

July 25, 2005

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Project: 2842

Subject: Site Located at 5565 Tesla Road, Livermore, California

Dear Mr. Wickham:

Enclosed for your review is a copy of SOMA's "Phase 1: Soil and Groundwater Investigation" conducted at the subject site.

Thank you for your time in reviewing our report. Please do not hesitate to call me at (925) 734-6400, if you have any questions or comments.

Sincerely,

Mansour Sepehr, Ph.D., PE Principal Hydrogeologist

Enclosure

cc: Mr. Aris Krimetz

Mornedo County

RO 2585

PHASE I: SOIL AND GROUNDWATER INVESTIGATION

WENTE WINERY 5565 Tesla Road Livermore, California

July 25, 2005

Project 2842

Prepared for

Wente Brothers Winery 5565 Tesla Road Livermore, California

Prepared by

SOMA Environmental Engineering, Inc. 6620 Owens Drive Suite A Pleasanton, California

CERTIFICATION

This report has been prepared by SOMA Environmental Engineering, Inc. on behalf of Wente Brothers, the property owners of Wente Winery, located at 5565 Tesla Road, Livermore, California. This report complies with a workplan approved by the Alameda County Health Care Services (ACHCS), in a letter dated April 4, 2005.

Mansour Sepehr, Ph.D., PE Principal Hydrogeologist

Enlionnend Ledin

List of Figures

Figure 1: Site Vicinity Map

Figure 2: Map Showing Locations of Newly Installed Monitoring Wells, Temporary

Well Boreholes, and Previous Soil Borings Installed by Clayton Group

Figure 3: Groundwater Elevation Contour Map in Feet

Figure 4: Map Showing Proposed CPT/MIP Boreholes, Newly Installed Monitoring

Wells, and Existing Soil Borings Installed by Clayton Group Services

List of Tables

Table 1: Groundwater Analytical Results

Table 2: Soil Analytical Results

Table 3: Groundwater Analytical Results, Heavy Metals EPA Method 6010B

List of Appendices

Appendix A: Drilling Permit

Appendix B: Geologic Borehole Logs Well Construction Diagrams

Appendix C: Well Development Logs

Appendix D: Lab Data and COC

Appendix E: Well Survey Data

1.0 INTRODUCTION

On behalf of Wente Brothers, SOMA Environmental Engineering, Inc. (SOMA) has prepared this report for the property located at 5565 Tesla Road, Livermore, California, hereafter referred to as "the Site." As shown in Figure 1, the Site is located between South Vasco Road and Mines Road in Livermore, California. The subject property operates as a winery with three aboveground fuel storage tanks, with a total capacity of 4,000 gallons.

Based on SOMA's workplan dated January 31, 2005 and Alameda County Health Care Services' (ACHCS) approval letter dated April 4, 2005, this report includes the results of a Phase I soil and groundwater investigation conducted at the Site. The purpose of this investigation was to provide preliminary site-specific data on the groundwater flow direction and degree of petroleum hydrocarbon impact on the soil and groundwater in close proximity of the former underground storage tanks (USTs). The USTs were excavated in 1987.

1.1 Previous Activities

In 1987, two fuel USTs were removed from the Site without regulatory agency oversight. Without available records of the tank removal, there is no information regarding the condition of the tank or evidence of possible leakage.

In 1990, the ACHCS issued a notice of violation (NOV) for discharging waste sludge into an open ditch adjacent to a former steam-cleaning bay, which is located at the south end of the steel storage and welding shed. The NOV required sampling of the ditch area and around a stained drum, along with remediation of the contaminated areas. No available records reportedly exist to document the implementation of the required tasks.

1.2 Previous Investigations

In accordance with Comerica Bank guidelines, the Clayton Group (Clayton) performed an ASTM D standard Phase I investigation to identify recognized environmental concerns (RECs). The Phase I study revealed the existence of the former USTs, former waste discharge area, and a number of agricultural storage areas. Agricultural chemicals and equipment are currently stored in the Agricultural Storeroom. However, documents indicate that these items were also previously stored in Building S and in a detached garage, as shown in Figure 2. Clayton concluded that the identified areas constituted RECs and recommended sampling of these areas for relevant constituents of concern.

In 2003, Clayton performed a subsurface investigation at the Site to implement the recommendations of the Phase I report. Soil samples were analyzed for pesticides, herbicides, petroleum hydrocarbons, volatile organic compounds (VOCs), and heavy metals. Groundwater samples collected from beneath the former USTs and near the former steam cleaning areas were analyzed for petroleum hydrocarbons, VOCs, pesticides and herbicides. Clayton concluded that a fuel release in the former UST area impacted the groundwater at concentrations that significantly exceeded Risk Based Screening Levels (RBSLs). In the former steam-cleaning bay, located south/southwest of, and presumably upgradient from the former UST pit, no total petroleum hydrocarbon (TPH) or VOCs were detected in the soil. However, gasoline and motor oil-range petroleum hydrocarbons were detected in the groundwater at concentrations that were slightly above RBSLs. Other borehole samples contained constituents of concern below the RBSLs. The locations of the boreholes are shown in Figure 2.

Clayton recommended an additional site characterization to further characterize the Site before installing monitoring wells. Wente Brothers retained SOMA to review the Clayton report and provide an alternate workplan. Upon reviewing Clayton's report, SOMA proposed the installation of three groundwater monitoring wells to evaluate the groundwater contaminant plume and determine the groundwater flow direction. ACHCS reviewed SOMA's workplan and requested a revised workplan that would present a vicinity well survey, a regional hydrogeologic study, and proposed additional site characterization.

Based on the ACHCS' request, SOMA prepared a workplan that included a two-phased approach for a thorough subsurface site investigation. The phase I investigation included 1) sampling on-site and two off-site water supply wells, 2) preparation of health and safety plan, permit acquisition, and utility clearance, 3) installation and sampling of three piezometers, 4) developing and surveying piezometers, 5) laboratory analysis, and 6) preliminary evaluation of groundwater flow and chemical contaminant plume. Phase II investigation included 1) site characterization using Cone Penetrometer Test/Membrane Interface Probe (CPT/MIP), 2) groundwater sampling, 3) laboratory analysis 4) installation of additional groundwater monitoring wells.

In addition, as part of Phase I study, SOMA drilled two confirmatory soil borings in close proximity of B-1 (B-9) and B-4 (B-10) and collected soil and groundwater samples to evaluate the current status of soil and groundwater contamination beneath the Site. This report includes the results of Phase I investigation as described above.

1.3 Regional Hydrogeologic Study

For conducting the regional hydrogeologic study, SOMA contacted the following agencies to obtain reports, documents and maps for this regional hydrogeologic study:

- 1. California Department of Water Resources (DWR),
- 2. California Division of Mines and Geology (CDMG),
- 3. Regional Water Quality Control Board San Francisco Region (SFRWQCB).

- Alameda County Health Care Services Environmental Health Services (ACHCS-EHS), and
- 5. Zone 7 Water Agency (Zone 7).

The results of this study are presented below.

1.3.1 Regional Hydrogeologic Features

The subject site is located in the Livermore Valley Groundwater Basin (LVGB). With a surface area of 109 square miles, the LVGB extends from the Pleasanton Ridge approximately 14 miles east to the Altamont Hills and from the Livermore Upland approximately 3 miles north to the Orinda Upland.

Water-Bearing Formations

The LVGB basin consists of a structural trough that is an important source of irrigation water for the Livermore Valley. The LVGB comprises water-bearing formations derived from alluvial fans, outwash plains and lakes that belong to the valley-fill, Livermore and Tassajara Formations. The valley-fill and Livermore Formations provide adequate and large quantities of good to excellent water to the Livermore Valley.

Valley-Fill: The shallowest water-bearing formation is the Holocene age (less than 10,000 years old) valley-fill that ranges in thickness from several tens of feet to almost 400 feet. The valley-fill consists of unconsolidated sediments deposited as alluvium, stream-channel, alluvial fan, and terrace deposits. In the western part of the basin, up to 40 feet of clay, caps these water-bearing sediments. In the vicinity of the subject site, DWR maps the valley-fill with a thickness of approximately 20 to 30 feet and describes this water-bearing zone as a permeable unit consisting of sand and gravel in a clayey sand matrix. The DWR delineated the potentiometric surface of valley-fill groundwater near the Site at approximately 20 to 30 feet below ground surface (bgs).

Livermore Formation: The next youngest water-bearing zone is the Plio-Pleistocene (approximately 10,000 to 5 million years old) Livermore Formation with a thickness of up to 4,000 feet. The Livermore Formation usually occurs at approximately 400 feet bgs. In the eastern half of the LVGB, deep wells produce adequate volumes of groundwater for irrigation, industrial, or municipal purposes. In the vicinity of the subject site, the DWR delineated the potentiometric groundwater surface at approximately 150 feet bgs within the Livermore Formation. The DWR describes this water-bearing unit as massive beds of rounded gravel cemented by an iron-rich sandy clay matrix.

Tassajara Formation: The oldest water-bearing zone is the Pliocene-age (approximately 2 to 5 million years old) Tassajara Formation that occurs in the uplands north of the Livermore Valley at approximately 250 to 750 feet bgs. This formation consists of more consolidated deposits of sandstone, siltstone, shale, conglomerate and limestone. The Tassajara Formation only provides enough groundwater for domestic and livestock purposes. This unit has little hydrogeologic continuity with the Livermore Formation.

Subbasins of the Livermore Valley Groundwater Basin

The LVGB consists of twelve subbasins bounded by faults and non-water-bearing marine rocks: Bishop, Dublin, Castle, Bernal, Camp, Amador, Cayetano, May, Spring, Vasco, Altamont and the Mocho Subbasin. The subject site is located on the west side of the Mocho Subbasin, which is one of the three most important water-producing subbasins of the Livermore Valley.

The Mocho Subbasin is bounded on the east by the Tesla Fault, on the west by the central zone of the Livermore Fault, on the north by bedrocks of the Tassajara Formation, and on the south by non-water-bearing marine rocks. The DWR

described groundwater flow within the Mocho Subbasin to the north or northwest with a gradient of 20 feet per mile (equivalent to 0.004 foot per foot).

This subbasin has been divided into the Mocho I (eastern) and Mocho II (western) subbasins. Separated by a nearly buried ridge of the underlying Livermore Formation, these subunits are described below.

Mocho I Subbasin: In the shallow water-bearing valley-fill, there is an apparent lack of hydrogeologic continuity with the Mocho II Subbasin. The Arroyo Seco watercourse drains the Mocho I Subbasin.

Mocho II Subbasin: The shallow valley-fill deposits of Mocho II occur along the watercourse of Arroyo Mocho that merge with gravelly fan deposits near Tesla Road. The DWR described these Arroyo Mocho deposits as no more than 30 feet thick. In the vicinity of the Site, the DWR mapped approximately 20 to 30 feet of the valley-fill unit overlying the Livermore Formation. Within the Livermore Formation, there is apparently little discontinuity with the Mocho I Subbasin or across the Mocho Fault. Sediments of the Livermore Formation have been downwarped into a structural trough – or syncline – and the Site is situated on the south limb of the syncline. Beds underlying the Site incline gently to the north at approximately 5 to 10 degrees.

1.4 Well Survey

SOMA contacted Zone 7 and the DWR to obtain well data for this survey. As shown in the well location map presented in Appendix A, there is one on-site well (3S/2E 23C1) and five wells in the properties immediately west of and presumably downgradient from the Site: 3S/2E 23C2, 3S/2E 23D1, 3S/2E 23D2, 3S/2E 23D3, and 3S/2E 23D4. North/northeast of and presumably up/cross gradient from the subject site there are seven wells within 2,000 feet of the investigation area: 3S/2E 14P2, 3S/2E 14Q1, 3S/2E 14Q2, 3S/2E 14Q3, 3S/2E 14Q5, 3S/2E 14Q6, and

3S/2E 14Q7. Approximately 1,800 feet south of the Site there is another water supply well, 3S/2E F1.

1.4.1 Well Construction Findings

On-Site

The Wente Brothers' well (23C1) is 102 feet deep with a casing diameter of 10 inches. The State DWR Water Well Drillers Report indicates this well is screened from 11 to 66 feet and at 77 to 93 feet bgs.

Off-Site

With the exception of 3S/2E 23C2, the five wells west of and adjacent to the Site have similar well depths ranging from 108 to 140 feet bgs. Well 23D3 is located at 5143 Tesla Road and has a relatively shallow depth of 29 feet with a casing diameter of 9 inches. Zone 7 records indicate that this well is used for domestic purposes and that well 23C2 is used as a drinking water well. Well 23C2 is located on the property immediately adjacent to the Site at 5443 Tesla Road. In response to SOMA's request for a well search within 2,000 feet of the Site, the DWR provided no Water Well Drillers Reports for three of these five wells located west of and adjacent to the Site.

Available records indicate that seven wells are located north/northeast of and within 2,000 feet of the Site. Zone 7 records indicate that these wells are 80 to 308 feet deep with casing diameters ranging from 6.6 to 10 inches. Wells 3S/2E P2, 3S/2E Q1, 3S/2E Q2, 3S/2E Q3, 3S/2E Q5, and 3S/2E Q6 are reportedly used as drinking water wells. State DWR Reports indicate that well Q6 is perforated from 80 to 140 feet bgs and that well Q7 is perforated from 100 to 210 feet bgs. The DWR provided no Water Well Drillers Reports for the other five wells and construction details for most of these wells are unknown.

Based on data received from Zone 7, well 3S/2E 23F1 is located almost 2,000 feet south and presumably up/cross gradient from the Site. Because the DWR provided no Water Well Drillers Report for this well, the construction details for well 23F1 are unknown.

2.0 FIELD INVESTIGATION

Based on the ACHCS' approval of SOMA's workplan, the scope of this investigation included conducting a soil and groundwater investigation to provide a more thorough understanding of the extent of contamination in the soil and groundwater. To implement the approved workplan and comply with the ACHCS' directive, SOMA performed the following tasks.

- 1. Permit Acquisition, Health and Safety Plan Preparation, and Utility Clearance,
- 2. Hollow-Stem Auger Drilling, Soil Sample Collection, and Monitoring Well Installation,
- 3. Monitoring Well Development, Monitoring Well Survey, and Groundwater Sample Collection (Monitoring Wells, Onsite Irrigation Well, and Offsite Irrigation Well),
- 4. Soil and Groundwater Sample Collection in Boreholes 9 and 10, and
- 5. Laboratory Analysis.

The following is a description of the above-mentioned tasks.

2.1 Permit Acquisition, Health and Safety Plan Preparation, and Utility Clearance

Prior to initiating field activities, SOMA obtained the required drilling permits from ACHCS Zone 7 Water Agency. The permits are attached as Appendix A.

A site-specific health and safety plan (HASP) was prepared by SOMA. The HASP was designed to address safety provisions during field activities and protect the field crew from physical and chemical hazards resulting from drilling and sampling. The HASP established personnel responsibilities, general safe work practices, field procedures, personal protective equipment standards, decontamination procedures and emergency action plans.

SOMA contacted Underground Service Alert (USA) to clear the drilling areas of underground utilities. Following USA clearance, a private utility locator surveyed the proposed drilling areas and located additional subsurface conduits.

2.2 Hollow-Stem Auger Drilling, Soil Sample Collection, and Monitoring Well Installation

On May 5, 2005, SOMA oversaw Woodward Drilling Co. (Woodward) install three monitoring wells, MW-1 through MW-3, as shown in Figure 2. Hollow stem auger (HSA) drilling technology was implemented to drill the well boreholes to the designated depth of 15 feet bgs. To determine the water-bearing zones, continuous sampling with an unlined split-spoon sampler was implemented throughout the drilling of each well borehole. SOMA's field geologist continuously logged the sediment cores and collected relatively undisturbed soil samples for laboratory analysis. Soil samples were taken from the vadose zone located directly above first encountered groundwater.

Under the direction of SOMA's field geologist, the monitoring wells were screened to span only the saturated zone observed in the soil cores to minimize screen lengths. Using factory-slotted schedule 40 PVC screen with 0.01" slots, the drilling crew used 5-foot screen intervals for each well. The monitoring well boreholes were cased with threaded, blank and slotted schedule 40 PVC pipe. The drilling crew fitted PVC capping to the bottom of the casings without adhesives or tape, and the top of the casings were fitted with a locking well plug.

After the casings were set into the boreholes, the monitoring well filter packs were emplaced outside the casing by slowly pouring 2/12 kiln-dried sand material into the annular space from the bottom of the boreholes to approximately a foot above the screened interval. To prevent grout from infiltrating down into the filter material, a one-foot thick bentonite plug was placed above this filter material. Approximately one to two gallons of distilled water was then added to hydrate the bentonite pellets. After thoroughly hydrating the bentonite seal, the wells were sealed from the top of the bentonite layer to about one-foot bgs with neat cement containing approximately 5% bentonite. Monitoring well borehole logs and monitoring well construction details are attached as Appendix B.

2.3 Developing, Surveying, and Groundwater Sampling (Monitoring Wells, On-site Irrigation Well, and Off-site Irrigation Well

On May 20, 2005, Woodward developed the newly installed wells. The field crew used a steel bailer to remove sediment-laden water from the wells until the sediment load had substantially decreased. The wells were then purged until the groundwater clarity was clear and groundwater quality parameters stabilized. Appendix C presents the well development logs.

After development was complete a water sample was taken from each well. The field crew collected groundwater samples with a ½-inch diameter stainless steel bailer and decanted the groundwater samples into four 40-milliliter (mL) VOA vials, pre-preserved with hydrochloric acid and an unpreserved 1L amber bottle. SOMA's field geologist verified the 40-mL vials were sealed properly to prevent the inclusion of air bubbles. The samples were stored in a cooler, with ice, and delivered that day to Pacific Analytical Laboratory (PAL), a California state-certified analytical laboratory. Appendix D includes the laboratory reports and the COC for the groundwater samples.

On May 20, 2005, SOMA measured depths to groundwater inside the newly installed groundwater monitoring wells. Using the well survey data by Harrington Surveys Inc., groundwater elevations at the monitoring well locations were calculated. Well Survey data is included in Appendix E. Figure 3 shows the groundwater elevation contour from May 20, 2005. As Figure 3 illustrates, the groundwater gradient flow is to the northwest.

2.4 Soil and Groundwater Sample Collection in Boreholes 9/10.

On June 24, 2005, SOMA oversaw Woodward drill two confirmatory boreholes (B-9 and B-10). The purpose of this investigation was to confirm the presence of petroleum hydrocarbons in the soil and groundwater next to the former USTs and to evaluate the current soil and groundwater conditions next to B-4 (drilled by Clayton), which is in close proximity of the former steam cleaning area. The locations of the two boreholes are shown in Figure 2. Boreholes B-9 and B-10 were drilled to 14 feet and 20 feet, respectively. Both boreholes were continuously sampled to determine lithology and locate the water bearing zones.

The soil sample collected from B-9 was taken from 12.5 feet to 13 feet bgs, at the vadose zone located directly above the groundwater. This zone also had the highest Photo-Ionization Detector (PID) readings as seen in the geologic logs in Appendix B. Groundwater samples collected from the boreholes were sampled with the same method as the monitoring wells.

2.5 Laboratory Analysis

Soil samples collected from wells MW-1 to MW-3 were submitted to PAL on May 5, 2005. A soil sample from temporary borehole B-9 was submitted to PAL on June 27, 2005. The soil and groundwater samples collected from MW-1 through MW-3 and B-9 were analyzed for the following constituents:

- Total petroleum hydrocarbons as gasoline (TPH-g), total petroleum hydrocarbons as diesel (TPH-d), and total petroleum hydrocarbons as motor oil (TPH-mo) using EPA Method 8015B,
- Benzene, toluene, ethylbenzene, total xylenes (BTEX) and Methyl tertiary
 Butyl Ether (MtBE) using EPA Method 8260B.

The groundwater sample collected from B-10 was analyzed for:

- TPH-g, BTEX, and MTBE using EPA Method 8260B,
- TPH-d and TPH-mo using EPA Method 8015B,
- Organocholorine pesticides using EPA Method 8081A, and
- Heavy metals (Cadmium, Chromium, Lead, Nickel, Zinc), using EPA
 Method 6010B.

PAL subcontracted Curtis & Tompkins, Ltd., Analytical Laboratories (C&T) to administer the TPH-d, TPH-Mo, heavy metals, and organocholorine pesticides analysis. Table 1 presents the soil and groundwater analytical results. Appendix D includes the laboratory reports and the COC forms.

3.0 RESULTS

The following sections describe the results of the current field investigation activities.

3.1 Soil Analytical Results

Soil samples collected from wells MW-1 to MW-3 were below the laboratory reporting limits for all analytes with exception of MW-2, which contained TPH-d at 2.7 mg/Kg, and TPH-mo at 7.1 mg/Kg.

The soil sample collected from 12.3-13 feet bgs from B-9 had detections of TPH-g at 232,000 ug/Kg, TPH-d at 98,000 ug/Kg, TPH-mo at 6,600 ug/Kg, ethylbenzene at 2,600 ug/Kg, total xylenes at 7,170 ug/Kg and MtBE at 28 ug/Kg. Soil analytical results can be found in Table 2.

3.2 Groundwater Analytical Results

Chemical concentrations in the groundwater samples collected from wells MW-1 to MW-3 were below laboratory reporting limits for TPH-g, benzene, ethylbenzene, total xylenes, and MtBE. However, toluene and TPH-d were detected at 1.58 ug/L and 680 ug/L in MW-3. Toluene was also detected in the on-site irrigation well at 0.85 ug/L. MW-1 had a TPH-mo concentration of 320 µg/L. The groundwater sample collected from an irrigation well located at 5443 Tesla Road contained toluene and benzene 1.08 and 0.77 µg/L, respectively.

A groundwater sample collected from B-9 contained elevated levels of petroleum hydrocarbons. The results of the laboratory analyses showed TPH-g at 1,850,000 ug/L, TPH-d at 540,000 ug/L, benzene at 3,820 ug/L, ethylbenzene at 40,400 ug/L, total xylenes at 177,700 ug/L, and toluene at 114,000 ug/L. The results of the laboratory analyses on the groundwater samples collected from B-10 showed ethylbenzene at 1.10 ug/L and total xylenes at 4.03 ug/L. No TPH-g, TPH-d, TPH-mo, or organocholorine pesticides were detected in the groundwater sample collected from borehole B-10. The results of the laboratory analyses on the groundwater samples showed cadmium at 12 ug/L, total chromium at 930 ug/L, lead at 82 ug/L, Nickel at 3,600 ug/L and zinc at 800 ug/L. Table 3 shows the results of the heavy metal laboratory analysis.

4.0 CONCLUSIONS AND RECOMENDATIONS

The results of this investigation revealed that the first water-bearing zone beneath the Site is flowing toward the northwest. The results of the laboratory analysis on the groundwater samples collected from MW-1, MW-2, MW-3 and B-9 indicated that the groundwater chemical plume is primarily located around the former USTs. As such, no chemicals were detected in the groundwater samples collected from MW-1, MW-2, and MW-3. However, elevated levels of petroleum hydrocarbons, including TPH-g and BTEX, were detected in a groundwater sample collected from

B-9. Figure 2 shows the locations of the groundwater monitoring wells and groundwater boreholes, B-9 and B-10. Although the horizontal extent of the petroleum hydrocarbons around the USTs is limited, the vertical extent of high levels of petroleum hydrocarbons in close proximity of the former USTs is not known.

The results of the laboratory analysis on the groundwater samples collected from B-10 did not indicate the presence of TPH-g, TPH-d, TPH-mo, or organocholorine pesticides. However, as the analytical results indicated, elevated levels of cadmium, chromium, lead nickel, and zinc were detected in the groundwater sample collected from B-10. Since these chemicals are naturally occurring chemicals in soil and sediments, and an unfiltered groundwater sample from B-10 was submitted to the laboratory, the high levels of heavy metals detected may not be a true representation of the dissolved phase concentrations in the groundwater.

In light of the above-mentioned conclusions, we recommend the following:

- 1) As part of the Phase II investigation, we recommend a limited CPT/MIP investigation around the former USTs and the former steam clean area in order to evaluate the hydrogeologic conditions and screening levels of contaminants at different depths. The actual depths of the CPT/MIP boreholes will be decided in the field based on the MIP results. We anticipate that the maximum depths of the CPT/MIP boreholes will be about 50 to 60 feet. The locations of the proposed CPT/MIPs are shown in Figure 4. The results of the CPT study will be used to construct geologic cross-sections in order to define the site conceptual model.
- 2) Based on the results of the CPT study, we will collect groundwater samples at different depths in order to define the vertical extent of the petroleum hydrocarbons in the groundwater. The groundwater boreholes will be installed next to CPT/MIP boreholes; after which a SP-15 groundwater sampler will be

used to collect samples. The groundwater samples collected next to the steam clean area will be filtered and analyzed for heavy metals. The other groundwater samples will be analyzed for TPH-g, TPH-d, TPH-mo, and BTEX.

3) Groundwater monitoring events should be conducted on a quarterly basis to evaluate the rate of plume migration and plume stability.

5.0 REFERENCES

Department of Water Resources, June 1974. "Evaluation of Ground Water Resources: Livermore and Sunol Valleys," Bulletin 118-2.

Department of Water Resources, October 1, 2003. "San Francisco Hydrologic Region Livermore Valley Groundwater Basin," Update to Bulletin 118-2.

Lawrence Livermore National Laboratory, 1995. "Environmental Report of 1995."

Zone 7 Water Agency, August 3, 2004. "Well Location Map – 5565 Tesla Road" and Table of Well Owners.

Clayton Group Services, June 23, 2003. "Preliminary Subsurface Investigation."

Clayton Group Services, November 8, 2002. "Phase I Environmental Site Assessment."

FIGURES

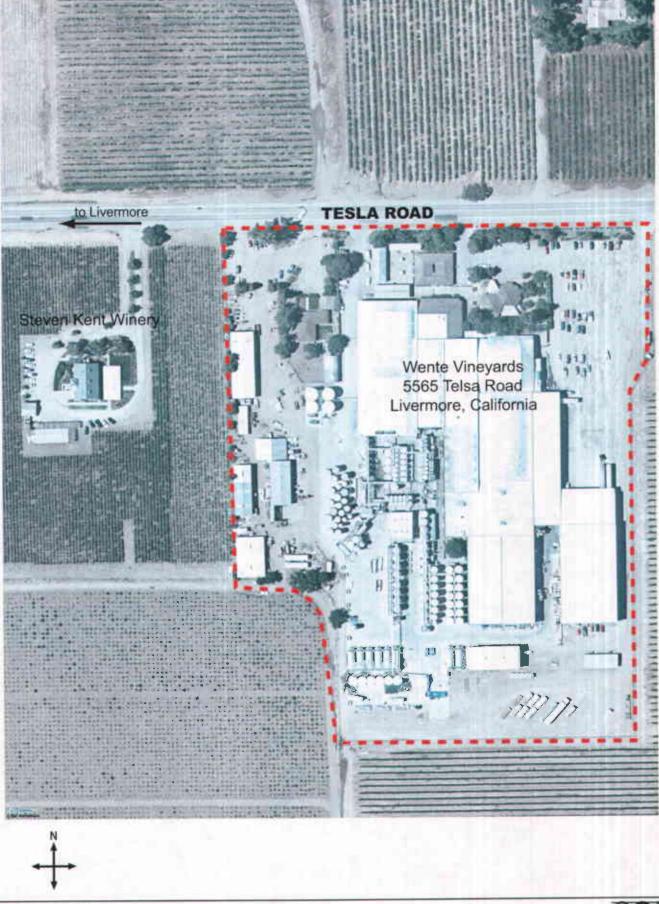


Figure 1: Site vicinity map.

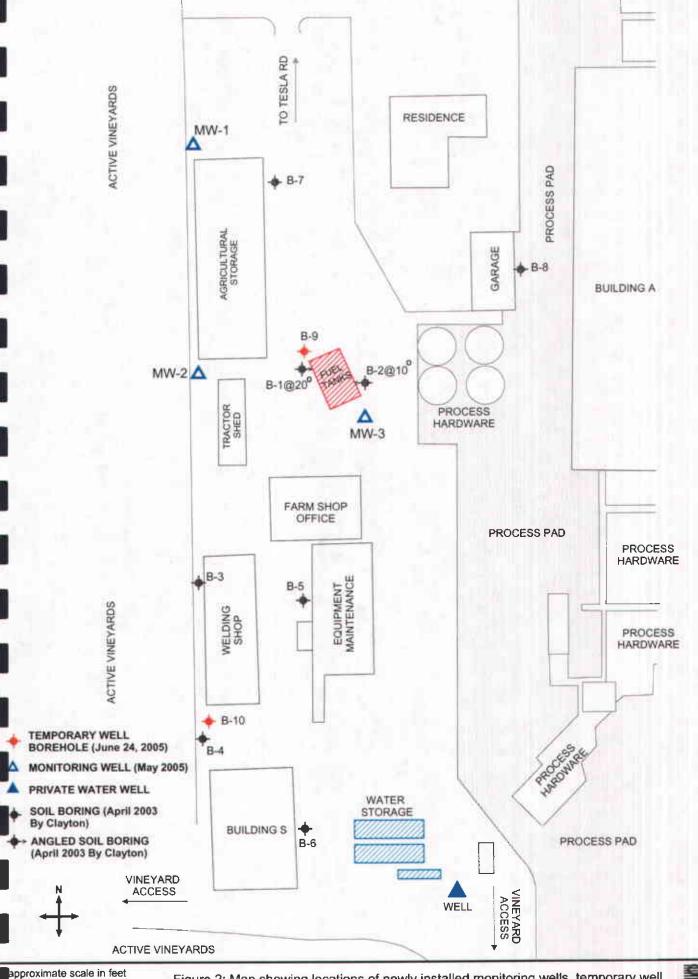
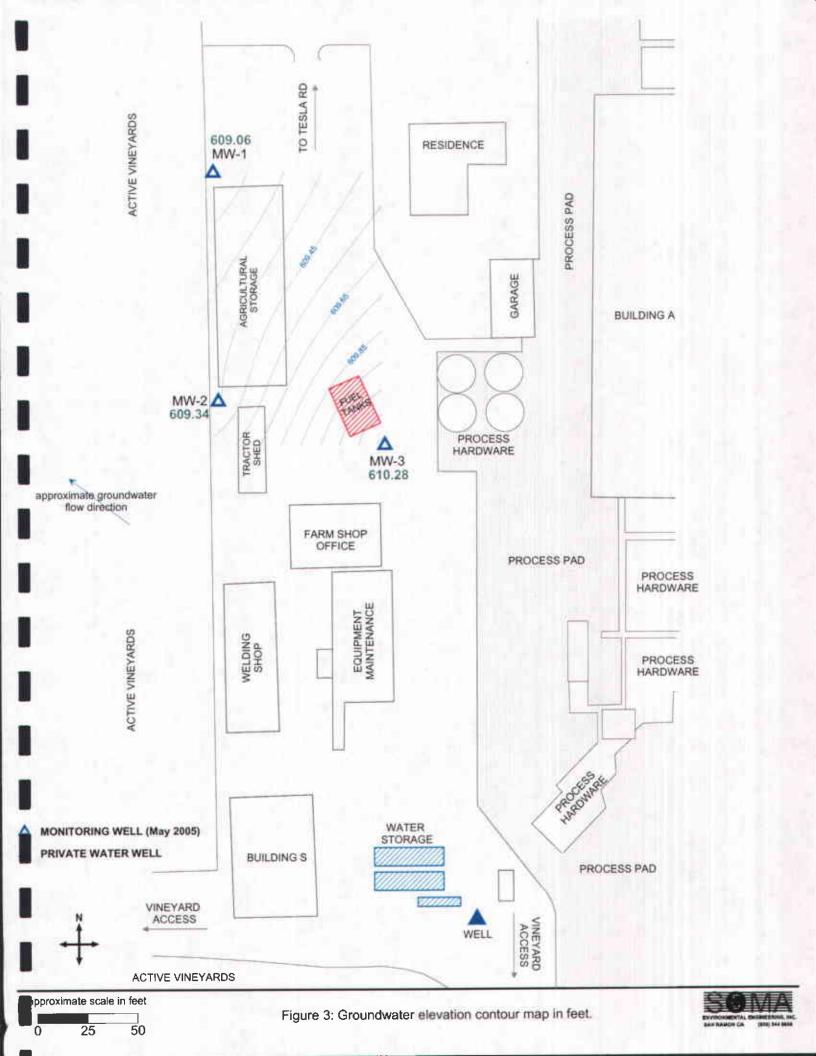



Figure 2: Map showing locations of newly installed monitoring wells, temporary well boreholes, and previous soil borings installed by Clayton Group Services.

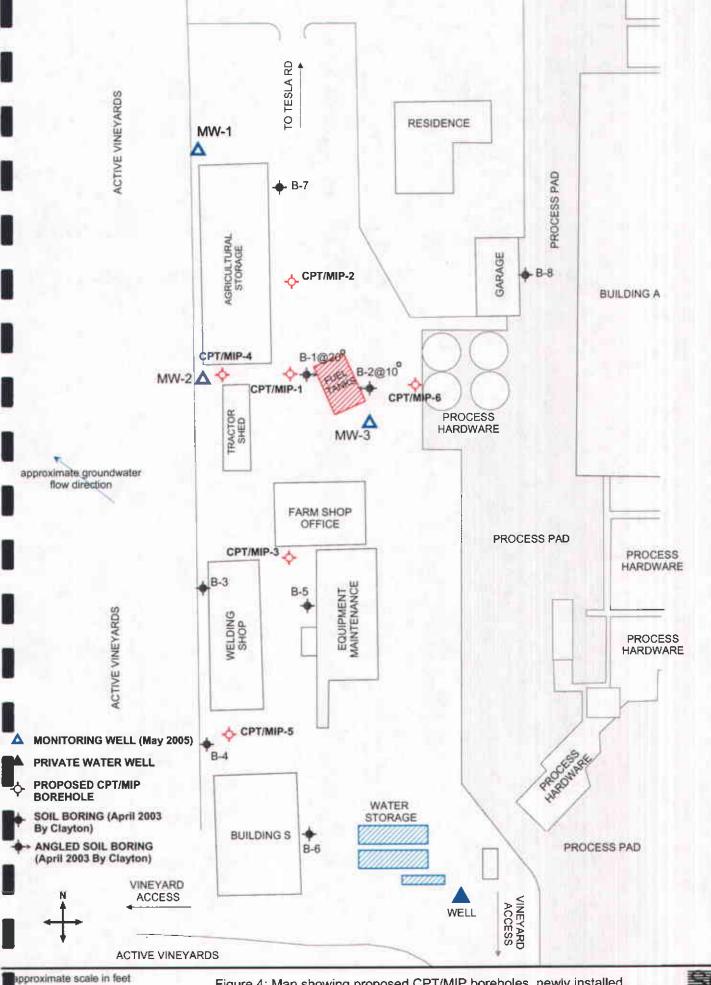


Figure 4: Map showing proposed CPT/MIP boreholes, newly installed monitoring wells, and existing soil borings installed by Clayton Group Services.

TABLES

Table 1 Groundwater Analytical Results 5565 Tesla Rd, Livermore CA

Sample Location	MW-1	MW-2	MW-3	Onsite Well	5443 Tesla	B-9	B-10
Date	May 20, 2005	May 20, 2005	May 20, 2005	May 20, 2005	May 20, 2005	June 24, 2005	June 24, 2005
TPH-g (µg/L)	<200	<200	<200	<200	<200	1,850,000	<200
TPH-d (μg/L)	<50	<50	680	<50	<50	540,000 ^{LY}	<50
TPH-mo (μg/L)	320 ^{Y Z}	<300	<300	<300	<300	<24,000	<300
Benzene (μg/L)	<0.5	<0.5	<0.5	<0.5	0 770	3,820	<0.5
Toluene (μg/L)	<0.5	<0.5	1.58	0 850	1 08	114,000	4.23
Ethyl- benzene (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	40,400	1.10
Total Xylenes (µg/L)	<1.0	<1.0	<1.0	<1.0	<10	177,700	4.03
MιΒΕ (μg/L) ΕΡΑ 8260Β	<0.5	<0.5	<0.5	<0.5	<0.5	<462	<0.5
Cudmium (µg/L) EPA 6010B	NA	NA	NA	NA	NA	NA	12
Chromium (pg/L) EPA 6010B	NA	NA	NA	NA	NA	NA	930
Lead (µg/L) EPA 6010B	NA	NA	NA	NA	NA	NA	82
Nickel (µg/L) EPA 60106	NA	NA	NA	NA	NA	NA	3,600
Zinc (eg/b) EPA 6010B	NA	NA	NA	NA:	NA	NA	800

Notes:

- < : Not detected above laboratory reporting limit.
- H = Heavier hydrocarbons contributed to the quantitation.
- Y = Sample exhibits chromatographic pattern which does not resemble standard...
- Z = Sample exhibits unknown single peak or peaks
- L =Lighter hydrocarbons contributed to the quantitation.

Table 2
Soil Analytical Results
5565 Tesla Rd, Livermore CA

Sample Location	Date	TPH-g (μg/Kg)	TPH-d (mg/Kg)	TPH-mo (mg/Kg)	Benzene (μg/Kg)	Toluene (μg/Kg)	Ethyl- benzene (μg/Kg)	Total Xylenes (µg/Kg)	MιΒΕ (μg/Kg) EPA 8260B	
MW-1 (8.5'-9')	May 5, 2005	<224	< 0.99	<5.0	<0.560	< 0.560	<0.560	<1.12	< 0.560	
MW-2 (7.5'-8')	May 5, 2005	<222	2.7 HY	7.1	<0.555	< 0.555	<0.555	<1.11	<0.555	
MW-3 (6.5'-7')	May 5, 2005	<222	<0.99	<5.0	<0.555	< 0.555	<0.555	<1.11	<0.555	
B-9 (12.5'-13')	June 24, 2005	232,000	98 ^Y	6.6 Y	<21.5	<86.0	2.600	8170	28.0	

Notes:

- < : Not detected above laboratory reporting limit.
- H = Heavier hydrocarbons contributed to the quantitation.
- Y = Sample exhibits chromatographic pattern which does not resemble standard.
- Z = Sample exhibits unknown single peak or peaks.
- L =Lighter hydrocarbons contributed to the quantitation.

Table 3
Groundwater Analytical Results
Heavy Metals EPA Method 6010B
5565 Tesla Rd, Livermore CA

Compound	B-10 (ug/L)	RBSL (ug/L)			
Cadmium	12	2.2			
Chromium	930	180			
Lead	82	2.5			
Nickel	3,600	8.2			
Zinc	800	81			

RBSL=Risk Based Screening Levels for Commercial/Industrial Land Use

Appendix A

Drilling Permit

ZUNE

ZONE 7 WATER AGENCY

100 N. Canyons Pkway, Livermore 94551 5987 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94500-5127 VOICE (925) 454-505 FAX (925) 454-5728

FOR OFFICE USE

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE

LOCATION OF PROJECT 5565 Tesla Pd	PERMIT NUMBER 25050
Livermore CA 94550	WELL NUMBER 3S/2E-23C3 to 23C5 (MW-1 to MW-3
	APN99A-2340-004-01
California Coordinates Source Accuracy± ft. CCN ft. CCE ft.	PERMIT CONDITIONS
AFN	Circled Permit Requirements Apply
CLIENT	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Name Hris Krinetz - Wente Bros.	(A) GENERAL
Address 5565 7850 86 Phone 92 456-2360 City Lives More Zip 94550	1. A permit application should be submitted so as to arrive at the
APPLICANT Name SOMA Environmenta John Lohman Address Z680 Bishop A * 203 Phone 925 244-6600 City San Carray TYPE OF PROJECT: Well Construction Well Destruction Cathodic Protection PROPOSED WELL USE: Domestic Municipal Remediation Dewatering Other Jip 94550 Geotechnical Investigation Cantamination Investigation Cathodic Protection Remediation Cathodic Protection Other Dewatering Other	Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approval date. B. WATER SUPPLY WELLS 1. Minimum surface seal diameter is four inches greater than the well casing diameter. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. 3. Grout placed by tremie. 4. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. 5. A sample port is required on the discharge pipe near the
DRILLING METHOD: Mud Rotary	wellhead. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie. D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings. E. CATHODIC. Fill hole above anotes zone with concrete placed by tremie. F. WELL DESTRUCTION. See attached. G. SPECIAL CONDITIONS:, Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water laboratory analysis results.
hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68. APPLICANT'S BIGNATURE Date 4/18/05	Approved Myman Hong Date 4/19/05

4 . .

P:\WRE\WYMAN\drilling permit.wpd

Revised: March 26, 2002

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 451-5056 FAX (925) 454-5728

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 5565 TOGIC Rd. Live (more, CA	PERMIT NUMBER 25093
	WELL NUMBERAPN
California Coordinates Source Accuracy± ft. CCN ft. CCE ft. APN	PERMIT CONDITIONS
CLIENT	Circled Permit Requirements Apply
Name And Krimetz-Wente Bros Address 5565 Tesla Rd Phone 925 456-2300 City Livermore Zip 94550	A. GENERAL 1. A permit application should be submitted so as to arrive at the
APPLICANT Name SOMA EnvironMenta JOHN LOHMAN Fax 975 244 6601 Address 2000 Bishop Or #203 Phone 975 244 6600 City San Ramon Zip 94583	Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitter work the original Department of Water Resources Water V/el Drillers Report or equivalent for well projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approval date.
TYPE OF PROJECT: Well Construction	WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and inigation wells unless a lesser depth.
PROPOSED WELL USE: Domestic	is specially approved. 3. Grout placed by tremie. 4. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. 5. A sample port is required on the discharge pipe near the wellhead.
DRILLING METHOD: Mud Rotary	C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater than the well or plezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth.
WELL SPECIFICATIONS: Drill Hole Diameterin. Maximum Casing Diameterin. Depthft. Surface Seal Depthft. Number	practicable or 20 feet. 3. Grout placed by tremie. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two first with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings. E. CATHODIC. Fill hole above and te zone with concrete placed by tremie.
Number of Borings 2 Maximum Hole Diameter 2 In. Depth 20 ft.	G. WELL DESTRUCTION. See attached. SPECIAL CONDITIONS:, Submit to Zone 7 within 60 days after completion of permitted work the well installation report including
ESTIMATED STARTING DATE	all soil and water laboratory analysis results.
hereby agree to comply with all requirements of this permit and Alameda County Ordinance No.78-68 APPLICANT'S BIGNATURE Date 6/8/05	Approved Wyman Hong Date 6/14/05
TTACH SITE PLAN OR SKETCH	•

P:\WRE\WYMAN\drilling permit.wpd

Revised: February 24, 2005

Appendix B

Geologic Borehole Logs Well Construction Diagrams

GEOLOGIC LOG OF BOREHOLE: MW-1

PAGE 1 OF 1

PROJECT: 2842

SITE LOCATION: 5565 Tesla Rd.,

Livermore CA

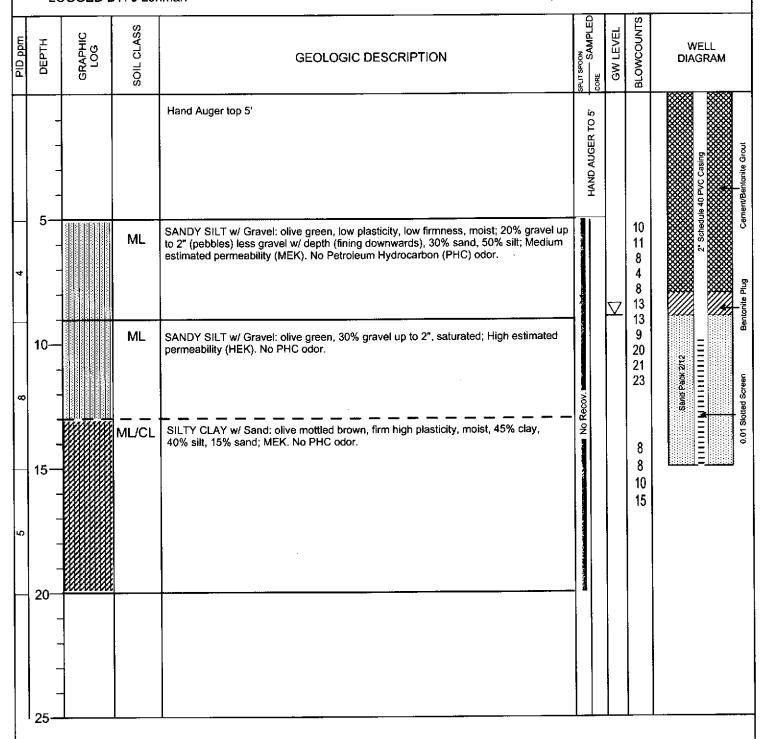
DRILLER: Woodward Drilling

DRILLING METHOD: HSA

BORING DIAMETER: 8"

LOGGED BY: J Lohman

DATE DRILLED: May 05, 2005.


CASING ELEVATION: NA

DEPTH TO GW: 9' bgs

T.O.C. TO SCREEN: 10'

SCREEN LENGTH: 5'

APPROVED BY: M Sepehr

COMMENTS: Sampled 8.5-9'; Well TD@15', Well Ø 2"

GEOLOGIC LOG OF BOREHOLE: MW-2

PAGE 1 OF 1

PROJECT: 2842

SITE LOCATION: 5565 Tesla Rd.,

Livermore CA

DRILLER: Woodward Drilling

DRILLING METHOD: HSA

BORING DIAMETER: 8"

LOGGED BY: J Lohman

DATE DRILLED: May 05, 2005.

CASING ELEVATION: NA

DEPTH TO GW: 8.5' bgs

T.O.C. TO SCREEN: 10'

SCREEN LENGTH: 5'

APPROVED BY: M Sepehr

GEOLOGIC DESCRIPTION GRAPHIC CORE SOIL CLASS SOIL CLASS WELL DIAGRAM WELL DIAGRAM DIAGRAM WELL DIAGRAM DIAGRAM		L	OGGED	51. J LOI	THE TENT OF STATE OF	•			
Hand Auger top 5'	PID ppm	DEPTH	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	SPLIT SPOON SAMPLED CORE	GW LEVEL	BLOWCOUNTS	WELL DIAGRAM
ML SANDY SILT w/ Gravel: olive green, low plasticity, low firmness, damp; 20% gravel, 30% sand, 50% silt; Medium estimated permeability (MEK). No Petroleum Hydrocarbon (PHC) odor. ML SANDY SILT w/ gravel: 60% silt, 25% sand (medium to small), 15% <=2" gravel, saturated. HEK. No PHC odor.	6	15—		ML	SANDY SILT w/ Gravel: olive green, low plasticity, low firmness, damp; 20% gravel, 30% sand, 50% silt; Medium estimated permeability (MEK). No Petroleum Hydrocarbon (PHC) odor. SANDY SILT w/ gravel: 60% silt, 25% sand (medium to small), 15% <=2" gravel, saturated. HEK. No PHC odor. SANDY SILT Stringer: olive mottled orange stringer w/o gravel, highly plastic, very firm damp; LEK. SILTY SAND w/ Gravel: coarse sand 50% sand, 30% silt, 20% gravel, saturated;	HAND AUGER TO 5'		50 50 20 25 50 35 10 11 6 4 8 10	

COMMENTS: Sampled 7.5-8'; Well TD@15', Well Ø 2"

GEOLOGIC LOG OF BOREHOLE: MW-3

PAGE 1 OF 1

PROJECT: 2842

SITE LOCATION: 5565 Tesla Rd.,

Livermore CA

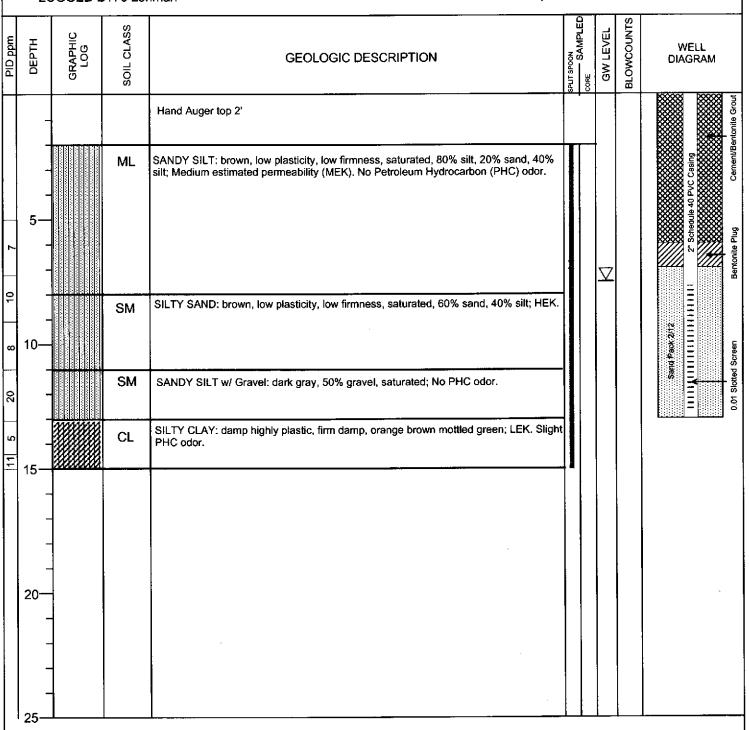
DRILLER: Woodward Drilling

DRILLING METHOD: HSA

BORING DIAMETER: 8"

LOGGED BY: J Lohman

DATE DRILLED: May 05, 2005.


CASING ELEVATION: NA

DEPTH TO GW: 7.5' bgs

T.O.C. TO SCREEN: 8'

SCREEN LENGTH: 5'

APPROVED BY: M Sepehr

COMMENTS: Sampled 6.5-7'; Well TD@13', Well Ø 2"

GEOLOGIC LOG OF BOREHOLE: B-9

PAGE 1 OF 1

PROJECT: 2842

SITE LOCATION: 5565 Tesla Road,

Livermore, CA

DRILLER: Woodward Drilling

DRILLING METHOD: HSA

BORING DIAMETER: 8"

LOGGED BY: J Lohman

DATE DRILLED: 6/24/05

CASING ELEVATION: NA

DEPTH TO GW: 13.5'

T.O.C. TO SCREEN: NA

SCREEN LENGTH: NA

APPROVED BY: Sepehr M, Ph.D., PE

	L	OGGED E	ST: J LOI	hman APPROVED BY: Sepenir	VI, I	11	ا ,., ا	_	
PID ppm	DEPTH	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	SPLIT SPOON	CORE SAMPLED	GW LEVEL	BLOWCOUNTS	WELL DIAGRAM NA
786 688 584 62 62 PI	5—-	GR	CL	5-7' No recovery SILTY CLAY WITH GRAVEL (20%): Tan, low plasticity, damp; Medium Estimated Permeability (MEK). Medium Petroleum Hydrocarbon (PHC) odor. SILTY CLAY: Orange mottled olive/black, low plasticity, moist; Low Estimated Permeability (LEK). Strong PHC odor. SILTY CLAY WITH GRAVEL (20%) & SAND (10%): Tan, saturated, gravel up to 1*, poorly sorted; HEK. Strong PHC odor.	SPLITSP		w ₀	35 50 23 27 32 12 4 6 10 12 6 7 9 17 20 20 10 6	NA
	15— - - 20— - -								

COMMENTS: TD@14ft, GW@ 13.5, Soil Sample @ 12.5'-13'; Strong PHC odor.

GEOLOGIC LOG OF BOREHOLE: B-10

PAGE 1 OF 1

PROJECT: 2842

SITE LOCATION: 5565 Tesla Road,

Livermore, CA

DRILLER: Woodward Drilling

DRILLING METHOD: HSA

BORING DIAMETER: 8"

LOGGED BY: J.Lohman

DATE DRILLED: 6/24/05

CASING ELEVATION: NA

DEPTH TO GW: 19ft

T.O.C. TO SCREEN: NA

SCREEN LENGTH: NA

APPROVED BY: Sepehr M, Ph.D., PE

LOGGED BY: J	1, Pr	ո.D.,	PE		
PID ppm DEPTH GRAPHIC LOG SOIL CLASS	GEOLOGIC DESCRIPTION	SPLIT SPOON CORF	GW LEVEL	BLOWCOUNTS	WELL DIAGRAM NA
5 SM CI	Hand Auger top 5' SILTY SAND: Tan, fine grained, fining downwards; High Estimated Permeability (HEK), No Petroleum Hydrocarbon (PHC) odor. SILTY CLAY: Brown mottled gray, medium plasticity, firm; Medium Estimated Permeability (MEK). No PHC odor. Higher plasticity and firmness w/ depth- increasing dampness w/ depth			7 9 11 12 6 7 10 10 11 13 18 23 7 8 10 10 7 11 17 22	
25				_	

COMMENTS: TD @ 20ft; GW @ 19'; No PHC odor.

Appendix C

Well Development Logs

Well No.;	MALIN - 1		Maria da Albara	.0004
well No.;	<u> MW - 1</u>		Project No.:	2831
Casing Diameter:	Zinches		Address:	5565 Tesla Rd
Depth of Well:	\5feet		•	Livermore, CA
Top of Casing Elevation:	618,16 feet		Date:	May 20, 2005
Depth to Groundwater:	6.2/6.1 feet piels	po5t	Sampler:	John Lohman
Groundwater Elevation:	609.06 feet		•	
Water Column Height:	<u>8.9</u> feet			
Purged Volume:	55 gallons			
,			•	
	1		•	
Purging Method:	Bailer □	Pump	×	
Canadina Mathada	Datie ex	_	_	
Sampling Method:	Bailer ⊠	Pump		•
Color:	No ★	Yes □	Describe:	
Chann	NI_ ~of	V (*)	Danaillan	
Sheen:	No 💢	Yes 🗀	Describe:	
Odor:	No 🙀	Yes □	Describe:	
	•			

Field Measurements:

Time	Voi (galions)	рН	Temp (⁰ C)	E.C. (μs/cm)
9:35 AM	3	7.35	15.8	1770
9:37 pm	6	7.46	15.2	1750
9:39 Am	9	7.64	14.6	1720
9:41 AM	12	7.61	14.5	1730
9:43 AM	15	7.54	14.5	1730
9:45 Am	18	7.54	14.4	1730
10:03 Am	55	7.56	14.5	1770

10:05 AM SAMPLES

Well No.:	MW-Z	-	Project No.:	2831
Casing Diameter:	inches		Address:	5565 Tesla Rd
Depth of Well:	feet			Livermore, CA
Top of Casing Elevation:	6\6.03 feet		Date:	May 20, 2005
Depth to Groundwater:	6.7/6.69 feet pre p	ost	Sampler:	John Lohman
Groundwater Elevation:	609,34 feet			
Water Column Height:	₹.31 feet			
Purged Volume:	Z6 gallons			
			,	
Purging Method:	Bailer □	Pump	×	
Sampling Method:	Bailer 💢	Pump		
Color:	No 🔀	Yes □	Describe:	
Sheen:	No 🗷	Yes □	Describe:	
Odor:	No 🗲	Yes □	Describe:	

Field Measurements:

Time	Vol (gailons)	рĦ	Temp (⁰ C)	E.C. (μs/cm)
10145 AM	STAR	T PUR	6£	
10:49 pm	4	7.58	17.0	1750
10:53 Am	8	7.44	16.5	1730
10:57 Am	12	7.48	16.1	1730
11:01 AM	16	7.52	16.1	1730
11:05 Am	20	7.49	16.2	1720
11:10 Am	26	7.53	15.8	1720

11:15 Am

SAMPLES

Casing Diameter:	inches		Address:	5565 Tesla Rd	
Depth of Well:	<u>\ </u>			Livermore, CA	
Top of Casing Elevation:	617.3Z feet		Date:	May 20, 2005	
Depth to Groundwater:	7.02/7.04 feet pel	oust	Sampler:	John Lohman	
Groundwater Elevation:	<u>610.28</u> feet		• .		
Water Column Height:	5.96 feet				
Purged Volume:					
•					
Purging Method:	Bailer □	Pump	₩	•	
Sampling Method:	Bailer 🥦	Pump			
Color:	No ⊅	Yes □	Describe:	•	
00101.	NO 7-	165 =	Describe.		
Sheen:	No 🏋	Yes □	Describe:		
Odor:	No ⊅∕	Yes □	Describe:	·	

Project No.:

2831

Field Measurements:

Well No.:

Time	Vol (gallons)	pН	Temp (⁰ C)	E.C. (μs/cm)
11:40 Am	STAF	IT PU	RGE	
11:44 Am	4	7.51	21.2	789
11:48 Am	8	7.58	18.6	1760
11:55 Am	15	7.61	17.8	1740
11:58 mm	20	7.59	16.0	1740
17:00 PM	25	7.62	18.1	1760
12:05 DM	SAM	265		

Appendix D

Lab Data and COC

Pacific Analytical Laboratory

Phone (510) 864-0364

13 July 2005

Mansour Sepehr

SOMA Environmental Engineering Inc.

2680 Bishop Dr., Suite 203

San Ramon, CA 94583

RE: 5565 Tesla Rd, Livermore

Work Order Number: 5060021

Mapd Ach

This Laboratory report has been reviewed for technical correctness and completeness. This entire report was reviewed and approved by the Laboratory Director or the Director's designee, as verified by the following signature.

Sincerely,

Maiid Akhavan

Laboratory Director

CHAIN OF CUSTODY

Page		of]
5-	—₩		

DATE/TIME

*TE/TIME

Pacific Analytical Laboratory

851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 phone 510-864-0365 fax PAL 0011 # 506002)

Analyses

, MtBE 8260B

DATE/TIME

DATE/TIME

Project No: 2842 R

Project Name: 5565 Tesla Rd Livermore

Turnaround Time: Standard

Sampler: John Lohman

Report To: Joyce Bobek

Company: SOMA Environmental

Telephone: 925-244-6600

Fax: 925-244-6601

					N	la	trix	1		P	res	erva	tiv	€	BTEX	8015N									
Lab No.	Sa	ample ID.	Samplin Tin		Soil	Water	Waste	# o Contai	f ners	HCL	H ₂ SO ₄	E NA	E		TPHg, B1			i							
	B-9	12.5'-13.0'	6/24/05	1:30 PM	X			1					X		X	Х				<u> </u>			$oldsymbol{\perp}$	Ţ	\prod
							\perp						\dashv	_				_				_	\dashv	_	\dashv
				······					,				\dashv		-								-		+
				<u> </u>		-		 					1	\dashv				1				+	+	\top	+
																							\prod	\perp	\Box
								1					_			ļ			_	-	-		_	\downarrow	+
					-																			士	
						_				_						\vdash		_		-		_		+	+
Notes: S	ilica Gel	Cleanup Meth	od	 	R	EL	INC	UISHED	BY:	<u> </u>	.	ر درکا	<u> </u>		RE	CE	IVE	BY	<u>':</u>	_1	1				
	-	•					(2)		·	/)	Ò	ŶŶſĸ		7/6 ₅	` ,	`		4	2)			4	0/2	27/	05

PAL

SOMA Environmental Engineering Inc.

2680 Bishop Dr., Suite 203

San Ramon CA, 94583

Project: 5565 Tesla Rd, Livermore

Project Number: 2842

Project Manager: Mansour Sepehr

Reported:

13-Jul-05 13:22

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-9 12.5'-13.0'	5060021-01	Soil	24-Jun-05 13:30	27-Jun-05 16:52

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203

San Ramon CA, 94583

Project Number: 2842

Project Manager: Mansour Sepehr

Reported:

13-Jul-05 13:22

Volatile Organic Compounds by EPA Method 8260B

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-9 12.5'-13.0' (5060021-01) Soil	Sampled: 24-Jun-05 13:30	Received: 27-	Jun-05 16	:52					
Gasoline (C6-C12)	232000	8600	ug/kg	43	BG51301	27-Jun-05	13-Jul-05	EPA 8260B	
Benzene	ND	43.0	n	71	It	H	•	ìr	
Ethylbenzene	2600	21.5	я	71	I+	н	7	I+	
m&p-Xylene	6750	43.0	P	п	1+	Iŧ	ņ	10	
o-xylene	1420	21.5	1+	н	"	**	"	17	
Toluene	ND	108	1+	н	"		r.	ı,	
MTBE	28.0	21.5	1+	н	**	10	и		
Surrogate: 4-Bromofluorobenzene		97.4 %	70-	-130	,,	"		16	
Surrogate: Dibromofluoromethane		76.2 %	70-	-130	"	*	*	"	
Surrogate: Perdeuterotoluene		94.8 %	70-	130	"	#	*	n'	

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203 San Ramon CA, 94583

Project Number: 2842

Project Manager: Mansour Sepehr

Reported: 13-Jul-05 13:22

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BG51301 - EPA 5030 Soil MS										
Blank (BG51301-BLK1)			•	Prepared &	: Analyzed:	13-Jul-05				
Surrogate: 4-Bromofluorobenzene	40.0		ug/kg	50.0	· -	80.0	70-130			
Surrogate: Dibromofluoromethane	45.7		н	50.0		91.4	70-130			
Surrogate: Perdeuterotoluene	44.8		"	50.0		89.6	70-130			
Gasoline (C6-C12)	ND	200	**							
Benzene	ND	1.00	*1							
Ethylbenzene	ND	0.500	*1							
m&p-Xylene	ND	1.00	n							
o-xylene	ND	0.500	н							
Toluene	ND	2.50	H							
MTBE	ND	0.500								
LCS (BG51301-BS1)				Prepared &	Analyzed:	13-Jul-05				
Surrogaie: 4-Bromofluorobenzene	47.2		ug/kg	50.0		94.4	70-130			
Surrogate: Dibromofluoromethane	44.7		n	50.0		89.4	70-130			
Surrogate: Perdeuterotoluene	46.2		,	50.0		92.4	70-130			
Gasoline (C6-C12)	1870	200	n	2000		93.5	70-130			
Benzene	101	1.00	n	100		101	70-130			
Ethylbenzene	116	0.500	H	100		116	70-130			
m&p-Xylene	117	1.00	17	100		117	70-130			
o-xylene	117	0.500	"	100		117	70-130			
Toluene	89.6	2.50	n	100		89.6	70-130			
мтве	82.8	0.500	н	100		82.8	70-130			
LCS Dup (BG51301-BSD1)				Prepared &	z Analyzed:	13-Jul-05				
Surrogate: 4-Bromofluorobenzene	43.9		ug/kg	50.0		87.8	70-130			
Surrogate: Dibromofluoromethane	43.3		,,	50.0		86.6	70-130			
Surrogate: Perdeuterotoluene	47.2		**	50.0		94.4	70-130			
Gasoline (C6-C12)	1940	200	#	2000		97.0	70-130	3.67	20	
Benzene	112	1.00	*	100		112	70-130	10.3	20	
Ethylbenzene	121	0.500	*	100		121	70-130	4.22	20	
m&p-Xylene	123	1.00	,,	100		123	70-130	5.00	20	
o-xylene	120	0.500	,,	100		120	70-130	2.53	20	
Toluene	100	2.50		100		100	70-130	11.0	20	
мтве	91.1	0.500	17	100		91.1	70-130	9.55	20	

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

PAL

SOMA Environmental Engineering Inc.

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203

San Ramon CA, 94583

Project Number: 2842

Project Manager: Mansour Sepehr

Reported: 13-Jul-05 13:22

Notes and Definitions

DET Analyte DETECTED

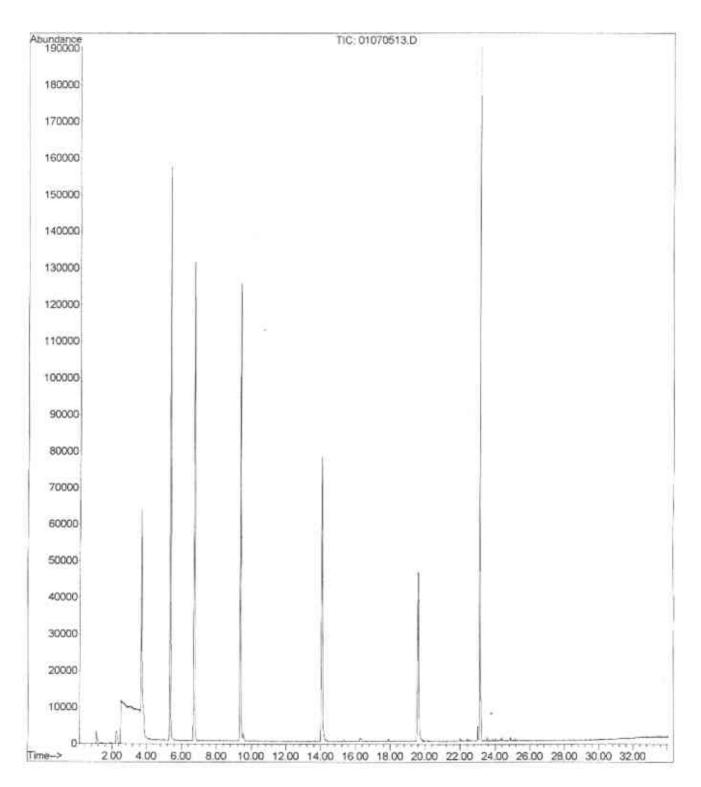
-

Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

ND

dry Sample results reported on a dry weight basis

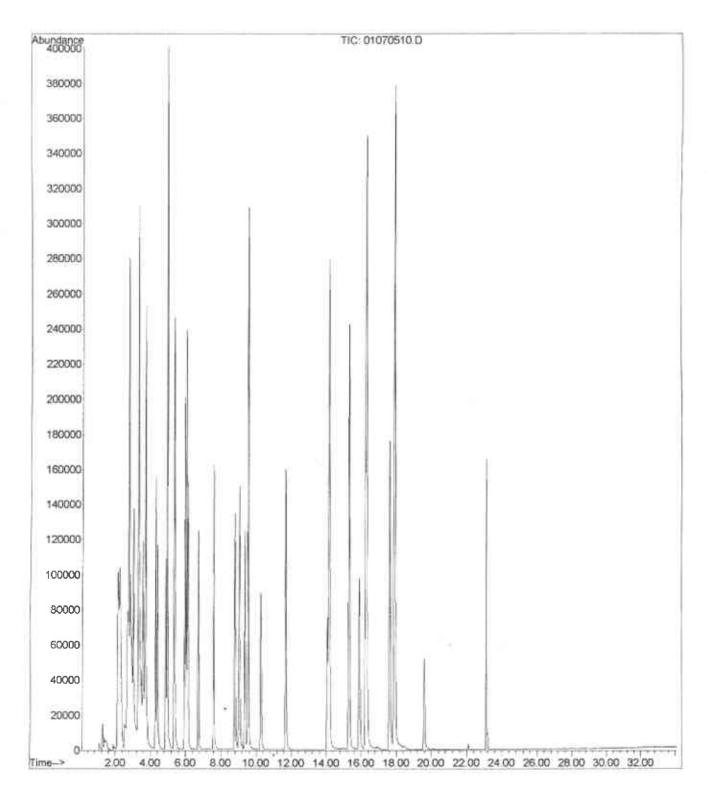

RPD Relative Percent Difference

File :C:\MSDChem\1\DATA\2005-Jul-01-1604.b\01070513.D

Operator

Acquired : 5 Jul 2005 8:04 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS Sample Name: BG51301-BLK1

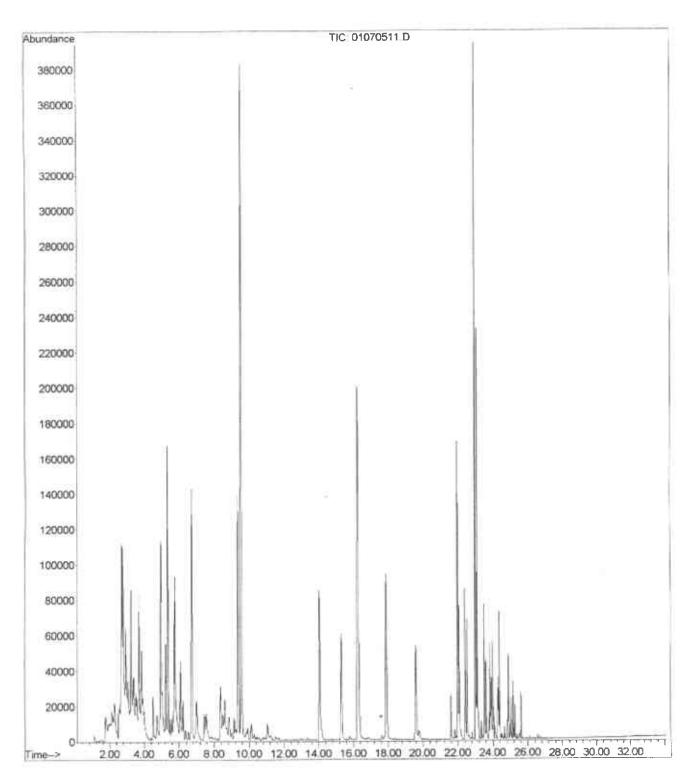


File :C:\MSDChem\1\DATA\2005-Jul-01-1604.b\01070510.D

Operator :

Acquired : 5 Jul 2005 5:52 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS Sample Name: BG51301-BS1@voc


File :C:\MSDChem\1\DATA\2005-Jul-01-1604.b\01070511.D

Operator

Acquired : 5 Jul 2005 6:36 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS

Sample Name: BG51301-BS1@gas

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Pacific Analytical Laboratory 851 West Midway Ave Suite 201B Alameda, CA 94501

Date: 13-JUL-05 Lab Job Number: 180265 Project ID: STANDARD

Location: 5565 Tesla Rd. Livermore

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Reviewed by:

perations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

CHAIN OF CUSTODY Pacific Analytical Laboratory **Analyses** 180265 851 West Midway Ave., Suite 201B C&T LOGIN # _506002 Alameda, CA 94501 510-864-0364 phone 510-864-0365 fax John Lohman Sampler: Joyce Bobek Report To: Project No: 2842 TRUMPERSON **SOMA Environmental** Project Name: 5565 Tesla Rd Livermore Company: 925-244-6600 Telephone: **Turnaround Time: Standard** 925-244-6601 Fax: TPH-d 8015M Preservative Matrix H₂SO₄ HNO3 # of 글 Containers 모 # of **Sampling Date** Lab Sample ID. Time No. 6/24/05 1:30 PM X Х B-9 12.5'-13.0' Х RECEIVED BY: RELINQUISHED BY: Notes: Silica Gel Cleanup Method 6 27 05 DATE/TIME Received **S**Cit □ Cold □ Amblent d 08/05 DATE/TIME DATE/TIME DATE/TIME DATE/TIME

CASE NARRATIVE

Laboratory number:

180265

Client:

Pacific Analytical Laboratory

Location:

5565 Tesla Rd. Livermore

Request Date:

06/28/05

Samples Received:

06/28/05

This hardcopy data package contains sample and QC results for one soil sample, requested for the above referenced project on 06/28/05. The sample was received on ice and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Total Extractable Hydrocarbons Location: 5565 Tesla Rd. Livermore 180265 SHAKER TABLE Pacific Analytical Laboratory Prep: Client: Analysis: **EPA 8015B** Project#: STANDARD 103389 B-9 12.5'-13.0' Batch#: Field ID: 06/24/05 Sampled: Soil Matrix: 06/28/05 Received: Units: mg/Kg as received 06/29/05 Basis: Prepared: 06/29/05 1.000 Analyzed: Diln Fac:

Type:

SAMPLE

Lab ID:

180265-001

Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	98 L Y	1.0	ı
Motor Oil C24-C36	6.6 Y	5.0	

	Surrogate	%RE	C Limits	
I	Hexacosane	97	51-136	

Type:

BLANK

Cleanup Method: EPA 3630C

Lab ID:

QC299175

Analyte	Result	RE.
	A-3-0-4-	
Diesel C10-C24	ND	1.0
Maham 041 024 026	MD	5.0
Motor Oil C24-C36	ND	

Surrogate	TREC	Limits	
Hexacosane	89	51-136	

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Chromatogram

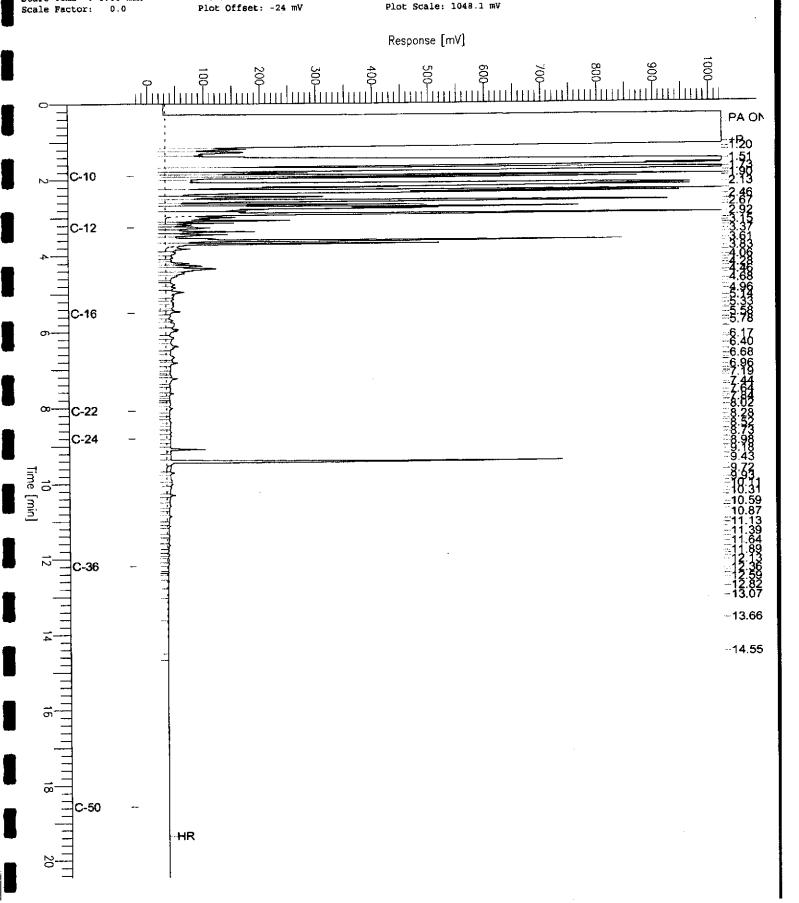
Sample Name : 180265-001sg, 103389

: G:\GC11\CHA\180A016.RAW FileName

Method

: ATEH156S.MTH

Start Time : 0.00 min End Time : 20.46 min


0.0 Plot Offset: -24 mV Sample #: 103389

Date: 6/30/05 08:29 AM

Time of Injection: 6/29/05 06:50 PM

Low Point : -24.05 mV Plot Scale: 1048.1 mV

High Point : 1024.00 mV

Chromatogram

Sample Name : ccv, S778, dsl

: G:\GC13\CHB\180B003.RAN

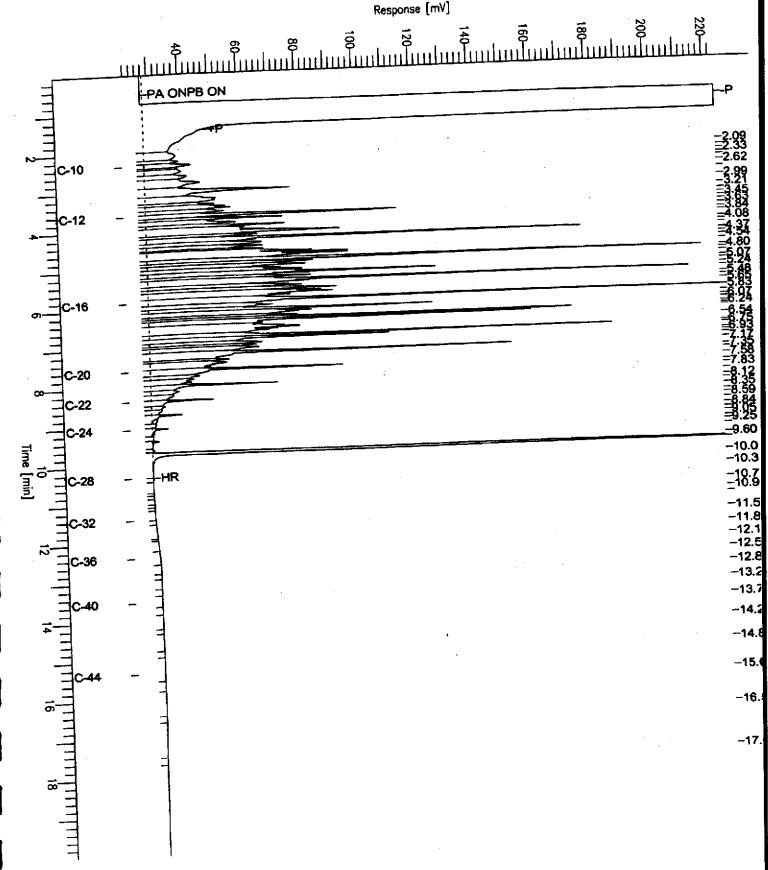
ri]eName Method

: BTEH1615.MTH

Start Time : 0.01 min 0.0 Scale Factor:

: 19.99 min End Time Plot Offset: 21 mV

Sample #: 500mg/L Date : 6/29/05 12:02 PM


Time of Injection: 6/29/05 11:33 AM

Low Point : 21.01 mV

Plot Scale: 202.7 mV

High Point : 223.74 mV

Chromatogram

Sample Name : ccv, S653, mo

: G:\GC13\CHB\180B004.RAW **PileName**

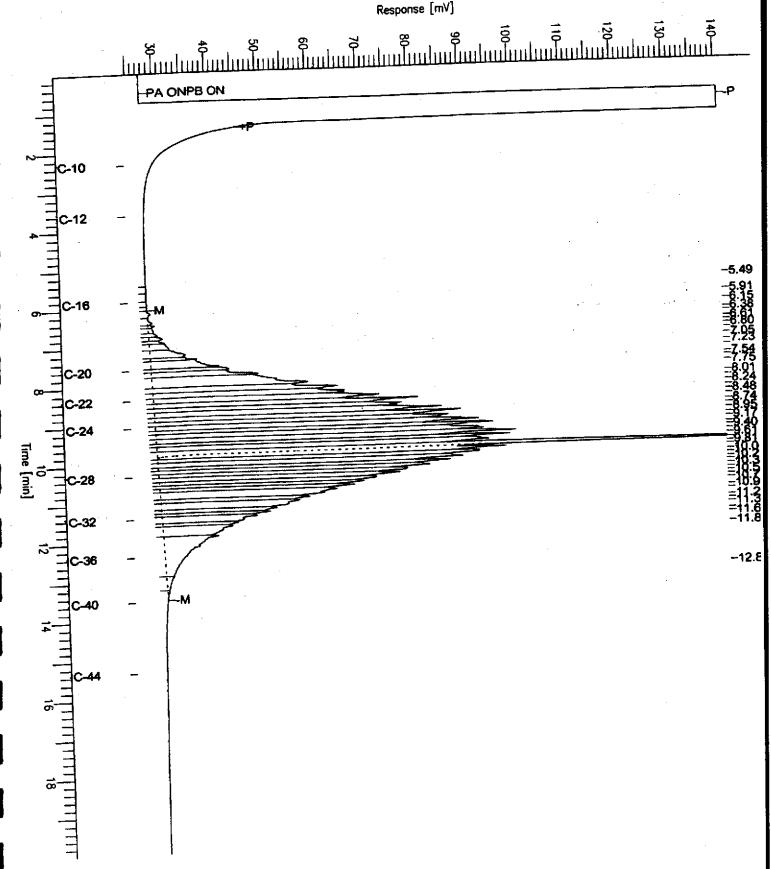
Method Start Time

: BTEH161S.MTH

: 0.01 min Scale Factor: 0.0

End Time : 19.99 min Plot Offset: 24 mV

Sample #: 500mg/L


Date: 6/29/05 12:33 PM Time of Injection: 6/29/05 12:01 PM

High Point : 140.49 mV

Page 1 of 1

Low Point : 24.46 mV Plot Scale: 116.0 mV

Batch QC Report

	Total Extra	stable Hydrocar	bons
Lab #:	180265	Location:	5565 Tesla Rd. Livermore
Client:	Pacific Analytical Laboratory	Prep:	SHAKER TABLE
	STANDARD	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC299176	Batch#:	103389
Matrix:	Soil	Prepared:	06/29/05
Units:	mg/Kg	Analyzed:	06/29/05
Pacie.	as received		

Cleanup Method: EPA 3630C

Analyte	301864	45.04	90	5 Limits 52-137	٩
Diesel C10-C24	30.19	43.04		34 43.	

7 Surro	gate #R	BC Limits	
Hexacosane	87	51-136	

Batch QC Report

	Total Extrac	table Hydrocar	
Lab #: 1802	65 ·	Location:	5565 Tesla Rd. Livermore
Client: Paci	fic Analytical Laboratory	Prep:	SHAKER TABLE
Project#: STAN	DARD	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZ	Diln Fac:	1.000
MSS Lab ID:	180291-010	Batch#:	103389
Matrix:	Soil	Sampled:	06/28/05
Units:	mg/Kg	Received:	06/28/05
Basis:	as received	Prepared:	06/29/05

Type:

MS

Lab ID:

QC299177

Analyzed:

06/29/05

Cleanup Method: EPA 3630C

Analyte	MSS Result	Spiked	Result	*RI	C Limits
Diesel C10-C24	6.223	50.42	43.62	74	11-169

Surrogate			
Hexacosane	74	51-136	

Type:

Lab ID:

MSD

QC299178

Analyzed:

06/30/05

Cleanup Method: EPA 3630C

·		The second secon		CONTRACTOR OF THE PROPERTY AND ADDRESS OF THE PARTY OF TH	31/1/39/19/1/30501/10001/000000000
		Page 17 F		AND SECURITY OF SE	8 18 1 5 2 5 2 5 F 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ALRIYTE			00,000,000	organización esperiente de la companya de la compan	
2 22 22	= 0 = 0	47 94	0.2	11_160	ንስ 49 l
N Diesel C10-C24	50.18	4/.54	0.3	11-107	10 12
D20002 020 021					

	Surrogal		SC Limits	
_[Hexacosane	79	51-136	

Pacific Analytical Laboratory

Phone (510) 864-0364

06 July 2005

Mansour Sepehr SOMA Environmental Engineering Inc. 2680 Bishop Dr., Suite 203 San Ramon, CA 94583

Mapd Ach -

RE: 5565 Tesla Rd, Livermore

Work Order Number: 5060020

This Laboratory report has been reviewed for technical correctness and completeness. This entire report was reviewed and approved by the Laboratory Director or the Director's designee, as verified by the following signature.

Sincerely,

Maiid Akhavan

Laboratory Director

CHAIN OF CUSTODY

Pacific Analytical Laboratory

851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 phone 510-864-0365 fax

PAL GOT LOGIN # 500 500020

Analyses

Project No: 2842

Project Name: 5565 Tesla Rd Livermore

Turnaround Time: Standard

John Lohman Sampler:

Joyce Bobek Report To:

SOMA Environmental Company:

Telephone: 925-244-6600

925-244-6601 Fax:

				Matrix			Preservative				BTE)	TPH	훘	Met	1 1						
Lab No.	Sample ID.	Sampling Date Time	Soil	Water	Waste	# of Containers	HCL	H ₂ SO,	HNO3	ICE	NONE	TPHg, B		Organo Chl	LUFT-5 I						
	B-9	6/24/2005 1345PM	П	X		5 VOAs	X			X		X									
	B-9	6/24/2005 \ 45PN	1	X		1 Amber Liter				X	Х		Х								
	B-10	6/21/2005 4 10 P	7	X		5 VOAS	X			X		X									
	B-10	6/24/2005 4. 100	y I	x		2 Amber Liters				X	X		X	X							
	B-10	6/2#/2005 U. Co	0	X	-	500 ML Poly	F	L	Х	×					х	\blacksquare	-	\blacksquare	\blacksquare	+	+
					+					İ										1	#
							F		F	F	H									+	+
			\Box				1	I	I		\Box									1	1
Notes: Sil	ica Gel Cleanup Me	thod	R	EL,	INQ	UISHED BY:						RE	CE	IVE	DBY						

4 COPM DATE/TIME

orine Pesticides (8081)

X, MtBE 8260B

Mo 8015M

6/27/05 DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203

Project Number: 2842

Reported:

San Ramon CA, 94583

Project Manager: Mansour Sepehr

06-Jul-05 16:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-9	5060020-01	Water	24-Jun-05 13:45	27-Jun-05 16:35
B-10	5060020-02	Water	24-Jun-05 16:10	27-Јип-05 16:35

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203 San Ramon CA, 94583 Project Number: 2842

Project Manager: Mansour Sepehr

Reported: 06-Jul-05 16:51

Volatile Organic Compounds by EPA Method 8260B

Pacific Analytical Laboratory

Analyte	Resul	Reporting Limit	Umils	Dilution	Batch	Prepared	Analyzed	Method	Note
B-9 (5060020-01RE3) Water	Sampled: 24-Jun-05 13:45	Received: 27-Jun-	-05 16:35						
Gasoline (C6-C12)	1850000	185000	ug/l	924.5	BG50601	27-Jun-05	06-Jul-05	EPA 8260B	
Benzene	3820	462	98	#	н	ц	10	17	
Ethylbenzene	40400	462		~	н	ц	ч	lv .	
m&p-Xylene	104000	924	*	77	н	ц	m	l v	
o-xylene	73700	462		+	ц	ц	щ	17	
Tolucne	114000	1850		#	н	п	п	19	
MTBE	NE	462		**	**	4	н	4	
Surrogate: 4-Bromofluorobenz	84.2%	70-1	30				•		
Surrogate: Dibromofluorometh	87.6 %	70-I	30	*	*				
Surrogate: Perdeuterotoluene		91.8%	70-1	30		-		1145	
B-10 (5060020-02RE1) Water	Sampled: 24-Jun-05 16:10	Received: 27-Jun	n-05 16:35						
Gasoline (C6-C12)	ND	200	ug/l	1	BG50601	27-Jun-05	06-Jul-05	EPA 8260B	
Benzene	ND	0.500	2.0		**		м	FF .	
Ethylbenzene	1,10	0.500	2.5	*		10		(*)	
m&p-Xylene	2,60	1.00			**		100	le .	
o-xylene	1.43	0.500			46	44.	Cit.	le .	
Toluene	4.23	2.00				*		17	
МТВЕ	ND	0.500			**	# 1	(Si	D	
						-			
	ene	74.6 %	70-1	30				7	
Surrogate: 4-Bromofluorobenz Surrogate: Dibromofluorometh		74.6 % 93.6 %	70-1 70-1			-	į.		

Project: 5565 Tesla Rd, Livermore

Spike

Source

2680 Bishop Dr., Suite 203 San Ramon CA, 94583 Project Number: 2842

Reporting

Project Manager: Mansour Sepehr

Reported:

06-Jul-05 16:51

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

		Reporting		Spike	Source		70REC		KrD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch BG50601 - EPA 5030 Water M	S									
Blank (BG50601-BLK1)				Prepared &	. Analyzed:	06-Jul-05				
Surrogate: 4-Bromofluorobenzene	40.0		ug/l	50.0		80.0	70-130			
Surrogate: Dibromofluoromethane	45 7			50.0		914	70-130			
Surrogate: Perdeuterotoluene	44 8			50.0		89.6	70-130			
Gasoline (C6-C12)	ND	200								
Benzene	ND	0.500	100							
Ethylbenzene	ND	0.500	5.9							
m&p-Xylenc	ND	100	3.5							
о-хуlспе	ND	0.500	3.7							
Toluene	ND	2.00								
мтве	ND	0,500								
LCS (BG50601-BS1)				Prepared &	: Analyzed:	06-Jul-05				
Surrogate: 4-Bromofluorobenzene	47.2		ug/l	50.0		94 4	70-130			
Surrogate Dibromofluoromethane	44 7			50.0		89.4	70-130			
Surrogate: Perdeuterotoluene	46.2		*	50.0		92 4	70-130			
Gasoline (C6-C12)	1870	200	184	2000		93.5	70-130			
Benzene	101	0.500	114	100		101	70-130			
Ethylbenzene	116	0.500	+	100		116	70-130			
m&p-Xylene	117	1.00	14	100		117	70-130			
o-xylene	117	0.500	.7	100		117	70-130			
Toluene	89.6	2.00	4	100		89.6	70-130			
МТВЕ	82.8	0.500	*	100		82.8	70- 130			
LCS Dup (BG50601-BSD1)				Prepared 8	Analyzed:	06-Jul-05				
Surrogaie: 4-Bromofluorobenzene	43 9		ug/I	50.0		87.8	70-130			
Surrogate: Dibromofluoromethane	43 3			50.0		86.6	70-130			
Surrogate: Perdeuterotoluene	47.2		3.5	50.0		94 4	70-130			
Gasoline (C6-C12)	1940	200	•	2000		97.0	70-130	3 67	20	
Benzenc	112	0,500	-	100		112	70-130	10.3	20	
Ethylbenzene	121	0.500		100		121	70-130	4 22	20	
m&p-Xylene	123	1.00	((4))	100		123	70-130	5.00	20	
o-xylene	120	0.500	((*))	100		120	70-130	2.53	20	
Toluene	100	2.00	150	100		100	70-130	11.0	20	
мтве	91.1	0.500	19.7	100		91.1	70-130	9.55	20	

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203 San Ramon CA, 94583 Project Number: 2842

Project Manager: Mansour Sepehr

Reported: 06-Jul-05 16:51

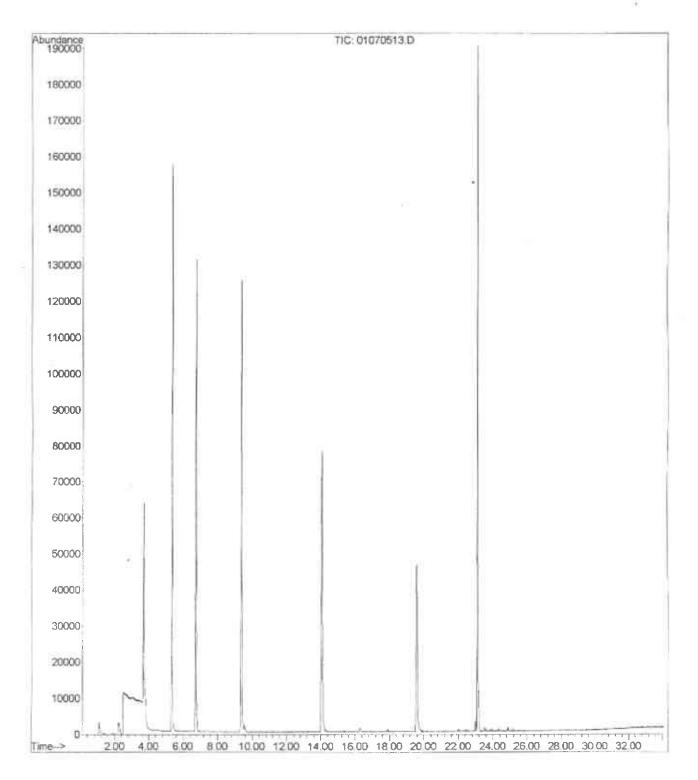
Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

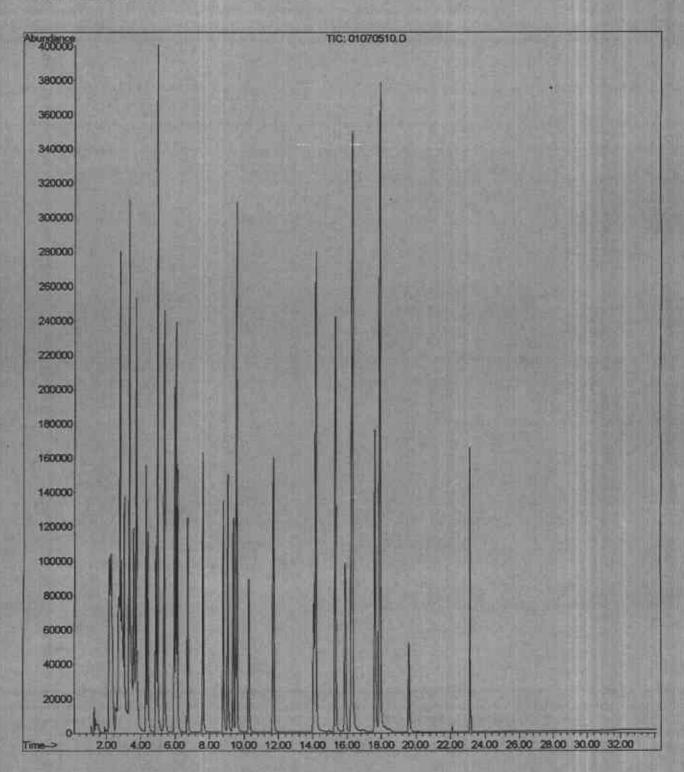

RPD Relative Percent Difference

File :C:\MSDChem\1\DATA\2005-Jul-01-1604.b\01070513.D

Operator

Acquired : 5 Jul 2005 8:04 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS Sample Name: BG50601-BLK1

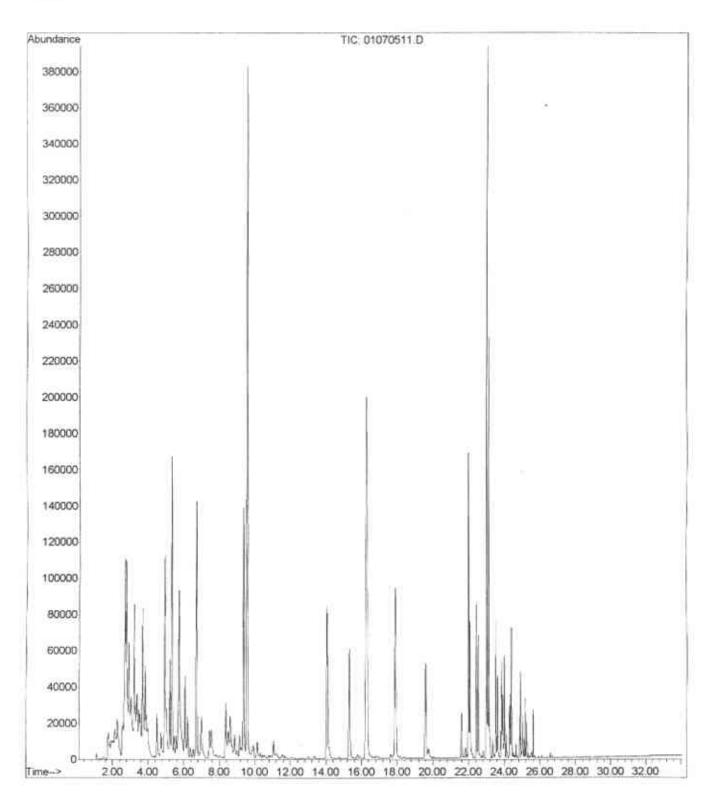

File :C:\MSDCh\mmi(1 {DATA (2005-Juli =01-1604) b(010/6510]U

Operator

Acquired : 5 Jul 2005 5:52 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS

Sample Name: BG50601-BS1@voc


File :C:\MSDChem\1\DATA\2005-Jul-01-1604.b\01070511.D

Operator :

Acquired : 5 Jul 2005 6:36 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS

Sample Name: BG50601-BS1@gas

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (51O) 486-0900

ANALYTICAL REPORT

Prepared for:

Pacific Analytical Laboratory 851 West Midway Ave Suite 201B Alameda, CA 94501

Date: 13-JUL-05 Lab Job Number: 180264 Project ID: STANDARD

Location: 5565 Tesla Rd. Livermore

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Reviewed by:

12

This package may be reproduced only in its entirety.

Manager

NELAP # 01107CA

Page 1 of _____

CASE NARRATIVE

Laboratory number:

180264

Client:

Pacific Analytical Laboratory

Location:

5565 Tesla Rd. Livermore

Request Date:

06/28/05

Samples Received:

06/28/05

This hardcopy data package contains sample and QC results for two water samples, requested for the above referenced project on 06/28/05. The samples were received cold and intact.

TPH-Extractables by GC (EPA 8015B);

No analytical problems were encountered.

Pesticides (EPA 8081A):

High surrogate recovery was observed for decachlorobiphenyl in B-10 (lab # 180264-002); the corresponding TCMX surrogate recovery was within limits, and no target analytes were detected in the sample. No other analytical problems were encountered.

Metals (RPA 6010B):

No analytical problems were encountered.

CHAIN OF CUSTODY

Page of

Analyses

Pacific Analytical Laboratory

851 West Midway Ave., Suite 201B Alameda, CA 94501

Turnaround Time: Standard

510-864-0364 phone 510-864-0365 fax

Project No: 2842

C&T LOGIN # 5060020

Sampler: John Lohman

Report To: Joyce Bobek

Project Name: 5565 Tesla Rd Livermore Company: SOMA Environmental

Telephone: 925-244-6600

Fax: 925-244-6601

			Matrix				Preservative					
Lab No.	Sample ID.	Sampling Date Time	Soil	Water	Waste	# of Containers	된	H ₂ SO ₄	HNO3	ICE.	NONE	
\times	B-9	6/24/2005 1:45PM		х		5 VOAs	х			×		
-\	B-9	6/24/2005 1:45PM		X		1 Amber Liter				X	x	
\times	B-10	6/21/2005 4:10 Pm		х		5 VOAS	х			X		
1	B-10	6/21/2005 4: 10pm		х		2 Amber Liters				X	x	
25	B-10	6/21/2005 4:10tm		X	+	500 ML Poly			X	×		
					1							
					\Box		-				[F.	

Notes: Silica Gel Cleanup Method

Finceived Craice

RELIA	QUISI	HED E	Y.
		7	

4:00PM DATE/TIME 9:50AM 4/28/05

DATE/TIME

Javannet

RECEIVED BY:

Organo Chlorine Pesticides (8081)

x x

LUFT-5 Metals

TPH-d TPH-Mo 8015M

CATE/TIME

10< 9:50

DATE/TIME

DATE/TIME

Total Extractable Hydrocarbons 5565 Tesla Rd. Livermore EPA 3520C EPA 8015B 06/24/05 06/28/05 180264 Location: Lab # Client: Pacific Analytical Laboratory Prep: Project#: Analysis: STANDARD Matrix: Water Sampled: ug/L 103370 Received: Units: 06/28/05 Batch#: Prepared:

Field ID:

B-9

Type: Lab ID:

SAMPLE

180264-001

Diln Fac:

40.00

Analyzed: 06/30/05 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	540,000 L Y	4,000	
Diesel C10-C24 Motor Oil C24-C36	ND	24,000	

Surrogate	*REC	Limits
Hexacosane	DO	55-143

Field ID:

B-10

Type: Lab ID:

SAMPLE 180264-002 Diln Fac: Analyzed:

1.000

06/29/05

Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	MREC	Limite
Hexacosane	118	55-143

Type: Lab ID:

BLANK

Diln Fac:

QC299111 1.000

Analyzed:

06/29/05

Cleanup Method: EPA 3630C

Analyte		RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	REC	Limits
Hexacosane	130	55-143

L= Lighter hydrocarbons contributed to the quantitation
Y= Sample exhibits chromatographic pattern which does not resemble standard
DO= Diluted Out

ND= Not Detected

RL= Reporting Limit Page 1 of 1

2.0

Chromatogram

Sample Name : 180264-001sg,103370

: G:\GC17\CHA\180A039.RAW FileName

Method : ATEH196.MTH

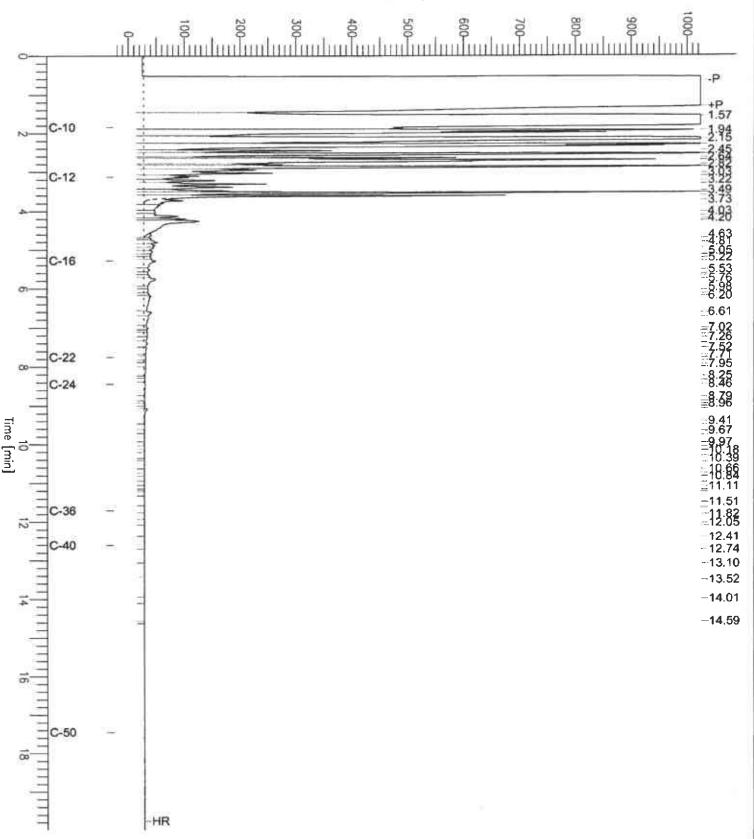
Start Time : 0.00 min

Scale Factor: 0.0

End Time : 19.99 min

Plot Offset: -27 mV

Page 1 of 1


Sample #: 103370 Date : 7/15/05 12:25 PM

Time of Injection: 6/30/05 11:10 AM Low Point : -27.08 mV

High Point : 1024.00 mV

Plot Scale: 1051.1 mV

Chromatogram

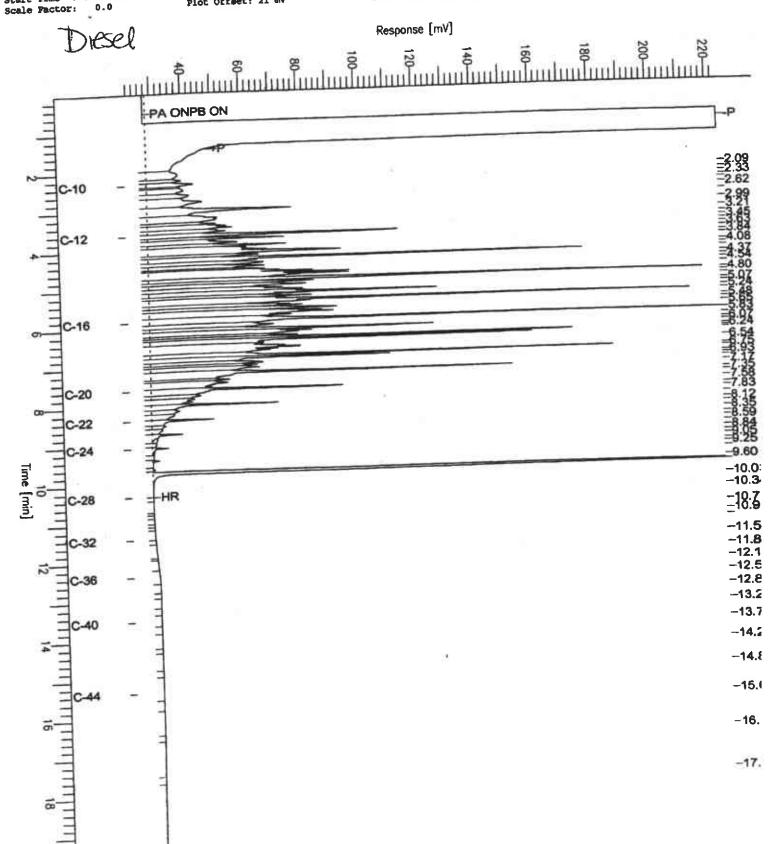
Sample Name : ccv, S778, del

; G:\GC13\CHB\180B003.RAW

FileName BTEHL618.MTH Method

Start Time : 0.01 min

Knd Time : 19.99 min


Plot Offset: 21 mV

Sample #: 500mg/L Pa Date : 6/29/05 12:02 PM Time of Injection: 6/29/05 11:33 AM

High Point : 223.74 mV Low Point : 21.01 mV

Page 1 of 1

Plot Scale: 202.7 mV

Chromatogram

Sample Name : ccv, S653, mo

: G:\GC13\CHB\160B004.PAW FileName

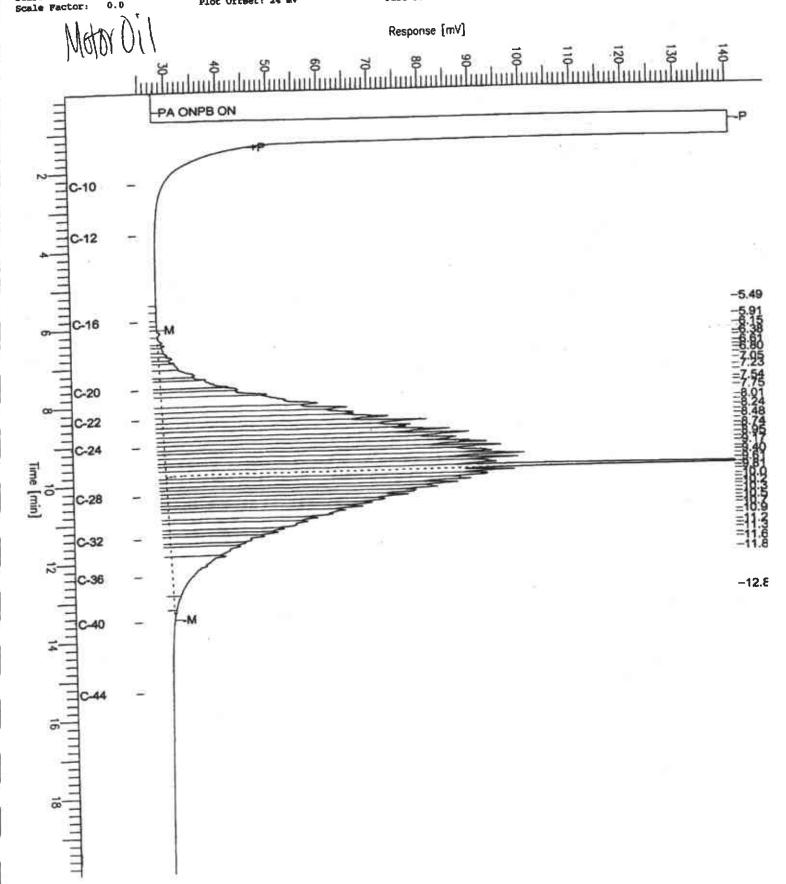
: BTEH161S.MTH Method

Start Time : 0.01 min 0.0

: 19.99 min End Time

Plot Offset: 24 mV

Sample #: 500mg/L


Date: 6/29/05 12:33 PM

Low Point : 24.46 mV

Date: 6/29/05 12:01 PM
Time of Injection: 6/29/05 12:01 PM
Low Point: 24.46 mV High Point: 140.49 mV

Page 1 of 1

Plot Scale: 116.0 mV

ERROR: ioerror

OFFENDING COMMAND: image

STACK:

Batch OC Report	
-savelevel- () Total Extractable	Hydrocarbons
()	

Pacific Analytical Laboratory

Suite 201

Phone (510) 864-0364

10 June 2005

Mansour Sepehr SOMA Environmental Engineering Inc. 2680 Bishop Dr., Suite 203 San Ramon, CA 94583

RE: 5565 Tesla Rd, Livermore

Work Order Number: 5060008

Mopod Ach

This Laboratory report has been reviewed for technical correctness and completeness. This entire report was reviewed and approved by the Laboratory Director or the Director's designee, as verified by the following signature.

Sincerely,

Maiid Akhavan

Laboratory Director

CHAIN OF CUSTODY

100	
of	1
	of

Analyses

8260B, Total Lead

MIBE

Pacific Analytical Laboratory

851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 phone 510-864-0365 fax

CATLOGIN # 5060008

Project No: 2842

Project Name: 5565 Tesla Rd Livermore

Turnaround Time: Standard

John Lohman Sampler:

Report To:

SOMA Environmental Company:

Joyce Bobek

Telephone: 925-244-6600

		Fax:		100		925-244-66	01		115		3					
			N	/lat	rix	W 7-10-1	F	res	erva	ative	BTEX,					
Lab No.	Sample ID.	Sampling Date Time	Soil	Water	Waste	# of Containers	HOL	H ₂ SO ₄	HNOS	ICE	TPHg, B					
	Soil Comp 1	6/6/2005 2 , 2 c par	X			1				x	x					
							M									
																0000
Notes:			RI	ELI	NQ	UISHED BY:					RECEIVED	3Y:				
				6	1	0/19		14	6PM	DATE	IME James 3	migs	4:10	6/03 pm 0	ATE/II	V/E
			1	/	/					DATE/	IME U	0		D	ATE/TII	ΛE
	THE DESCRIPTION OF THE PROPERTY OF THE PROPERT								V	DATE/	IME			, n	ATE/TII	ИE

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203 San Ramon CA, 94583 Project Number: 2842

Project Manager: Mansour Sepehr

Reported:

10-Jun-05 11:12

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Soil Comp 1	5060008-01	Soil	06-Jun-05 14:20	06-Jun-05 16:18

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203

San Ramon CA, 94583

Project Number: 2842

Project Manager: Mansour Sepehr

Reported: 10-Jun-05 11:12

Volatile Organic Compounds by EPA Method 8260B **Pacific Analytical Laboratory**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Seil Comp 1 (5060008-01) Seil	Sampled: 06-Jun-05 14:20	Received: 06-Ju	n-05 16:18						
Gasoline (C6-C12)	ИD	220	ug/kg	1.1	BF50901	06-Jun-05	08-Jun-05	EPA 8260B	
Benzene	מא	1.10	**		ч	n		lr .	
Ethylbenzene	ND	0.550	40		((#))		0.40	+0	
m&p-Xylene	ND	1.10	963		210		0.4	*1	
o-xylene	ND	0.550	90		((4))		1040	5	
Toluene	3.13	2.75	60	283	55.65		1.4	55	
МТВЕ	ND	0.550	7.7	027	((75))	7	*	*S	
Surrogate: 4-Bromofluorobenzen	e	74 6 %	70-1	30	\ E.	14	*	60	
Surrogate. Dibromofluorometha	ne	128 %	70-1	30	3.60	- 12	7.1	87	
Surrogate: Perdeuterotoluene		91.8%	70-1	30					

Project: 5565 Tesla Rd, Livermore

Spike

Level

Source

Result

%REC

2680 Bishop Dr., Suite 203

Project Number: 2842

Reporting

Limit

Result

Reported:

RPD

Limit

Notes

%REC

Limits

RPD

San Ramon CA, 94583

Analyte

Project Manager: Mansour Sepehr

10-Jun-05 11:12

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

Units

Blank (BF50901-BLK1)				Ртерагед &	Analyzed:	09-Jun-05		
Surrogate: 4-Bromofluoroberzene	38 6		ug/kg	50.0		77.2	70-130	
Surrogate: Dibromofluoromethane	59.8			50.0		120	70-130	77
Surrogate: Perdeuterotoluene	45 5			50.0		91.0	70-130	
Gasoline (C6-C12)	ND	200						
Benzene	ND	1.00						
Ethylbenzene	ND	0,500	*					
m&p-Xylene	ND	1.00	*					
o-xylene	ND	0.500	38					
Toluene	ND	2.50	10					
мтве	ND	0.500	*					
LCS (BF50901-BS1)				Prepared &	Analyzed:	09-Jun-05		
Surrogate: 4-Bromofluorobenzene	45,8		ug/kg	50.0		91.6	70-130	
Surrogate: Dibromofluoromethane	56.0			50.0		112	70-130	
Surrogate: Perdeuterotoluene	48.0			50 0		96 0	70-130	
Gasoline (C6-C12)	2060	200	*	2000		103	70-130	
Benzene	74.5	1.00		100		74.5	70-130	
Ethylbenzene	78 4	0.500		100		78.4	70-130	
m&p-Xylene	88 0	1.00		100		88.0	70-130	
o-xylene	87.5	0,500		100		87.5	70-130	
Toluene	74.6	2.50	325	100		74.6	70-130	
MTBE	77.7	0,500	17	100		77.7	70-130	
Matrix Spike (BF50901-MS1)	Sour	ce: 5060008-	01	Prepared &	Analyzed:	09-Jun-05		
Surrogate: 4-Bromofluorobenzene	42.3		ug/kg	50.0		84.6	70-130	
Surroyate: Dibromofluoromethane	61.2		"	50.0		122	70-130	
Surrogate: Perdeuterotoluene	46.4		"	50.0		92.8	70-130	
Gasoline (C6-C12)	822	200	h	2000	80.0	37.1	70-130	QM
Benzene	62.3	1.00	17	100	0.770	61.5	70-130	QM-
Ethylbenzene	38.2	0.500	и	100	ND	38.2	70-130	QM-
m&p-Xylene	45.9	1.00	lr.	100	0.370	45.5	70-130	QM-
o-xylene	50.1	0.500	U	100	ND	50.1	70-130	QM-
Toluene	56.5	2.50	17	100	3.13	53.4	70-130	QM
MTBE	87.9	0.500	17	100	ND	87.9	70-130	

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

2680 Bishop Dr., Suite 203

San Ramon CA, 94583

Project. 5505

Project: 5565 Tesla Rd, Livermore

Project Number: 2842

Project Manager: Mansour Sepehr

Reported:

10-Jun-05 11:12

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

===		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch BF50901 - EPA 5030 Soil MS

Matrix Spike Dup (BF50901-MSD1)	Source	e: 5060008-	01	Prepared &	Analyzed:	09-Jun-05				
Surrogate: 4-Bromofluorobenzene	47.3		ug/kg	50.0		94.6	70-130			
Surrogate: Dibromofluoromethane	55 3			50.0		111	70-130			
Surrogate: Perdeuterotoluene	47.8		*	50.0		95.6	70-130			
Gasoline (C6-C12)	1360	200	/8	2000	80.0	64.0	70-130	49.3	20	QM-05
Benzene	99.4	1.00	395	100	0.770	98.6	70-130	45 9	20	QM-05
Ethylbenzene	104	0.500	22	100	ND	104	70-130	92.5	20	QM-05
m&p-Xylene	106	1.00		100	0.370	106	70-130	79 1	20	QM-05
o-xylene	106	0,500		100	ND	106	70-130	71.6	20	QM-05
Toluene	92.4	2.50	10	100	3,13	89.3	70-130	48.2	20	QM-05
MTBE	104	0,500	146	100	ND	104	70-130	16.8	20	

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203 San Ramon CA, 94583

Project Number: 2842

Project Manager: Mansour Sepehr

Reported: 10-Jun-05 11:12

Notes and Definitions

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

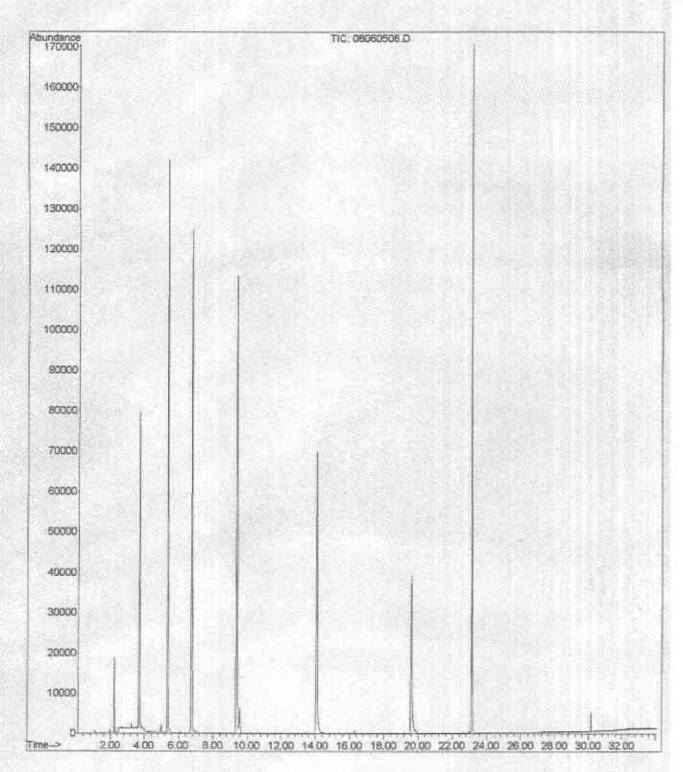
within acceptance limits showing that the laboratory is in control and the data is acceptable.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

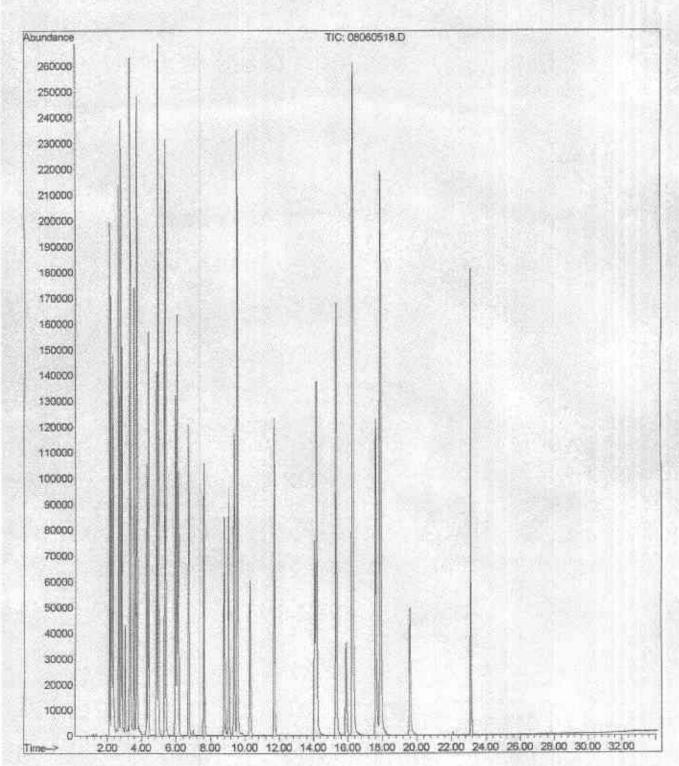

RPD Relative Percent Difference

File :C:\MSDChem\1\DATA\2005-Jun-08-0935.b\08060508.D

Operator :

Acquired : 8 Jun 2005 4:01 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS Sample Name: BF50901-BLK1

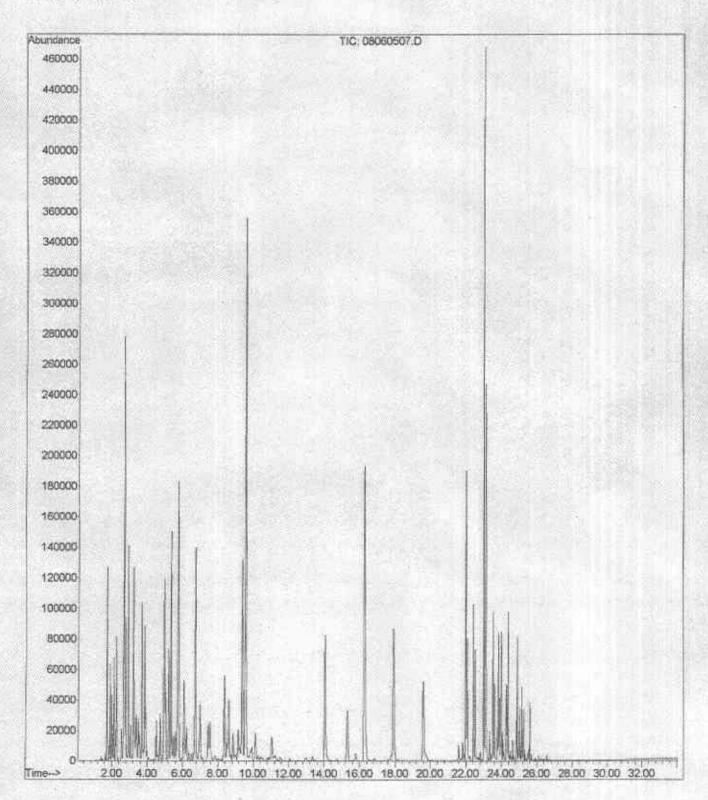


File :C:\MSDChem\1\DATA\2005-Jun-08-0935.b\08060518.D

Operator

Acquired : 9 Jun 2005 11:21 am using AcqMethod VOCOXY.M

Instrument : PAL GCMS Sample Name: BF50901-BS1


File :C:\MSDChem\1\DATA\2005-Jun-08-0935.b\08060507.D

Operator :

Acquired : 8 Jun 2005 3:16 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS

Sample Name: BF50901-BS1@gas

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Pacific Analytical Laboratory 851 West Midway Ave Suite 201B Alameda, CA 94501

Date: 21-JUN-05 Lab Job Number: 179865 Project ID: STANDARD

Location: 2842/Telsa Rd

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Manager

Reviewed by:

perations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of

CASE NARRATIVE

Laboratory number:

179865

Client:

Pacific Analytical Laboratory

Location:

2842/Telsa Rd

Request Date:

06/07/05

Samples Received:

06/07/05

This hardcopy data package contains sample and QC results for one soil sample, requested for the above referenced project on 06/07/05. The sample was received cold and intact.

Metals (EPA 6010B):

No analytical problems were encountered.

79865

CHAIN OF CUSTODY

Page ____ of \

Analyses

Total Lead

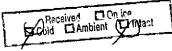
Pacific Analytical Laboratory

851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 phone 510-864-0365 fax

Project No: 2842

DAL CAT-LOGIN # 5060008

Sampler: John Lohman


Report To: Joyce Bobek

Project Name: 5565 Tesla Rd Livermore Company: **SOMA Environmental**

Turnaround Time: Standard 925-244-6600 Telephone:

> 925-244-6601 Fax:

TPHE BIEX, MIDE SECOE. Matrix Preservative Soil Water Waste H₂SO₄ HNO₃ **Sampling Date** # of Containers 로 Lab Sample ID. Time No. 6/6/2005 2:20Pm X Soil Comp 1 1 Χ RECEIVED BY: Notes: RELINQUISHED BY:

6/6/05 H IOPA DATE/TIME C/10/05

11:00 A //DATE/TIME

DATE/TIME

DATE/TIME

		Lead	
Lab #:	179865	Location:	2842/Telsa Rd
Client:	Pacific Analytical Laboratory	Prep:	EPA 3050B
Project#:	STANDARD	Analysis:	EPA 6010B
Analyte:	Lead	Batch#:	102742
Field ID:	SOIL COMP 1	Sampled:	06/06/05
Matrix:	Soil	Received:	06/07/05
Units:	mg/Kg	Prepared:	06/08/05
Basis:	as received	Analyzed:	06/08/05
Diln Fac:	1.000		

13	/pe	Lab ID	Result	RE
SAI	MPLE	179865-001	23	0.12
BL	ANK	QC296637	ND	0.15

Batch QC Report

	Lead	
Lab #: 179865 Client: Pacific Analytical Laboratory Project#: STANDARD	Location: Prep: Analysis:	2842/Telsa Rd BPA 3050B EPA 6010B
Analyte: Lead Field ID: ZZZZZZZZZZ MSS Lab ID: 179879-001 Matrix: Soil Units: mg/Kg Basis: as received	Diln Fac: Batch#: Sampled: Received: Prepared: Analyzed:	1.000 102742 06/07/05 06/07/05 06/08/05 06/08/05

Type	Lab ID	MSS Result	Spiked	Result	ere:	Limits	RPD	Lim
BS	OC296638		100.0	99.00	99	80-120		
BSD	OC296639		100.0	98.50	99	80-120	1	20
MS	OC296640	24.62	86.96	97.83	84	55-128		
MSD	OC296641	21.02	103.1	111.9	85	55-128	0	24
עפויו	QC236641		203.2					

Pacific Analytical Laboratory

Phone (510) 864-0364

25 May 2005

Joyce Bobek SOMA Environmental Engineering Inc.

2680 Bishop Dr., Suite 203

San Ramon, CA 94583

RE: 5565 Tesla Rd, Livermore

Work Order Number: 5050017

Mayod Alch

This Laboratory report has been reviewed for technical correctness and completeness. This entire report was reviewed and approved by the Laboratory Director or the Director's designee, as verified by the following signature.

Sincerely,

Maiid Akhavan

Laboratory Director

CHAIN OF CUSTODY

_	1		- [
Page		_of .	

Pacific	Ana	lytical	Laborato	ry

851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 phone 510-864-0365 fax

PAL LOGIN # 5050017 **Analyses**

Project No: 2842

John Lohman Sampler:

Report To: Joyce Bobek

Projec	t No: 2842	p: 2842 Report To: Joyce Bobek					~															
Projec	t Name: 5565 Tesla Rd Live	more	Comp	any	<u> </u>	SOMA Envi	roni	nen	tal			8260B	5M									
Turnar	urnaround Time: Standard			hone		925-244-66	00					MtBE 8	8015									
			Fax:			925-244-660)1						TPH-Mo								1	
				Ma	trix		P	res	erv	ativ	e	BTEX	古									
Lab No.	Sample ID.	Sampling Time	Date	Soil	Waste	# of Containers	HCL	H ₂ SO ₄	HNO3	ICE		TPHg, B										
	MW-1	5/20/05 -	10:05	x		4 VOAS 1L Amber	× -			Х			Х									
	MW-2	5120105-	11:15	Х		4 VOAS 1L Amber	×			Х		Х	Х									
	MW-3	5/20/05-	12.05	Х		4 VOAS 1L Amber	×			Х		Х	Х									
	Onsite Well	5120105 - 1	2:20	X		4 Loas 1 Lamber	χÌ			X		义	X									
	5443 Te616	5/20/05-	1:45	X		40015 1ambs	X			X		X	X									
																	-	-				
																	1					1
													<u> </u>			1	士					
Notes:	Silica Gel Cleanun Meth			BEL	INO	UISHED BY:						B	CF	IVE	D B		<u> </u>					

Notes:	Silica	Gel	Cleanup	Method
			-	

EDF OWENT REQUIRED

5/70/05 4.00 PM DATE/TIME

DATE/TIME

5/20/05 4:00 MDATE/TIME

DATE/TIME

DATE/TIME

TE/TIME

PAL

SOMA Environmental Engineering Inc.

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203 San Ramon CA, 94583 Project Number: 2842

Project Manager: Joyce Bobek

Reported:

25-May-05 10:35

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	5050017-01	Water	20-May-05 10:05	20-May-05 16:22
MW-2	5050017-02	Water	20-May-05 11:15	20-May-05 16:22
MW-3	5050017-03	Water	20-May-05 12:05	20-May-05 16:22
Onsite Well	5050017-04	Water	20-May-05 12:20	20-May-05 16:22
5443 Tesla	5050017-05	Water	20-May-05 13:45	20-May-05 16:22

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203

San Ramon CA, 94583

Project Number: 2842

Project Manager: Joyce Bobek

Reported:

25-May-05 10:35

Volatile Organic Compounds by EPA Method 8260B

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 (5050017-01) Water Sampled: 20-	May-05 10:05 Rece	ived: 20-May	-05 16:22						
Gasoline (C6-C12)	ND	200	ug/l]	BE52301	20-May-05	23-May-05	EPA 8260B	
Benzene	ND	0.500	11	п	н	ii.	n	11	
Ethylbenzene	ND	0.500	n	D	Ð	н	н	ц	
m&p-Xylene	ND	1.00	ч	U	n	D	n	n	
o-xylene	ND	0.500	**	11	U	"	II.	**	
Toluene	ND	0.500	h -	ti	11	11	v	ır	
MTBE	ND	0.500	Ħ	н	n .	н	Ü	n	
Surrogate: 4-Bromofluorobenzene		93.2 %	70-13	0	"	.,	"	п	
Surrogate: Dibromofluoromethane		103 %	70-13	0	n	"	,,	"	
Surrogate: Perdeuterotoluene		99.6 %	70-13	0	n	r,	r	"	
MW-2 (5050017-02) Water Sampled: 20-	May-05 11:15 Rece	eived: 20-May	-05 16:22	•					
Gasoline (C6-C12)	ND	200	ug/l	1	BE52301	20-May-05	23-May-05	EPA 8260B	
Benzene	ND	0.500	н		D	II	n	н	
Ethylbenzene	ND	0.500	н	U	U	u	п	4	
m&p-Xylene	ND	1.00	11	u	ti .	11-	U	**	
o-xylene	ND	0.500	н	н	11	o	U	17	
Toluene	ND	0.500	n	"	"	*	11		
MTBE	ND	0.500	н	**	11		н		
Surrogate: 4-Bromofluorobenzene		93.6 %	70-13	RO	n	ņ	н	н .	
Surrogate: Dibromofluoromethane		110 %	70-13	30	"	n	"	"	
Surrogate: Perdeuterotoluene		99.4 %	70-13	30	н	"	n	"	
MW-3 (5050017-03) Water Sampled: 20-	-May-05 12:05 Reco	eived: 20-May	-05 16:22						
Gasoline (C6-C12)	ND	200	ug/l	ı	BE52301	20-May-05	24-May-05	EPA 8260B	
Benzene	ND	0.500	n	н	11	•	U	17	
Ethylbenzene	ND	0.500	ır	н	н		u	"	
m&p-Xylene	ND	1.00	17	н	н		п		
o-xylene	ND	0.500	n.	11	4	n	n	п	
Toluene	1.58	0.500	и	11	*11	"	н	I)	
MTBE	ND	0.500			n	н	**		
Surragate: 4-Bromofluorobenzene		96.2 %	70-1.	30	н	н	n	n	
Surrogate: Dibromofluoromethane		113 %	70-1.	30	"	Ħ	ń	P	
Surrogate: Perdeuterotoluene		101 %	70-1.	30	*	"	7	n	

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203 San Ramon CA, 94583 Project Number: 2842

Project Manager: Joyce Bobek

Reported:

25-May-05 10:35

Volatile Organic Compounds by EPA Method 8260B

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Onsite Well (5050017-04) Water	Sampled: 20-May-05 12:20	Received: 20-	May-05 1	6:22					
Gasoline (C6-C12)	ND	200	ug/l	1	BE52301	20-May-05	24-May-05	EPA 8260B	
Benzene	ND	0.500	4	"	D	ņ	D	**	
Ethylbenzene	ND	0.500	h	11	n	U	"	17	
m&p-Xylene	ND	1.00	н	н	11	0	**	н	
o-xylene	ND	0.500	н	11	н	н	ef	н	
Toluene	0.850	0.500	v	H	n	"	11	U	
MTBE	ND	0.500	19	н	"	0	P		
Surrogate: 4-Bromofluorobenzene		91.4 %	70	130	"	"	"	σ	
Surrogate: Dibromofluoromethane		120 %	70	-130	n	"	н	n	
Surrogate: Perdeuterotoluene		100 %	70	-130	"	. "	."	"	
5443 Tesla (5050017-05) Water	Sampled: 20-May-05 13:45	Received: 20-N	May-05 10	5:22					
Gasoline (C6-C12)	ND	200	цg/1	1	BE52301	20-May-05	24-May-05	EPA 8260B	
Benzene	0.770	0.500	"	n	"	ч	17		
Ethylbenzene	ND	0.500	"	н	*	#	и	41	
m&p-Xylene	ND	1.00	н	11	и	н	n	н	
o-xylene	ND	0.500	ч	u	п	н		**	
Toluene	1.08	0.500	11	a a	U	0	u	41	
	ND	0.500	H	,	ч			н	
MTBE						17		"	
	· · · · · · · · · · · · · · · · · · ·	88.2 %	70	-130	"				
Surrogate: 4-Bromofluorobenzene Surrogate: Dibromofluoromethane		88.2 % 121 %		-130 -130	u u	P	n	ų	

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203

Project Number: 2842

Reported:

San Ramon CA, 94583

Project Manager: Joyce Bobek

25-May-05 10:35

Volatile Organic Compounds by EPA Method 8260B - Quality Control Pacific Analytical Laboratory

· · · · · · · · · · · · · · · · · · ·										
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (BE52301-BLK1)				Prepared & Analy	yzed: 23-May-05			·
urrogate: 4-Bromofluorohenzene	45.9		ug/l	50.0	91.8	70-130		
urrogate: Dibromofluoromethane	53.6		,,	50.0	107	70-130		
urrogate: Perdeuterotoluene	49.6		"	50.0	99.2	70-130		
Gasoline (C6-C12)	ND	200	*					
Benzene	ND	0.500	H					
Ethylbenzene	ND	0.500	0					
n&p-Xylene	ND	1.00	U					
o-xylenc	ND	0.500	a					
Foluenc	ND	0.500	н					
MTBE	ND	0.500	**					
LCS (BE52301-BS1)				Prepared & Anal	yzed: 23-May-0;	5		
Surrogate: 4-Bromofluorobenzene	49.5		ug/l	50.0	99.0	70-130		
Surrogate: Dibromofluoromethane	52.7		"	50.0	105	70-130		
Surrogate: Perdeuterotoluene	51.6		. "	50.0	103	70-130		
Gasoline (C6-C12)	2030	200	. н	2000	102	70-130		
Benzene	104 ⁻	0.500	**	104	100	70-130		
Ethylbenzene	109	0.500	н	104	105	70-130		
m&p-Xylene	109	1.00		104	105	70-130		
o-xylene	108	0,500		104	104	70-130		
Toluene	102	0.500	α	104	98.1	70-130		
MTBE	117	0.500	a	104	112	70-130		
LCS Dup (BE52301-BSD1)				Prepared: 23-Ma	y-05 Analyzed:	25-May-05		
Surrogate: 4-Bromofluovohenzene	50.3		ug/l	50.0	101	70-130		
Surrogaie: Dihromofluoromethane	5 4 .7		"	50.0	109	70-130		
Surrogate: Perdeuteroioluene	50.7		"	50.0	101	70-130		
Gasoline (C6-C12)	1840	200	v	2000	92.0	70-130	9.82	20
Benzene	105	0.500	11	104	101	70-130	0.957	20
Ethylbenzene	111	0.500	"	104	107	70-130	1.82	20
m&p-Xylene	114	1.00	"	104	110	70-130	4.48	20
o-xylene	115	0.500	п	104	111	70-130	6.28	20
Toluene	104	0.500	Ħ	104	100	70-130	1.94	20
мтве	133	0.500	н	104	128	70-130	12.8	20

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

PAL

SOMA Environmental Engineering Inc.

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203

San Ramon CA, 94583

Project Number: 2842

Project Manager: Joyce Bobek

Reported:

25-May-05 10:35

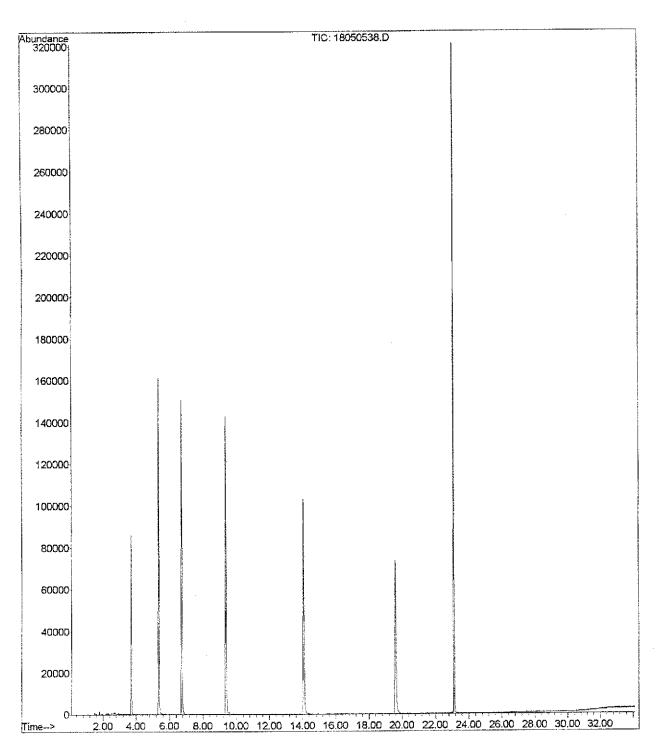
Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

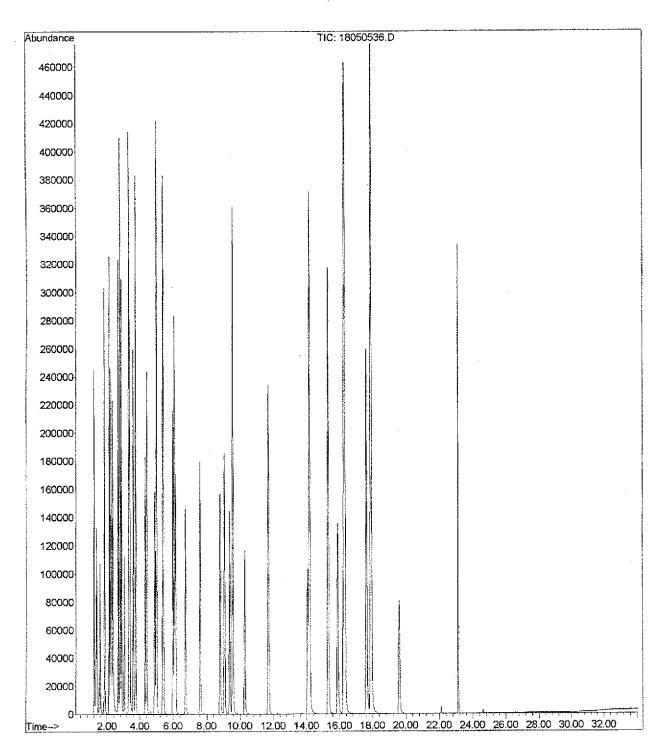

RPD Relative Percent Difference

File :C:\MSDChem\1\DATA\2005-May-18-1510.b\18050538.D

Operator

Acquired : 23 May 2005 2:30 pm using AcqMethod VOCOXY.M

Instrument: PAL GCMS
Sample Name: BE52301-BLK1



File :C:\MSDChem\1\DATA\2005-May-18-1510.b\18050536.D

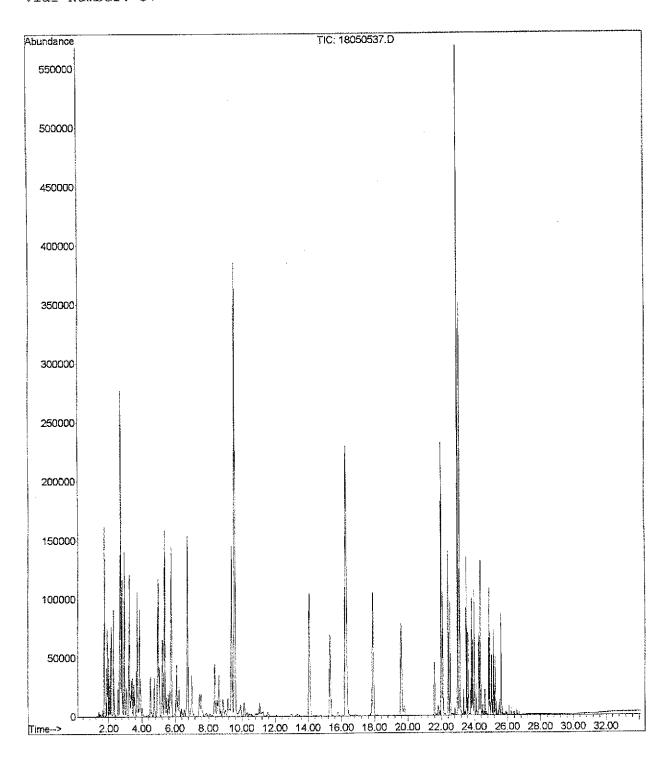
Operator

Acquired : 23 May 2005 12:50 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS
Sample Name: BE52301-BS1@voc

:C:\MSDChem\1\DATA\2005-May-18-1510.b\18050537.D File

Operator


Acquired : 23 May 2005 1:34 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS

Sample Name: BE52301-BS1@gas

Misc Info

Vial Number: 37

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Pacific Analytical Laboratory 851 West Midway Ave Suite 201B Alameda, CA 94501

Date: 31-MAY-05 Lab Job Number: 179580 Project ID: STANDARD

Location: 5565 Tesla Rd Livermore

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of _____

CASE NARRATIVE

Laboratory number:

179580

Client:

Pacific Analytical Laboratory

Location:

5565 Tesla Rd Livermore

Request Date:

05/20/05

Samples Received:

05/20/05

This hardcopy data package contains sample and QC results for five water samples, requested for the above referenced project on 05/20/05. The samples were received on ice and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

CHAIN OF CUSTODY

Page ___of ___

Pacific Analytical Laboratory

851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 phone

510-864-0365 fax

PPL 179380

*** LOGIN # _\$050017

Analyses

		 	l
Project No:	2842		

Project Name: 5565 Tesla Rd Livermore

Turnaround Time: Standard

Sampler: John Lohman

Report To: Joyce Bobek

Company: SOMA Environmental

Telephone: 925-244-6600

Fax: 925-244-6601

			Matrix		P	res	erv	ative	9
Lab No.	Sample ID.	Sampling Date Time	Soil Water Waste	# of Containers	HCL	H ₂ SO ₄	NO3	JOE	
_	MW-1	5120/05 - 10:05	x	4 VOAS 1L Amber	×-			х	
2	MW-2	5120105-11:15	X	4 VOAS 1L Amber	ΧI			x	
-3	MW-3	5/20/05- 12:05	x	4 VOAS 1L Amber	×			х	
4	Onsite Well	5120105 - 12:20	X	4voas 11 Amber	<u>×</u>			×	
15	5443 Tebla	5/20/05 - 12:05 5/20/05 - 12:20 5/20/05 - 1:45	Х	40095	Š			×	_
			<u> </u>						
									_
			+++					$\vdash \vdash$	
			 					П	_

Notes: Silica Gel Cleanup Method
EDF ONTPOT Region
Rec	eived V	NOnlice
Cold	Ambie	TUNntact

RELINQUISHED	RY.
	_,,

5/20/05 4:00 PM DATE/TIME 5/20/05

5:15 (M) DATE/TIME

DATE/TIME

RECEIVED BY:

TPH-d TPH-Mo 8015M

James zamiya

5/20/05 4:00/ DATE/TIME

5/20/03 5:15 DATE/TIME P

DATE/TIME

Total Extractable Hydrocarbons Lab #: 179580 Location: 5565 Tesla Rd Livermore EPA 3520C Pacific Analytical Laboratory Prep: Client: Project#: STANDARD Analysis: EPA 8015B Sampled: 05/20/05 05/20/05 Matrix: Water Received: Units: ug/L Diln Fac: 1.000 Prepared: 05/23/05 Batch#: 102298

Field ID: Type:

MW-1SAMPLE 179580-001 Analyzed:

Cleanup Method: EPA 3630C

05/24/05

Result RL Diesel C10-C24 50 Motor Oil C24-C36 320 Y Z 300

Surrogate WREC Limits Hexacosane 104 55-143

Field ID:

Type: Lab ID: MW-2SAMPLE

179580-002

Analyzed:

05/24/05

Cleanup Method: EPA 3630C

Analyte Diesel C10-C24 Result RL ND 50 Motor Oil C24-C36 300 ND

Surrogate *REC Limits 55-143 Hexacosane

Field ID:

Type:

MW - 3 SAMPLE Analyzed:

05/24/05 Cleanup Method: EPA 3630C

Lab ID: 179580-003

Ana Diesel C10-C24 Analyte Result 50 680 Motor Oil C24-C36 ND 300

Surrocate 3886 Limits L11 55-143 Hexacosane 111

Field ID:

ONSITE WELL SAMPLE

Analyzed:

05/24/05

Type: Lab ID:

179580-004

Cleanup Method: EPA 3630C

Analyte Diesel C10-C24 Result $\overline{\mathrm{ND}}$ 50 Motor Oil C24-C36 ND 300

Surrogate %REC Limits Hexacosane 101

Y= Sample exhibits chromatographic pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

ND= Not Detected

RL= Reporting Limit Page 1 of 2

Total Extractable Hydrocarbons 5565 Tesla Rd Livermore EPA 3520C Lab #: 179580 Location: Prep: Analysis: Pacific Analytical Laboratory Client: EPA 8015B Project#: STANDARD 05/20/05 05/20/05 Matrix: Water Sampled: ug/L Received: Units: Prepared: 05/23/05 Diln Fac: 1.000 Batch#: 102298

Field ID:

5443 TESLA SAMPLE 179580-005

Analyzed: Cleanup Method:

05/25/05 EPA 3630C

Type: Lab ID:

Analyte	Result	RL.
Diesel C10-C24	ND	50
Motor Oil C24-C36	ND	300

Surrogate	%RE	C Limits	
Hexacosane	94	55-143	

Type: Lab ID: BLANK QC294804 Analyzed:

05/24/05 Cleanup Method: EPA 3630C

Analyte	Result	J.S.	
Diesel Cl0-C24	ND	50]
Motor Oil C24-C36	ND	300	

Surrog	pate tric	Limits	
Hexacosane	137	55-143	

RL= Reporting Limit Page 2 of 2

Batch QC Report

	Total Extrac	table Hydrocar	pous
Lab #:	179580	Location:	5565 Tesla Rd Livermore
Client:	Pacific Analytical Laboratory	Prep:	EPA 3520C
Project#:	STANDARD	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	102298
Units:	ug/L	Prepared:	05/23/05
Diln Fac:	1.000	Analyzed:	05/24/05

Type: Lab ID:

QC294805

Cleanup	Method:	EPA	3630C

Analyte	Spiked	Result	%REC	' Limits
Diesel Cl0-C24	2,500	2,075	83	50-133

Surrogate		i kiamistea	
Hexacosane	102	55-143	

Type: Lab ID:

BSD

QC294806

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%rec	Limits	RPD	Lim
Diesel C10-C24	2,500	2,154	86	50-133	4	40

		Limits	
Hexacosane	108	55-143	

Sample Name : 179580-001sg,102298

FileName

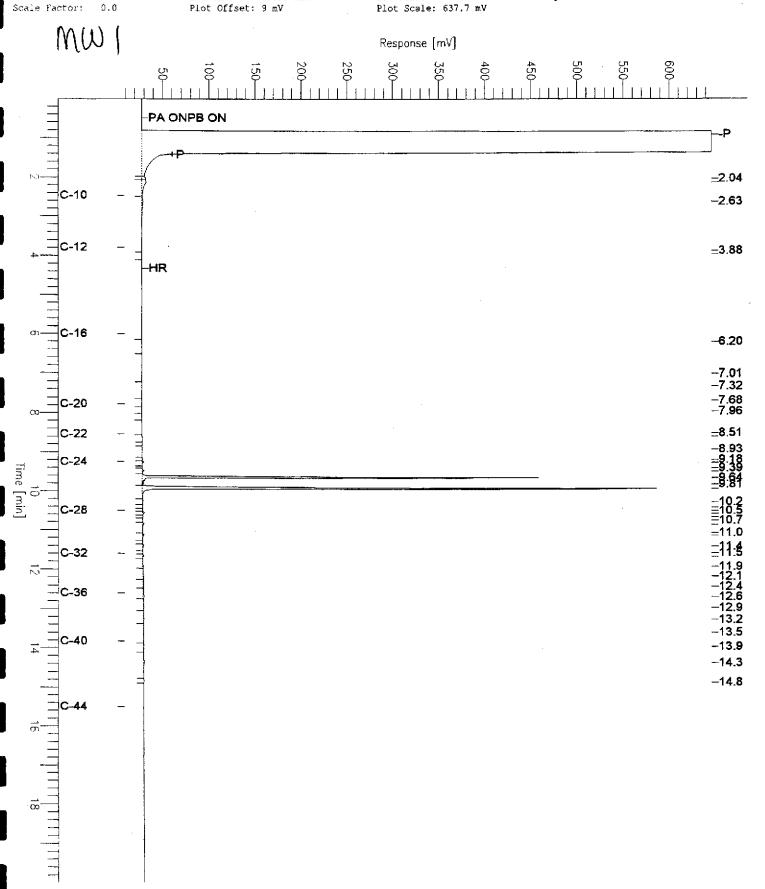
: G:\GC13\CHB\144B018.RAW

Start Time : 0.01 min

: BTEH138S.MTH

End Time : 19.99 min Plot Offset: 9 mV

Sample #: 102298


Date: 5/25/05 08:03 AM

Time of Injection: 5/24/05 08:50 PM

Low Point: 8.81 mV Plot Scale: 637.7 mV

High Point: 646.53 mV

Page 1 of 1

FileName

Sample Name : 179580-003sg,102298

Method

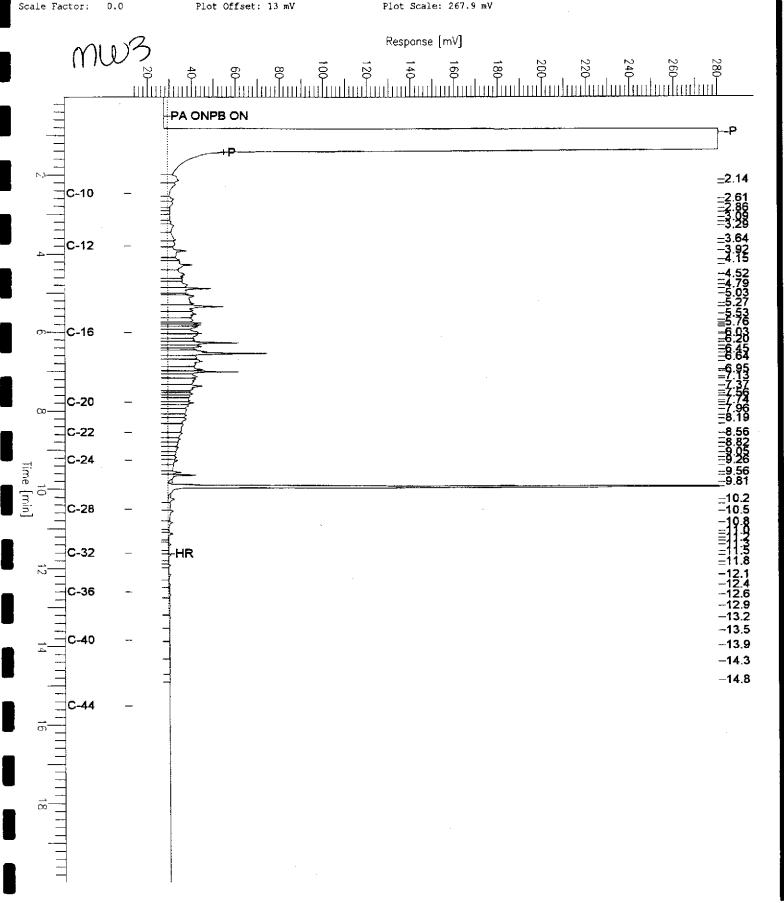
; G:\GC13\CHB\144B020.RAW

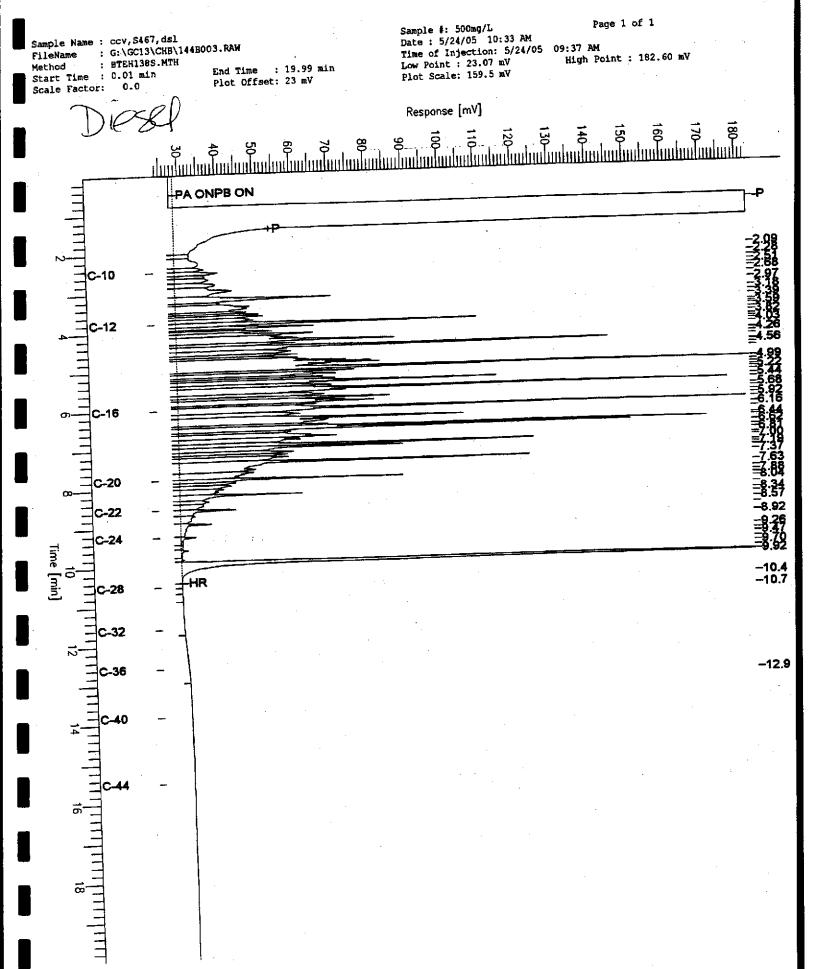
Start Time : 0.01 min

: BTEH138S.MTH

End Time : 19.99 min

Plot Offset: 13 mV


Sample #: 102298


Date : 5/25/05 08:05 AM Time of Injection: 5/24/05 09:47 PM

Low Point : 12.60 mV Plot Scale: 267.9 mV

High Point : 280.51 mV

Page 1 of 1

Sample Name : ccv, S653, mo

: G:\GC13\CHB\144B004.RAW FileName

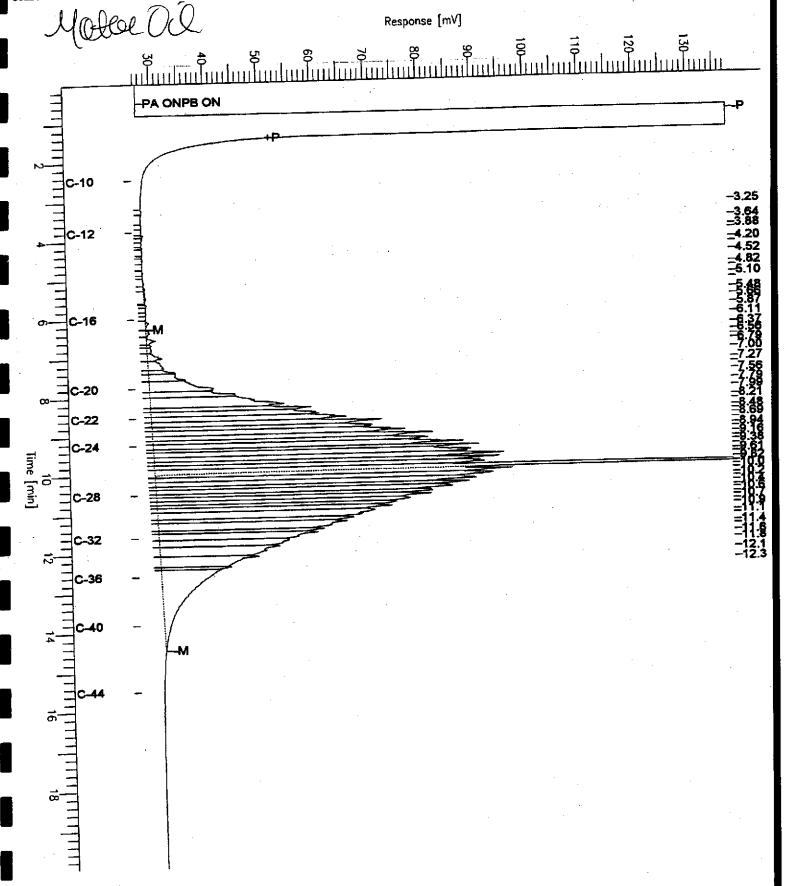
: BTEH138S.MTH Method : 0.01 min Start Time

: 19.99 min End Time

0.0 Scale Factor:

Plot Offset: 26 mV

Sample #: 500mg/L Date: 5/24/05 10:34 AM


Time of Injection: 5/24/05 10:05 AM

High Point: 137.35 mV

Page 1 of 1

Low Point : 26.44 mV

Plot Scale: 110.9 mV

Pacific Analytical Laboratory

251 West Midway Ave. Suite 201 Alameda, CA 94501

Phone (510) 864-0364

18 May 2005

Joyce Bobek SOMA Environmental Engineering Inc. 2680 Bishop Dr., Suite 203 San Ramon, CA 94583

RE: 5565 Tesla Rd, Livermore

Work Order Number: 5050004

Mogra ARK

This Laboratory report has been reviewed for technical correctness and completeness. This entire report was reviewed and approved by the Laboratory Director or the Director's designee, as verified by the following signature.

Sincerely,

Maiid Akhavan

Laboratory Director

CHAIN OF CUSTODY FORM

Page _ of _

PAL Pacific Analytical Laboratory 851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 Telephone 510-864-0365 Fax

PAL Login# 5050004

	ct No: 2842			Sa	mple	er: J	ohn Lohman										ses//		od	
Proje	ct Name: 5565 T	esia Rd, Liv	ermore	Re	port	To:	Joyce Bob	ek						1	TPH9		BTE			
Proje	ect P.O.:			Co	mpa	any:	SOMA En	viror	me	ntal	Engi	neering, inc	-	星		1	×			į
Turn	around Time:	Standard	a para di santa da s	Te Fa			-244-6600 -244-6601							2-	8	3	BTEX MIBE			
,		Sampling	Date/Time	M	la tri:	x	# of Containers		rese'	rvati	ves			801	İ		17 S286 5			
Lab No.	Sample ID	Date	Time	Soil	Waker	Waste		HCL	H ₂ So4	HNO,	ICE		Field Notes					7 (A) 100	a de la constanta de la consta	
	MW-1	515165	10:00 Pm	X			1	سننسنسا			Х			X	×	×	×	2		
	MW-2	5/5/05	11:400M	Х			1				Χ			X	\downarrow		7			
//mmman am./m/mm	MW-3	5/5/6			W. J. W. T. L. W.	1	1	andaa abahi	hnedbaned		X			X	X	X	×			1
vocanomini																				
			oh uranian urania ministration					rononuniou	nėssauss.		*********	***************	WNPORTNORESYMANIST		<u> </u>					
		arumnadaneeenavanneeenava	entranguara de la composição de la compo	n tenth name								- LIPLAND LOUN (PROLITY SEE ON OROS	oapapaassa sasuuria		<u> </u>		<u> </u>			
						*******									-			-		
<u> </u>						******							- · · · · · · · · · · · · · · · · · · ·	<u> </u>	-	-	 			
								***********						 	1				_	
Sam	pler Remarks:						Relinquisi	ned/	oy:			e/Time:	Received by:				Date			· · · · · · · · · · · · · · · · · · ·
					٠٠.		GA	W	2		S/:	5/05 45 PW/	Received by:	ny	ا ا ر	k	5/5 3	105	PM	
		ON THE THEORY			·	ار ادو								7000	enzena videllininia			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

2680 Bishop Dr., Suite 203 San Ramon CA, 94583

Project: 5565 Tesla Rd, Livermore

Project Number: 2842

Project Manager: Joyce Bobek

Reported:

18-May-05 10:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	5050004-01	Soil	05-May-05 10:00	05-May-05 15:54
MW-2	5050004-02	Soil	04-May-05 11:40	05-May-05 15:54
MW-3	5050004-03	Soil	04-May-05 13:15	05-May-05 15:54

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203 San Ramon CA, 94583

Project Number: 2842

Project Manager: Joyce Bobek

Reported:

18-May-05 10:45

Volatile Organic Compounds by EPA Method 8260B

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (5050004-01RE1) Soil	Sampled: 05-May-05 10:00	Received: 05-Ma	ry-05 15:5	4		··			
Gasoline (C6-C12)	ND	224	ug/kg	1.12	BE51201	05-May-05	16-May-05	EPA 8260B	
Benzene	ND	0.560	#	41	Œ	IT	#	11	
Ethylbenzene	ND	0.560	*	*	#1	tr	"	*	
m&p-Xylene	· ND	1.12	₩	**	*1	0	π	**	
o-xylene	ND	0.560	"	•	**	a	**	π	
Toluene	ND	0.560	n	"	н	0	**	"	
MTBE	ND	0.560	p	н	и :	0	и .	и	
Surrogate: 4-Bromofluorobenze	ne	76.2 %	70-	130	"	"	n	. "	•
Surrogate: Dibromofluoromethe		129 %	70-	-130	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>"</i>	t*	. "	
Surrogate: Perdeuterotoluene		95.4 %	70-	-130	п	u	Ħ	н	
MW-2 (5050004-02RE1) Soil	Sampled: 04-May-05 11:40	Received: 05-Ma	ay-05 15:5	4		-			
Gasoline (C6-C12)	ND	222	ug/kg	1.11	BE51201	05-May-05	16-May-05	EPA 8260B	
Benzene	ND	0.555	•	19	*	4	17	11	
Ethylbenzene	ND	0.555	£7	tt.	h	n	17	17	
m&p-Xylene	ND	1.11	"	a	h	и	U	u	
o-xylene	ND	0.555		n	14	n	u	n	
Toluene	ND	0.555	ø	11	•	"	*1	u	
MTBE	ND	0.555	'n	11	**	n	*1	11	
Surrogate: 4-Bromofluorobenze	ne	65.8 %	70-	-130	"	и	"	p.	S-GC
Surrogate: Dibromofluorometho	ane	165 %	70-	-130	"	"	"	<i>n</i>	S-G
Surrogate: Perdeuterotoluene		86.2 %	70-	130	"	"	"	"	
MW-3 (5050004-03RE1) Soil	Sampled: 04-May-05 13:15	Received: 05-M:	ay-05 15:5	4					
Gasoline (C6-C12)	ND	222	ug/kg	1.11	BE51201	05-May-05	16-May-05	EPA 8260B	
Benzene	ND	0.555	11	"	"	u	**	27	
Ethylbenzene	ND	0.555	n	*	"	a	'n	11	
m&p-Xylene	ND	1.11	n	"		a	P	π	
o-xylene	ND	0.555	n	"	я .	11	n	н	
Toluene	ND	0.555	17	и	n	4i	n	11	
MTBE	ND	0.555	v	и	n	**	h	n	
Surrogate: 4-Bromofluorobenze	ene	75.2 %	70-	-130	P		Ħ	"	
Surrogate: Dibromofluorometho	ane	138 %	70-	-130	'n	n	rr .	"	S-G
Surrogate: Perdeuterotoluene		98.6 %	70	-130	,,	e e	п	n	

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203

Project Number: 2842

Reported:

San Ramon CA, 94583

Project Manager: Joyce Bobek

18-May-05 10:45

Volatile Organic Compounds by EPA Method 8260B

Pacific Analytical Laboratory

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203

Project Number: 2842 Project Manager: Joyce Bobek Reported: 18-May-05 10:45

San Ramon CA, 94583

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Limit	Onus	Tever	Kesuit	/OKEC	Linus	NI D	Dittor	·
Batch BE51201 - EPA 5030 Soil MS										
Blank (BE51201-BLK1)		· 		Prepared &	Analyzed:	12-May-05	5			
Surrogute: 4-Bromofluorobenzene	44.6		ug/kg	50.0		89.2	70-130			
Surrogate: Dibromofluoromethane	55.1		**	50.0		110	70-130			
Surrogate: Perdeuterotoluene	48.2	1	"	50.0		96.4	70-130			
Gasoline (C6-C12)	ND	200	17							
Benzene	ND	0.500	u							
Ethylbenzene	ND	0.500	u							
m&p-Xylene	ND	1.00	u							
o-xylene	ND	0.500	11							
Toluene	ND	0.500	"							
MTBE	ND	0.500	н		÷		•			
LCS (BE51201-BS1)				Prepared &	: Ánalyzed:	12-May-05	5			
Surrogate: 4-Bromofluorobenzene	48.7		ug/kg	50.0		97.4	70-130			
Surrogate: Dibromofluoromethane	52.1		n	50.0		104	70-130			
Surrogate: Perdeuterotoluene	48.9		"	50.0		97.8	70-130			
Gasoline (C6-C12)	1990	200	17	2000		99.5	70-130			
Benzene	102	0.500	Ħ	104		98.1	70-130			
Bthylbenzene	- 112	0.500	"	104		108	70-130			
m&p-Xylene	.116	1.00	н	104		112	70-130			
o-xylenc	116	0.500	м	104		112	70-130			
Toluene	99.8	0.500	•	104		96.0	70-130			
МТВЕ	99.3	0.500		104		95.5	70-130			
LCS Dup (BE51201-BSD1)				Prepared:	12-May-05	Analyzed: 1	17-May-05			
Surrogate: 4-Bromofluorobenzene	46.3		ug/kg	50.0		92.6	70-130			
Swrogate: Dibromofluoromethane	56.9		"	50.0		114	70-130			
Surrogate: Perdeuterotoluene	47.7		"	50.0		95.4	70-130			
Gasoline (C6-C12)	2190	200	11	2000		110	70-130	9.57	20	
Benzene	90.8	0.500	**	104		87.3	70-130	11.6	20	
Ethylbenzene	109	0.500	н	104		105	70-130	2.71	20	
m&p-Xylene	113	1.00	**	104		109	70-130	2.62	20	
o-xylene	112	0.500		104		108	70-130	3.51	20	
Toluene	87.9	0.500	ц	104		84.5	70-130	12.7	20	
MTBE	101	0.500	n	104		97.1	70-130	1.70	20	

Pacific Analytical Laboratory

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203

Project Number: 2842

Reported:

San Ramon CA, 94583

Project Manager: Joyce Bobek

18-May-05 10:45

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BE51201 - EPA 5030 Soil MS					-					
Matrix Spike (BE51201-MS1)	Sou	rce: 5050004-()1	Prepared &	analyzed:	12-May-05	5			
Surrogate: 4-Bromofluorobenzene	46.5		ug/kg	50.0		93.0	70-130			
Surrogate: Dibromofluoromethane	58.3		"	50.0		117	70-130			
Surrogate: Perdeuterotoluene	48.0		n	50.0		96.0	70-130			•
Gasoline (C6-C12)	1180	200	н	2000	76.1	55.2	70-130			QM-05
Benzene	69.5	0.500	. 4	104	ND	66.8	70-130			QM-05
Ethylbenzene	70.5	0.500	. #1	104	ND	67.8	70-130			QM-05
m&p-Xylene	71.9	1.00	"	104	ND	69.1	70-130			QM-05
o-xylene	72.7	0.500	p	104	ND	69.9	70-130			QM-05
Toluene	63.8	0.500	l+	104	0.120	61.2	70-130			QM-05
MTBE	74.1	0.500	17	104	ND	71.2	70-130			-
Matrix Spike Dup (BE51201-MSD1)	Sou	rce: 5050004-	01	Prepared &	k Analyzed	: 12-May-0	5			
Surrogate: 4-Bromofluorobenzene	46.5		ug/kg	50.0		93.0	70-130			
Surrogate: Dibromofluoromethane	58.1		v	50.0		116	70-130			
Surrogate: Perdeuterotoluene	47.7		**	50.0		95.4	70-130			
Gasoline (C6-C12)	1740	200	ч	2000	76.1	83.2	70-130	38.4	20	QM-05
Benzene	90.2	0.500	•	104	ND	86.7	70-130	25.9	20	QR-03
Ethylbenzene	99.0	0.500	#	104	ND	95.2	70-130	33.6	20	QR-03
т&р-Хуlепе	99.7	1.00	н	104	ND	95.9	70-130	32.4	20	QR-03
o-xylene	101	0.500	n	104	ND	97.1	70-130	32.6	20	QR-03
Toluene	84.8	0.500	**	104	0.120	81.4	70-130	28.3	20	QR-03
мтве	98.3	0.500	a	104	ND	94.5	70-130	28.1	20	QR-03

Project: 5565 Tesla Rd, Livermore

2680 Bishop Dr., Suite 203 San Ramon CA, 94583

Project Number: 2842

Project Manager: Joyce Bobek

Reported:

18-May-05 10:45

Notes and Definitions

Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate. S-GC

QR-03 The RPD value for the sample duplicate or MS/MSD was outside if QC acceptance limits due to matrix interference. QC batch

accepted based on LCS and/or LCSD recovery and/or RPD values.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

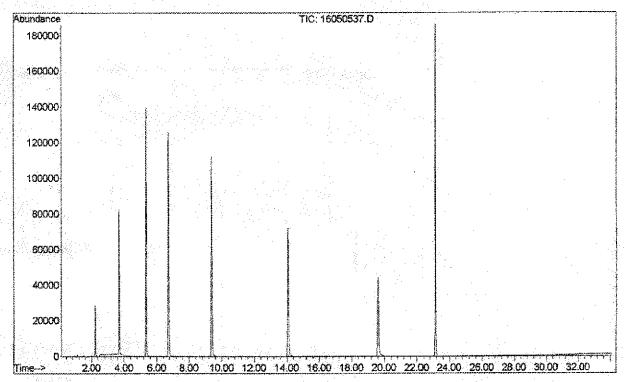
within acceptance limits showing that the laboratory is in control and the data is acceptable.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR

Sample results reported on a dry weight basis dry

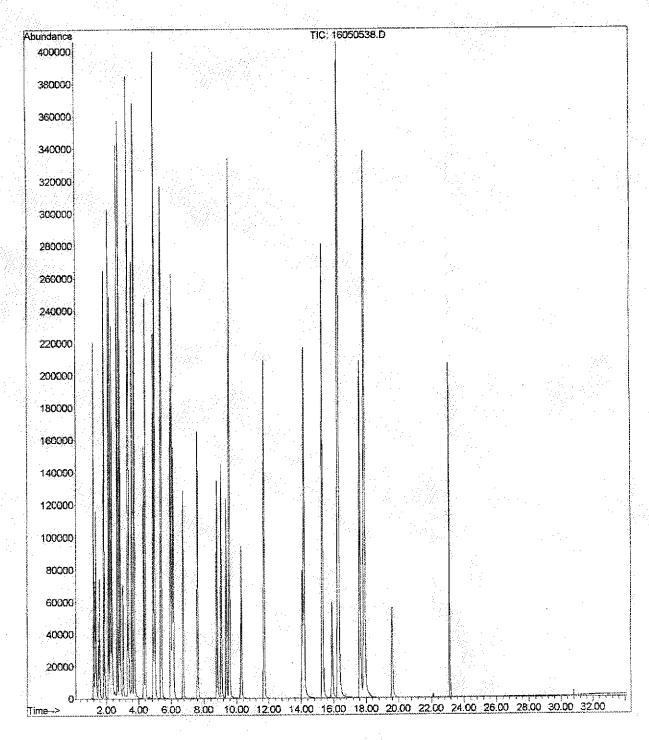

RPD Relative Percent Difference File :C:\MSDChem\1\DATA\2005-May-16-1134.b\16050537.D

Operator

: 17 May 2005 4:18 pm using AcqMethod VOCOXY.M : PAL GCMS Acquired

Instrument : Sample Name: BE51201-BLK1

Misc Info Vial Number: 37

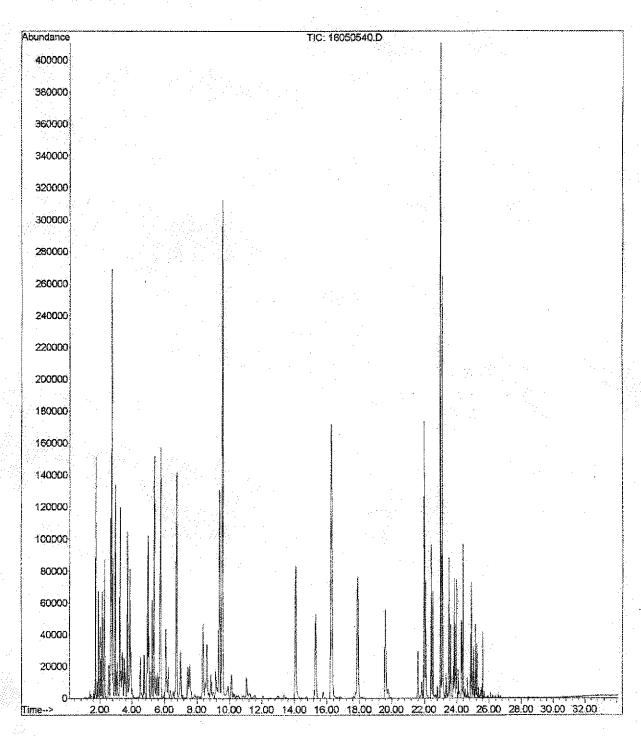

File :C:\MSDChem\1\DATA\2005-May-16-1134.b\16050538.D

Operator

Acquired : 17 May 2005 5:03 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS Sample Name: BE51201-BS1@voc

Misc Info : Vial Number: 38


File :C:\MSDChem\1\DATA\2005-May-16-1134.b\16050540.D

Operator :

Acquired : 17 May 2005 6:31 pm using AcqMethod VOCOXY.M

Instrument : PAL GCMS Sample Name: BE51201-BS1@gas

Misc Info : Vial Number: 40

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Pacific Analytical Laboratory 851 West Midway Ave Suite 201B Alameda, CA 94501

Date: 17-MAY-05 Lab Job Number: 179293

Project ID: STANDARD

Location:

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Reviewed by:

ilens Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of __

CASE NARRATIVE

Laboratory number:

179293

Client:

Pacific Analytical Laboratory

Request Date:

05/06/05

Samples Received:

05/06/05

This hardcopy data package contains sample and QC results for three soil samples, requested for the above referenced project on 05/06/05. The samples were received on ice and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

179293

CHAIN OF CUSTODY FORM

Page _ of ___

PAL Pacific Analytical Laboratory 851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 Telephone 510-864-0365 Fax

PAL Login# 5050004

Proje	ct No: 2842			Sa	mple	er: J	ohn L ohm an								A	naly	/ses/	/Method		
Proje	ct Name: 5565 Te	esla Rd, Liv	ermore	Re	port	To:	Joyce Bob	ek						1	+	1 -	19			T
Proje	ect P.O.:			Ço	mpa	any:	SOMA En	viror	ıme	ntal	Engi	neering, Inc.		문			1.*	-		1
Turn	around Time: S	Standard		Te. Fa			-244-6600 -244-6601							2	9	3	≛	,		
		Sampling	Date/Time	M	latri	x	# of Containers	1	Prese	rvati	ives			801	5	ų	ALBERTANES			
Lab No.	Sample ID	Date	Time	Soil	Water	Waste		HCL	H ₂ S04	HNO,	ICE	Fi	eld Notes							
- (MW-1	515 105	10:0019h	Х			1				Х			-	$ _{\lambda}$	+	, , k	+ +-	+	+
<u>-2</u>	MW-2	515/05	11:400M	X			1				Х			X	1		X		+-	+
-3	MW-3	5/5/05	1.15 PM	X			1				Х			X	X	×	Х			
				-							· `		·		'	╂-	-	+	+	+
																	1		1	1
																				+
							·	<u> </u>			ļ		· · · · · · · · · · · · · · · · · · ·	1		┼	-			Į
Samı	oler Remarks:						Relinquişi	hed <i>)</i>	by:		Date	e/Time:	Received by:	<u>. I</u>	Щ.		Dat	te/Time:		
	i	-, (5.5)	And Intao	!			() A	N	2		515 3	5/05 45 PW	James 30	ing				5 105 5 145 PM		
	. .	200	/			. 0	James	Zn	نند	μ	5/	0105 110 Pc0	Album	AA				14.5		٠

Total Extractable Hydrocarbons Lab #: 179293 Prep: SHAKER TABLE Pacific Analytical Laboratory Client: Analysis: EPA 8015B Project#: STANDARD Matrix: Soil Batch#: 101847 Units: 05/05/05 mg/Kg Sampled: Basis: as received Received: 05/06/05 Diln Fac: 1.000 05/09/05 Prepared:

Field ID:

MW-1

Lab ID:

179293-001

Type:

SAMPLE

Analyzed:

05/09/05

Analyte Diesel C10-C24

Result

0.99

Surrogate Limits

Hexacosane

51-136

Field ID: Type:

MW-2

SAMPLE

Lab ID:

179293-002

Analyzed:

05/10/05

Analyte Diesel C10-C24

Result RL 2.7 H Y

Surrogate Hexacosane

%REC Limits 51-136

Field ID:

Type:

MW-3 SAMPLE Lab ID:

179293-003

Analyte Diesel ClO-C24

Analyzed:

05/10/05

0.99

ND

0.99

Surrogate

Hexacosane

%RBC Limits

Result

Type:

Lab ID:

BLANK

Analyzed:

05/09/05

Cleanup Method: EPA 3630C

Analyte Diesel C10-C24

QC293087

Result

ND

0.99

Surrogate Hexacosane

%REC Limits 88

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit Page 1 of 1

2.0

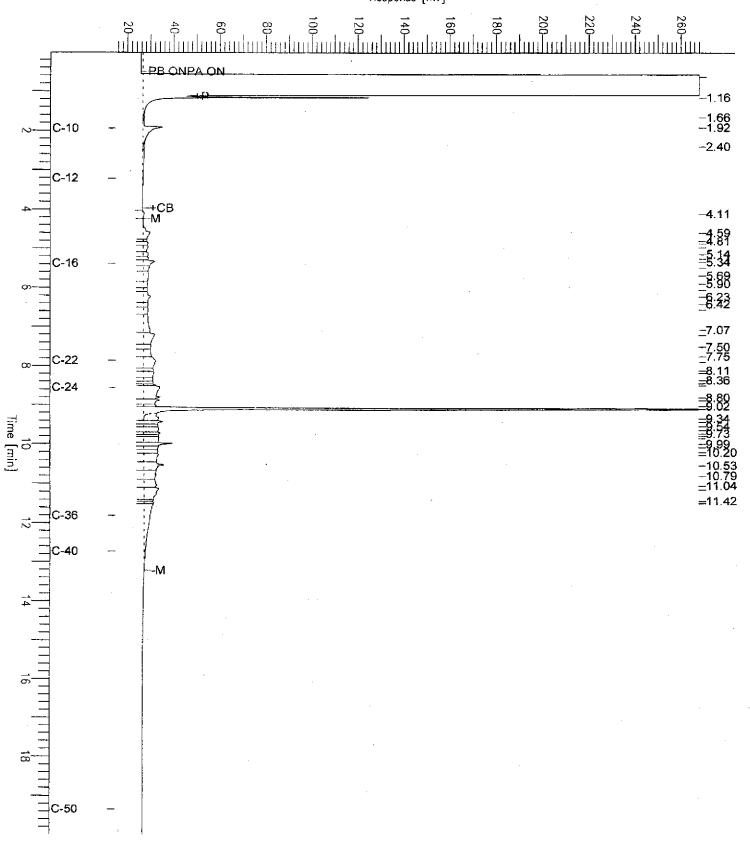
Sample Name: 179293-002,101847

FileName : G:\GC15\CHB\129B013.RAW

Method

Start Time : 0.01 min Scale Factor: 0.0

End Time \sim : 19.99 min Plot Offset: 15 mV


Sample #: 101847 Pate : 5/11/05 10:48 AM
Time of Injection: 5/10/05 02:16 AM

Low Point: 14.84 mV Plot Scale: 253.2 mV

High Point : 268.03 mV

Page 1 of 1

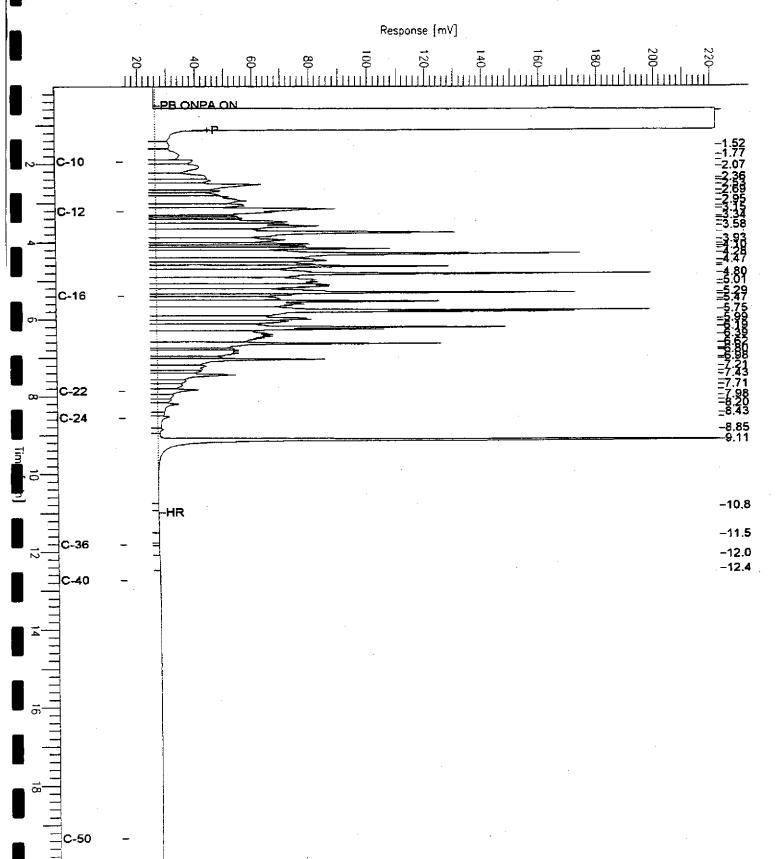
ple Name : ccv,S467,dsl

: G:\GC15\CH8\129B003.RAW

: BTEH122S.MTH at hod

rt Time : 0.01 min le Factor: 0.0

.leName


End Time : 19.99 min

Plot Offset: 15 mV

Page 1 of 1

Sample #: 500mg/L P
Date : 5/9/05 10:22 AM
Time of Injection: 5/9/05 10:00 AM
Low Point : 15.06 mV High F
Plot Scale: 206.8 mV

High Point : 221.91 mV

Batch QC Report

	Tota	al Extractable Hydroca	rbons
Lab #:	179293	Prep:	SHAKER TABLE
Client:	Pacific Analytical Labo	ratory Analysis:	EPA 8015B
Project#:	STANDARD		
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC293088	Batch#:	101847
Matrix:	Soil	Prepared:	05/09/05
Units:	mg/Kg	Analyzed:	05/09/05
Basis:	as received		

Cleanup Method: EPA 3630C

Analyte		Spiked	Result	*RE(Limits	
Diesel C10-C24		49.59	45.21	91	52-137	
Surrogate	%REC	Limits				
Hexacosane	90	51-136		200000000000000000000000000000000000000		

Batch QC Report

	Matal Butura	.u_L1_ **	4
	rotal Extrac	stable Hydrocar	Dons
Lab #: 1792	93	Prep:	SHAKER TABLE
Client: Paci	fic Analytical Laboratory	Analysis:	EPA 8015B
Project#: STAN	DARD		
Field ID:	MW-1	Batch#:	101847
MSS Lab ID:	179293-001	Sampled:	05/05/05
Matrix:	Soil	Received:	05/06/05
Units:	mg/Kg	Prepared:	05/09/05
Basis:	as received	Analyzed:	05/09/05
Diln Fac:	1.000		

Type:

MS

Lab ID:

QC293089

Analyte	MSS Result	Spiked	Result	%R1	3C Limits
Diesel C10-C24	0.7089	49.94	47.98	95	11-169

Surrogate *REC Limits
Hexacosane 99 51-136

Type:

MSD

Lab ID:

QC293090

Analyte	≥ Spiked	Result	%RE(. Limits	RPI	Lin	8
Diesel C10-C24	49.53	48.38	96	11-169	2	49	

Surrogate %RBC Limits
Hexacosane 99 51-136

CASE NARRATIVE

Laboratory number:

179293

Client:

Pacific Analytical Laboratory

Request Date:

05/06/05

Samples Received:

05/06/05

This hardcopy data package contains sample and QC results for three soil samples, requested for the above referenced project on 05/06/05. The samples were received on ice and intact.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Total Extractable Hydrocarbons SHAKER TABLE Prep: Lab #: Pacific Analytical Laboratory EPA 8015B Analysis: Client: Project#: STANDARD Soil 101847 Matrix: Batch#: 05/05/05 05/06/05 05/09/05 mg/Kg Sampled: Units: as received 1,000 Basis: Received: Diln Fac: Prepared:

Field ID:

MW-1

Lab ID:

179293-001 05/09/05

Type:

SAMPLE

Analyzed:

Analyte	Result	RL	14/4
Diesel C10-C24	ND	0.99	- 1
Motor Oil C24-C36	ND	5.0	
	• •		

Surrogate Limits Hexacosane

Field ID:

MW-2

Lab ID:

179293-002

SAMPLE Type:

Analyzed:

05/10/05

Analyte	Result	RL	
Diesel C10-C24	2.7 H Y	0.99	
Motor Oil C24-C36	7,1	5.0	

Surrogate %REC Limits Hexacosane

Field ID: Type:

MW-3

SAMPLE

Lab ID:

179293-003 05/10/05

Analyzed:

Analyte	Result	RL	NA 4
Diesel C10-C24	ND	0.99	
Motor Oil C24-C36	ND	5.0	

Surrogate Surrogate	%REC Limits	\$487.85
Hexacosane	93 51-136	

Type: Lab ID:

BLANK OC293087

Analyzed: Cleanup Method: EPA 3630C

05/09/05

Result Analyte ND 0.99 5.0 Diesel C10-C24 Motor Oil C24-C36 ND

Surrogate	&REC Limits	
Hexacosane	88 51-136	

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit Page 1 of 1

Batch QC Report

	Tota:	l Extractable Hydroca:	rbons
Lab #:	179293	Prep:	SHAKER TABLE
Client:	Pacific Analytical Labora	*	EPA 8015B
Project#:	STANDARD		
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC293088	Batch#:	101847
Matrix:	Soil	Prepared:	05/09/05
Units:	mg/Kg	Analyzed:	05/09/05
Basis:	as received		

Cleanup Method: EPA 3630C

Analyte	Spi/ked	Result	%RE	C Limits	
Diesėl C10-C24	49.59	45.21	91	52-137	

Surrogate	%REC	Limits
Hexacosane	90	51-136

Page 1 of 1

Batch QC Report

	Total Extra	actable Hydrocar	bons
Lab #:	179293	Prep:	SHAKER TABLE
Client:	Pacific Analytical Laboratory	Analysis:	EPA 8015B
Project#:	STANDARD		
Field ID:	MW-1	Batch#:	101847
MSS Lab ID	: 179293-001	Sampled:	05/05/05
Matrix:	Soil	Received:	05/06/05
Units:	mg/Kg	Prepared:	05/09/05
Basis:	as received	Analyzed:	05/09/05
Diln Fac:	1.000		

Type:

MS

Lab ID:

QC293089

Analyte MS	S Result	Spiked	Result	%RE	F 7 14 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Diesel C10-C24	0.7089	49.94	47.98	95	11-169

Surrogate	%REC	Limits	
Hexacosane	99	51-136	

Type:

MSD

Lab ID:

QC293090

Analyte	Spiked	Result	%REC	Limits	RPL	Lim
Diesel C10-C24	49.53	48.38	96	11-169	2	49

topiconio.	Surrogate	%REC	Limits	
	Hexacosane	99	51-136	

Appendix E

Well Survey Data

Harrington Surveys Inc.

Land Surveying & Mapping
2278 Larkey Lane, Walnut Creek, Ca. 94597 Phone (925)935-7228 Fax (925)935-5118 Cell (925)788-7359 E-Mall (ben5132@pacbell.net)

SOMA ENVIRONMENTAL ENGINEERING 2680 BISHOP DR. # 203 SAN RAMON, CA. 94583

JUNE 05, 2005

ATTN: ELENA

5565 TESLA ROAD, LIVERMORE CA.

SURVEY REPORT

CONTROLING POINTS FOR SURVEY:

CALIFORNIA HPGN MONUMENT 04 FL, CALIFORNIA COORDINATE SYSTEM, ZONE 3. NAD 83. NORTH 2,085,087.52 - EAST 6,213,127.18, LAT. N37"42'56.31172" W121"42"18.00018". **ELEVATION 566.57, NAVD 88,**

CALIFORNIA HPGN MONUMENT D4 FIL CALIFORNIA COORDINATE SYSTEM, ZONE 3. NORTH 2,055,842.44 - EAST 6,189,298.07, LAT N37"38"02.07933", W121"47'09.51080" ELEVATION 637.80NAVD 88.

INSTRUMENTATION: TRIMBLE GPS, MODEL 5800 AND LEICA TCA 1800, 1" HORZ. & VERT. OBSERVATION: EPOCH = 180.

FIELD SURVEY: JUNE 03, 2005.

BEN HARRINGTON PLS 5132

MONITORING WELLS 6565 TESLA RD.

HARRINGTON SURVEYS INC. 2278 LARKEY LANE, WALNUT CREEK CA. 925-925-7228

JOB#2528 6-05-05

(VER!	MORE CA.		and in the same	92	5-925-7228	
	NORTH	EAST	ELEV	LATITUDE	LONGITUDE	
1	2085287.52	6213127.18	566.57	37642'56.31176'N	121942'18.00017"W	FD. 04 FL HPGN
2	2085287.52	6213127.18	566.57	37ø42'58.31175'N	121#4218.00016"W	FD. 04 FL HPGN
10	2086759.37	6208469.09	615.16	37639'52.28484"N	121g43'37.83506"W	MW-1 V N. PVC
11	2088759.71	6206469.01	615.52	37ø39'52.28825"N	121s43'37.83609'W	MW-1 PUNCH N RIM
12	2066753.85	6206471.51	615.55	37639'52.23057"N	121e43'37.80414"W	BLG COR
13	2068753.67	6206512.16	615.56	37e39'52.23412"N	121#43'37.29847'W	BLG COR
14	2088628,15	5206469.85	616.03	37ø39'50.98763'N	121ø43'37.80872'W	MW-2 V N. PVC
15	2068628.55	5205469.61	616.38	37ø39'50.99158'N	121ø43'37.80724"W	MW-2 PUNCH N. RIM
16	2066832.94	6206516.64	616.48	37e39'51.04109'N	121a43'37.22314"W	5.0 E BLG COR
17	2066600.85	6206566.19	617.32	37g39'50.73030'N	121#43'36.60162"W	MW-3 V N. PVC
18	2086801.16	6206568.10	617.54	37ø39'50.73332'N	121@43'36.60286"W	MW-3 PUNCH N. RIM
19	2066610.25	6206664.10	617.64	37ø39 50 82300 N	121e43'36.62917"W	FC COR
20	2065604.40	6206549.81	617.66	37e39'50 76325"N	121ø43'36.80598"W	FC COR
21	2066629.00	6208539.65	617.75	37e39'51.00516"N	121#43'36.93629'W	FC COR
22	2066634.86	5206554.19	617.86	37ø39'51.06493''N	121e43'38.75646"W	FC COR
3	2080138.47	6208815.78	552.46	37e42'04.85665"N	121e43'10.81967"W	FD. Z 927
4	2080138.48	6208815.77	552.45	37p42'04.65566'N	121e43'10.81976'W	FD, Z 927
- 5	2055842.44	6189298.07	637.79	37#3B'02.07930'N	121e47'09.51084"W	FD. 4 FK HPGN
6	2055842.43	6189293.07	637.82	37e/38/02 07924"N	121ø47'09.51088"W	FD. 4 FK HPGN
7	2068813.66	6208542.08	615.00	37ø39'52.83104"N	121g43'36.93627"W	SET REIGATE
8	2066813.64	6208542.08	514.98	37ø3952.83084"N	121e43'36.93815'W	SET RE/GATE
9	2066806.93	6205470.38		37ø39'52.75518'N	1121e43'37.82678'W	SET 6.D NW YARD
23	2066806.93	6208470.38	615,07	37e3952.75523'N	121s43'37.82680'W	SET 6.D NW YARD
						The Later of the L
						5130
						100019
						To make the same of the same o