ALAMEDA COUNTY

HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

May 20, 2009

ENVIRONMENTAL HEALTH SERVICES

ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Alameda, CA 94502-6577 (510) 567-6700

FAX (510) 337-9335

Michael Benner, Trustee Benner Family Trust 488 25th Street Oakland, CA 94612 Barbara Roberts
Benner Family Trust
488 25th Street
Oakland, CA 94612

Subject: Fuel Leak Case No. RO0002518 and GeoTracker Global ID T0600114301 Benner Automotive, 488 25TH Street, Oakland, CA 94612

Dear Mr. Benner & Ms. Roberts:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25299.37[h]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Health (ACEH) is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed.

SITE INVESTIGATION AND CLEANUP SUMMARY

Please be advised that the following conditions exist at the site:

- Residual pollution remaining in soil beneath the site includes TPH as gasoline at a concentration of 2,500 mg/kg.
- Maximum concentrations of TPH-g and EDC at concentrations up to 7,700 μg/L and 0.84 μg/L, respectively, remain in groundwater beneath the site near the sidewalk.

If you have any questions, please call Paresh Khatri at (510) 777-2478. Thank you.

Sincerely,

Donna L. Drogos, P.É.

LOP and Toxics Program Manager

Enclosures:

- 1. Remedial Action Completion Certificate
- 2. Case Closure Summary

CC:

Ms. Cherie McCaulou (w/enc) SF- Regional Water Quality Control Board 1515 Clay Street, Suite 1400 Oakland, CA 94612 Closure Unit (w/enc)
State Water Resources Control Board
UST Cleanup Fund
P.O. Box 944212
Sacramento, CA 94244-2120

Paresh Khatri (w/orig enc), D. Drogos (w/enc), R. Garcia (w/enc)

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

May 20, 2009

Michael Benner, Trustee Benner Family Trust 488 25th Street Oakland, CA 94612 Barbara Roberts Benner Family Trust 488 25th Street Oakland, CA 94612

REMEDIAL ACTION COMPLETION CERTIFICATE

Subject: Fuel Leak Case No. RO0002518 and GeoTracker Global ID T0600114301 Benner Automotive, 488 25TH Street, Oakland, CA 94612

Dear Mr. Benner & Ms. Roberts:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

This notice is issued pursuant to subdivision (h) of Section 25299.37 of the Health and Safety Code.

Please contact our office if you have any questions regarding this matter.

Sincerely,

Ariu Levi Director

Alameda County Environmental Health

CASE CLOSURE SUMMARY LEAKING UNDERGROUND FUEL STORAGE TANK - LOCAL OVERSIGHT PROGRAM

I. AGENCY INFORMATION

Date: November 5, 2008

Agency Name: Alameda County Environmental Health	Address: 1131 Harbor Bay Parkway
City/State/Zip: Alameda, CA 94502-6577	Phone: (510) 777-2478
Responsible Staff Person: Paresh Khatri	Title: Hazardous Materials Specialist

II. CASE INFORMATION

Site Facility Name: Benner Auto	motive				
Site Facility Address: 488 25 th S	treet, Oakland, California 94612				
RB Case No.: NA	Local Case No.: NA LOP Case No.: RO0002518				
URF Filing Date: 07/01/2003	Global ID No.: T0600114301 APN: 009-0683-017-00		009-0683-017-00		
Responsible Parties	Addresses	Addresses			
Benner Family Trust Michael Benner, Trustee	488 25th Street, Oakland, CA 94612-	488 25 th Street, Oakland, CA 94612-2409			
Benner Family Trust Barbara Roberts, Trustee	488 25 th Street, Oakland, CA 94612-				

Tank I.D. No	Size in Gallons	Size in Gallons Contents Closed In Place/Remove		Date
1	1 x 1,000-gallon	Gasoline	Removed	01/07/2003
	·			
	Piping		Removed	01/07/2003

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and Type of Release: Unknown, UST appeared intact upon removal. Site characterization complete? Yes Date Approved By Oversight Agency:						
Number: 3	Proper screened interval? Yes					
Lowest Depth: 15.21 ft bgs	Flow Direction: Southwesterly					
	Number: 3 Lowest Depth:					

Summary of Production Wells in Vicinity: A ¼ mile well survey was conducted. A DWR search identified 117 wells within the survey radius. Only five of the 117 wells identified are located within 500 feet of the site. No water supply wells were identified within a ¼ mile radius of the site.

Based on the extent of the hydrocarbon plume documented by the groundwater monitoring analytical results, no water wells, deeper drinking water aquifers, surface water or other sensitive receptors are likely to be impacted.

Are drinking water wells affected? No	Aquifer Name: East Bay Plain Groundwater Basin		
Is surface water affected? No	Nearest SW Name: Lake Merritt located 2,000 feet southeast and the San Francisco Bay, located approximately 2 miles southwest of the site.		
Off-Site Beneficial Use Impacts (Addresses/Locat	ions): None		
Reports on file? Yes	Where are reports filed? Alameda County Environmental Health & Oakland Fire Department, Fire Prevention Bureau		

TREATMENT AND DISPOSAL OF AFFECTED MATERIAL							
Material Amount (Include Units) Action (Treatment or Disposal w/Destination) Date							
Tank	One 1,000-gallon	Disposal to Ecology Control Industries 255 Parr Blvd., Richmond, CA 94801	01/07/2003				
Piping	Not reported	Disposal to Ecology Control Industries 255 Parr Blvd., Richmond, CA 94801	01/07/2003				
Free Product	None reported						
Soil	22.24 Tons	Keller Canyon Landfill 901 Bailey Road Pittsburg, CA	01/14/2003				
Groundwater	None reported						

MAXIMUM DOCUMENTED CONTAMINANT CONCENTRATIONS BEFORE AND AFTER CLEANUP

(Please see Attachments for additional information on contaminant locations and concentrations)

2011 (ppm)	Water (ppb)		
Before	After	Before	After	
2,500 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	2,500 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	120,000 (BH-06 GW, 07/2004)	120,000 ⁶ /<50 (BH-06 GW, 07/2004/MW-3, 2/27/2006)	
Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	
Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	
<1,7 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	<1.7 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	<13 (BH-06 GW, 07/2004)	<13 ⁶ /<0.5 (BH-06 GW, 07/2004/MW-3, 2/27/2006)	
<1.7 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	<1.7 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	<13 (BH-06 GW, 07/2004)	<13 ⁶ /<0.5 (BH-06 GW, 07/2004/MW-3, 2/27/2006)	
<1.7 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	<1.7 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	70 (BH-06 GW, 07/2004)	70 ⁶ /<0.5 (BH-06 GW, 07/2004/MW-3, 2/27/2006))	
<1.7 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	<1.7 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	540 (BH-06 GW, 07/2004)	540 ⁶ /<0.5 (BH-06 GW, 07/2004/MW-3, 2/27/2006)	
<1.7 ⁵ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	<1.7 ⁴ (USFT Base-east, 9.0 ft bgs, 01/07/2003)	8.2 ³ (BH-11 GW, 07/2004)	<5 ² (MW-3, 2/27/2006)	
29 (USFT Base-east, 9.0 ft	29 (USFT Base-east, 9.0 ft bgs, 01/07/2003)	Not Analyzed	Not Analyzed	
<0.005	<0.005	<0.5	<0.5 (MW-3, 2/27/2006)	
<0.005	<0.005	0.84 (MW-3, 2/27/2006)	0.84 (MW-3, 2/27/2006)	
Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	
	2,500 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003) Not Analyzed Not Analyzed 1.7¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003) 21.7⁵ (USFT Base-east, 9.0 ft bgs, 01/07/2003) 29 (USFT Base-east, 9.0 ft bgs, 01/07/2003) 29 (USFT Base-east, 9.0 ft bgs, 01/07/2003) 0.005 	2,500 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003) Not Analyzed 1.7 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003) Not Analyzed Not Analyzed	2,500 ¹ (USFT Base-east, 9.0 ft bgs, 01/07/2003) Not Analyzed Superplace (USFT Base-east, 9.0 ft bgs, 01/07/2003) Not Analyzed Not Analyzed Not Analyzed (USFT Base-east, 9.0 ft bgs, 01/07/2003) Not Analyzed Not Analyzed	

Soil sample collected below the UST. DTW ranges between 8.8 to 15.21 ft bgs. Therefore, soil sample may be saturated and may not be representative of vadoze zone soil conditions.

² Other VOCs analyzed (groundwater μg/L after cleanup): <0.5 MtBE, NA TBA, NA DIPE, NA ETBE, NA TAME, <0.5 EDB, 0.84 EDC, NA EtOH

³ Other VOCs <u>not</u> analyzed (groundwater ppb before cleanup): 8.2 MtBE, NA TBA, NA DIPE, NA ETBE, NA TAME, <0.5 EDB, <0.5, NA EtOH

Other VOCs (Soil mg/kg after cleanup): NA TBA, NA DIPE, NA ETBE, NA TAME, NA EtOH,

⁵ Other VOCs (Soil mg/kg before cleanup): NA MtBE, NA TBA, NA TAME, < NA DIPE, NA EtOH

Site History and Description of Corrective Actions:

The Brenner Automotive site is located at the 488 25th Street in downtown Oakland on the north side of 25th Street approximately 500 feet east of Telegraph Avenue. The site and immediately adjacent properties are currently zoned commercial. However for contaminant risk comparison purposes, the residual contamination has been compared to future residential land-use scenario. The general terrain in the Site vicinity is flat with a gradual surface gradient to the southwest towards San Francisco Bay. Groundwater studies conducted on-site have verified that the groundwater flow direction is towards the southwest.

According to a site plan provided to the consultant by the property owner, the UST was installed on or before 1937 and had not been utilized since approximately the mid 1960's when the building use changed from a limousine/hearse rental operation to its current use. At that time, the dispenser (formerty located just inside the roll-up door within 8 feet of the

⁶ Grab GW sample detected 120,000 μg/L TPH-g in sample BH-06 GW, located across the street. Monitoring well subsequently installed adjacent to BH-06 did not detect TPH-g above the laboratory detection limit. NA - Not Analyzed

former UST) was removed. The 1,000-gallon capacity UST was cylindrical, single-walled, steel with tar paper wrapping, and was installed in a sand backfilled excavation measuring approximately 14 feet long by 5 feet wide by 9 feet in depth. The top of the UST was approximately 3 feet below the concrete sidewalk and approximately 2 feet above the top of the native soil.

Excavation confirmation sampling was conducted immediately following the UST removal. The former backfill material was removed to expose native soil at a depth of 9 feet bgs directly beneath the east and west ends of the former UST. On January 9, 2003, the excavation was backfilled with clean, imported fill material.

The two confirmation soil samples were analyzed for TPH-g, BTEX, MtBE, and total lead. TPH-g was detected at 2,500 mg/kg in the east end of the UST. Neither BTEX or MtBE were detected above the laboratory detection limit in this sample. However, the elevated gasoline concentration required a 333 percent dilution, which raised the reporting limit to 1.7 mg/kg for BTEX & MtBE. Analytical results are summarized in the attached tables.

In July 2003, a preliminary site investigation consisting of five direct push borings drilled to depths of 16 to 25 feet bgs was conducted. TPH-g and benzene were detected at a maximum concentration of 49 mg/kg and <0.010 mg/kg, respectively. Grab groundwater sample analytical results detected a maximum 7,900 μg/L TPH-g, <13 μg/L benzene, and 3.1 μg/L MtBE.

In July 2004, six additional borings were installed in the vicinity of the former UST to further define the extent of soil and groundwater contamination. TPH-g and benzene were detected at a maximum concentration of 150 mg/kg and <0.050 mg/kg, respectively. Grab groundwater sample analytical results detected a maximum 120,000 µg/L TPH-g, <13 µg/L benzene, and 8.2 µg/L MtBE. A preferential pathway evaluation was also conducted to identify underground utility trenches that may act as preferential pathways for groundwater contamination. Only sanitary and storm sewer lines located approximately 150 feet west (cross-gradient) of the subject site were potentially at the depth of groundwater. Based on the distance of these utilities, it is believed that it is unlikely to intercept impacted groundwater from the source area and act as preferential contaminant migration pathways.

In May 2005, three groundwater monitoring wells were installed, developed, surveyed, and sampled. Groundwater monitoring occurred for four consecutive quarters from May 2005 through February 2006. The most recent groundwater sampling event detected <50 µg/L TPH-g, <0.5 µg/L benzene, <1.0 µg/L MtBE, and 0.84 µg/L EDC. Based on a review of the boring logs, groundwater was typically encountered between 10 to 14 feet bgs in what is reported in some boring logs as gravelly clay (1st water bearing zone) underlain by sitly clay to approximately 20 feet bgs, with a more permeable clayey sand at a depth of approximately 20 to 25 feet bgs (2nd water bearing zone) at the site. The elevated PID hits are also consistent with the 1st water bearing zone. The "grab" groundwater samples appear to have typically been collected in the first water bearing zone depth. Groundwater monitoring wells are screened from 10 to 25 feet bgs. The screens appear to encompass the first and second water bearing zones tentatively identified at the site in monitoring wells MW-2 and MW-3. Although the wells screens may intersect the first and second water bearing zones, cross-connecting and potentially diluting the concentrations of contaminants that may be present in the first water bearing zone, the concentrations of contaminants detected in soil and "grab" groundwater generally do not indicate that a significant release had occurred. Therefore, based on the monitoring well, "grab" groundwater, and soil samples analytical results, the impact to soil and groundwater appears adequately assessed.

Site concentrations were compared to applicable RWQCB ESLs. Residual concentrations of TPH-g (2,500 mg/kg) benzene (<1.7 mg/kg), exceed the applicable ESL of 83 for TPH-g, 0.044 mg/kg for benzene, for residential land-use risk scenario where groundwater is a current or potential drinking water resource. However, BH-01 installed in July 2003 located within the former UST pit detected 14 mg/kg TPH-g and <0.0054 mg/kg benzene at 10 feet bgs. Soil samples from BH-2, BH-3, & BH-4 located approximately 5 to 7 ft from the excavation perimeter did not detect TPH-g or BTEX above the laboratory detection limit. Therefore, soil impact appears to be limited to the east side of the excavation.

The only other contaminant concentration in soil detected above the ESLs was TPH-g at a concentration of 150 mg/kg collected from BH-09 at 11 feet bgs. Therefore, the residual concentrations of contaminants in soil do not appear to pose appreciable risk to human health or the environment under the current commercial land use and building configuration.

Gasoline and benzene were detected at a maximum concentration of 120,000 μ g/L and <13 μ g/L, respectively, in a "grab" groundwater sample collected from boring BH-06, located across the street from the subject site. A groundwater monitoring well MW-3 was installed within five feet of boring BH-06. Concentrations of contaminants were not detected above the laboratory detection limit except for EDC which was detected at 0.84 μ g/L. The elevated "grab" groundwater sample may be attributed to potentially contaminated drilling equipment during boring installation or the sampling methodology.

Typically drilling equipment is steam cleaned at the drilling company's yard and then loaded onto the drill rig or sometimes, it is steam cleaned onsite. Therefore, it is a possibility that the drilling equipment was not adequately cleaned and contamination detect at the subject is attributed to contaminated equipment.

Another possibility is sampling methodology. "Grab" samples are collected by lowering a bailer in the boring to groundwater shortly after reaching total depth by the drill rig (i.e., a few feet below first encountered groundwater). In areas of a petroleum release, there is generally a zone of petroleum impacted soil at the historic top of groundwater, sometimes referred to as the "smear zone." Because of soil disturbance caused by the drill rig, the groundwater in the boring and, thus, a "grab" groundwater sample collected from the boring, would tend to contain a high amount of suspended sediment, and petroleum, if gasoline is present in the soil and the "smear zone" at the boring location. The analysis of a turbid groundwater sample at the analytical laboratory would include analysis of the soil particles contained in the sample as well as the groundwater. Thus, the analytical results of the sample may reflect the presence of gasoline associated with the soil particles including dissolved phase in groundwater and tend not be representative of the actual concentration of dissolved gasoline in the groundwater at the boring location. Therefore, reported concentration would tend to be higher than actual groundwater quality conditions. TPH-g and BTEX were not detected above their respective ESLs in groundwater samples collected from site monitoring wells. Although 0.84 µg/L EDC exceeds the ESL of 0.05 µg/L, the concentration is below the contaminant volatilization to indoor air residential land-use scenario and aquatic habitat protection ESLs of 150 μ g/L and 1,400 μ g/L, respectively. Therefore, the residual concentrations of contaminants detected in groundwater do not appear to pose an appreciable risk to human health or the environment under the current commercial land use and building configuration.

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? Yes

Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? Yes

Does corrective action protect public health for current land use? Alameda County Environmental Health staff does not make specific determinations concerning public health risk. However, based upon the information available in our files to date, it does not appear that the release would present a significant risk to human health based upon current land use and conditions.

Site Management Requirements: City of Oakland Building Department has been notified that should excavation or development of the property be proposed that may encounter impacted soil or groundwater, Alameda County Environmental Health must be notified as required by Government Code Section 65850.2.2. The current property owner/developer must submit a soil and groundwater management plan for review prior to any construction activities. Please note that case closure for the fuel leak site is granted for commercial land use. If a change in land use to residential or other conservative scenario occurs at this property, Alameda County Environmental Health must be notified and the case needs to be re-evaluated.

Should corrective action be reviewed if land use changes? Yes.

Was a deed restriction or deed notification filed? No Date Recorded: -
Monitoring Wells Decommissioned: No Number Decommissioned: 3 Number Retained: 0

List Enforcement Actions Taken: None

List Enforcement Actions Rescinded: --

V. ADDITIONAL COMMENTS, DATA, ETC.

Considerations and/or Variances:

Residual concentrations of petroleum hydrocarbons detected in soil are follows:

• 2,500 mg/kg TPH-g.

Residual concentrations of petroleum hydrocarbons detected in groundwater are as follows:

- 7,700 µg/L TPH-g near the sidewalk.
- 0.84 μg/L EDC

The residual concentrations detected exceed the ESLs where groundwater is a potential drinking water source. The concentrations of gasoline range petroleum hydrocarbons are expected to decrease over time as a result of biodegradation and natural attenuation processes. ETBE, TAME, TBA, DIPE, and EtOH, were not analyzed for in soil or groundwater. Please note that case closure for the fuel leak site is granted for commercial land use. If a change in land use to residential or other conservative scenario occurs at this property, Alameda County Environmental Health must be notified and the case needs to be re-evaluated.

Condusion:

Alameda County Environmental Health staff consider that the levels of residual contamination do not pose a significant threat to water resources, public health and safety, and the environment for the current commercial land use based upon the information available in our files to date. No further investigation or cleanup is necessary. ACEH staff recommend case closure for this site based on the current commercial use of the site only.

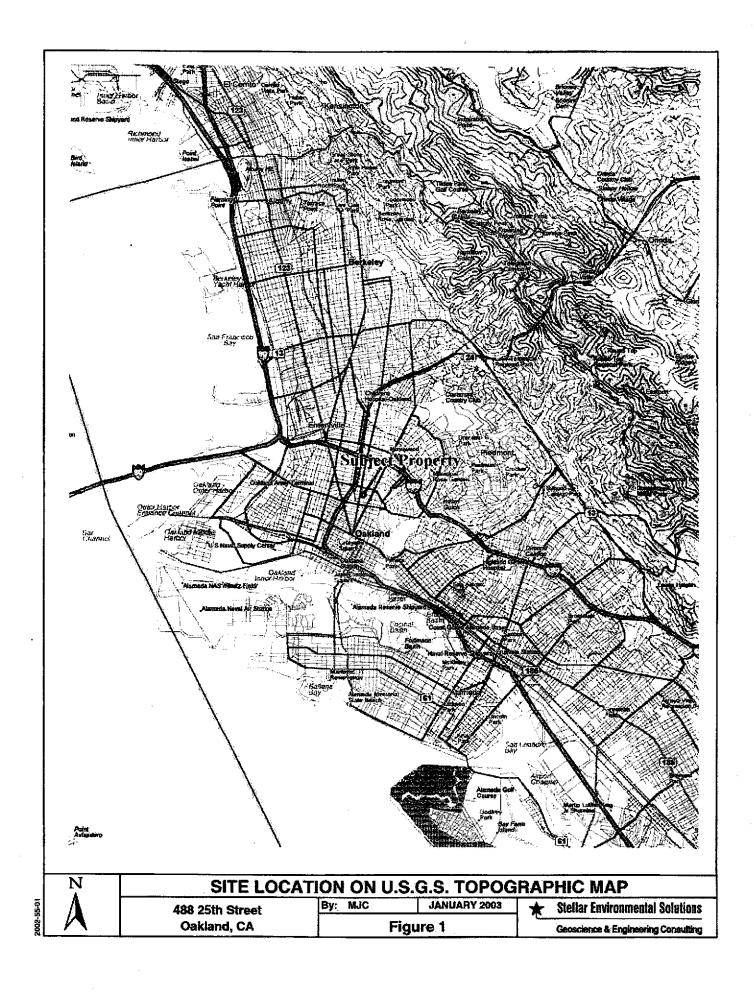
VI. LOCAL AGENCY REPRESENTATIVE DATA

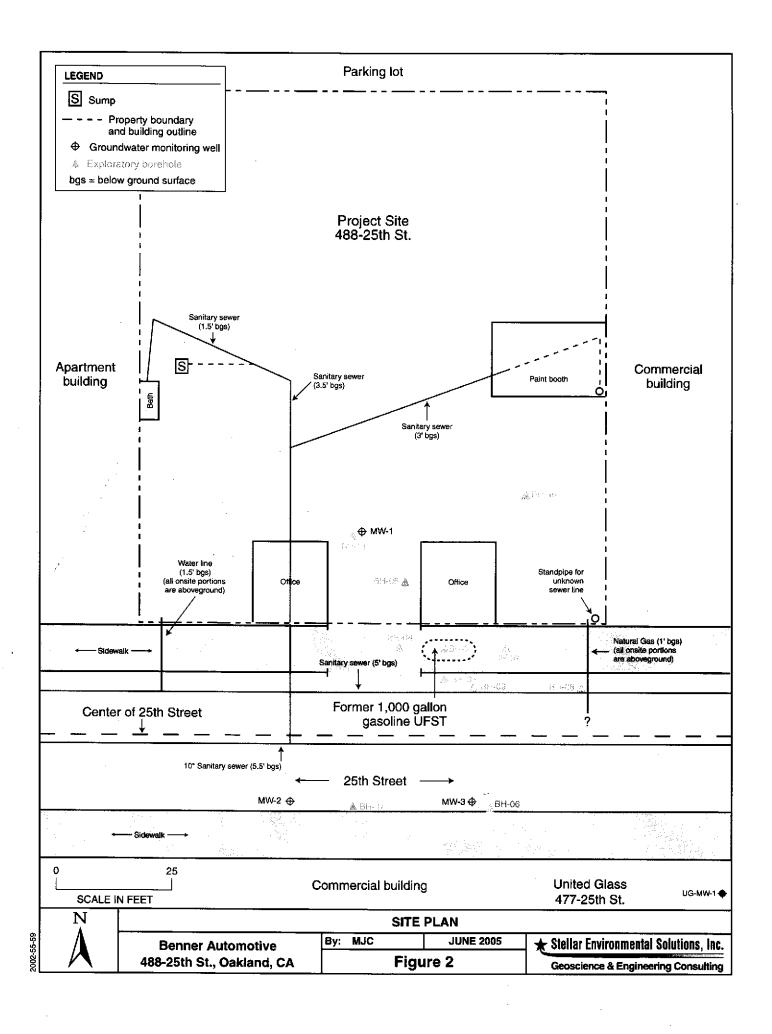
Prepared by: Paresh Khatri	Title: Hazardous Materials Specialist			
Signature: DWW Link:	Date: November 5, 2008			
Approved by: Donna L. Drogos, P.E.	Title: Supervising Hazardous Materials Specialist			
Signature:	Date: 11/06/08			

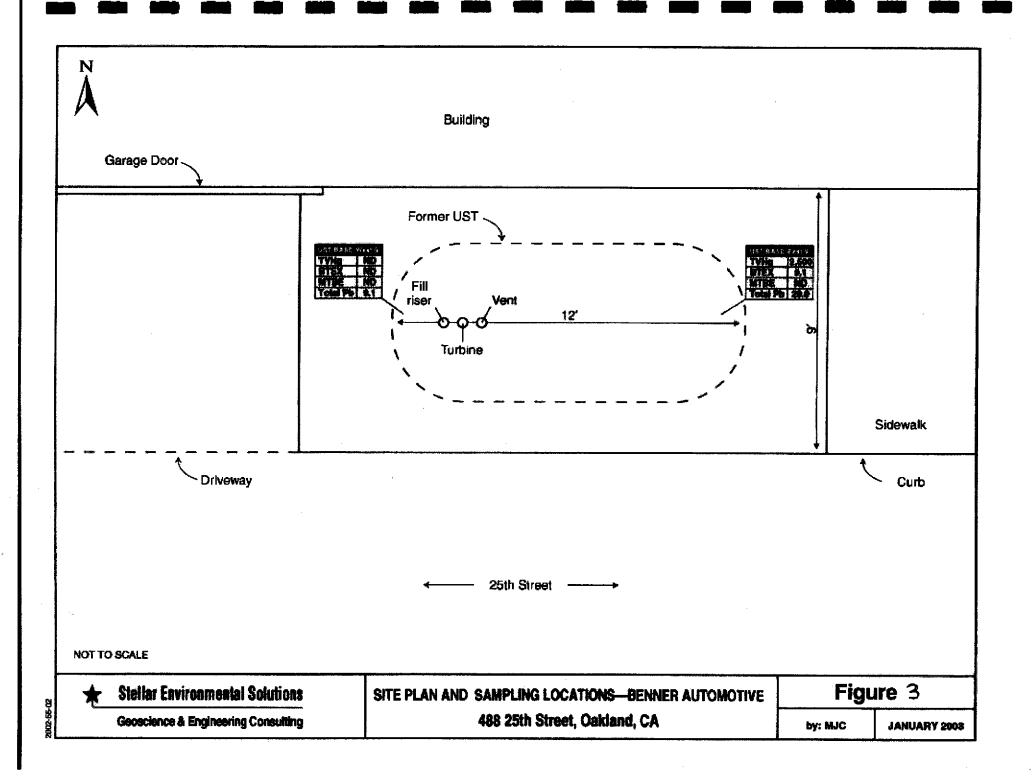
This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions.

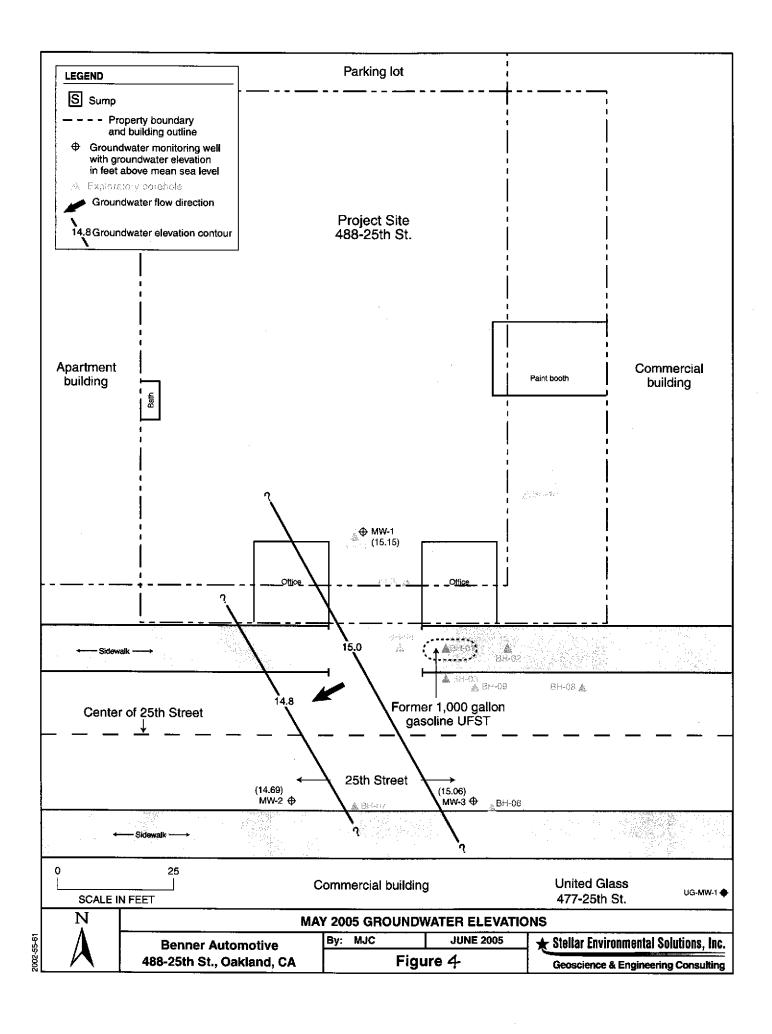
VII. REGIONAL BOARD NOTIFICATION

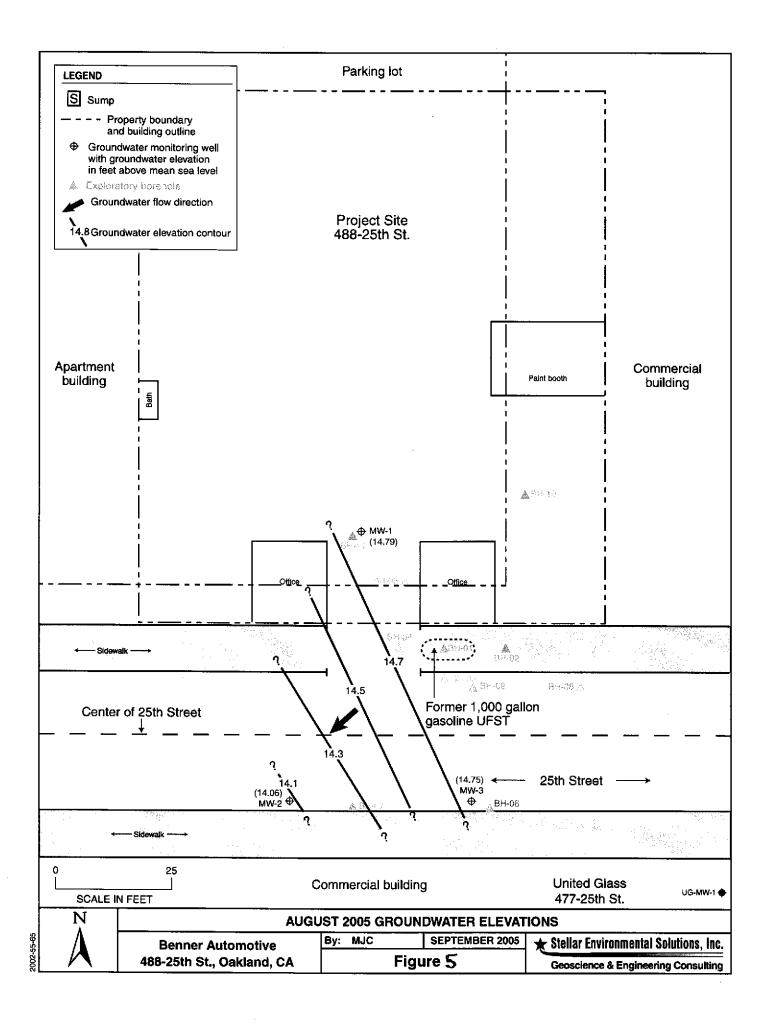
Regional Board Staff Name: Cherie McCaulou	Title: Engineering Geologist	
RB Response: Concur, based solely upon information contained in this case closure summary.	Date Submitted to RB:	
Signature Che Melanl	Date: 1/21/09	

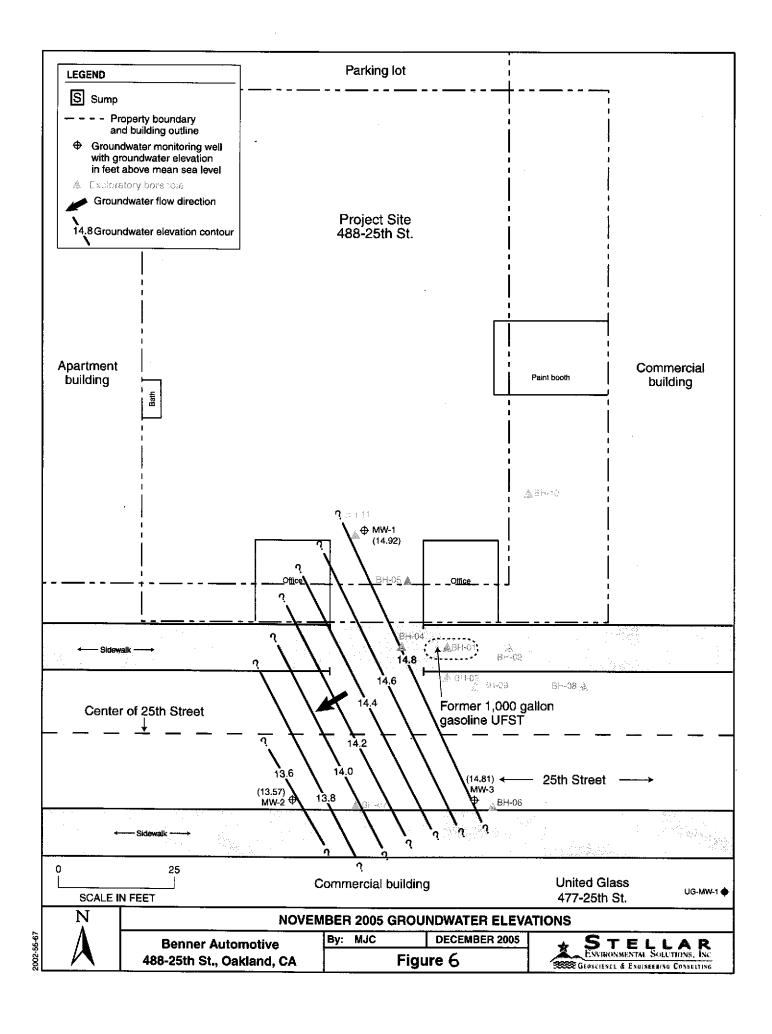

VIII. MONITORING WELL DECOMMISSIONING

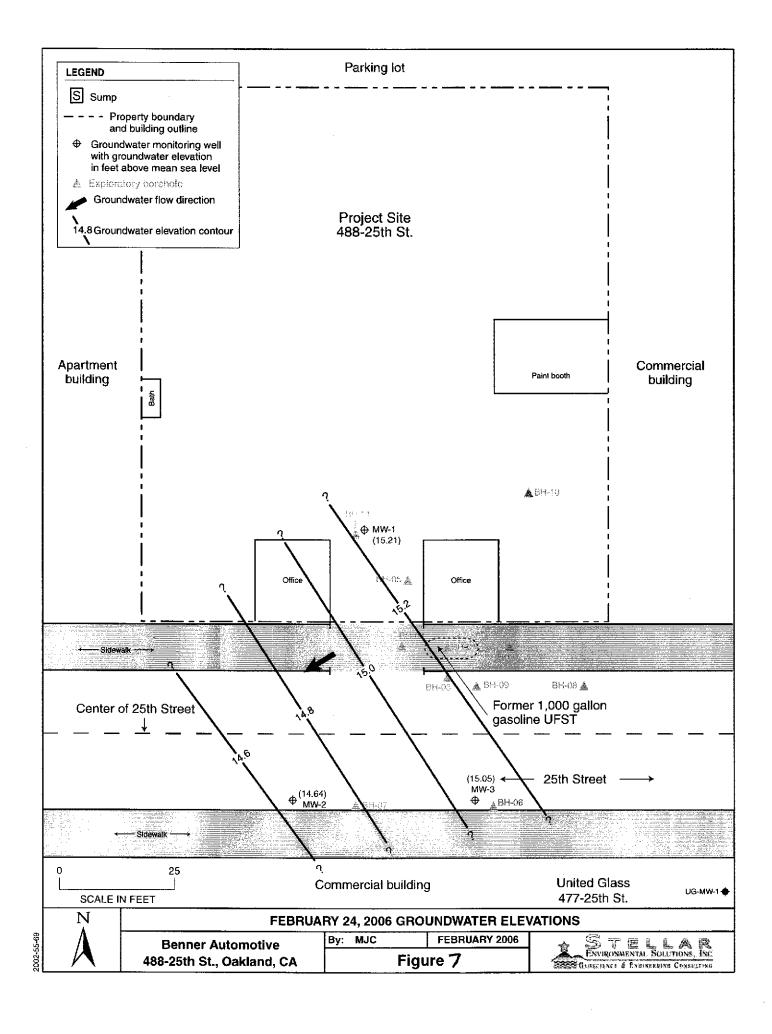

Date Requested by ACEH:	Date of Well Decommissioning Report:			
All Monitoring Wells Decommissioned: No	Number Decommissioned:	Number Retained:		
Reason Wells Retained:				
Additional requirements for submittal of ground	water data from retained wells: None	9		
ACEH Concurrence - Signature:		Date:		

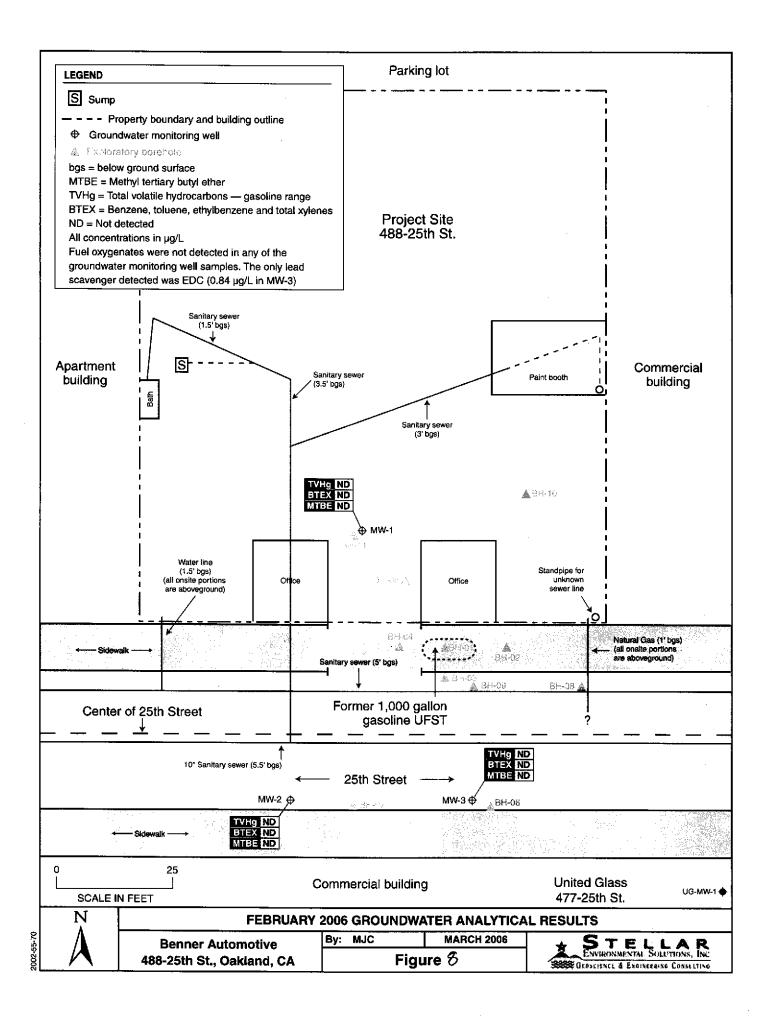

Attachments:

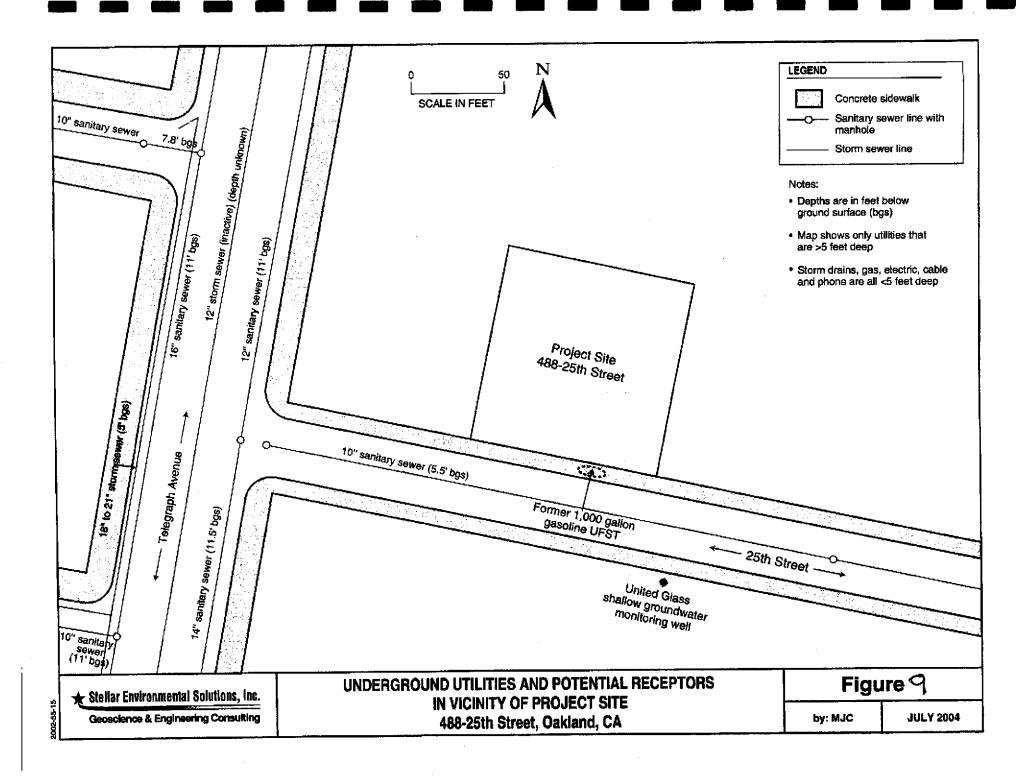

- 1. Site Vicinity Map (1 page)
- 2. Site Plan with Sample Locations & GW flow direction (7 pages)
- 3. Site Plan depicting Subsurface Utilities (1 page)
- 4. Site Plan with Cross-sections (3 pages)
- 5. Soil and Groundwater Analytical Data (5 pages)
- 6. Groundwater Elevation Table (1 page)
- 7. Preferential Pathway Survey Findings Table (1 page)
- 8. Tables 1 & 2 (Comparison of residual contamination to applicable ESLs) [2 pages]
- Monitoring Well Construction Details and Boring Logs (33 pages)

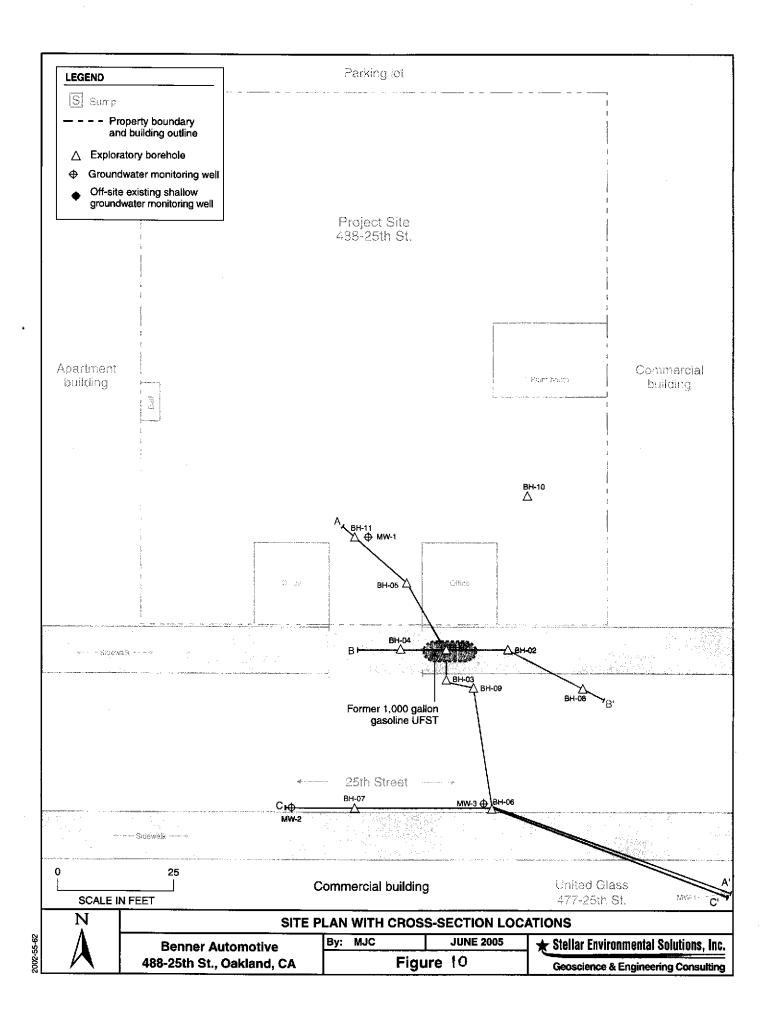

This document and the related CASE CLOSURE LETTER & REMEDIAL ACTION COMPLETION CERTIFICATE shall be retained by the lead agency as part of the official site file.

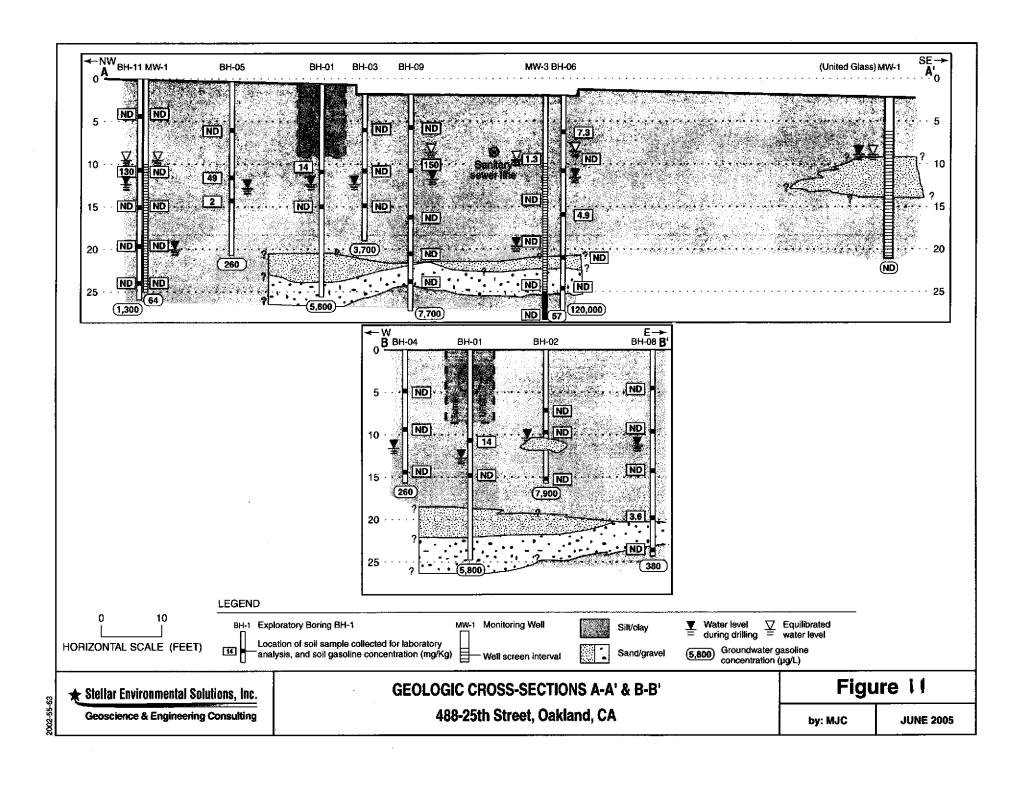


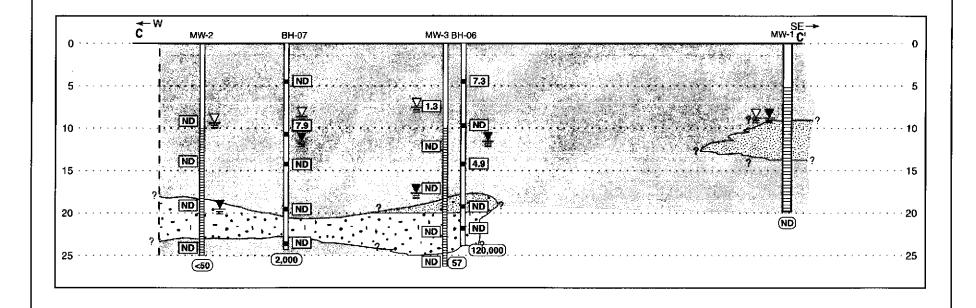


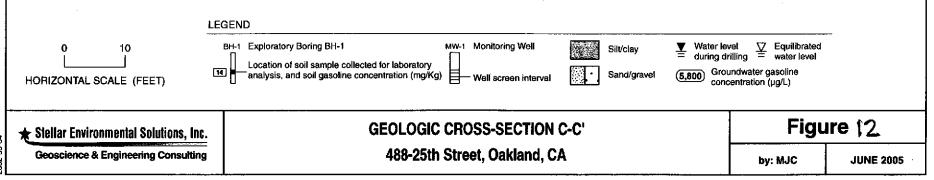












SAMPLER RA

Table C-1 Historical and Current Soil Analytical Results 488 25th Street, Oakland, California ^(a)

Sample LD.	Sample Depth (leet)	The state of the s	Вевхене	Toluent	Ethyl benzene	Total Xylenes	WIBE	Lead Scavengers and Fuel Oxygenates ⁽⁶⁾
January 2003 Base o	f UFST Exc	avation Soil Sa	mples					• • • • • • • • • • • • • • • • • • • •
UFST Base-East	9.0	2,500	<1.7 ^(b)	<1.7 (b)	<1.7 (b)	<1.7 (b)	<1.7 ^(b)	NA.
UFST Base-West	9.0	<1.1	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0053	NA
July 2003 Explorator	ry Borehole	Soil Samples						
BH-1-10'	10.0	14	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 0.022	NA
BH-1-14'	14.0	<1.1	< 0.0053	< 0.0053	< 0.0053	< 0.0053	<0.021	NA.
BH-2-6.5°	6.5	<1.1	< 0.0054	< 0.0054	< 0.0054	< 0.0054	<00022	NA
BH-2-9°	9.0	<1.0	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.020	NA
BH-2-15'	15.0	<1.1	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.021	NA
BH-3-5'	5.0	<1.0	< 0.0052	<0.0052	< 0.0052	< 0.0052	< 0.021	NA.
BH-3-9'	9.0	<1.1	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 0.022	NA NA
BH-3-13'	13.0	<1.0	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.021	NA
BH-4-5'	5.0	<1.0	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.020	NA.
BH-4-9'	9.0	<1.0	< 0.0052	<0.0052	< 0.0052	< 0.0052	<0.021	NA
BH-4-13'	13.0	<1.1	< 0.0055	< 0.0055	< 0.0055	< 0.0055	< 0.022	NA NA
BH-5-6.5'	6.5	<].]	< 0.0054	< 0.0054	<0.0054	< 0.0054	< 0.022	NA
BH-5-11.5'	11.5	49	< 0.010	<0.010	< 0.010	< 0.010	< 0.040	NA.
BH-5-13'	13.0	1.7	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.021	NA:
July 2004 Explorator	ry Borebole	Soil Samples	<u>'</u>			·		
BH-06-4.5'	4.5	7.3	< 0.0056	< 0.0056	< 0.0056	<0.0056	<0.0048	ND
BH-06-9.5'	9.5	<1.1	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0049	ND
BH-06-14.5'	14.5	4.9	< 0.0054	0.0082	< 0.0054	< 0.0054	< 0.0047	ND
BH-06-19.5'	19.5	<1.1	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 0.0049	ND
BH-06-22.5'	22.5	<1.0	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0045	ND
BH-07-4.5'	4.5	<1.1	< 0.0053	< 0.0053	< 0.0053	< 0.0053	<0.0050	ND
BH-07-10.5'	10.5	7.9	< 0.0054	0.009	< 0.0054	< 0.0054	< 0.0047	ND
BH-07-14.5°	14.5	< 0.98	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0045	ND
BH-07-19.5'	19.5	< 0.96	< 0.0048	< 0.0048	<0.0048	< 0.0048	< 0.0049	ND
BH-07-23.5'	23.5	<1.0	< 0.0052	< 0.0052	<0.0052	< 0.0052	< 0.0046	ND
BH-08-4.5°	4.5	<1.0	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.0049	ND
BH-08-9.5'	9.5	<1.1	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0047	ND
BH-08-14.5'	14.5	< 0.97	< 0.0049	<0.0049	< 0.0049	< 0.0049	< 0.0045	ND
BH-08-20'	20	3.6	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 0.0049	ND

(Table continued and footnotes on next page)

Table C-1 continued

Sample I.D.	Sample Depth (feet)		Benzene	Toluene	Ethyl- benzene	Total Xylenes	WE BIG	Lead Scavengers and Fuel Oxygenates ^(c)
July 2004 Explorate	ory Borehole	Soil Samples (continued)		P-7-11			
BH-08-23.5'	23.5	<1.1	< 0.0055	< 0.0055	< 0.0055	<0.0055	< 0.0046	ND
BH-09-4.5'	4.5	<1.0	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0045	ND
BH-09-11'	11	150	< 0.0500	< 0.0500	< 0.0500	0.120	< 0.0049	ND
BH-09-15.5'	15.5	< 0.99	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0045	ND
BH-09-19.5°	19.5	<0.98	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0047	ND
BH-09-23.5°	23.5	<1.0	< 0.0051	< 0.0051	< 0.0051	< 0.0051	<0.0049.	ND
BH-10-4.5'	4.5	<1.0	< 0.0052	< 0.0052	< 0.0052	< 0.0052	<0.0049	ND .
BH-10-9.5'	9.5	<1.1	<0.0055	< 0.0055	< 0.0055	< 0.0055	< 0.0047	ND
BH-10-14.5'	14.5	<1.0	< 0.0052	< 0.0052	< 0.0052	< 0.0052	<0.0048	ND
BH-10-19.5'	19.5	< 0.99	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0045	ND
BH-10-23.5'	23.5	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0047	ND
BH-11-4.5'	4.5	< 0.97	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	ND
BH-11-11'	11	130	< 0.0250	0.240	<0.0250	<0.0250	< 0.0047	ND
BH-11-15'	15	<1.0	< 0.0051	< 0.0051	< 0.0051	<0.0051	< 0.0050	. ND
BH-11-19.5	19.5	<1.0	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.0048	ND
BH-11-23.5'	23.5	<1.0	< 0.0052	<0.0052	< 0.0052	<0.0052	< 0.0046	ND
	Soil ESLs (6)	100 / NLP	0.045 / 0.5	2.6 / 420,000	2.5 / 13,000	1.0 / 100,000	0.028 / 5,600	Various

Notes:

TVHg = Total volatile hydrocarbons – gasoline range.

NLP = No level published.

NA = Not analyzed for these constituents.

ND = Not detected (see Appendix D for reporting limits).

⁽a) All concentrations in mg/kg.

⁽b) High concentrations of gasoline required sample dilution, resulting in the listed increased method reporting limit.

⁽c) See Appendix D for full list of analytes.

⁽d) ESL = RWQCB Environmental Screening Levels for commercial/industrial sites with coarse-grained soil where groundwater is a potential drinking water source. First value is for shallow soils. Second value is for evaluation of potential indoor air impacts.

Table C-2 Historical Borehole and Grab-Groundwater Analytical Results 488 25th Street, Oakland, California ^(a)

Sample I.D.	Sample Depth (feet)	TVHg	Benzene	- Faluene	Ethyl- benzene	Total Xylenes	WEBE	Lead Scavengers and Fuel Oxygenates ^(b)
July 2003 Bo	rehole Groun	dwater Samp	les	-				
BH-01- GW	~ 10-11	5,800	<0.50	<0.50	7.4	4.5	<2.0	NA.
BH-02- GW	~ 10-11	7,900	<13	15	24	61	<50	NA
BH-03- GW	~ 10-11	3,700	<1.0	<1.0	<1.0	<1.0	<4.0	NA.
BH-04- GW	~ 10-11	260	< 0.50	< 0.50	<0.50	< 0.50	<2.0	NA
BH-05- GW	~ 10-11	260	<0.50	< 0.50	< 0.50	< 0.50	3.1	. NA
July 2004 Bo	rehole Groun	dwater Samp	les			•		
BH-06- GW	~ 12-16	120,000	<13	<13	70	540	<1.7	ND
BH-07- GW	~ 12-16	2,000	< 0.50	3.4	8.1	14	< 0.50	ND
BH-08- GW	~ 12-16	380	< 0.50	0.77	< 0.50	1.6	< 0.50	ND
BH-09- GW	~ 12-16	7,700	<1.0	<1.0	21	39.7	< 0.50	ND
BH-10- GW	~ 12-16	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	ND
BH-11- GW	~ 12-16	1,300	<0.50	<0.50	0.88	6.0	8.2	ND
July 2004 Ui	nited Glass Gr	roundwater M	lonitoring W	ell Sample (gra	ab sample)			111.29-12-18
MW-1	NA	<50	< 0.50	< 0.50	<0.50	< 0.50	1.2	ND
Groundy	vater ESLs ^(c)	100 / NLP	1.0 / 1,800	40 / 530,000	30 / 47,000	13 / 160,000	5.0 / 80,000	Various
Dri	inking Water Standards ^(d)	NLP	1.0	40	30	20	5.0 ^(e) / 13	Various

Notes:

TVHg = Total volatile hydrocarbons – gasoline range.

NLP = No level published.

NA = Not analyzed for these constituents.

ND = Not detected (see Appendix D for reporting limits).

 $^{^{(}a)}$ All concentrations in $\mu g/L$. $^{(b)}$ See Appendix D for full list of analytes.

⁽c) ESL = RWQCB Environmental Screening Levels for commercial/industrial sites with coarse-grained soil where groundwater is a potential drinking water source. First value is groundwater ESL. Second value is for evaluation of potential indoor air impacts (high permeability soil).

(d) Primary Maximum Contaminant Level (MCL), unless specified otherwise.

(e) Secondary (nuisance) MCL.

Table 3 Historical Groundwater Monitoring Well Groundwater Analytical Results – 488 25th Street, Oakland

Sample I,D.	TVHg	Benzene:	Toluene	Ethyi- benzene	Total Xylenes	МТВЕ	Fuel Oxygenates (a)
May 2005 Event							
MW-1	64	< 0.5	< 0.5	< 0.5	< 1.00	< 0.5	ND
MW-2	< 50	< 0.5	< 0.5	< 0.5	< 1.00	< 0.5	ND
MW-3	57	< 0.5	< 0.5	< 0.5	< 1.00	< 0.5	ND
August 2005 Event							
MW-1	66	< 0.5	0.57	< 0.5	< 1.00	< 5.0	ND
MW-2	< 50	< 0.5	< 0.5	< 0.5	< 1.00	< 5.0	ND
MW-3	< 50	< 0.5	< 0.5	< 0.5	< 1.00	< 5.0	EDC = 0.62
November 2005 Event							
MW-1	< 50	< 0.5	< 0.5	< 0.5	< 1.00	< 1.0	ND
MW-2	< 50	< 0.5	< 0.5	< 0.5	< 1.00	< 1.0	ND
MW-3	< 50	< 0.5	< 0.5	< 0.5	< 1.00	< 1.0	EDC = 0.62
February 2006 Event							
MW-1	< 50	< 0.5	< 0.5	< 0.5	< 1.00	< 1.0	ND
MW-2	< 50	< 0.5	< 0.5	< 0.5	< 1.00	< 1.0	ND
MW-3	< 50	< 0.5	< 0.5	< 0.5	< 1.00	< 1.0	EDC = 0.84
Groundwater ESLs (b)	100 / 500	1.0 / 46	40 / 130	30 / 290	13 / 13	5.0 / 1,800	EDC = 0.50 / 200
Drinking Water Standards ^(c)	NLP	5.0	1,000	700	10,000	13 ^(c)	Various

Notes:

EDC = 1,2-dichloroethane

MTBE = methyl tertiary-butyl ether TVHg = total volatile hydrocarbons, gasoline range

All concentrations are in micrograms per liter (µg/L).

ND = not detected (see Appendix B for reporting limits)

NLP = no level published

⁽a) Table reports only detected fuel oxygenates and lead scavengers.

⁽h) ESLs = Regional Water Quality Control Board, San Francisco Bay Region Environmental Screening Levels for commercial/industrial sites. First value is for sites where groundwater is a potential drinking water resource; second value is for sites where groundwater is not a potential drinking water resource.

⁽c) Primary Maximum Contaminant Level, unless specified otherwise.

⁽d) State of California Public Health Goal.

TABLE 4
Historical Groundwater Elevations and Depths in Monitoring Wells
488 - 25th Street, Oakland, California

Measurement Date		MW-1	MW-2	MW-3
May-05	Elevation (a)	15.15	14.69	15.06
way-00	Depth (b)	10.09	9.02	8.8
Aug-05	Elevation (a)	14.79	14.06	14.75
Aug-00	Depth (b)	10.45	9.65	9.11
. Nov-05	Elevation (a)	14.92	13.57	14.81
, 1404-05	Depth (b)	10.32	10.14	9.05
Feb-06	Elevation (a)	15.21	14.64	15.05
1 ED-00	Depth ^(b)	15.21	14.64	15.05

⁽a) Elevations are in feet above mean sea level

⁽b) Depths are in feet below top of well casing (approximately ground surface)

Table 5
Preferential Pathway Survey Findings
Vicinity of 488 25th Street, Oakland, California

Underground Utility	Agency / Birm	Totalice Description and Tecaffoli		
City of Oakland - Records and Maps		Offsite: 10" diameter line beneath 25th Street 12" and 16" diameter lines beneath Telegraph Avenue	5.5' 11'	No Possible but unlikely
	City of Oakland Public Works - Sewer Maintenance	Onsite: Service from 25th Street to subject property building.	3'	No
Storm Sewer City of Oakland - Records and Maps		Offsite: 18" to 21" diameter line beneath Telegraph Avenue 12" diameter line, inactive, beneath Telegraph Avenue	5' Unknown	No Possible but unlikely
		Onsite: No underground components.	Not applicable	No
D-i-1: W/	East Bay Municipal	Offsite: Service from surrounding streets / sidewalks onto adjacent and vicinity parcels, including sidewalk in front of site.	1.5'	No
Drinking Water	Utility District	Onsite: No underground components. Service from 25 th Street into the subject property building.	3° to 4°	No
Electric	Pacific Gas & Electric – Service Planning Department	Offsite and Onsite: No underground components.	Not Applicable	No
Natural Gas	Pacific Gas & Electric - Service Planning Department	Offsite: Service from surrounding streets / sidewalks onto adjacent and vicinity parcels. Onsite: Service from 25th Street into the subject property building.	1' to 2'	No

Stellar Environmental Solutions

Environmental Impacts in Soil

Benner Automotive 488 25th Street, Oakland, California

Table 1. Comparison of Maximum Residual Soil Concentrations at the Site to Relevant Cleanup Standards (mg/kg)

	TPH-g (mg/kg)	TPH-d (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl Benzene (mg/kg)	Xylenes (mg/kg)	MtBE (mg/kg)	EDC [1-2-dichloroethane] (mg/kg)	EDB [1-2-dibromoethane] (mg/kg)	Lead (mg/kg)
Maximum Residual Soil Concentrations at Site in milligrams per kilogram	2,500 ⁴		<1.7 ⁴	<1.7 ⁴	<1.7 ⁴	<1.7 ⁴	<1.7 ⁴	<0.005	<0.005	29
RWQCB, Region 2 ESLs ¹	83 ³	83 ³	0.044 ³	2.9 ³	2.3 ²	2.33	0.023 ³	0.00033 ³	0.0045 ³	200 ⁵

¹ Environmental Screening Levels (ESLs); Shallow Soil Screening Level for residential land use where potentially impacted groundwater is current or potential drinking water resource. Shallow soils defined as soils situated <3 meters below the ground surface. Depth to water ranges between 8.8 ft and 15.21 ft bgs.

Lowest ESL value based on direct exposure scenario. Depth to water ranges between Depth to water ranges between 8.8 ft and 15.21 ft bgs.

³ Lowest ESL value based on groundwater protection (soil leaching). Depth to water ranges between 8.8 ft and 15.21 ft bgs.

⁴ Soil sample collected at 9 feet bgs in January 2003. BH-01 installed in July 2003 located within the former UST pit detected 14 mg/kg TPH-g and <0.0054 mg/kg benzene at 10 feet bgs. Soil samples from BH-2, BH-3, & BH-4 located approximately 5 to 7 ft around the excavation perimeter did not detected TPH-g or BTEX above the laboratory detection limit. Depth to water ranges between 8.8 ft and 15.21 ft bgs.

⁵ Lowest ESL value based on urban area ecotoxicity criteria.

Environmental Impacts in Groundwater

Benner Automotive 488 25th Street, Oakland, California

Table 2. Comparison of Maximum Residual Groundwater Concentrations at the Site to Relevant Cleanup Standards (µg/L)

	TPH-g (µg/L)	TPH-d (µg/L)	TPH-ss (µg/L)	Kerosene (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl Benzene (µg/L)	Xylenes (μg/L)	MTBE (µg/L)	EDC [1-2-dichloroethane] (µg/L)	EDB [1-2-dibromoethane] (µg/L)
Maximum Residual Groundwater Concentrations at Site	<50 ⁷				<0.5 ⁷	<0.5 ⁷	<0.5 ⁷	<1.0 ⁷	<5.0 ⁷	0.84 ⁷	<0.5 ⁷
RWQCB Region 2 ESLs ²	100 ¹ 100 ² 210 ³ 210 ⁶	1.0 ¹ 170 ² 1.0 ³ 540 ⁴ 46 ⁵	40 ¹ 40 ² 150 ³ 380,000 ⁴ 130 ⁶	30 ¹ 30 ² 300 ³ 170,000 ⁴ 43 ⁶	20 ¹ 20 ² 1,800 ³ 160,000 ⁴ 100 ⁶	5 ¹ 5 ² 13 ³ 24,000 ⁴ 8,000 ⁶	0.05 ¹ 50,000 ² 0.05 ³ 150 ⁴ 1,400 ⁶	0.5 ¹ 7,000 ² 0.5 ³ 200 ⁴ 2,000 ⁶			
ASTM Tier 1 Standard Human Health RBSL (Benzene)	NA	NA	NA	NA	11,000 ⁴ 23.8 ⁵	32,800	77,500	NA	NA	NA	NA

¹ Environmental Screening Levels (ESLs) for impacted subsurface groundwater less than 10 feet, where groundwater IS a current or potential drinking water resource

² Final Groundwater Screening Level, based on ceiling value (taste and odor threshold)

³ Groundwater Screening Level, based on drinking water toxicity

⁴ Groundwater Volatilization to indoor air (residential) Level,

⁵ Groundwater Vapor Intrusion from groundwater to buildings (residential, chronic hazard quotient = 1)

⁶ Final Groundwater Screening Level, based on Aquatic Habitat

⁷ Sample collect on 02/27/2006 from monitoring well MW-3 located within approximately 5 ft of "grab" groundwater sample BH-06 that detected the maximum concentration of 120,000 μg/L TPH-g and <13 μg/L benzene.

*	S	T	E	L	L	A	R
	T-12.3 i	i tata bumilan	1214 121	T 435	7441	יָפּוּתוו	13.47
138888 7	FACCI	sere 4	Pac	12200		AMEHI	7587

Soil Boring and Well Construction Log

		_,,		BORING NUMBER MY	<u>N-1</u> Page _	1 of <u>3</u>					
PROJEC	T Benner	Auto	Repair	OWNER Benner	OWNER Benner Family Trust						
				PROJECT NUMBER 2002-55							
	DEPTH	25'		BOREHOLE DIA3	BOREHOLE DIA. 3.25-inch						
SURFA	CE ELEV	Unkn	own	WATER FIRST ENCOUNTERED							
	NG COMPAI	WY _	Vironex, Inc.	DRILLING METHOD	Geo Probe (Girect push)					
DRILLE	R Kurt		GEOLOGIST	Joe Dillan	DATE DRILLI						
DEPTH (feet)	GRAPHIC LOG	Sample Property Property	DESCRIPTION/SOIL	. CLASSIFICATION	REMARKS	WELL CONSTRUCTION N/W-1					
0-			Concrete pad	A CONTRACTOR OF THE CONTRACTOR	Continuous						
			Black sitty to sandy clay stiff, sl. friable, dry	(CL),	core sampling 100% recovery of core						
2 -											
3=											
14=											
5 =				-							
7											
8 =											
9 =											
10=	[MW-1-9.5]										

Well Construction Legend:

2" PVC screen (0.010-in, slots)

Groundwater encountered

本	S	RONM	E ENTA	L S	L	A ions,	RINC
~ **** ********	EDSCI	NCE 6	Eso	INEEL	erso (Cowsu	LTING

Seil Bering and Well Construction Log

		BORING NUMBER	<u>/W-1</u> Page	2 of 3				
PROJECT Benner Auto	Repair	OWNER Benner	Family Trust					
LOCATION 488-25th St		PROJECT NUMBER						
		A CONTRACTOR OF THE SECOND SEC						
SURFACE ELEV. Unkn	own	WATER FIRST ENCO	UNTERED	20'				
DRILLING COMPANY	Vironex, Inc.	DRILLING METHOD	DRILLING METHOD Geo Probe (direct push)					
DRILLER Kurt	GEOLOGIST							
DEPTH GRAPHIC TEE	DESCRIPTION/SOIL	CLASSIFICATION	REMARKS	WELL CONSTRUCTION MW-1				
10 - 11 - 11 -	10' Color change to blu- cohesive, petroleum od							
12								
13 - 14 - 14 - 5 15 - 15 - 15 - 15 - 15 -	14' Petroleum odor end	is ·						
16	16' Becomes sandy, silt si, moist 17' Gradation to silty cla							
18	18' Color change to bro stiff, cohesive, sl. moist	wn, becomes sandy,						
19 - MW-1-19.5								
Well Construction Legend:		rated #20/40 onite Sand	Portland cement water gr	encountered				

	5	T			L	A	R
	Envi	RONM	ENTA	u. So	DLUT	ions,	NC
**** €	EOSCIE	NCE &	Емо	INEES	ING (ONSU	LTING

Soil Boring and Well Construction Log

χ.		BORING NUMBER M	<u>N-1</u> Page _	3 of <u>3</u>				
PROJECT Benner Auto	Repair	OWNER Benner	OWNERBenner Family Trust					
		PROJECT NUMBER 2002-55						
		BOREHOLE DIA. 3.25-inch						
SURFACE ELEV. Unkne	own	WATER FIRST ENCOU	NTERED2	20'				
DRILLING COMPANY								
DRILLER Kurt	GEOLOGIS'	Joe Dinan	DATE DRILL	ED <u>5/25/05</u>				
DEPTH GRAPHIC TELES	DESCRIPTION/SOI	L CLASSIFICATION	REMARKS	WELL CONSTRUCTION MW-1				
20 21 22 23 24 MW-1-24.5	20' Saturated brown, se 23' Color change to blu cohesive, sl. moist		No water in borehole until 20'. Water level rose to ~11' bgs within 2 hours.					
25	Bottom of borehole = 2	5'		Bottom of Borehole				
26 — — 27 — 28 — 29 —								
30 -	·			Totals agreement to the control of t				

*	S Envi	RONM	E	L AL S	L	A ions,	R Inc
′‱‱ 6	ENSCIE	NCE 6	Enc	INCE	RING	Consu	TING

Soil Boring and Well Construction Log

	GEOZCIENCE & CUAIL	reating Consoling	BORING NUMBER MV	N-2 Page	<u>1</u> of <u>3</u>
ספט ובי	ст Benner Auto	Repair			
		treet			
	DEPTH25'		BOREHOLE DIA. 3.		
	CE ELEV. Unkn	own	WATER FIRST ENCOU		0'
		Vironex, Inc.	DRILLING METHOD _	Geo Probe (direct push)
DRILLE	R Kurt	GEOLOGIST	Joe Dinan	DATE DRILLI	_D 5/25/05
DEPTH	GRAPHIC ESE				WELL CONSTRUCTION
(leet)	Log 3	DESCRIPTION/SOIL	CLASSIFICATION	REMARKS	MW-2
0 _		Asphalt then concrete		Continuous core sampling	
		Black silty clay (CL), mo cohesive	od. stiff, sl. moist,		
3 4 5 6		4' Color change to brow	n, stiff		***************************************
7 7		7' Color change to blue stiff, friable, minor petro			× ×
9		8.5' Soft, moist, sl. friab	le		
10	MW-2-9.5'	10' Brown with grey mo	ttling, sl. moist, cohesive		
Well Constr	ruction Legend:	2" PVC screen (0.010-in. slots) Hydr bent pelle	onite [Sand	Portland cement & water grou	Groundwater encountered

点	S	T ONMI	E L	Soun	A TONS,	R
(SESSE)	DEOSCIEN	CE &	Engin	ERING	Consu	TING

Soil Boring and Well Construction Log

		BORING NUMBER M	AW-2 Page _	<u> </u>
PROJECT Benner Au	rto Repair	OWNER Benner	Family Trust	
LOCATION 488-25th	Street	PROJECT NUMBER	2002-55	
TOTAL DEPTH25'		BOREHOLE DIA.	3.25-inch	
SURFACE ELEV. Uni	<u>known</u>	WATER FIRST ENCO	UNTERED	
DRILLING COMPANY	Vironex, Inc.	DRILLING METHOD	Geo Probe	(direct push)
DRILLER Kurt	GEOLOGIS.	T Joe Dinan	DATE DRILL	ED <u>5/25/49</u>
DEPTH GRAPHIC TO THE LOG THE	DESCRIPTION SO	L CLASSIFICATION	REMARKS	WELL CONSTRUCTION MW-2
10 11 12 13 14 15 16 17 18 19 1 1 19 1 1 19 1 1	Brown clayey sand (SC sand is well-sorted (fin triable	e-graind), moist,		
Well Construction Legend:		trated #20/40 storuite Sand ets	Portland cement & water gro	

*	SENVI	RONM	ENTA	L a. Šc	L	A IONS,	R
18888: 6	ESECIE	mer å	Par	1 m # 10 A	uva i	N. N. S. ST.	7120

Soil Boring and Well Construction Log

		BORING NUMBER M	N-2 Page _	3 of 3
PROJECT Benner Auto	Repair	OWNER Benner	Family Trust	· ·
LOCATION 488-25th S		PROJECT NUMBER		
TOTAL DEPTH 25'		BOREHOLE DIA3	.25-inch	
SURFACE ELEV. Unkn				0'
DRILLING COMPANY _	Vironex, Inc.	DRILLING METHOD_	Geo Probe (direct push)
DRILLER Kurt	GEOLOGIST	T Joe Dinan	DATE DRILLI	
DEPTH GRAPHIC SEES CONTROL OF THE CO	DESCRIPTION/SOIL	CLASSIFICATION	REMARKS	WELL CONSTRUCTION
21	20' Saturated, soft		No water in borehole until 20'. Water level rose to -9' bgs within 3 hours.	
22	22' Color change to blu	e-grey, mod. stiff		
24	Grey silty clay (CL), stiff	f, cohesive, sl. moist		
25 (MW-2-24.5)				
26 —	Bottom of borehole = 2	5'		Bothom of Borehide
27 =	. '			
28 —				2
29 — — — 30 — — —				
Well Construction Legend:	2" PVC screen (0.010-in. slots) Hydr bent pelle	onite [] Sand	Portland cement & water grou	Groundwater encountered

*	S	T	E	L,	L	A	R
	ENVI	RONM	ENTA	LSO	DLUT	ЮNS,	INC
788888 n	FACCIE	nee A	Fue	16668	1110 1	AMENI	元子社 合

Soil Boring and Well Construction Log

				BORING NUMBER M	W-3 Page _	1 of 3
PROJE	CT Benne	r Auto	Repair	OWNERBenner	Family Trust	
			reet			
TOTAL	DEPTH	30,	N. C.	BOREHOLE DIA3	.25-inch	
SURFA	CE ELEV	<u>Unkn</u>	own	WATER FIRST ENCOU	INTERED2	<u>>0'</u>
DRILL	ING COMPA	NY _	Vironex, Inc.	DRILLING METHOD _	Geo Probe	(direct push)
DRILL	ER Kurt		GEOLOGIST	Joe Dinan	DATE DRILL	ED <u>5/25/05</u>
DEPTH (Seet)	GRAPHIC LDG	THE PERSON	DESCRIPTION/SOIL	. CLASSIFICATION	REMARKS	WELL CONSTRUCTION MW-3
0 =			Asphalt then concrete		Continuous core sampling	
1 =			No recovery from 0.5'	1		
2 =		1				
3-						
		1				
4		1	4' Black sitty clay (CL), friable, sl. moist, occ. gr			
5_		4	5' Blue-grey mottling			
_		1	o bido gioy motaling			
6-		1				
]				
7 =				÷		
8 =						
9 -		1	9' Petroleum odor			
	MW-3-9.5					

Well Construction Legend:

2" PVC screen (0.010-in. slots) Hydrated bentonite pellets #20/40 Sand Portland cement & water grout

Groundwater encountered

其	SENVI	RONN	ENTA	L L Še	L	A IONS,	RINC
	EOSCII	ENCE A	Eng	1822	DAG (Consu	LTING

Soil Boring and Well Construction Leg

	BORING NUMBER M	<u>N-3</u> Page _	_2_ of _3_ f
PROJECT Benner Auto Repair	OWNER Benner	Family Trust	
LOCATION 488-25th Street			wax needs named van van namen needs ne
TOTAL DEPTH30'	BOREHOLE DIA3		
SURFACE ELEV. Unknown	WATER FIRST ENCOU	INTERED2	20'.
DRILLING COMPANY Vironex, Inc.	DRILLING METHOD_	Geo Probe	(direct push)
DRILLER Kurt GEOLOGIS	T Joe Dinan	DATE DRILL	ED <u>5/25/05</u>
DEPTH GRAPHIC TEST DESCRIPTION/SOI	IL CLASSIFICATION	REMARKS	WELL CONSTRUCTION NW-3
10 10' Becomes blue-grey cohesive, sl. moist	sandy clay, soft,		
11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		idan estantean de la constante	
	own, sitty clay, blue-grey, noist		
14 Petroleum odor abs	ent		
15			
16			
17 Small gravel (<10%) angular		
Brown sandy clay (CL). v. moist but not saturate			
19			
20 7777			
	rated #20/40 lonite Sand	Portland cement & water grou	Groundwater encountered

本	SENVI	T RONM	ENT	L Sc	L	A ions,	R
1888	EOSCIE	nce 6	Ene	IMPES	uvo (ONSU	LTING

Soil Boring and Well Construction Log

LOCAT TOTAL SURFA DRILLI	DEPTH3 CE ELEV NG COMPAN	th S 10' Jnkr IY _		OWNER BROJECT NUMBOREHOLE DI WATER FIRST DRILLING ME	Senner F MBER _2 IA3.: ENCOUL THOD	amily Trust 2002-55 25-Inch VTERED2 Geo Probe (direct push) D 5/25/05
D€PTH (last)	GRAPHIC LOG	SALPLE	DESCRIPTION/SOIL	CLASSIFICATION		REMARKS	WELL CONSTRUCTION
20	MW-3-24-5		Brown gravelly clayey sa saturated. 20.5' Becomes moist Dark brown sandy clay (mod. stiff, minor gravel 28' Becomes v. stiff, sl. ii	CL), moist, coh		No water in borehole until 20'. Water level rose to -8.7' bgs. within 2 hours.	Bottom of Borehole
Well Constr	uction Legend:		2" PVC screen Hydra (0.010-in. slots) Hydra bento	nite S	20/40 and	Portland cement & water grou	Groundwater encountered

Stellar Environmental Solutions, Inc. 2198 Shith Street, Berkeley, CA 94710 Geoscience & Engineering Consulting

Soil Boring Log

	BORING NUMBER BH-1 Page 1 of 2
PROJECT Benner Automotive	OWNER Benner Automotive
LOCATION 488 25th St., Oakland	PROJECT NUMBER 2002-55
TOTAL DEPTH 25 feet	BOREHOLE DIA. 2-inch
SURFACE ELEV. Unknown	WATER FIRST ENCOUNTERED ~11 feet
DRILLING COMPANY EnProb	DRILLING METHOD GeoProbe
DRILLER Jeff Edmond GEOLOGIST	Bruce Rucker DATE DRILLED 7/7/03

DEPTH (feet)	GRAPHIC LOG	A STANFOR	instrument Reading	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-0-				Concrete sidewalk Tank excavation backfill: gravelly, clayey silt, dry, friable, not	Continuous core soil sampling
- 2 -			: <1	cohesive	"Instrument" is a photoionization detector (PID); readings are in
= 4 = 1			<1		ppmv
- 6 -			<1		Sample recovery is 100% unless indicated otherwise
8 =			<1		
10		8 56313 80	<1	Dark grey clay (CL), sl. stiff, v. cohesive, not friable, sl. moist	Water level = 10.2' deep after advancing to 12'
12			<1		W 12
14]		Onto 1414	<1		
- -16- -			<1	15.5': Becomes silty	Collect BH-1-GW (840 am) after advancing to 12'
18士			<1	18.5': Color change to brown	
= =20=			· <1	Brown clayey sand (SC), sl. friable, mod. cohesive, soft, wet	

Stellar Environmental Scietions, Inc. 2198 Sixth Street, Berkeley, CA 94710
Geoscience & Engineering Consulting

Soil Boring Log

PROJECT Benner Automotive

LOCATION 488 25th St., Oakland

TOTAL DEPTH 25 feet

SURFACE ELEV, Unknown

DRILLING COMPANY EnProb

DRILLER Jeff Edmond

BORING NUMBER BH-1 Page 2 of 2

OWNER Benner Automotive

PROJECT NUMBER 2002-55

BOREHOLE DIA. 2-inch

WATER FIRST ENCOUNTERED -11 feet

DRILLING METHOD GeoProbe

DATE DRILLED 7/7/03

DEPTH (feet)	GRAPHIC LOG	ALAMAN PARTY	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-20 <u>-</u>				·	2" sample recovery from 20.5'-22.5'
22			<1		÷
24-			<1	Grey and brown clayey gravel (GC), fully friable, wet. Gravel is small and subangular	8" sample recovery from 23'-25'
26-		-		Bottom of borehole = 25'	
28-					
30 <u> </u>				s.	
32-					
34- -					
36-					
- - 38-					
<u>.</u>					
40-					

	BORING NUMBER BH-2 Page 1 of 1
PROJECT Benner Automotive	OWNER Benner Automotive
LOCATION 488 25th St., Oakland	•
TOTAL DEPTH 16 feet	BOREHOLE DIA. 2-inch
SURFACE ELEV. Unknown	WATER FIRST ENCOUNTERED -11 feet
DRILLING COMPANY EnProb	DRILLING METHOD GeoProbe
DRILLER Jeff Edmond GEOLOGIST	Bruce Rucker DATE DRILLED 7/7/03

DEPTH (feet)	GRAPHIC LOG		INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
2 -			<1	Concrete sidewalk Black silty clay (CL), mod. stiff, cohesive, sl. friable, sl. moist	Continuous core soil sampling "Instrument" is a photoionization detector
4 -			<1		(PID); readings are in ppmv
6		31-3-0-5	<1	~6': Gradational color change to grey, silt absent, becomes stiff	Sample recovery is 100% unless indicated otherwise
- 8 -			<1	8,5': Becomes silty, sl. stiff	
= -10=		Bizg	8.5 105	9.5': Becomes v. moist and sandy (fine-grained), soft, cohesive	Water level = 10.2'
12-			140 100	Grey gravelly clay (GC), soft, wet, cohesive, gravel is small, ~20% and subrounded	deep after driving to 11'
			70	Blue-grey clay (CL), mod. stiff, cohesive, not friable, sl. moist	Collect BH-2-GW (950 am)
=14= ==================================		8 442-18*	25 <1		
-16-			«1	Bottom of borehole: 16'	
-18- -18-			Control of the Contro		
E ₂₀ =			WEST-ANDROPONIC TO PRODUCE TO THE TOTAL PRODUCE TO		

•	BORING NUMBER BH-3 Page 1 of 1
PROJECT Benner Automotive	OWNER Benner Automotive
LOCATION 488 25th St., Oakland	PROJECT NUMBER 2002-55
TOTAL DEPTH 16 feet	BOREHOLE DIA. 2-inch
SURFACE ELEV. Unknown	WATER FIRST ENCOUNTERED ~11 feet
DRILLING COMPANY EnProb	DRILLING METHOD GeoProbe
	Bruce Rucker DATE DRILLED 7/7/03

DEPTH (feet)	GRAPHIC LOG		INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	HEMARKS
- 0				Asphait, base rock & underlying concrete	Continuous core soil sampling
2			<1	Black silty clay (CL), mod. stiff, cohesive, sl. friable, sl. moist	"Instrument" is a photoionization detecto
4			ব	4.5': Color change to dark brown	(PID); readings are in ppmv
6		89558	বা		Sample recovery is 100% unless indicated otherwise
8			<1	8': Color change to grey	
		Bes Day	4	9'-9.5': Gravelly lens (gravel is small-medium)	
10			18	9.5': Becomes soft and moist	Water level = 10.3'
		1	80	10.5′: Sl. stiff, cohesive, not friable, sl. moist	deep after advancing to 11'
12-		1	8	11': Becomes stiff	Collect sample
		343-1 5	<1		BH-3-GW (1200)
14-			<1 <1	14.5':Becomes slmod. stiff	
16		4		Bottom of borehole: 16'	
18					
20					

	BORING NUMBER BH-4 Page 1 of 1
PROJECT Benner Automotive	OWNER Benner Automotive
LOCATION 488 25th St., Oakland	PROJECT NUMBER 2002-55
TOTAL DEPTH 16 feet	BOREHOLE DIA. 2-inch
SURFACE ELEV. Unknown	WATER FIRST ENCOUNTERED ~11 feet
DRILLING COMPANY EnProb	DRILLING METHOD GeoProbe
DRILLER Jeff Edmond GEOLOGIST	Bruce Rucker DATE DRILLED 7/7/03

DEPTH (feet)	GRAPHIC LOG	SECONDA SECOND	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-0-	,,,,,			Concrete	Continuous core
		11		Black silty clay (CL), mod. stiff, cohesive, sl. friable, sl. moist	soil sampling
-2 - 			ব		"Instrument" is a photoionization detector
- 4 -			<1	4.5': Color change to dark brown, stiff, cohesive, not friable, sl. moist	(PID); readings are in ppmv
- 6 - - 6 - 			<	A	Sample recovery is 100% unless indicated otherwise
- 8 <u>-</u>			<1	8.5': Blue grey silty, gravelly clay,	
			4	Gravel is ~10% and small, stiff, cohesive, sl. friable, sl. moist	
-10-		.	7	9': Gravel absent	Water level = 10'
			80	9.5': Becomes moist to wet, soft to sl. stiff, cohesive	deep after advancing to 15'
-12- 		1	110	10.5':Mod. stiff, v. cohesive, not friable, sl. moist	Collect sample BH-4-GW (1100)
		9-4-12	7	,	Bn-4-GW (1100)
-14- -			3		
		1	<1	A CONTRACTOR OF THE CONTRACTOR	
-16- -	and from the same of the same	1		Bottom of borehole: 16'	
- -18-					
				The second secon	
-20-				na anti-	

Stellar Environmental Solutions, Inc. 2198 Shith Street, Berkeley, CA 94710 Geoscience & Engineering Consulting

Soil Boring Log

	BOKING NUMBER DATES Page Of
PROJECT Benner Automotive	OWNER Benner Automotive
LOCATION 488 25th St., Oakland	PROJECT NUMBER 2002-55
TOTAL DEPTH 19 feet	BOREHOLE DIA. 2-inch
SURFACE ELEV. Unknown	WATER FIRST ENCOUNTERED ~12 feet
	DRILLING METHOD GeoProbe
	Bruce Rucker DATE DRILLED 7/7/03

DEPTH (Next)	GRAPHIC LOG		INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-0-	1111			Concrete	Castinuana
				Black silty clay (CL), mod. stiff, cohesive, sl. friable, sl. moist	Continuous core soil sampling
- 2 - - -			<1		"Instrument" is a photoionization detecto
4 =			<1	4.5': Color change to dark brown,	(PID); readings are in ppmv
6 -			ব	stiff, cohesive, not friable, sl. moist	Sample recovery is 100% unless indicated
- - 8 -		B +6-6.2	< 1		otherwise
			10	9': Color change to grey, sl. stiff,	Borehole dry after advancing to 11'
-10-			3	cohesive, not friable, sl. moist	Water level = 10.6'
		tin the	1,230	12': Becomes soft to sl. stiff, minor free water in sample	water lever ≥ 10.6 deep after advancing to 15'
-12- - -			780 9		Collect sample BH-5-GW (1240)
14=		\$0+46-12°	26		
: <u> </u> ‡			25	15': Becomes mod. stiff	
-16-			<1	40% Colon shanne to and become	
: 士			<1	18': Color change to red brown	
-18-			<1	18.5': Becomes sandy clay, sand is fine-grained, sl. moist, sl. cohesive, friable	
20				Bottom of borehole: 19'	

	BORING NUMBER BH-06 Page 1 of 3
PROJECT Benner Auto Repair	OWNERJoseph & Loretta Benner Trust
	PROJECT NUMBER 2003-55
TOTAL DEPTH 24 feet	BOREHOLE DIA. 2-inch
	WATER FIRST ENCOUNTERED ~12 feet
DRILLING COMPANY Gregg Drilling	DRILLING METHOD GeoProbe (direct push)
DRILLER Don GEOLOGIST	

DEPTH (Mean)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-0- 			asphalt then concrete (roadbed)	"Instrument" is a photoionization detector calibrated for gasoline. "Readings" are in parts
			1' Black silty clay (CL), mod stiff, cohesive, sl. friable, sl. moist, organics	per million per volume air (ppmv)
-2-				Continuous core soil sampling, 100% sample recovery unless specified otherwise
-3-		94		1' hand-augered to 2.5 to clear utilities
	BH-06-4.5	17		
- - 6 -		7	5.5° color change to dark brown, v. stiff, dry	
7		14		
8 -		15	7.5' color change to blue-grey, mod. stiff, sl. moist	7.5' petroleum odor begins
- 9 - - 9 -		9		
10	BH-06-9.5'	14	9.5' becomes sandy (fine-grained), silty clay (CL), cohesive, sl. friable, v. moist	

	BORING NUMBER BH-06 Page 2 of 3
PROJECT Benner Auto Repair	OWNER Joseph & Loretta Benner Trust
	PROJECT NUMBER 2003-55
TOTAL DEPTH 24 feet	BOREHOLE DIA. 2-inch
	WATER FIRST ENCOUNTERED ~12 feet
	DRILLING METHODGeoProbe (direct push)
DRILLER Don GEOLOGIST	B. Rucker DATE DRILLED 7/8/04

DEPTH (tost)	Graphic Log	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10- -11- -12-		310 487	11.5' brown with grey mottling, cohesive, not friable	12' Water enters
-13-		84	12' Mod. stiff, sl. moist	borehole after the 8' to 12' sampling run, but borehole swells shut at 11'. 5' long, 1" diamete PVC slotted casing installed to 12'. Water
15-	BH-06-14.5	41 27		level is 9.7' within several minutes. Grab- groundwater sample "BH-06-GW" collected a 845 a.m. Remove casing, continue direct-
16-		12	15.5' Olive grey clay (CL), soft, sticky, moist, no discernible silt	push drilling and sampling. 12.5' petroleum odor absent
18-		38	17.5' Color change to red brown, sl. moist	
19 1	BH-06-19.5°	10	Red-brown clayey sand (SC), sl. cohesive, friable, sl. moist, sand is fine-grained	
20	777/	8	19.5' Becomes gravelly, clayey sand (SC), moist to wet, gravel is small, ~20%, angular to sub-angular	

PROJECT Benner Auto Repair

LOCATION 488-25th Street

TOTAL DEPTH 24 feet

SURFACE ELEV. 24.06 feet amsi

DRILLING COMPANY Gregg Drilling

DRILLER Don

BORING NUMBER BH-06 Page 3 of 3

OWNER Joseph & Loretta Benner Trust

PROJECT NUMBER 2003-55

BOREHOLE DIA. 2-inch

WATER FIRST ENCOUNTERED -12 feet

DRILLING METHOD GeoProbe (direct push)

DRILLER Don

GEOLOGIST B. Rucker

DATE DRILLED 7/8/04

DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SQL CLASSIFICATION	REMARKS
-20- -21- -22- -23-	BH-08-22.5	.4 38	50% sample recovery from 20' to 24' Saturated. Deepest competent sample (within sampling sleeve) was at 23'. Generlly same lithology as at 19.5'	
-24 -25 -25 -26 -27 -27 -28 -30 -30			TD = 24'	24' Following all sampling, install 10' long, 1" diameter PVC casing to 20' (borehole swelled shut at 20'), cap the piezometer and enshroud near-surface annulus with plastic and clay clumps Water level on 7/9/04 = 9.14' (relative to top of piezometer casing)

	BORING NUMBER BH-O/ Page 1 of 3
PROJECT Benner Auto Repair	OWNERJoseph & Loretta Benner Trust
LOCATION 488-25th Street	PROJECT NUMBER 2003-55
TOTAL DEPTH 24 feet	BOREHOLE DIA. 2-inch
SURFACE ELEV. 24.30 feet amsl	WATER FIRST ENCOUNTERED ~12 feet
DRILLING COMPANY Gregg Drilling	DRILLING METHOD GeoProbe (direct push)
DRILLER Don GEOLOGIST	B. Rucker DATE DRILLED 7/8/04

DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
0 =			asphalt then concrete (roadbed)	"Instrument" is a photoionization detector calibrated for gasoline. "Readings" are in parts
			1' Black sitty clay (CL), mod stiff, cohesive, sl. friable, sl. moist, organics	per million per volume air (ppmv)
2			•	Continuous core soil sampling. 100% sample recovery unless specified otherwise
		5		1' hand-augered to 2. to clear utilities
5	BH-07-4.5°	8		~2" water in borehole after the 8' to 12' sampling run, but insufficient to sample. Water enters borehole
6		6		after 12' to 16' sampling run. 10' long, 1" diameter PVC slotted casing installed to 16'. Water level is 9.5' within
7		5	7' color change to grey	several minutes. Grab- groundwater sample "BH-07-GW" collected a 1015 a.m. Remove
· #		5		casing, continue direct- push drilling and sampling.
		6	8.5' to 9.5' becomes gravelly clay (CL), mod. cohesive, dry	эанршу.
10-		8	9.5' blue-grey sifty clay, sift is trace, sl. stiff, cohesive, sl. moist	APPROXIMENTAL PROPERTY.

PROJECT Benner Auto Repair PROJECT NUMBER 2003-55 LOCATION 488-25th Street TOTAL DEPTH 24 feet SURFACE ELEV. 24.30 feet amsl DRILLING COMPANY Gregg Drilling DRILLING METHOD GeoProbe (direct push) DRILLER Don

BORING NUMBER BH-07 Page 2 of 3 OWNER _____Joseph & Loretta Benner Trust BOREHOLE DIA. 2-inch ____ WATER FIRST ENCOUNTERED ~12 feet GEOLOGIST B. Rucker DATE DRILLED 7/8/04

DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10-	BH-07-10.5	120	11' color change to brown, with red- brown mottling, mod. stiff, cohesive	
E12=		23	12' v. stiff, v. moist	
13-		17:	12.5' mod-sl. stiff, sl. moist 13' mod. stiff, silt is trace	
-14- 	BH-07-14.5°	21	14' becomes red-brown	·
-15- -15- -16-		5	15.5' si-mod. stiff	
-17		4	17' sl. stiff-soft, cohesive, sl. moist, silt is trace	
-18-		2	17.5' to 18' wet	
_ 19		2	18.5' becomes sandy clay (CL), cohesive, sl. moist, sand is v. fine-grained	
-20-	BH-07-19.5'	2	19.5' becomes gravelly, sandy clay (CL), sl. cohesive, friable, sl. moist, gravel is small-med., ~30%, angular-subangular	

	BORING NUMBER BH-U/ Page 3 of 3	
PROJECT Benner Auto Repair	OWNER Joseph & Loretta Benner Trust	
LOCATION 488-25th Street	PROJECT NUMBER 2003-55	
TOTAL DEPTH 24 feet	BOREHOLE DIA. 2-inch	
SURFACE ELEV. 24.30 feet amsl	·	
DRILLING COMPANY Gregg Drilling	DRILLING METHOD GeoProbe (direct push)	
DRILLER Don GEOLOGIST	B. Rucker DATE DRILLED 7/8/04	

(feet) 20-	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
21 -		2	Red-brown clayey, sandy gravel (GC), cohesive, si. friable, wet, gravel is small, subrounded	
"2]		. 2		
23]		э	Red-brown sandy clay (CL), sl. cohesive, sl. stiff, friable, wet	
- 4 -	BH-07-23.5	*		
			TD = 24'	24' Following all sampling, install 10' long 1" diameter PVC casing
5			•	to 23' (borehole swelled shut at 23'), cap the piezometer and enshrou
6-				near-surface annulus wi plastic and clay clumps
7=				Water level on 7/9/04 = 9.45' (relative to top of piezometer casing)
8				
9				
7		Service Control of the Control of th		
	-			

PROJECT Benner Auto Repair

LOCATION 488-25th Street

TOTAL DEPTH 24 feet

SURFACE ELEV. 24.54 feet amsl

DRILLING COMPANY Gregg Drilling

DRILLING COMPANY GREGG Drilling

DRILLING METHOD GeoProbe (direct push)

DRILLER Don GEOLOGIST B. Rucker

DATE DRILLED 7/8/04

DEPTH	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
0-1	LLANG	NEWHO	asphalt then concrete (roadbed)	"Instrument" is a photolonization detector calibrated for gasoline.
			1' Black silty clay (CL), v. stiff, cohesive, dry	"Readings" are in parts per million per volume air (ppmv)
-2-		⋖		Continuous core soil sampling. 100% sample recovery unless specified otherwise
		. ≪3		1' hand-augered to 2.5' to clear utilities
4 =	BH-08-4.5'	۵ (No water in borehole after the 8' to 12' sampling run. Water
-5- 5- -6-		্ৰ ব্য		enters borehole after 12' to 16' sampling run. 10' long, 1" diameter PVC slotted casing installed to 16'. Water level is 10' within several minutes.
- 7		ব্র	7' to 8' gradational color change to grey	Grab-groundwater sample "BH-08-GW" collected at 1130 a.m. Remove casing, continue direct-push
8 -		<3		drilling and sampling.
9 -	BH-08-9.5	<3		
 10 _		8	9.5' becomes gravelly, sandy clay (CL), dry, v. stiff, gravel is small, ~20%	

Stellar Environmental Solutions, Inc. 2198 Sixth Street, Borkeley, CA 94710 Geoscience & Engineering Consulting

Soil Boring Log

PROJECT Benner Auto Repair

LOCATION 488-25th Street

TOTAL DEPTH 24 feet

SURFACE ELEV. 24.54 feet amsl

DRILLING COMPANY Gregg Drilling

DRILLER Don

BORING NUMBER BH-08 Page 2 of 3

OWNER Joseph & Loretta Benner Trust

PROJECT NUMBER 2003-55

BOREHOLE DIA. 2-inch

WATER FIRST ENCOUNTERED ~12 feet

DRILLING METHOD GeoProbe (direct push)

DRILLER Don

GEOLOGIST B. Rucker

DATE DRILLED 7/8/04

DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10- - - -11- -		8	10.5' silty, sandy clay (CL), sl. stiff, cohesive, sl. moist, sand is very fine-grained	
-12-		.8		
-13- -		6	13' dark grey silty (trace) clay (CL), sl mod. stiff, v. cohesive, sl. moist	
-14-	BH-08-14.5	-3.	14.5' becomes red-brown	
-15-		<3		
16-		<3	16.5' becomes olive-grey, soft,	
-17-] -17-]		18	v. cohesive, wet, 17.5' becomes red-brown	
-18- -		<3	18.5' slmod. stiff, sl. moist	
-19-		3	19.5' gravelly sandy clay (CL), st. moist,	
20	BH-08-20'	ය	gravel is small, ~30%, angular- subrounded, sand is fine-med. grained	

PROJECT Benner Auto Repair

LOCATION 488-25th Street

TOTAL DEPTH 24 feet

SURFACE ELEV. 24.54 feet amsl

DRILLING COMPANY Gregg Drilling

DRILLER Don GEOLOGIST B. Rucker

BORING NUMBER BH-08 Page 3 of 3

OWNER Joseph & Loretta Benner Trust

PROJECT NUMBER 2003-55

BOREHOLE DIA. 2-inch

WATER FIRST ENCOUNTERED ~12 feet

DRILLING METHOD GeoProbe (direct push)

DRILLER Don GEOLOGIST B. Rucker

DATE DRILLED 7/8/04

DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-20- -21-		-3	Red-brown sand (SP), saturated, sand is fine-grained and well-sorted	
 22-		હ	Red-brown sandy, clayey gravel (GC), wet, gravel is v. small	
-23 -		« 3	Black silty clay (CL), v. stiff, sl. moist 23' becomes sl. stiff	
-24	BH-08-23.5	এ		24' Following all
-25- -25- 			TD = 24'	sampting, install 10' long, 1" diameter PVC casing to 24', cap the piezometer and enshroud near- surface annulus with plastic and clay clumps
 27-				Water level on 7/9/04 = 9.62' (relative to top of piezometer casing)
-29- - - -				·
-30- -				

PROJECT Benner Auto Repair

LOCATION 488-25th Street

TOTAL DEPTH 24 feet

SURFACE ELEV. 24.68 feet amsl

DRILLING COMPANY Gregg Drilling

DRILLER Don GEOLOGIST B. Rucker

BORING NUMBER BH-09 Page 1 of 3

OWNER Joseph & Loretta Benner Trust

PROJECT NUMBER 2003-55

BOREHOLE DIA. 2-inch

WATER FIRST ENCOUNTERED ~12 feet

DRILLING METHOD GeoProbe (direct push)

DRILLER Don GEOLOGIST B. Rucker

DATE DRILLED 7/8/04

DEPTH (feet)	GPAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
			asphalt then concrete (roadbed)	"Instrument" is a photoionization detector calibrated for gasoline. "Readings" are in parts
			1' Black silty clay (CL), v. stiff, cohesive, dry	per million per volume air (ppmv)
-2 - -		থ		Continuous core soil sampling. 100% sample recovery unless specified otherwise
-3-		ą		1' hand-augered to 2.5' to clear utilities
4 =	BH-09-4.5	<3		No water in borehole after the 8' to 12' sampling run. Water
-5- -5- -6-		থ		enters borehole after 12' to 16' sampling run. 10' long, 1" diameter PVC slotted casing installed to 16'. Water level is 6.5' within several
F 7 =		<3	6.5' color change to dark grey	minutes. Grab- groundwater sample "BH-09-GW" collected at 1330 a.m. Remove
8 =		<3	7.5' becomes dark brown with grey mottling	casing, continue direct- push drilling and sampling.
F 9 =		<3	9' becomes olive-grey	
F10-		в	9.5' becomes sl. stiff, moist	

	BORING NUMBER BH-09 Page 2 of 3
PROJECT Benner Auto Repair	OWNER Joseph & Loretta Benner Trust
LOCATION 488-25th Street	PROJECT NUMBER 2003-55
TOTAL DEPTH 24 feet	BOREHOLE DIA. 2-inch
SURFACE ELEV. 24.68 feet amsl	WATER FIRST ENCOUNTERED ~12 feet
DRILLING COMPANY Gregg Drilling	DRILLING METHOD GeoProbe (direct push)
DRILLER Don GEOLOGIST	B. Rucker DATE DRILLED 7/8/04

DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10-			10° sl. molst	
-11- -11-	BH-09-11'	146	11' v. stiff, dry	
-12-		6		
13-		< 3	12.5' dark grey with red-brown mottling, mod. stiff, cohesive, sl. moist	
14-	BH-09-15.5°	≪3	•	
 15 		43	•	
-16-		e3		
17		13	16.5' weł	
_ _18_		∢ 3	17.5' v. stiff, sl. moist 18' becomes red-brown, no silt	
= = =19=		حه ح	18.5' sl. stiff soft, wet	
-20-	BH-09-19.5 F	এ	19.5' red-brown, sandy clayey gravel (GC), sl. cohesive, friable, v. moist, sand is fine-grained, gravel is small	

	BORING NUMBER BH-09 Page 3 of 3
PROJECT Benner Auto Repair	OWNER Joseph & Loretta Benner Trust
LOCATION 488-25th Street	PROJECT NUMBER 2003-55
TOTAL DEPTH 24 feet	BOREHOLE DIA. 2-inch.
SURFACE ELEV. 24.68 feet arnsl	WATER FIRST ENCOUNTERED ~12 feet
DRILLING COMPANY Gregg Drilling	DRILLING METHOD GeoProbe (direct push)
DRILLER Don GEOLOGIST	B. Rucker DATE DRILLED 7/8/04

DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-20-		•		
		e e	Red-brown sandy clay (CL), soft, cohesive, wet	
23-	814-09-23.5	න න	Black silty clay (CL), cohesive, mod stiff, sl. moist-dry	
-24- -25- -25- -26- -27- -28- -29- -30-			TD = 24'	24' Following all sampling, install 10' long, 1" diameter PVC casing to 24', cap the piezometer and enshroud near-surface annulus with plastic and clay clumps Water level on 7/9/04 = 9.37' (relative to top of piezometer casing)

	BORING NUMBER BH-10 Page 1 of 3
PROJECT Benner Auto Repair	OWNER Joseph & Loretta Benner Trust
LOCATION 488-25th Street	PROJECT NUMBER 2003-55
TOTAL DEPTH 24 feet	BOREHOLE DIA. 2-inch
SURFACE ELEV. 25.65 feet amsl	WATER FIRST ENCOUNTERED ~12 feet
DRILLING COMPANY Gregg Drilling	DRILLING METHOD GeoProbe (direct push)
DRILLER Don GEOLOGIST	B. Rucker DATE DRILLED 7/8/04

CEPTH (feet)	GRAPHIC LOS	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	PEMATICS
			Concrete (floor)	"Instrument" is a photoionization detector calibrated for gasoline. "Readings" are in parts
E当			1' Black silty clay (CL), v. stiff, cohesive, dry	per million per volume air (ppmv)
2				Continuous core soil sampling. 100% sample recovery unless specified otherwise
		<3		1' hand-augered to 2.5' to clear utilities
F ⁴ ±	BH-10-4.5'	<3	4.5' color change to olive-grey	~1" water in borehole after the 8' to 12' sampling run, insufficient
E 5 1		ব্য	The solid sharings to onvo grey	to sample. Water enters borehole after 12' to 16' sampling run. 10' long, 1" diameter PVC slotted
F 6 - /		⊀3	6.5' becomes dark brown	casing installed to 16'. Water level is 11' within several minutes. Grab-
FT.		<3		groundwater sample "BH-10-GW" collected at 1445 a.m. Remove casing, continue direct-
E8		<3		push drilling and sampling.
E9	BH-10-9.5'	ব্য	8.5' to 9' minor small gravel	
F10=		<3		

PROJECT Benner Auto Repair

LOCATION 488-25th Street

TOTAL DEPTH 24 feet

SURFACE ELEV. 25.65 feet amsl

DRILLING COMPANY Gregg Drilling

DRILLER Don GEOLOGIST B. Rucker

BORING NUMBER BH-10 Page 2 of 3

OWNER Joseph & Loretta Benner Trust

PROJECT NUMBER 2003-55

BOREHOLE DIA. 2-inch

WATER FIRST ENCOUNTERED -12 feet

DRILLING METHOD GeoProbe (direct push)

DRILLER Don GEOLOGIST B. Rucker

DATE DRILLED 7/8/04

DEPTH (feet)	GRAPHIC LOG	Instrument Reading	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10- -11-		<3.	10.5' slmod. stiff, sl. moist, organics,	
12-		-8	11.5' color change to blue-grey, silt is trace	
-13-		<3		
14-	BH-10-14.5	<3		
-15-		<3	14.5' sl. stiff 15' mod. stiff	
16-		<3	16' v. soft 16.5' wet	
-17- -17-		<3	17.5' mod. stiff, sl. moist	
F ₁₈ =		∢3	18' v. stiff, sl. moist	
[19]	BH-10-19.5'	ব		
-20-		ব		,

PROJECT Benner Auto Repair

LOCATION 488-25th Street

TOTAL DEPTH 24 feet

SURFACE ELEV. 25.65 feet amsl

DRILLING COMPANY Gregg Drilling

DRILLING METHOD GeoProbe (direct push)

DRILLER Don GEOLOGIST B. Rucker

DATE DRILLED 7/8/04

DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-20-		new/w	Red-brown, sandy clayey gravel (GC), sl. cohesive, friable, v. moist, sand is	
-21 -		43	fine-grained, gravel is small Clayey sand (SC), wet	
			Clayey gravel (GC), wet	
		43	Clayey sand (SC), wet	
-23- 	BH-10-23.5	ଷ	Dark grey sandy clay (CL), sl. cohesive, friable, moist, sand is fine-grained	
-24- -25- -25- -26- -27- -27- -28- -29- -30-			TD = 24'	24' Following all sampling, install 10' long, 1" diameter PVC casing to 24', cap the piezometer and enshroud near-surface annulus with plastic and clay clumps Water level on 7/9/04 = 10.71' (relative to top of piezometer casing)

	BORING NUMBER BH-11 Page 1 of 3
PROJECT Benner Auto Repair	OWNER Joseph & Loretta Benner Trust
LOCATION 488-25th Street	PROJECT NUMBER 2003-55
	BOREHOLE DIA. 2-inch
SURFACE ELEV. 25.57 feet amsl	WATER FIRST ENCOUNTERED ~12 feet
DRILLING COMPANY Gregg Drilling	DRILLING METHOD GeoProbe (direct push)
DRILLER Don GEOLOGIST	B. Rucker DATE DRILLED 7/8/04

DEPTH (feet)	GRAPHIC LOG	INSTRUMENT PEACING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
- 0 =			Concrete (floor)	"Instrument" is a photoionization detecto calibrated for gasoline. "Readings" are in parts
			1' Black silty clay (CL), v. stiff, cohesive, dry	per million per volume air (ppmv)
2			·	Continuous core soil sampling. 100% sampli recovery unless specified otherwise
·3 —				1' hand-augered to 2 to clear utilities
*‡	BH-11-4.5	-3		No water in borehole after the 8' to 12' sampling run. Water
5 -		ď		enters borehole after 1 to 16' sampling run. 1 long, 1° diameter PVC slotted casing installed
6] [-3		to 16'. Water level is 10.8' within several minutes. Grab- groundwater sample
7】		ব		"BH-11-GW" collected 1540 a.m. Remove casing, continue direct-
8]		<3 `	8.5' color change to olive-grey	push drilling and sampling.
9 7		11	o.o color change to onvergies	
10		15		
Y				

PROJECT Benner Auto Repair

LOCATION 488-25th Street

TOTAL DEPTH 24 feet

SURFACE ELEV. 25.57 feet amsl

DRILLING COMPANY Gregg Drilling

DRILLING METHOD GeoProbe (direct push)

DRILLER Don GEOLOGIST B. Rucker

DATE DRILLED 7/8/04

DEPTH (feet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-10- - - - - 11-	BH-11-11'	152	10.5' mod. stiff, st. moist 11' petroleum odor begins	
-12-		54		
-13-		71	12.5' sl. stiff, v. cohesive 13' petroleum odor ends	
_ -14=		3	13.5' mod. stiff	
_ -15-	BH-11-15'	4	14.5' gradational color change to red- brown with blue-grey mottling 15' soft and wet	
-16-		4		
=17 =		3	17' sl mod. stiff, v. moist	
-18-		3		
_ -19- -	BH-11-19.5'	4	19' mod. stiff, sl. moist	
20	//// /	8		

	BORING NUMBER BH-11 Page 3 of 3	
PROJECT Benner Auto Repair	OWNER Joseph & Loretta Benner Trust	
LOCATION 488-25th Street	PROJECT NUMBER 2003-55	
TOTAL DEPTH 24 feet	BOREHOLE DIA. 2-inch	
SURFACE ELEV. 25.57 feet amsl	WATER FIRST ENCOUNTERED ~12 feet	
DRILLING COMPANY Gregg Drilling	DRILLING METHOD GeoProbe (direct push)	
	B. Rucker DATE DRILLED 7/8/04	

OEPTH (leet)	GRAPHIC LOG	INSTRUMENT READING	DESCRIPTION/SOIL CLASSIFICATION	REMARKS
-20- 			Dark brown, silty clay (CL), saturated, sl. stiff	
21-		43		
-22-		<3		
-23-		≺3		·
24-	BH-11-23.5	<3	·	-
-25- -26- -27- -28-			TD = 24'	24' Following all sampling, install 10' long, 1" diameter PVC casing to 24', cap the piezometer and enshroud nearsurface annulus with plastic and clay clumps Water level on 7/9/04 = 10.53' (relative to top of piezometer casing)
-29 29 				