RECEIVED

1:28 pm, Jun 08, 2009

Alameda County Environmental Health

April 1, 1999 G-R Job #180041

Mr. David B. De Witt Tosco Marketing Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE:

Annual 1999 Groundwater Monitoring & Sampling Report

Tosco (Unocal) Service Station #5487

28250 Hesperian Boulevard

Hayward, California

TRANSMITTIN _

3____5_

Dear Mr. De Witt:

This report documents the annual groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R). On February 2, 1999, field personnel monitored seven wells (MW-1 through MW-7) and sampled three wells (MW-5, MW-6 and MW-7) at the above referenced site.

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Table 1, and a Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

No. 5577

FOF CALIFO

Sincerely,

Deanna L. Harding

Project Coordinator

Stephen J. Carter

Senior Geologist, R.G. No. 5577

Figure 1:

Potentiometric Map

Figure 2:

Concentration Map

Table 1:

Groundwater Monitoring Data and Analytical Results

Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

5487.qml

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-755\$

Tosco (Unocal) Service Station No. 5487 28250 Hesperian Boulevard

Hayward, California

DATE

JOB NUMBER REVIEWED BY 180041

February 2, 1999

REVISED DATE

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MORE 1									
MW-1	04/26/89 ¹			M	2.1	NID	NID	NID	
				ND	2.1	ND	ND	ND	
	08/16/89 ²	••		ND	ND	ND	ND	ND	
	11/14/89 ¹			ND	ND	ND	ND	ND	
	02/16/901			ND	ND	ND	ND	ND	
	05/16/901			ND	ND	ND	ND	ND	
	08/29/901			ND	ND	ND	ND	0.74	
	11/15/901			ND	ND	ND	ND	ND	
	02/11/91 ¹			ND	ND	ND	ND	ND	
	05/10/91			ND	ND	ND	ND	ND	
	08/02/91			ND	ND	ND	ND	ND	
	11/07/91			ND	ND	ND	ND	ND	
	08/04/92			ND	ND	ND	ND	ND	
12.57	05/03/93	6.87	5.70		-~				
	08/05/93	7.49	5.08	ND	ND	ND	ND	ND	
1,73	11/05/93	6.98	4.75						
	02/07/94	6.26	5.47						
	05/02/94	6.27	5.46						
	08/02/94	6.89	4.84	ND	ND	ND	ND	ND	
	11/02/94	7.07	4.66						
	02/01/95	5.17	6.56						
	05/02/95	5.65	6.08						
	08/03/95	6.21	5.52	ND	ND	ND	ND	ND	
	11/06/95	6.80	4.93						
	02/02/96	3.88	7.85	SAMPLED ANNU					
	02/07/97	4.63	7.10	SAMPLING DISC					
	02/09/98	2.70	9.03						
	02/02/99	5.42	6.31						
		- · · · ·							
MW-2	04/26/901			MD	NDS	A ITS	MD	110	
	04/26/89 ¹			ND	ND	ND	ND	ND	
	08/16/89 ²			ND	ND	ND	ND	ND	
	11/14/891			ND	ND	ND	ND	ND	
	02/16/90			ND	ND	ND	ND	ND	
	05/16/90 ¹			ND	ND	ND	ND	ND	

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
тос*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-2	08/29/90			ND	ND	ND	ND	ND	
(cont)	11/15/90	••		ND	ND	ND	ND	ND	
,	02/11/91			ND	ND	ND	ND	ND	
	05/10/91			ND	ND	ND	ND	ND	
	08/02/91			ND	ND	ND	ND	ND	
	11/07/91			ND	ND	ND	ND	ND	
	08/04/92			ND	ND	ND	ND	ND	
12.89	05/03/93	7.30	5.59						
	08/05/93	7.97	4.92	ND	ND	ND	ND	ND	
12.58	11/05/93	7.97	4.61						
	02/07/94	7.09	5.49						
	05/02/94	7.23	5.35			= - π			
	08/02/94	7.87	4.71	ND	ND	ND	ND	ND	
	11/02/94	7.98	4.60						
	02/01/95	6.13	6.45						
	05/02/95	7.04	5.54						
	08/03/95	7.19	5.39	ND	ND	ND	ND	ND	
	11/06/95	7.80	4.78						
	02/02/96	5.91	6.67	SAMPLED ANNU	ALLY				
	02/07/97	5.65	6.93	SAMPLING DISCO	ONTINUED				
	02/09/98	3.63	8.95						
	02/02/99	6.36	6.22						
MW-3									
1/1//-5	04/26/891			ND	ND	ND	ND	ND	
	08/16/89			ND	ND	ND	ND	ND	
	11/14/89			ND	ND	ND	ND	ND	
	02/16/90	-		ND	ND	ND	ND	ND	
	05/16/90			ND	ND	ND	ND	ND	
	08/29/90			ND	ND	0.52	ND	ND	
	11/15/90			ND	ND	ND	ND	ND	
	02/11/91			ND	ND	ND	ND	ND	
	05/10/91			ND	ND	ND	ND	ND	
	08/02/91			ND	ND	ND	ND	ND	

Table 1
Groundwater Monitoring Data and Analytical Results

Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
· · · · · · · · · · · · · · · · · · ·	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
11/07/01			NITS	ND	NID	NID	MID	
								~-
						ND	ND	
			SAMPLING DISCO	ONTINUED				
02/02/99	5.69	6.30				-		-
04/26/89 ¹			ND	0.33	ND	ND	ND	
08/16/89								
02/07/94	6.21	5.37						
	08/16/89 11/14/89 02/16/90 05/16/90 08/29/90 11/15/90 02/11/91 05/10/91 08/02/91 11/07/91 08/04/92 05/03/93 08/05/93 11/05/93	11/07/91 08/04/92 05/03/93 6.82 08/05/93 7.50 11/05/93 7.35 02/07/94 6.58 05/02/94 6.62 08/02/94 7.24 11/02/94 7.42 02/01/95 5.55 05/02/95 5.70 08/03/95 6.59 11/06/95 7.20 02/02/96 4.08 02/07/97 5.04 02/09/98 3.11 02/02/99 5.69 04/26/89¹ 08/16/89 11/14/89 05/16/90 05/16/90 05/16/90 05/16/90 05/16/91 08/29/90 11/15/90 05/10/91 08/02/91 1 08/02/91 1 08/04/92 05/03/93 6.60 08/05/93 7.28 11/05/93 7.07	11/07/91	11/07/91 ND 08/04/92 ND 05/03/93 6.82 5.64 ND 08/05/93 7.50 4.96 11/05/93 7.35 4.64 02/07/94 6.58 5.41 05/02/94 6.62 5.37 ND 08/02/94 7.24 4.75 ND 11/02/94 7.42 4.57 02/01/95 5.55 6.44 05/02/95 5.70 6.29 08/03/95 6.59 5.40 ND 11/06/95 7.20 4.79 02/02/96 4.08 7.91 SAMPLED ANNU. 02/07/97 5.04 6.95 SAMPLING DISCO 02/07/97 5.04 6.95 SAMPLING DISCO 02/02/99 5.69 6.30 04/26/89¹ ND 02/16/90 ND 02/16/90 ND 05/16/90 ND 05/16/90 ND 05/16/90 ND 05/16/90 ND 05/10/91 ND 05/10/91 ND 02/11/91 ND 05/10/91 ND 08/02/91 ND 08/02/91 ND 08/02/91 ND 08/02/91 ND 08/03/93 6.60 5.49 08/05/93 7.28 4.81 ND 11/05/93 7.07 4.51	11/07/91 ND ND 08/04/92 ND ND 05/03/93 6.82 5.64 08/05/93 7.50 4.96 11/05/93 7.35 4.64 02/07/94 6.58 5.41 05/02/94 6.62 5.37 08/02/94 7.24 4.75 ND ND 11/02/94 7.42 4.57 02/01/95 5.55 6.44 05/02/95 5.70 6.29 08/03/95 6.59 5.40 ND ND 11/06/95 7.20 4.79 02/02/96 4.08 7.91 SAMPLED ANNUALLY 02/07/97 5.04 6.95 SAMPLING DISCONTINUED 02/09/98 3.11 8.88 02/02/99 5.69 6.30 04/26/89¹ ND ND 02/16/90 ND ND 02/16/90 ND ND 05/16/90 ND ND 05/16/91 ND ND 05/16/91 ND ND 05/16/91 ND ND 05/16/91 ND ND 05/16/92 ND ND 05/16/93 7.28 4.81 ND ND 05/03/93 7.28 4.81 ND ND	11/07/91 ND ND ND ND ND ND 05/03/93 6.82 5.64	11/07/91 ND	11/07/91 ND

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-4	05/02/94	6.32	5.26						
(cont)	08/02/94	6.95	4.63	ND	ND	ND	ND	ND	
(cont)	11/02/94	7.13	4.45	SAMPLED ANNU					
	02/01/95	5.23	6.35						
	05/02/95	5.43	6.15						
	08/03/95	6.33	5.25	 ND	ND	ND	 ND	ND	
	11/06/95			ND 	ND 				
		6.90	4.68						
	02/02/96	3.71	7.87	041481 BIG DIGG	 ONTENDED				
	02/07/97	4.46	7.12	SAMPLING DISC					
	02/09/98	2.55	9.03						
	02/02/99	5.37	6.21	••					
MW-5									
11111 0	04/26/891			ND	ND	ND	ND	ND	
	08/16/89			4,400	1,400	84	200	950	
	08/31/89			910	120	7,1	50	53	
	11/14/89	~-		73	4.7	0.97	2.9	16	
	02/16/90			ND	ND	ND	ND	ND	
	05/16/90			1,100	310	2.8	70	110	
	08/29/90			ND	0.70	ND	0.57	1.1	
	11/15/90			ND	ND	ND	ND	0.47	
	02/11/91			58	23	ND	2.9	1.3	
	05/10/91			ND	ND	ND	ND	ND	
	08/02/91			100	43	0.33	12	5.2	
	11/07/91			700	43	1,7	29	24	
	02/05/92			120	20	ND	4.4	4.7	
	05/05/92			170	45	0.48	9.0	6.8	
	08/04/92			80	13	ND	4.5	6.9	
	11/05/92			120	16	ND	3.5	3.0	
	02/02/93			77 ³	5.0	ND	1.2	1.3	
11.18	05/03/93	6.16	5.02	260	35	ND	2,3	3.1	
	08/05/93	6.97	4.21	530	210	0.62	54	44	
10.79	11/05/93	6.81	3.98	110	12	ND	2.3	2.3	

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
3.4377.5									
MW-5	02/07/94	5.70	5.09	180	22	ND	6.4	5.9	
(cont)	05/02/94	5.96	4.83	170 ³	38	0.73	8.5	8.4	
	08/02/94	6.68	4.11	59	16	ND	2.4	3.1	
	11/02/94	6.86	3.93	450	73	1.6	6.2	11	
	02/01/95	4.85	5.94	170	11	ND	2.4	3.9	
	05/02/95	4.95	5.84	ND	7.5	0.51	1.2	1.6	
	08/03/95	6.03	4.76	ND	12	ND	0.70	ND	
	11/06/95	6.70	4.09	160	80	ND	7.4	10	120
	02/02/96	3.50	7.29	64	20	ND	3.9	6.1	150
	02/07/97	4.26	6.53	85	16	0.56	1.7	3.8	250
	02/09/98	2.29	8.50	220	54	ND	3.2	5.9	230
	02/02/99	5.07	5.72	61 ⁶	19	ND	1.3	2.1	110
MW-6	08/04/92			540	12	7.9	35	110	
	11/05/92			300	16	2.3	14	14	
	02/02/93			400^{3}	66	5.5	32	13	
11.47	05/03/93	6.28	5.19	520	47	2.6	33	48	
	08/05/93	7.05	4.42	230	25	1.6	12	29	
11.18	11/05/93	7.02	4.16	100	1.8	ND	0.79	2.2	
	02/07/94	6.00	5.18	1,100	130	14	13	130	
	05/02/94	6.18	5.00	440^{3}	20	4.2	11	26	
	08/02/94	6.88	4.30	220	13	1.0	12	28	
	11/02/94	7.05	4.13	840	30	2.5	26	57	
	02/01/95	5.04	6.14	340	26	0.77	2.6	7.0	
	05/02/95	5.00	6.18	ND	5.7	ND	0.81	1.1	
	08/03/95	6.26	4.92	ND	0.76	ND	ND	ND	
	11/06/95	6.87	4.31	210	17	0.66	14	37	130
	02/02/96	3.64	7.54	300	51	0.65	30	18	280
	02/02/90	4.41	6.77	66	5.8	1.2	2.1	6.6	
	02/09/98			ND ⁵		ND ⁵	2.1 ND ⁵	ND^5	450 450
		2.51	8.67		1.0				450
	02/02/99	5.14	6.04	ND	2.6	ND	1.0	2.9	490

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-7									
	07/30/96			ND	ND	ND	ND	ND	ND
9.39	02/07/97	3.75	5.64	ND	ND	ND	ND	ND	ND
	02/09/98	1.69	7.70	ND	ND	ND	ND	ND	ND
	02/02/99	4.14	5.25	ND	ND	ND	ND	ND	ND
MWD⁴	05/10/91			ND	ND	ND	ND	ND	~=
Frip Blank									
TB-LB	02/09/98			ND	ND	ND	ND	ND	ND
	02/02/99			ND	ND	ND	ND	ND	ND

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #5487 28250 Hesperian Boulevard Hayward, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to February 9, 1998, were compiled from reports prepared by MPDS Services, Inc.

TOC = Top of Casing elevation

B = Benzene

ppb = Parts per billion

DTW = Depth to Water

T = Toluene

ppm = Parts per million

(ft.) = Feet

E = Ethylbenzene

ND = Not Detected

GWE = Groundwater Elevation

X = Xylenes

-- = Not Measured/Not Analyzed

msl = Relative to mean sea level

MTBE = Methyl tertiary butyl ether

TOG = Total Oil and Grease

TPH(D) = Total Petroleum Hydrocarbons as Diesel<math>TPH(G) = Total Petroleum Hydrocarbons as Gasoline

- * Prior to November 5, 1993, the elevations of the <u>Top of Well Covers</u> have been surveyed relative to Mean Sea Level (msl), per the City of Hayward Benchmark (Elevation = 10.97 feet, msl). TOC elevations are relative to Mean Sea Level (msl), per the City of Hayward Benchmark (Elevation = 10.97 feet msl).
- TPH(D), TOG and all EPA Method 8010 constituents were ND.
- TOG for the samples collected from MW-1 and MW-2 were 23 ppm and 7.4 ppm, respectively. TPH(D) and all EPA Method 8010 constituents were ND for both samples.
- Laboratory report indicates that the hydrocarbons detected appear to be a gasoline and non-gasoline mixture.
- 4 MWD was a quality assurance duplicate water sample collected from well MW-5.
- 5 Detection limit raised. Refer to analytical results.
- Laboratory report indicates unidentified hydrocarbons C6-C12.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using a MMC flexi-dip interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

WEL TONITORING/SAMPLING FIELD DATA SHEET

Client/ Tosco Facility # 548	o ' }		<u></u>	b#:	180041		
	so Hesperia	Blud.	Da	ate: _	2/2/99		
City:				mpler: _	Vartly		
Well ID	MW - 1	_ We	ell Condition:	<u>ch</u>			
Well Diameter			drocarbon ickness:	$oldsymbol{arPhi}_{ ext{ (feet)}}$	Amount I	~	(Gallons)
Total Depth Depth to Water	27.20 5.42 +	_	olume 2" actor (VF)	= 0.17 6" =	3" = 0.3	18 4 12" = 5.80	* = 0.66
Purge		VF	= X 3 (c	ng			(gal.)
Equipment:	Bailer Stack Suction Grundfos Other:		Equipm	B P G	visposable B ailer ressure Bail irab Sample other:	er	
Starting Time:			Weather Cond	litions: _			
Sampling Time:			Water Color:			9dor:	
Purging Flow Ra	te:	gpm.	Sediment Des	cription: _		/	
Did well de-wate	er?		If yes; Time:		Volyar	ne:	(qal.)
	Volume pH (gal.)		ductivity Te	mperature •F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
			RATORY INFOR				
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV. TYPE	SEQUOI	DRATORY	ANALY	
	9 1011					TT NO // OTEX.	
COMMENTS: _	Hanitor only	 				L	

WEI TONITORING/SAMPLING FIELD DATA SHEET

Client/ 704 Facility # 54				o#:	18004	1	<u>.</u>
	50 Hesperia	n Blud	· Dat	te: _	2/2/99	, 	
	ayword			mpler: _	Vareth	es	
Well ID	NW-2	Well C	ondition:	od			·
Well Diameter	2 in,	Hydrod Thickn	,	P (fact)	Amount (.	(Galions)
Total Depth	23.80 ft.	Volum	ne 2" =				" = 0.66
Depth to Water	6.36 ft.	Factor	(VF)		1.50	12 = 5.80	
	x v	/F =	X 3 (ca	se volume) :	≈ Estimated F	Purge Volume: _	(gal.)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:		Sampling Equipme	ent: Di Ba Pr G	isposable B ailer ressure Bail rab Sample ther:	er	
Starting Time:		W	eather Condi	tions: _			
Sampling Time:		 W:	ater Color: _			Odor:	
Purging Flow Rat	te:g	<u>om.</u> Se	diment Desc	ription: _			
Did well de-wate	r?	If	yes; Time:		/ Volur	ne:	
	olume pH (gal.)		civity Ten	nperature	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
G	(#)		ORY INFORM				
SAMPLE ID	(#) - CONTAINER F	EFRIG. P	HC	SEQUOL	RATORY	ANAL)	
					`		
					·		
COMMENTS: _	Monitor only				·		

WE JONITORING/SAMPLING FIELD DATA SHEET

	2	LIELD DA	IA OHELI			
Client/ Ta Facility #53	187		.#ob#:	180041	<u> </u>	
Address: 28	250 Hesperie	n Blud-	Date:	2/2/99		
City:#	ayward'		Sampler:	Vortres		
Well ID	MW-3	Well Condi	ition:	r		
Well Diameter	2 in.	Hydrocarbo Thickness:	- 1 march 2	Amount E	~ 1) (Gallons)
Total Depth	24.40 ft. 5.69 ft.	Volume Former (VE)	2" = 0.17	3" = 0.3 = 1,50		= 0.66
Depth to Water			× 2 /	- Entire at all D	Values	
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:		Sampling Equipment:	Disposable Baller Pressure Baile Grab Sample Other:	ailer er	<u>(</u> (gai.)
Starting Time:		Weath	er Conditions:			
Sampling Time	:	Water	Color:		9dor:	
Purging Flow F	Nate:		ent Description:		<u>/</u>	
Did well de-wa	ter?	If yes;	Time:	Volun	ne:	(gal.
Time	Volume pH (gal.)	Conductivity µmhos/cm X		D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
		-				
			/			
SAMPLE ID	(#) - CONTAINER		I NFORMATION RV. TYPE 🥜 LA	BORATORY	ANALY	SES
	3 VoA	T HC	. SEQU	OIA-	TPH(G)/btex/m	be
COMMENTS:	Monitor only					
						

WEI MONITORING/SAMPLING FIELD DATA SHEET

WEL IONITORING/SAMPLING FIELD DATA SHEET

Client/ Tose Facility <u># 548</u>	7			180041	_ -	
Address: 2823	O Hesperian	Blud.	Date: _	2/2/99		
City: Hay	yward		Sampler: _	Vorte	<u>-</u>	
Well ID _	MW-5	Well Condition	n: <u>01</u>			
Well Diameter	2 in.	Hydrocarbon	<i>d</i> 3	Amount i		10.11
Total Depth	24.15 ft.	Thickness:	2" = 0.17		•	(Gailons) * = 0.66
Depth to Water	5.07 t.	Factor (VF)	2" = 0.17 6" =	1.50	12" = 5.80	
	9.08 x v	0.17=3.24	X 3 (case volume)	= Estimated P	urge Volume:	7. 7 3 (gal.)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	Eq	B P	disposable B ailer ressure Bail irab Sample other:	er	
Starting Time:		Weather	Conditions: _	den	·· <u>·</u> ··	
Sampling Time:	11:25	_ Water Co	lor:le		Odor: 4	
	te: <u>1</u> gp	-	Description: _			
Did well de-wate	er?	If yes; T	ime:	Volur	ne:	(gal.)
	olume pH	Conductivity µmhos/cmX/00	e F	D.O. (mg/L)		Alkalinity (ppm)
1116	7 7.36	9:32	<u> 4.5</u>			
	10 +31	9.28	_69.0			
SAMPLE ID		LABORATORY IN	FORMATION TYPE / LABO	DRATORY	ANAL	/SFS
HW-5	3 VOA	Y HCI	SEQUOI		TPH(G)/btex/m	
						
COMMENTS:					<u></u>	

WEI TONITORING/SAMPLING

		FIE	LD DATA	SHEET				
Client/ Tose Facility# 54	87			Job#:		8004		
	50 Hesperie	en Blo	<u> </u>	Date:	2/	2/99		·- <u></u> -
	yword					atte	7	
Well ID _	MW-6	W	ell Condition	:	ok_			-
Well Diameter	2		drocarbon ickness:	Φ		mount E	Bailed ater):	(Gallons)
Total Depth	18.00	ft.	folume factor (VF)	2" = 0.17	_	=		* = 0.66
Depth to Water	5.14	<u>ft.</u>						_
	12.86	x vf <u>0.1</u>	= 2,19 x	3 (case vo	lume) = Es	timated P	urge Volume: 6	156 (gal.)
Purge Disposable Bailer Equipment: Bailer Stack Suction Grundfos Other:				npling ipment:	Bailer Press Grab	ure Bail Sample	er	
Starting Time:	10:55		Weather Col				Odor: no	
	te:						Odor. <u>7-0</u>	
-	er?						ne:	
	70lume pH (gal.) 2 7.5 4.5 3.40 7	(nductivity nhos/cmx/008)90	Tempera 69.3 68.5		D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER	LABOI REFRIG.	RATORY INF		ON LABORAT	ORY	ANALY	'SES
MW-6	3 VoA	Y	#c1		AIOUD		TPH(G)/btex/m	
COMMENTS: _								

	ν		NITORING LD DATA	G/SAMPLIN SHEET	NG		
Client/ Tose Facility \$48	()			Job#:	18004	/	
	so Hesperia	u Blud		Date:	2/2/99)	·
City: Ha	yward			Sampler:	Varthe		
Well ID	MW-7	. We	ell Condition	: <u>2</u>	t		
Well Diameter			drocarbon	Æ	Amount I	L	
Total Depth	19.14 +		ckness:		et) (product/wa		(Gallons)
Depth to Water	4.14	F	actor (VF)	6"	3" = 0.3 = 1.50	12" = 5.80	
Purge Equipment:	Disposable Baile Bailer Stack Suction Grundfos Other:	r	San	npling	Disposable B Bailer Pressure Bail Grab Sample Other:	ailer er	7-65 [gal.)
Starting Time:					dur		
Sampling Time:	10;25				cla_		
	te:	gpm.		·			
Did well de-wate	er?		If yes;	me:	Volur	ne:	(gal.)
Time \\ \[10:(\] \\ \[10:18 \] \\ \[\]	70lume pH (gal.) 2.1 2.68 5 2.51 8 2.49	μπ 	ductivity thos/cmx/00 - 38 - 21	Temperature 66.7 67.8 68.2	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER	LABOF REFRIG. Y	ATORY INF	FORMATION TYPE / LA SEQUE	BORATORY	ANAL` TPH(G)/btex/n	
COMMENTS: _							

Tos	7
Touce Barbala Seco Gov Cory	g Conpay

Facility Number UNO	CAL SS	<i>\$</i> 5487			
Facility Address 28250			HAYWARD	CA	
Consultant Project Number	1800/	1.85			

Consultant Name Gettler-Ryan Inc. (G-R Inc.)

Address 6747 Sierra Court, Suite J. Dublin, CA 94568 Project Contact (Name) Deanna L. Harding

(Phone) 925-551-7555 (Fox Humber) 925-551-7888

(*) A. B. C. F. (1). MR. DAVID DEWITT Contact (Name) . Su.a. (925) 277-2384 Loborology Name Sequoia Analytical 19 773 Laboratory Release Number_ Samples Collected by (Hame) Varthe Tashing 11 (1) 15 2 ; 1. 18.11 Collection Date. S 4 34 1 Signature __

:	}	<u> </u>	8		1		l	<u> </u>	Analyses To Be Performed						DO NOT BILL						
Sample Number	Lab Sample Manber	Number of Containers	Matrix S = Sol A = Air W = Water C = Charcool	Type G = Grab C = Composite D = Discrete	TIm●	Sample Preservation	load (Yee or No)	TPH Ga+ STEX WINTEE	TPH Diceral (8015)	Oil and Greens (5520)	Purpeable Halocarbors (8010)	Purpedbie Aromatica (8020)	Purpeoble Organics (8240)	Extradable Organica (8270)	Heras CACSBZNNi (ICW or M)						TB-LB ANALYS
TB-LB		1	W	Œ		401	7	X								90	20:	302	A		1.4.
HW-5		3	٠.	4	11:25	ч	ત્ત	X									020	30:	A-	P	- 41.
HW-6		3	u	7	10:55	7	4	Х								•	020	304			$\epsilon = \epsilon k k \hat{\epsilon} \hat{\epsilon}$
MW-7		3	r	د.	10:25	در	u	×								9	020	305			李维4.1
		-		 			•														(E. j.) *
						 												<u> </u>		<u> </u>	to Alberta
			: 	<u> </u>		· .								 		•		<u> </u>		<u> </u>	4特施。
·						·											 	<u> </u>		<u> </u>	1.1
	:																 	<u> </u>		<u> </u>	et gute
																		<u> </u>		1	4 %.
																		<u> </u>		1	
									<u>.</u> _		 		i 								
									[<u> </u>	<u> </u>	<u> </u>	16.
	1		<u>,</u>]										Ĺ <u></u> ,		<u> </u>	<u> </u>	
Relinquished By (bestoly	<u>~</u>	1	nizotion R Inc.	2/	12/99 pm	Rece	Med By					ganizoli SEQU		Dale	/Time	1420	1	lurn Ar		ne (Cirole Choice)
Relinquished By (Signoture)			nization FQ 401		ole/Time 2199	Pece	MAI BY	(Signat	uro)		Or	gonizoti C			/1ime - Z /	6/8		_	6	Hre. Daye
Religioushed By (Otđo	nizolion CSC	1	ote/11me -2 181U	1 1				(Signal				Date P	/IIm• 2./9 18://	90				ntraoled

Danadina

680 Chesape 404 N. Wiger Lane 819 Striker Avenue, Suite 8 1455 McDowell Blvd. North, Ste. D Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 Petaluma, CA 94954

364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J **Dublin, CA 94568**

Attention: Deanna Harding

Client Project ID: Sample Matrix:

Unocal \$\$#5487, Hayward

Water

Analysis Method: EPA 5030/8015 Mod./8020

First Sample #: 902-0302

Sampled: Feb 2, 1999 Feb 2, 1999 Received: Reported:

Feb 19, 1999

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX / MTBE

Analyte	Reporting Limit μg/L	Sample I.D. 902-0302 TB-LB	Sample I.D. 902-0303 MW-5	Sample I.D. 902-0304 MW-6	Sample I.D. 902-0305 MW-7	
Purgeable Hydrocarbons	50	N.D.	61	N.D.	N.D.	
Benzene	0.50	N.D.	19	2.6	N.D.	
Toluene	0.50	N.D.	N.D.	N.D.	N.D.	
Ethyl Benzene	0.50	N.D.	1.3	1.0	N.D.	
Total Xylenes	0.50	N.D.	2.1	2.9	N.D.	
MTBE	2.5	N.D.	110	490	N.D.	
Chromatogram Pat	tern:		Unidentified Hydrocarbons C6 - C12			
Quality Control Da	ta					
Report Limit Multipl	ication Factor:	1.0	1.0	1.0	1.0	
Date Analyzed:		2/9/99	2/9/99	2/10/99	2/9/99	
Instrument Identification:		HP-9	HP-9	HP-9	HP-9	İ
Surrogate Recovery (QC Limits = 70-130		96	94	108	94	

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Julianne Fegley Project Manager

680 Chesapea 404 N. Wiget Lane 819 Striker Avenue, Suite 8 1455 McDowell Blvd. North, Ste. D Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834° Petaluma, CA 94954

364-9600 (925) 988-9600 (916) 921-9600 (707) 792-1865

FAX (650) 364-9233 FAX (925) 988-9673 FAX (916) 921-0100 FAX (707) 792-0342

Gettler-Ryan - Dublin 6747 Sierra Court, Suite J

Dublin, CA 94568 Attention: Deanna Harding Client Project ID: Matrix:

Unocal \$\$#5487, Hayward

Liquid

QC Sample Group: 9020302-305

Reported:

Feb 19, 1999

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	C. Westwater	C. Westwater	C. Westwater	C. Westwater	
MS/MSD					
Batch#:	9011771	9011771	9011771	9011771	
Date Prepared:	2/9/99	2/9/99	2/9/99	2/9/99	
Date Analyzed:	2/9/99	2/9/99	2/9/99	2/9/99	
Instrument I.D.#:	HP-9	HP-9	HP-9	HP-9	
Conc. Spiked:	20 μg/L	20 μg/L	$20\mu\mathrm{g/L}$	60 μg/L	
Matrix Spike					
% Recovery:	105	110	110	108	
Matrix Spike Duplicate % Recovery:	110	115	115	115	
Relative % Difference:	4.7	4.4	4.4	6.0	
LCS Batch#:	9LCS020999	9LCS020999	9LCS020999	9LCS020999	
Date Prepared:	2/9/99	2/9/99	2/9/99	2/9/99	
Date Analyzed:	2/9/99	2/9/99	2/9/99	2/9/99	
Instrument I.D.#:	HP-9	HP-9	HP-9	HP-9	
LCS % Recovery:	95	105	105	105	

70-130

SEQUOIA ANALYTICAL, #1271 Secuoia anal. Jugley

Yalianne Fegley Project Manager

% Recovery **Control Limits:**

Please Note:

70-130

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

70-130

70-130