CLS ENVIRONMENTAL SERVICES 8 CROW CANYON CT., SUITE 205 SAN RAMON, CA 94583

LETTER OF TRANSMITTAL

Alameda County

APR 1 3 2007

Environmental Health

DATE: 4.09.07 TO: JERRY WICKHAM CASE#: ACDEH RE: ABL SPILL CLEAN UP, 1925 SHERMAN WAY ALAMEDA WE ARE TRANSMITTING THE FOLLOWING: PLANS REPORTS PROPOSALS DTHER VIAL FED EX US MAIL CAL OVERNIGHT HAND DELIVER COPIES DOCUMENT DATE

4.07.07	1	Spill Clean Up Report	

Co	М	М	E	N	T	s	1
----	---	---	---	---	---	---	---

PLEASE CALL IF YOU HAVE ANY QUESTIONS.

SUBMITTED BY:

CLS ENVIRONMENTAL

Alameda County

APR 1 3 2007

Environmental Health

Chemical Spill
Clean Up
Report

Alameda Belt Line Site 1925 Sherman Way Alameda, CA

Prepared For:

Alameda Belt Line Railway

Prepared By:

CLS Environmental Services, Inc.

April 7, 2007

ENVIRONMENTAL SERVICES

B CROW CANYON CT, SUITE 205 SAN RAMON, CA 94583 PH: 925.838.7900 FAX: 925.838.7910

April 7, 2007

Mr. David Buccolo Alameda Belt Line Railway C/o Central California Traction Co. 2201 Washington St. Stockton, CA 95203

SUBJECT:

Report of Emergency Response and Remedial Action

Oil Spill, 1925 Sherman Way, Alameda, CA

Dear Mr. Buccolo:

CLS Environmental Services, Inc. (CLS) is pleased to submit for your review and consideration, the following report of project activities pertaining to the unauthorized release at the above-mentioned site. The following discussion presents an account of the spill response and remedial corrective action activities completed at the subject site.

Introduction

On October 19, 2006, CLS, at the request of Alameda Belt Line Railway (ABL), CLS responded to a spill which occurred along the south-eastern edge of the ABL property located at 1925 Sherman Way, Alameda, CA (Figure 1, Appendix A). Upon arriving at the spill site, CLS observed two 55-gallon drums (which were reported to have been discarded on the site by unknown sources and the subject of vandalism) laying on their side with waste and hydraulic oil leaking from each of them. The total volume of product released from the drums onto the native soils of the subject property appeared to be approximately 100 gallons but was not fully ascertained. The spill appeared to have been somewhat aged and encompassed an area that extended approximately 27 feet from the point of origin. The spill area is presented on Figure 2, Appendix A.

Mitigative Measures

Representatives form the City of Alameda Fire Department (AFD) and Alameda County Department of Environmental Health (ACDEH) were on site to observe and direct the clean up. As directed by the AFD and ACDEH, the drums were secured and removed from the spill area. A Case 580 backhoe was used to clean-up the spilled materials and excavate the identified impacted soils surrounding and beneath the spill area. Approximately 90 tons of oil laden soil was removed from the affected area and placed on 12 mil visqueen and secured pending profiling and off-haul.

ABL SPILL CLEAN UP REPORT APRIL 7, 2007 PAGE 2

Soil and Water Sampling

Upon approval from and as directed by the ACDEH, confirmation soil samples were collected from the affected areas post remedial efforts. Sample locations are presented on Figure 3, Appendix A. All samples collected were submitted under chain of custody to Excelchem Analytical Laboratories, a state certified lab located in Roseville, CA. Five soil samples (PS-1 through 5) were retrieved from the remedial area using a manually operated slide hammer and collected in 2-inch x 6-inch brass sleeves. The samples were then labeled with an identification number and client's name, placed a pre-cooled container, and prepared for transport. Based on the determination that the spilled material was in fact comprised of a combination of waste and hydraulic oil, CAL EPA and ACDEH guidelines for sampling at waste oil release sites were used. In accordance with the ACDEH guidelines, each sample submitted was subjected to chemical testing of Total Petroleum Hydrocarbons as hydraulic oil and diesel (TPH-ho/d) using EPA method 8015M, Total Petroleum Hydrocarbons as gasoline (TPH-G), Benzene, Toluene, Ethyl-benzene, and Xylene (BTEX), Fuel Oxygenates, and Volatile Organic Compounds (VOC) using EPA method 8260, Semi-Volatile Organic Compounds Using EPA method 6010B and 7471A.

Results of Soil Sampling and Testing

As presented in Table 1 below and substantiated by the Certified Laboratory Reports presented as Appendix B, detectable concentrations of petroleum hydrocarbon and/or heavy metals were found in each of the five confirmation samples tested.

Sample ID	Date	Depth (fbg)	Location	TPH-ho	Lead
PS-1	1,19.07	4'	West wall	702	12.1
PS-2	1.19.07	2.5′	South wall	118	13.4
PS-3	1.19.07	3'	North wall	209	169
PS-4	1.19.07	1.5′	East wall	198	190
PS-5	1.19.07	5′	Floor	179	11.0
Reporting Limits			50.0	1.0	

Notes:

Concentrations are presented as mg/kg or parts per million.

 Due to the copious amount of constituents tested, only the analytes that presented relevant and/or significant concentrations are presented in the table. The Certified Laboratory Reports presented as Appendix B provide a full account of the chemicals tested.

FBG = Feet below grade

Soil Off-Haul and Disposal

The contaminated soil removed from the spill area was transported under hazardous waste manifests by MP Environmental and disposed of at the Chemical Waste Management disposal facility located in Kettleman City, CA. Copies of the manifests are presented as Appendix C.

Restoration

The excavated area was backfilled with soils stockpiled in other areas of the site and compacted.

ABL SPILL CLEAN UP REPORT APRIL 7, 2007 PAGE 3

Conclusions

The summary and conclusions presented in this section are based on observations, field investigation and remedial descriptions, analytical results, and interpretations delineated and developed in the body of this report. Interpretations are based on data collected by CLS and/or interviews conducted with on site personnel.

The following are key conclusions for the recent remedial activities performed:

- Approximately 100 gallons of waste and hydraulic oil was released from two 55-gallon drums which were discarded on the subject property by unknown sources. The waste materials were spilled onto the native soil surfaces of the site.
- Approximately 90 tons of hydrocarbon impacted soil was removed from the spill area and transported to a state certified landfill for appropriate disposal.
- The results of the post remedial soil sampling conducted indicate that detectable concentrations of petroleum hydrocarbon and lead compounds remain with the shallow subsurface soils of the site.

Limitations

This report has been prepared for the exclusive use of Alameda Belt Line Railway (Client) with specific application to the site located at 1925 Sherman Way, Alameda, California. The use of this report, its contents, or any part of it, by any one other than Client or authorized designee, is not allowed. The services provided have been performed according to generally accepted standards and practices.

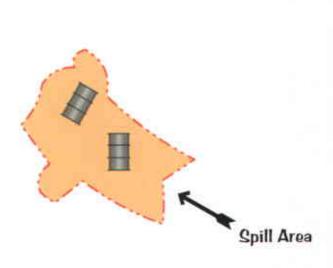
The Client acknowledges that CLS has been retained for the sole purpose of assisting the Client in remediating the petroleum hydrocarbon and heavy metal contamination at the project site. It is recognized and agreed that CLS and sub-consultants have assumed responsibility only for performing this remedial action and presenting this report and conclusions to the Client. The responsibility for making any further evaluation, disclosure, or report to any third party or for the taking of corrective, remedial, and/or mitigative action shall be solely that of the Client.

The Client agrees to hold CLS and sub-consultants harmless from any and all liability, damage, loss, cost, or expense, including attorney fees, in any way arising from the claim of any third party. CLS agrees not to make, except to the Client or at Client's request, any report to any third party not legally required of it.

Please contact us at your earliest convenience if you have any questions concerning the information provided or if you require any additional assistance at this time.

Sindere

David C. Solis, JD., PhD, REA Principal/Sr. Project Manager

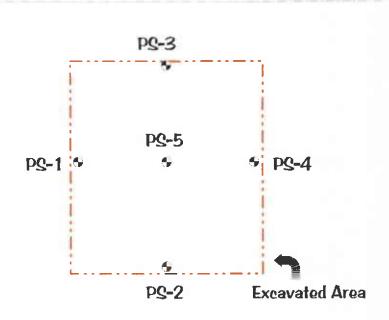

Alameda Belt Line Spill Site 1925 Sherman Way Alameda, CA

Title:	Site Location Map
Author: MDQ	
Date: 4.07.07	Sheet: 1
Revision:	Scale: None

Adjacent Commercial Facilities

West end of site

Adjacent Commercial Facilities


Alameda Belt Line Spill Site 1925 Sherman Way, Alameda, CA

Title: General Site	Plan w/Locatton of Spill
Author: MDS	
Date: 7.07.07	Figure: 2
Revision:	Scale: None

Adjacent Commercial Facilities

Sherman Way

West end of site

Adjacent Commercial Facilities

Alameda Belt Line Spill Site 1925 Sherman Way, Alameda, CA

Legend Soil Sample

CLS ENVIRONMENTAL SERVICES

Title: General	General Site Plan w/Sample Locations							
Author; MDQ								
Date: 7.07.07	Figure: 3							
Revision:	Scale: None							

EXCELCHEM Environmental Labs

1135 W Sunset Boulevard Suite A Rocklin, CA 95765 Phone# 916-543-4445 Fax# 916-543-4449

31 January 2007

Dave Solis

CLS Environmental

8 Crow Canyon Rd, Suite 205

San Ramon, CA 94583

RE: ABL

Sincerely,

Workorder number:0701100

Enclosed are the results of analyses for samples received by the laboratory on 01/24/07 10:40. All Quality Control results are within acceptable limits except where noted as a case narrative. If you have any questions concerning this report, please feel free to contact the laboratory.

John Somers, Lab Director	

CLS Environmental Project: ABL
8 Crow Canyon Rd, Suite 205 Project Number: [none]
San Ramon, CA 94583 Project Manager: Dave Solis

Date Reported: 01/31/07 16:35

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PS-1	0701100-01	Soil	01/19/07 08:00	01/24/07 10:40
PS-2	0701100-02	Soil	01/19/07 08:00	01/24/07 10:40
PS-3	0701100-03	Soil	01/19/07 08:00	01/24/07 10:40
PS-4	0701100-04	Soil	01/19/07 08:00	01/24/07 10:40
PS-5	0701100-05	Soil	01/19/07 08:00	01/24/07 10:40

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De Don

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583 Project: Project Number: ABL

Project Number: Project Manager: [none]
Dave Solis

Date Reported: 01/31/07 16:35

PS-1 0701100-01 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
METALS BY 6000/7000 SERIES	2.9	1.0	mg/kg	AQA0169	01/24/07	01/25/07	EPA 6010B	
Antimony	•		mg/kg	WQW0169	01/24/07	01/23/07 H	" A 0010B	
Arsenic Barium	ND 79.3	1.0 2.0	и.	"	11	01/25/07	в	
			н	0	.,	01/23/07 #	и	
Beryllium	ND	0.5	r. It	" "	,,		n n	
Cadmium	ND	1.0	"	,,		01/25/07	D	
Chromium	37.2	1.0	D.		n		u,	
Cobalt	8.3	5.0		"		01/25/07		
Copper	18.2	2.0	"	ч	н	"		
ead	12.1	1.0	(1	ч	ıś	r	11	
dereury	0.048	0.010	Œ	AQA0171	"	01/26/07	EPA 7471A	
Molybdenum	ND	1.0	i i	AQA0169	**	01/25/07	EPA 6010B	
lickel	37.2	1.0	н	ıı	11	01/25/07	"	
elenium	ND	2.0	н	"	"	n.	п	
lilver	ND	2.0	н	n	"	u	и	
hallium	ND	2.0	#		n	· ·	41	
/anadium	33.0	2.0	If	II	п	01/25/07	II	
Line	40.8	2.0	"	"	0	п	"	
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	ND	1.00	mg/kg	AQA0174	01/29/07	01/29/07	EPA 8260B	
ГВА	ND	0.050	н	11	10	n	•	
Methyl tert-Butyl Ether	ND	0.005	If	н	II	11	•r	
Di-isopropyl ether	ND	0.005	11	н	н	ır	II.	
Ethyl tert-Butyl Ether	ND	0.005	U	"	u	"	v	
Tert-Amyl Methyl Ether	ND	0.005	41	n	и	"	v	
Dichlorodifluoromethane	ND	0.005	П	11	11	н	"	
Chloromethane	ND	0.005	н	Ħ	н	ii	11	
Vinyl chloride	ND	0.005	"	n	Ħ	11	н	
Bromomethane	ND	0.005	ч	и	H	**	"	
Chloroethane	ND	0.005	н	H	и	11	"	
Trichlorofluoromethane	ND	0.005	П	11	II	11		
Acetone	ND	0.050		D	11	11		
,1-Dichloroethene	ND	0.005		0	u	н		
odomethane	ND	0.005		11		4	"	
Methylene chloride	ND	0.050		71	9	η	II.	
Carbon disulfide	ND	0.005		н	11	11	v	
rans-1,2-Dichloroethene	ND	0.005		и	н	μ	9	
1,1-Dichloroethane	ND	0.005	11	44	ч	"	11	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De Donn

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583 Project: Project Number: Project Manager: ABL [none]
Dave Solis

Date Reported: 01/31/07 16:35

PS-1 0701100-01 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
olatile Organic Compounds by		0.050		1010151	01/20/02	01/20/07	EPA 8260B	
-Butanone	ND	0.050	mg/kg	AQA0174	01/29/07	01/29/07	11	
2-Dichloropropane	ND	0.005	ır	 D	 H	"	ır	
is-1,2-Dichloroethene	ND	0.005	11	0		11	н	
romochloromethane	ND	0.005	_		n.	 N	н	
hloroform	ND	0.005		11		"	р	
1,1-Trichloroethane	ND	0.005	,,	11	0	,,	n	
arbon tetrachloride	ND	0.005	n	11	11			
,1-Dichloropropene	ND	0.005	II	II .	11	- н	Tr.	
enzene	ND	0.005	II.	ч	n	Н		
2-Dichloroethane	ND	0.005	"	ų	п	ir .	"	
richloroethene	ND	0.005	v	11	"	n	"	
2-Dichloropropane	ND	0.005	4	п	11	н		
ibromomethane	ND	0.005	п	Ħ	ш	р	"	
romodichloromethane	ND	0.005	n	**	**	II.	н	
is-1,3-Dichloropropene	ND	0.005	и	H	n	II.	м	
-Methyl-2-pentanone	ND	0.050	4	п	и	U	11	
oluene	ND	0.005	п	II.	п	11	II.	
ans-1,3-Dichloropropene	ND	0.005	"	11	u u	11	re	
,1,2-Trichloroethane	ND	0.005	"	u	•	н	H	
etrachloroethene	ND	0.005	н	11	0	ц	н	
3-Dichloropropane	ND	0.005	II	11	11	"		
-Hexanone	ND	0.050	tt.	ш	n.	11	II.	
Dibromochloromethane	ND	0.005	D	п	н	n	U	
,2-Dibromoethane (EDB)	ND	0.005	11	н	н	ir.	U	
Chlorobenzene	ND	0.005	0	11	11	,,	a	
1,1,2-Tetrachloroethane	ND	0.005	a	11	11	н	11	
thylbenzene	ND ND	0.005	н	**	II	n	п	
n,p-Xylene	ND ND	0.003	ч	þi	"	Ir.	ti	
	ND ND	0.010	н	n	н	tr.	**	
-Xylene			41		II	11	II	
tyrene	ND ND	0.005	h	0	u	н	*	
romoform	ND	0.005		"	 11	н	и	
sopropylbenzene	ND	0.005	и н	"	"	n	n	
romobenzene	ND	0.005			"		u.	
,1,2,2-Tetrachloroethane	ND	0.005		**		11	u.	
,2,3-Trichloropropane	ND	0.005		н	n	II.	v	
-Propylbenzene	ND	0.005	a	η	19	r.		
-Chlorotoluene	ND	0.005	ŧ	11	41	h	и	
-Chlorotoluene	ND	0.005	п	11	11	н	н	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De Donn

CLS Environmental Project:

8 Crow Canyon Rd, Suite 205 Project Number:
San Ramon, CA 94583 Project Manager:

ABL [none] Dave Solis

Date Reported: 01/31/07 16:35

PS-1 0701100-01 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
	2006							
Volatile Organic Compounds by 0 ,3,5-Trimethylbenzene	GC/MS ND	0.005	mg/kg	AQA0174	01/29/07	01/29/07	EPA 8260B	
ert-Butylbenzene	ND	0.005	"HINNE	AQAULT	01/23/07	01/25/07	11	
,2,4-Trimethylbenzene	ND	0.005	**	h	n	11	11	
ec-Butylbenzene	ND	0.005	Ш	n	и	n n	11	
,3-Dichlorobenzene	ND	0.005	"	"	п	11	н	
-Isopropyltoluene	ND	0.005	"		tt.	п	n	
4-Dichlorobenzene	ND	0.005	h	u.	u	n	n	
,2-Dichlorobenzene	ND	0.005	p	11	11	н	и	
-Butylbenzene	ND	0.005	н	11	ti ti		н	
,2-Dibromo-3-chloropropane	ND	0.005		н	41	11	п	
,2,4-Trichlorobenzene	ND	0.005	D	н	u	n	tr.	
Hexachlorobutadiene	ND	0.005	D	п	н	ш	O	
Naphthalene	ND	0.005	11	e	н	II.	n	
,2,3-Trichlorobenzene	ND	0.005	0	**	н	"	11	
urrogate: Dibromosluoromethane		97.0 %	% Recover	v Limits	70-	130	n	
urrogate: Toluene-d8		103 %	% Recover		70	130	"	
urrogate: 4-Bromofluorobenzene		115 %	% Recover		70	130	n	
Total Petroleum Hydrocarbons b	v FID			,				
TPH as Diesel	, ND	10.0	mg/kg	AQA0183	01/29/07	01/30/07	EPA 8015Mod	
Iydraulic Oil	702	50.0	"	н	н	01/31/07	н	
SemiVolatile Organic Compound	s by GC/MS							
N-Nitrosodimethylamine	ND	0.100	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
Aniline	ND	0.100	"	11	n	11	H.	
Bis(2-chloroethyl)ether	ND	0.100	ht	u		н	ь	
Phenol	ND	0.100	и	11	0	н	М	
2-Chlorophenol	ŅD	0.100	и	11	11	"	H	
,4-Dichlorobenzene	ND	0.100	II.	н	1J	n	II:	
Benzyl alcohol	ND	0.100	D	н	н	u .	D.	
Bis(2-chloroisopropyl)ether	ND	0.100	"	ч	н	и	0	
2-Methylphenol	ND	0.100	v	11	ч	re	11	
Hexachloroethane	ND	0.100	ø	11	η	n	11	
N-Nitrosodi-n-propylamine	ND	0.100	II	II	**	н	11	
-Methylphenol	ND	0.100	n	*	Ш	"	ч	
Vitrobenzene	ND	0.100	п	*	"	D	u	
sophorone	ND	. 0.100	И	n	"	U-	"	
2-Nitrophenol	ND	0.100	"	н	μ	u	11	
2,4-Dimethylphenol	ND	0.100	44	H	,,	4	**	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project:

ABL

Project Number: Project Manager: [none] Dave Solis Date Reported: 01/31/07 16:35

PS-1 0701100-01 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound is(2-chloroethoxy)methane	s by GC/MS	0.100	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
enzoic acid	ND ND	0.100	mg/kg	AQA0187	11/29/07	01/30/07 "	11	
4-Dichlorophenol	ND	0.100	ø	11	11	pt	11	
2,4-Trichlorobenzene	ND	0.100	p	ц	n	in	μ	
aphthalene	ND	0.100	а		n	н	ŢI	
Chloroaniline	ND	0.100	n		11	H	н	
exachlorobutadiene	ND	0.100	n	n	Ш	n	н	
Chloro-3-methylphenol	ND	0.100	н	P	II.	n	n	
Methylnaphthalene	ND	0.100	н	,,	"	II.	п	
exachlorocyclopentadiene	ND	0.100	n	u	**	n.	н	
4,6-Trichlorophenol	ND	0.100	н	n	H	u.	4	
4,5-Trichlorophenol	ND	0.100	и	μ	п	D	н	
-Chloronaphthalene	ND ND	0.100	4	н	,,	u	ч	
-Nitroaniline	ND	0.100	41	и	n		"	
cenaphthylene	ND	0.100	**	и	p	U	n	
imethyl phthalate	ND	0.100	н	n	н	9	11	
6-Dinitrotoluene	ND	0.100	н	u u	11	11	н	
cenaphthene	ND	0.100	H	10	ır	a a	Ħ	
-Nitroaniline	ND	0.100	17	n	n	O .	"	
4-Dinitrophenol	ND	0.100	h	D	tr.	*1	H	
libenzofuran	ND	0.100	řt.	0	ų	"	μ	
4-Dinitrotoluene	ND	0.100	,	U	u	н	и	
-Nitrophenol	ND	0.100	н	vi	w	н	н	
luorene	ND	0.100	н	11	11	ц	и	
-Chlorophenyl phenyl ether	ND	0.100	п	u	11	**	ps.	
riethyl phthalate	ND	0.100	п	n	11	11	IF.	
-Nitroaniline	ND	0.100	If	н	ii .	11	O.	
zobenzene	ND	0.100	P	и	п	11	Tr.	
6-Dinitro-2-methylphenol	ND	0.100	0	n	н	11	11	
-Nitrosodiphenylamine	ND	0.100	v	n	н	17	11	
-Bromophenyl phenyl ether	ND	0.100	0	"	4	re	11	
lexachlorobenzene	ND	0.100	łı	11	27	н	11	
entachlorophenol	ND	0.100	a	**	**	*	11	
henanthrene	ND	0.100	п	п	П	n	II.	
nthracene	ND	0.100	н	n	ir	н	. "	
arbazole	ND	0.100	п	*	H	11	N	
i-n-butyl phthalate	ND	0.100	н	,,	"	II.	ч	
luoranthene	ND	0.100	и	n	,,	e	tf.	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Dun

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project:

ABL

Project Number: Project Manager: [none]
Dave Solis

Date Reported: 01/31/07 16:35

PS-1 0701100-01 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compounds	by GC/MS							
enzidine	ND	0.500	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
yrene	ND	0.100	H	11	u	н	и	
utyl benzyl phthalate	ND	0.200	p.	**	"	н	h	
3'-Dichlorobenzidine	ND	0.100	p	11	t)	ц	н	
enzo (a) anthracene	ND	0.100	н	11	u	25	n	
hrysene	ND	0.100	н	11	u	ч	II.	
is(2-ethylhexyl)phthalate	ND	0.200	II	п	0	'n	11	
i-n-octyl phthalate	ND	0.100	lt .	н	10	n	11	
enzo (b) fluoranthene	ND	0.100	0	н	п	11	u	
enzo (k) fluoranthene	ND	0.100	II.		н	Ш	10	
enzo (a) pyrene	ND	0.100	n	*	"	**	W	
ndeno (1,2,3-cd) pyrene	ND	0.100	0	н	н	n		
ibenz (a,h) anthracene	ND	0.100	U	**	н	H	u	
enzo (g,h,i) perylene	ND	0.100	U	**	"	n		
urrogate: 2-Fluorophenol		51.2 %	% Recovery	/ Limits	10-1	10	v	
urrogate: Phenol-d6		56.8 %	% Recovery	Limits	10-1	110	n	
urrogate: Nitrobenzene-d5		56.4 %	% Recovery	Limits	10-1	110	n	
urrogate: 2-Fluorobiphenyl		63.6 %	% Recovery	y Limits	10-1	110	n	
urrogate: 2,4,6-Tribromophenol		82.8 %	% Recovery	Limits	10-1	110	n	
urrogate: Terphenyl-dl4		83.2 %	% Recover	/ Limits	10-1	110	n	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Donn

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project: Project Number:

Project Manager:

ABL

[none] Dave Solis Date Reported: 01/31/07 16:35

PS-2 0701100-02 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
IETALS BY 6000/7000 SERIES								
Antimony	3.1	1.0	mg/kg	AQA0169	01/24/07	01/25/07	EPA 6010B	
Arsenic	ND	1.0	"	u u	"	n .	H	
Barium	74,9	2.0	"	U	D	01/25/07	n	
Beryllium	ND	0.5	þ	v	n	и	н	
Cadmium	ND	1.0	и	**	11	01/25/07	и	
Chromium	45.0	1.0	п	ū	11	w	11	
Cobalt	10,1	5.0	Ð	n	н	01/25/07	ii .	
Copper	21.7	2.0	0	и	п	n	U	
.ead	13.4	1.0	U	"	ч	n	10	
Aercury	0.060	0.010	41	AQA0171	#1	01/26/07	EPA 7471A	
•		1.0	н	AQA0171 AQA0169		01/25/07	EPA 6010B	
Aolybdenum Tickel	ND 39.0	1.0	н	AQA0169	 H	01/25/07		
			n	,	,,	01/23/07	11	
elenium	ND ND	2.0	н	,,	h	0	11	
ilver hallium	ND ND	2.0 2.0	н	n	и	v	11	
namum 'anadium	41.5	2.0	ır	ii	H	01/25/07	Ħ	
			,,	o	U.	01725707	"	
Line	44.1	2.0						
Volatile Organic Compounds by GC/N	AS							
Gasoline Range Hydrocarbons	ND	1.00	mg/kg	AQA0174	01/29/07	01/29/07	EPA 8260B	
BA .	ND	0.050	п	7)	11	"	"	
Methyl tert-Butyl Ether	ND	0.005	ır	н	П	11	0	
Di-isopropyl ether	ND	0.005	P	н	n	11		
thyl tert-Butyl Ether	ND	0.005	U	n	и	"	.,	
fert-Amyl Methyl Ether	ND	0.005	U	#	11	n	"	
Dichlorodifluoromethane	ND	0.005	II	II.	11	н	"	
Chloromethane	ND	0.005	и	"	"	п	ч	
/inyl chloride	ND	0.005	,,	"	**	u,	11	
Bromomethane	ND	0.005	"	n	n	•		
Chloroethane	ND	0.005	ч	п	H	-11	n.	
Trichlorofluoromethane	ND	0.005	"	u.		н	р	
Acetone	ND	0.050	"	11	0	n	н	
,1-Dichloroethene	ND	0.005		11	11	# 		
odomethane	ND	0.005		n.	11	11	Tr.	
Methylene chloride	ND	0.050	"	н	п	"		
Carbon disulfide	ND	0.005		н	"			
rans-1,2-Dichloroethene	ND	0.005		21		ır	v	
,1-Dichloroethane	ND	0.005	U	**	4	ji.		

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De Donn

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project: Project Number: Project Manager: ABL none

Dave Solis

Date Reported: 01/31/07 16:35

PS-2 0701100-02 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
	10.740							
Tolatile Organic Compounds by G Butanone	ND	0.050	mg/kg	AQA0174	01/29/07	01/29/07	EPA 8260B	
,2-Dichloropropane	ND	0.005	III EA KE	n n	11	"	n	
is-1,2-Dichlorocthene	ND ND	0.005	.,	н	н	11	17	
romochloromethane	ND ND	0.005	v	. 4	ц	и	v	
	ND ND	0.005	11	#1	11	н	11	
hloroform		0.005	н	,,	ıı	n	п	
,1,1-Trichloroethane	ND		"	,	11	o		
Carbon tetrachloride	ND	0.005		ii h		11	ч	
,1-Dichloropropene	ND	0.005	11		н	v	н	
Benzene	ND	0.005	··	.,		,,	и	
,2-Dichloroethane	ND	0.005	"	"		 H	*	
richloroethene	ND	0.005		11	"		н	
,2-Dichloropropane	ND	0.005			"	"	н	
Dibromomethane	ND	0.005	r D	11	"	W	Tr.	
Bromodichloromethane	ND	0.005		"			v	
is-1,3-Dichloropropene	ND	0.005	"	ч	ч	ir P	y.	
-Methyl-2-pentanone	ND	0.050	9	11	и	"	11	
oluene	ND	0.005	41	11	11	n	и	
rans-1,3-Dichloropropene	ND	0.005	" .	"	Ш	11		
,1,2-Trichloroethane	ND	0.005	н	n	**	ч	,	
Tetrachloroethene	ND	0.005	"	Ü	н	11		
,3-Dichloropropane	ND	0.005	ıt	11	n	0		
-Hexanone	ND	0.050	H	u .	0	11		
Dibromochloromethane	ND	0.005	h	u	v	п		
,2-Dibromoethane (EDB)	ND	0.005	н	"	10	31	,,	
Chlorobenzene	ND	0.005	II	н	н	11		
,1,1,2-Tetrachloroethane	ND	0.005	U	"	н	H	17	
Ethylbenzene	ND	0.005	п	11	11	М	11	•
n,p-Xylene	ND	0.010	п	Ħ	-11	н	н	
o-Xylene	ND	0.005	н	*	"	u	н	
Styrene	ND	0.005	4	n	"	u.	n	
Bromoform	ND	0.005	41	н	ļi	a	11	
sopropylbenzene	ND	0.005	ır	e	ır	11	H	
Bromobenzene	ND	0.005	н	v	o	н	μ	
,1,2,2-Tetrachloroethane	ND	0.005	и	11	17	11	n	
1,2,3-Trichloropropane	ND	0.005	tt.	и	11	11	U	
-Propylbenzene	ND	0.005	0	п	п	н	U	
2-Chlorotoluene	ND	0.005	"	11	4	n	o o	
4-Chlorotoluene	ND	0.005	1)	11	**	и	10	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project:
Project Number:
Project Manager:

ABL [none] Dave Solis

Date Reported: 01/31/07 16:35

PS-2 0701100-02 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
olatile Organic Compounds by C	EC/MS							
3,5-Trimethylbenzene	ND	0.005	mg/kg	AQA0174	01/29/07	01/29/07	EPA 8260B	
ert-Butylbenzene	ND	0.005	n	#	Ш	n	н	
,2,4-Trimethylbenzene	ND	0.005	н	*	"	D	u	
ec-Butylbenzene	ND	0.005	ıı	μ	n	Œ	31	
,3-Dichlorobenzene	ND	0.005	**	ps	и	u	н	
-Isopropyltoluene	ND	0.005	41	н	н	11	11	
4-Dichlorobenzene	ND	0.005	11	11	n	a	п	
,2-Dichlorobenzene	ND	0.005	H	u	ш	10	H	
-Butylbenzene	ND	0.005	н	11	II	п	H	
,2-Dibromo-3-chloropropane	ND	0.005	,	•	W	"	n	
,2,4-Trichlorobenzene	ND	0.005	μ	11	U	н	n	
Jexachlorobutadiene	ND	0.005	н	11	a	ч	n	
Japhthalene	ND	0.005	п	11	10	"	н	
,2,3-Trichlorobenzene	ND	0.005	D	н	n	11	D	
urrogate: Dibromosluoromethane		99.4 %	% Recovery	v Limits	70-2	130	"	
urrogate: Toluene-d8		101 %	% Recover	y Limits	70-2	130	"	
urrogate: 4-Bromofluorobenzene		114 %	% Recover		70-	130	n	
Total Petroleum Hydrocarbons by	v FID			,				
PH as Diesel	ND	1.00	mg/kg	AQA0183	01/29/07	01/30/07	EPA 8015Mod	
Iydraulic Oil	118	5.00	"	н	,,	01/31/07	n	
· SemiVolatile Organic Compound:	s by GC/MS							
N-Nitrosodimethylamine	ND	1.00	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
Aniline	ND	1.00	"	"	u	n	"	
Bis(2-chloroethyl)ether	ND	1.00	и	11	u	н	n	
Phenol	ND	1.00	н	11	9	м	n	
-Chlorophenol	ND	1.00	п	н	11	n	п	
,4-Dichlorobenzene	ND	1.00	11	н	11	11	0	
Benzyl alcohol	ND	1.00	O	п	н	ц	O.	
Bis(2-chloroisopropyl)ether	ND	1.00	"	11	н	"	u	
-Methylphenol	ND	1.00	U	Ш	"	"	0	
Hexachloroethane	ND	1.00	н	ır	11	н	u	
N-Nitrosodi-n-propylamine	ND	1.00	п	*	Ħ	II.	п	
-Methylphenol	ND	1.00	н	ņ	n	e.	н	
Vitrobenzene	ND	1.00	#	n	и	v	11	
sophorone	ND	1,00	41	il	и	v	н	
•			**	e		ú	n	
2-Nitrophenol	ND	1.00		•			1	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in us entirety.

De some

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project: Project Number:

Project Manager:

ABL

[none]

Dave Solis

Date Reported: 01/31/07 16:35

PS-2 0701100-02 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound							EPA 8270C	
is(2-chloroethoxy)methane	ND	1.00	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
enzoic acid	ND	3.00	"	11		н	n	
,4-Díchlorophenol	ND	1.00	"	11	11	"	n	
2,4-Trichlorobenzene	ND	1.00	И	0	11	et		
aphthalene	ND	1.00	II	11	et e	11	10	
-Chloroaniline	ND	1.00	11	н	11	11		
exachlorobutadiene	ND	1.00	11	н	11	11		
-Chloro-3-methylphenol	ND	1.00	Iř	ч	н	II		
-Methylnaphthalene	ND	1.00	II.	u	n	TF.		
[exachlorocyclopentadiene	ND	1.00	U	"	н	"	11	
,4,6-Trichlorophenol	ND	1.00	ø	11	W	he	11	
,4,5-Trichlorophenol	ND	1.00	41	н	**	н	11	
-Chloronaphthalene	ND	1.00	П	17	11	р	п	
-Nitroaniline	ND	1.00	н	H	u.	п	n	
cenaphthylene	ND	1.00	"	п	n	II.	н	
rimethyl phthalate	ND	1.00	н	n	p	ч	ч	
,6-Dinitrotoluene	ND	1.00	4	н	H	v	Ħ	
cenaphthene	ND	1.00	п	н	n	a a	11	
-Nitroaniline	ND	1.00	П	If	н	O O	II.	
4-Dinitrophenol	ND	1.00	н	o	10	11	Ħ	
Dibenzofuran	ND	1.00	tr	11	n.	n	r.	
,4-Dinitrotoluene	ND	1.00	H	11	u,	n	п	
-Nitrophenol	ND	1.00	н	u	0	н	н	
luorene	ND	1.00	h	n	n	ч	М	
-Chlorophenyl phenyl ether	ND	1.00	н	11	v	н	ji	
Diethyl phthalate	ND	1.00	п	n	11	11	II:	
-Nitroaniline	ND	1.00	ır	н	μ	M	D	
zobenzene	ND	1.00	e	н	п	IF.	Tr.	
,6-Dinitro-2-methylphenol	ND	1.00	a	n	и	11	α	
I-Nitrosodiphenylamine	ND ND	1,00	a	n	11	p.	11	
-Bromophenyl phenyl ether	ND ND	1.00	n	h	11	н	11	
lexachlorobenzene	ND	1.00	н	,,	ıt.	ıı.	н	
entachlorophenol	ND ND	1.00	,	**	H*	tr	и	
eniactiorophenoi henanthrene	ND ND	1.00	,	и	ĮI.		м	
		1.00	-	н	и	41	**	
nthracene	ND ND				н	11	n	
Carbazole	ND	1.00	ıı.	,, II	 H		"	
i-n-butyl phthalate	ND	1.00	. "	" U	" "	11	"	
luoranthene	ND	1.00	. "	17	.,	11		

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project:

ABL

Project Number: Project Manager: [none] Dave Solis Date Reported: 01/31/07 16:35

PS-2 0701100-02 (Soil)

- 00						
- 00						
5.00	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
1.00	D.	11	n	μ	11	
2.00	п	II	11	и	11	
1.00	n	"	Ш	n	п	
1.00	п	н	II	ır	ч	
1.00	н	μ	"	tr.	ef	
2.00	**		"	u	11	
1.00	41	н	н	U	11	
1.00	If	Ü	11	u	Ш	
1.00	n	n.		. 11	"	
1.00	"	ır	D	н	н	
1.00	H	41	11	п	п	
1.00	н	41	11	11	в	
1.00	п	11	11	11	н	
73.0 %	% Recover	y Limits	10	110	"	
75.2 %	% Recovery	y Limits	10-	110	"	
67.8 %	% Recover	y Limits	10-	110	11	
76.8 %	% Recover	y Limits	10	110	"	
84.2 %	% Recover	y Limits	10-	110	"	
94.8 %	% Recovery	y Limits	10-	110	0	
	2.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00	1.00 " 2.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 1.00 " 73.0 % Recover 75.2 % Recover 76.8 % Recover 76.8 % Recover	1.00 " " " " 1.00 " " " 1.00 " " " 1.00 " " " 1.00 " " " 1.00 " " " 1.00 " " 1.00 " " 1.00 " " 1.00 " " 1.00 " " 1.00 " " 1.00 " " 1.00 " " 1.00 " " 1.00 " " 1.00 " " 1.00 " " 1.00 " " 1.00 " " " 1.00 " 1.00 " " 1.00 " " 1.00 " " 1.00 " " 1.00 " 1.00 " " 1.00 " " 1.00 " 1.	1.00 " " " " " " " " " " " " " " " " " "	1.00 " " " " " " " " " " " " " " " " " "	1.00 " " " " " " " " " " " " " " " " " "

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Dun

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project: Project Number:

Project Manager:

ABL

[none] Dave Solis Date Reported: 01/31/07 16:35

PS-3 0701100-03 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
METALS BY 6000/7000 SERIES								
Antimony	3.8	1.0	mg/kg	AQA0169	01/24/07	01/25/07	EPA 6010B	
Arsenic	ND	1.0	"	n	н	01/25/07	11	
3arium	79.4	2.0	II	n	ii .	01/25/07	17	
Beryllium	ND	0.5	"	11	u	71	"	
Cadmium	1.0	1.0	"	u	u.	01/25/07	n	
Chromium	53.2	1.0	н	ш	er e	ч	II.	
Cobalt	12.0	5.0	ır	н	ш	11	II.	
Соррег	36.7	2.0	11	н	н	n	v	
.ead	169	1.0	a	n	н	01/25/07	9	
	0.111	0.010	II.	AQA0171	*!	01/26/07	EPA 7471A	
Mercury			n	-	· It	01/25/07	EPA 6010B	
Molybdenum	ND 38.3	1.0	и	AQA0169 "	,,	01/23/07		
Nickel		1.0	**		n		"	
Gelenium	ND	2.0	"	" "			11	
Silver	ND	2.0	,,	"	0	01/25/07	"	
Thallium	ND	2.0	,,		ur	н	ņ	
'anadium	45.4	2.0					6	
line	60.9	2.0	н	N .	11	n	"	
olatile Organic Compounds by G	C/MS		-0-				<u></u>	
asoline Range Hydrocarbons	ND	1.00	mg/kg	AQA0174	01/29/07	01/29/07	EPA 8260B	
CBA	ND	0.050	et e	ч	11	ji .	и	
Methyl tert-Butyl Ether	ND	0.005	п	II.	11	н	и	
Di-isopropyl ether	ND	0.005	п	H	**	п		
Ethyl tert-Butyl Ether	ND	0.005	ч	n	н	U		
Tert-Amyl Methyl Ether	ND	0.005	П	11	п	u		
Dichlorodifluoromethane	ND	0.005	"	11	II.	Ħ	H	
Chloromethane	ND	0.005	"	11	"	н		
Vinyl chloride	ND	0.005	н	n	П	n	n 	
Bromomethane	ND	0.005	11	н	н	11		
Chloroethane	ND	0.005	0	н	н	it ,		
Trichlorofluoromethane	ND	0.005	11	11	"	"	11	
Acetone	ND	0.050	n	If	II	n		
,1-Dichloroethene	ND	0.005	n	p	"	IF.	и	
odomethane	ND	0.005	и	n	"	ur.	ч	
Methylene chloride	ND	0.050	**	н	n	41	11	
Carbon disulfide	ND	0.005	17	tr.		41	H	
rans-1,2-Dichloroethene	ND	0.005	H	U	u	п	,,	
1,1-Dichloroethane	ND	0.005	H	11	11	Ħ	и	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De som

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583 Project: Project Number:

Project Manager:

ABL

[none]

Dave Solis

Date Reported: 01/31/07 16:35

PS-3 0701100-03 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
			-	<u> </u>				
olatile Organic Compounds by C	IC/MS							
-Butanone	ND	0.050	mg/kg	AQA0174	01/29/07	01/29/07	EPA 8260B	
,2-Dichloropropane	ND	0.005	H	17	ji .	11	11	
is-1,2-Dichloroethene	ND	0.005	IT	O.	u,	11	**	
Bromochloromethane	ND	0.005	h	U	D	п	,,	
Chloroform	ND	0.005	H	11	0	ц	n	
, I, I-Trichloroethane	ND	0.005	ji,	41	11	**	H	
Carbon tetrachloride	ND	0.005	IP	н	11	11	at .	
,1-Dichloropropene	ND	0.005	D	п	н	ır	v	
Benzene	ND	0.005	U	"	ч	"	"	
,2-Dichloroethane	ND	0.005	0	. "	**	11	11	
Frichloroethene	ND	0.005	41	II.	11	n	11	
,2-Dichloropropane	ND	0.005	n	n	01	n	"	
Dibromomethane	ND	0.005	и	h	Is	Ü	"	
Bromodichloromethane	ND	0.005	н	n	н	17	n	
eis-1,3-Dichloropropene	ND	0.005	п	it.	H	11	H	
1-Methyl-2-pentanone	ND	0.050	rr	0	u	ii.	H	
roluene roluene	ND	0.005	н	u	0	ч	и	
rans-1,3-Dichloropropene	ND	0.005	н	11	11	n	и	
1,1,2-Trichloroethane	ND	0.005	D.	n	11	ч	u u	
Tetrachlorocthene	ND	0.005	11	#	п	н	o	
1,3-Dichloropropane	ND	0.005	0	4	н	*	10	
2-Hexanone	ND	0.050	ď	11	н	n	11	
Dibromochloromethane	ND	0.005	п	n	II	н	н	
1,2-Dibromoethane (EDB)	ND.	0.005	н	ļi.	H	n	н	
Chlorobenzene	ND	0.005	н	n	и	tr	n	
1,1,2-Tetrachloroethane	ND	0.005	41	н	н	•	и	
Ethylbenzene	ND	0.005	*	tr.		11	H	
m,p-Xylene	ND	0.010	h	U	u	п	n	
o-Xylene	ND	0.005	и	n	11	et.	n	
Styrene	ND	0.005	It	п	11	11	H.	
Bromoform	ND	0.005	II.	ч	н	п	u	
Isopropylbenzene	ND	0.005		ŋ	н	p.	U	
Bromobenzene	ND	0.005		11	11	н	a	
1,1,2,2-Tetrachloroethane	ND ND	0.005		*	**	н	н	
1,1,2,2-Tetrachioroethane 1,2,3-Trichloropropane	ND ND	0.005		r,	p	.,	•	
	ND ND	0.003		n	13	v	**	
n-Propylbenzene 2-Chlorotoluene	ND ND	0.005		II.		11	Н	
				u,	11	11	rr.	
4-Chlorotoluene	ND	0.005						

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De Donn

CLS Environmental Project: ABL
8 Crow Canyon Rd, Suite 205 Project Number: [none] Date Reported:
San Ramon, CA 94583 Project Manager: Dave Solis 01/31/07 16:35

PS-3 0701100-03 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes _
olatile Organic Compounds by C	C/MS							
,3,5-Trimethylbenzene	ND	0.005	mg/kg	AQA0174	01/29/07	01/29/07	EPA 8260B	
ert-Butylbenzene	ND	0.005	"	"	**	"	U	
,2,4-Trimethylbenzene	ND	0.005	a	"	н	n	u	
ec-Butylbenzene	ND	0.005	п	10	n	ti	v	
3-Dichlorobenzene	ND	0.005	н	n		н	н	
Isopropyltoluene	ND	0.005	n			Tr.	ч	
4-Dichlorobenzene	ND	0.005	4	н	, ·	•	'n	
2-Dichlorobenzene	ND	0.005	П	n	n	0	**	
Butylbenzene	ND	0.005	H	u	н	ti .	н	
2-Dibromo-3-chloropropane	ND	0.005	"	•	tr.	m	n	
2,4-Trichlorobenzene	ND	0.005		0	11	н	'n	
exachlorobutadiene	ND	0.005	ji.	11	o o	15	н	
aphthalenc	ND	0.005	D.	n	u	11	II.	
2,3-Trichlorobenzene	ND	0.005	"	"	n	н	II .	
urrogate: Dibromofluoromethane		97.8 %	% Recovery	Limits	70-1	730	<i>n</i>	
rrogate: Toluene-d8		102 %	% Recovery		70-1	130	v	
rrogate: 4-Bromofluorobenzene		116%	% Recovery		70-1	130	n	
otal Petroleum Hydrocarbons by	y FID							
PH as Diesel	ND	1.00	mg/kg	AQA0183	01/29/07	01/30/07	EPA 8015Mod	
ydraulic Oil	209	5.00	#	ft	н	01/30/07	Ш	
emiVolatile Organic Compound	s by GC/MS							
-Nitrosodimethylamine	ND	1.00	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
niline	ND	1.00	"	11	19	.11	bi	
is(2-chloroethyl)ether	ND	1.00	D	п	**	н	Tr.	
henol	ND	1.00	O	"	н	II.	· ·	
-Chlorophenol	ND	1.00	U	**	ч	rı	11	
4-Dichlorobenzene	ND	1.00	п	ш	11	н	•	
enzyl alcohol	ND	1.00	н	**	hr.	II	н	
tis(2-chloroisopropyl)ether	ND	1.00	и		H	u	ц	
-Methylphenol	ND	1.00	41	н	н	11	n	
exachloroethane	ND	1.00	tr	e	n	11	n	
I-Nitrosodi-n-propylamine	ND ND	1.00	,,	u	II	11	n	
-Methylphenol	ND ND	1.00	и	9	0	"	'n	
Introbenzene	ND ND	1.00	и	11	11	**	n	
	ND ND	1.00	R	п	11	11	II.	
sophorone -Nitrophenol	ND ND	1.00	11	н	п	ir	17	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De some

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project:

ABL

Project Number: Project Manager: [none] Dave Solis Date Reported: 01/31/07 16:35

PS-3 0701100-03 (Soil)

Алаlyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound		1.00	# -	101010	01/00/07	01/30/07	EPA 8270C	
is(2-chloroethoxy)methane	ND	1.00	mg/kg "	AQA0187	01/29/07 ห	01/30/07	# TT 02.00	
enzoic acid	ND	3.00	 (r	. "		**	9	
,4-Dichlorophenol	ND	1.00	u u	"	11	" "	9	
,2,4-Trichlorobenzene	ND	1.00	u a			,	п	
laphthalene	ND	1.00		Ħ	#	,	я	
-Chloroaniline	ND	1.00	n	"	Ш			
lexachlorobutadiene	ND	1.00	п	,,	"	11	**	
-Chloro-3-methylphenol	ND	1.00	н	n	n	AT.		
-Methylnaphthalene	ND	1.00	11	h	н	11		
lexachlorocyclopentadiene	ND	1.00	ır	11	n	41	"	
,4,6-Trichlorophenol	ND	1.00	n	th.	0	II.	,	
,4,5-Trichlorophenol	ND	1.00	h	U	47	n	,,	
-Chloronaphthalene	ND	1.00	II.	11	11	ef	n	
-Nitroaniline	ND	1.00	н	10	u	4	It.	
cenaphthylene	ND	1.00	a.	н	11	- 11	tt.	
Dimethyl phthalate	ND	1.00	II.	н	н	"	"	
,6-Dinitrotoluene	ND	1.00	O	"	п	H	u u	
cenaphthene	ND	1.00	a	n	**	"	11	
-Nitroaniline	ND	1.00	41	n	Ħ	p	11	
,4-Dinitrophenol	ND	1.00	n	H	H	H.	н	
Dibenzofuran	ND	1.00	н	"	n	tt.	ч	
,4-Dinitrotoluene	ND	1.00	#		H	u	n	
-Nitrophenol	ND	1.00	n	n	n	11	†I	
luorene	ND	1.00	H	U	ir.	II .	hr	
-Chlorophenyl phenyl ether	ND	1.00		v	o	ч	и	
Diethyl phthalate	ND	1.00		**	0	n	n	
-Nitroaniline	ND	1.00		н	н	IF.	n	
Azobenzene	ND	1.00		ч	н	16	0	
,6-Dinitro-2-methylphenol	ND	1.00		"	и	м	U	
V-Nitrosodiphenylamine	ND	1,00		II.	11	м	ti	
i-Bromophenyl phenyl ether	ND	1.00		н	0	н	н	
Hexachlorobenzene	ND	1.00		,,	H	n	ц	
Pentachlorophenol	ND	1.00		h	'n		n	
Phenanthrene	ND ND	1.00		п		11	u	
rnenanuurene Anthracene	ND	1.00		n	н	11	н	
	ND ND	1.00		It	n	11	н	
Carbazole		1.00		"	0	,	н	
Di-n-butyl phthalate	ND			"	9	n	п	
luoranthene	ND	1.00		1,				

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Dun

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project:

ABL

Project Number: Project Manager: [none]
Dave Solis

Date Reported: 01/31/07 16:35

PS-3 0701100-03 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compound	ls by GC/MS							
Benzidine	ND	5.00	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
Pyrene	ND	1.00	н	u u	o o	н	н	
Butyl benzyl phthalate	ND	2.00	II	11	11	11	п	
3,3'-Dichlorobenzidine	ND	1.00	Ir	н	U	11	II.	
Benzo (a) anthracene	ND	1.00	IP	М	n	IF.	0	
Chrysene	ND	1.00	U	n	н	h	u.	
Bis(2-ethylhexyl)phthalate	ND	2,00	U	н	ч	"	"	
Di-n-octyl phthalate	ND	1.00	ti .	11	11	h	11	
Benzo (b) fluoranthene	ND	1.00	IJ	11	*1	H	ti.	
Benzo (k) fluoranthene	ND	1,00	п	"	11	n	Ш	
Benzo (a) pyrene	ND	1.00	n	H	H	н	"	
Indeno (1,2,3-cd) pyrene	ND	1.00	ч	μ	n	п	н	
Dibenz (a,h) anthracene	ND	1.00	"	p	tr	U	н	
Benzo (g,h,i) perylene	ND	1.00	41	, in		u		
Surrogate: 2-Fluorophenol		55.0 %	% Recover	y Limits	10-	110	u	
Surrogate: Phenol-d6		64.4 %	% Recover	y Limits	10-	110	"	
Surrogate: Nitrobenzene-d5		60.6 %	% Recover	y Limits	10-	110	<i>7</i> 2	
Surrogate: 2-Fluorohiphenyl		71.4 %	% Recover	y Limits	10-	110	n	
Surrogate: 2,4,6-Tribromophenol		83.4 %	% Recover	y Limits	10-	110	п	
Surrogate: Terphenyl-dl4		87.8 %	% Recover	y Limits	10-	110	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental Project: ABL
8 Crow Canyon Rd, Suite 205 Project Number: [none] Date Reported:
San Ramon, CA 94583 Project Manager: Dave Solis 01/31/07 16:35

PS-4 0701100-04 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
METALS BY 6000/7000 SERIES								
Antimony	8.2	1.0	mg/kg	AQA0169	01/24/07	01/25/07	EPA 6010B	
Arsenic	ND	1.0	н	,,	"	I)·		
Barium	110	2.0	#	н	н	01/25/07	"	
Beryllium	ND	0.5	41	н	II	01/25/07	'n	
Cadmium	1.1	1.0	H	11	П	11	II	
Chromium	42,2	1.0	*	U	II.	01/25/07	*	
Cobalt	10.9	5.0	h	0	w	н	n	
Copper	48.2	2.0	и	a a	U	tt	μ	
Lead	190	1.0	n	11	11	*1	н	
Mercury	0.215	0.010	P	AQA0171	n	01/26/07	EPA 7471A	
Molybdenum	ND	1.0	"	AQA0169	м	01/25/07	EPA 6010B	
Nickel	53.1	1.0	0	4	n	14	v	
Selenium	ND	2.0	п	11	II		11	
Silver	ND	2.0	n	n	н	п	н	
Thallium	ND	2.0	и	р	"	01/25/07	и	
Vanadium	34.5	2.0	"		ņ	tr.	W.	
Zinc	149	2.0	4	н	h		"	
		2.0						
Volatile Organic Compounds by C		1.00		1010101	01/00/07	01/20/07	EPA 8260B	
Gasoline Range Hydrocarbons	ND	1.00	mg/kg	AQA0174	01/29/07	01/29/07	h	
TBA	ND	0.050	н	"	0	n	n	
Methyl tert-Butyl Ether	ND	0.005	ır	,	11	**	D.	
Di-isopropyl ether	ND ND	0.005 0.005	u u		н	ш	O.	
Ethyl tert-Butyl Ether		0.005	11	,,	н	r	U	
Tert-Amyl Methyl Ether Dichlorodifluoromethane	ND ND	0.005	u,	11	η	п	n	
Chloromethane	ND ND	0.003	н	II.	11	н	11	
Unioromethane Vinyl chloride	ND ND	0.005	и	n	,,	п	ч	
Vinyi chioride Bromomethane	ND ND	0.003	ч	н	ņ	o	**	
Chloroethane	ND ND	0.005	41	п	n	0	11	
Trichlorofluoromethane	ND	0.005	H	ur .	II.	11	h	
Acetone	ND	0.050	"		O.	"	n	
L-Dichloroethene	ND	0.005	,,	41	v	zi .	,,	
lodomethane	ND	0.005	н	11	11	41	н	
Methylene chloride	ND	0.005	n	"	н	11	11	
Carbon disulfide	ND ND	0.005		н	n	п		
trans-1,2-Dichloroethene	ND ND	0.005	U	ч	Ħ	P	n	
1,1-Dichloroethane	ND	0.005	41	_	11	p.	11	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583 Project:
Project Number:
Project Manager:

ABL [none]

[none]
Dave Solis

Date Reported: 01/31/07 16:35

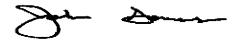
PS-4 0701100-04 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
			· · ·					
olatile Organic Compounds by		0.040		104015:	01/00/07	01/29/07	EPA 8260B	••
-Butanone	ND	0.050	mg/kg	AQA0174	01/29/07	01/29/07	н	
,2-Dichloropropane	ND	0.005	n n	,, H	"	11	u	
is-1,2-Dichloroethene	ND	0.005		и		"	11	
romochloromethane	ND	0.005			11	,,	11	
hloroform	ND	0.005	4)	n			71	
,1,1-Trichloroethane	ND	0.005	II	"	Ш			
arbon tetrachloride	ND	0.005	п	H	"		4	
,1-Dichloropropene	ND	0.005	ч	Į.	и	U	11	
Senzene	ND	0.005	н	h	н	0		
,2-Dichloroethane	ND	0.005	IT	D.	11	11		
richloroethene	ND	0.005	,,	0	U	н	,,	
,2-Dichloropropane	ND	0.005	II	11	a a	n	e e	
Dibromomethane	ND	0.005	IP	n	П	17		
Bromodichloromethane	ND	0.005	"	4	"	н	· ·	
is-1,3-Dichloropropene	ND	0.005	0	n	**	,	v	
-Methyl-2-pentanone	ND	0.050	11	н	11	р	"	
Coluene	ND	0.005	н	*	111	Ħ	н	
rans-1,3-Dichloropropene	ND	0.005	И	,,	"	u	ч	
,1,2-Trichloroethane	ND	0.005	н	и	н	17	"	
Tetrachloroethene	ND	0.005	II	II.	n	11	II.	
,3-Dichloropropane	ND	0.005	h	W	10	н	P	
-Hexanone	ND	0.050	н	11	11	ч	и	
Dibromochloromethane	ND	0.005	п	н	19	"		
,2-Dibromoethane (EDB)	ND	0.005	11	н	п	H	0	
Chlorobenzene	ND	0.005	0	**	**	'n	11	
.1,1,2-Tetrachloroethane	ND	0.005	"	H	0	n	n	
Ethylbenzene	ND	0.005	,	μ	,,	B	н	
n,p-Xylene	ND	0.010	**	н	н	U	11	
n-Xylene	ND	0.005	n	u,	tt.	11	rr	
Styrene	ND	0.005	,,	11	v v	н	n	
Bromoform	ND	0.005	и	u	11	н	n	
sopropylbenzene	ND	0.005		u	a	- 11	II.	
Bromobenzene Bromobenzene	ND	0.005		ч	н	II.	n	
1.1.2.2-Tetrachloroethane	ND	0.005		"		H	11	
1,2,3-Trichloropropane	ND	0.005		11	"	и	11	
n-Propylbenzene	ND ND	0.005		r	н	10	"	
2-Chlorotoluene	ND ND	0.005		н	n	11	н	
2-Chlorotoluene	ND ND	0.005			н	u	n	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De Donn


CLS Environmental Project: ABL
8 Crow Canyon Rd, Suite 205 [none] Date Reported:
San Ramon, CA 94583 Project Manager: Dave Solis 01/31/07 16:35

PS-4 0701100-04 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
olatile Organic Compounds by GC/M	s							
3,5-Trimethylbenzene	ND	0.005	mg/kg	AQA0174	01/29/07	01/29/07	EPA 8260B	
rt-Butylbenzene	ND	0.005	"	"	п	"	Tr.	
2,4-Trimethylbenzene	ND	0.005	41	11	**	tt	0	
c-Butylbenzene	ND	0.005	п	II:	η	н	ш	
3-Dichlorobenzene	ND	0.005	п	*	"	n	н	
Isopropyltoluene	ND	0.005	ч	n	"	u	"	
4-Dichlorobenzene	ND	0.005	41	н	и	o o	"	
2-Dichlorobenzene	ND	0.005	H	n	11	11	II	
Butylbenzene	ND	0.005	,,	0		н	H	
2-Dibromo-3-chloropropane	ND	0.005	н	11	0	и.	jı	
2,4-Trichlorobenzene	ND	0.005	II	н	10	11	ii .	
exachlorobutadiene	ND	0.005	P	ч	н	Н	II.	
aphthalene	ND	0.005	u	11	н	•	n	
2,3-Trichlorobenzene	ND	0.005	ii.	11	n	. н	11	
urrogate: Dibromofluoromethane		95.6 %	% Recover	v Limits	70-1	130	u u	
urrogate: Toluene-d8		102 %	% Recover		70-1	130	rt .	
rrogate: 4-Bromofluorobenzene		109 %	% Recover		70-1	130	n	
otal Petroleum Hydrocarbons by FID				,				
PH as Diesel	ND	1.00	mg/kg	AQA0183	01/29/07	01/30/07	EPA 8015Mod	
lydraulic Oil	198	5.00	"	"	II.	01/30/07	n .	
emiVolatile Organic Compounds by C								
-Nitrosodimethylamine	ND	1,00	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	·
niline	ND	1.00	1110110	h	H	D	н	
lis(2-chloroethyl)ether	ND	1.00	ч	ji	n	e	*1	
henol	ND	1.00	п	11	н	11	11	
-Chlorophenol	ND	1.00	*	u	n	71	n	
4-Dichlorobenzene	ND	1.00		п	u	н	М	
tenzyl alcohol	ND	1.00	н	11	n	4	n	
tis(2-chloroisopropyl)ether	ND	1.00	D	п	11	n	IT.	
-Methylphenol	ND	1.00	"	н	"	**	u	
Iexachloroethane	ND	1.00	u	11	21	H	· u	
l-Nitrosodi-n-propylamine	ND	1.00	g	11	11	р	11	
-Methylphenol	ND	1.00	н	**	11	11:	н	
-iventyphenor Vitrobenzene	ND	1.00	4	n	n	0	11	
	ND	1.00	Ш	u	н	v	11	
conhorone								
sophorone -Nitrophenol	ND	1.00	n	17	u	н	H	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583 Project:

ABL

Project Number: Project Manager: [none] Dave Solis Date Reported: 01/31/07 16:35

PS-4 0701100-04 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
·								
miVolatile Organic Compound	ls by GC/MS ND	1.00	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
tis(2-chloroethoxy)methane tenzoic acid	ND ND	3.00	mg/kg	AQA0187	U1/29/U/	01/30/07	*1	
4-Dichlorophenol	ND ND	1.00	н	r	D	п	н	
•	ND	1.00	н	n	h	u,	"	
2,4-Trichlorobenzene	ND ND	1.00	ч	н	п	0	11	
aphthalene Chloroaniline	ND	1.00	11	jı	n	0	11	
exachlorobutadiene	ND ND	1.00	П	n n		11	В	
Chloro-3-methylphenol	ND ND	1.00	11	n	n.	и	n	
: =	ND ND	1.00	h	0	u.	н	n	
Methylnaphthalene exachlorocyclopentadiene	ND ND	1.00	ļŧ	11	п	ч	и	
4,6-Trichlorophenol	ND ND	1.00	н	71	U	n	u .	
,4,5-Trichlorophenol	ND ND	1.00	ır	n	n	н	n	
-Chloronaphthalene	ND ND	1.00	IJ	19	ti	п	n .	
-Chioronaphinaiene -Nitroaniline	ND	1.00	a	11	"	n	u	
-Nitroanitine .cenaphthylene	ND ND	1.00	п	II.	п	н	н	
	ND ND	1.00	н	*	n	II.	н	
imethyl phthalate	ND ND	1.00	н	и	· h	w	**	
6-Dinitrotoluene	ND ND	1.00	44	,,	н	11	11	
cenaphthene	ND ND	1.00	ır	D.	ıı	-11	11	
Nitroaniline	ND ND	1.00	tr	0	ii	ш	н	
4-Dinitrophenol			li .	11	0	ц	п	
bibenzofuran	ND	1.00	н	11	11	**	п	
4-Dinitrotoluene	ND	1.00	ır	11	п	11	II.	
-Nitrophenol	ND	1.00	t.	ц	н	H.	u	
luorene	ND	1.00	9	**	ч	h	n	
-Chlorophenyl phenyl ether	ND	1.00			**	н	ш	
Diethyl phthalate	ND	1.00	,,	,,	**	n	п	
-Nitroaniline	ND	1.00	11		,,	e.	и	
zobenzene	ND	1.00	"	н	p.		11	
,6-Dinitro-2-methylphenol	ND	1.00	n n	e e			H	
I-Nitrosodiphenylamine	ND	1.00	" "	u u		7	,,	
-Bromophenyl phenyl ether	ND	1.00	,	11	11		in	
lexachlorobenzene	ND	1.00	"	u u	"	4	n	
entachlorophenol	ND	1.00	n 11	"	"	"	w	
henanthrene	ND	1.00	"		".		u	
anthracene	ND	1.00		11	"	,	11	
Carbazole	ND	1.00		11		11	ц	
Di-n-butyl phthalate	ND	1.00	н	H		n.	a	
luoranthene	ND	1.00	и	п	"	"		

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Dun

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project:

ABL

Project Number: Project Manager: [none] Dave Solis Date Reported: 01/31/07 16:35

PS-4 0701100-04 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compound	s by GC/MS							
Benzidine	ND	5.00	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
Pyrene	ND	1.00	"	"	н	*1	u .	
Butyl benzyl phthalate	ND	2.00	0	ч	ч	D	1)	
3,3'-Dichlorobenzidine	ND	1.00	ŧI	11	31	Þ	11	
Benzo (a) anthracene	ND	1.00	11	If	11	R	U	
Chrysene	ND	1.00	n	**	Ш	H	n	
Bis(2-ethylhexyl)phthalate	ND	2.00	н	μ	"	IF.	н	
Di-n-octyl phthalate	ND	1.00	н	и	н	U	"	
Benzo (b) fluoranthene	ND	1.00	П	ii.	н	11	11	
Benzo (k) fluoranthene	ND	1.00	rr .	u	II.	**	tr	
Benzo (a) pyrene	ND	1.00	H	U	0	н	,,	
indeno (1,2,3-cd) pyrene	ND	1.00	н	u	U	ч	n	
Dibenz (a,h) anthracene	ND	1.00	II .	н	п	11	ır	
Benzo (g,h,i) perylene	ND	1.00	If	н	n		D	
Surrogate: 2-Fluorophenol		53.6 %	% Recover	y Limits	10-	110	n .	
Surrogaie: Phenol-d6		65.8 %	% Recover	y Limits	10-	110	,,	
Surrogaie: Nitrobenzene-d5		54.8 %	% Recover	y Limits	10-	110	o	
Surrogate: 2-Fluorohiphenyl		75.0 %	% Recover	y Limits	10-	110	"	
Surrogate: 2,4,6-Tribromophenol		86.2 %	% Recover	y Limits	10-	110	tt.	
Surrogate: Terphenyl-dl4		100 %	% Recover	y Limits	10-	110	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project: Project Number: ABL [none]

Dave Solis

Project Number: Project Manager: Date Reported: 01/31/07 16:35

PS-5 0701100-05 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
4ETALS BY 6000/7000 SERIES					0.10.107	01.005.007	EPA 6010B	
Antimony	1.9	1.0	0 0	AQA0169	01/24/07	01/25/07	EPA 6010B	
Arsenic	ND	1.0		11	11	М		
Barium	74,3	2.0		11	- (i	01/25/07	n.	
Beryllium	ND	0.5		п	n	u .		
admium	ND	1.0		"	u	01/25/07		
Chromium	39.9	1.0	41	11	ч	"	11	
Cobalt	9.3	5.0	h	Ιſ	II	01/25/07	н	
Copper	15.4	2.0	п	H	"	11	М	
ead	11.0	1.0	н	u	p	D.	ч	
1 ercury	1.02	0.010	**	AQA017I	h	01/26/07	EPA 7471A	
Molybdenum	ND	1.0		AQA0169		01/25/07	EPA 6010B	
lickel	43.4	1.0		"	D	01/25/07	n	
elenium	ND	2.0	þi	9	u	н	н	
filver	ND	2.0		17	•	ч	И	
Thallium	ND	2.0		n	11	11	н	
/anadium	35.7	2.0		н	μ	01/25/07	w	
line	44,1	2.0	"	n	и	"	11	
		2.0						
Volatile Organic Compounds by							EPA 8260B	
Gasoline Range Hydrocarbons	ND	1.00		AQA0174	01/29/07	01/29/07	El A 820015	
ΓBA	ND	0.050		н	,,		11	
Methyl tert-Butyl Ether	ND	0.005		n It			II.	
Di-isopropyl ether	ND	0.005		,,		n.	ņ	
Ethyl tert-Butyl Ether	ND	0.005		11		,,	n	
Tert-Amyl Methyl Ether	ND	0.005		и		11	tr.	
Dichlorodifluoromethane	ND	0.005	'	"	" H	u.	U	
Chloromethane	ND	0.005	'	,,			11	
Vinyl chloride	ND	0.003	,	"	11	13	41	
Bromomethane	ND	0.005	•	h.	н	н	ш	
Chloroethane	ND	0.005			,,		ц	
Trichlorofluoromethane	ND	0.005)	h	 p	0	"	
Acetone	ND	0.050	,	"	r. Pi		11	
,1-Dichloroethene	ND	0.003)		n		D.	
odomethane	ND	0.003				n	"	
Methylene chloride	ND	0.050	,	"	"	. н	н	
Carbon disulfide	ND	0.003)	"		"	IT	
rans-1,2-Dichloroethene	ND	0.00:)	,,	" "		D	
1,1-Dichloroethanc	ND	0.00;	, "	"				

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De som

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project: Project Number: ABL


Project Number: Project Manager: [none] Dave Solis Date Reported: 01/31/07 16:35

PS-5 0701100-05 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
olatile Organic Compounds by		0.050		4040174	01/29/07	01/29/07	EPA 8260B	
-Butanone	ND		mg/kg "	AQA0174	01/29/07	01/29/07	н	
,2-Dichloropropane	ND	0.005	n.			11	н	
is-1,2-Dichloroethene	ND	0.005	D.			11	u	
romochloromethane	ND	0.005	"	η.	ų	n.	st.	
hloroform	ND	0.005		"		p	1)	
,1,1-Trichloroethane	ND	0.005		11	"	,, 13	11	
Carbon tetrachloride	ND	0.005	41	*1	11		н	
,1-Dichlоторгорепе	ND	0.005	n	II.	н	н		
Benzene	ND	0.005	н	11	"	11		
,2-Dichloroethane	ND	0.005	н	"	,	.,		
Trichloroethene	ND	0.005	"	11	p	v	"	
,2-Diehloropropane	ND	0.005	41	11	И	U	"	
Dibromomethane	ND	0.005	n .	AI.		II.	"	
romodichloromethane	ND	0.005	"	"	0	"		
is-1,3-Dichloropropene	ND	0.005	и	41	11	н	н	
-Methyl-2-pentanone	ND	0.050	It	п	41	"	11	
oluene	ND	0.005	D	п	II .	11	tr	
ans-1,3-Dichloropropene	ND	0.005	"	11	н	11	"	
,1,2-Trichloroethane	ND	0.005	u	н	n	н	11	
etrachloroethene	ND	0.005	н	Ħ	11	11	н	
,3-Dichloropropane	ND	0.005	н	n	H	II.	ü	
-Hexanone	ND	0.050	4	н	,	0	**	
Dibromochloromethane	ND	0.005	41	H	и	11	Н	
,2-Dibromoethane (EDB)	ND	0.005	H	u	10	11	Ħ	
Chlorobenzene	ND	0.005	"	n	11	"	n	
,1,1,2-Tetrachloroethane	ND	0.005	,	11	11	н	n	
Ethylbenzene	ND	0.005	μ	Ħ	11	n	II.	
n,p-Xylene	ND	0.010	D	n	п	**	Tr.	
-Xylene	ND	0.005		"	п	**	U	
tyrene	ND	0.005	ø	n	11	,,	U	
Bromoform	ND	0.005	п	н	11	p	v	
sopropylbenzene	ND	0.005	п	,,	Ш	н	н	
Bromobenzene	ND	0.005	н	,,	"	tt-	н	
,1,2,2-Tetrachloroethane	ND ND	0.005	"		þ	U	n	
,2,3-Trichloropropane	ND ND	0.005	ır	B	11	11	41	
-Propylbenzene	ND ND	0.005	*	v	o	н	p	
-Propytoenzene -Chlorotoluene	ND ND	0.005	н	17	0	ц	ii.	
			п	н	11	11	н	
-Chlorotoluene	ND	0.005	•					

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583 Project: Project Number:

Project Manager:

ABL

[none]
Dave Solis

Date Reported: 01/31/07 16:35

PS-5 0701100-05 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
olatile Organic Compounds by GC	/MS							
3,5-Trimethylbenzene	ND	0.005	mg/kg	AQA0174	01/29/07	01/29/07	EPA 8260B	
rt-Butylbenzene	ND	0.005	þ	U	u u	п	μ	
2,4-Trimethylbenzene	ND	0.005	и	11	11	н	н	
e-Butylbenzene	ND	0.005	D	н	11	11	U	
3-Dichlorobenzene	ND	0.005	0	n	и	II	u,	
Isopropyltoluene	ND	0.005	v	11	ų	"	n	
4-Dichlorobenzene	ND	0.005	TJ	II	n	H	U	
2-Dichlorobenzene	ND	0.005	н	pt	n	н	II .	
-Butylbenzene	ND	0.005	Ħ	n	p	11	es .	
2-Dibromo-3-chloropropane	ND	0.005	11	n	n	0	Ħ	
2,4-Trichlorobenzene	ND	0.005	**	u u		11	* p	
exachlorobutadiene	ND	0.005	pt	v	D	N	,,	
aphthalene	ND	0.005	н	11	0	20	и	
2,3-Trichlorobenzene	ND	0.005	ır	н	n	11	II	
urrogate: Dibromofluoromethane		102 %	% Recovery	y Limits	70	130	"	
urrogate: Toluene-d8		102 %	% Recover	y Limits	70-130		"	
urrogaie: 4-Bromofluorobenzene		109 %	% Recovery	y Limits	s 70-130		n	
otal Petroleum Hydrocarbons by F	'ID							
PH as Diesel	ND	1.00	mg/kg	AQA0183	01/29/07	01/30/07	EPA 8015Mod	•
Iydraulic Oil	179	5.00	"	, n	U	01/30/07	, .	
emiVolatile Organic Compounds by								
I-Nitrosodimethylamine	ND ND	0.100	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
Aniline	ND	0.100	"	"	п	п	0	
tis(2-chloroethyl)ether	ND	0.100	0	11	11	н	11	
Phenol	ND	0.100	†1	н	11	п	71	
-Chlorophenol	ND	0.100	n	n	н	U	N	
,4-Dichlorobenzene	ND	0.100	4	н	n	11	ч	
Benzyl alcohol	ND	0.100	ц	n	н	11	ч	
Bis(2-chloroisopropyl)ether	ND	0.100	n	.,	u	ti.	w	
-Methylphenol	ND	0.100	"	41	u	п	и	
-ivietity (phenor Iexachloroethane	ND	0.100	If	11	11	ч	н	
I-Nitrosodi-n-propylamine	ND	0.100	11	п	н	п	Tr.	
-Methylphenol	ND	0.100	U	**	ц	n	Tr.	
* *	ND ND	0.100	11	п	**	ņ	11	
Vitrobenzene sophorone	ND ND	0.100	,	,,	н	n	"	
	NU	V.100						
:-Nitrophenol	ND	0.100	**		μ	D	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Du Donn

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project: Project Number:

Project Manager:

ABL

[none]

Dave Solis

Date Reported: 01/31/07 16:35

PS-5 0701100-05 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
emiVolatile Organic Compound			111		<u></u>	<u>.</u>	ED 4 03700	
is(2-chloroethoxy)methane	ND	0.100	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
enzoic acid	ND	0.300	II.	и	М	n ·		
4-Dichlorophenol	ND	0.100	0	н	Ħ	n		
2,4-Trichlorobenzene	ND	0.100	11	11	#1	'n	n	
aphthalene	מא	0.100	н	"	Н	IT .		
Chloroaniline	ND	0.100	n	**	rr .	11		
exachlorobutadiene	ND	0.100	и	н	n	11		
Chloro-3-methylphenol	ND	0.100	II	If	н	11		
-Methylnaphthalene	ND	0.100	"	n	u u	ti .	n	
exachlorocyclopentadiene	ND	0.100	"	10	17	н		
4,6-Trichlorophenol	ND	0.100	þ	II	11	"		
4,5-Trichlorophenol	ND	0.100	D	n	и	IF	17	
-Chloronaphthalene	ND	0.100	17	н	ч	H	u	
-Nitroaniline	ND	0.100	"	11	n	þ	U	
cenaphthylene	ND	0.100	41	11	11	n	u u	
imethyl phthalate	ND	0.100	н	n	II	н	н	
6-Dinitrotoluene	ND	0.100	М	þi	n	u	4	
cenaphthene	ND	0.100	"	n	'n	17	11	
-Nitroaniline	ND	0.100	Ш	IT	II	11	н	
,4-Dinitrophenol	ND	0.100	"	17	U	н	,,	
Dibenzofuran	ND	0.100	μ	11	n	п	и	
4-Dinitrotoluene	ND	0.100	II .	11	11	**	II.	
-Nitrophenol	ND	0.100	II.	м	n	Ħ	"	
luorene	ND	0.100	0	**	#	P.	11	
-Chlorophenyl phenyl ether	ND	0.100	U	н	11	п	n	
Diethyl phthalate	ND	0.100	п	h	"	H:	41	
-Nitroaniline	ND	0.100	4	н	и	0	11	
zobenzene	ND	0.100	B		н	W.	н	
,6-Dinitro-2-methylphenol	ND	0.100	n		u	n	bt	
I-Nitrosodiphenylamine	ND	0.100	"	· ·	U	н	н	
-Bromophenyl phenyl ether	ND	0.100	н	u	11	**	II.	
Iexachlorobenzene	ND	0.100	P	н	н	ц	u.	
entachlorophenol	ND	0.100	"	**	п	n	u.	
henanthrene	ND	0.100	v	11	**	,	17	
Anthracene	ND	0.100	Ð	II.	н	и	"	
Carbazole	ND	0.100	н	n	н	B	н	
aroazote Di-n-butyl phthalate	ND	0.100	,	H	"	O.	М	
Tuoranthene	ND ND	0.100	4	n		11	Ħ	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project: Project Number:

Project Manager:

ABL (none)

[none] Dave Solis Date Reported: 01/31/07 16:35

PS-5 0701100-05 (Soil)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
SemiVolatile Organic Compound	s by GC/MS							
Benzidine	ND	0.500	mg/kg	AQA0187	01/29/07	01/30/07	EPA 8270C	
yrene	ND	0.100	'D	ti ti	11	મં	и	
Butyl benzyl phthalate	ND	0.200	"	"	"	Ш	u	
3,3'-Dichlorobenzidine	ND	0.100	o o	n	**	"		
Benzo (a) anthracene	ND	0.100	H	"	II	н	п	
Chrysene	ND	0.100	,,	н	11	U	*	
Bis(2-ethylhexyl)phthalate	ND	0.200	41	II	h	v	"	
Di-n-octyl phthalate	ND	0.100	Ħ	AT .	II.	11	"	
Benzo (b) fluoranthene	ND	0.100	н	11	U	н	ņ	
Benzo (k) fluoranthene	ND	0.100	II.	41	0	11		
Benzo (a) pyrene	ND	0.100	11	п	· ·	**		•
Indeno (1,2,3-cd) pyrene	ND	0.100	0	"	Ÿ	"	"	
Dibenz (a,h) anthracene	ND	0.100	II	11	11	h	н	
Benzo (g,h,i) perylene	ND	0.100	. "	, p				
Surrogate: 2-Fluorophenol		51.4 %	% Recover	y Limits	10-	110	**	
Surrogate: Phenol-d6		58.8 %	% Recover	y Limits	10-	110	и	
Surrogate: Nitrobenzene-d5		56.4 %	% Recover	y Limits	10-	110	"	
Surrogate: 2-Fluorobiphenyl		66.8 %	% Recover	y Limits	10-	110	tt	
Surrogate: 2,4,6-Tribromophenol		83.0 %	% Recover	y Limits	10-	110	0	
Surrogate: Terphenyl-dl4		84.0 %	% Recover	y Limits	10-	110	ď	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Don

CLS Environmental Project: ABL
8 Crow Canyon Rd, Suite 205 Project Number: [none] Date Reported:
San Ramon, CA 94583 Project Manager: Dave Solis 01/31/07 16:35

METALS BY 6000/7000 SERIES - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AQA0169 - EPA 6010B										
Blank (AQA0169-BLK1)		<u> </u>		Prepared: (01/24/07 A	nalyzed: 01	/25/07			
Antimony	ND	1.0	mg/kg							
Arsenic	ND	1.0	11							
Barium	ND	2.0	0							
Beryllium	ND	0.5	H							
Cadmium	ND	1.0	r							
Chromium	ND	1.0	н							
Cobalt	ND	5.0	D.							
Copper	ND	2.0	**							
ead	ND	1.0	11							
Aolybdenum	ND	1.0	н							
lickel	ND	1.0	"							
elenium	ND	2.0	11							
ilver	ND	2.0	n							
hallium	ND	2.0	p							
/anadium	ND	2.0	n							
line	ND	2.0	D							
.CS (AQA0169-BS1)				Prepared:	01/24/07 A	nalyzed: 01	1/25/07			
Antimony	94,8	1,0	mg/kg	100		94.8	80-120			
Arsenic	102	1.0	н	100		102	80-120			
Jarium	101	2.0	11	100		101	80-120			
Beryllium	100	0.5	11	100		100	80-120			
Cadmium	102	1.0	*	100		102	80-120			
Chromium	98.1	1.0	ĸ	100		98.1	80-120			
Cobalt	98.3	5.0	11	100		98.3	80-120			
Copper	102	2.0	U	100		102	80-120			
Lead	99.0	1.0	v	100		99.0	80-120			
Molybdenum	99.3	1.0	11	100		99.3	80-120			
Nickel	99,1	1.0	н	100		99.1	80-120			
Selenium	95.7	2.0	4	100		95.7	80-120			
Silver	92.0	2.0	п	100		92.0	80-120			
Thallium	95.7	2.0	17	100		95.7	80-120			
Vanadium	96.1	2.0	и	100		96.1	80-120			
Zine	98.2	2.0	п	100		98.2	80-120			

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Dun

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project:

ABL

[none]

Project Number: Project Manager: Dave Solis

Date Reported: 01/31/07 16:35

METALS BY 6000/7000 SERIES - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AQA0169 - EPA 6010B	.541				<u> </u>					
LCS Dup (AQA0169-BSD1)				Prepared: (01/24/07 Ai	nalyzed: 01	/25/07			
Antimony	94.0	1.0	mg/kg	100		94.0	80-120	0.847	25	
Arsenic	101	1.0		100		101	80-120	0.985	25	
Barium	101	2.0	17	100		101	80-120	0.00	25	
Beryllium	98.4	0.5	u	100		98.4	80-120	1.61	25	
Cadmium	98.4	1,0	*1	100		98.4	80-120	3.59	25	
Chromium	95.1	1.0	н	100		95.1	80-120	3.11	25	
Cobalt	99.3	5.0	**	100		99.3	80-120	1.01	25	
Copper	100	2.0	"	100		100	80-120	1.98	25	
Lead	97.5	1.0	H	100		97.5	80-120	1.53	25	
Molybdenum	97.0	1.0	n	100		97.0	80-120	2.34	25	
Nickel	99.4	1.0		100		99.4	80-120	0.302	25	
Selenium	94.5	2.0	н	100		94.5	80-120	1.26	25	
Silver	90.0	2.0	n	100		90.0	80-120	2.20	25	
Thallium	94,8	2.0		100		94.8	80-120	0.945	25	
Vanadium	96.7	2,0	0	100		96.7	80-120	0.622	25	
Zinc	95.9	2,0	0	100		95.9	80-120	2.37	25	
Matrix Spike (AQA0169-MS1)	Sou	rce: 0701100-	01	Prepared:	01/24/07 A	nalyzed: 03	1/25/07			
Antimony	90.0	1.0	mg/kg	100	2,9	87.1	75-125			
Arsenic	101	1.0	11	100	ND	101	75-125			
Barium	174	2.0	н	100	79.3	94.7	75-125			
Beryllium	99.2	0.5	H	100	ND	99.2	75-125			
Cadmium	97.7	1.0	n n	100	0.6	97.1	75-125			
Chromium	134	1.0		100	37.2	96.8	75-125			
Cobalt	103	5.0	0	100	8.3	94.7	75-125			
Copper	121	2.0	11	100	18.2	103	75-125			
Lead	107	1.0	μ	100	12.1	94.9	75-125			
Molybdenum	93.5	1.0	н	100	ND	93.5	75-125			
Nickel	137	1.0	**	100	37.2	99.8	75-125			
Selenium	91.0	2.0	11	100	ND	91,0	75-125			
Silver	92.3	2.0	H	100	ND	92.3	75-125			
Thallium	88.5	2.0	H	100	ND	88.5	75-125			
Vanadium	132	2.0	н	100	33.0	99.0	75-125			
Zinc	136	2.0		100	40.8	95.2	75-125			

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

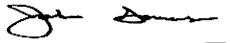
Project: Project Number:

Project Manager:

ABL

[none]

Dave Solis


Date Reported: 01/31/07 16:35

METALS BY 6000/7000 SERIES - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AQA0169 - EPA 6010B										
Matrix Spike Dup (AQA0169-MSD1)	Sou	rce: 0701100-0)1	Prepared: 0)1/24/07	Analyzed: 01	/25/07			
Antimony	90.4	1.0	mg/kg	100	2.9	87.5	75-125	0,443	25	
Arsenic	99.4	1.0	u.	100	ND	99.4	75-125	1.60	25	
Barium	171	2.0	v	100	79.3	91.7	75-125	1.74	25	
Beryllium	97.2	0.5	U	100	ND	97.2	75-125	2.04	25	
Cadmium	94.7	1.0	ii .	100	0.6	94.1	75-125	3.12	25	
Chromium	132	1.0	n	100	37.2	94.8	75-125	1.50	25	
Cobalt	102	5.0	"	100	8.3	93,7	75-125	0.976	25	
Copper	115	2.0	11	100	18.2	96.8	75-125	5.08	25	
Lead	112	1.0	II.	100	12.1	99.9	75-125	4.57	25	
Molybdenum	94.2	1.0	"	100	ND	94.2	75-125	0.746	25	
Nickel	134	1.0	'n	100	37.2	96.8	75-125	2.21	25	
Selenium	91.9	2.0	n	100	ND	91.9	75-125	0.984	25	
Silver	92.7	2.0	"	100	ND	92.7	75-125	0.432	25	
Thallium	87.9	2.0	U	100	ND	87.9	75-125	0.680	25	
Vanadium	127	2,0	11	100	33.0	94.0	75-125	3.86	25	
Zinc	133	2,0	п	100	40.8	92.2	75-125	2.23	25	
Batch AQA0171 - EPA 7471A										
Blank (AQA0171-BLK1)				Prepared:	01/24/07	Analyzed: 0	1/26/07			
Mercury	ND	0.010	mg/kg							
LCS (AQA0171-BS1)				1	01/24/07	Analyzed: 0				
Mercury	0.417	0.010	mg/kg	0.400		104	80-120			
LCS Dup (AQA0171-BSD1)					01/24/07	Analyzed: 0				
Mercury	0.414	0.010	mg/kg	0.400		104	80-120	0.722	20	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

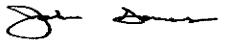
Project: Project Number:

Project Manager:

ABL

[none]

Dave Solis


Date Reported: 01/31/07 16:35

METALS BY 6000/7000 SERIES - Quality Control

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Sou	rce: 0701100-0	1	Prepared: ()1/24/07 A	nalyzed: 01	/26/07			
0.472	0.010	mg/kg	0.400	0,048	106	75-125			
		1 mg/kg					0,638	20	
	Sou 0.472 Sou	Source: 0701100-0 0.472 0.010	Source: 0701100-01 0.472 0.010 mg/kg Source: 0701100-01	Source: 0701100-01 Prepared: 0 0.472 0.010 mg/kg 0.400 Source: 0701100-01 Prepared: 0	Source: 0701100-01 Prepared: 01/24/07 A 0.472 0.010 mg/kg 0.400 0.048 Source: 0701100-01 Prepared: 01/24/07 A	Source: 0701100-01 Prepared: 01/24/07 Analyzed: 01 0.472 0.010 mg/kg 0.400 0.048 106 Source: 0701100-01 Prepared: 01/24/07 Analyzed: 01/24/07	Source: 0701100-01 Prepared: 01/24/07 Analyzed: 01/26/07 0.472 0.010 mg/kg 0.400 0.048 106 75-125 Source: 0701100-01 Prepared: 01/24/07 Analyzed: 01/26/07	Source: 0701100-01 Prepared: 01/24/07 Analyzed: 01/26/07 0.472 0.010 mg/kg 0.400 0.048 106 75-125 Source: 0701100-01 Prepared: 01/24/07 Analyzed: 01/26/07	Source: 0701100-01 Prepared: 01/24/07 Analyzed: 01/26/07 0.472 0.010 mg/kg 0.400 0.048 106 75-125 Source: 0701100-01 Prepared: 01/24/07 Analyzed: 01/26/07

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583 Project: Project Number:

Project Manager:

ABL

[none]

Dave Solis

Date Reported: 01/31/07 16:35

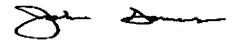
Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AQA0174 - EPA 8260B		<u></u>								
Blank (AQA0174-BLK1)				Prepared &	z Analyzed:	01/29/07				
Surrogate: Dibromofluoromethane	49.4		ug/kg	50.0		98.8	70-130			
Surrogate: Toluene-d8	50.9		"	50.0		102	70-130			
Surrogaie: 4-Bromofluorobenzene	53.0		п	50.0		106	70-130			
Gasoline Range Hydrocarbons	ND	1.00	mg/kg							
ТВА	ND	0.050	II.							
Methyl tert-Butyl Ether	ND	0.005	II.							
Di-isopropyl ether	ND	0.005	0							
Ethyl tert-Butyl Ether	ND	0,005	11							
Fert-Amyl Methyl Ether	ND	0.005	н							
Dichlorodifluoromethane	ND	0.005	11							
Chloromethane	ND	0,005	11							
/inyl chloride	ND	0.005	H							
Bromomethane	ND	0.005	н							
Chloroethane	ND	0.005	0							
richlorofluoromethane	ND	0.005	"							
acetone	ND	0.050								
,l-Dichloroethene	ND	0.005	4							
odomethane	ND	0.005	11							
Nethylene chloride	ND	0.050	H							
Carbon disulfide	ND	0.005	11							
rans-1,2-Dichloroethene	ND	0.005	II.							
,1-Dichloroethane	ND	0.005	***							
-Butanone	ПИ	0.050	11							
2,2-Dichloropropane	ND	0.005	п							
cis-1,2-Dichloroethene	ND	0.005	n							
Bromochloromethane	ND	0.005	11							
Chloroform	ND	0.005	,,							
1,1,1-Trichloroethane	ND	0.005	н							
Carbon tetrachloride	ND	0.005	tr.							
1,1-Dichloropropene	ND	0.005	"							
Benzenc	ND	0.005	"							
1,2-Dichloroethane	ND	0.005	11							
Trichloroethene	ND	0.005	H							
1,2-Dichloropropane	ND	0.005	n							
Dibromomethane	ND	0.005	"							
Bromodichloromethane	ND	0.005	•							
cis-1,3-Dichloropropene	ND	0.005	п							
) ID	0.050	н							

0,050

0.005

ND


ND

Excelchem Environmental Lab.

4-Methyl-2-pentanone

Toluene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project:

Project Number:

Project Manager:

ABL

[none]

Dave Solis

Date Reported: 01/31/07 16:35

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AQA0174 - EPA 8260B										
Blank (AQA0174-BLK1)				Prepared &	Analyzed:	01/29/07				
trans-1,3-Dichloropropene	ND	0.005	mg/kg							
1,1,2-Trichloroethane	ND	0.005	"							
Tetrachloroethene	ND	0.005	11							
1,3-Dichloropropane	ND	0.005	H							
2-Hexanone	ND	0.050	h							
Dibromochloromethane	ND	0.005	н							
1,2-Dibromoethane (EDB)	ND	0.005	111							
Chlorobenzene	ND	0.005	u							
1,1,1,2-Tetrachloroethane	ND	0.005	0							
Ethylbenzene	ND	0.005	0							
m,p-Xylene	ND	0.010	0							
o-Xylene	ND	0.005	11							
Styrene	ND	0.005	н							
Bromoform	ND	0.005	ц							
Isopropylhenzene	ND	0.005	n							
Bromobenzene	ND	0.005	11							
1,1,2,2-Tetrachloroethane	ND	0.005	"							
1,2,3-Trichloropropane	ND	0.005	,,							
n-Propylbenzene	ND	0.005	H							
2-Chlorotoluene	ND	0.005	0							
4-Chlorotoluene	ND	0.005								
1,3,5-Trimethylbenzene	ND	0.005	"							
tert-Butylbenzene	ND	0.005	и							
1,2,4-Trimethylbenzene	ND	0.005	n							
sec-Butylbenzene	ND	0.005								
1,3-Dichlorobenzene	ИD	0.005	"							
4-lsopropyltoluene	ND	0.005	n							
1,4-Dichlorobenzene	ND	0.005	"							
1,2-Dichlorobenzene	ND	0,005	н							
n-Butylbenzene	ND	0.005	н							
1,2-Dibromo-3-chloropropane	ND	0.005								
1,2,4-Trichlorobenzene	ND	0.005	**							
Hexachlorobutadiene	ND	0,005	9							
Naphthalene	ND	0.005	11							
1,2,3-Trichlorobenzene	ND	0.005	н							
Xylenes, total	ND	0.010	ч							

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583 Project:

ABL

Project Number: Project Manager:

[none] Dave Solis

Date Reported: 01/31/07 16:35

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AQA0174 - EPA 8260B		. <u> </u>								
LCS (AQA0174-BS1)				Prepared &	Analyzed:	01/29/07				
Surrogate: Dibromofluoromethane	48.0		ug/kg	50.0		96.0	70-130			
Surrogate: Toluene-d8	51.0		17	50.0		102	70-130			
Surrogate: 4-Bromofluorohenzene	55.6		17	50.0		Ш	70-130			
1,1-Dichloroethene	0.042	0.005	mg/kg	0.0420		100	80-120			
Benzene	0.038	0.005	п	0.0420		90.5	80-120			
Trichloroethene	0.038	0.005	п	0.0420		90.5	80-120			
Toluene	0,042	0.005	**	0.0420		100	80-120			
Chlorobenzene	0.047	0.005	**	0,0420		112	80-120			
Matrix Spike (AQA0174-MS1)	Sou	rce: 0701100-	01	Prepared &	Analyzed	01/29/07				
Surrogate: Dibromofluoromethane	50.1		ug/kg	50.0		100	70-130			
Surrogate: Toluene-d8	51.6		"	50.0		103	70-130			
Surrogate: 4-Bromofluorobenzene	54.9		H	50.0		110	70-130			
1,1-Dichloroethene	0.038	0.005	mg/kg	0.0420	ND	90.5	80-120			
Benzene	0.035	0.005	11	0.0420	ND	83.3	80-120			
Trichloroethene	0.034	0.005	n	0.0420	ND	81.0	80-120			
Toluene	0.038	0.005	21	0.0420	ND	90.5	80-120			
Chlorobenzene	0.045	0.005	11	0.0420	ND	107	80-120			
Matrix Spike Dup (AQA0174-MSD1)	Soi	arce: 0701100-	01	Prepared &	Analyzed:	01/29/07	.,			
Surrogate: Dibromofluoromethane	50.4		ug/kg	50.0		101	70-130			
Surrogate: Toluene-d8	51.3		'n	50.0		103	70-130			
Surrogate: 4-Bromofluorobenzene	55.2		"	50.0		110	70-130			
1,1-Dichloroethene	0.042	0,005	mg/kg	0.0420	ND	100	80-120	10.0	15	
Benzene	0.039	0.005	11	0.0420	ND	92.9	80-120	10.8	15	
Trichloroethene	0.039	0.005	н	0,0420	ND	92.9	80-120	13.7	15	
Toluene	0.042	0.005	ч	0.0420	ND	100	80-120	10.0	15	
Chlorobenzene	0.049	0.005	*1	0,0420	ND	117	80-120	8,51	15	

Excelchem Environmental Lab.

The results in this report apply to the sumples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Don

CLS Environmental Project: ABL
8 Crow Canyon Rd, Suite 205 Project Number: [none]
San Ramon, CA 94583 Project Manager: Dave Solis

Date Reported: 01/31/07 16:35

Total Petroleum Hydrocarbons by FID - Quality Control

									_	-
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AQA0183 - EPA 8015Mod						-				
Blank (AQA0183-BLK1)				Prepared:	01/29/07 A	nalyzed: 01	/30/07			
TPH as Dicsel	ND	1,00	mg/kg							
Hydraulic Oil	ND	5.00	н							
LCS (AQA0183-BS1)				Prepared:	01/29/07 A	nalyzed: 01	/30/07			
TPH as Diesel	70.5	1.00	mg/kg	100		70.5	70-130			<u>-</u> -
LCS (AQA0183-BS2)				Prepared:	01/29/07 A	nalyzed: 01	/30/07			
Hydraulic Oil	72.5	5.00	mg/kg	100		72.5	70-130			
LCS Dup (AQA0183-BSD1)				Prepared:	01/29/07 A	nalyzed: 01	1/30/07			
TPH as Diesel	70.6	1.00	mg/kg	100		70.6	70-130	0.142	30	
LCS Dup (AQA0183-BSD2)				Prepared:	01/29/07 A	nalyzed: 01	1/30/07			
Hydraulic Oil	73.5	5.00	mg/kg	100		73.5	70-130	1,37	30	
Matrix Spike (AQA0183-MS1)	Sou	rce: 0701126-	01	Prepared &	& Analyzed	: 01/30/07				
TPH as Diesel	83.7	1.00	mg/kg	100	ND	83.7	70-130			
Matrix Spike Dup (AQA0183-MSD1)	Sou	ırce: 0701126-	01	Prepared &	& Analyzed	: 01/30/07				
TPH as Diesel	91,2	1.00	mg/kg	100	ND	91.2	70-130	8.58	30	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De som

CLS Environmental 8 Crow Canyon Rd, Suite 205

San Ramon, CA 94583

Project:

ABL

Project Number: Project Manager: [none]
Dave Solis

Date Reported: 01/31/07 16:35

SemiVolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AQA0187 - EPA 8270C										.=
Blank (AQA0187-BLK1)				Prepared: 0	1/29/07 A	nalyzed: 01	/30/07			
Surrogate: 2-Fluorophenol	29.1		mg/L	50.0		58.2	/0-110			
Surrogate: Phenol-d6	31.1		n	50.0		62.2	10-110		_	
Surrogate: Nitrobenzene-d5	31.4		"	50.0		62.8	10-110			
Surrogate: 2-Fluorobiphenyl	31.6		'n	50.0		63.2	10-110			
Surrogate: 2,4,6-Tribromophenol	33.4		n	50.0		66.8	10-110			
Surrogate: Terphenyl-dl4	43.0		"	50.0		86.0	10-110			
N-Nitrosodimethylamine	ND	0.100	mg/kg							
Aniline	ND	0.100	0							
Bis(2-chloroethyl)ether	ND	0.100	10							
Phenol	ND	0.100	11							
2-Chlorophenol	ND	0.100	н							
1,4-Dichlorobenzene	ND	0.100	"							
Benzyl alcohol	ND	0.100	п							
Bis(2-chloroisopropyl)ether	ND	0.100	r							
2-Methylphenol	ND	0.100	n							
Hexachloroethane	ND	0.100	n							
N-Nitrosodi-n-propylamine	ND	0,100	**							
4-Methylphenol	ND	0.100	11							
Nitrobenzene	ND	0.100	0							
Isophorone	ND	0.100	11							
2-Nitrophenol	ND	0.100	"							
2,4-Dimethylphenol	ND	0.100	**							
Bis(2-chloroethoxy)methane	ND	0.100	*11							
Benzoic acid	ND	0,300	H							
2,4-Dichlorophenol	ND	0.100	н							
1.2.4-Trichlorobenzene	ND	0.100	н							
Naphthalene	ND	0.100								
4-Chloroaniline	ND	0.100	v							
Hexachlorobutadiene	ND	0.100	11							
4-Chloro-3-methylphenol	ND	0.100	н							
2-Methylnaphthalene	ND	0,100	**							
Hexachlorocyclopentadiene	ND	0.100	11							
2,4,6-Trichlorophenol	ND	0.100	17							
2,4,5-Trichlorophenol	ND	0.100	и							
2-Chloronaphthalene	ND	0.100	н							
2-Nitroaniline	ND	0.100	II.							
Acenaphthylene	ND	0.100	11							
	ND	0.100	11							
Dimethyl phthalate 2,6-Dinitrotoluene	ND ND	0.100	п							

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Du Donn

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583 Project:

ABL

Project Number: Project Manager: [none] Dave Solis Date Reported: 01/31/07 16:35

SemiVolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AQA0187 - EPA 8270C			.,				-			
Blank (AQA0187-BLK1)				Prepared:	01/29/07 A	nalyzed: 01	/30/07			
Acenaphthene	ND	0.100	mg/kg							
3-Nitroaniline	ND	0.100	н							
2,4-Dinitrophenol	ND	0.100	II*							
Dibenzofuran	ND	0.100	11							
2,4-Dinitrotoluene	ND	0.100	0							
4-Nitrophenol	ND	0.100	41							
Fluorene	ND	0.100	н							
4-Chlorophenyl phenyl ether	ND	0.100	4							
Diethyl phthalate	ND	0.100	11							
4-Nitroaniline	ND	0.100	II .					•		
Azobenzene	ND	0.100	**							
4,6-Dinitro-2-methylphenol	ND	0,100	,,							
N-Nitrosodiphenylamine	ND	0.100	n							
1-Bromophenyl phenyl ether	ND	0.100								
lexachlorobenzene	ND	0.100	U							
Pentachlorophenol	ND	0.100	9							
Phenanthrene	ND	0.100	n							
Anthracene	ND	0.100	"							
Carbazole	ND	0.100	11							
Di-n-butyl phthalate	ND	0,100	"							
Fluoranthene	ND	0,100	n							
Benzidine	ND	0,500	n							
Pyrene	ND	0.100	ur.							
Butyl benzyl phthalate	ND	0.200	11							
3,3'-Dichlorobenzidine	ND	0.100	11							
Benzo (a) anthracene	ND	0,100	п							
Chrysenc	ND	0,100	u							
Bis(2-ethylhexyl)phthalate	ND	0,200	n							
Di-n-octyl phthalate	ND	0,100	н							
Benzo (b) fluoranthene	ND	0.100	"							
Benzo (k) fluoranthene	ND	0.100	n							
Benzo (a) pyrene	ND	0.100								
Indeno (1,2,3-cd) pyrene	ND	0.100	0							
Dibenz (a,h) anthracene	ND	0.100	11							
Benzo (g,h,i) perylene	ND	0.100	n n							

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Donn

CLS Environmental 8 Crow Canyon Rd, Suite 205

San Ramon, CA 94583

Project:

ABL

Project Number: Project Manager: [none]
Dave Solis

Date Reported: 01/31/07 16:35

SemiVolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AQA0187 - EPA 8270C					<u> </u>					·
LCS (AQA0187-BS1)		_		Prepared: 0	1/29/07 A	nalyzed: 01.	/30/07			
Surrogate: 2-Fluorophenol	31.8		mg/L	50.0	-	63.6	0-200			
Surrogate: Phenol-d6	35.5		п	50.0		71.0	0-200			
Surrogate: Nitrobenzene-d5	35.5		п	50.0		71.0	0-200			
Surrogate: 2-Fluorobiphenyl	35.2		11	50.0	·	70.4	0-200			
Surrogate: 2,4,6-Tribromophenol	40.4		II	50.0		80.8	0-200			
Surrogate: Terphenyl-dl4	44.0		n	50.0		88.0	0-200			
henol	1.15	0.100	mg/kg	1.67		68.9	0-200			
2-Chlorophenol	1.13	0.100	ji .	1.67		67.7	0-200			
.4-Dichlorobenzene	1.06	0.100	ur.	1.67		63.5	0-200			
N-Nitrosodi-n-propylamine	0.980	0.100	U	1.67		58.7	0-200			
,2,4-Trichlorobenzene	1.03	0.100	17	1.67		61.7	0-200			
I-Chloro-3-methylphenol	1.17	0.100	п	1,67		70.1	0-200			
Acenaphthene	1.10	0.100	н	1.67		65.9	0-200			
4,4-Dinitrotoluene	1.13	0.100	4	1.67		67.7	0-200			
-Nitrophenol	1.31	0.100	п	1.67		78.4	0-200			
Pentachlorophenol	1.19	0.100	"	1.67		71.3	0-200			
Pyrene	0.961	0.100	p.	1.67		57.5	0-200			
LCS Dup (AQA0187-BSD1)				Prepared: (01/29/07 A	nalyzed: 01	/30/07			
Surrogate: 2-Fluorophenol	29.1		mg/L	50.0	-	58.2	0-200			
Surrogate: Phenol-d6	31.0	-	"	50.0		62.0	0-200	•		
Surrogate: Nitrohenzene-d5	31.2		u	50.0		62.4	0-200			
Surrogate: 2-Fluorobiphenyl	31.0		n	50.0		62.0	0-200			
Surrogate: 2,4,6-Tribromophenol	34.5			50.0		69.0	0-200			
Surrogate: Terphenyl-dl4	40.7		р	50.0		81.4	0-200			
Phenol	1,01	0.100	mg/kg	1.67		60.5	0-200	13.0	20	
2-Chlorophenol	0,995	0.100	**	1.67		59.6	0-200	12.7	20	
1,4-Dichlorobenzene	0.948	0.100	н	1.67		56.8	0-200	11.2	20	
N-Nitrosodi-n-propylamine	0.850	0.100	н	1,67		50.9	0-200	14.2	20	
1,2,4-Trichlorobenzene	0,910	0.100	It	1.67		54.5	0-200	12.4	200	
4-Chloro-3-methylphenol	1.07	0.100	D	1.67		64.1	0-200	8.93	20	
Acenaphthene	0.949	0.100	41	1.67		56.8	0-200	14.7	20	
2,4-Dinitrotoluene	0.995	0.100	н	1.67		59.6	0-200	12.7	20	
4-Nitrophenol	1.20	0.100	н	1.67		71.9	, 0-200	8.76	20	
Pentachlorophenol	1.08	0.100	11	1.67		64,7	0-200	9.69	20	
Pyrene	0.886	0.100	п	1.67		53.1	0-200	8.12	20	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Donn

CLS Environmental Project: ABL
8 Crow Canyon Rd, Suite 205 Project Number: [none] Date Reported:
San Ramon, CA 94583 Project Manager: Dave Solis 01/31/07 16:35

Notes and Definitions

ND - Analyte not detected at reporting limit.

NR - Not reported

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Dun

CLS Environmental Project: ABL
8 Crow Canyon Rd, Suite 205 Project Number: [none] Date Reported:
San Ramon, CA 94583 Project Manager: Dave Solis 01/31/07 16:35

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De som

CLS Environmental 8 Crow Canyon Rd, Suite 205 San Ramon, CA 94583

Project: Project Number: Project Manager: ABL
[none]
Dave Solis

Date Reported: 01/31/07 16:35

ME No. 2050-0039 Form Approve Please print or type. (Form designed for use on elite (12-pitch) typewriter.) UNIFORM HAZARDOUS 1. Genérator ID Number 2. Page 1 of 3. Emergency Response Phone 000985952 800-468-3035 CAC002510498 **WASTE MANIFEST** Generator's Name and Mailing Address
ALAMEDA BELTLINE RAILWAY Generator's Site Address (if different than mailing address) SAME 1925 SHERMAN'ST ALAMEDA, CA Generator's Phone: 925-636-7900 U.S. EPA ID Number 6. Transporter 1 Company Name CAT000524247 MP Environmental Services, inc. U.S. EPA ID Number 7. Transporter 2 Company Name U.S. EPA ID Numbe 8. Description Colly Waste MANAGEMENT-KETTLEMAN CAT000545117 36251 SKYLINE ROAD KETTLEMAN CITY, CA 93239 800-843-3604 Facility's Phone: 10. Containers 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 11. Total 12 Linit 13. Weste Codes and Packing Group (if any)) Quantity WŁ/Vol. No. Type NON RORA HAZARDOUS WASTE SOLD 14. Special Handling Instructions and Additional Information 981) SQIL FROM HYDROCARBON SPILL (XF282468 WEAR PROPER PPE WHEN HANDLING PROJECT CD REQUIRED 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, merked and labeled/placarded, and are in all respects in proper condition for transport according to applicable informational and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Month Generator's/Offeror's Printed/Typed Name 1-AVID 16. International Shipments Port of entry/exit ___ Export from U.S. Import to U.S. Date leaving U.S.: Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name 18. Discrepancy Full Rejection 18a. Discrepancy Indication Space Partial Rejection Manifest Reference Number: U.S. EPA ID Number 18b. Alternate Facility (or Generator) Facility's Phone: Dey 18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Faqiity Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name TRANSPORTER'S COPY

EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.

WEIGHT (LB) TIME DATE	COMMODITY: HAZARDOUS WASTE	CHEMICAL WASTE MANAGEMENT, INC. WEIGHMASTER weighed of
GROSS:	DEPUTY WEIGHWASTER	35251 Gld Skydine Road Kettleman Cily, CA NO: WEIGHMASTER CENTIFICATE This is to certify that the following described
TARE: 1 1000 0 100 100 200 100 100 100 100 10	<u> </u>	This is to certify that the following described commodity was whighed, measured, or counted by a WEIGHMSTER, whose signature is at this certificate, who is '6' recognized cuthority of accuracy, as prescribed by CHAPTER 7 (commencing with \$12700) of Bivision 5 of the California Business & Professions Code, administered by the Division of Measurement Standards of California Department of Food and Arricalture.
NET: YARDAGE:		the California Business & Professions Code, administered by the Division of Measurement Standards of California Department of Food and Agriculture.
		→ → ★ERRAGE AND THE SERVICE STATE OF THE SERVICE S
GENERATOR MANIFEST PRO	FILE NO.	
	<u> </u>	
TRACTOR LICENSE NO. TRAILIR LICENSE NO. BIN#	RECEIPT #	
		

· ·

. -

Form Approved, OMB No. 2050-0039 4. Manifest Tracking Number Please print or type. (Form designed-for use on elite (12-pitch) typewriter.) UNIFORM HAZARDOUS 1. Generator ID Number 2. Page 1 of 3. Emergency Response Phone 000985953 800-458-3035 **WASTE MANIFEST** CAC002810498 5. Generator's Name and Mailing Address Generator's Sile Address (if different than mailing address) ALAMEDA BELTLÎVÊ RALWÂY SAME 1925 SHERMAN ST ALAMEDA, CA 925-638-7900 Generator's Phone: 6. Transporter 1 Company Name U.S. EPA ID Number CAT000624247 MP Environmental Services, Inc. U.S. EPA ID Number 7. Transporter 2 Company Name 8. Designated Facility Name and Site Address CHEMICAL WASTE MANAGEMENT-KETTLEMAN U.S. EPA ID Number CAT000548117 35281 SKYLINE ROAD KETTLEMAN CITY, CA 93239 Facility's Phone: 500-543-3564 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 12. Unit Vit. Vol. 11. Total 13. Waste Codes and Packing Group (if any)) Ю Quantit No. Type NON RORA HAZARDOUS WASTE SOLD 61 D3 511 GENERATOR 2 14. Special Handling Instructions and Additional Information 981) SOIL FROM HYDROCARBON SPILL (XF282458) € ** 9 ** 2 * 4 * 8 ** WEAR PROPER PPE WHEN HANDLING PROJECT CD REQUIRED 15. GENERATOR SOFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placamed, and ero in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. Locality that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. rator's/Offeror's Printed/Typed Name . الم i., 16. International Shipments Port of embylexit: Import to U.S. Export from U.S. Date leaving U.S.: Transporter signature (for exports only):

i	17. Transporter Adiston/Ledgment of Receipt of Materials		:	
	Transporter 1 Printed Typed Name	Signature	Town South	Month Day Year
•	LOS ELINI		and I	
į	Trainsporter 2 Printed/Typed Name	Signature		Month Day Year
?				
·	18. Discrepancy		•	
	18a. Discrepancy indication Space Cuantity Type	Residue	Partial Rejection	Full Rejection
		Manifest Reference Numb		
i	18b. Alternate Facility (or Generator)		U.S. EPA ID Number	
į	Facility's Phone:			
1	16c. Signature of Alternate Feditity (or Generator)			Month Day Year
į				
į	19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treat			
1			4.	*
	20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covera	ed by the manifest except as noted by Item 18a	1	
	Printed/Typed Name	Signature	1.1	Month Day Year
	Fred Coll	Aline is	<u> </u>	
į	A Egrm 8700-22 (Rev. 3-05) Previous editions are obsolete.		TF	RANSPORTER'S COPY

WEIGHT (LB) TIME DATE GROSS:	COMMODITY: HAZARDOUS WASTE DEPUTY WEIGHMASTER	CHEMICAL WASTE MANAGEMENT, INC. WEIGHMASTER weighed of 39251 Old Skyllne Rood Kettlernen City, CA NO: WEIGHMASTER CERTIFICATE
TARE: NET: 24-23 CS/OL 07 02-30 25 26.35 Vac)	This is to certify that the following described commodity was weighed, measured, or counter by a WEIGHMASTER, whose signature is on this certificate, who is a recognized authority of accuracy, as prescribed by CMAPTER 7 (commencing with § 12700) at Division 5 of the California Business & Protessions Gode, administered by the Division of Measurement Standards of California Department of Food and Agriculture.
GENERATOR MANIFEST TRACTOR LICENSE NO. EIM#	PROFILE NO.	

EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.

TRANSPORTER'S COPY

WEIGHT (LB) TIME DATE	COMMODITY: HAZARDOUS WASTE	CHEMICAL WASTE MANAGEMENT, INC. WEIGHMASTER weighed of 35221 Old Signine Road Kettlernan City, CA NO: WEIGHMASTER CERTIFICATE This is to certify that the following described commodity was weighed, measured, or counted by a WEIGHMASTER, whose signature is an this certificate, who is a recognized authority of accuracy, as prescribed by CHAPTER 7 [commencing with § 12700] of Division 5 of the California Business & Professions Code, administered by the Division of Measurement Standards of Colifornia Department of Food and Agriculture.
GROSS:	DEPLITY WEIGHMASTER	
TARE: 10044 100 00 10 10 10 10 Net: YARDAGE:		
GENERATOR MANIFEST TRACTOR LICENSE NO. TRALOR LICENSE NO. GINA	PROFILE NO.	

Please print or type. (Form designed for use ... ease (12-pitch) typewriter.) Form Approved. OMB No. 2050-0039 1. Generator ID Number 4. Manifest Tracking Number 2. Page 1 of 3. Emergency Response Phone UNIFORM HAZARDOUS 000985950 WASTE MANIFEST 800-458-5035 5. Generator's Name and Malling Address Generator's Site Address (if different than mailing address) ALAMÈDA BELTLINE RAILWAY SAME 1925 SHERMAN ST ALAMEDA, CA Generator's Phone: 6. Transporter 1 Company Name U.S. EPAID Number MP Emironmental Sarvices, inc CAT000624247 7. Transporter 2 Company Name U.S. EPA ID Number 8. Designated Facility Name and Site Address U.S. EPA ID Number CHEMICAL WASTE MANAGEMENT-KETTLEMAN CAT000545117 38251 SKYLINE ROAD KETTLEMAN CITY, CA 93239 Facility's Phone: 800-843-3604 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number 10. Confiden 11, Total 12. Unit 13. Waste Codes and Packing Group (if any)) ни WILVOL Na Oremfik Typu NON RORA HAZARDOUS WASTE SOLD UL. DT **511** 24° أريعين 14. Special Handling Instructions and Additional Information 991) SOIL FROM HYDROCARBON SPILL . XF282488 Wear Proper PPE WHEN HANDLING PROJECT CD REQUIRED 15. GENERATOR SIGFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placerded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exportar, I carifly that the contents of this consignment conform to the terms of the attached EPA Actionomic of Consent. I certify that the waste minimization statement identified in 40 CFR 282.27(a) (if I am a large quantity generator) by (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Month AV. 16. International Shipments import to U.S. Export from U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S.: 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signatur 19. Discrepancy 18a. Discrepancy Indication Space Птурв Full Rejection Partial Rejection Quantity Residua Manifest Reference Number 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 8 18c. Signature of Alternate Facility (or Generator) Month) Day 19. Hazerdous Waste Report Management Method Codes (i.e., codes for he pious waste to iment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 16a Printed/Typed Name Signature Day

TRANSPORTER'S COPY

EPA Form 8700-22 (Rev. 3-05) Previous editions are obsulete.

WEIGHT (LB) I		-	COMMODITY: HAZARDOUS WASTE DEPUTY WEIGHMASTER			CHEMICAL WASTE MANAGEMENT, INC. WEIGHMASTER weighted of 30231 Gid Skyline Rood Keftlernon City, CA NO:	
. f		na. Andrews and Angeles and				· · · · · · · · · · · · · · · · · · ·	WEIGHMASTER CERTIFICATE This is to cartify that the following described commodity was weighed, measured, or counted by a WEIGHMASTER, whose algorithms is an this certificute, who is a recognized outhority of accuracy, as prescribed by CHAPTER 7 (commencing with § 12700) of Division 5 of the Culifornia Business & Professions Code, administered by the Division of Measurement Standards of California Department of Food and Agriculture.
GENERATOR TRACTOR LICENSE	MO :	MANIFEST TRAILOR LICENSE NO.	BIR#	RECEIPT #			:

-