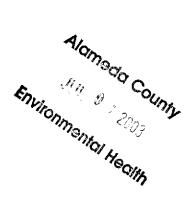
6920 Koll Center Parkway Suite 216 Pleasanton, CA 94566 925.426.2600 Fax 925.426.0106

Preliminary Subsurface Investigation

At Wente Winery 5565 Tesla Road Livermore, California

For WENTE VINEYARDS Livermore, California

Clayton Project No. 70-03412.01


June 23, 2003

6920 Koll Center Parkway Suite 216 Pleasanton, CA 94566 925.426.2600 Fax 925.426.0106

July 3, 2003

Donna Drogos ALAMEDA COUNTY HEALTH CARE SERVICES HAZARDOUS MATERIALS DIVISION 1131 Harbor Bay Parkway, 2nd Floor Oakland, California 94502

Clayton Project No. 70-03412.01

Subject:

Report of Preliminary Subsurface Investigation at Wente Winery,

5565 Tesla Road, Livermore, California

Dear Ms. Drogos:

Clayton is pleased to submit a copy of its final report: *Preliminary Subsurface Investigation at Wente Winery*, 5565 Tesla Road, Livermore, California, dated June 20, 2003. The report documents the finding of petroleum hydrocarbons in groundwater at the property listed above. Based on this finding and on behalf of Wente Vineyards, Clayton has attached an Underground Storage Tank Unauthorized Release/ Contamination Site Report.

If you have any questions, please contact me at 925-426-2679 or by email at dashton@claytongrp.com.

Sincerely,

Donald A. Ashton

Senior Geologist

Environmental Services

DAA/daa

cc: Daniel Stephani – Livermore Pleasanton Fire Department

Aris Krimetz – Wente Vineyards (without attachment)

CONTENTS

<u>Sec</u>	<u>rtion</u>	<u>Page</u>
1.	INTRODUCTION	1
2.	BACKGROUND	1
3.	SCOPE OF WORK	2
3.1.	PRE-FIELD ACTIVITIES	2
3.2.	SAMPLING ACTIVITIES	
	.1. Fuel AST and Former UST Area	
	2. Steaming Cleaning Area	
	3. Former Steaming-Cleaning Area	
3.2.		
3.2.	5	
3.3.	LABORATORY ANALYSES	
4.	ANALYTICAL RESULTS	6
4.1.	FUEL AST AND FORMER UST AREA	
	STEAM-CLEANING AREA	
	FORMER STEAM-CLEANING AREA	
4.4.	SHOP AND BULK OIL STORAGE AREA	6
4.5.	AGRICULTURAL CHEMICAL USE AREAS	7
5.	CONCLUSIONS	7
6.	RECOMMENDATIONS	7
7.	LIMITATIONS	8
<u>Tal</u>	<u>bles</u>	
1	Summary of Sampling and Analytical Program	
2	Summary of Soil Analytical Results: TPH, VOCs, and Metals	
3	Summary of Soil Analytical Results: Pesticides, Herbicides, and Metals	
4	Summary of Grab-Groundwater Analytical Results – TPH and VOCs	
Fig	ures	
1	Sample Location Map	
2	Groundwater Results - TPH and VOCs	

CONTENTS

Appendices

- A Drilling Permit
- B Logs of Exploratory Borings
- C Groundwater Laboratory Analytical Data Sheets and Chain-of-Custody Records

1. INTRODUCTION

Mr. Buxton L. Layton of Wente Vineyards (Wente) retained Clayton Group Services, Inc. to perform a preliminary subsurface investigation at the Wente Winery, 5565 Tesla Road, Livermore, Alameda County, California (subject property). The subsurface investigation consisted of collecting soil and groundwater samples from nine soil borings to evaluate for possible impacts from historical business activities at the property.

2. <u>BACKGROUND</u>

Clayton prepared a Phase I Environmental Site Assessment (ESA) report for the above-referenced subject property (Clayton Project 70-03412.00, dated November 8, 2002). Clayton identified several recognized environmental conditions (RECs) at the subject property and recommended additional investigation to further evaluate these findings.

Historical research conducted during the Phase I ESA established obvious uses of the subject property since 1907. The subject and adjacent properties have been primarily rural agricultural properties. Vineyards had been established on about half of the subject property and most of the surrounding properties over the years. The Wente Vineyards business reportedly started on the subject property in the 1880s. In 1958 the business had grown to nine buildings and has continued to expand to its present size.

It appears that most of the chemical storage and handling and maintenance activities have occurred on the southern and western portions of the property. Two fuel underground storage tanks (USTs - diesel and gasoline) were removed from the property in 1987 and were replaced with three fuel aboveground storage tanks (ASTs) at the same location with a total current capacity of 4,000 gallons. An Alameda County building department demolition permit was issued with agency oversight at the time of UST removal; however, no environmental assessment of subsurface conditions was conducted or documented to determine if fuel releases had occurred.

Historic operations have included a former steam-cleaning bay that reportedly discharged to an open ditch at the south end of the steel storage and welding shed. Maintenance of field sprayers and tractors has been and is conducted on the subject property. Petroleum wastes are handled as hazardous waste and off-hauled by a licensed contractor; however, historic practices are not documented. Agricultural chemicals have been and are stored and used on the subject property as well as on offsite vineyards.

Based on the historical use of the subject property, Clayton identified five areas of concern for investigation as follows:

- 1. Fuel storage and dispensing area at the former UST and current AST location,
- 2. Former steam-cleaning bay location where wastewater was discharged to the ground,

- 3. Stained soil behind the current steam-cleaning bay,
- 4. Bulk oil storage and shop area, and
- 5. Agricultural chemical storage and use areas.

3. SCOPE OF WORK

Clayton's proposal (No. 03SFOES001, approved by Wente Vineyards on March 28, 2003) recommended nine soil borings at various locations on the subject property to collect soil and groundwater samples. The scope of work for this sampling investigation consisted of pre-field activities, sampling activities, laboratory analysis, and project management and report preparation. The work performed to complete these tasks is described in the following discussion.

3.1. PRE-FIELD ACTIVITIES

The purpose of the pre-field activities was to appropriately plan the work and prepare for potential hazards at the property. Pre-field activities included the following:

- Preparing a Zone 7 Water Agency (Z7WA) drilling permit application and obtaining approval to drill. A copy of the drilling permit is presented as Appendix A.
- Preparing a Site Safety and Health Plan (SSHP) for the work to be performed. The SSHP detailed the work to be performed, safety precautions, emergency response procedures, nearest hospital information, and onsite personnel responsible for managing emergency situations. The SSHP was reviewed with field personnel and kept onsite during field activities.
- Marking borehole locations with white paint and notification of Underground Service Alert (USA) prior to performing subsurface activities, as required by law. USA issued Ticket Message Number: 132246.

3.2. SAMPLING ACTIVITIES

To address the various historic uses of the subject property, Clayton designed the sampling program presented in Table 1. The sampling program included advancing nine boreholes (B-1 through B-9) on the subject property at the sample locations shown on the attached Figure 1. Groundwater samples were collected from only two boreholes, B-1 and B-4, and submitted for laboratory analysis.

Clayton conducted sampling activities on April 18, 2003. With the exception of B-3, all borings were advanced using direct-push, Geoprobe[®] drilling equipment on a tracked vehicle. Those borings were continuously cored to log the subsurface soils and collect soil samples from the unsaturated zone. B-3 was advanced using a hand auger and hand driven soil core sampling tool due to the limited space behind the steam-cleaning bay. Soil cores were collected in a core barrel lined with a plastic sleeve. The B-3 soil samples were retrieved in 6-inch long brass sleeves. Relatively undisturbed soil cores were screened for physical evidence of contamination (e.g., odors, discoloration, and or

chemical sheen). Soils were logged for each borehole using the United Soil Classification System as a guideline. The soil type, color, and notable characteristics were logged onto exploratory boring sheets for each borehole, except for B-3, and are presented as Appendix B. The borings were advanced in open areas that were asphalt paved, had gravel surface cover, or of bare earth. Soils encountered consisted of clay, silty clay, gravelly clay, sandy silt and sandy silt with gravel, and gravelly sandy silt.

Soil samples retained for analyses were selected based on site hydrology, soil type, physical observations, or elevated organic vapor analyzer (OVA/PID) readings. Selected Geoprobe soil samples were cut from the plastic soil-core liners, sealed with Teflon tape, capped, labeled, and placed in a pre-chilled ice chest. Select soil samples were transported to a State of California-certified laboratory for analysis under formal chain-of-custody documentation.

The sample program (Table 1) was designed to evaluate the property for total petroleum hydrocarbons as fuels and motor oil (TPH scan), volatile organic compounds, and pesticides, herbicides, and select metals. For residual pesticides, herbicides and metals that were used on the southern and western portions of the property, Clayton selected near surface soil samples (0.5-1 foot bgs, except for B-8, which was at 3.5-4' bgs) from eight borehole locations. Shallow soils were also submitted for TPH analysis (boreholes B-3 and B-5) due to reported historic or observed surface stains. Deeper soil samples selected from 3.5 to 8 feet bgs were analyzed for TPH and VOCs (boreholes B-1, B-2, and B-5). Soil samples submitted for laboratory analysis were selected only from the unsaturated zone. Additional soil samples were held by the laboratory in the event that additional analyses might be required.

The soil analytical program employed sample compositing to screen the site for possible residual agricultural chemicals. Eight select near surface samples were composited 4 parts to 1 part as a cost saving method into two composite samples for laboratory analyses (Comp1345 and Comp6789). Comp1345 was selected to address the general yard operation areas and where prior vineyards existed. Comp6789 was selected to address areas where agricultural chemicals have been or are stored and handled, and also where prior vineyards existed.

To address concerns of potential groundwater impacts from the fuel storage and dispensing area and the former steam-cleaning bay, Clayton selected two locations (B-1 and B-4) to collect grab-groundwater samples. These sample locations are along the general downgradient side of the property. These boreholes were advanced into the saturated zone to depths of 12 and 20 feet bgs, respectively. A temporary one-inch outer diameter PVC casing, temporary well point, was installed into each open borehole to allow for the collection of a grab-groundwater sample. The lower five feet of the temporary well was slotted casing. The grab-groundwater samples were collected using new disposable bailers. The samples were transferred into appropriate laboratory supplied containers. The sample containers were capped/sealed, labeled with identifying information, and placed in a pre-chilled ice chest for transportation to the analytical laboratory for analysis under formal chain-of-custody documentation.

Downhole equipment was cleaned prior to advancing each boring and prior to collecting samples. Decontamination water and soil cuttings were containerized and labeled pending analytical results for determination of proper disposal methods. Once sampling was complete, borings were backfilled to the ground surface with Portland-cement grout to comply with Z7WA guidelines.

3.2.1. Fuel AST and Former UST Area

Borings B-1 and B-2 were drilled adjacent to the existing fuel ASTs. The borings were drilled on an angle under the existing tank pad (20 and 10 degrees from vertical, respectively) to evaluate the subsurface for potential releases from the current fuel aboveground storage tanks (ASTs) and from the former tank pit, reportedly in the same location below the ASTs. Boring B-1 was advanced to 12 feet below the ground surface (bgs). Groundwater was encountered at a little more than 9 feet bgs and native soil below the former UST pit was encountered at 9.8 feet bgs. The borehole was completed by installing a temporary well casing to facilitate collection of a groundwater sample. B-1 was selected for groundwater sampling as it is on the downgradient side of the fuel tanks. Clayton noted that the unsaturated soil above groundwater did not have a petroleum odor; however soil samples below the groundwater table did have a distinct petroleum hydrocarbon odor. Boring B-2 was advanced on the east corner of the ASTs to a total depth of 16 feet bgs. No petroleum hydrocarbon odor was detected in unsaturated soil cores and only a slight odor was detected in a saturated-soil sample at a depth of 14 feet bgs.

3.2.2. Steaming Cleaning Area

Borehole B-3 was advanced between the steam-cleaning bay building and perimeter fence in an area of limited access. Therefore, the borehole was advanced using handauger equipment next to the building where oily-stained soils from the steam-cleaning operation existed. The borehole was advanced to a total depth of 4-feet bgs. Soil samples were collected from 0.5-1.0 feet and from 3.5-4.0 feet. No petroleum hydrocarbon odors were noted in the soil samples.

3.2.3. Former Steaming-Cleaning Area

Borehole B-4 was advanced at the southwest corner of a concrete pad that exists along the south side of the steel storage shed. Aris Krimetz, Corporate Engineer for Wente, stated that the concrete pad was the former location of the steaming-clean bay and that former discharges collected in an open ditch in the area where borehole B-4 was located. The borehole was advanced to a total depth of 20 feet bgs and a temporary well point was installed. The soil core samples were noted to be primarily clay. The borehole was found to be dry at the time of completion, but after about 2 hours sufficient groundwater collected for sampling.

3.2.4. Shop and Bulk Petroleum Storage Area

Borehole B-5 was located on the west side of the maintenance shop by a shop door near the bulk oil storage container. Based on Mr. Krimetz' recollection, the borehole was located in the general area where oil drums were previously stored.

3.2.5. Agricultural Chemical Use Areas

Eight near-surface soil samples were composited into two samples (Comp1345 and Comp6789) to screen the property for possible residual agricultural chemicals. Boreholes B-1 and B-3 through B-5 selected to analyze the specific areas discussed above, were also selected as a composite set to screen the operations area of the property for possible agricultural chemical residues. The additional boreholes B-6, B-7, and B-8 were located just outside of warehouses and garages that are or have reportedly been used to store agricultural chemicals. B-9 was advanced in a gravel-covered parking lot south of the winery in an area used for former vineyards. The additional boreholes were advanced to a total depth of 8 feet bgs and did not encounter saturated soils or soils with notable petroleum hydrocarbon odors.

3.3. LABORATORY ANALYSES

Clayton submitted 13 soil and 2 grab-groundwater samples to a state certified laboratory, McCampbell Analytical, Inc. of Pacheco, California, for analysis. Select samples were analyzed by the following United States Environmental Protection Agency (USEPA) approved analytical methods:

- USEPA Method 8015 Modified for a Total Petroleum Hydrocarbons Scan for gasoline, diesel, and motor oil (TPH-G, -D, & -MO).
- USEPA Method 8260 Volatile Organic Compounds that include fuel aromatics and oxygenates (VOCs)
- Solid Waste Series 6000 and 7000 analyses for five total metals (Cd, Cr, Ni, Pb, and Zn) listed in the Leaking Underground Fuel Tank manual (LUFT Metals),
- USEPA Method 8080 for Organochlorine Pesticides (OCP),
- USEPA Method 8141 analyses for Organophosphorus Pesticides (OPP),
- USEPA Method 8151 analyses for Chlorinated Herbicides (CH),
- Solid Waste Series 6000 and 7000 analyses for total arsenic and lead (As & Pb).

The sample program outlined in Table 1 shows the select analytical method chosen for each submitted sample.

4. <u>ANALYTICAL RESULTS</u>

A summary of soil analytical results is presented in Tables 2 and 3 and a summary of groundwater analytical results is presented in Table 4 and on Figure 2. The laboratory analytical data sheets and chain-of-custody forms are included in Appendix C.

4.1. FUEL AST AND FORMER UST AREA

The soil samples from boreholes B-1 and B-2 were found to contain TPH concentrations. Sample B-1 at 7.5-8.0 feet was found to contain TPH-G ranged compounds at 24 mg/Kg, TPH-D at 44 milligrams per kilogram (mg/Kg) (the laboratory reported that gasoline ranged compounds were noted to be significant in the diesel ranged results), and no detectable TPH-MO. No benzene or MTBE were detected in soil sample B-1; however, other volatile compounds typical of fuels were found to total 6,470 micrograms per kilogram (ug/Kg). Sample B-2 at 7.5-8.0 feet had no detectable TPH-G but had low concentrations of TPH-D at 1.7 mg/Kg and TPH-MO at 7.5 mg/Kg. No VOCs were detected in the B-2 soil sample.

The groundwater sample from borehole B-1 (B-1W) contained significant concentrations of TPH-G at 200,000 ug/L and TPH-D at 150,000 ug/L. No TPH-MO was reported in sample B-1W. VOCs in groundwater were also significant in sample B-1W. Benzene was reported at 2,100 ug/L and other VOCs totaled 90,300 ug/L. No MTBE was reported in sample B-1W but the laboratory had to dilute the sample for analysis.

4.2. STEAM-CLEANING AREA

Soil results from borehole B-3 found no detectable TPH or VOCs in the two samples submitted for analysis. Metal concentrations were found to be within normal background concentrations.

4.3. FORMER STEAM-CLEANING AREA

The soil sample results for borehole B-4 had no reportable TPH or VOCs. Metals results were within normal background concentrations. The grab-groundwater sample B-4W contained TPH-G at 74 ug/L, TPH-D at 180 ug/L, and TPH-MO at 370 ug/L. The water sample contained no benzene but did contain other volatile compounds typical of gasoline that totaled 27.28 ug/L. Sample B-4W also contained chloroform at 1.2 ug/L. The finding of chloroform at a low concentration, a compound not typically found in gasoline, is believed to be an artifact of either the laboratory analytical process or from an onsite potable water supply that may have impacted the shallow groundwater table.

4.4. SHOP AND BULK OIL STORAGE AREA

Soil sample results for sample B-5 at 0.5-1.0 feet had detectable TPH-G at 1.2 mg/Kg, TPH-D at 33 mg/Kg, and TPH-MO at 190 mg/Kg. However, a slightly deeper sample (3.5-4.0 feet) contained no detectable VOCs.

4.5. AGRICULTURAL CHEMICAL USE AREAS

The two composite samples analyzed contained low concentrations of residual agricultural chemicals. Sample Comp1345 was found to have reportable concentrations of organochlorine pesticides as DDD, DDE, and DDT (1.4, 3.3, and 8.8 ug/Kg, respectively). Sample Comp6789 only had reportable concentrations of a-Chlordane at 6.2 ug/Kg and g-Chlordane at 6.8 ug/Kg. No organophosphorus pesticides or chlorinated organic herbicides were detected in either sample analyzed. Comp6789 was also analyzed for arsenic and lead. No arsenic was detected and lead was detected at 9.4 mg/Kg, a typical background concentration.

5. <u>CONCLUSIONS</u>

The preliminary investigation results indicate that fuel, primarily gasoline, apparently has been released in the fuel storage and dispensing area on the property and has impacted groundwater. The finding of TPH compounds in soil samples B-1 and B-2 may be a result of groundwater contamination that has impacted the fringe zone above the groundwater table. The soil sample analyzed from B-2, only about 25 feet to the east in an upgradient direction, was found to contain very low concentrations of TPH, primarily in the motor oil range with no detectable gasoline or VOCs, indicating that the fuel release was in the tank area.

Sample results for borehole B-4 indicate no residual TPH or VOCs in the soil; however the grab-groundwater sample was found to contain TPH ranged compounds from gasoline to motor oil and various VOCs that are typical components of gasoline. The TPH concentrations detected are slightly above Risk Based Screening Levels (RBSLs) established by the Regional Water Quality Control Board (RWQCB). TPH at these concentrations can impair the use of the local aquifer for beneficial uses.

The finding of low concentrations of TPH in a shallow soil sample at location B-5 suggests some residual petroleum hydrocarbons exist in surficial soils in the area of the maintenance shop and the oil storage container. However, a slightly deeper sample at 3.5-4 feet bgs contained no detectable VOCs; therefore, the finding indicates de-minimis residual TPH concentrations at this location, below RBSLs.

Analytical results for pesticides, herbicides, and metals related to agricultural chemicals in samples Comp1345 and Comp6789 do not indicate that any significant residual concentrations exist in shallow soils from historic or current use and storage of agricultural chemicals. The findings of DDT and daughter degradation compounds and chlordane are well below the established RBSLs.

6. **RECOMMENDATIONS**

The finding of gasoline-ranged compounds in sample B-1W indicates that a fuel release has occurred on the property, most likely in the immediate area of the fuel storage tanks.

DONALD A. ASHTON

(-36-03

NO. 5993

The impact to groundwater should be further investigated to characterize the extent of the impact.

TPH impacts to groundwater at borehole B-4 slightly exceed RBSLs, but the analytical results indicate a source different than the fuel tank area, most likely the former steam-cleaning bay. Additional sampling is recommended in this area to determine if these concentrations are significant and require mitigation.

Clayton recommends that the findings from this investigation be forwarded to the local oversight agency (Z7WA) for review and comment. Disclosure of the data is also a requirement of the drilling permit. The Zone 7 Water Agency regulates the local groundwater Mocho Subbasin that is used as a drinking water source.

7. LIMITATIONS

The information and opinions included in this report were given in response to a specific scope of work and should be considered and implemented only in light of that particular scope of work. The services provided by Clayton in completing this project have been provided in a manner consistent with the normal standards of the profession. No other warranty, expressed or implied, is made.

This report was prepared by:

Donald A. Ashton, R.G., R.E.A.

Senior Geologist

Environmental Services

This report was reviewed by:

Jon V. Rosso

Director

Environmental Services

San Francisco Regional Office

June 23, 2003

Table 1
Summary of Sampling and Analytical Program
Wente Winery, Livermore, CA

		Analytical N	lethods	<u> </u>	Organochlorine	Organophosphorus	Chlorinated	Total Metals	
Boring ID	Depth	TPH Scan	VOCs	LUFT Metals	Pesticides	Pesticides	Herbicides	As & Pb	
SOIL	•						•		
B-1	0.5 - 1'				Comp1345	Comp1345	Comp1345		
	7.5 - 8'	X	X						
B-2	7.5 - 8'	Х	X						
B-3	0.5 - 1'	Х		X	Comp1345	Comp1345	Comp1345		
	3.5 - 4'		X						
B-4	0.5 - 1'	Х		X	Comp1345	Comp1345	Comp1345		
	7.5 - 8'		X						
B-5	0.5 - 1'	X		X	Comp1345	Comp1345	Comp1345		
	3.5 - 4'		X						
В-6	0.5 - 1				Comp6789	Comp6789	Comp6789	Comp6789	
· B-7	0.5 - 1'				Comp6789	Comp6789	Comp6789	Comp6789	
B-8	3.5 - 4'				Comp6789	Comp6789	Comp6789	Сотр6789	
B-9	0.5 - 1'				Comp6789	Сотр6789	Comp6789	Comp6789	
GROUND	WATER	<u></u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
B-1		х	X						
B-4		Х	х						
To	otal Analyses:	7	7	3	2 .	2	2	1	

Table 2
Summary of Soil Analytical Results: TPH, VOCs, and Metals
Wente Winery, Livermore, CA

			Sample ID, De	pth (Feet), & D	ate						j
Analytical Method	Analyte	Units	B-1 7.5-8° 4/18/03	H-2 7.5-8' 4/18/03	B-3 0.5-1° 4/18/03	B-3 3.5-4' 4/18/03	B-4 0.5-1' 4/18/03	B-4 7.5-8' 4/18/03	B-5 0.5-11 4/18/03	B-5 3.5-4' 4/18/03	RBSLs Industria
Total Petroleum Hydrocarbons	TPH-Gasoline	mg/Kg	24	<1.0	<1.0		<1.0		1.2	wn.	100
(EPA 8015M)	TPH-Diesel	mg/Kg	44	1.7	<1.0		<1.0		33		100
	TPH-Motor Oil	mg/Kg	<5.0	7.5	<5.0		<5.0		190	de:	1 0 00
Volatile Organic Compounds	MTBE	ug/Kg	<100	<5.0		<5.0		<5.0	- -	<.5.0	28
(EPA 8260B)	Benzene	ug/Kg	<100	<5.0		<5.0		<5.0		<5.0	45
	Toluene	ug/Kg	<100	<5.0		<5.0		<5.0		<5.0	2.6
	Ethylbenzene	ug/Kg	140	<5.0		<5.0		<5.0		<5.0	2,500
,	Xylenes	ug/Kg	210	<5.0		<5.0		<5.0		<5.0	1.0
	Naphthalene	ug/Kg	560	<5.0		< 5.0		<5.0	4*	< 5.0	4.3
	1,2,4-frumethylbenzene	ug/Kg	3,400	<5.0		<5.0		<5.0		<5.0	NE
	sec-Butyl benzene	ug/Kg	150	<5.0		<5.0		<5.0		<5.0	NE
	Isopropylbenzene	ug/Kg	100	<5.0		<5.0		<5.0		< 5.0	NE
	n-Propyl benzene	ug/Kg	610	<5.0		<5.0	 , ·	< 5.0		<5.0	NE
	1,3,5-Trimethylbenzene	ug/Kg	1,300	<5.0		<5.0		<5.0		<5.0	NE
LUFT Total Metals	Cadmium	mg/Kg			<0.5		<0,5		<0.5	,	12
(SW Series 6000, 7010)	Chromium	mg/Kg			69		60		52		750
•	Lead	mg/Kg			7.9		8.0		41.0		750
	Nickel	mg/Kg		~*	180		160		150		150
	Zine	mg/Kg	!		99		54		57		600

Notes:

ug/kg = micrograma per kilogram

mg/kg = milligrams per kilogram

RBSLs = Risk Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater, RWQCB, Interim Final - December 2001, Table A.

NE = Not established

^{-- =} Not analyzed

 $[\]leq_X =$ Analyte not detected at or above detection limit of x.

Table 3
Summary of Soil Analytical Results: Pesticides, Herbicides and Metals
Wente Winery, Livermore, CA

		L	Sample I	D & Date	·
Amelination Medical	Analyte	WY 14.	Comp1345 4/18/03	Comp6789 4/18/03	RBSLs
Analytical Method	Atlatyte	Units	4/16/03	4/10/03	Industrial
Organochlorine Pesticides	a-Chlordane	ug/Kg	<1.0	6.2	2,900
(EPA 8080)	g-Chiordane	ug/Kg	<1.0	6.8	2,900
	p,p-DDD	ug/Kg	1.4	<5.0	17,000
	p.p-DDE	ug/Kg	3.3	<5.0	4,000
	p,p-DDT	ug/Kg	8.8	<5.0	4,000
Organophosphorus Pesticides (EPA 8081)	Herbicides	ug/Kg	ND	ND*	NE
Chlorinated Organic Herbicides (EPA 8151)	Herbicides	ug/Kg	ND*	ND*	NE
Total Metals (SW Series 7010)	Arsenic	mg/Kg	**	<2.5	2.7
	Lead	mg/Kg	'	9.4	750

Notes:

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

<x = Analyte not detected at or above detection limit of x.</p>

ND = No Analytes Detected.

ND* = No analytes detected; however, elevated detection levels due to sample dilution

- = Not analyzed

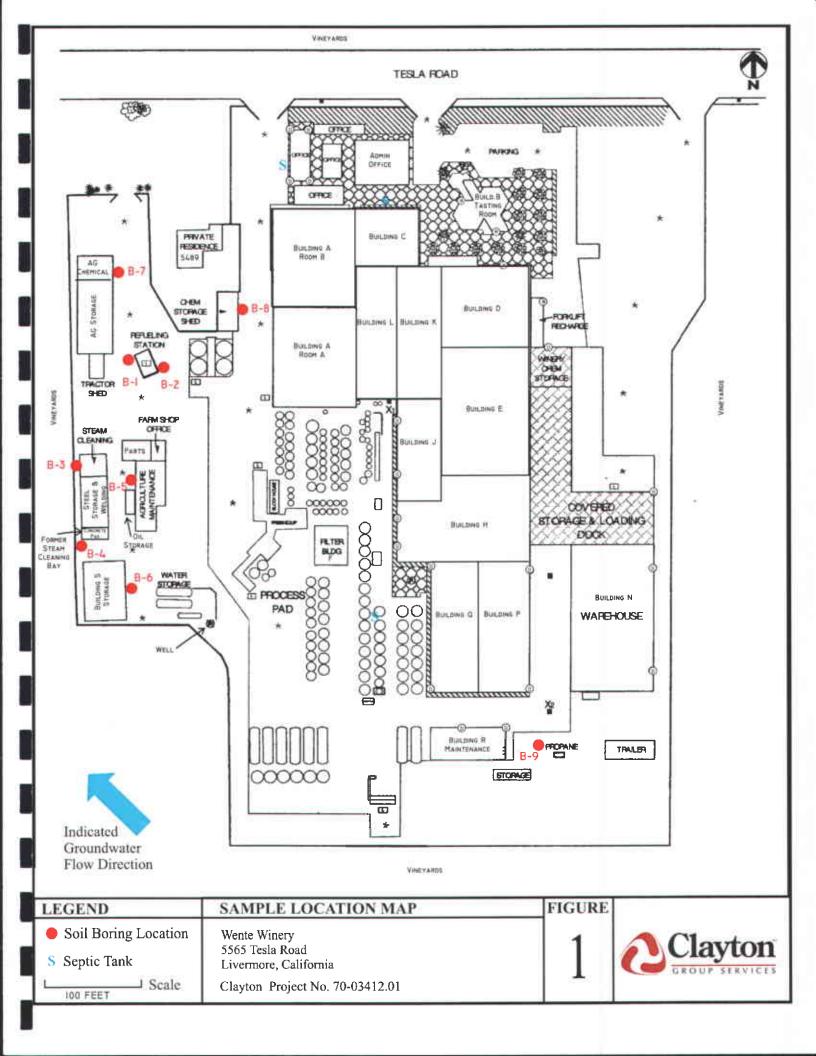
RBSLs = Risk Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater, RWQCB, Interim Final - December 2001 Table A.

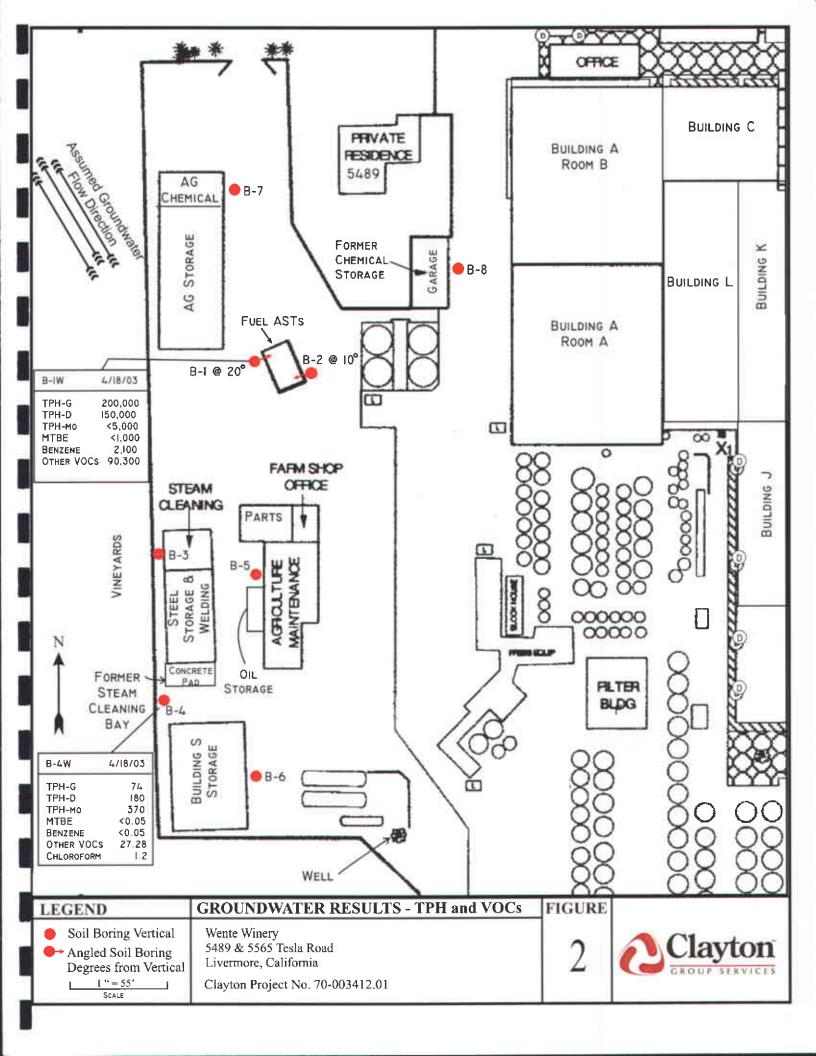
NE = Not established

Table 4
Summary of Grab-Groundwater Analytical Results - TPH and VOCs
Wente Winery, Livermore, CA

		L	Sample I	D & Date		
			B-1W	B4W	RBSLs	
Category	Chemical	Units	4/18/03	4/18/03	Industrial	
Total Petroleum Hydrocarbons	TPH-Gasoline	ug/L	200,000	74	100	
(EPA 8015M)	TPH-Diesel	ug/L	150,000	180	100	
	TPH-Motor Oil	ug/L	<5.000	370	100	
Volatile Organic Compounds	MTBE	ug/L	<1000	<0.5	5.0	
(EPA 8260B)	Benzene	ug/L	2,100	<0.5	1.0	
	Toluene	ug/L	34,000	5.1	40	
•	Ethylbenzene	ug/L	5,900	2.0	30	
	Xylenes	ug/L	31,000	12	13	
	n-Butyl benzene	ug/L	1,300	<0.5	NE	
	tert-Butyl benzene	ug/L	<1000	0.51	NE	
	chioroform	ug/L	<1000	1.2	28	
	Naphthalene	u <u>e</u> /L	1,800	1.3	21	
	1.2,4-Trimethylbenzene	ug/L	9.900	4.0	NE	
	sec-Butyl benzene	ug/L	<1000	< 0.5	NE	
	Isopropylbenzene	ug/L	<1000	<0.5	NE	
	n-Propyl benzene	ug/L	1,190	0.67	NE	
	1,3,5-Trimethylbenzene	ug/L	3,300	1.7	NE	

Notes:


ug/L = micrograms per liter


 $\leq x =$ Analyte not detected at or above detection limit of x.

RBSLs = Risk Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater, RWQCB Interim Final • December 2001, Table (A)

NE = Not established

6/3/2003

APPENDIX A DRILLING PERMIT

ZUNE MELL

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94588-5127 VOICE (925) 484-2600 X235 FAX (925) 462-3914

DRILLING PERMIT APPLICATION

City ### Supply Content of Borlings Other Casing Diameter Casi	FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LILING METHOL WELL PROJECTS DRILLING METHOL MUSCH Complete on the well measurements. A page of the department of this permit and Alarmede County Ordinance No. 73-86. BESTIMATED STARTING DATE ### COMPLETION DATE ### COMPLETIO	LOCATION OF PROJECT 5565 TESLA ROYAD	
California Coordinates Source fi. CCE	Livermore CA 94550	001 0010 001
CLIENT Name Stores No. Phone 725—4360 City Livernoot C R	California Coordinates Source # .Accuracy± ft.	
Name Wester Williams State of the Section Research Resear	APN 97A -2340 -004-01	Circled Permit Requirements Apply
County Ordinance No. 73-68. Approved Mman 47/10 Date 4/9/03	Name WESTE WINCEY Address 15565 TESCH RD Phone 925-456-2300 City LIVERMORE (R Zip 94550) APPLICANT Name DONALD ASH TON LAYTON CRAMP SERVICES Fex 725-426-0106 Address 920 KptL CENTER PKWYPhone 925-926-2679 City #216 Zip 94566 PUBLICANTIN CA TYPE OF PROJECT Well Construction Geotechnical Investigation Cathodic Protection General Gen	 A permit application should be submitted so as to arrive at th Zone 7 office five days prior to proposed starting date. Submit to Zone 7 within 60 days after completion of permitte work the original Department of Water Resources Water We Drillers Report or equivalent for well projects, or drilling log and location sketch for geotechnical projects. Permit is void if project not begun within 90 days of approvidate. WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial well or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the wellhead. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. Grout placed by tremie. GEOTECHNICAL. Backfill bore hole with compacted cuttings heavy bentonite and upper two feet with compacted material. areas of known or suspected contamination, tremied cement growshall be used in place of compacted cuttings. CATHODIC. Fill hole above anode zone with concrete placed by tremie. SPECIAL CONDITIONS:, Submit to Zone 7 within 60 days after completion of permitted work the well installation report including a submit to completion of permitted work the well installation report including a submit to completion of permitted work the well installation report including a submit to completion of permitted work the well installation report including a submit to completion of permitted work the well
	County Ordinance No. 73-68. PAPPLICANT'S	Approved Wyman Hong Date 4/9/03

APPENDIX B LOGS OF EXPLORATORY BORINGS

C	Clay	SERV	TEES		(PLO	G OF RATOR RING	RY	CLIENT: LOCATION: _			e, ca	BORING NO. B-1 Sheet 1 of 1
	IU IUCAI		01 0	oring.		AG STORAGE		Drilling Metho	od: GEOPROBE	Drill Rig Model	: MARL M5T	Hole Dia.: 2 IN.
					50.			Boring Comp				
				B-1	-47					PAD @ 20° FROM		
				FUEL		,	v →	1		OVED AFTER SAMP	LING, SEALED	WITH
	und Ele	8V.:	1		Dat	um: Depth	To 77	9.1	Depth To	OUT TO SURFACE		
E G	/ft.)	Depth	eg S	Soil Group	Litho-			12:50	Time			
PID (ppm)	Recovery (ft./ft.)	20	Sample Interval	Group Symbol (USCS)	graphic Symbol	Da	te		Date	IPTION	<u> </u>	
<u> </u>			1		ПП	SANDY S	SILT WITH	GRAVEL OLIVE		50%, SAND FINE-T	O-COARSE 30	1-40% GRAVEI
			X	1				SE, NO ODOR, G		70 70, CF 110 1 111C 1	O OCH IOL OC	7 4070, GIPTIEL
		11-		1		10 20 10	[5/11] 200		7211210 110			
		1,	X	1			•					
		2 -]								
		3 -										
		٦									<u> </u>	
	2/4	4 -	L X									
		╹										
		5 -	 	ML					·			
] .	Ш							<u></u>		
		6 -	 	:								
		ļ ⁻ .	 	<u> </u>								
<u> </u>		7 -										
0.9	0.071		B									
\vdash	3.8/4	8 -		-								
			 	<u> </u>			·					-
		9 -	╫╌	▽ . i								
		 	X			SILTY CI	AV OLIVE	BROWN 100%	EINES FAT CLAY	STIFF, FIRM, MO	IST TO DAMP I	DISTINCT
		10-	#^	-			UM ODOF		i inco, i ni ocni	O'III'S I III III III	101 10 01 2111 1	0.07.11.07
		ļ., '		CL		7 - 1 - 1 1 1 1	.0.11 0001	1				
		11-		I OL					_			
	4/4	40				WET @ 1	12 FT.					
		12-							BORING TERMI	NATED @ 12 FT.		
		13-										
<u> </u>	<u> </u>	ָוֹט ְ									<u></u> -	·
		14-										
		15-	_									
 	1	ļ	ļ					<u> </u>				
<u> </u>		16-								_		
								 	 . <u>-</u>			
-		17-		-			··································					
		-		-								
	-	18-		-					<u> </u>	· · · · · · · · · · · · · · · · · · ·		
		1.				-						
		19-	-									
		1				 						

Field	Cla	SERV	On TCES		(Pi	LOI BOF	G OF RATORY RING	CLIENT: LOCATION: _	D.: 70-03412.01 WENTE WINE 5565 TESLA F D. ASHTON	RY	E, CA	BORING NO B-2 Sheet 1 of 1
	iu ioca		U. D	oring.	Į	A	STORAGE	Drilling Metho	od: GEOPROBE	Orill Rig Mode	: MARL M5T	Hole Dia.: 2 IN
	·			B-1 B-2 B-2			N —>		letion Data: E BORING UNDER LAND CEMENT GR		M VERTICAL, SE	ALED WITH
	und El	T		10"		atu	Im: Depth To ∇	8.6	Depth To	· · · · · · · · · · · · · · · · · · ·		<u> </u>
PID (ppm)	Recovery (ft./ft.)	Depth	Sample Interval	Soil Group	Liti grai	ho- phic	Time	10:00	Time			
면	Rec (ft	۵	Sa	Symbol (USCS)	Syn	phic nbol	Date	4/18/03	Date DESCRI	PTION		
				SM	0 0 	<u> 이이</u>	GRAVEL AND SILT					
		1	<u></u>			Ш	SANDY SILT WITH	GRAVEL, OLIVE	BROWN, FINES 50	%, NON-PLAST	C, SAND FINE-	TO-COARSE
		╣.				Ш	30-40%, GRAVEL	10-20% TO 1"+,	DRY TO DAMP, N	O ODOR		
		- 2 −				Ш						
		╡╸	ļ			Ш						
		3 -										
			-									
	0.1/4	- 4	_									
				ML								=
		- 5 −	 									
		┥ .	-									
		- 6	-					<u>.</u>				
		┤ .	Х									· .
0.5		 7 −	В					•••				
0.0	3/4	-	X									
	•	 8 −	Ϊ.	_			@ 8.9-9.2 FT. CRU	SHED BRICK DE	RRIS (FILL) IN GRA	VELLY SAND, WE	T. NO HYDROC	ARRON ODOR
		١, ١	 	<u>′</u>			9 5.5 5.2 11. 516	Otto Di IION DEL	A IIO (I ICC) III GIVI	, CCC (.,,	
		- 9			JJ	Щ,	SILTY CLAY, OLIVE	BROWN, 100%	FINES, PLASTIC, S	STIFF TO FIRM. M	IOIST TO DAME)
		10	Х			//			, , _			
		10-									. <u>.</u>	
],,										
		11-										
	4/4	12-			///	///						
		14		~		///	-					
		13-	<u> </u>	CL								
		ļ".			//	///						
		14-			//		@ 14 FT. SLIGHT H	YDROCARBON C	DOR		·	
		↓ ′′.			//	//						
		15-	 		///	///						
		ļ · • ·			//	///				· · · · · · · · · · · · · · · · · · ·		
9.5		16-	<u> </u>		//		@ 16 FT. NO HYDR	OCARBON ODOF				•
		┤ .							BORING TERMIN	ATED @ 16 FT.		
		17-		,						· · · · · · · · · · · · · · · · · · ·	·	··-
		┨ .									····	
		18-										······································
		┤ ·									<u> </u>	
		19-										<u> </u>
		┥ .	<u> </u>									

Fleir	d loca	tion	of b	E)	BOF	RATORY RING	LOCATION:_ LOGGED BY:	WENTE WINE 5565 TESLA F D. ASHTON	ROAD, LIVERMOR DRILLER:	GREGG	B-4 Sheet
				FENCE		/ineyard	Drilling Metho	d: GEOPROBE	Drill Rig Model	: MARL M5T	Hole Dia.: 2
		B-4 •	1	- = -			Boring Comple	etion Data:			
BUILDIN	NG			CRETE	STEEL		TEMPORARY	WELL CASING, RI	MOVED AFTER S	SAMPLING GRO	UNDWATER,
5			i P	AD AD	STORAG	E	SEALED WITH	H PORTLAND CEM	ENT GROUT TO S	SURFACE	
.	 			· —	Bake						
	und El		I	1	Datu	m: Depth To <u>V</u>	ND I	Depth To 🔻	12.3		
	£ \$	둦	물물	Soil	Litho-	Time	10:49	Time	12:40		+
PID (ppm)	Recovery (ft./ft.)	Depth	Sample Interval	Group Symbol (USCS)	graphic Symbol	Date		Date			
<u>a</u>	<u>"</u>	+	"	(0000)				DESCRI			
			ļ	}		SILTY CLAY, WITH	<u>Trace Gravel, (</u>	<u>Dark Brown, Da</u>	AMP TO MOIST, F	INES 90-100%	, TRACE SAND
		」₁ _	X]		0-5%, TRACE GRA	VEL TO 1" 0-5%,	NO ODOR			
		」'.		}							
		١,	X								
		2 -	1]						••	
		٦. ٔ		1							
		- 3	 	· ·				- ·			
	0/4	-	\parallel	-		******					
+	2/4	- 4 -	<u> </u>	CL				 			
-		┦ -									·
		- 5 -									
1] ້ :		·				<u> </u>			
		6 -									
		707									
\neg		۱_ ا		1							
).5		- 7 -	В	-							
10.0	4/4	-	X	-							
	4/4	- 8	1	-		<u>.</u>					
-		-	-								
		9 –				CLAY, OLIVE BROW	VN, MOTTLED IN F	PLACES, 100% FI	NES, MOIST TO	WET, NO ODOR	
		10_]			<u></u>				
		_ ייו	<u> </u>								
		44] .							
		- 11-		1						<u> </u>	,
	4/4	1	Х	1						·	
+		12-	7	፟፟፟፟፟፟፟						<u>-</u>	
_		-	+-	1							
		- 13−		1							
		-						· · · · · · · · · · · · · · · · · · ·	- .		
_		-14-	 	CL							
			 								
		15-									
		ادا									
_ T	4/4	10									
		16-		1							
		٦ أ		1							•
		17-		1		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
		-		^					· · ·		
		- 18-	<u> </u>								
			 								
		19-	 								
		∐՝″ւ									
1	4/4	1_{20}	L					BORING TERMIN	ATED @ 20 FT.		

C	Clay		On TOES		(P	Ľ	Ol	G OF RATORY RING	CLIENT: LOCATION: _			, CA	B-5 Sheet 1 of 1
["	1964		J. D	GRAVEL	מעול	Æntv	¥		Drilling Metho	d: GEOPROBE	Drill Rig Model:	MARL M5T	Hole Dia.: 2 lN.
	[· · · · ·		\neg	CIVILL.	DI B		ч		Boring Compl	etion Data:			
	CILS	TORAGI		● 8-5				N		SEALED WITH	PORTLAND CEME	NT GROUT	
				SHOP	_								
Gr	ound Ele	9V.:		anur		Da	ı t u	im:					
	<u>\$</u> _		o =	Soil		itho		Depth To 🔽	NO	Depth To 🔻			
PID (ppm)	Recovery (ft./ft.)	Depth	Sample Interval	Group	gr	aph /mb	iic	Time Date		Time Date	_		
8	H F	٥	တ္တဋ	Symbol (USCS)	3)	/mc	101	Date	<u> </u>	DESCR	PTION		
		1	X					SANDY SILT, WITH	GRAVEL, DARK E	Brown, Fines 60	0%, SAND 35-40%	6, GRAVEL 0-	5% TO 1"+, DRY
		2 -		ML									
		3 -				Ц	L						
		J.	<u> </u>			П		GRAVELLY SANDY	SILT, BROWN, F	NES 50%, SAND	30%, GRAVEL 20	%, DRY	
	5.5/4	4 -	<u>X</u>			$\ \ $,		
			<u> </u>			$\ \ $							
		5 –				$\ \ $	ļ						•
ļ		↓ .	<u> </u>	ML		$\ \ $	l				·····		
ļ		6 -	 			$\ \ $							
	_	ļ .	 				İ	• .					
-	-	7 -	 			Ш							
			X	-					· · · · · · · · · · · · · · · · · · ·				
-	3/4	8 -	<u> </u>		L	Ш				DODING TEDIA	NATED & A FT		
\vdash				-						BOHING TERMI	Nated @ 8 Ft.		
-	 	∤9 -	-										
-						,							· -
	<u>- </u>	10-		1									
											102-2		
		11-										•	
		ļ., ˈ						-			•		
		12-											
													·
		13-]									
									•				
		14-											
		15-											
		13 -											
		16-	<u> </u>										
	ļ	'' '.											
<u> </u>		17-	<u> </u>							<u> </u>			
<u> </u>	ļ	".	ļ <u>.</u>	ļ ·						· ·	 	···	
\vdash		18-											
		ļ .	<u> </u>	-									
		19-	ļ										
-			-	-						<u> </u>			

0	Cla	yt(on TEES	E	(PLOI	OF RATORY RING	CLIENT: LOCATION: _	D.: 70-03412.01 WENTE WINE 5565 TESLATE D. ASHTON		, CA	BORING NO. B-6 Sheet 1 of 1
Fiel	d loca	tion	of b		.						Hole Dia.: 2 IN.
ŀ				BUILDING (Boring Compl		Dilli rig Model.	ITP4 (L ITIO)	
1	٧	NEYAPI	ו נ	B-6			Borning Compi		PORTLAND CEME	NT GROUT	
		FENCE	i		GRAVEL DR	IVEWAY		<u> </u>			
Gro	und El		ㅋ		Datu	N -> Im:					
	<u>ک</u> _		<u> </u>	Soil	1:45-	Depth To V	ND	Depth To 🔻			
PID (ppm)	Recovery (ft./ft.)	Depth	Sample Interval	Group Symbol (USCS)	graphic Symbol	Time Date		Time Date			
PIC	- B	"	ÖΞ		J.		1	DESCR	IPTION		
				SM	जनन	GRAVEL AND SILT					
		1 -	X			GRAVELLY CLAY, [DARK BROWN, FI	NES 80%, SAND	20%, TRACE GRAY	VEL TO 1"	
<u> </u>		-	 	CL					u	·	
		2 -		l UL		·					
		-	+	·							
0.4		3 -	В			SILTY CLAY, BROW	IN FINES QO.100	3% SAND 0-10%	TRACE GRAVEL	MOST TO DR	Y NO ODOR
<u> </u>	4/4	┪,	X			your year, briyn	, r m4EQ QU-100	5.01 CHRES O 107	- I the rate of \$17 tilly		
		4 -	1]							
		5 -									
]		CL							
		6 -									
		」" .									
		 7 -							 		
		╣.		-			•			********	
	4/4	 8 -	X					DODING TEDAL	NATED & CIT		
		┥ .		-				ROHING LEHMI	nated @ 8 ft.		
		- 9	<u> </u>	1							
	<u></u>	┤ .		1							
		10-		1							
		1,,					•				
		<u> </u> 11-]							
		12-		_							
		'4		1							
		13-	<u> </u>	1							
		•	<u> </u>	-							
<u> </u>		14-		-							
		-		1							
 		 15-		1						· ·	
		۱ ـ ا	-	1							
		16-		1.							
],,]							
		17-									
		18-								-	
L		ا" ا	ļ. <u></u> .	-							
		19-		-		ļ. -	· - · · · · · · · · · · · · · · · · · ·				
<u></u>	ļ	_	<u> </u>	1		<u></u>					

C	Cla	yto	On	EX	(PL	DF	OF RATORY RING	CLIENT: LOCATION: _	WENTE WINE 5565 TESLA	ROAD, LIVERMOR	E, CA	B-7 Sheet 1
Fle	id loca	tion	of b	oring:					D. ASHTON	DRILLER:		of
			1	AG STORA	GE		AG CHEMICAL	Drilling Metho	od: GEOPROBE	Drill Rig Mode	I: MARL M5T	Hole Dia.: 2 IN.
								Boring Compi				
							B-7		SEALED WITH	PORTLAND CEN	IENT GROUT	
				GR/	Wel. Drivi	WAY.	N>					
	ound El	ev.:			Da	tu	m;					
PID (ppm)	Recovery (fl./ft.)	ے ا	9 8	Soil	Litho		Depth To 🔽	ND	Depth To 🔻			
🚊	§ ₹	Depth	Sample Interval	Group Symbol (USCS)	graph Symb	ic	Time Date		Time Date			+
≘	å ±	^	S E	(ÚSCS)	Symb	OI	Date	1	DESCR	IPTION		<u> </u>
				SM	واوام	이	GRAVEL AND SILT,	0-3"				
		1.	X				GRAVELLY SANDY		MAN FINES 50%	NON-PLASTIC S	AND 30-40%	FINE-TO-COARSE
		- 1	 						ravia, riiveo do As	HON-LIGHT	7410 00-40 /d, I	INE-TO-COATOL
	 	-	 	1		Н	GRAVEL 10-20%, E	int, NO ODON				
-		2 -		1								
ļ	 -	-	 									
 		3 -	1									
		╡.	<u> </u>	1								
	3.2/4	4 -	X	ML					. <u>.</u>			
		J T		IVIL								
						П	@ 5 FT. GRAVEL TR	ACE				
		5 -	1	1								
		┪_ ・	1	1			<u></u>			· · · · · ·		
		6 -		1								
	<u> </u>	-	 	1								
	 	 7 −	 	-								
	<u> </u>	┨ .	H.,	-								
	1.5/4	8 -	<u>X</u>			Ц						
		ĮŤ.		<u> </u>					BORING TERM	NATED @ 8 FT.		
		9 -		<u> </u>			····································					
		_ ق										
		40								-		
		10-]		Ī						
		1		1		ı						
	 	11-		1		ı			· · ·			
		┤ ·		1		ł		· 				
		12-	-	1		ŀ						
	 	- ,		-								
		13-		-								·
	ļ <u>-</u>		<u> </u>									
		14-]				<u> </u>				
	1											
		16				-						· · · · · · · · · · · · · · · · · · ·
_		15-		1		Ì						
		1	 	1		İ						
		16-	†	1						***		
		1		†		ŀ		·				
	 	17-		1		ł						
	 	-		-		. }						
	<u> </u>	18-		4		ļ						
<u> </u>		ͺͺͺͺͺͺ	ļ			ļ						
<u> </u>	<u> </u>	19-		_								
L	<u>L</u>	13										
		1		1		- 1						

,

2	Clay	yte serv	on TEES	EX	(PL	_0	G OF RATORY RING	CLIENT: LOCATION:	5565 TESLA F	ry Oad, Livermori	E, CA	BORING NO. B-8 Sheet 1
Flei	d locat	lon	of b	oring:			RESIDENCE	LOGGED BY:	<u> </u>	DRILLER:_	GREGG	of
	AST	_		GARAG	E		nesil/dive	Drilling Metho Boring Comple		Drill Rig Model	: MARL M5T	Hole Dia.: 2 IN.
				•			ASPHALT			T GROUT TO SUF	RFACE, ASPHAL	T SURFACE PLUG
		N-	→	—— B-8			RETE DRIVEWAY					
Gro	und Ele	8 V.:				ati	um:					
	Recovery (ft./ft.)		ē <u>ē</u>	Soil	1 141	ha-	Depth To	ND	Depth To 🔻			
PID (ppm)	ft./ft	Depth	Sample Interval	Group Symbol (USCS)	graj Syn	phic	Time Date		Time Date			+
₫.	8.)		တ 드	1			<u> </u>		DESCRI	PTION		
			;	SM	T	olo III	THOU I BELL O Z I DAY					
		1 -	X				SANDY SILT, DARK	(BROWN, FINES 6	60%, SAND 35-4	0%, GRAVEL 0-5	% TO 1", DRY,	NO ODOR
			 			$\ \ $. <u></u>			
		2 -	-		Ш	Ш						
		-	₩-								<u></u>	
0.6		3 -	В			11						
0.0	3.5/4	١.	X		11							
	0.01	4 -	Ī	ML		$\ \cdot\ $						
		ٔ ۔				$\ \ $						
		5 -] :		$\ \cdot\ $						
		6				$\ \cdot \ $						
		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֡֓֓֓֓										
		7 -	<u> </u>					<u> </u>		·		
		╽゜	<u> </u>					<u> </u>				
<u> </u>	3.5/4	8 -	<u> </u>		Ш.							
<u> </u>			-						BORING TERMIN	VATED @ 8 FT.		
-		9 -	-							 		·
-												
		10-							<u> </u>			
		1							***			
		11-		1				····				
				1				· · · · · · · · · · · · · · · · · · ·				
		12-		1					•			
		10										
		13-										
		14-										
		╽╵╴	<u> </u>									
<u> </u>		15-		_							····-	
·			_							······································		
ļ		16-	ļ	-								
		-		1							· · · · · · · · · · · · · · · · · · ·	
		17-		1								
		1	-	1								-1.1.
 		18-	<u> </u>	†							<u></u>	
		1_	\vdash					 				
		19-	 	1					 -		,	
		1	 	1	l			****				

C	Cla	yte serv	On VICES	E		_		G O RAT		Y	PROJECT NO CLIENT: LOCATION:	WENTE WIN 5565 TESLA	ery Road, Livermor	e, ca	BORING NO. B-9 Sheet 1
Fig	eld loca	tion	of b	oring:				fii 4.	<u> </u>		LOGGED BY:	D. ASHTON	ORILLER:_	GREGG	of1
	PROPANE	١.					!		1		Drilling Metho	d: GEOPROBE	Drill Rig Model	: MARL M5T	_ Hole Dia.; <u>2 lN.</u>
N	<u> </u>	/	PDANE	B-9 🛖	— з	ı5' —	- -		BUILDI	VIG R	Boring Comple	etion Data:			
₩			GRAVEL — — -	[-:	18'		Ť					SEALED WITH	H PORTLAND CEM	ENT GROUT	
	1	(CONCRE	TE PAD									·		
Gr	ound El	ev.:				Da	tu	m:							
		$\overline{}$	<u> </u>	Soil	١,	itho		De	epth To		ND	Depth To 🔻			
PID (ppm)	Recovery (ft./ft.)	Depth	Sample Interval	Group Symbol (USCS)	gr	aph mb	ic	<u> </u>	Time Date			Time Date	-		
P.C	H H	۵	ß ⊑						Dale				RIPTION		
				SM	힏	<u>이야</u>	이	GR/	AVEL A	ND SILT	0-3"				
], [X	1		Ш						50%, SAND 35-	40%, GRAVEL 0-5	5% TO 1"+, DR	Y, NO ODOR
		1				Н									
		١, ١				$\ \ $									
-		2 -		1		П									
		┪,		1										·	
		3 -	X					<u> </u>							
<u> </u>		۱.		1		Ш									
-		4 -		ML											
	 	1_ '	-												
	-	- 5	 	1				 -	- · ·. <u>.</u>						
		1 .	 	1											
	-	- 6													
0.6		┨ .	В	-											
0.0	+	- 7	₩-	-											<u>. </u>
		┨ ・	X												
	-	∤8 -	<u> </u>		1	Ш.	1_				· · · · · · · · · · · · · · · · · · ·	DODING TEN		·	
-		┥ ・		1								BURING TERM	iinated @ 8 ft.		
		9 -		-							···				
		┥ .		-											
-		10-							_						
	1	┨.													•
	 	-11													
-	-	┨.		4				<u> </u>			_			 	
		12-		1											
	 			4				ļ						<u></u>	
		13-	ļ	1											
		, ັ .		1	1			<u> </u>				<u> </u>		<u> </u>	
	 	14-													
	ļ	┨╵	<u> </u>	1											
		15-	ļ	_											
		, '' .	<u> </u>	1											
	<u> </u>	16-		1											
		ا '' .]									 		
	1	 17 <i>-</i>]											
]'' .]											
		10									· ——				
		18-													
]10.]											
		19-													
		7	1	1 .	,										

APPENDIX C LABORATORY ANALYTICAL DATA SHEETS AND CHAIN-OFCUSTODY RECORDS

3
-2

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Reported: 04/28/03
ricasamon, CA 94500	Client P.O.:	Date Completed: 04/28/03

WorkOrder: 0304304

April 28, 2003

Dear Donald:

Enclosed are:

- 1). the results of 11 analyzed samples from your #70-03412.01; Wente project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly

Angela Rydelius, Lab Manager

	V
--	---

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/18/03
Ticasanton, Cri 54500	Client P.O.:	Date Analyzed: 04/19/03-04/21/03

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*

Extraction method:	SW5030B		Analytical methods: SW8015Cm	Work Order:	
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS
001D	B-1 7.5-8.0	S	24,b	2	96.4
003A	B-2 7.5-8'	s	ND	1	98.8
005B	B-4 0.5-1.0	s	ND	1	100
007B	B-5 0.5-1.0	s	1.2,g	1	101
011B	B-3 0.5-1.0'	S	ND	1	99.5
	Reporting Limit for DF =1; ND means not detected at or		NA		IA.
	ne reporting limit	S	1.0	mg	/Kg

water and vapor samples are reported in μg/L, soil and sludge samples in mg/kg, wipe samples in μg/wipe, and TCLP extracts in μg/L.

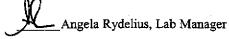
cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

Angela Rydelius, Lab Manager

4
1
_

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com


Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/22/03-04/23/03
r teasanton, CA 94500	Client P.O.:	Date Analyzed: 04/22/03-04/23/03

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*

traction method: SW		Analyti		der: 030430	
Lab ID	Client ID	Matrix	TPH(g)	D	F % S
012B	B-4 W	w	74,b,i		. 99.
013B	B-lW	W	200,000,a,h,i	20	98.
	·	·			
_					
				•	
Reporting Limit for DF =1; ND means not detected at or		w	50		μg/L
	of detected at or reporting limit	S	NA	,	NA

*water and vapor sample	es are reported in µg/L	, soil and sludge samp	les in mg/kg, wipe sar	nples in μg/wipe, a	ind TCLP extracts in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 voi. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

A N	Ac
-----	----

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/18/03
Pleasanton, CA 94300	Client P.O.:	Date Analyzed: 04/20/03-04/21/03

Diesel (C10-23	and Oil	(C18+) R:	nge Extract:	able Hydroca	arhons as Di	iesel and Moto	r Oil*
Dieser (VIV	, muc Ou	~	MEA HVII WAL	HU40 TT ! UM V C!	ALDUMO MO M	IOUGH HEEM LIKETO	

Extraction method: SV			Analytical methods: SW8015C			rder: 0304304
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0304304-001D	B-1 7.5-8.0	S	44,d	ND	1	108
0304304-003A	B-2 7.5-8'	3-2 7.5-8' S 1.7,g 7.5	1	103		
0304304-005B	B-4 0.5-1.0	S	ND	ND	1	100
0304304-007B	B-5 0.5-1.0	S	33,g	190	1	103
0304304-011B	B-3 0.5-1.0'	S	ND	ND	1	100
0304304-012B	B-4 W	w	180,g,b,i	370	Ţ	105
0304304-013B	B-1W	w	150,000,d,h,i	ND<5000	20	#
					-	

Reporting Limit for DF =1; ND means not detected at or above the reporting limit	W	50	250	μg/L
	S	1.0	5.0	mg/Kg

^{*} water and vapor samples are reported in µg/L, wipe samples in ug/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all TCLP / SPLP (SPLP extracts in µg/L)

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent / mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/18/03
	Client P.O.:	Date Analyzed: 04/23/03-04/24/03

Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0304304

Lab ID				0304304-001D			
Client ID	-			B-1 7.5-8.0			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<1000	20	50	tert-Amyl methyl ether (TAME)	ND<100	20	5.0
Benzene	ND<100	20	5.0	Bromobenzene	ND<100	20	5.0
Bromochloromethane	ND<100	20	5.0	Bromodichloromethane	ND<100	20	5.0
Bromoform	ND<100	20	5.0	Bromomethane	ND<100	20	5.0
2-Butanone (MEK)	ND<200	20	10	t-Butyl alcohol (TBA)	ND<500	20	25
n-Butyl benzene	ND<100	20	5.0	sec-Butyl benzene	150	20	5.0
tert-Butyl benzene	ND<100	20	5:0	Carbon Disulfide	ND<100	20	5.0
Carbon Tetrachloride	ND<100	20	5.0	Chlorobenzene	ND<100	20	5.0
Chloroethane	ND<100	20	5.0	2-Chloroethyl Vinyl Ether	ND<100	20	5.0
Chloroform	ND<100	20	5.0	Chloromethane	ND<100	20	5.0
2-Chlorotoluene	ND<100	20	5.0	4-Chlorotoluene	ND<100	20	5.0
Dibromochloromethane	ND<100	20	5.0	1,2-Dibromo-3-chloropropane	ND<100	20	5.0
1,2-Dibromoethane (EDB)	ND<100	20	5.0	Dibromomethane	ND<100	20	5.0
I,2-Dichlorobenzene	ND<100	20	5.0	1,3-Dichlorobenzene	ND<100	20	5.0
1,4-Dichlorobenzene	ND<100	20	5.0	Dichlorodifluoromethane	ND<100	20	5.0
1,1-Dichloroethane	ND<100	20	5.0	1,2-Dichloroethane (1,2-DCA)	ND<100	20	5.0
1,1-Dichloroethene	ND<100	20	5.0	cis-1,2-Dichloroethene	ND<100	20	5.0
trans-1,2-Dichloroethene	ND<100	20	5.0	1,2-Dichloropropane	ND<100	20	5.0
1,3-Dichloropropane	ND<100	20	5.0	2,2-Dichloropropane	ND<100	20	5.0
1,1-Dichloropropene	ND<100	20	5.0	cis-1,3-Dichloropropene	ND<100	20	5.0
trans-1,3-Dichloropropene	ND<100	20	5.0	Diisopropyl ether (DIPE)	ND<100	20	5.0
Ethylbenzene	140	20	5.0	Ethyl tert-butyl ether (ETBE)	ND<100	20	5.0
Hexachlorobutadiene	ND<100	20	5.0	2-Нехапопе	ND<100	20	5.0
Iodomethane (Methyl iodide)	ND<100	20	5.0	Isopropylbenzene	100	20	5.0
4-Isopropyl toluene	ND<100	20	5.0	Methyl-t-butyl ether (MTBE)	ND<100	20	5.0
Methylene chloride	ND<100	20	5.0	4-Methyl-2-pentanone (MIBK)	ND<100	20	5.0
Naphthalene	560	20	5.0	n-Propyl benzene	610	20	5.0
Styrene	ND<100	20	5.0	1,1,1,2-Tetrachloroethane	ND<100	20	5.0
1,1,2,2-Tetrachloroethane	ND<100	20	5.0	Tetrachloroethene	ND<100	20	5.0
Toluene	ND<100	20	5.0	1,2,3-Trichlorobenzene	ND<100	20	5.0
1,2,4-Trichlorobenzene	ND<100	20	5.0	1,1,1-Trichloroethane	ND<100	20	5.0
1,1,2-Trichloroethane	ND<100	20	5.0	Trichloroethene	ND<100	20	5.0
Trichlorofluoromethane	ND<100	20	5.0	1,2,3-Trichloropropane	ND<100	20	5.0
1,2,4-Trimethylbenzene	3400	20	5.0	1,3,5-Trimethylbenzene	1300	20	5.0
Vinyl Acetate	ND<1000	20	50	Vinyl Chloride	ND<100	20	. 5.0
Xylenes	210	20	5.0				
				ecoveries (%)		·········	
%SS1:	104			%SS2:	94.4		
%SS3:	115				i		
/UDUJ.	1 1 2	,					

Comments:

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than -2 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/18/03
	Client P.O.:	Date Analyzed: 04/23/03-04/24/03

Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0304304

Client ID Matrix Compound Acetone Benzene Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane	Concentration * ND ND ND ND ND ND ND ND ND N	DF 1.0 1.0 1.0 1.0 1.0	Reporting Limit 50 5.0 5.0 5.0 10	B-2 7.5-8' Soil Compound tert-Amyl methyl ether (TAME) Bromobenzene Bromodichloromethane	Concentration * ND ND ND ND	DF 1.0 1.0	Reporting Limit		
Compound Acetone Benzene Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.0 1.0 1.0 1.0 1.0 1.0	50 5.0 5.0 5.0	Compound tert-Amyl methyl ether (TAME) Bromobenzene Bromodichloromethane	ND ND	1.0	Limit		
Acetone Benzene Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.0 1.0 1.0 1.0 1.0 1.0	50 5.0 5.0 5.0	tert-Amyl methyl ether (TAME) Bromobenzene Bromodichloromethane	ND ND	1.0	Limit		
Benzene Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND	1.0 1.0 1.0 1.0	5.0 5.0 5.0	Bromobenzene Bromodichloromethane	ND		5.0		
Bromochloromethane Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane	ND ND ND ND ND ND ND ND ND ND ND	1.0 1.0 1.0 1.0	5.0	Bromodichloromethane		1.0			
Bromoform 2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane	ND ND ND ND ND ND ND ND ND	1.0 1.0 1.0	5.0		ND [5.0		
2-Butanone (MEK) n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane	ND ND ND ND ND	1.0				1.0	5.0		
n-Butyl benzene tert-Butyl benzene Carbon Tetrachloride Chloroethane	ND ND ND ND	1.0	10	Bromomethane	ND	1.0	5.0		
tert-Butyl benzene Carbon Tetrachloride Chloroethane	ND ND ND			t-Butyl alcohol (TBA)	ND	1.0	25		
Carbon Tetrachloride Chloroethane	ND ND	1.0	5.0	sec-Butyl benzene	ND	1.0	5.0		
Chloroethane	ND		5.0	Carbon Disulfide	ND	1.0	5.0		
		1.0	5.0	Chlorobenzene	ND	1.0	5.0		
		1.0	5.0	2-Chloroethyl Vinyl Ether	ND	1.0	5.0		
Chloroform	ND	1.0	5.0	Chloromethane	ND	1.0	5.0		
2-Chlorotoluene	DM	1.0	5.0	4-Chlorotoluene	ND	1.0	5.0		
Dibromochloromethane	ND	1.0	5.0	1,2-Dibromo-3-chloropropane	ND	1.0	5.0		
1,2-Dibromoethane (EDB)	ND	1.0	5.0	Dibromomethane	ND	1.0	5.0		
1,2-Dichlorobenzene	ND	1.0	5.0	1,3-Dichlorobenzene	ND	1.0	5.0		
1,4-Dichlorobenzene	ND	1.0	5.0	Dichlorodifluoromethane	ND	1.0_	5.0		
1,1-Dichloroethane	ND	1.0	5.0	1,2-Dichloroethane (1,2-DCA)	ND	1.0	5.0		
1,1-Dichloroethene	ND	1.0	5.0	cis-1,2-Dichloroethene	ND	1.0	5.0		
trans-1,2-Dichloroethene	ND	1.0	5.0	1,2-Dichloropropane	ND	1.0	5.0		
1,3-Dichloropropane	ND	1.0	5.0	2,2-Dichloropropane	ND	1.0	5.0		
1,1-Dichloropropene	ND	1.0	5.0	cis-1,3-Dichloropropene	ND	1.0	5.0		
trans-1,3-Dichloropropene	ND	1.0	5.0	Diisopropyl ether (DIPE)	ND	1.0	5.0		
Ethylbenzene	ND	1.0	5.0	Ethyl tert-butyl ether (ETBE)	ND	1.0	5.0		
Hexachlorobutadiene	ND	1.0	5.0	2-Hexanone	ND	1.0	5.0		
Iodomethane (Methyl iodide)	ND	1.0	5.0	Isopropylbenzene	ND	1.0	5.0		
4-Isopropyl toluene	ND	1.0	5.0	Methyl-t-butyl ether (MTBE)	ND	1.0	5.0		
Methylene chloride	ND	1.0	5.0	4-Methyl-2-pentanone (MIBK)	ND	1.0	5.0		
Naphthalene	ND	1.0	5.0	n-Propyl benzene	מא	1.0	5.0		
Styrene	ND	1.0	5.0	1,1,1,2-Tetrachloroethane	ND	1.0	5.0		
1,1,2,2-Tetrachloroethane	ND	1.0	5.0	Tetrachioroethene	ND	1.0	5.0		
Toluene	ND	1.0	5.0	1,2,3-Trichlorobenzene	ИĎ	1.0	5.0		
1,2,4-Trichlorobenzene	ND	1.0	5.0	1,1,1-Trichloroethane	ND	1.0	5.0		
1,1,2-Trichloroethane	ND	1.0	5.0	Trichloroethene	ND	1.0	5.0		
Trichlorofluoromethane	ND	1.0	5.0	1,2,3-Trichloropropane	ND	1.0	5.0		
1,2,4-Trimethylbenzene	NĎ	1.0	5.0	1,3,5-Trimethylbenzene	ND	1.0	5.0		
Vinyl Acetate	ND	1.0	50	Vinyl Chloride	ND	1.0	5.0		
Xylenes	ND	1.0	5.0						
		Sur	rogate Re	actionles (9/)					
%SS1:									

%SS1: 99.4 %SS2: 9' %SS3: 111

Comments:

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/18/03
r icasamon, Cri 94300	Client P.O.:	Date Analyzed: 04/23/03-04/24/03

Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*

Extraction Method: SW 5030B Analytical Method: SW 8260B Work Order: 0304304

Lab ID	0304304-011C						
Client ID		B-3 3.5-4.0					
Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	50	tert-Amyl methyl ether (TAME)	ND	1.0	5.0
Benzene	ND	0.1	5.0	Bromobenzene	ND	1.0	5.0
Bromochloromethane	ND	1.0	5.0	Bromodichloromethane	ND	1.0	5.0
Bromoform	ND	1.0	5.0	Bromomethane	ND	1.0	5.0
2-Butanone (MEK)	ND	1.0	10	t-Butyl alcohol (TBA)	ND	1.0	25
n-Butyl benzene	ND	1.0	5.0	sec-Butyl benzene	ND	1.0	5.0
tert-Butyl benzene	ND	1.0	5.0	Carbon Disulfide	ND	1.0	5.0
Carbon Tetrachloride	ND	1.0	5.0	Chlorobenzene	ND	1.0	5.0
Chloroethane	ND	1.0	5.0	2-Chloroethyl Vinyl Ether	ND	1.0	5.0
Chloroform	ND	1.0	5.0	Chloromethane	ND	1.0	5.0
2-Chlorotoluene	ND	1.0	5.0	4-Chlorotoluene	ND	1.0	5.0
Dibromochloromethane	ND	1.0	5.0	1,2-Dibromo-3-chloropropane	ND	1.0	5.0
1,2-Dibromoethane (EDB)	ND	1.0	5.0	Dibromomethane	ND	1.0	5.0
1,2-Dichlorobenzene	ND	1.0	5.0	1,3-Dichlorobenzene	ND	1.0	5.0
1,4-Dichlorobenzene	ND	1.0	5.0	Dichlorodifluoromethane	ND	1.0	5.0
1,1-Dichloroethane	ND	1.0	5.0	1,2-Dichloroethane (1,2-DCA)	ND	1.0	5.0
1,1-Dichloroethene	ND	1.0	5.0	cis-1,2-Dichloroethene	ND	1.0	5.0
trans-1,2-Dichloroethene	ND	1.0	5.0	1,2-Dichloropropane	ND	1.0	5.0
1,3-Dichloropropane	ND	1.0	5.0	2,2-Dichloropropane	ND	1.0	5.0
1,1-Dichloropropene	ND	1.0	5.0	cis-1,3-Dichloropropene	ND	1.0	5.0
trans-1,3-Dichloropropene	ND	1.0	5.0	Diisopropyl ether (DIPE)	ND	1.0	5.0
Ethylbenzene	ND	1.0	5.0	Ethyl tert-butyl ether (ETBE)	ND	0.1	5.0
Hexachlorobutadiene	ND	1.0	5.0	2-Hexanone	ND	1.0	5.0
Iodomethane (Methyl iodide)	ND	1.0	5.0	Isopropylbenzene	ND	1.0	5.0
4-Isopropyl toluene	ND	1.0	5.0	Methyl-t-butyl ether (MTBE)	ND	1.0	5.0
Methylene chloride	ND	1.0	5.0	4-Methyl-2-pentanone (MIBK)	ND	1.0	5.0
Naphthalene	ND	1.0	5.0	n-Propyl benzene	ND	1.0	5.0
Styrene	ND	1.0	5.0	1,1,1,2-Tetrachloroethane	ND	1.0	5.0
1,1,2,2-Tetrachloroethane	ND	1.0	5.0	Tetrachloroethene	ND	1.0	5.0
Toluene	ND	1.0	5.0	1,2,3-Trichlorobenzene	ND	1.0	5.0
1,2,4-Trichlorobenzene	ND	1.0	5.0	1,1,1-Trichloroethane	ND	1.0	5.0
1,1,2-Trichloroethane	ND	1.0	5.0	Trichloroethene	ND	1.0	5.0
Trichlorofluoromethane	ND	1.0	5.0	1,2,3-Trichloropropane	ND	1.0	5.0
1,2,4-Trimethylbenzene	ND	1.0	5.0	1,3,5-Trimethylbenzene	ND	1.0	5.0
Vinyl Acetate	ND	1.0	50	Vinyl Chloride	ND	1.0	5.0
Xylenes	ND	1.0	5.0				
		Suri	ogate Re	coveries (%)			
%SS1:	101			%SS2:	96.2		
%SS3:	119	,					

Comments:

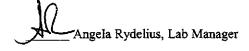
h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/18/03
r leasaintoil, CA 94500	Client P.O.:	Date Analyzed: 04/23/03-04/24/03


Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*

 Extraction Method:
 SW 5030B
 Analytical Method:
 SW 8260B
 Work Order: 0304304

Lab ID	0304304-005C						
Client ID	B-4 7.5-8.0'						
Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	50	tert-Amyl methyl ether (TAME)	ND	1.0	5.0
Benzene	ND	1.0	5.0	Bromobenzene	ND	1.0	5.0
Bromochloromethane	ND	1.0	5.0	Bromodichloromethane	ND	1.0	5.0
Bromoform	ND	1.0	5.0	Bromomethane	ND	1.0	5.0
2-Butanone (MEK)	ND	1.0	10	t-Butyl alcohol (TBA)	ND	1.0	25
n-Butyl benzene	ND	1.0	5.0	sec-Butyl benzene	ND	1.0	5.0
tert-Butyl benzene	ND	1.0	5.0	Carbon Disulfide	ND	1.0	5.0
Carbon Tetrachloride	ND	1.0	5.0	Chlorobenzene	ND	1.0	5.0
Chloroethane	ND	1.0	5.0	2-Chloroethyl Vinyl Ether	ND	1.0	5.0
Chloroform	ND :	1.0	5.0	Chloromethane	ND	1.0	5.0
2-Chiorotoluene	ND	1.0	5.0	4-Chlorotoluene	ND	1.0	5.0
Dibromochloromethane	ND	1.0	5.0	1,2-Dibromo-3-chloropropane	ND	1.0	5.0
1,2-Dibromoethane (EDB)	ND	1.0	5.0	Dibromomethane	ND	1.0	5.0
1,2-Dichlorobenzene	ND	1.0	5.0	1,3-Dichlorobenzene	ND .	1.0	5.0
1,4-Dichlorobenzene	ND	1.0	5.0	Dichlorodifluoromethane	ND	1.0	5.0
1,1-Dichloroethane	ND	1.0	5.0	1,2-Dichloroethane (1,2-DCA)	ND	1.0	5.0
1,1-Dichloroethene	ND	1.0	5.0	cis-1,2-Dichloroethene	ND	1.0	5.0
trans-1,2-Dichloroethene	ND	1.0	5.0	1,2-Dichloropropane	ND	1.0	5.0
1,3-Dichloropropane	ND	1.0	5.0	2,2-Dichloropropane	ND	1.0	5.0
1,1-Dichloropropene	ND	1.0	5.0	cis-1,3-Dichloropropene	ND	1.0	5.0
trans-1,3-Dichloropropene	ND	1.0	5.0	Diisopropyl ether (DIPE)	ND	1.0	5.0
Ethylbenzene	ND	1.0	5.0	Ethyl tert-butyl ether (ETBE)	ND	1.0	5.0
Hexachlorobutadiene	ND	1.0	5.0	2-Hexanone	ND	1.0	5.0
Iodomethane (Methyl iodide)	ND	0.1	5.0	Isopropylbenzene	ND	1.0	5.0
4-Isopropyl toluene	ND	1.0	5.0	Methyl-t-butyl ether (MTBE)	ND	1.0	5.0
Methylene chloride	ND	1.0	5.0	4-Methyl-2-pentanone (MIBK)	ND	1.0	5.0
Naphthalene	ND	1.0	5.0	n-Propyl benzene	ND	1.0	5.0
Styrene	NĎ	1.0	5.0	1,1,1,2-Tetrachloroethane	ND	1.0	5.0
1,1,2,2-Tetrachioroethane	ND	1.0	5.0	Tetrachloroethene	ND	1.0	5.0
Toluene	ND	1.0	5.0	1,2,3-Trichlorobenzene	ND	1.0	5.0
1,2,4-Trichlorobenzene	ND	1.0	5.0	1,1,1-Trichloroethane	ND	1.0	5.0
1,1,2-Trichloroethane	ND	1.0	5.0	Trichloroethene	ND	1.0	5.0
Trichlorofluoromethane	ND	1.0	5.0	1,2,3-Trichloropropane	ND	1.0	5.0
1,2,4-Trimethylbenzene	ND	1.0	5.0	1,3,5-Trimethylbenzene	ND	1.0	5.0
Vinyl Acetate	ND	1.0	50	Vinyl Chloride	ND	1.0	5.0
Xylenes	ND	1.0	5.0				· · · · · · · · · · · · · · · · · · ·
		Suri	rogate Re	coveries (%)			
%SS1:	97.9)		%\$\$2:	95.8		
%SS3:	116	j					

Comments

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soii/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

McCampbell Analytical	Inc.
-----------------------	------

Lab ID

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/18/03
Ficasanion, CA 94500	Client P.O.:	Date Analyzed: 04/23/03-04/24/03

Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*

0304304-007C

Extraction Method: SW5030B	Analytical Method: SW8260B	Work Order: 0304304

Client ID	B-5 3.5-4'						
Matrix		Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	50	tert-Amyl methyl ether (TAME)	ND	1.0	5.0
Benzene	ND	1.0	5.0	Bromobenzene	ND	1.0	5.0
Bromochloromethane	ND	1.0	5.0	Bromodichloromethane	ND	1.0	5.0
Bromoform	ND	1.0	5.0	Bromomethane	ND	1.0	5.0
2-Butanone (MEK)	ND	1.0	10	t-Butyl alcohol (TBA)	ND	1.0	25
n-Butyl benzene	ND	1.0	5.0	sec-Butyl benzene	ND	1.0	5.0
tert-Butyl benzene	ND	1.0	5.0	Carbon Disulfide	ND	1.0	5.0
Carbon Tetrachloride	ND	1.0	5.0	Chlorobenzene	ND	1.0	5.0
Chloroethane	ND	1.0	5.0	2-Chloroethyl Vinyl Ether	ND	1.0	5.0
Chloroform	ND	1.0	5.0	Chloromethane	ND	1.0	5.0
2-Chlorotoluene	ND	1.0	5.0	4-Chlorotoluene	ND	1.0	5.0
Dibromochloromethane	ND	1.0	5.0	1,2-Dibromo-3-chloropropane	ND	1.0	5.0
1,2-Dibromoethane (EDB)	ND	1.0	5.0	Dibromomethane	ND	1.0	5.0
1,2-Dichlorobenzene	ND	1.0	5.0	1,3-Dichlorobenzene	ND	1.0	5.0
1,4-Dichlorobenzene	ND	1.0	5.0	Dichlorodifluoromethane	ND	1.0	5.0
1,1-Dichloroethane	ND	1.0	5.0	1,2-Dichloroethane (1,2-DCA)	ND	1.0	5.0
1,1-Dichloroethene	ND	1.0	5.0	cis-1,2-Dichloroethene	ND	1.0	5.0
trans-1,2-Dichloroethene	ND	1.0	5.0	1,2-Dichloropropane	ND	1.0	5.0
1,3-Dichloropropane	ND	1.0	5.0	2,2-Dichloropropane	ND	1.0	5.0
1,1-Dichloropropene	ND	1.0	5.0	cis-1,3-Dichloropropene	ND	1.0	5.0
trans-1,3-Dichloropropene	ND	1.0	5.0	Diisopropyl ether (DIPE)	ND	1.0	5.0
Ethylbenzene	ND	1.0	5.0	Ethyl tert-butyl ether (ETBE)	ND	1.0	5.0
Hexachlorobutadiene	ND	1.0	5.0	2-Hexanone	ND	1.0	5.0
Iodomethane (Methyl iodide)	ND	1.0	5.0	Isopropylbenzene	ND	1.0	5.0
4-Isopropyl toluene	ND	1.0	5.0	Methyl-t-butyl ether (MTBE)	ND	1.0	5.0
Methylene chloride	ND	1.0	5.0	4-Methyl-2-pentanone (MIBK)	ND	1.0	5.0
Naphthalene	ND	1.0	5.0	n-Propyl benzene	ND	1.0	5.0
Styrene	ND	1.0	5.0	1,1,1,2-Tetrachloroethane	ND	1.0	5.0
1,1,2,2-Tetrachloroethane	ND	1.0	5.0	Tetrachloroethene	ND	1.0	5.0
Toluene	ND	1.0	5.0	1,2,3-Trichlorobenzene	ND	1.0	5.0
1,2,4-Trichlorobenzene	ND	1.0	5.0	1,1,1-Trichloroethane	ND	1.0	5.0
1,1,2-Trichloroethane	ND	1.0	5.0	Trichloroethene	ND	1.0	5.0
Trichlorofluoromethane	ND	1.0	5.0	1,2,3-Trichloropropane	ИD	1.0	5.0
1,2,4-Trimethylbenzene	ND	1.0	5.0	1,3,5-Trimethylbenzene	ND	1.0	5.0
Vinyl Acetate	ND	1.0	50	Vinyl Chloride	ND	1.0	5.0
Xylenes	ND	1.0	5.0				
		Suri	rogate Re	ecoveries (%)			

%S\$3:

%SS1:

94.5

111

%SS2:

95.1

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/22/03-04/24/03
ricasanton, Crv 94500	Client P.O.:	Date Analyzed: 04/22/03-04/24/03

Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*

Extraction Method:	Analytical Method: SW8260B	*	Work Order: 0304304

Lab ID	0304304-012A						
Client ID		B-4 W					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	5.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	1.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	0.51	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	0.1	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	0.5
Chloroform	1.2	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	+	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1.2-Dichlorobenzene	ND	1.0	0.5	1.3-Dichlorobenzene	ND	1.0	0.5
1.4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1.1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	2.0	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Hexachlorobutadiene	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Iodomethane (Methyl iodide)	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	1.3	1.0	0.5	n-Propyl benzene	0.67	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	5.1	1.0	0.5	1.2.3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1.1.1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	4.0	1.0	0.5	1,3,5-Trimethylbenzene	1.7	1.0	0.5
Vinyl Acetate	ND ND	1.0	5.0	Vinyl Chloride	ND 1.7	1.0	0.5
Xylenes	12	1.0	0.5	- my a Sanson was			1 7.7
				coveries (%)			
%SS1:	99.9		v6mt- 144	%SS2:	102		━
%SS3:	94.8			/9502-	102	·	

%\$\$3: 94.8

Comments: i

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

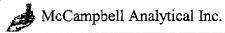
Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/22/03-04/24/03
r reasonion, CA 94500	Client P.O.:	Date Analyzed: 04/22/03-04/24/03

Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)*

Extraction Method:		Analytical Method: SW8260B	Work Order: 0304304		
	Lab ID	0304304-013A			

Lab ID		0304304-013A					
Client ID				B-1W			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<10,000	2000	5.0	tert-Amyl methyl ether (TAME)	ND<1000	2000	0.5
Benzene	2100	2000	0.5	Bromobenzene	ND<1000	2000	0.5
Bromochloromethane	ND<1000	2000	0.5	Bromodichloromethane	ND<1000	2000	0.5
Bromoform	ND<1000	2000	0.5	Bromomethane	ND<1000	2000	0.5
2-Butanone (MEK)	ND<2000	2000	1.0	t-Butyl alcohol (TBA)	ND<10,000	2000	5.0
n-Butyl benzene	1300	2000	0.5	sec-Butyl benzene	ND<1000	2000	0.5
tert-Butyl benzene	ND<1000	2000	0.5	Carbon Disulfide	ND<1000	2000	0.5
Carbon Tetrachloride	ND<1000	2000	0.5	Chlorobenzene	ND<1000	2000	0.5
Chioroethane	ND<1000	2000	0.5	2-Chloroethyl Vinyl Ether	ND<1000	2000	0.5
Chloroform	ND<1000	2000	0.5	Chloromethane	ND<1000	2000	0.5
2-Chlorotoluene	ND<1000	2000	0.5	4-Chlorotoluene	ND<1000	2000	0.5
Dibromochloromethane	ND<1000	2000	0.5	1,2-Dibromo-3-chlогоргорале	ND<1000	2000	0.5
1,2-Dibromoethane (EDB)	ND<1000	2000	0.5	Dibromomethane	ND<1000	2000	0.5
1,2-Dichlorobenzene	ND<1000	2000	0.5	1,3-Dichlorobenzene	ND<1000	2000	0.5
1,4-Dichlorobenzene	ND<1000	2000	0.5	Dichlorodifluoromethane	ND<1000	2000	0.5
1,1-Dichloroethane	ND<1000	2000	0.5	1,2-Dichloroethane (1,2-DCA)	ND<1000	2000	0.5
1,1-Dichloroethene	ND<1000	2000	0.5	cis-1,2-Dichloroethene	ND<1000	2000	0.5
trans-1,2-Dichloroethene	ND<1000	2000	0.5	1,2-Dichloropropane	ND<1000	2000	0.5
1,3-Dichloropropane	ND<1000	2000	0.5	2,2-Dichloropropane	ND<1000	2000	0.5
1,1-Dichloropropene	ND<1000	2000	0.5	cis-1,3-Dichloropropene	ND<1000	2000	0.5
trans-1,3-Dichloropropene	ND<1000	2000	0.5	Diisopropyl ether (DIPE)	ND<1000	2000	0.5
Ethylbenzene	5900	2000	0.5	Ethyl tert-butyl ether (ETBE)	ND<1000	2000	0.5
Hexachlorobutadiene	ND<1000	2000	0.5	2-Hexanone	ND<1000	2000	0.5
Iodomethane (Methyl iodide)	ND<1000	2000	0.5	Isopropylbenzene	ND<1000	2000	0.5
4-Isopropyl toluene	ND<1000	2000	0.5	Methyl-t-butyl ether (MTBE)	ND<1000	2000	0.5
Methylene chloride	ND<1000	2000	0.5	4-Methyl-2-pentanone (MIBK)	ND<1000	2000	0.5
Naphthalene	1800	2000	0.5	n-Propyl benzene	1100	2000	0.5
Styrene	ND<1000	2000	0.5	1,1,1,2-Tetrachloroethane	ND<1000	2000	0.5
1,1,2,2-Tetrachloroethane	ND<1000	2000	0.5	Tetrachloroethene	ND<1000	2000	0.5
Toluene	34,000	2000	0.5	1,2,3-Trichlorobenzene	ND<1000	2000	0.5
1,2,4-Trichlorobenzene	ND<1000	2000	0.5	1,1,1-Trichloroethane	ND<1000	2000	0.5
1,1,2-Trichloroethane	ND<1000	2000	0.5	Trichloroethene	ND<1000	2000	0.5
Trichlorofluoromethane	ND<1000	2000	0.5	1,2,3-Trichloropropane	ND<1000	2000	0.5
1,2,4-Trimethylbenzene	9900	2000	0.5	1,3,5-Trimethylbenzene	3300	2000	0.5
Vinyl Acetate	ND<10,000	2000	5.0	Vinyl Chloride	ND<1000	2000	0.5
Xylenes	31,000	2000	0.5				
		Sur	rogate R	ecoveries (%)			
%SS1:	10:	3		%SS2:	84.	7	

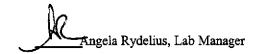
%SS3: 110


h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

Comments: i,h

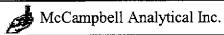
^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.



Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/28/03
rieasanion, CA 94300	Client P.O.:	Date Analyzed: 04/28/03

	Organo	chlorine Pestici	des by GC-ECD (80	80 Basic Target List)*	<u></u>	•
Extraction Method: SW3550C		An	alytical Method: SW8081B		Work Orde	r: 0304304
Lab ID Client ID		0304304-014A	0304304-015A	:	Reporting Limit fo	
		Comp 1,3,4,5	Comp 6,7,8,9	:		
	Matrix	S	S		Dr =1	
	DF	1	5		s	W
Compound			Concentr	ation	μg/Kg	μg/L
Aldrin		ND	ND<5.0		1.0	NA
a-BHC		ND	ND<5.0		1.0	NA
b-BHC		ND	ND<5.0		1.0	NA
d-BHC		ND	ND<5.0		1.0	NA
g-BHC		ND	ND<5.0		1.0	NA
Chlordane (Technical)		ND	ND<120		25	NA
a-Chlordane		ND	6.2		1.0	NA
g-Chlordane		ND	6.8		1.0	NA
p,p-DDD		1.4	ND<5.0		1.0	NA
p,p-DDE		3.3	ND<5.0		1.0	NA
p,p-DDT		8.8	ND<5.0		1.0	NA
Dieldrin		ND	ND<5.0		1.0	NA
Endosulfan I		ND .	ND<5.0		1.0	NA
Endosulfan II		ND	ND<5.0		1.0	NA
Endosulfan sulfate		ND	ND<5.0		1.0	NA
Endrin		ND	ND<5.0		1.0	NA
Endrin aldehyde		ND	ND<5.0		1.0	NA
Heptachlor epoxide		ND	ND<5.0		1.0	NA
Heptachlor		ND	ND<5.0		1.0	NA
Methoxychlor		ND	ND<5.0		1.0	NA
Toxaphene		ND	ND<250		50	NA
		Surre	gate Recoveries (%)		
%SS:		100	97.8			
Comments						


^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

⁽a) PCB aroclor 1016; (b) PCB aroclor 1221; (c) PCB aroclor 1232; (d) PCB aroclor 1242; (e) PCB aroclor 1248; (f) PCB aroclor 1254; (g) PCB aroclor 1260; (h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~2 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup;

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/28/03
Pleasanton, CA 94300	Client P.O.:	Date Analyzed: 04/29/03

Organophosphorous Pesticides by GC-NPD (Basic Target List)*					
Extraction Method: SW3550C	An	alytical Method: SW8141	В	Work Order	r. 0304304
Lab ID	0304304-014A	0304304-015A			-1 1 a
Client ID	Comp 1,3,4,5	Comp 6,7,8,9		Reporting DF	
Matrix	S	S		Dr	_1
DF	1	5		S	W
Compound	ann an Airlean ann an Airlean Airlean (An Airlean Airl	Conce	entration	μg/Kg	µg/L
Azinphos methyl (Guthion)	ND	ND<500		100	NA
Boistar (Sulprofos)	ND	ND<500		100	NA
Chloropyrifos	ND	ND<500		100	NA
Coumaphos	ND	ND<500		100	NA
Demeton-O	ND	ND<500		100	NA
Demeton-S	ND	ND<500		100	NA
Diazinon	ND	ND<500		100	NA
Dichlorvos (DDVP)	ND	ND<500		100	NA
Dimethoate	ND	ND<2000		400	NA
Disulfoton (Di-Syston)	ND	ND<500		100	NA.
EPN	ND	ND<500		100	NA
Ethion	ND	ND<500		100	NA
Ethoprop	ND	ND<500		100	NA
Fensulfothion	ND	ND<500		100	NA
Fenthion	ND	ND<500		100	NA
Malathion	ND	ND<500		100	NA
Merphos	ND	ND<2000		400	NA
Mevinphos (Phosdrin)	ND	ND<500		100	NA
Naled (Dibrom)	ND	ND<2000		400	NA
Ethyl parathion	DN	ND<500		100	NA
Methyl parathion	ND	ND<500		100	NA
Phorate (Thimet)	ND	ND<500		100	NA
Ronnel	ND	ND<500		100	NA
Stirofos (Tetrachlorvinphos)	ND	ND<500		100	NA
TEPP	ND	ND<4000		800	NA
Tokuthion (Prothiofos)	ND	ND<500		100	NA
Trichloronate (Agritox)	ND	ND<2000		400	NA
	Surr	ogate Recoveries	(%)		
%SS:	113	132			
Comments		j			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

⁽h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~2 vol. % sediment; (j) sample diluted due to high organic content.

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/28/03
ricasamon, CA 94500	Client P.O.:	Date Analyzed: 04/30/03

Pleasanton, CA 94566	Chent Contact:	Donaid Ashion	Date Analyzed: 04/30/03		
r reasanton, CA 74500	Client P.O.:				
Ch Extraction Method: SW3550C		cides by GC-ECD (Ba	sic Target List)*	Work Orde	т: 0304304
Lab ID	0304304-014A	0304304-015A			- 1. 1
Client ID	Comp 1,3,4,5	Comp 6,7,8,9		Reporting	Limit for
Matrix	S	S		DF	=1
DF	2	5		S	w
Compound		Concentra	tion	μg/Kg	ug/L
2,4-D (Dichlorophenoxyacetic acid)	ND<100	ND<250		50	NA
2,4-DB	ND<100	ND<250			NA
Dalapon	ND<100	ND<250			NA
Dicamba	ND<100	ND<250		50	NA
Dichloroprop	ND<100	ND<250		50	NA
Dinoseb (DNBP)	ND<100	ND<250			NA
МСРА	ND<10,000	ND<25,000			NA
МСРР	ND<10,000	ND<25,000		5000	NA
2,4,5-T (Trichlorophenoxy acetic acid)	ND<100	ND<250		50	NA
2,4,5-TP (Silvex)	ND<100	ND<250		50	NA
	Surr	ogate Recoveries (%)			
%SS:	120	107			
Comments	j	j			

* water samples are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~2 vol. % sediment; (j) sample diluted due to high organic content.

McCa	ampbell Analytic	al Inc.		Tele	Avenue South, #D7, Pache phone: 925-798-1620 Fa: .mccampbell.com E-mail: 1	x : 925-798-16	22	
Clayton Group Services 6920 Koll Center Pkwy, Ste. 216 Pleasanton, CA 94566		Client Pro	oject ID: #70-	03412.01; Wente	Date Sampled:	04/18/03		
					Date Received:	04/18/03		•
		Client Co	ntact: Donald	Ashton	Date Extracted:	04/28/03		-
		Client P.0	D.:		Date Analyzed: 04/28/03			
Extraction method: S	W3050B	Arsenic b		urnace Atomic Abs	orption*	W	ork Order:	030430
Lab ID	Client ID	Matrix	Extraction		Arsenic		DF	% SS
0304304-015A	Comp 6,7,8,9	S	TTLC		ND		1	N/A
				· · · · · · · · · · · · · · · · · · ·				

Reporting Limit for DF =1; ND means not detected at or	W	TTLC	NA	mg/L
above the reporting limit	S	TTLC	2.5	mg/Kg

^{*} water/liquid/oil samples are reported in mg/L, soil/sludge/solid/product samples in mg/kg, wipes in µg/wipe and all TCLP / STLC / DISTLC / SPLP extracts in mg/L.

means surrogate recovery outside of acceptance range due to matrix interference; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid-Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipes - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; y) estimated values due to low surrogate recovery; z) reporting limit raised due to matrix interference.

Angela Rydelius, Lab Manager

	•	McCampbell	Analytical	Inc.
--	---	------------	------------	------

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/18/03-04/21/03
Pleasanion, CA 94300	Client P.O.:	Date Analyzed: 04/21/03-04/22/03

LUFT 5 Metals*

xtraction met	hod: SW3050B			Analytica	l methods: 6010C			Work Order: 0304:		
Lab ID	Client ID	Matrix	Extraction	Cadmium	Chromium	Lead	Nickel	Zinc	DF	% S
005B	B-4 0.5-1.0	s	TTLC	ND	60	8.0	160	54	1	104
007B	B-5 0.5-1.0	S	TTLC	ND	52	41	150	57	ì	107
011B	B-3 0.5-1.0'	S	TTLC	ND	69	7.9	180	99	1	109
							-			
	·									
				,						
										<u> </u>
	Reporting Limit for DF =1; ND means not detected at or		TTLC	NA	NA	NA	NA	NA]	NA.
	the reporting limit	S	TTLC	0.5	0.5	3.0	2.0	1.0	m	g/Kg

^{*} water/liquid/oil samples are reported in mg/L, soil/sludge/solid/product samples in mg/kg, wipes in µg/wipe and all TCLP / STLC / DISTLC / SPLP extracts in mg/L.

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid-Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipes - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; y) estimated values due to low surrogate recovery; z) reporting limit raised due to matrix interference.

Jh

_Angela Rydelius, Lab Manager

[#] means surrogate recovery outside of acceptance range due to matrix interference; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

d	McCampbell Analytical Inc.

Clayton Group Services	Client Project ID: #70-03412.01; Wente	Date Sampled: 04/18/03
6920 Koll Center Pkwy, Ste. 216		Date Received: 04/18/03
Pleasanton, CA 94566	Client Contact: Donald Ashton	Date Extracted: 04/28/03
reasonion, CA 94500	Client P.O.:	Date Analyzed: 04/28/03

			Lead	l by ICP*		
extraction method: SV	V3050B		Analytical	methods: 6010C	Work Order:	0304304
Lab ID	Client ID	Matrix	Extraction	Lead	DF	% SS
0304304-015A	Comp 6,7,8,9	S	TTLC	9.4	1	103
					· · · · · · · · · · · · · · · · · · ·	
Reporting I	Limit for DF =1; not detected at or	W	TTLC	NA		g/L
above the	reporting limit	S	TTLC	3.0	mg	y/Kg

^{*} water/liquid/oil samples are reported in mg/L, soil/studge/solid/product samples in mg/kg, wipes in µg/wipe and all TCLP / STLC / DISTLC / SPLP extracts in mg/L.

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid-Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipes - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; y) estimated values due to low surrogate recovery; z) reporting limit raised due to matrix interference.

Angela Rydelius, Lab Manager

[#] means surrogate recovery outside of acceptance range due to matrix interference; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0304304

EPA Method: SW	/8021B/8015Cm E	Extraction:	SW5030E	3	BatchID: 6622 Spiked Sample ID: 0304						
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (
Compound	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(btex)£	ND	60	114	112	1,75	98.4	98.4	0	80	120	
МТВЕ	ND	10	92	91.7	0.303	104	105	0.576	80	120	
Benzene	ND	10	98.4	103	4.21	96.8	96.7	0.114	80	120	
Toluene	0.6261	10	97	101	3.58	101	100	0.665	80	120	
Ethylbenzene	ND	10	102	104	2.51	101	101	0	80	120	
Xylenes	2.4	30	98.7	102	3.08	107	107	0	80	120	
%SS:	104	100	100	105	4.31	99	98.5	0.505	80	120	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0304304

EPA Method: SW802	1B/8015Cm E	Extraction:	SW5030B	• •	BatchID:	BatchID: 6633		Spiked Sample ID: 0304301-004A				
	Sample		MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)		
Compound	mg/Kg		% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(btex) E	ND	0.60	113	111	0.970	114	116	1.84	80	120		
МТВЕ	ND	0.10	88.7	90.6	2.12	84.5	91.7	8.15	80	120		
Benzene	ND	0.10	110	114	3.44	102	106	4.26	80	120		
Toluene	ND	0.10	102	105	3.16	94.8	98.7	4.09	80	120		
Ethylbenzene	ND	0.10	112	114	1.71	104	108	3.50	80	120		
Xylenes	ND	0.30	107	110	3.08	96.7	103	6.67	80	120		
%\$\$:	107	100	107	108	1.08	103	104	0.395	80	120		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0304304

EPA Method: SW8015C	Extraction: SW3550C				BatchID:	6623	Spiked Sample ID: 0304292-001A				
0	Sample	Spiked	MS*	MSD*	MS-MSD	LÇS	LCSD	LCS-LCSD	Acceptanc	e Criteria (%)	
Compound	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(d)	ND	150	100	102	2.10	91.3	91.8	0.532	70	130	
%SS:	109	100	109	110	1.44	102	102	0	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560

Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0304304

EPA Method: SW8015C	Extraction: SW3510C				BatchID: 6608			Spiked Sample ID: N/A			
Commound	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Compound	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.		Low	High	
TPH(d)	N/A	7500	N/A	N/A	N/A	102	105	3.43	70	130	
%SS:	N/A	100	N/A	N/A	N/A	104	109	3.82	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS – MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

Matrix: S

WorkOrder: 0304304

EPA Method: SW8260B	E	extraction:	SW5030E	3	BatchID:	6626	Spiked Sample ID: 0304294-015A				
Compound	Sample	Spiked	MS*	' MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Compound	μ g /Kg	μg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
Benzene	ND	50	115	119	3.85	114	110	2.73	70	130	
tert-Amyl methyl ether (TAME)	ND	50	112	109	2.12	110	111	1.28	70	130	
Chlorobenzene	ND	50	114	114	0	113	114	1.34	70	130	
1,1-Dichloroethene	ND	50	119	115	3.36	104	98.4	5.71	70	130	
Methyl-t-butyl ether (MTBE)	ND	50	128	124	3.43	118	111	6.42	70	130	
Toluene	ND	50	120	125	3.86	117	114	2.66	70	130	
Trichloroethene	МĎ	50	116	117	0.756	114	115	1.44	70	130	
Diisopropyl ether (DIPE)	ND	50	129	125	3.36	127	119	6.78	70	130	
Ethyl tert-butyl ether (ETBE)	ОN	50	117	i 15	1.89	113	105	7.10	70	130	
%\$\$1:	97.6	100	100	101	0.958	101	98.1	2.60	70	130	
%SS2:	97.3	100	102	101	0.565	100	97.7	2.47	70	130	
%\$\$3:	113	100	96.9	96.8	0.138	95.5	94.6	0.921	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or landlyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

Matrix: W

WorkOrder: 0304304

EPA Method: SW8260B	E	Extraction:	SW50308	3	BatchID:	6617	Spiked Sample ID: 0304290-001A				
Compound	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Ассерtалс	e Criteria (%)	
Compound	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
Benzene	ND	10	91.2	92.6	1.47	110	107	1.92	70	130	
tert-Amyl methyl ether (TAME)	ND	10	96.9	98.5	1.63	106	106	0	70	130 .	
Chlorobenzene	ND	10	94.6	95.8	1.23	116	113	3.03	70	130	
1,1-Dichloroethene	ND	10	75.4	75.6	0.311	95.8	93.4	2.51	70	130	
Methyl-t-butyl ether (MTBE)	NĐ	10	99	100	1.08	110	110	0	70	130	
Toluene	5.844	10	87.9	92.3	2.99	119	115	3.44	70	130	
Trichloroethene	ND	10	81.9	84,1	2.67	109	104	4.41	70	130	
Diisopropyl ether (DIPE)	ND	10	103	105	1.91	123	122	0.400	70	130	
Ethyl tert-butyl ether (ETBE)	ND	10	92.7	95.4	2.87	107	107	0	70	130	
%SS1:	110	100	109	108	0.553	93.5	103	9.34	70	130	
%SS2:	92.3	100	93.3	93.3	0	91.8	91.5	0.338	70	130	
%SS3:	110	100	110	111	1.08	115	116	0.366	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8141B

Matrix: S

WorkOrder: 0304304

EPA Method: SW8141B	Extraction: SW3550C				BatchID:	6635	Spiked Sample ID: 0304304-001A				
Compound	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%	
Compound	μg/Kg	μ g/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
Diazinon	ND	1000	87.2	93.5	6.98	97.6	91.6	6.40	60	140	
Disulfoton (Di-Syston)	ND	1000	97.4	101	3.71	82.1	78.4	4.59	60	140	
Fenthion	ND	1000	97.3	101	3.75	99.2	96.8	2.38	60	140	
Methyl parathion	ND	1000	102	105	2.38	120	121	1.10	60	140	
%SS:	117	100	107	117	9.71	104	123	10.8	60	140	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample metrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8081B

Matrix: S

WorkOrder: 0304304

EPA Method: SW8081B	E	Extraction:	2	BatchID:	6659	Spiked Sample ID: 0304335-018A				
Compared	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
Compound	µg/Kg	μg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Aldrin	ND	10	120	120	0	121	121	0	70	130
g-BHC	ND	10	113	112	0.445	110	112	1.67	70	130
p,p-DDT	2.149	25	103	103	0	107	108	0.870	70	130
Dieldrin	1.063	25	122	121	0.433	120	120	0	70	130
Endrin	ND	25	118	118	0	114	114	0	70	130
Heptachlor	ND	10	119	119	0	118	119	0.635	70	130
%SS:	101	100	97.5	97.7	0.236	98	97.9	0.166	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or landyte content.

QC SUMMARY REPORT FOR SW8151A

Matrix: S

WorkOrder: 0304304

EPA Method: SW8151A	E	extraction:	SW35500	3	BatchID:	6636	Spiked Sample ID: 0304304-001A									
	Sample Spike		MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)							
Compound	µg/Kg	μg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High						
2,4-D (Dichlorophenoxyacetic ac	ND	100	102	92.3	10.2	108	114	6.05	60	140						
2,4-DB	ND	100	117	106	10.1	115	109	5.77	60	140						
Dalapon	ND	100	106	96.3	9.66	99	87.9	11.9	60	140						
Dicamba	ND	100	110	106	4.18	102	103	1.45	60	140						
2,4,5-TP (Silvex)	ND	100	97.7	92.5	5.44	111	118	6.34	60	140						
%SS:	119	100	122	127	4.35	120	115	3.74	60	140						

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR 6010C

Matrix: S

WorkOrder: 0304304

EPA Method: 6010C	E	xtraction:	SW3050E	3	BatchID:	6637	Spiked Sample ID: 0304309-001A								
0	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)					
Compound	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High					
Cadmium	ND	500	107	108	0.816	117	108	8.81	70	130					
Chromium	22.71	500	95.4	98.9	3.46	104	97	7.19	70	130					
Lead	ND	500	96.8	95.8	1.08	104	95	8.66	70	130					
Nickel	20.92	500	91.3	95.6	4.43	102	97.2	4.89	70	130					
Zinc	15.27	500	93.3	97.5	4.30	105	98	7.08	70	130					
%SS:	107	100	105	104	1.20	105	104	1.62	70	130					

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW7010

Matrix: S

WorkOrder: 0304304

EPA Method: SW7010	E	xtraction:	SW3050B		BatchID:	6691	Spiked Sample ID: N/A										
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)							
Compound	mg/Kg		% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High							
Arsenic	N/A	5	N/A	N/A	N/A	113	107	5.36	70	130							

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or lanalyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

CHAIN-OF-CUSTODY RECORD

Page 1 of 2

A

110 Second Avenue South, #D7-Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0304304

Client:

Clayton Group Services 6920 Koll Center Pkwy, Ste. 216

Pleasanton, CA 94566

TEL:

(925) 426-2600

FAX:

(925) 426-0106

ProjectNo: PO: #70-03412.01; Wente

Date Received:

04/18/03

Date Printed:

04/30/03

								Requested Tes	ts		
Sample ID	CilentSampID	Matrix	Collection Date	Hold	8081_S	8141B_S	8151A_S	260B+OXYS	_\$260B+OXYS_V	AS_S	G-MBTEX_S
0304304-001	B-1 7.5-8.0	Soil	04/18/03 9:05:00 AM					D			D
0304304-001	B-1 Comp	Soil	04/18/03	\mathbf{Z}	Α	A	Α				
0304304-002	B-2 6.5-7.0	Soil	04/18/03 9:40:00 AM	V				A			
0304304-003	B-2 7.5-8'	Soil	04/18/03 9:40:00 AM					A			Α
0304304-004	B-2 9.5-10'	Soil	04/18/03 9:55:00 AM	V				Α			
0304304-005	B-4	Soil	04/18/03	✓	Α	Α	Α				
0304304-005	B-4 0.5-1.0	Soil	04/18/03 10:10:00 AM								В
0304304-005	B-4 7.5-8.0'	Soil	04/18/03 10:15:00 AM					C			
0304304-006	B-6	Soil	04/18/03	V	Α	A	Α			Α	
0304304-007	B-5	Soil	04/18/03	✓	Α	A	A				
0304304-007	B-5 0.5-1.0	Soil	04/18/03 11:20:00 AM								В
0304304-007	B-5 3.5-4'	Soil	04/18/03 11:20:00 AM					С			
0304304-008	B-7	Soil	04/18/03	>	Α	Α	Α			Α	
0304304-009	B-8	Soil	04/18/03	V	Α	Α	Α			A	
0304304-010	B-9	Soil	04/18/03	V	Α	Α ,	Α			Α	
0304304-011	B-3	Soil	04/18/03	V	Α	Α	Α				

Prepared by: Melissa Valles

Comments:

per fax luft was cancelled for 0304304-011C luft was instead added to 0304304-011B. Comps set up 4/28 on a rush

CHAIN-OF-CUSTODY RECORD

Page 1 of 2

A

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0304304

Client:

Clayton Group Services

6920 Koll Center Pkwy, Ste. 216

Pleasanton, CA 94566

TEL:

(925) 426-2600

FAX:

PO:

(925) 426-0106

ProjectNo:

#70-03412.01; Wente

Date Received:

04/18/03

Date Printed:

04/30/03

								Requested Tes	its		
Sample ID	ClientSampID	Matrix	Collection Date	Hold	8081_S	8141B_S	8151A_S	260B+OXYS	_\$260B+OXYS_V	AS_S	G-MBTEX_S
0304304-011	B-3 0.5-1.0'	Soil	04/18/03 12:20:00 PM							*********	В
0304304-011	B-3 3.5-4.0	Soil	04/18/03 12:30:00 PM					С			
0304304-012	B-4 W	Water	04/18/03 12:40:00 PM						Α		
0304304-013	B-1W	Water	04/18/03 12:50:00 PM						Α		
0304304-014	Comp 1,3,4,5	Soil	04/18/03		Α	Α	Α				
0304304-015	Comp 6,7,8,9	Soil	04/18/03		Α	A	Α			A	

Prepared by: Melissa Valles

Comments:

per fax luft was cancelled for 0304304-011C luft was instead added to 0304304-011B. Comps set up 4/28 on a rush

CHAIN-OF-CUSTODY RECORD

Page 2 of 2

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0304304

Client:

Clayton Group Services 6920 Koll Center Pkwy, Ste. 216

Pleasanton, CA 94566

TEL:

(925) 426-2600

FAX: ProjectNo: (925) 426-0106

PO:

#70-03412.01; Wente

Date Received:

04/18/03

Date Printed:

04/30/03

						AND AND AND AND AND AND AND AND AND AND		Requested Tes	ts	
Sample iD	ClientSamplD	Matrix	Collection Date	Hold	G-MBTEX_W	LUFT_S	PB_S	TPH(DMO)_S	TPH(DMO)_W	
0304304-001	B-1 7.5-8.0	Soil	04/18/03 9:05:00 AM					D		
0304304-001	B-1 Comp	Soil	04/18/03	V						
0304304-002	B-2 6.5-7.0	Soil	04/18/03 9:40:00 AM	✓						
0304304-003	B-2 7.5-8'	Soil	04/18/03 9:40:00 AM					A		
0304304-004	B-2 9.5-10'	Soil	04/18/03 9:55:00 AM	V						
0304304-005	B-4	Soil	04/18/03	V						
0304304-005	B-4 0.5-1.0	Soil	04/18/03 10:10:00 AM			В		В		
0304304-005	B-4 7.5-8.0'	Soil	04/18/03 10:15:00 AM							
0304304-006	B-6	Soil	04/18/03	V			Α			
0304304-007	B-5	Soil	04/18/03	~			••••			
0304304-007	B-5 0.5-1.0	Soil	04/18/03 11:20:00 AM			В		В		
0304304-007	B-5 3.5-4'	Soil	04/18/03 11:20:00 AM							
0304304-008	B-7	Soil	04/18/03	~			Α			
0304304-009	B-8	Soil	04/18/03	V			А			
0304304-010	B-9	Soil	04/18/03	V			Α			
0304304-011	B-3	Soil	04/18/03	V						

Prepared by: Melissa Valles

Comments:

per fax luft was cancelled for 0304304-011C luft was instead added to 0304304-011B. Comps set up 4/28 on a rush

CHAIN-OF-CUSTODY RECORD

Page 2 of 2

A

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0304304

Client:

Clayton Group Services 6920 Koll Center Pkwy, Ste. 216

Pleasanton, CA 94566

TEL:

(925) 426-2600

FAX:

(925) 426-0106

ProjectNo: PO: #70-03412.01; Wente

Date Received:

04/18/03

Date Printed:

04/30/03

								Requested Tes	ts	
Sample ID	ClientSampID	Matrix	Collection Date	Hold	G-MBTEX_W	LUFT_S	PB_S	TPH(DMO)_S	TPH(DMO)_W	
	0.0.540	Cail	04/18/03 12:20:00 PM		1	В		B		
0304304-011	B-3 0.5-1.0'	Soil			ļ	Ð				
0304304-011	B-3 3.5-4.0	Soil	04/18/03 12:30:00 PM							
0304304-012	B-4 W	Water	04/18/03 12:40:00 PM		В				В	
0304304-013	B-1W	Water	04/18/03 12:50:00 PM		В				В	
0304304-014	Comp 1,3,4,5	Soil	04/18/03							
0304304-015	Comp 6,7,8,9	Soil	04/18/03				Α	ł		

Prepared by: Melissa Valles

Comments:

per fax luft was cancelled for 0304304-011C luft was instead added to 0304304-011B. Comps set up 4/28 on a rush

0304304 RUSH McCAMPBELL ANALYTICAL CHAIN OF CUSTODY RECORD 110 2nd AVENUE, # D7 (510) 708-1620 PACHECO, CA 94559 925 TURN AROUND TIME: FAX (510) 798-1822 X REPORT TO DONALD ASHTON BILL TO RUSH 24 HOUR SAME 48 HOUR . 5 DAY ANALYSIS REQUEST COMPANY, CLAYTON GROUP SERVICES. 6920 KOLL CRNTER PARKLERY, STE 2/6 PLEASANTON, CA 94566-3/02 925-426-2679 FAX 11928-426-0/06 (5520 E&F/5520 MULTI-SCAN - Priority Pollutant Hetals EPA 624/70240/8020 + OXYGGNATGS PROJECT NUMBERI70-03412.01 PROJECT NAME: WENTE 4: +Pb Total Petroleum Hydrocarbons OCP ONLY SAMPLER SIGNATURE PROJECT LOCATION LEAD (7240/7421/239-2/6010) PCBs Dnly COMMENTS **ä** TYPE CONTAINERS SAMPLING HETHO)) CONTAINERS MATRIX PRESERVED 1513 SAMPLE 1418 EPA 608/8080 DRGANGC LEAD LOCATION EPA 608/8080 EPA 625/8270 EPA 601/8010 ID SLUDGE OTHER DATE TIME BTEX 1 THER 崑 Ę A.R. 호 EP. B-1 4-18-03 08:55 0,5-1,0 SLV B-1. 1.5-2.0 108155 B-1 7.5-8.01 09:05 9.5-10 09:10 B-2 6.5-7.0 09:40 B-2 7,5-8' 09:40 9.5-10' B-2 09:55 0.5-10 B-4 10:10 B-4 7.5-8,0 10:15 B-4 11.5-12' 10:25 B-6 0.5-1.0' 11:05 B-4 3,5-4 C) C2 11:05 7.5-8 11:10 RELINGUISHED BY: DATE TIME O RECEIVED BY REMARKSI 1/203 4:15 C2 = 4 PART COMPOSITE > [COMP | 345] RELINQUISHED BY TIME RECEIVED BY 78/03 RELINOUISHED BY TIME RECEIVED BY LABORATORY

A Olegania in Maria de la compania del compania de la compania del compania de la compania del compania de la compania del compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania del compania de

McCampbell analytical CHAIN OF CUSTODY RECORD 110 2nd AVENUE, # D7 15101 798-1820 PACHECO, CA 94559 TURN AROUND TIME: FAX (510) 798-1822 REPORT TO DONALD ASHTON BILL TO RUSH 24 HOUR 48 HOUR ANALYSIS REQUEST DTHER COMPANYI CLAYTON Chgonophorphous MULTI-SCAN Total Petroleum Hydrocarbons (4181) TELE 925-426-2679 FAX # PROJECT NUMBER 70-03412,01 PROJECT NAME EPA - Priority Pollutent Hetals Went8 1745 PROJECT LOCATION: LEAD (7240/7421/239,2/6010) SAMPLER SIGNATUREI/ PCBs Chily COMMENTS 88 Total Petroleum Di & 767AL TYPE CONTAINERS EPA 624/8240/8260 METHOD SAMPLING MATRIX CONTAINERS Wetols PRESERVED 1418 12/18 SAMPLE CPA 602/8020 EPA 608/8080 EPA 625/8270 EPA 601/8010 LOCATION IDSLUDGE DATE TIME SHE PTHER SOIL AJR Ä 3 로 492 Ŧ B-5 0.5-1.0 4-18-03 111:20 BLV 3.5-41 lc1 11:20 7.5-80 11:27 B-7 015-110 11:30 **B**-7 35-4 11:30 B.7 25-81 11:30 B-8 3,5-4,0 11:38 (2 (2 B-8 7.5-8.0 11:38 B-9 0.5-10 11:56 CACOCA B-9 3,5-4,01 11:56 7.5-8' 11:56 B-3 0.5-1.6' 12:20 B-3 3,5-4,0 12:30 B-4W 3 12:40 VOA X LITER RELINQUIZHED BY DATE $TIHE\rho$ RECEIVED BY REMARKSI 10-03 Composite SAMPLES CI &CZ SER PAGE 1 of 3 TIME RECEIVED BY DATE RELINQUISHED BY DATE RECEIVED BY LABORATORY

			MPBE				ICA	1L								(I	IA		N	()F	1	C	U	S'	Γ ()[ΣY	7	\mathbb{R}	<u>E</u> (CORD
Marine Street	925	1620	ons 011	L AVEN	UE, i	# D7								T,	URN	A P								_			_				 		
		DOWALD ASA					F	AX	(51	0)	798	-16	122	-								· R	RUS FOI	ES H	Ť	24	<u> H(</u>	JUE	₹ T	48	HEF	<u> </u>	R 5 DAY
j		CLAYTON.	710-	D166 1										一	Τ	i i		Τ	Ï	<u> </u>	Ť	T			<u>i </u>	T-	Τ	7	1			Ì	343
	CUM-MATE (LAY COIV.												8015)													ľ						12412
	ļ	· · · · · · · · · · · · · · · · · · ·					,							الاسا	Z.	F. 75	្ន					18		l									•
	TELE: 925	-426-2679		FAX #							,			8020	1 S	520	4				ĺ	17			<u> 1</u>	ما)						
	PROJECT NUMBERI 70-034/2.01 PROJECT NAME: WENTE										C602/8020	17	K A	non					133			F to	Â							•			
	PROJECT NUMBER 70-034/2.01 PROJECT NAME: WEWER PROJECT LOCATION: SAMPLER SIGNATURE: Aux Cantum									2	Z I	E	Total Petroleun DI & Greuse (5520 E&F/5520	Hydrocarbons (418,1)				Ē	3		CAK - 17 Hetals	15	27.60							COMMENTS			
	SAMPLING & B MATRIX PRESER									nn Nen	SS.	THP COURSE COURSE	10	r Hyo				13 13	38		5	Pollu	2/23/2										
	SAMPLE			I		14.JN	}		\neg	T	1	T	T	Ä	ű	oleun	John	8	ã,	8	88	9	270	Hetal	12	0.745	F		SIB			ļ	I
	SAMPLE ID	LOCATION	DATE	TIME	CONTAINERS	TYPE CONTAINERS	(a)			ه ای			l r	BTEX & TPH &S		합	Jotal Petroleum	SQL/B	502/B	8/805	S08/8	24/3	525/8	13	T.	756	먑		-				
			,,,,,,		#	TYPE	VAT	SOL	2	S CONTRACTOR	 ₫	至	DTHER	BTEX	THP	Total	jotol	¥ 6.3	[PA	EPA 1	FP4	743	EPA	CAK	4	LEA)	DRGA	ÿ	1418				
χQ	B-1W	4	-18-03	12156	3	VOA																X							Ī				
	₩		<u> </u>	<u> </u>	2	LITER	X			_	ļ		_		\times																		
	8-4 1.5-21 Comp1345		\		 			_	-		+	├-				\sqcup													V			_	HOLD
ŀ	comp (0189	,	+-		+		Н	-	-		-	╁		-		\dashv				Ż						X			X		\vdash	\dashv	
ľ	Triuly forty (1		1	/														63						4.3							<u> </u>
						1																											
-		\ <i>/</i>				X			_		-		_	\dashv	_	_	\dashv		_	_	_		_	_								_].	
		<u> </u>	X		/					-	-	ļ				-													-				
- -			-+	\	-	-				- -	-												-	\dashv	\dashv	\dashv						-	<u> </u>
-			-/		\top					-	†				_			-							\neg	_	_				\neg		
					\int				-																								
- -	/		/					_	-	<u> </u>	-	\vdash		\dashv	_	\dashv	-					_		4	\dashv	_		-[-	···
4			DATE	TIME P	RECE	VED T) / I				1_										l					l	1	l		l			
}	RELINQUISHED BY	this 4	78-03	, ,	-	1 4 12 4 7 		Ä,)	مَنت سي			-a.	Κt	EMA	4KK	(2)															
<u> </u>	RELINQUISHED BY		DATE		RECE	IVED	NY N	P	//		1/																						
1	The state of the s		4/18/03		nese:	JU		/ i		41	1																						
,	ÆELINQUISHED∕Ð	Yı 🖋	DATE	TIME	KECE	VED E	Y L	NIUK	A I LII	ΚĬŧ			- [,		