3-5	S	ND		1	N/A	
0603273-003A	EX3-4-10	S	ND		1	N/A	
0603273-004A	EX3-5-14	S	ND		1	N/A	
0603273-005A	EX3-6-7	S	ND		1	N/A	
0603273-006A	EX3-7-14	S	ND		1	N/A	
0603273-007A	EX3-8-7	S	ND		1	N/A	
0603273-008A	EX3-9-12	S	ND		1	N/A	
0603273-009A	EX3-10-14	S	ND		1	N/A	
0603273-010A	EX3-11-14	S	ND		1	N/A	
0603273-011A	EX3-12-10	S	ND		1	N/A	
0603273-012A	EX3-13-10	S	ND		1	N/A	
0603273-013A	EX3-14-8	S	ND		1	N/A	
0603273-014A	EX3-15-12	S	ND		1	N/A	
0603273-015A	EX3-16	S	ND		1	N/A	
0603273-016A	EX3-17	S	ND		1	N/A	
	Limit for DF =1;	W	NA		1	JA	
	not detected at or reporting limit	S	50		mg	g/Kg	

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/nonaqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

# surrogate diluted out of range or not applicable to this sample.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis.

McCa	mpbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 94553- 925-798-1620 Fax : 925-798-162 mpbell.com E-mail: main@mccam	22	
Cambria Env. Tech	nnology	Client Project ID:	#304291-DG	Date Sampled: 03/15	/06	
5900 Hollis St, Sui	ite A			Date Received: 03/15/	/06	
Emeryville, CA 94	608	Client Contact: D	an Glaze	Date Extracted: 03/15	/06	
Emeryvine, CA 94	-008	Client P.O.:		Date Analyzed: 03/16	/06	
Analytical methods: SM5		eum Oil & Grease	with Silica Gel Clean-	—	ork Order:	0603273
Lab ID	Client ID	Matrix	POG		DF	% SS
0603273-017A	EX3-18	S	ND		1	N/A
0603273-018A	EX3-20	S	ND		1	N/A
0603273-019A	EX3-21	S	88		1	N/A
0603273-020A	EX3-22	S	ND		1	N/A
0603273-021A	EX3-19	S	ND		1	N/A
0603273-022A	EX3-23	S	ND		1	N/A
0603273-023A	EX3-24	S	ND		1	N/A
0603273-024A	EX3-25	S	ND		1	N/A
	Limit for DF =1;	W	NA		N	JA
	not detected at or e reporting limit	S	50		mg	g/Kg

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/nonaqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

# surrogate diluted out of range or not applicable to this sample.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis.

Cambria Env. Technology				110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com					
05	С	lient Proj	ect ID:	#304291-DG	Date S	ampled: 03/15/0	)6		
5900 Hollis St, Suite A					Date R	Received: 03/15/0	)6		
Emeryville, CA 94608	С	Client Con	tact: Da	an Glaze	Date E	xtracted: 03/15/0	)6		
Emeryvine, CA 94008	С	Client P.O.	:		Date A	analyzed: 03/16/0	)6		
Extraction Method: SW3550C	Semi-Volat	-	-	GC/MS (Basic Target thod: SW8270D	List)*	Work	Order: 0	603273	
Lab ID				0603273-001A					
Client ID				EX3-2-9					
Matrix				Soil					
Compound	Concentration	n* DF	Reporting Limit	Compound		Concentration *	DF	Reportin Limit	
Acenaphthene	ND	1.0	0.33	Acenaphthylene		ND	1.0	0.33	
Acetochlor	ND	1.0	0.33	Anthracene		ND	1.0	0.33	
Benzidine	ND	1.0	1.6	Benzoic Acid		ND	1.0	1.6	
Benzo(a)anthracene	ND	1.0	0.33	Benzo(b)fluoranthene		ND	1.0	0.33	
Benzo(k)fluoranthene	ND	1.0	0.33	Benzo(g,h,i)perylene		ND	1.0	0.33	
Benzo(a)pyrene	ND	1.0	0.33	Benzyl Alcohol		ND	1.0	0.66	
Bis (2-chloroethoxy) Methane	ND	1.0	0.33	Bis (2-chloroethyl) Ether		ND	1.0	0.33	
Bis (2-chloroisopropyl) Ether	ND	1.0	0.33	Bis (2-ethylhexyl) Adipate		ND	1.0	0.33	
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Eth	er	ND	1.0	0.33	
Butylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline		ND	1.0	0.66	
4-Chloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene		ND	1.0	0.33	
2-Chlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Eth	er	ND	1.0	0.33	
Chrysene	ND	1.0	0.33	Dibenzo(a,h)anthracene		ND	1.0	0.33	
Dibenzofuran	ND	1.0	0.33	Di-n-butyl Phthalate		ND	1.0	0.33	
1,2-Dichlorobenzene	ND ND	1.0	0.33	1,3-Dichlorobenzene 3,3-Dichlorobenzidine		ND ND	1.0	0.33	
1,4-Dichlorobenzene 2,4-Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate		ND	1.0	0.00	
2,4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate		ND	1.0	0.33	
4,6-Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol		ND	1.0	1.6	
2.4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene		ND	1.0	0.33	
Di-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine		ND	1.0	0.33	
Fluoranthene	ND	1.0	0.33	Fluorene		ND	1.0	0.33	
Hexachlorobenzene	ND	1.0		Hexachlorobutadiene		ND	1.0	0.33	
Hexachlorocyclopentadiene	ND	1.0	1.6	Hexachloroethane		ND	1.0	0.33	
Indeno (1,2,3-cd) pyrene	ND	1.0	0.33	Isophorone		ND	1.0	0.33	
2-Methylnaphthalene	ND	1.0	0.33	2-Methylphenol (o-Cresol)		ND	1.0	0.33	
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.33	Naphthalene		ND	1.0	0.33	
2-Nitroaniline	ND	1.0	1.6	3-Nitroaniline		ND	1.0	1.6	
4-Nitroaniline	ND	1.0	1.6	Nitrobenzene		ND	1.0	1.6	
2-Nitrophenol	ND	1.0	1.6	4-Nitrophenol		ND	1.0	1.6	
N-Nitrosodiphenylamine	ND	1.0	0.33	N-Nitrosodi-n-propylamine	•	ND	1.0	0.33	
Pentachlorophenol	ND	1.0	1.6	Phenanthrene		ND	1.0	0.33	
Phenol	ND	1.0	0.33	Pyrene		ND	1.0	0.33	
1,2,4-Trichlorobenzene 2,4,6-Trichlorophenol	ND ND	1.0	0.33	2,4,5-Trichlorophenol		ND	1.0	0.33	
2,4,0-111011010000000	ND								
			rogate Re	ecoveries (%)		1			
%SS1:		73		%SS2:		60			
%SS3:		95		%SS4:		81			
%SS5: Comments:		76		%SS6:		95			

* water samples in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/$ wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; r) results are reported on a dry weight basis.

_____

McCampbell	Analytic	cal,	Inc.		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com						
Cambria Env. Technology		Clier	nt Proj	ect ID:	#304291-DG	Date S	ampled: 03/15/0	)6			
5900 Hollis St, Suite A						Date R	eceived: 03/15/0	)6			
Emeryville, CA 94608		Clie	nt Con	tact: Da	an Glaze	Date E	Date Extracted: 03/15/06				
		Clie	nt P.O.	:		Date A	nalyzed: 03/15/0	)6			
Extraction Method: SW3550C	Semi-Vo	latile	-	•	GC/MS (Basic Target thod: SW8270D	List)*	Work	Order: 0	603273		
Lab ID					0603273-002A						
Client ID					EX3-3-5						
Matrix					Soil						
Compound	Concentrat	ion *	DF	Reporting Limit	Compound		Concentration *	DF	Reportin Limit		
Acenaphthene	ND		1.0	0.33	Acenaphthylene		ND	1.0	0.33		
Acetochlor	ND		1.0	0.33	Anthracene		ND	1.0	0.33		
Benzidine	ND		1.0	1.6	Benzoic Acid		ND	1.0	1.6		
Benzo(a)anthracene	ND		1.0	0.33	Benzo(b)fluoranthene		ND	1.0	0.33		
Benzo(k)fluoranthene	ND		1.0	0.33	Benzo(g,h,i)perylene		ND	1.0	0.33		
Benzo(a)pyrene	ND		1.0	0.33	Benzyl Alcohol		ND	1.0	0.66		
Bis (2-chloroethoxy) Methane	ND		1.0	0.33	Bis (2-chloroethyl) Ether		ND ND	1.0	0.33		
Bis (2-chloroisopropyl) Ether		ND		0.33	Bis (2-ethylhexyl) Adipate			1.0	0.33		
Bis (2-ethylhexyl) Phthalate	ND			0.33	4-Bromophenyl Phenyl Eth 4-Chloroaniline	er	ND	1.0	0.33		
Butylbenzyl Phthalate		ND         1.0         0.33         4-Chloroaniline           ND         1.0         0.33         2-Chloronaphthalene		ND ND	1.0	0.66					
4-Chloro-3-methylphenol 2-Chlorophenol	ND		1.0	0.33	4-Chlorophenyl Phenyl Eth	or	ND	1.0	0.33		
Chrysene	ND		1.0	0.33	Dibenzo(a,h)anthracene	ei	ND	1.0	0.33		
Dibenzofuran	ND		1.0	0.33	Di-n-butyl Phthalate		ND	1.0	0.33		
1,2-Dichlorobenzene	ND		1.0	0.33	1,3-Dichlorobenzene		ND	1.0	0.33		
1,4-Dichlorobenzene	ND		1.0	0.33	3,3-Dichlorobenzidine		ND	1.0	0.66		
2,4-Dichlorophenol	ND		1.0	0.33	Diethyl Phthalate		ND	1.0	0.33		
2,4-Dimethylphenol	ND		1.0	0.33	Dimethyl Phthalate		ND	1.0	0.33		
4,6-Dinitro-2-methylphenol	ND		1.0	1.6	2,4-Dinitrophenol		ND	1.0	1.6		
2,4-Dinitrotoluene	ND		1.0	0.33	2,6-Dinitrotoluene		ND	1.0	0.33		
Di-n-octyl Phthalate	ND		1.0	0.33	1,2-Diphenylhydrazine		ND	1.0	0.33		
Fluoranthene	ND		1.0	0.33	Fluorene		ND	1.0	0.33		
Hexachlorobenzene	ND		1.0	0.33	Hexachlorobutadiene		ND	1.0	0.33		
Hexachlorocyclopentadiene	ND		1.0	1.6	Hexachloroethane		ND	1.0	0.33		
Indeno (1,2,3-cd) pyrene	ND		1.0	0.33	Isophorone		ND	1.0	0.33		
2-Methylnaphthalene	ND		1.0	0.33	2-Methylphenol (o-Cresol)		ND	1.0	0.33		
3 &/or 4-Methylphenol (m,p-Cresol)	ND		1.0	0.33	Naphthalene		ND	1.0	0.33		
2-Nitroaniline	ND		1.0	1.6	3-Nitroaniline		ND	1.0	1.6		
4-Nitroaniline	ND		1.0	1.6	Nitrobenzene 4 Nitrophonol		ND	1.0	1.6		
2-Nitrophenol N Nitrosodiphenylamine	ND ND		1.0 1.0	1.6 0.33	4-Nitrophenol N-Nitrosodi-n-propylamine		ND ND	1.0	1.6 0.33		
N-Nitrosodiphenylamine Pentachlorophenol	ND ND		1.0	1.6	Phenanthrene		ND	1.0	0.33		
Phenol	ND		1.0	0.33	Pyrene		ND	1.0	0.33		
1,2,4-Trichlorobenzene	ND		1.0	0.33	2,4,5-Trichlorophenol		ND	1.0	0.33		
2,4,6-Trichlorophenol	ND		1.0	0.33	_, .,e memorophenor		112	1.0	0.50		
· · · · · · · · · · · · · · · · · · ·					ecoveries (%)						
%SS1:		75	.5411	Burr W	%SS2:		83				
%\$\$3:		80			%\$\$2. %\$\$4:		78				
%SS5:		71			%SS6:		104				
,		/ 1			/0000.		104				

extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; r) results are reported on a dry weight basis.

_____

McCampbell A	Analytic	cal,	Inc.		Telephone :	925-798-16	7, Pacheco, CA 94553-5: 20 Fax : 925-798-1622 E-mail: main@mccampl				
Cambria Env. Technology		Client Project ID: #304291-DG Date Sampled: 03/15/06									
5900 Hollis St, Suite A						Date R	eceived: 03/15/0	)6			
Emeryville, CA 94608		Clie	nt Con	tact: Da	an Glaze	Date E	Date Extracted: 03/15/06				
		Clier	nt P.O.	:		Date A	analyzed: 03/16/0	)6			
Extraction Method: SW3550C	Semi-Vo	latile		•	GC/MS (Basic Target thod: SW8270D	List)*	Work	Order: 0	603273		
Lab ID					0603273-003A	1					
Client ID					EX3-4-10						
Matrix					Soil						
Compound	Concentrat	ion *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit		
Acenaphthene	ND		1.0	0.33	Acenaphthylene		ND	1.0	0.33		
Acetochlor	ND		1.0	0.33	Anthracene		ND	1.0	0.33		
Benzidine	ND		1.0	1.6	Benzoic Acid		ND	1.0	1.6		
Benzo(a)anthracene	ND		1.0	0.33	Benzo(b)fluoranthene		ND	1.0	0.33		
Benzo(k)fluoranthene	ND		1.0	0.33	Benzo(g,h,i)perylene		ND	1.0	0.33		
Benzo(a)pyrene	ND		1.0	0.33	Benzyl Alcohol		ND	1.0	0.66		
Bis (2-chloroethoxy) Methane	ND		1.0	0.33	Bis (2-chloroethyl) Ether		ND	1.0	0.33		
Bis (2-chloroisopropyl) Ether	ND		1.0	0.33	Bis (2-ethylhexyl) Adipate		ND	1.0	0.33		
Bis (2-ethylhexyl) Phthalate	ND	1 7 7		ND	1.0	0.33					
Butylbenzyl Phthalate	ND			0.33	4-Chloroaniline		ND	1.0	0.66		
4-Chloro-3-methylphenol	ND		1.0	0.33	2-Chloronaphthalene		ND	1.0	0.33		
2-Chlorophenol		ND         1.0         0.33         4-Chlorophenyl Phenyl Ether           ND         1.0         0.33         Dibenzo(a,h)anthracene		ler	ND	1.0	0.33				
Chrysene Dibenzofuran	ND		1.0	0.33	Dibenzo(a,h)anthracene Di-n-butyl Phthalate		ND ND	1.0	0.33		
1,2-Dichlorobenzene	ND		1.0	0.33	1,3-Dichlorobenzene		ND	1.0	0.33		
1,4-Dichlorobenzene	ND		1.0	0.33	3,3-Dichlorobenzidine		ND	1.0	0.66		
2,4-Dichlorophenol	ND		1.0	0.33	Diethyl Phthalate		ND	1.0	0.33		
2,4-Dimethylphenol	ND		1.0	0.33	Dimethyl Phthalate		ND	1.0	0.33		
4,6-Dinitro-2-methylphenol	ND		1.0	1.6	2,4-Dinitrophenol		ND	1.0	1.6		
2,4-Dinitrotoluene	ND		1.0	0.33	2,6-Dinitrotoluene		ND	1.0	0.33		
Di-n-octyl Phthalate	ND		1.0	0.33	1,2-Diphenylhydrazine		ND	1.0	0.33		
Fluoranthene	ND		1.0	0.33	Fluorene		ND	1.0	0.33		
Hexachlorobenzene	ND		1.0	0.33	Hexachlorobutadiene		ND	1.0	0.33		
Hexachlorocyclopentadiene	ND		1.0	1.6	Hexachloroethane		ND	1.0	0.33		
Indeno (1,2,3-cd) pyrene	ND		1.0	0.33	Isophorone		ND	1.0	0.33		
2-Methylnaphthalene	ND		1.0	0.33	2-Methylphenol (o-Cresol)		ND	1.0	0.33		
3 &/or 4-Methylphenol (m,p-Cresol)	ND		1.0	0.33	Naphthalene		ND	1.0	0.33		
2-Nitroaniline	ND		1.0	1.6	3-Nitroaniline		ND	1.0	1.6		
4-Nitroaniline	ND		1.0	1.6	Nitrobenzene		ND	1.0	1.6		
2-Nitrophenol	ND		1.0	1.6	4-Nitrophenol		ND	1.0	1.6		
N-Nitrosodiphenylamine Pentachlorophenol	ND ND		1.0	0.33	N-Nitrosodi-n-propylamine Phenanthrene	2	ND ND	1.0	0.33		
Phenol	ND ND		1.0	0.33	Phenanthrene Pyrene		ND	1.0	0.33		
1,2,4-Trichlorobenzene	ND		1.0	0.33	2,4,5-Trichlorophenol		ND	1.0	0.33		
2,4,6-Trichlorophenol	ND		1.0	0.33	2, 1,5 memorophenoi			1.0	0.55		
, ,	110				coveries (%)						
%SS1:		71	Jui	San III	%SS2:		81				
%SS3:		81			%SS2: %SS4:		81				
%SS5:		80			%SS6:		103				
/0600.		00			,0000.		10.				

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; r) results are reported on a dry weight basis.

_

McCampbell	Analytic	cal,	Inc.		110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com						
Cambria Env. Technology		Clier	nt Proj	ect ID:	#304291-DG	Date S	ampled: 03/15/0	)6			
5900 Hollis St, Suite A						Date R	eceived: 03/15/0	)6			
Emeryville, CA 94608		Clier	nt Con	tact: Da	an Glaze	Date E	xtracted: 03/15/0	)6			
		Clie	nt P.O.	:		Date A	nalyzed: 03/16/0	)6			
Extraction Method: SW3550C	Semi-Vo	latile	-	•	GC/MS (Basic Target thod: SW8270D	List)*	Work	Order: 0	603273		
Lab ID					0603273-004A						
Client ID					EX3-5-14						
Matrix					Soil						
Compound	Concentrat	ion *	DF	Reporting Limit	Compound		Concentration *	DF	Reportin Limit		
Acenaphthene	ND		1.0	0.33	Acenaphthylene		ND	1.0	0.33		
Acetochlor	ND		1.0	0.33	Anthracene		ND	1.0	0.33		
Benzidine	ND		1.0	1.6	Benzoic Acid		ND	1.0	1.6		
Benzo(a)anthracene	ND		1.0	0.33	Benzo(b)fluoranthene		ND	1.0	0.33		
Benzo(k)fluoranthene	ND		1.0	0.33	Benzo(g,h,i)perylene		ND	1.0	0.33		
Benzo(a)pyrene	ND		1.0	0.33	Benzyl Alcohol		ND	1.0	0.66		
Bis (2-chloroethoxy) Methane	ND		1.0	0.33	Bis (2-chloroethyl) Ether		ND	1.0	0.33		
Bis (2-chloroisopropyl) Ether	ND	ND 1.0 0.33 Bis		Bis (2-ethylhexyl) Adipate		ND	1.0	0.33			
Bis (2-ethylhexyl) Phthalate	ND	ND 1.0 0.33		0.33	4-Bromophenyl Phenyl Eth	er	ND	1.0	0.33		
Butylbenzyl Phthalate	ND		1.0	0.33	4-Chloroaniline		ND	1.0	0.66		
4-Chloro-3-methylphenol	ND		1.0	0.33	2-Chloronaphthalene		ND	1.0	0.33		
2-Chlorophenol	ND		1.0	0.33	4-Chlorophenyl Phenyl Eth	er	ND	1.0	0.33		
Chrysene	ND		1.0	0.33	Dibenzo(a,h)anthracene		ND	1.0	0.33		
Dibenzofuran	ND		1.0	0.33	Di-n-butyl Phthalate		ND	1.0	0.33		
1,2-Dichlorobenzene	ND		1.0	0.33	1,3-Dichlorobenzene		ND	1.0	0.33		
1,4-Dichlorobenzene	ND		1.0	0.33	3,3-Dichlorobenzidine		ND	1.0	0.66		
2,4-Dichlorophenol	ND		1.0	0.33	Diethyl Phthalate		ND	1.0	0.33		
2,4-Dimethylphenol	ND		1.0	0.33	Dimethyl Phthalate		ND	1.0	0.33		
4,6-Dinitro-2-methylphenol	ND		1.0	1.6	2,4-Dinitrophenol		ND	1.0	1.6		
2,4-Dinitrotoluene	ND		1.0	0.33	2,6-Dinitrotoluene		ND	1.0	0.33		
Di-n-octyl Phthalate	ND		1.0	0.33	1,2-Diphenylhydrazine		ND	1.0	0.33		
Fluoranthene	ND		1.0	0.33	Fluorene		ND	1.0	0.33		
Hexachlorobenzene	ND		1.0		Hexachlorobutadiene		ND	1.0	0.33		
Hexachlorocyclopentadiene	ND		1.0	1.6	Hexachloroethane		ND	1.0	0.33		
Indeno (1,2,3-cd) pyrene	ND		1.0	0.33	Isophorone		ND	1.0	0.33		
2-Methylnaphthalene	ND		1.0	0.33	2-Methylphenol (o-Cresol)		ND	1.0	0.33		
3 &/or 4-Methylphenol (m,p-Cresol)	ND		1.0	0.33	Naphthalene		ND	1.0	0.33		
2-Nitroaniline	ND		1.0	1.6	3-Nitroaniline		ND	1.0	1.6		
4-Nitroaniline	ND		1.0	1.6	Nitrobenzene		ND	1.0	1.6		
2-Nitrophenol	ND		1.0	1.6	4-Nitrophenol		ND	1.0	1.6		
N-Nitrosodiphenylamine	ND		1.0	0.33	N-Nitrosodi-n-propylamine		ND	1.0	0.33		
Pentachlorophenol	ND		1.0	1.6	Phenanthrene		ND	1.0	0.33		
Phenol	ND		1.0	0.33	Pyrene		ND	1.0	0.33		
1,2,4-Trichlorobenzene	ND		1.0	0.33	2,4,5-Trichlorophenol		ND	1.0	0.33		
2,4,6-Trichlorophenol	ND		1.0	0.33							
			Suri	rogate Re	ecoveries (%)		1				
%SS1:		73			%SS2:		81				
%SS3:		82			%SS4:		78				
%SS5:		75			%SS6:		105	;			
Comments:											

extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; r) results are reported on a dry weight basis.

_____

McCampbell A	cal, I	Inc.		Telephone :	925-798-16	7, Pacheco, CA 94553-55 20 Fax : 925-798-1622 E-mail: main@mccampl					
Cambria Env. Technology		Client Project ID: #304291-DG Date Sampled: 03/15/06									
5900 Hollis St, Suite A						Date R	eceived: 03/15/0	)6			
Emeryville, CA 94608		Clier	nt Con	tact: Da	an Glaze	Date E	Date Extracted: 03/15/06				
		Clier	nt P.O.	:		Date A	nalyzed: 03/16/0	)6			
Extraction Method: SW3550C	Semi-Vo	latile		•	GC/MS (Basic Target thod: SW8270D	List)*	Work	Order: 0	603273		
Lab ID					0603273-012A						
Client ID					EX3-13-10						
Matrix					Soil						
Compound	Concentrat	tion *	DF	Reporting Limit	Compound		Concentration *	DF	Reportin Limit		
Acenaphthene	ND		1.0	0.33	Acenaphthylene		ND	1.0	0.33		
Acetochlor	ND		1.0	0.33	Anthracene		ND	1.0	0.33		
Benzidine	ND		1.0	1.6	Benzoic Acid		ND	1.0	1.6		
Benzo(a)anthracene	ND		1.0	0.33	Benzo(b)fluoranthene		ND	1.0	0.33		
Benzo(k)fluoranthene	ND		1.0	0.33	Benzo(g,h,i)perylene		ND	1.0	0.33		
Benzo(a)pyrene	ND		1.0	0.33	Benzyl Alcohol		ND	1.0	0.66		
Bis (2-chloroethoxy) Methane	ND		1.0	0.33	Bis (2-chloroethyl) Ether		ND	1.0	0.33		
Bis (2-chloroisopropyl) Ether	ND		1.0	0.33	Bis (2-ethylhexyl) Adipate		ND	1.0	0.33		
Bis (2-ethylhexyl) Phthalate	ND	ND 1.0		0.33	4-Bromophenyl Phenyl Eth	er	ND	1.0	0.33		
Butylbenzyl Phthalate	ND				ND	1.0	0.66				
4-Chloro-3-methylphenol	ND			0.33	2-Chloronaphthalene		ND	1.0	0.33		
2-Chlorophenol	ND					ND	1.0	0.33			
Chrysene	ND		1.0	0.33	Dibenzo(a,h)anthracene		ND	1.0	0.33		
Dibenzofuran	ND		1.0	0.33	Di-n-butyl Phthalate		ND	1.0	0.33		
1,2-Dichlorobenzene	ND		1.0	0.33	1,3-Dichlorobenzene		ND	1.0	0.33		
1,4-Dichlorobenzene	ND		1.0	0.33	3,3-Dichlorobenzidine		ND	1.0	0.66		
2,4-Dichlorophenol	ND		1.0	0.33	Diethyl Phthalate		ND	1.0	0.33		
2,4-Dimethylphenol	ND		1.0	0.33	Dimethyl Phthalate		ND	1.0	0.33		
4,6-Dinitro-2-methylphenol	ND		1.0	1.6	2,4-Dinitrophenol		ND	1.0	1.6		
2,4-Dinitrotoluene	ND		1.0	0.33	2,6-Dinitrotoluene		ND	1.0	0.33		
Di-n-octyl Phthalate	ND		1.0	0.33	1,2-Diphenylhydrazine		ND	1.0	0.33		
Fluoranthene	ND		1.0	0.33	Fluorene		ND		0.33		
Hexachlorobenzene Hexachlorocyclopentadiene	ND ND		1.0	0.33	Hexachlorobutadiene Hexachloroethane		ND ND	1.0 1.0	0.33		
Indeno (1,2,3-cd) pyrene	ND		1.0	0.33	Isophorone		ND	1.0	0.33		
2-Methylnaphthalene	ND		1.0	0.33	2-Methylphenol (o-Cresol)		ND	1.0	0.33		
3 &/or 4-Methylphenol (m,p-Cresol)	ND		1.0	0.33	Naphthalene		ND	1.0	0.33		
2-Nitroaniline	ND		1.0	1.6	3-Nitroaniline		ND	1.0	1.6		
4-Nitroaniline	ND		1.0	1.6	Nitrobenzene		ND	1.0	1.6		
2-Nitrophenol	ND		1.0	1.6	4-Nitrophenol		ND	1.0	1.6		
N-Nitrosodiphenylamine	ND		1.0	0.33	N-Nitrosodi-n-propylamine		ND	1.0	0.33		
Pentachlorophenol	ND		1.0	1.6	Phenanthrene		ND	1.0	0.33		
Phenol	ND		1.0	0.33	Pyrene		ND	1.0	0.33		
1,2,4-Trichlorobenzene	ND		1.0	0.33	2,4,5-Trichlorophenol		ND	1.0	0.33		
2,4,6-Trichlorophenol	ND		1.0	0.33							
			Sur	rogate Re	ecoveries (%)						
%SS1:		72			%SS2:		82				
%SS3:		80			%SS4:		78				
%SS5:		81			%SS6:		103				

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; r) results are reported on a dry weight basis.

_

McC	ampbell Analyti	cal, Inc.	Telephone :	South, #D7, Pacheco, CA 9455 925-798-1620 Fax : 925-798-1 npbell.com E-mail: main@mcc	622	
Cambria Env. Te	chnology	Client Project ID:	#304291-DG	Date Sampled: 03/1	5/06	
5900 Hollis St, S	uite A			Date Received: 03/1	5/06	
Emeryville, CA 9	14608	Client Contact: D	an Glaze	Date Extracted: 03/1	5/06	
Emeryvine, CA	74008	Client P.O.:		Date Analyzed: 03/1	6/06	
Extraction method: SW5		-	atile Hydrocarbons as ( methods: SW8015Cm		Work Order:	0603273
Lab ID	Client ID	Matrix	TPH(g)	)	DF	% SS
001A	EX3-2-9	S	1200,g,1	n	100	107
002A	EX3-3-5	S	ND		1	101
003A	EX3-4-10	S	ND		1	85
004A	EX3-5-14	S	ND		1	89
005A	EX3-6-7	S	ND		1	89
006A	EX3-7-14	S	ND		1	114
007A	EX3-8-7	S	ND		1	81
008A	EX3-9-12	S	ND		1	87
009A	EX3-10-14	S	ND		1	105
010A	EX3-11-14	S	ND		1	98
011A	EX3-12-10	S	ND		1	101
012A	EX3-13-10	S	ND		1	100
013A	EX3-14-8	S	ND		1	98
014A	EX3-15-12	S	ND		1	100
015A	EX3-16	S	ND		1	97
016A	EX3-17	S	ND		1	84
	ting Limit for DF =1; eans not detected at or	W	NA		N	A
	e the reporting limit	S	1.0		mg	/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/$ wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

McC	ampbell Analyti	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 9455 925-798-1620 Fax : 925-798-1 mpbell.com E-mail: main@mcca	622	
Cambria Env. Te	chnology	Client Project ID:	#304291-DG	Date Sampled: 03/1	5/06	
5900 Hollis St, S	uite A			Date Received: 03/1	5/06	
Emeryville, CA 9	14608	Client Contact: D	an Glaze	Date Extracted: 03/1	5/06	
Emeryvine, CA 9	4008	Client P.O.:		Date Analyzed: 03/1	6/06	
Extraction method: SW5			tile Hydrocarbons as ( ethods: SW8015Cm		Vork Order:	0603273
Lab ID	Client ID	Matrix	TPH(g	)	DF	% SS
017A	EX3-18	S	ND		1	95
018A	EX3-20	S	ND		1	86
019A	EX3-21	S	ND		1	99
020A	EX3-22	S	ND		1	94
021A	EX3-19	S	ND		1	94
022A	EX3-23	S	ND		1	93
023A	EX3-24	S	ND		1	89
024A	EX3-25	S	ND		1	93
	ing Limit for $DF = 1$ ; ans not detected at or	W	NA		Ν	ΝA
	e the reporting limit	S	1.0		mg	g/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/$ wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

DHS Certification No. 1644

E	McCampbe	ll Ana	alytica	al, Inc.	We	Telephone	ue South, #D7, Pache : 925-798-1620 Fa campbell.com E-mail	x : 925-798-162	2	
Cambria	Env. Technology		(	Client Project ID:	#304291-1	DG	Date Sample	ed: 03/15/	06	
5900 Ho	llis St, Suite A						Date Receiv	red: 03/15/	06	
Emorrari	112 CA 04608		(	Client Contact: D	an Glaze		Date Extrac	ted: 03/15/	06	
Emeryvi	lle, CA 94608		(	Client P.O.:			Date Analyz	ed: 03/16/	06	
Extraction me	ethod: SW3050B				5 Metals* nethods: 6010C			Wo	rk Order:	0603273
Lab ID	Client ID	Matrix	Extractio	on Cadmium	Chromium	Lead	Nickel	Zinc	DF	% SS
001A	EX3-2-9	S	TTLC	ND	67	6.2	120	59	1	109
002A	EX3-3-5	S	TTLC	ND	66	5.6	170	74	1	112
003A	EX3-4-10	S	TTLC	ND	76	8.8	200	58	1	108
004A	EX3-5-14	S	TTLC	ND	67	7.6	180	50	1	110
012A	EX3-13-10	S	TTLC	ND	69	8.1	180	48	1	102
	ng Limit for DF =1; ns not detected at or	W	TTLC		NA	NA	NA	NA		NA
	the reporting limit	S	TTLC	1.5	1.5	5.0	1.5	5.0	mg	g/Kg

# means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than  $\sim 1$  vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

DHS Certification No. 1644

____Angela Rydelius, Lab Manager

McCampbell An	alytical, Inc		Telephone :	South, #D7, Pacheco, C. 925-798-1620 Fax : 925 mpbell.com E-mail: main	5-798-1622	com			
Cambria Env. Technology	Client Pro	oject ID: #3042	91-DG	Date Sampled:	03/15/06				
5900 Hollis St, Suite A		Date Received:							
Emeryville, CA 94608	Client Co	ontact: Dan Gla	Dan Glaze Date Extracted: 03/16/06						
Enteryvine, CA 94000	Client P.C	).:		Date Analyzed:	03/16/06				
		BTEX by GC/N		<u>.</u>					
Extraction Method: SW5030B Lab ID	Anal 0603273-001A	ytical Method: SW82 0603273-002A	0603273-003A	0603273-004A	Work Ord	er: 0603273			
Client ID	EX3-2-9	EX3-3-5	EX3-4-10	EX3-5-14	Reporting Lim				
Matrix	S	S	S	S	DF				
DF	100	1	1	1	S	W			
Compound		Con	centration	1	mg/kg	ug/L			
Benzene	ND<0.50	ND	ND	ND	0.005	NA			
Ethylbenzene	ND<0.50	ND	ND	ND	0.005	NA			
Toluene	ND<0.50	ND	ND	ND	0.005	NA			
Xylenes	ND<0.50	ND	ND	ND	0.005	NA			
	Surro	ogate Recoveri	es (%)						
%SS1:	108	104	104	104					
%SS2:	97	104	105	99					
%SS3:	102	117	114	113					
Comments	j								
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample		lid samples in mg/	kg, product/oil/non-a	aqueous liquid sample	es and all TC	LP & SPL			
ND means not detected above the reporti	ng limit; N/A means	s analyte not appli	cable to this analysi	s.					

McCampbell An	alytical, Inc	2.	Telephone :	South, #D7, Pacheco, C. 925-798-1620 Fax : 92: mpbell.com E-mail: main	5-798-1622	com			
Cambria Env. Technology	Client Pro	oject ID: #3042	91-DG	Date Sampled:	03/15/06				
5900 Hollis St, Suite A		Date Received:							
Emorrarillo CA 04609	Client Co	ontact: Dan Gla	ze	Date Extracted:	d: 03/16/06				
Emeryville, CA 94608	Client P.O	D.:		Date Analyzed:	03/16/06				
Extraction Method: SW5030B		BTEX by GC/M			Work Ord	er: 0603273			
Lab ID	0603273-005A	0603273-006A		0603273-008A	Work Ord	ci. 000327.			
Client ID	EX3-6-7	EX3-7-14	EX3-8-7	EX3-9-12	Reporting	Limit for			
Matrix	S	S	S	S		5=1			
DF	1	1	1	1	S	W			
Compound		Con	centration		mg/kg	ug/L			
Benzene	ND	ND	ND	ND	0.005	NA			
Ethylbenzene	ND	ND	ND	ND	0.005	NA			
Toluene	ND	ND	ND	ND	0.005	NA			
Xylenes	ND	ND	ND	ND	0.005	NA			
	Surre	ogate Recoveri	es (%)			•			
%SS1:	106	101	105	102					
%SS2:	98	106	100	105					
%SS3:	114	116	114	113					
Comments									
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample	es in µg/wipe.				es and all TC	LP & SPL			
ND means not detected above the reporti # surrogate diluted out of range or coelute	-		-						

McCampbell An	alyti	cal, Inc	2.		Telephone :	South, #D7, Pacheco, C. 925-798-1620 Fax : 92: mpbell.com E-mail: mair	5-798-1622	com			
Cambria Env. Technology		Client Pro	oject ID: #	#30429	1-DG	Date Sampled:	03/15/06				
5900 Hollis St, Suite A						Date Received:	03/15/06				
Emeryville, CA 94608		Client Co	ontact: Da	an Glaze	2	Date Extracted:	03/16/06				
Emeryvnie, CA 94000		Client P.0	D.:			Date Analyzed:	d: 03/16/06				
Extraction Method: SW5030B			BTEX by				Work Orde	er: 0603273			
Lab ID	06032	73-009A	0603273		0603273-011A	0603273-012A					
Client ID	EX3	3-10-14	EX3-1	1-14	EX3-12-10	EX3-13-10	Reporting	Limit for			
Matrix		S	S		S	S	DF				
DF		1	1		1	1	S	W			
Compound				Conce	entration		mg/kg	ug/L			
Benzene		ND	ND		ND	ND	0.005	NA			
Ethylbenzene	]	ND	ND	1	ND	ND	0.005	NA			
Toluene	]	ND	ND	1	ND	ND	0.005	NA			
Xylenes	]	ND	ND	1	ND	ND	0.005	NA			
		Surro	ogate Rec	overie	s (%)						
%SS1:		108	101	l	109	108					
%SS2:		98	105	5	98	98					
%SS3:		117	116	5	118	119					
Comments											
* water and vapor samples are reported ir extracts are reported in mg/L, wipe sample		-	lid samples	in mg/k	g, product/oil/non-a	queous liquid sample	es and all TC	LP & SPLP			
ND means not detected above the report	ing limit;	; N/A means	s analyte no	ot applic	able to this analysi	5.					
# surrogate diluted out of range or coelu	es with a	nother peak	r; &) low su	ırrogate	due to matrix inter	ference.					

McCampbell An	alytical, Ir	ic.		Telephone :	South, #D7, Pacheco, C 925-798-1620 Fax : 92: mpbell.com E-mail: mair	5-798-1622	com			
Cambria Env. Technology	Client H	Project ID:	#30429	1-DG	Date Sampled:	03/15/06				
5900 Hollis St, Suite A					Date Received:	03/15/06				
Emeryville, CA 94608	Client	Client Contact: Dan Glaze Date Extracted: 0								
Emeryvnie, CA 94000	Client H	P.O.:			Date Analyzed:	03/16/06				
Extraction Method: SW5030B	Ar	BTEX by				Work Orde	er: 0603273			
Lab ID	0603273-013A	0603273	-014A	0603273-015A	0603273-016A					
Client ID	EX3-14-8	EX3-1:	5-12	EX3-16	EX3-17	Reporting	Limit for			
Matrix	S	S		S	S	DF	=1			
DF	1	1		1	1	S				
Compound		·	Conce	entration		mg/kg	ug/L			
Benzene	ND	ND	)	ND	ND	0.005	NA			
Ethylbenzene	ND	ND	)	ND	ND	0.005	NA			
Toluene	ND	ND	)	ND	ND	0.005	NA			
Xylenes	ND	ND	)	ND	ND	0.005	NA			
	Sur	rogate Rec	overies	s (%)						
%SS1:	102	101	1	102	104					
%SS2:	101	102	2	100	99					
%SS3:	117	115	5	115	114					
Comments										
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample		solid samples	in mg/k	g, product/oil/non-a	aqueous liquid sample	es and all TC	LP & SPLP			
ND means not detected above the report	ng limit; N/A mea	ins analyte no	ot applic	able to this analysi	s.					
# surrogate diluted out of range or coelut	es with another pe	ak; &) low su	urrogate	due to matrix inter	ference.					

McCampbell An	alytica	ıl, Inc.			Telephone : 9	South, #D7, Pacheco, C. 225-798-1620 Fax : 92: npbell.com E-mail: mair	5-798-1622	com
Cambria Env. Technology	C	Client Proje	ect ID: #3	04292	1-DG	Date Sampled:	03/15/06	
5900 Hollis St, Suite A						Date Received:	03/15/06	
Emeryville, CA 94608	С	Client Con	03/16/06					
Emeryvine, CA 94008	С	Client P.O.	:			Date Analyzed:	03/16/06	
Extraction Method: SW5030B	<u> </u>		STEX by C				Work Orde	er: 0603273
Lab ID	0603273-	-017A	0603273-0	18A	0603273-019A	0603273-020A		
Client ID	EX3-	-18	EX3-20	)	EX3-21	EX3-22	Reporting	Limit for
Matrix	S		S		S	S	DF	=1
DF	1		1		1	S	W	
Compound		· · · ·	(	Conce	entration	·	mg/kg	ug/L
Benzene	ND	)	ND		ND	ND	0.005	NA
Ethylbenzene	ND	)	ND		ND	ND	0.005	NA
Toluene	ND	)	ND		ND	ND	0.005	NA
Xylenes	ND	)	ND		ND	ND	0.005	NA
		Surrog	gate Recov	veries	s (%)			
%SS1:	105	5	110		109	105		
%SS2:	96	5	98		98	108		
%SS3:	113	3	117		117	117		
Comments								
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl	es in μg/wip	pe.					es and all TC	LP & SPLF
ND means not detected above the reporti	ng limit; N/	/A means a	analyte not	applica	able to this analysis	S.		
# surrogate diluted out of range or coelut	es with anot	ther peak;	&) low surr	ogate	due to matrix interf	erence.		

McCampbell An	alytical, In	c.	Teleph	venue South, #D7, Pacheco, C one : 925-798-1620 Fax : 92 .mccampbell.com E-mail: main	5-798-1622					
Cambria Env. Technology	Client Pr	oject ID: #304	4291-DG	Date Sampled:	03/15/06					
5900 Hollis St, Suite A				Date Received:	03/15/06					
Emeryville, CA 94608	Client C	ontact: Dan G	ilaze	Date Extracted:	03/16/06					
Linelyvine, CA 94000	Client P.	0.:		Date Analyzed:	03/16/06					
BTEX by GC/MS* Extraction Method: SW5030B Analytical Method: SW8260B Wor										
Lab ID	0603273-021A	0603273-022	A 0603273-02	23A 0603273-024A						
Client ID	EX3-19	EX3-23	EX3-24	EX3-25	Reporting	Limit for				
Matrix	S	S	S	S	DF	5 =1				
DF	1	1	1	1	S	W				
Compound		Co	oncentration		mg/kg	ug/L				
Benzene	ND	ND	ND	ND	0.005	NA				
Ethylbenzene	ND	ND	ND	ND	0.005	NA				
Toluene	ND	ND	ND	ND	0.005	NA				
Xylenes	ND	ND	ND	ND	0.005	NA				
	Surr	ogate Recove	ries (%)							
%SS1:	106	105	106	106						
%SS2:	107	109	101	101						
%SS3:	116	116	118	119						
Comments					İ –					
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl		olid samples in n	ng/kg, product/oil/	non-aqueous liquid sampl	es and all TC	LP & SPLP				
ND means not detected above the reporti	ng limit; N/A mean	s analyte not ap	plicable to this an	alysis.						
# surrogate diluted out of range or coelut	es with another pea	k; &) low surrog	gate due to matrix	interference.						

McCa	mpbell Analyti	cal, Inc.	Teleph	venue South, #D7, Pacheco, CA 9 one : 925-798-1620 Fax : 925-79 mccampbell.com E-mail: main@n	8-1622	m							
Cambria Env. Tech	mology	Client Project ID	: #304291-DG	Date Sampled: 03	8/15/06								
5900 Hollis St, Sui	ite A		Date Received: 03/15/06										
Emorryville, CA 04	<b>C</b> 09	Client Contact: I	Client Contact: Dan Glaze Date Extracted: 03/15/06										
Emeryville, CA 94	008	Client P.O.:		Date Analyzed: 03	8/15/06-03	3/16/06							
Extraction method: SW355		-	actable Hydrocarbons hods: SW8015C	as Diesel and Motor Oil*	Work Orde	er: 0603273							
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS							
0603273-001A	EX3-2-9	S	1800,k,g	490	20	105							
0603273-002A	EX3-3-5	S	ND	ND	1	103							
0603273-003A	EX3-4-10	S	ND	ND	1	102							
0603273-004A	EX3-5-14	S	ND	ND	1	101							
0603273-005A	EX3-6-7	S	ND	ND	1	107							
0603273-006A	EX3-7-14	S	ND	ND	1	103							
0603273-007A	EX3-8-7	S	ND	ND	1	103							
0603273-008A	EX3-9-12	S	ND	ND	1	106							
0603273-009A	EX3-10-14	S	3.3,k	ND	1	104							
0603273-010A	EX3-11-14	S	ND	ND	1	98							
0603273-011A	EX3-12-10	S	ND	ND	1	88							
0603273-012A	EX3-13-10	S	ND	ND	1	88							
0603273-013A	EX3-14-8	S	ND	ND	1	91							
0603273-014A	EX3-15-12	S	ND	ND	1	90							
0603273-015A	EX3-16	S	ND	ND	1	91							
0603273-016A	EX3-17	S	ND	ND	1	89							
	ng Limit for DF =1;	W	NA	NA	u	g/L							
	ns not detected at or the reporting limit	S	1.0	5.0	mg/Kg								

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

Angela Rydelius, Lab Manager

McC	Campbell Analytic	cal, Inc.	Teleph	venue South, #D7, Pacheco, CA 94 one : 925-798-1620 Fax : 925-798 mccampbell.com E-mail: main@mo	-1622	m						
Cambria Env. Te	echnology	Client Project ID	: #304291-DG	Date Sampled: 03/	/15/06							
5900 Hollis St, S	Suite A			Date Received: 03/	/15/06							
Emeryville, CA	04608	Client Contact:	Dan Glaze Date Extracted: 03/15/06									
Emeryvine, CA	94008	Client P.O.:		Date Analyzed: 03/	/15/06-03	8/16/06						
Extraction method: SW:		-	actable Hydrocarbons hods: SW8015C	as Diesel and Motor Oil*	Work Orde	er: 0603273						
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS						
0603273-017A	EX3-18	S	ND	ND	1	88						
0603273-018A	EX3-20	S	ND	ND	1	98						
0603273-019A	EX3-21	S	1.4,g,b	8.3	1	88						
0603273-020A	EX3-22	S	ND	ND	1	98						
0603273-021A	EX3-19	S	ND	ND	1	96						
0603273-022A	EX3-23	S	ND	ND	1	98						
0603273-023A	EX3-24	S	1.3,g	11	1	97						
0603273-024A	EX3-25	S	ND	ND	1	96						

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant;; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

__Angela Rydelius, Lab Manager

1	McCAM	10 2nd A	L ANA VENUE SO CO, CA 94	OUTH,	#D7	LI	NC							т	UF	N.	AR		CHL					ST	0	DY		COR		DC	
Telephor	ne: (925) 798		CO, CA 94	333-33		ax:	(92	5) 7	98-1	622													R	USH	1	24 HR		48 HR		2 HR	5 DA
						_	<u>.</u>	1			_	_		EI	)F I	Requ	uire	-	Coel	_		-	-	0	Wr	ite O	n (D	W) N	No		2.4
Report To: Dan			ł	Bill To	): G	ami	oria	-	Dar	16	192	e	-	0	-	-	-		Anal	vsis	Req	uest		-	-	-		Other	<u></u>	Com	nents
Company: Com		1 61-	1			_			-				_	1		(F)	- 1	12	12-	2		B					2			Emai	
590	O Hollis 5	t. Ste	. 14			1		0				-		BE		F/B4		1	Diex	52600		DIPL, TON	0				S.			to	in Q ca
	ryville		1	S-Mai	1: 0	910	120	@(	am	6110	-1	nv.	cou	MITE		E&I	-	-	0	00	. •	A R	831				V			Lgen	
Tele: (510),37			1	E-Mai Fax: ( Projec	510	)0	120	-9	110				-	015)		520	418	00	14	V		0	201	00			( DELOT			dala	in@ca 2e@-
Project #: 3042	2904 ···	010	1 1.	rojec	TNa	me:	30	140	(91-	- D(	7		-	+ 8		e (5	e) su	82400	(02	8 >		enst.	/ 82	8240.		-				hears	e -
Project Location:		First S	t. Liv	ermo	re	CA	<u></u>	_		_		-	-	9020	-	reas	rbo	R	1	Z		0	625	1		010	4			1000	
Sampler Signatur	e:	1		-	-	-					1127			902/8	Z	& G	roce	40	803	2 .	20	10	PA	04		0.2/6	1 7			See	atter
		SAMI	PLING	753	ers		MA	TR	IX			ERV		as (6	(8015)L	lio	Hyd	3	PA		82	R	JA E	5		/236	PNA			Fur 1	ist of
1			1	ers	ain						T			1		E	B	9		080	540	Otte	A's b	tals	als	421	0	-			
SAMPLE ID (Field Point Name)	LOCATION			# Containers	Type Containers									HAL	TPH as Diesel	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	72 0108/109 VJ3	BTEX ONLY (EPA 692+8929)//4	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 1 8320 MP4E,	PAH's / PNA's by EPA 625 / 8270 / 8310	CAMPLY Medals 670H	LUFT 5 Metals	Lead (7240/7421/239.2/6010) RCI	2				
(Field Point Name)		Date	Time	ont	e l	ter	Soil		Sludge	Ice	_	03	ler	BTEX &	as	I Pc	I Pe	\$	W.	509	62	3	/s.]	Ŧ	T5	13	2				
	1 8			0 #	17	No.	Soi	Air	nis le	Ice I	HCI	HNO ₃	Other	BTE	Hall	Tota	Tota	1	BHH	EPA	EPA		PAF	N	3	RCI	X				
Ex=3-1-5	5'	3-8-06	1710	1	5400	-	×			×	-			X	K	X			XX		-	X		X	X		X		-		
																			-					-							
			-			$\vdash$				+	-										12.2					-	+				
				1	-	$\vdash$			-	+	+			-		-	+	-	-	+	-	-	-		+	-					
				-	-	⊢		-	-	+	-		_	_	-	-	-	-	-	-	-	-	_	-	+	_	+				
						1		_		+	-				_	_	-	_	-	-	-	-	1	_	-	_					
															_																
																				1											
								-	-	+	-					-	-	-		+	1	-			-						
					-	⊢		-	-	+	-		-	-	-	-	-	-	-	+	-	-	-		+	-	+				
				-	-	-		-	-	+	-		-	-	-	-	-	-	-	-	-	-	_	-	-		-				0.000
				<u> </u>		-		_		+			_	_	_		_		_	_	_					_					
											1		-																		
																				1							1				-
Relinquished By:		Date: /	Time:	Reco	iyed B	37:		-		-	-	21	1		-		-	-	-		-	-			-	_		11			
h ellaste	R	3/9/a	1429	K	ived B	ne	ee	n	Or	2 20	n	18	Ta														OAS	0&G	M	ETALS	OTHER
Relinquished By:	9	Date:	Time:	Rece	ived B	v:		6	00	04	1/		-		CE/		-							S	0.00	FION_					
						1								G	OO EA	DC	ONI	DIT.	ION_BSEI	T	-	1		ROP							
Relinquished By:		Date:	Time:	Rece	ived B	V:		-					-													ED IN	LA	B			
ALC: NO STATE OF A COMPANY		all sold she														1.56	112.83	05000		18172			7.383	0.600	0.050						

# McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-1620				Wo	orkOrd	ler: 0	6031	52		С	lient	ID:	СЕТЕ		EDF	: NO			
Report to:							Bill to	:							Req	uested	TAT:		1 day
Dan Glaze		TEL:	(510) 420-07	00			A	Acco	unts	Paya	able								
Cambria Env. Technolog	IY	FAX:	(510) 420-91	70			(	Camb	oria E	Env. ⁻	Tech	nolo	gy						
5900 Hollis St, Suite A	-	ProjectNo:	#304291-DG	; 3884 First St. Liv	ermore	С	5	5900	Holli	s St,	Ste.	Α			Dat	e Rece	ived:	03/09	/2006
Emeryville, CA 94608		PO:					E	Emer	yville	e, CA	946	80			Dat	e Print	ted:	03/09	/2006
											Requ	leste	d Tests	(See leg	gend bel	ow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2		3	4	ŀ	5	6	7	8	9	10	11	12
0603152-001	EX-3-1-5 5'		Soil	3/8/06 5:10:00 PM		В	A		А	А	۱.	А	А	А					

## Test Legend:

1	1,4-DIOXANE_S	2	5520E_SG_S	3	8082A_PCB_S	4 8260	B_S	5		8270D-PNA_S
6	G-MBTEX_S	7	LUFT_S	8		9		10	)	
11		12								

The following SampID: 0603152-001A contains testgroup. Please make sure all relevant testcodes are reported. Many thanks.

**Prepared by: Maria Venegas** 

## Comments: <u>24hr Rush</u>

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Mo	cCampbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 94553- 925-798-1620 Fax : 925-798-162 mpbell.com E-mail: main@mccam	2	
Cambria Env.	Technology		#304291-DG; 3884	Date Sampled: 03/08/	/06	
5900 Hollis S	t, Suite A	First St. Livermon	re CA	Date Received: 03/09/	/06	
Emeryville, C	A 94608	Client Contact: I	Dan Glaze	Date Extracted: 03/09/	/06	
Emeryvine, C	A 74000	Client P.O.:		Date Analyzed: 03/10/	/06	
Extraction method:		-	and GC/MS SIM Mode nethods: SW8260B		rk Order:	0603152
Lab ID	Client ID	Matrix	1,4-Diox	ane	DF	% SS
001B	EX-3-1-5 5'	S	ND		1	106
Re	eporting Limit for DF =1;	W	NA		N	IA
	D means not detected at or above the reporting limit	S	0.02		m	g/kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than  $\sim 1$  vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCa	mpbell Analytic	cal, Inc.	Telephone :	South, #D7, Pacheco, CA 94553- 925-798-1620 Fax : 925-798-162 mpbell.com E-mail: main@mccam	2					
Cambria Env. Tecl	hnology		#304291-DG; 3884	Date Sampled: 03/08	/06					
5900 Hollis St, Sui	ite A	First St. Livermore	e CA	Date Received: 03/09/	/06					
Emeryville, CA 94	608	Client Contact: D	an Glaze	Date Extracted: 03/09	/06					
		Client P.O.:		Date Analyzed: 03/09	/06					
Analytical methods: SM5		um Oil & Grease	with Silica Gel Clean-	—	ork Order:	0603152				
Lab ID	Client ID	Matrix	OG		DF	% SS				
0603152-001A	EX-3-1-5 5'	S	1300		1	N/A				
Reporting	Limit for DF =1;	W	NA		N	T <b>A</b>				
ND means	not detected at or e reporting limit	S	50		NA mg/Kg					

* water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/nonaqueous liquid samples in mg/L.

DF = dilution factor (may be raised to dilute target analyte or matrix interference).

# surrogate diluted out of range or not applicable to this sample.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis.

McCampbell Ana	alytical, Inc	) •	Telephone	ue South, #D7, Pacheco, C. : 925-798-1620 Fax : 92: campbell.com E-mail: mair	5-798-1622	om
Cambria Env. Technology			04291-DG; 3884	Date Sampled:	03/08/06	
5900 Hollis St, Suite A	First St. I	Livermore CA	L	Date Received:	03/09/06	
Emeryville, CA 94608	Client Co	ontact: Dan C	Haze	Date Extracted:	03/09/06	
	Client P.0	0.:		Date Analyzed:	03/09/06	
Poly Extraction Method: SW3550C	-	phenyls (PCB alytical Method: SW	<b>(85) Aroclors by G</b>	C-ECD*	Work Ord	er: 0603152
Lab ID	0603152-001A					
Client ID	EX-3-1-5 5'				Reporting	Limit for
Matrix	S					5=1
DF	1				S	W
Compound	<u> </u>	Co	oncentration		mg/kg	ug/L
Aroclor1016	ND				0.025	NA
Aroclor1221	ND				0.025	NA
Aroclor1232	ND				0.025	NA
Aroclor1242	ND				0.025	NA
Aroclor1248	ND				0.025	NA
Aroclor1254	ND				0.025	NA
Aroclor1260	ND				0.025	NA
PCBs, total	ND				0.025	NA
	Surro	ogate Recover	ries (%)			
%SS:	110					
Comments	0				<u> </u>	
* water samples in µg/L, soil/sludge/solid sa and all TCLP & SPLP extracts are reported in	n mg/L.			ιg/filter, product/oil/nor	1-aqueous liqu	id samples

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or surrogate coelutes with another peak.

(a) PCB aroclor 1016; (b) PCB aroclor 1221; (c) PCB aroclor 1232; (d) PCB aroclor 1242; (e) PCB aroclor 1248; (f) PCB aroclor 1254; (g) PCB aroclor 1260; (h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

McCampbell	Analytica	l, Inc	•	Telephone	e : 925-798-1	07, Pacheco, CA 94553-5 520 Fax : 925-798-1622 n E-mail: main@mccamp				
Cambria Env. Technology			oject ID Livermo	: #304291-DG; 3884		Sampled: 03/08/				
5900 Hollis St, Suite A	_				_	Received: 03/09/0				
				Dan Glaze		Extracted: 03/09/0				
Emeryville, CA 94608	(	Client P.	0.:		Date A	Analyzed: 03/10/	)6			
	Volatile Orga	anics by	P&T a	nd GC/MS (Basic Tar	get List)	*				
Extraction Method: SW5030B		1	Analytical M	ethod: SW8260B		Work	Order: (	603152		
Lab ID				0603152-001	A					
Client ID				EX-3-1-5 5'						
Matrix				Soil						
Compound	Concentration	n* DF	Reportin Limit	g Compound		Concentration *	DF	Reportin Limit		
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05		
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (T	'AME)	ND	1.0	0.00		
Benzene	ND	1.0	0.00	Bromobenzene		ND	1.0	0.00		
Bromochloromethane	ND	1.0	0.00	Bromodichloromethane		ND	1.0	0.00		
Bromoform	ND	1.0	0.00	Bromomethane		ND	1.0	0.00		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05		
n-Butyl benzene	0.020					0.014	1.0	0.00		
tert-Butyl benzene	ND	1.0				ND	1.0	0.00		
Carbon Tetrachloride	ND	1.0				ND	1.0	0.00		
Chloroethane	ND	1.0		<i>y y</i>	r	ND	1.0	0.01		
Chloroform	ND	1.0				ND	1.0	0.00		
2-Chlorotoluene	ND	1.0				ND	1.0	0.00		
Dibromochloromethane	ND	1.0		· · · · · · · · · · · · · · · · · · ·	pane	ND	1.0	0.00		
1,2-Dibromoethane (EDB)	ND	1.0				ND	1.0	0.00		
1,2-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	1.0		,	ND ND	1.0	0.00			
1,1-Dichloroethane	ND	1.0				ND	1.0	0.00		
1,1-Dichloroethene	ND	1.0		, , , , , , , , , , , , , , , , , , , ,	)(11)	ND	1.0	0.00		
trans-1,2-Dichloroethene	ND	1.0				ND	1.0	0.00		
1,3-Dichloropropane	ND	1.0		· 11		ND	1.0	0.00		
1,1-Dichloropropene	ND	1.0				ND	1.0	0.00		
trans-1,3-Dichloropropene	ND	1.0	0.00			ND	1.0	0.00		
Ethanol	ND	1.0	0.25	Ethylbenzene		ND	1.0	0.00		
Ethyl tert-butyl ether (ETBE)	ND	1.0				ND	1.0	0.1		
Hexachlorobutadiene	ND	1.0	0.00	Hexachloroethane		ND	1.0	0.00		
2-Hexanone	ND	1.0				ND	1.0	0.00		
4-Isopropyl toluene	ND	1.0				ND	1.0	0.00		
Methylene chloride	ND	1.0			IIBK)	ND	1.0	0.00		
Naphthalene	0.036					ND	1.0	0.1		
n-Propyl benzene	0.011					ND	1.0	0.00		
1,1,1,2-Tetrachloroethane	ND	1.0				ND	1.0	0.00		
Tetrachloroethene	ND	1.0				ND	1.0	0.00		
1,2,3-Trichlorobenzene	ND	1.0				ND	1.0	0.00		
1,1,1-Trichloroethane Trichloroethene	ND ND	1.0				ND ND	1.0	0.00		
1,2,3-Trichloropropane	ND ND	1.0				0.0050	1.0	0.00		
1,3,5-Trimethylbenzene	0.014									
Xylenes	0.014									
y	0.010			te Recoveries (%)						
%SS1:		94		%SS2:	7					
%SS3:		105		/0002.		107	,			
	1	105								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than  $\sim 1$  vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCampbell Ana	alytical, Inc.	Teleph	venue South, #D7, Pacheco one : 925-798-1620 Fax mccampbell.com E-mail: :	925-798-1622	om
Cambria Env. Technology		ID: #304291-DG; 388	4 Date Sampled	1: 03/08/06	
	First St. Liver	more CA	Date Receive	d· 03/09/06	
5900 Hollis St, Suite A					
Emeryville, CA 94608	Client Contact	: Dan Glaze	Date Extracte	ed: 03/09/06	
	Client P.O.:		Date Analyze	d: 03/10/06	
Polynuclear Arc Extraction Method: SW3550C	•	(PAHs / PNAs) using S Method: SW8270D	SIM Mode by GC	/MS* Work Orde	er: 060315
Lab ID	0603152-001A				
	EX 2.1.5.5				
Client ID	EX-3-1-5 5'			DF	=1
Matrix	S				
DF	5			S	W
Compound		Concentration		mg/kg	ug/L
Acenaphthene	ND<0.025			0.005	NA
Acenaphthylene	ND<0.025			0.005	NA
Anthracene	0.035			0.005	NA
Benzo(a)anthracene	0.068			0.005	NA
Benzo(a)pyrene	ND<0.025			0.005	NA
Benzo(b)fluoranthene	ND<0.025			0.005	NA
Benzo(g,h,i)perylene	0.041			0.005	NA
Benzo(k)fluoranthene	ND<0.025			0.005	NA
Chrysene	0.052			0.005	NA
Dibenzo(a,h)anthracene	ND<0.025			0.005	NA
Fluoranthene	0.084			0.005	NA
Fluorene	ND<0.025			0.005	NA
Indeno (1,2,3-cd) pyrene	ND<0.025			0.005	NA
1-Methylnaphthalene	0.21			0.005	NA
2-Methylnaphthalene	0.22			0.005	NA
Naphthalene	0.065			0.005	NA
Phenanthrene	0.16			0.005	NA
Pyrene	0.18			0.005	NA
	Surrogate	Recoveries (%)	1		
%SS1	120				
%SS2	117				
Comments					

* water samples in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/wipe$ , product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than  $\sim 1$  vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) estimated to be below this level based on our MDL study; r) results are reported on a dry weight basis.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A	McCampbell A	Analyti	Client Project ID: #			Telep	hone : 925-798-162	, Pacheco, CA 9455 20 Fax : 925-798-1 E-mail: main@mcca	622		
5900 Hollis St, Suite A       Date Received: 03/09/06         Emeryville, CA 94608       Client Contact: Dan Glaze       Date Extracted: 03/09/06         Client P.O.:         Date Analyzed: 03/09/06         Client P.O.:         Work Order: 060         Client P.O.:         Date Analyzed: 03/09/06         Client P.O.:         Date Analyzed: 03/09/06         Client P.O.:         Date Analyzed: 03/09/06         Extraction method: SW5030B         Analytical methods: SW8021B/8015Cm         Vork Order: 060         Lab ID         Client ID         MTBE         Benzene         Toluene         Ethylbenzene         Toluene	Cambria	a Env. Technology				#304	291-DG; 388	84 First St.	Date Sample	ed: 03/08/06	5	
Emeryville, CA 94608       Client P.O.:       Date Analyzed: 03/09/06         Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*         Extraction method: SW5030B       Analytical methods: SW8021B/8015Cm       Work Order: 060         Lab ID       Client ID       Matrix       TPH(g)       MTBE       Benzene       Toluene       Ethylbenzene       Xylenes       DF	5900 Ho	ollis St, Suite A		Livermore	e CA				Date Receive	ed: 03/09/06	5	
Client P.O.:       Date Analyzed: 03/09/06         Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*         Extraction method: SW5030B       Analytical methods: SW8021B/8015Cm       Work Order: 060         Lab ID       Client ID       Matrix       TPH(g)       MTBE       Benzene       Toluene       Ethylbenzene       Xylenes       DF	Emorra	illa CA 04608		Client Cor	ntact: Da	an Gla	aze		Date Extract	ed: 03/09/06	5	
Extraction method:     SW5030B     Analytical methods:     SW8021B/8015Cm     Work Order:     060       Lab ID     Client ID     Matrix     TPH(g)     MTBE     Benzene     Toluene     Ethylbenzene     Xylenes     DF	Lineryv	IIIE, CA 94008		Client P.C	0.:				Date Analyz	ed: 03/09/06	5	
Lab ID     Client ID     Matrix     TPH(g)     MTBE     Benzene     Toluene     Ethylbenzene     Xylenes     DF	Extraction		Range (Co		Analytical methods: TPH(g) MTBE			oline with B	FEX and MT		der: 06	03152
001A         EX-3-1-5 5'         S         16.g.m          ND         0.011         ND         0.011         1           Image:	Lab ID	Client ID	Matrix	TPH(g)	TPH(g) MTBE		Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
Image: series of the series	001A	EX-3-1-5 5'	S	16,g,m	16,g,m		ND	0.011	ND	0.011	1	82
Image: series of the series			Suite A 94608 Client C Client P Gasoline Range (C6-C12) Vo SW5030B Ar Client ID Matrix TPH(g)									
Image: series of the series												
Image: series of the series					Volatile Hydr       Analytical methods       )     MTBE							
Image: state of the state of												
Image: series of the series												
Image: state of the state of												

Reporting Limit for $DF = 1$ ; ND means not detected at or	W	NA	NA	NA	NA	NA	NA	1	ug/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

	McCampbe	ll Ana	alytio	cal,	Inc.	W	Telephone :	e South, #D7, Pache 925-798-1620 Fa mpbell.com E-mai	x : 925-798-1622		
Cambri	ia Env. Technology				ent Project ID: t St. Livermor		DG; 3884	Date Sampl	ed: 03/08/0	)6	
5900 H	Iollis St, Suite A			F1rs	i St. Livermoi	eCA		Date Receiv	ved: 03/09/0	)6	
Emervy	ville, CA 94608			Clie	ent Contact: I	Dan Glaze		Date Extrac	ted: 03/09/0	)6	
	,			Clie	ent P.O.:			Date Analyz	zed: 03/10/0	)6	
Extraction 1	method: SW3050B					5 Metals* nethods: 6010C			Work	Corder:	0603152
Lab ID	Client ID	Matrix	Extrac	tion	Cadmium	Chromium	Lead	Nickel	Zinc	DF	% SS
001A	EX-3-1-5 5'	S	TTL	.C	ND	64	34	200	45	1	101
	ting Limit for DE 1			~							<u> </u>
ND me	ting Limit for $DF = 1$ ; eans not detected at or we the reporting limit	W S	TTI TTI		NA 1.5	NA 1.5	NA 5.0	NA 1.5	NA 5.0		JA g/Kg
	mples are reported in µg/									_	

soil/sludge/solid samples in mg/kg, wipe samples in  $\mu$ g/wipe, filter samples in  $\mu$ g/filter.

# means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

DHS Certification No. 1644

____Angela Rydelius, Lab Manager

Mc	Campbell Analytic	cal, Inc.	Telephone :	e South, #D7, Pacheco, CA 94553- 925-798-1620 Fax : 925-798-162 mpbell.com E-mail: main@mccam	2				
Cambria Env.	Technology		#304291-DG; 3884	Date Sampled: 03/08/	/06				
5900 Hollis St	t, Suite A	First St. Livermore	eCA	Date Received: 03/09/	/06				
Emeryville, C.	A 94608	Client Contact: Da	an Glaze	Date Extracted: 03/09/	/06				
Enteryvine, C.	A 94000	Client P.O.:		Date Analyzed: 03/09/	09/06				
	-		ctable Hydrocarbons a						
Extraction method: S		-	ethods: SW8015C		rk Order:				
Lab ID	Client ID	Matrix	TPH(d)		DF	% SS			
0603152-001A	EX-3-1-5 5'	S	170,g,b		20	107			

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

DHS Certification No. 1644

Telephor		10 2 ^{*4} AV PACHEC	ENUE SO	UTH,	#D7	L IN			8-10	622				TU EDF		AI ouir	105	JNI	D T	IM	E			I H	[, 24	) HR		48 1		4	2 HR	
Report To: Laur	in Genin	DIGIO	ize B	ill To	: 4	ants.	170	2	_				+			qui	_	-	lysi	-							T		her	T	Com	m
Company: Cur															E	-															E-m	4)
		-				-			11-2	-	1107	071	_	W. /	Crance (5570 E.B.B.B.B.B.																DCI	67
Tele: () 510 420	7717			E-Ma			GE	NI	Ne	CA	1 CIMPS	\$44	-15	8015)MTBE	1.0.1	12						1 0 3 1	100								env.	
Project #: 30-42				ax: () rojec		ne	30	-47	41				-	(\$10	0000	(418						010	24								546	201
Project Location:	3884 1	54 5)		rojec		iie.		40	-11					+ 0	1000	Suo		3020		Z	-	0.7			10)						ly	. 1
Sampler Signatur														2/8020 +		carb		02/8		S ON		5	CLA 022 / 0210 1010		2/60							
U		SAMP	LING		č	I	IA	TRI	x		MET			Gas (602	a tio	lydro		A 60		CB	8261				239.							
			-	ers	tine	H	Т	T	T	PI	RESE		ED.	25 Ga		mE	010	(EF	180	980 F	240/	010	1 2 0	als a	421/						12	
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	Ice	HCI	HNO3	Other	BTEX & TPH as Gas (60 TPH as Diesel (2015)	Triel Baied	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAHS/PNAS09	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI	1.	j				
E-x3-26-9	9	3.17	1235	1	Sherve		K																				X					
EX3-27-18	18	10.00	1236	1			1																				1					
E+3-28-9	G		1237																													
Ex3-29-18	18 -		1238																													
F+3-30-9	9.		1239				1														-											
E+3-31-18	18		1240				Π																									
E+3-32-9	9		1241	T			T																									
Ex3-33-18	18		1242				1											-														
E+3-34-18	19)	¥	12-43	3	V		V								T												V	1				
			-	-															- 1	6		-										
				1													1	8.1	L						1		1					_
- /					1				-				-		1	F	1	F			1				T	1	T	T				-
/															P	1	1										1	1			1	/
1					1				-	-				1	1								1				T	T	-	-	-	-
Relinquished By:		Date:	Time:	Reco	eived. I	BY:	2.	1	Ja	2	C	)			-		/	-		1	-		-				vo	AS	O&G	-1	METAL	4
Relinquished By:		3-17-01 Date:	153 0 Time:	Rec	cived I	By:	-				~		-	G		O CO				r		A	PPR	ERV OPF	RIA	TE ,	1		040			1
Relinquished By:		Date:	Time:	Rec	eived I	By:			-		1	1	-			ILOF					в			SEI			NL/	B_		-		

# McCampbell Analytical, Inc.



110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 79	8-1620			Wo	rkOrd	ler: 06	503338		Clie	ntID: (	CETE		EDF	: NO			
Report to:							Bill to:						Req	uested	TAT:	5	days
Laura Genin	/ Dan Glaze	TEL:	(510) 420-0700	0			Ac	counts	Payable	Э							
Cambria Env 5900 Hollis S Emeryville, C		FAX: ProjectNo: PO:	(510) 420-917( #30-4291	0			59	mbria E 00 Holli heryville	s St, St	e. A	IУ			e Rece e Print		03/17/ 03/17/	
									Re	quested	d Tests	(See leg	end bel	ow)			
Sample ID	ClientSampID		Matrix	<b>Collection Date</b>	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0603338-001	EX3-26-9		Soil	3/17/06 12:35:00		А											
0603338-002	EX3-27-18		Soil	3/17/06 12:36:00		А											
0603338-003	EX3-28-9		Soil	3/17/06 12:37:00		А											
0603338-004	EX3-29-18		Soil	3/17/06 12:38:00		А											
0603338-005	EX3-30-9		Soil	3/17/06 12:39:00		А											
0603338-006	EX3-31-18		Soil	3/17/06 12:40:00		А											
0603338-007	EX3-32-9		Soil	3/17/06 12:41:00		А											
0603338-008	EX3-33-18		Soil	3/17/06 12:42:00		А											
0603338-009	EX3-34-18		Soil	3/17/06 12:43:00		А											

### Test Legend:

1 METALS_S	2	3	4	5
6	7	8	9	10
11	12			

#### Prepared by: Rosa Venegas

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Mc	Campbell Analytic	cal, Inc.		Telephone :	e South, #D7, Pacheco, CA 9455 925-798-1620 Fax : 925-798-16 mpbell.com E-mail: main@mcca	22				
Cambria Env.	Technology	Client Pro	roject ID: #30-4291 Date Sampled: 03/17/06							
5900 Hollis St,	, Suite A			Date Received: 03/17	7/06					
Emeryville, CA	A 9/608	Client Co	ntact: La	ura Genin / Dan Glaz	Date Extracted: 03/17	7/06				
Linery vinc, Cr	1 94000	Client P.C	).:		Date Analyzed: 03/20	)/06				
Extraction method: SV	W3050B	1	Met Analytical me	<b>als*</b> thods: 6010C	W	ork Order:	0603338			
Lab ID	Client ID	Matrix	Extracti	on (	Chromium	DF	% SS			
0603338-001A	EX3-26-9	S	TTLC		84	1	117			
0603338-002A EX3-27-18 S				2	100					
0603338-003A	EX3-28-9	S	TTLC		84	1	112			
0603338-004A	EX3-29-18	S	TTLC		78	1	110			
0603338-005A	EX3-30-9	S	TTLC		96	1	119			
0603338-006A	EX3-31-18	S	TTLC		92	1	109			
0603338-007A	EX3-32-9	S	TTLC		78	1	114			
0603338-008A	EX3-33-18	S	TTLC		96	1	118			
0603338-009A	EX3-34-18	S	TTLC	!	74	1	107			

Reporting Limit for DF =1; ND means not detected at or	W	TTLC	NA	mg/L
above the reporting limit	S	TTLC	1.5	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

# means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than  $\sim 1$  vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.



## **QC SUMMARY REPORT FOR 6010C**

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0603338

QA/QC Officer

EPA Method: 6010C		Extract	ion: SW	3050B		Batchl	D: 20806		Spiked Sample ID: 0603326-001A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)		
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD		
Chromium	29	50	85.2	78.6	4.66	10	86.6	98.7	13.1	75 - 125	80 - 120		
%SS:	103	250	106	106	0	250	102	108	5.25	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 20806 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0603338-001A	3/17/06 12:35	PM 3/17/06	3/20/06 3:51 PM	0603338-002A	3/17/06 12:36	PM 3/17/06	3/20/06 3:54 PM
0603338-003A	3/17/06 12:37	PM 3/17/06	3/20/06 3:57 PM	0603338-004A	3/17/06 12:38	PM 3/17/06	3/20/06 3:59 PM
0603338-005A	3/17/06 12:39	PM 3/17/06	3/20/06 4:02 PM	0603338-006A	3/17/06 12:40	PM 3/17/06	3/20/06 4:05 PM
0603338-007A	3/17/06 12:41	PM 3/17/06	3/20/06 4:07 PM	0603338-008A	3/17/06 12:42	PM 3/17/06	3/20/06 4:10 PM
0603338-009A	3/17/06 12:43	PM 3/17/06	3/20/06 4:18 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Telephor	McCAM 1 ne: (925) 798	10 2 nd AV PACHEC		UTH,	#D7 0 F	ax: (	(925)										10	JNJ	AII D TI	M	E	R	USH	1	24 H	IR		HR	72 1	NULLESS - CONTRACTOR	DI 5 DAY
	bria > 16(1is 5- yville 6-0657 91-DG 3884 F		A E F P	ax: ( rojec	: d 510 t Nar	9 (a) ) 4: ne:	20-	. ca. 91	mb1 70	26	eni	v.co	8020 + 8015)		k Grease (5520 E&F/B&F)	rocarbons (418.1)			lysis						.2/6010)		1 2260 0	ther	E		ents results n @ cand $e @ -iie @ -ii$
SAMPLE ID (Field Point Name)	LOCATION	SAMF Date	Time	# Containers	Type Containers	er	CAN	Sludge		PRE	SEF	HNO3 Other Other	PH as	TPH as Diesel (8015)	Total Petroleum Oil 8	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	ELA 000 / 0000 LCD 3	EPA 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI	5.72.A X MA				
EXP1 - 3.5 EXP2 - 3 EXP3 - 3 EXP4 - 3	30 42 9/	3/8/06	10:20 11:42 11:45 11:45				XXXX			XXXX			XXXX	XXII													XXXX				
Relinquished By: Relinquished By: Relinquished By:	) AS	Date: Date: Date:	Time: 2-45p- Time: Time:	Rece	ived B	y:	1.0	2	V	a	Q			HE	OD (	SPA	CEA	ABS	N			API		PRL	ATE	DN_	OAS		ME	TALS	OTHER

. .

## McCampbell Analytical, Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

EXP4-3

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 798-10	620			W	orkOrd	ler: 0	603117		Clie	ntID: (	CETE		EDI	: NO			
Report to:							Bill to						Rec	jueste	d TAT:	1	day
Dan Glaze		TEL:	(510) 420-070	0			Ac	counts	Payable	Э							
Cambria Env. Te	echnology	FAX:	(510) 420-917	0			Ca	mbria I	Env. Te	chnolog	av						
5900 Hollis St, S	••	ProjectNo:	#304291-DG						is St, St				Da	te Rec	eived:	03/08/	2006
Emeryville, CA		PO:							e, CA 94				Da	te Pri	nted:	03/08/	2006
									Req	uested	Tests	(See le	gend b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	e Hold	1	2	3	4	5	6	7	8	9	10	11	12
0603117-001	EXP1- 3.5		Soil	03/08/2006		Α	A										
0603117-002	EXP2- 3		Soil	03/08/2006		A	A					1			1	+	
0603117-003	EXP3-3		Soil	03/08/2006	十百十	А	А					1			1	<u>†                                    </u>	

А

А

03/08/2006

#### Test Legend:

0603117-004

1	G-MBTEX_S
6	
11	

2	MBTEX-8260B_S	3
7		8
12		

Soil

3	
8	
-	

4	
9	

5	
10	

The following SampIDs: 0603117-001A, 0603117-002A, 0603117-003A, 0603117-004A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Prepared by: Rosa Venegas

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McC	Campbell Analy	tical, Inc.	Telephone :	e South, #D7, Pacheco, CA 945 925-798-1620 Fax : 925-798-1 mpbell.com E-mail: main@mcc	622		
Cambria Env. Te	echnology	Client Project ID:	#304291-DG	Date Sampled: 03/0	08/06		
5900 Hollis St, S	Suite A		Date Received: 03				
Emeryville, CA	94608	Client Contact: D	Dan Glaze	Date Extracted: 03/08/06			
	94000	Client P.O.:	Client P.O.: Date Analyzed				
Extraction method: SW5		-	atile Hydrocarbons as ( nethods: SW8015Cm		Work Order:	060311	
Lab ID	Client ID	Matrix	TPH(g	)	DF	% SS	
001A	EXP1- 3.5	S	ND			90	
002A	EXP2-3	S	ND		1	93	
003A	EXP3-3	S	ND	1	93		
004A	EXP4- 3	S	ND		1	90	
	ting Limit for DF =1; eans not detected at or	W	NA			ЛА	
	ve the reporting limit	S	1.0		mg	g/Kg	

* water and vapor samples and all TCLP & SPLP extracts are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, wipe samples in  $\mu g/$ wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; o) results are reported on a dry weight basis.

DHS Certification No. 1644

McCampbell Ana	alytical, Inc	∕●		Telephone :	South, #D7, Pacheco, CA 925-798-1620 Fax : 925 npbell.com E-mail: main	-798-1622	om		
Cambria Env. Technology	Client Pr	oject ID:	e: #304291-DG Date Sampled: 03/08/06						
5900 Hollis St, Suite A		Date Received:					03/08/06		
Emeryville, CA 94608	Client Co	ontact: Dat	n Glaz	e	Date Extracted:	03/08/06			
Emeryvine, CA 94000	Client P.	0.:			Date Analyzed:	03/08/06			
Extraction Method: SW5030B		E and BTE alytical Method	•			Work Ord	er: 0603117		
Lab ID	0603117-001A	0603117-	002A	0603117-003A	0603117-004A				
Client ID	EXP1- 3.5	EXP2-	3	EXP3- 3	EXP4-3	Reporting			
Matrix	S	S S		S	S	DF =1			
DF	1	1		1	1	S	W		
Compound			Conce	entration		mg/kg	ug/L		
Benzene	ND	ND		ND	ND	0.005	NA		
Ethylbenzene	ND	ND		ND	ND	0.005	NA		
Methyl-t-butyl ether (MTBE)	ND	ND		ND	ND	0.005	NA		
Toluene	ND	ND		ND	ND	0.005	NA		
Xylenes	ND	ND		ND	ND	0.005	NA		
	Surro	ogate Reco	veries	s (%)					
%SS1:	96	96		95	95				
%SS2:	106	106		106	105				
%SS3:	104	104		102	102				
		1		<u>.</u>	1	ļ			

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

McCa	mpbell Analyti	cal, Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com				
Cambria Env. Tec	hnology	Client Project ID:	#304291-DG	Date Sampled: 03/08/06			
5900 Hollis St, Su	ite A			/06			
Emeryville, CA 94	1608	Client Contact: D	an Glaze	Date Extracted: 03/08	/06		
Lineryvine, CA 9-	1008	Client P.O.:		Date Analyzed: 03/08	/06-03/	09/06	
Extraction method: SW35			ctable Hydrocarbons a nethods: SW8015C		ork Order:	0603117	
Lab ID	Client ID	Matrix	TPH(d	)	DF	% SS	
0603117-001A	EXP1- 3.5	S	ND		1	89	
0603117-002A	EXP2- 3	S	ND	1	101		
0603117-003A	EXP3- 3	S	ND	1	89		
0603117-004A	EXP4- 3	S	ND		1	88	

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water samples are reported in  $\mu g/L$ , wipe samples in  $\mu g/wipe$ , soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

# cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel is significant; d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) results are reported on a dry weight basis.

DHS Certification No. 1644



## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0603117

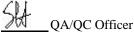
Analyte	Sample	e Spiked MS MSD I			MS-MSD	LCS LCSD		LCS-LCSD	Acceptance	Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(btex) [£]	ND	0.60	114	115	0.951	111	112	0.842	70 - 130	70 - 130
MTBE	ND	0.10	96	93.8	2.32	95	96.4	1.49	70 - 130	70 - 130
Benzene	ND	0.10	91.1	92.5	1.57	89.7	96.5	7.23	70 - 130	70 - 130
Toluene	ND	0.10	90.4	91.7	1.45	89.1	95.1	6.48	70 - 130	70 - 130
Ethylbenzene	ND	0.10	93.4	94.9	1.55	91.2	97.9	7.10	70 - 130	70 - 130
Xylenes	ND	0.30	95	99	4.12	91	99	8.42	70 - 130	70 - 130
%SS:	85	0.10	99	83	17.6	99	117	16.7	70 - 130	70 - 130

#### BATCH 20640 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0603117-001A	3/08/06 10:20 AM	3/08/06	3/08/06 9:41 PM	0603117-002A	3/08/06 11:42 AM	3/08/06	3/08/06 10:11 PM
0603117-003A	3/08/06 11:45 AM	3/08/06	3/08/06 10:40 PM	0603117-004A	3/08/06 11:47 AM	3/08/06	3/08/06 11:40 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.





### QC SUMMARY REPORT FOR SW8260B

W.O. Sa	mple Matrix:	Soil
---------	--------------	------

QC Matrix: Soil

WorkOrder: 0603117

EPA Method: SW8260B	E	Extraction: SW5030B				nID: 20632		Spiked Sample ID: 0603117-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
, there is a second s	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
Benzene	ND	0.050	120	118	1.45	116	120	2.97	70 - 130	70 - 130	
Methyl-t-butyl ether (MTBE)	ND	0.050	106	105	0.321	108	108	0	70 - 130	70 - 130	
Toluene	ND	0.050	116	113	2.71	116	114	2.08	70 - 130	70 - 130	
%SS1:	96	0.050	108	107	0.957	108	108	0	70 - 130	70 - 130	
%SS2:	106	0.050	102	101	0.613	101	102	1.24	70 - 130	70 - 130	
%SS3:	104	0.050	109	112	2.23	109	110	0.623	70 - 130	70 - 130	
All target compounds in the Metho	d Blank of thi	s extractior	h batch wer	e ND less tl	nan the method	RL with the	e following	exceptions:			
NONE							-				

#### BATCH 20632 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0603117-001A	3/08/06 10:20 AM	3/08/06	3/08/06 4:34 PM	0603117-002A	3/08/06 11:42 AM	3/08/06	3/08/06 5:17 PM
0603117-003A	3/08/06 11:45 AM	3/08/06	3/08/06 6:00 PM	0603117-004A	3/08/06 11:47 AM	3/08/06	3/08/06 6:43 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.



# QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0603117

EPA Method: SW8015C	Extraction: SW3550C				Batch	BatchID: 20642			Spiked Sample ID: 0603091-008B			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)		
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD		
TPH(d)	ND	20	106	107	1.31	107	108	1.03	70 - 130	70 - 130		
%SS:	91	50	97	98	1.38	98	99	0.779	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 20642 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0603117-001A	3/08/06 10:20 AM	3/08/06	3/09/06 11:04 AM	0603117-002A	3/08/06 11:42 AM	3/08/06	3/09/06 11:04 AM
0603117-003A	3/08/06 11:45 AM	3/08/06	3/08/06 5:22 PM	0603117-004A	3/08/06 11:47 AM	3/08/06	3/08/06 6:30 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.