SCS ENGINEERS

December 17, 2003 File No.: 01203087.00

Ms. Eva Chu Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-9335

Subject: Fourth Quarter 2003 Groundwater Monitoring Report

Friesman Ranch Property, Livermore, California

Dear Ms. Chu:

Attached is the Fourth Quarter 2003 Groundwater Monitoring Report for the Friesman Ranch Property, 1600 Friesman Road, Livermore, California (Site). The results of this report are consistent with the results of the previous groundwater monitoring events that have been performed at the Site, with chemicals of concern only being detected in monitoring wells KMW-6 and KMW-7, and at concentrations generally lower than those previously detected. No chemicals of concern were detected in the other monitoring wells sampled (KMW-1 and KMW-8).

As detailed in our previously submitted report for the Site entitled "Groundwater Monitoring, Soil Vapor Survey, and Source Removal Report", dated November 21, 2003, SCS Engineers recommends regulatory closure of the Site fuel leak case.

We trust that the attached submittal meets your requirements. Should you require any additional information and/or clarification, please call me at (925) 426-0080.

Very truly yours,

James A. Lehrman, RG, CHG Senior Technical Manager

Attachments

cc: Ms. Lorraine del Prado, Children's Hospital Medical Foundation

Ms. Emily M. De Falla, Children's Hospital Medical Foundation

Ms. Leah Goldberg, Hansen, Bridgett, Marcus, Vlahos and Rudy, LLP

QUARTERLY GROUNDWATER MONITORING REPORT FOURTH QUARTER 2003 FRIESMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

Prepared for:

Children's Hospital and Research Center Foundation 5225 Dover Street Oakland, California 94609-1809

Prepared by:

SCS Engineers 6850 Regional Street, Suite 240 Dublin, California 94568

> December 17, 2003 File No. 01203087.00

6601 Koll Center Parkway Suite 140 Pleasanton, CA 94566 925 426-0080 FAX 925 426-0707 www.scsengineers.com

SCS ENGINEERS

December 17, 2003 File No.: 01203087.00

Ms. Eva Chu Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-9335

Subject: Fourth Quarter 2003 Groundwater Monitoring Report Friesman Ranch Property, Livermore, California

Dear Ms. Chu:

Attached is the Fourth Quarter 2003 Groundwater Monitoring Report for the Friesman Ranch Property, 1600 Friesman Road, Livermore, California (Site). The results of this report are consistent with the results of the previous groundwater monitoring events that have been performed at the Site, with chemicals of concern only being detected in monitoring wells KMW-6 and KMW-7, and at concentrations generally lower than those previously detected. No chemicals of concern were detected in the other monitoring wells sampled (KMW-1 and KMW-8).

As detailed in our previously submitted report for the Site entitled "Groundwater Monitoring, Soil Vapor Survey, and Source Removal Report", dated November 21, 2003, SCS Engineers recommends regulatory closure of the Site fuel leak case.

We trust that the attached submittal meets your requirements. Should you require any additional information and/or clarification, please call me at (925) 426-0080.

Very truly yours,

James A. Lehrman, RG, CHG Senior Technical Manager

Attachments

ce: Ms. Lorraine del Prado, Children's Hospital Medical Foundation

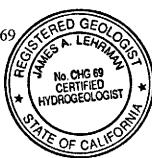
Ms. Emily M. De Falla, Children's Hospital Medical Foundation

Ms. Leah Goldberg, Hansen, Bridgett, Marcus, Vlahos and Rudy, LLP

This Quarterly Monitoring Report for the Fourth Quarter of 2003 for the Friesman Ranch Property, Livermore, California, dated December 17, 2003 has been prepared and reviewed by the following:

Emily Harris Staff Geologist

James A. Lehrman


Senior Technical Manager

lon lib for

California Registered Geologist #5032

California Certified Hydrogeologist #HG 69

SCS ENGINEERS

TABLE OF CONTENTS

1.	INTRODUCTION	1
1.1	OBJECTIVES AND SCOPE OF WORK	1
2.	FIELD ACTIVITES	1
2.1	GROUNDWATER MONITORING ACTIVITIES	1
2.2	WATER LEVEL MEASUREMENT	2
2.3	GROUNDWATER SAMPLE COLLECTION	2
2.4	ANALYTICAL LABORATORY PARAMETERS	2
2.5	QUALITY ASSURANCE/QUALITY CONTROL SAMPLE COLLECTION	3
2.6	INVESTIGATION-DERIVED WASTE HANDLING PROCEDURES	3
2.7	SITE RESTORATION	3
3.	SUMMARY OF GROUNDWATER MONITORING RESULTS	4
3.1	Water Levels	
3.2	GROUNDWATER SAMPLES	4
3.3	CHEMICALS OF CONCERN	4
3.4	BIO-PARAMETERS	5
3.5	QUALITY ASSURANCE/QUALITY CONTROL SAMPLES	7
4.	GROUNDWATER MONITORING SUMMARY AND CONCLUSIONS.	7
4.1	FIELD ACTIVITIES	7
4.2	GROUNDWATER CHEMISTRY	7
4.3	RECOMMENDATIONS	8
	LIST OF FIGURES	
Figure	e 1 Site Vicinity Map	
Figur		
Figur	e 3 Groundwater Elevations and Hydraulic Gradient	
Figur		
	LIST OF TABLES	
Table	2 Summary of Groundwater Elevation Data	
Table	2 Summary of Groundwater Analytical Results	
Table	Quality Assurance/Quality Control Sample Results	
Table	Summary of Bio-attenuation Parameter Analytical Results	

LIST OF APPENDICES

APPENDIX A

FIELD MONITORING NOTES

Record of Water Level Measurements - October 30, 2003

Well Sampling Records - October 30, 2003

APPENDIX B

CHAIN-OF-CUSTODY RECORDS AND CERTIFIED ANALYTICAL

LABORATORY REPORTS

DISCLAIMER

This report has been prepared for the Children's Hospital and Research Center Foundation with specific application to a Quarterly Monitoring report for property located at 1600 Friesman Road, Livermore, California. Field activities and sampling were conducted in accordance with the care and skill generally exercised by reputable professionals, under similar circumstances, in this or similar localities. No other warranty, either expressed or implied, is made as to the professional advice presented herein.

Changes in site use and conditions may occur due to variations in rainfall, temperature, water usage, or other factors. Additional information, which was not available to the consultant at the time of this investigation or changes, which may occur on the site or in the surrounding area may result in modification to the site that would impact the summary presented herein. This report is not a legal opinion.

1. INTRODUCTION

This report describes the results of the Fourth Quarter 2003 Groundwater Monitoring Event at the Friesman Ranch Property, Livermore, California (Site) (Figure 1). Field work was performed by SCS Engineers (SCS) on October 30, 2003. Low-flow purge/micropurge methods were used at the Site for this monitoring event.

1.1 OBJECTIVES AND SCOPE OF WORK

The objectives of the activities performed were to:

- Continue a regularly scheduled groundwater monitoring program to track spatial and temporal variations in groundwater conditions; and
- · Assess current Site groundwater conditions.

To meet these objectives, the following scope of work was implemented:

- Implementation of the scheduled groundwater monitoring event. Groundwater monitoring included water-level measurements, an evaluation of free-product thickness (if any); and collection of water quality samples for chemicals-of-concern (COCs) and biological attenuation (bio-attenuation) parameters including biological and chemical oxygen demand of select samples.
- Evaluation of bio-attenuation parameters;
- Preparation of this quarterly groundwater monitoring report.

2. FIELD ACTIVITES

This section summarizes the field activities performed for the quarterly groundwater monitoring program. Figure 2 shows the locations of the existing groundwater monitoring wells.

2.1 Groundwater Monitoring Activities

The eight Site wells (KMW-1 through KMW-8) were monitored for depth to groundwater during this event; only wells KMW-1, KMW-6, KMW-7 and KMW-8 were sampled. The goal of these activities was to measure water levels and collect water quality samples that accurately represent stabilized aquifer conditions. Prior to sampling, field instrumentation was successfully calibrated and/or checked.

2.2 Water Level Measurement

Prior to purging, the wells were opened and ventilated for a minimum of 0.5-hour, and the depth to water was then measured in the wells to the nearest 0.01-foot using a clean, calibrated electronic water-level indicator. Water-level data were used to calculate the required purge volumes for sampling. Measurements were recorded on Well Sampling Records (Appendix A). Dissolved oxygen (DO) was measured in each of the wells using a down-hole probe after measuring the depth to groundwater.

2.3 Groundwater Sample Collection

All Site wells were purged and sampled using a peristaltic pump and micropurge methodology. Dedicated 21-foot long sections of 0.25-inch inner diameter polyethylene tubing were installed in each well. The tubing sections were used for purging and sampling, and then left in each well as dedicated tubes for possible future sampling. Each well was initially purged until one System Volume (SV) was removed from each well. Purging then continued at an approximate rate of 200 milliliters per minute. The depth to water was measured during purging to ensure that well drawdown was less than four inches. Aquifer parameters (hydrogen ion index [pH], temperature, electrical conductivity, and oxidation-reduction potential [ORP]) were measured to evaluate whether the water from each well had stabilized prior to sampling (see Appendix A for field readings). Notations were made as to odor and color of the water being purged. Field notes detailing observations noted during sampling are provided in Appendix A.

After each well was purged, groundwater samples were collected using the peristaltic pump. Groundwater monitoring well samples were placed in appropriate containers (40-millilter [ml] glass volatile organic analysis [VOA] vials, 1-liter amber glass bottles and 500-ml polyethylene bottles), and labeled. The samples were stored in an ice chest packed with loose water-based ice maintained at 4 +/- 2 degrees Celsius (°C) for delivery to the laboratory.

Non-dedicated groundwater monitoring equipment, (i.e., water level meters, measuring cup, etc.) was decontaminated prior to measuring, purging, and sampling and between wells using a biodegradable detergent (Liquinox) and three stage distilled water wash and rinse.

2.4 Analytical Laboratory Parameters

Groundwater monitoring well samples were analyzed for the following parameters:

- Total petroleum hydrocarbons as gasoline (TPH-g) using Modified United States Environmental Protection Agency (EPA) Method 8015C;
- Total petroleum hydrocarbons as diesel (TPH-d) using Modified EPA Method 8015C;

- Benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021B;
- Methyl tertiary-butyl ether (MTBE) using EPA Method 8021B;
- Alkalinity using Standard Methods for Water and Wastewater (SM) 2320B;
- Ferrous Iron (Fe⁺²) using EPA Method 200.7;
- Sulfate (SO₄-2) and Nitrate (NO₃) using EPA Method 300.1;
- Biological Oxygen Demand (BOD) using (SM) 5210B (wells KMW-1 and KMW-6 only); and
- Chemical Oxygen Demand (COD) using EPA Method 410.4 (wells KMW-1 and KMW-6 only).

2.5 Quality Assurance/Quality Control Sample Collection

Quality assurance/quality control (QA/QC) sampling activities include the laboratory preparation and analysis of a trip blank that accompanies the ice chest to and from the laboratory. In addition, a blind duplicate was sampled from well KMW-6.

For this event, the following QA/QC samples were prepared or collected:

- A trip blank; and
- A blind duplicate.

Because only dedicated and/or new equipment was used to purge the wells and collect the samples, no equipment blank was collected.

2.6 Investigation-Derived Waste Handling Procedures

Investigation-derived wastes (IDW – purge water and decontamination rinsate liquids) were containerized on-site in one secured, labeled 5-gallon bucket. It will be characterized and transported off-site to an appropriate licensed disposal/recycling facility.

2.7 Site Restoration

Following completion of monitoring activities, the work area was left in a presentable and workable condition as near as practicable to original conditions.

3. SUMMARY OF GROUNDWATER MONITORING RESULTS

Water-level measurements were recorded on October 30, 2003. Groundwater samples were collected from four of the eight monitoring wells on the Site and submitted for analysis. The samples were analyzed at McCampbell Analytical, Inc. (McCampbell) of Pacheco, California, a laboratory certified by the California Department of Health Services (DHS) Environmental Laboratory Accreditation Program (ELAP) for the specific analyses performed.

Appendix B contains certified analytical laboratory reports and chain-of-custody records. Table 1 contains historical water level and free-product thickness measurements. Groundwater analytical results for the COCs are summarized in Table 2.

3.1 Water Levels

As part of the groundwater monitoring event, water levels were measured in monitoring wells KMW-1 through KMW-8 on October 30, 2003. Depths to water ranged from 13.19 to 16.02 feet below ground surface (bgs) in wells KMW-3 and KMW-5 respectively (Table 1). In October 2003, groundwater flow was generally to the northwest with a hydraulic gradient of approximately 0.012. Figure 3 shows the Site groundwater elevation contours for the October 2003 event. These results are generally consistent with the previous groundwater monitoring event in July 2003.

3.2 Groundwater Samples

A total of four monitoring wells (KMW-1 and KMW-6 through KMW-8) were sampled and analyzed for TPH-g, TPH-d, BTEX, MTBE and bio-parameters. Analytical results are summarized in Tables 2 and 4. Figure 4 shows the Site groundwater analytical results for the COCs for the October 2003 event.

3.3 Chemicals of Concern

Total Petroleum Hydrocarbons as Gasoline

TPH-g was detected at concentrations of 700 micrograms per liter (μ g/L) in KMW-6 and 150 μ g/L in KMW-7, but was not detected in the other wells. The TPH-g concentrations in the samples from KMW-6 and KMW-7 are generally at least one order of magnitude lower than previous concentrations detected (Table 2).

Total Petroleum Hydrocarbons as Diesel

TPH-d was detected at concentrations of 310 µg/L in KMW-6 and 100 µg/L in KMW-7, but was not detected in the other wells. TPH-d concentrations detected in both samples are generally lower than historical concentrations detected at the same locations (Table 2).

Aromatic Hydrocarbons

Certain aromatic hydrocarbons were detected in monitoring wells KMW-6 and KMW-7, but were not detected in the other wells. Benzene was detected in excess of its drinking water maximum contaminant level (MCL), which is 1 μ g/L, only in KMW-6 at a concentration of 23 μ g/L. Benzene was detected in KMW-7 at a concentration of 0.54 μ g/L. Toluene was detected below its MCL (150 μ g/L) at a concentration of 1.1 μ g/L in KMW-6, and was not detected in any other wells. Ethylbenzene was detected below its MCL (700 μ g/L) at a concentration of 8.0 μ g/L in KMW-6, and was not detected in any other wells. Total xylenes were detected below the MCL (1,750 μ g/L) in KMW-6 at a concentration of 8.3 μ g/L. These results are generally lower than historical concentrations detected at the same locations (Table 2).

Methyl Tertiary-Butyl Ether

MTBE was not detected in any of the sampled wells. These results are consistent with historical findings (Table 2).

3.4 Bio-Parameters

Dissolved Oxygen

Dissolved Oxygen (DO) is the most thermodynamically favored electron acceptor used in the biodegradation of fuel hydrocarbons. During aerobic biodegradation, DO concentrations decrease.

DO was measured at 0.00 milligrams per liter (mg/L) in well KMW-7 (Table 3). This well represents the dissolved oxygen inside the hydrocarbon plume. DO measurements in wells KMW-1 and KMW-8 (wells outside the plume) ranged from 0.31 mg/L to 0.33 mg/L, respectively.

Oxidation-Reduction Potential

The Oxidation-Reduction Potential (ORP) of groundwater is a measure of electron activity and is an indicator of the relative tendency of a solution to accept or transfer electrons. It influences and is influenced by the nature of biologically mediated degradation of COCs.

ORP ranged from -90 millivolts (mV) to -88 mV in wells in which COCs were detected (KMW-6 and KMW-7, respectively) (Table 4). ORP ranged from -37 mV to 108 mV in wells in which COCs were not detected (KMW-8 and KMW-1, respectively). These values generally indicate oxidizing conditions outside the COC plume and reducing conditions inside the plume.

Hydrogen-ion Index (pH) and Temperature

The pH and temperature of the shallow groundwater were at levels conducive for the metabolic activity of bacteria capable of degrading fuel hydrocarbons (Table 4).

Ferrous Iron

In some cases, Ferric Iron (Fe⁺³) acts as an electron acceptor during anaerobic biodegradation of petroleum hydrocarbons. During this process, Fe⁺³ is reduced to Ferrous Iron (Fe⁺²). Ferrous Iron can thus be used as an indicator of anaerobic degradation of petroleum compounds. Ferrous Iron (Fe⁺²) was detected in well KMW-6 at a concentration of 1.4 mg/L. Ferrous Iron was not detected in samples from other wells (Table 4).

Alkalinity

In general, areas impacted by petroleum hydrocarbons exhibit higher total alkalinity than seen in background areas. This is expected because microbially mediated reactions causing biodegradation of these compounds will cause an increase in total alkalinity of the system. Alkalinity was reported at levels ranging from 351 mg/L in KMW-1 to 481 mg/L in KMW-6 (Table 4). In the impacted areas (i.e., wells KMW-6 and KMW-7), the average alkalinity was 436 mg/L. In areas outside the petroleum hydrocarbon plume, the average alkalinity was 387.5 mg/L.

Nitrate

After DO has been depleted in the petroleum hydrocarbon impacted areas, nitrate may be used as an electron acceptor for anaerobic biodegradation via denitrification. Nitrate concentrations are used to estimate the mass of petroleum hydrocarbons that can be degraded by this process. Nitrate was detected in well KMW-8 at a concentration of 1.6 mg/L. Nitrate was not detected in samples from other wells (Table 4).

Sulfate

After DO, nitrate and Fe⁺³ have been depleted in the impacted area, sulfate may be used as an electron acceptor for anaerobic degradation. The process is termed sulfate reduction and results in the production of sulfide. Sulfate concentrations ranged from 3.9 mg/L to 53 mg/L within the impacted area (i.e., wells KMW-6 and KMW-7) (Table 4). Concentrations in KMW-1 and KMW-8 were 84 mg/L and 110 mg/L, respectively. Samples from the impacted area exhibited the lowest sulfate concentrations.

Biological Oxygen Demand

BOD is a measure of the demand for oxygen in the subsurface by biological processes. BOD levels ranged from <2.0 mg/L in well KMW-1 (outside the plume) to 1.7 mg/L in well KMW-6 (inside the plume).

Chemical Oxygen Demand

COD is a measure of the demand for oxygen in the subsurface by chemical processes. COD was not detected above the reporting limit of 20 mg/L in either of the two samples (KMW-1 and KMW-6) analyzed for COD. This indicates that except for biological demands, there are no significant demands for oxygen in this environment.

3.5 Quality Assurance/Quality Control Samples

The QA/QC samples collected and analyzed during this groundwater monitoring event included one trip blank and one blind duplicate sample. The results for these QA/QC samples are summarized on Table 3 and certified analytical laboratory reports are contained in Appendix B.

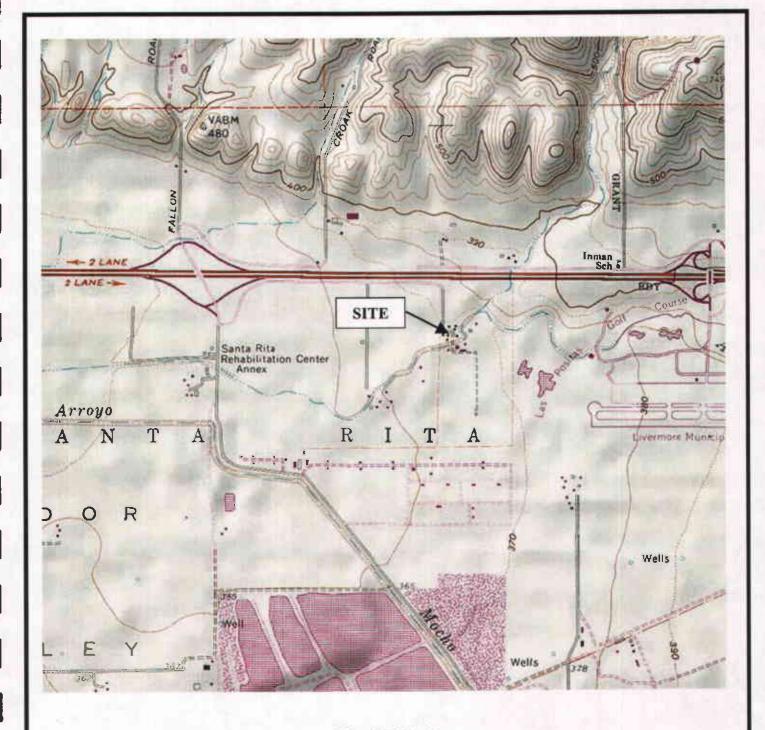
The blind duplicate sample (KMW-16) was collected from monitoring well KMW-6 on October 30, 2003. This duplicate sample was analyzed for TPH-g, TPH-d, BTEX, and MTBE. The Relative Percent Differences (RPDs) for TPH-d, TPH-g, benzene, toluene, ethylbenzene and total xylenes (the analytes detected) were 12.1, 6.9, 4.3, 16.7, 6.1, and 5.8 percent, respectively (Table 3). The RPDs for all the analytes detected were below the OA/QC goal of less than 20 percent.

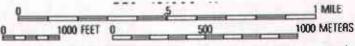
4. GROUNDWATER MONITORING SUMMARY AND CONCLUSIONS

The summary and conclusions presented in this section are based on research implemented, information collected, and interpretations developed during this and previous investigations performed at the property. The data evaluated in this report was collected by SCS during October 2003. The summary and conclusions that follow are presented in the categories of field activities and groundwater chemistry.

4.1 Field Activities

- Field activities performed consisted of the Fourth Quarter 2003 groundwater monitoring event.
- Water level measurements and the collection of water quality samples were conducted using micropurge methodologies. The samples collected were analyzed for COCs (TPH-g, TPH-d, BTEX, and MTBE), bio-attenuation parameters (DO, ORP, alkalinity, Ferrous Iron, nitrate, sulfate, BOD and COD).
- Prior to the initiation of field activities, and between sampling locations, all equipment was decontaminated.
- Purge water and decontamination rinsate liquids were containerized and stored on-site in one 5-gallon bucket. It will be disposed of at a licensed facility.
- Following completion of field activities, the work area was left in a presentable and workable condition, as nearly as practicable to original conditions.


4.2 Groundwater Chemistry


 Only two groundwater monitoring well samples (KMW-6 and KMW-7) contained detectable concentrations of petroleum hydrocarbon compounds. Groundwater samples collected from monitoring wells KMW-1 and KMW-8 did not contain detectable concentrations of petroleum hydrocarbon compounds.

- The concentrations of COCs detected were generally lower than previous concentrations detected.
- The plume is confined to the Site and is stable. Concentrations of COCs continue to generally decrease with time, indicating that natural processes are working to remediate the plume.
- The subsurface environment appears to be poorly oxygenated. It appears that anaerobic processes (such as iron reduction and sulfate reduction) are operating to decrease the concentrations of COCs in the groundwater.

4.3 Recommendations

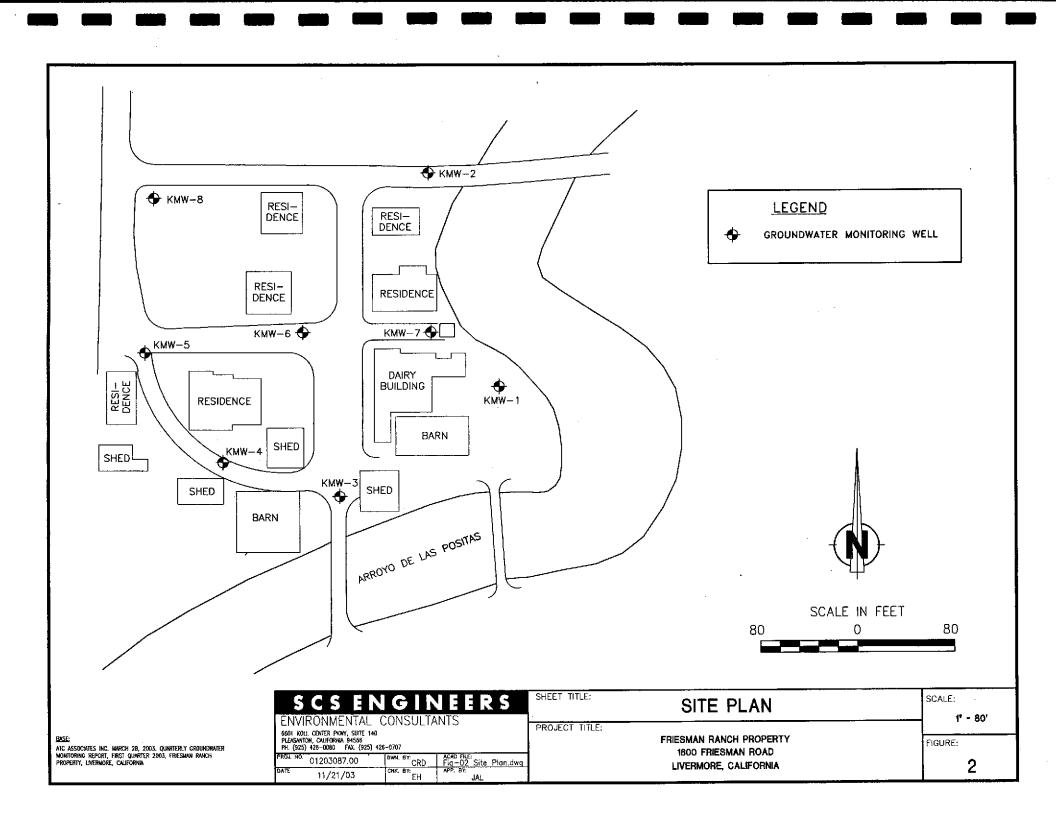
Analytical results from the most recent and the previous groundwater monitoring events indicate that the plume is stable and generally decreasing in concentration. Natural processes are working to remediate the plume, and therefore concentrations of the COCs will continue to decrease with time. There are no environmental conditions evident to SCS, which remain at the Site; therefore no further action, and Site Closure, is recommended at this time.

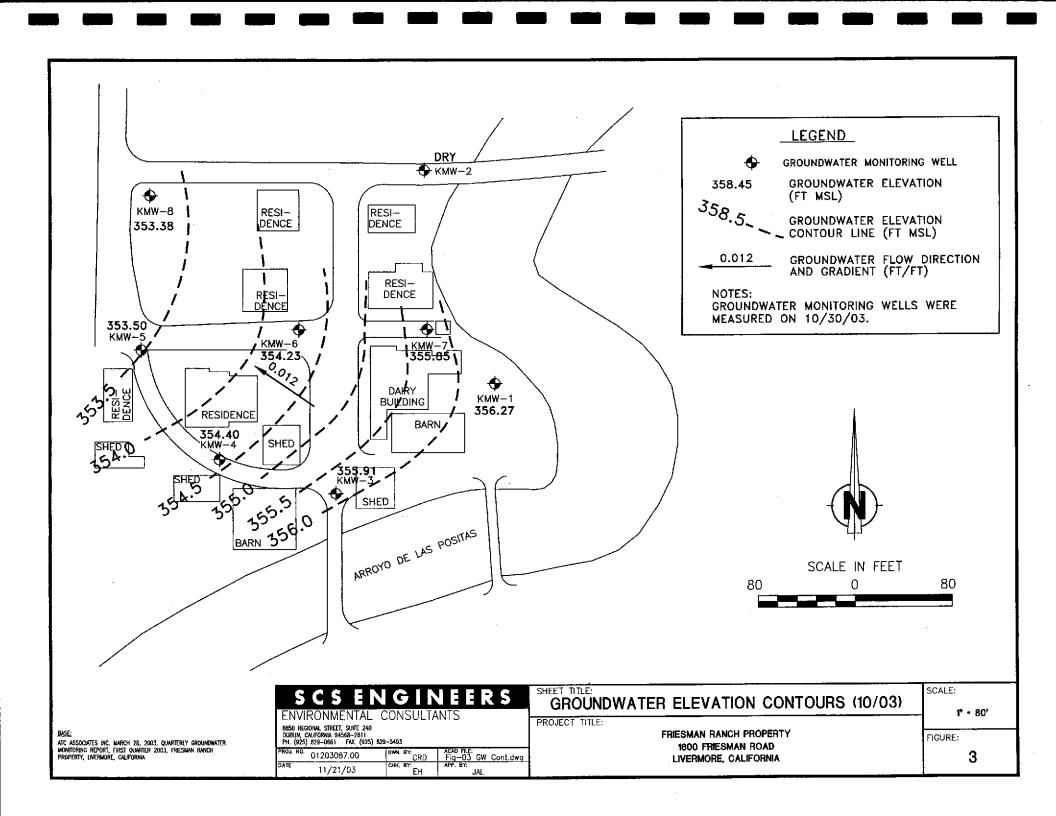
Printed from TOPO! @2000 Wildflower Productions (www.topo.com)

SOURCE: UNITED STATES GEOLOGICAL SURVEY *LIVERMORE QUADRANGLE, CALIFORNIA 7.5 MINUTE SERIES* (TOPOGRAPHIC) MAP. OBTAINED FROM THE 2000 NATIONAL GEOGRAPHIC TOPO SOFTWARE.

SCS ENGINEERS

6601 Koll Center Pkwy, Ste. 140 Pleasanton, CA 94566 (925) 426-0080


PROJECT NO: 01203087.00


DESIGNED BY: ATC SCALE: SHOWN REVIEWED BY: JAL

DRAWN BY: EC DATE: 10/03

FIGURE 1 SITE LOCATION MAP

FRIESMAN RANCH PROPERTY 1600 FRIESMAN ROAD LIVERMORE, CALIFORNIA

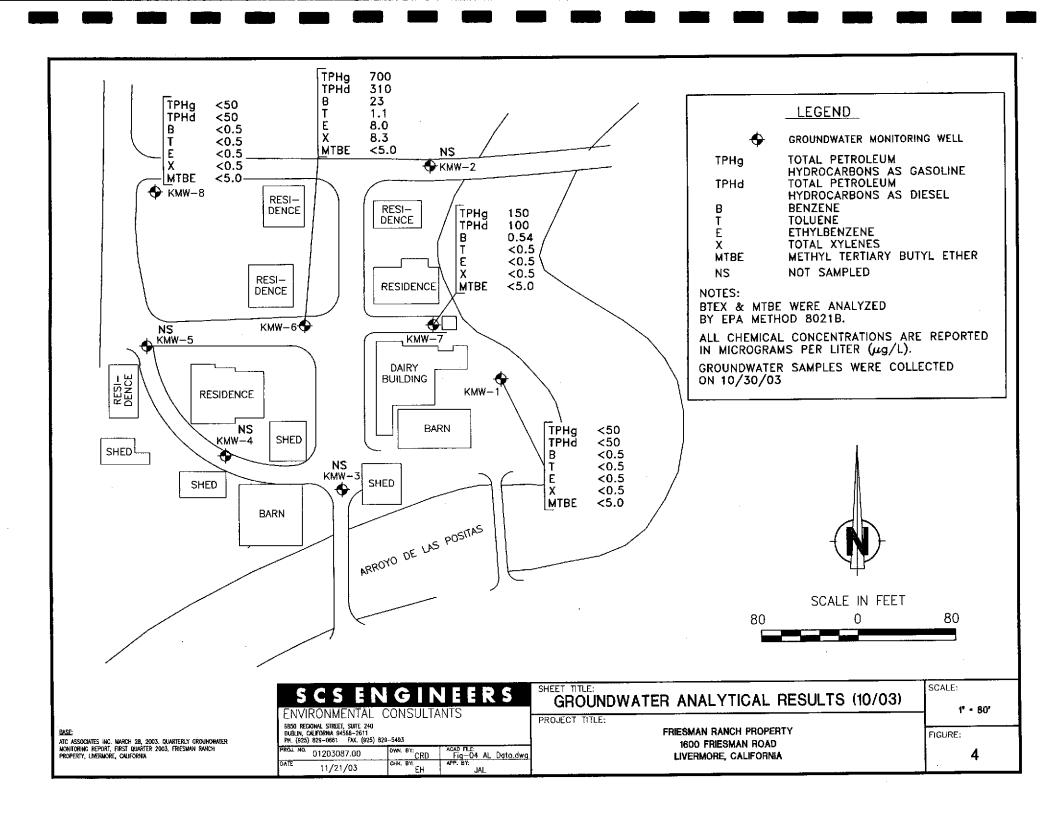


TABLE 1
SUMMARY OF GROUNDWATER ELEVATION DATA
FRIESMAN RANCH PROPERTY
LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL NUMBER	SAMPLING DATE	WATER LEVEL FROM T.O.C.	FREE: PRODUCT THICKNESS	T.O.C ELEVATION USGS Datum	GROUNDWATER ELEVATIONS USGS Datum
		(feet)	(feet)	(Ft. above MSL)	(Ft. above MSL)
KMW-1	9/8/1997	12.82	0.00	370.12	357.30
	12/28/1998	12.72	0.00		357.40
	1/12/1999	12.97	0.00		357.15
	3/25/1999	11.99	0,00		358.13
	6/21/1999	NM	NM	1	NC
	9/16/1999	NM	NM	ļ	NC
ļ	10/16/2002	14.27	0.00		355.85
	1/17/2003	11.67	0.00		358.45
	4/15/2003	11.08	0.00		359.04
	7/21/2003	13.23	NM		356.89
	10/30/2003	13.85	NM		356.27
KMW-2	9/8/1997	14.28	0.00	37 0. 7 2	356.44
	12/28/1998	14.08	0.00		356.64
	1/12/1999	14.32	0.00		356.40
	3/25/1999	13.19	0.00		357.53
	6/21/1999	NM	NM		NC
	9/16/1999	NM	NM		NC
	10/16/2002		*		*
	1/17/2003	12.77	0.00		357.95
	4/15/2003	12.73	0.00	1	357.99
	7/21/2003	13.64	NM		357.08
	10/30/2003	Dry	NM		Dry
KMW-3	9/8/1997	12.34	0.00	369.10	356.76
	12/28/1998	12.39	0.00		356.71
	1/12/1999	15.13	0.00		353.97
	3/25/1999	11.59	0.00		357.51
	6/21/1999	NM	NM		NC
	9/16/1999	NIM	NM		NC
	10/16/2002	13.69	0.00		355.41
	1/17/2003	10,85	0.00		345.20
	4/15/2003	10.16	0.00		358.94
	7/21/2003	12.59	NM		356.51
	10/30/2003	13.19	NM		355.91

TABLE 1
SUMMARY OF GROUNDWATER ELEVATION DATA
FRIESMAN RANCH PROPERTY
LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL NUMBER	SAMPLING DATE	WATER LEVEL	FREE- PRODUCT	T.O.C ELEVATION	GROUNDWATER ELEVATIONS
		PROM	THICKNESS	USGS Datum	USGS Datum
		T.O.C.			
		(feet)	(feet)	(Ft. above MSL)	(Ft. above MSL)
KMW-4	9/8/1997	13.76	0.00	369,80	356.04
	12/28/1998	13.76	0.00		356.04
	1/12/1999	14.40	0.00		355.40
	3/25/1999	12.89	0.00		356.91
	6/21/1999	NM	NM		. NG
	9/16/1999	NM	NM		ИC
	10/16/2002	15.92	0.00		353.88
	1/17/2003	12.17	0.00		357.63
	4/15/2003	11.90	0.00		357.90
	7/21/2003	14.55	NM		355.25
	10/30/2003	15.40	NM		354.40
KMW-5	9/8/1997	14.24	0.00	369.52	355.28
	12/28/1998	14.17	0.00		355.35
	1/12/1999	15.32	0.00		354,20
	3/25/1999	13,27	0.00		356.25
	6/21/1999	NM	NM		NC
	9/16/1999	NM	NM		NC
	10/16/2002	16.45	0.00		353.07
1	1/17/2003	12.60	0.00	,	356.92
	4/15/2003	12.76	0.00		356.76
	7/21/2003	15.08	NM		354.44
	10/30/2003	16.02	NM_		353,50
KMW-6	9/8/1997	14.28	0.00	370.08	355.80
	12/28/1998	14.16	0.00		355.92
	1/12/1999	14.47	0.00		355.61
	3/25/1999	13.22	0.00		356.86
	6/21/1999	14.56	0.00		355.52
	9/16/1999	14.29	0.00		355.79
	10/16/2002	16,27	0.00		353.81
	1/17/2003	12.54	0.00		357.54
	4/15/2003	12.56	0.00		357.52
	7/21/2003	14.82	NM		355.26
	10/30/2003	15.85	NM		354.23

TABLE 1 SUMMARY OF GROUNDWATER ELEVATION DATA FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL NUMBER	SAMPLING DATE	WATER LEVEL FROM T.O.C.	FREE- PRODUCT THICKNESS	T.D.C ELEVATION USGS Datum	GROUNDWATER ELEVATIONS USGS Datum
		(feet)	(feet)	(Ft. above MSL)	(Ft. above MSL)
KMW-7	12/28/1998	12.91	0,00	370.04	357.13
	1/12/1999	13.15	0.00		356.89
	3/25/1999	12.12	0.00		357.92
	6/21/1999	12.86	0.00		357.18
	9/16/1999	13.00	0.00	,	357.04
	10/16/2002	14.63	0.00		355.41
	1/17/2003	11.77	0.00		358.27
	4/15/2003	11.31	0,00		358.73
	7/21/2003	13.59	NM		356.45
	10/30/2003	14.19	NM		355.85
KMW-8	12/28/1998	13.37	0.00	368.61	355.24
	1/12/1999	13.70	0.00		354.91
	3/25/1999	12.48	0.00		356.13
	6/21/1999	13.30	0.00		355.31
	9/16/1999	13.57	0.00		355.04
	10/16/2002	15.85	0.00		352.76
	1/17/2003	11.87	0.00		356.74
	4/15/2003	12.25	0.00		356.36
	7/21/2003	14.31	NM		354.30
	10/30/2003	15.23	NM		353.38

<u>NOTES:</u> MSL = Mean Sea Level

NC = Not Calculable

NM - Not Measured

T.O.C. = Top of casing. All measurements in feet relative to top of casing.

USGS = United States Geological Survey
All wells have 4" ID casing = 0.65 gallons per casing length (foot).
Wells KMW-7 and KMW-8 installed on December 23, 1998

* Well obstructed, no water level measurement taken

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL	SAMPLE	TPH-D	TPH-G	BENZENE	TOLUENE	ETHYL	TOTAL	МТВЕ	PAHs	LEAD
NUMBER	COLLECTION	(µg/L)	(µg/L)	(µg/L)	(µg/L)	BENZENE	XYLENES	(ug/L)	(µg/L)	(µg/L)
	DATE	100			307 T	(µg/L)	(µg/L)			
(MW-I	9/8/1997	<\$0	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	-
	12/28/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	7.8
dup.	12/28/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	5.9
	3/25/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0		
	6/21/1999	NS	NS	NS	NS	NS .	NS	NS	NS	NS
	9/16/1999	NS	NS	NS	NS	NS -D.C	NS	NS cf.o	NS	NS
	10/16/2002	<50	<50	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<5.0 <5.0	•	-
!	1/17/2003 4/15/2003	<50 <50	<50 <50	<0.5 <0.5	<0.5	<0.5	<0.5	<5.0	_	_
	7/21/2003	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	_	-
	10/30/2003	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
KMW-2	9/8/1997	<50	<50	<0.5	<0.5	<0.5	<0,5	<5.0	<10	
	12/28/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	<5.0
	3/25/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0		
	6/21/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
	10/16/2002	NS	NS	NS NS	NS NC	NS NS	NS NS	NS NS	NS NS	NS
	1/17/2003 4/15/2003	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS
	7/21/2003	NS NS	NS	NS	NS NS	NS	NS	NS	NS	NS
	10/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
KMW-3	9/8/1997	<50	<50	<0.5	<0.5	< 0.5	<0.5	<5.0	<10	-
	12/28/1998	<50	<50	<0.5	<0.5	<0.5	<0,5	<5.0	<10	<5.0
	3/25/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	
	6/21/1999	NS	NS	NS	NS NS	NS	NS	NS	NS	NS
	9/16/1999	NS	NS	NS	NS	NS	NS	NS 15.0	NS	NS
	10/16/2002	<50	<50	<0.5	<0.5	<0,5 NS	<0.5 NS	<5.0 NS	NS	NS
	1/17/2003 4/15/2003	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS
	7/21/2003	NS	NS NS	NS	NS NS	NS	NS	NS	NS	NS NS
	10/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
KMW-4	9/8/1997	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	-
	12/28/1998	<50	<50	<0.5	<0,5	<0.5	<0.5	<5.0	<10	7.5
	3/25/1999	<50	<50	<0.5	<0,5	<0.5	<0.5	<5.0	-	-
	6/21/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/16/2002	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0 NS	NS	NS
	1/17/2003 4/15/2003	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS
	7/21/2003	NS NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS
	10/30/2003	NS	NS	NS	NS NS	NS	NS	NS	NS	NS
KMW-5	9/8/1997	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<]0	-
dup.	9/8/1997	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	-
	12/28/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	8.5
	3/25/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0]
	6/21/1999	NS	NS	NS	NS	NS	NS	NS NC	NS Ne	NS NS
	9/16/1999 10/16/2002	NS <50	NS <50	NS <0,5	NS <0.5	NS <0.5	NS <0.5	NS <5.0	NS	"
	1/17/2002	NS	NS	NS	NS	NS	NS	NS NS	NS	NS
	4/15/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	7/21/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/30/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
KMW-6	9/8/1997	3,200, d	13,000, a	250	14	560	490	<150**	140*	-
	12/28/1998	1,800, d	3,200, a	86	3.6	140	90	<50**	130*	15
	3/26/1999	1,700, d,b	7,000, a	160	5.1	270	200	<100**	100*	<5.0
dup.	3/26/1999	1,700, d,b	6,700, a	170	6,5	270	200	<100**	100* 200*	<5.0
	6/21/1999 9/16/1999	1,500, d,b 1,900, d	3,800, a	170	<0.5 9.8	260 300	160 210	<10 <120	<10 <10	<5.0 <5.0
	10/16/2002	1,600, d	7,100, a 4,600, a	230 100	8.4	190	110	<50	-10	.
dup.	10/16/2002	1,900, d	5,100, a	110	10	210	110	<50	-	-
Sup.	1/17/2003	2,100, d	5,700, a	87	4.3	170	100	<25	-	-
dup.	1/17/2003	1,900, d	5,800, a	89	6.4	180	100	<25	-	-
·	4/15/2003	, 110, d	390, a	7.4	0.58	8,5	6.1	<5,0	-	-
dup.	4/15/2003	100, d	270, a	4.2	0.51	5,6	3.0	<5.0	•	-
	7/21/2003	1,600, d	4,300, a	89	3.0	130	70	<17	-	l -
dup.	7/21/2003	1,500, d	4,600, a	83	5.2	130	72	<25 <5.0	-]
J	10/30/2003	310, d	700, a	23	1.1	8,0 8,5	8.3 8.8	<5.0 <5.0	_	1 :
dup.	10/30/2003	350, d	750, a	24	1.3	ر ه	1 3.0	77.0		

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL NUMBER	SAMPLE COLLECTION DATE	TPH-D (µg/L)	TPH-G (µg/L)	BENZENE (µg/L)	TOLUENE (µg/L)	ETHYL BENZENE (µg/L)	TOTAL XYLENES (µg/L)	MTBE (µg/L)	PAHs . (µg/L)	LEAD (µg/L)
KMW-7	12/28/1998	1,000, d,h	9,100, a,h	23	17	190	700	<70**	110*	38
	3/25/1999	1,200 d,b	4,300, a,h	19	16	56	270	<70**	23 *	22
	6/21/1999	1,300, d.b	1,300, a	6.5	<0.5	21	62	<5.0	27 *	<5.0
dup.	6/21/1999	1,200, d	2,000, a	6.4	6.7	24	76	<5.0	17 *	-
•	9/16/1999	1,100, d	950, a	3.3	2	19	33	<10	<10	<10
	10/16/2002	480, d	270, a	1.3	<0.5	4	15	<5.0	-	-
	1/17/2003	610, d	1,100, a	7.8	1.3	24	84	<10	-	-
	4/15/2003	350, a	880, a	7.1	0.69	4,4	52	<5.0		-
	7/21/2003	830, n	1,500, e/g, a	2.8	<0.5	8.3	28	<5.0	-	-
	10/30/2003	100, d	150, a	0.54	<0.5	<0.5	<0.5	<5.0	-	
KMW-8	12/28/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	12
	3/25/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
	6/21/1999	<50	<50	<0.5	<0.5	<0,5	<0.5	<0.5	-	-
	9/16/2002	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5		-
	10/16/2002	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	i -	
	1/17/2003	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0] -	-
	4/15/2003	<50	<50	<0.5	<0.5	<0.5	<0,5	<5.0	-	-
	7/21/2003	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
	10/30/2003	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<u> </u>	
TAP Sample	4/15/2003	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	

MINCS:	
TPH-D	Total Petroleum Hydrocarbous as Diesel
TPH-G	Total Petroleum Hydrocarbons as Gasoline
MTBE	Methyl Tertiary-Butyl Ether
PAHs	Polyaromatic Hydrocarbons
MCL	Cal/EPA Maximum Contaminant Level
μg/L	Micrograms per Liter (approx. equal to parts per billion)
<0.5	Not detected at or above the laboratory method reporting limit
а	Unmodified or weakly modified gasoline is significant
h	Diesel range compounds are significant; no recognizable pattern

TAP Sample was collected from the water supply well on-site.

d Gasoline range compounds are significant

TPH pattern that does not appear to be derived from gasoline (possibly stoddard solvent/mineral spirit)

strongly aged gasoline or diesel range compounds are significant

h Lighter than water immiscible sheen is present

n stoddard solvent/mineral spirit

** Reporting limit raised due to high presence of TPH-g

- Not analyzed

NS Not Sampled

Napthalene only, all other chemicals were <10 micrograms per liter

TABLE 3 QUALITY ASSURANCE/QUALITY CONTROL SAMPLE RESULTS FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA July 2003

QA/QC	SAMPLE	SAMPLE	TPH-D	TPH-G	BENZENE	TOLUENE	ETHYL	TOTAL	MTBE	PAHs	LEAD
SAMPLE	ID	COLLECTION	(µg/L)	(µg/L)	(μg/L)	(µg/L)	100000000000000000000000000000000000000	XYLENES	(µg/L)	(µg/L)	(µg/L)
TYPE		DATE					(µg/L)	(µg/L)			
Primary Sample	KMW-6	7/21/2003	310	700	23	1.1	8.0	8.3	<5.0	-	-
Duplicate Sample	KMW-16	7/21/2003	350	750	24	1.3	8.5	8.8	<5.0	-	_
	RPD		12.1%	6.9%	4.3%	16.7%	6.1%	5.8%	NC	NC	NC

Notes:	
TPH-D	Total Petroleum Hydrocarbons as Diesel
TPH-G	Total Petroleum Hydrocarbons as Gasoline
MTBE	Methyl Tertiary-Butyl Ether
RPD	Relative Percent Difference
μ g/L	Micrograms per Liter (approx. equal to parts per billion)
<0.5	Not detected at or above the laboratory method reporting limit
NC	Not calculable
-	Not Analyzed

TABLE 4

SUMMARY OF BIO-ATTENUATION PARAMETER ANALYTICAL RESULTS FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

137.1960			i i i i i i i i i i i i i i i i i i i	D MEASURMENT	ra li diyi	ide get	agastrolog	Salidades, As	LABORAT	ORY MEASU	REMENT	contrainable c	
		DISSOLVED	REDOX	TEMPERATURE	January 1	TURBIDITY	ALKALINITY	BOD	COD	FERROUS	NITRATE	SULFATE	TOC
WELL	SAMPLE	OXYGEN	POTENTIAL	156 2000 (200) (Egyptical Co.	pН		Presidental detail			IRON, (Fe II)	Gladel in Michiga	(me/L)	(mg/L)
NUMBER	DATE	(mg/L)	(mV)	(°C)		(NTU)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Alan Marian	2.4
KMW-1	10/16/02	0.53	110.0	18.1	8.1	NM	328	NM	NM	<0.05	<1.0	84 8.2	NM
	01/17/03	0.85	155	16.0	7.2	1,9	310	<2.0	<20	<0.05	<1.0	8.2 78	NM NM
	04/15/03	0.56	55	18.1	6.73	1.70	384	<2.0	<20	0.071	1.8	79	NM
	07/21/03	24*	4.7	16.3	6.85	119,0	377	<2.0	<20	0.16	<1.0	84	NM NM
	10/30/03	0.31	108	17.1	6.61	ND	351	<2.0	<20	<0.05	<1.0 NM	NM	NM
KMW-2	10/16/02	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM NM	NM NM	NM NM
	01/17/03	NM	NM	NM	NM	NM ·	NM	NM	NM	NM	NM NM	NM	NM
	04/15/03	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM NM	NM	NM
	07/21/03	Dry	Dry	NM	NM	NM	NM	NM	NM	NM	NM NM	NM NM	NM
	10/30/03	Dry	Dry	NM	NM	NM	NM_	NM	NM	NM <0.05	<1.0	100	2.6
KMW-3	10/16/02	0.42	70.0	17.5	8.4	NM	274	NM	NM	<0.05	NM	NM	NM
	01/17/03	NM	NM	NM	NM	NM	NM	NM	NM		NM NM	NM NM	NM
	04/15/03	NM	NM	NM	NM	NM	NM	NM	NM NM	NM NM	NM NM	NM	NM NM
	07/21/03	3,5*	245	NM	NM	NM .	NM	NM	NM NM	NM NM	NM NM	NM	NM
	10/30/03	0.33	-80	NM	NM	NM NM	NM 200	NM NM	NM NM	<0.05	<1.0	91	2.2
KMW-4	10/16/02	0.46	110.0	16,5	8	NM NM	288 NM	NM NM	NM NM	<0.05	NM	NM	NM
1 .	01/17/03	NM	NM	NM	NM	NM NM	NM	NM	NM	NM	NM	NM	NM
	04/15/03	NM	NM 204	NM NV	NM	NM NM	NM	NM	NM	NM	NM	NM	NM
	07/21/03	4.5*	204	NM NM	NM NM	NM NM	NM NM	NM	NM	NM	NM	NM	NM
70.007.6	10/30/03	0.69 0.61	-40 125.0	NM 16,4	B.1	NM NM	381	NM	NM	<0.05	<1.0	92	2.2
KMW-5	10/16/02 01/17/03		NM	NM	.NM	NM	NM	NM	NM	<0.05	NM	NM	NM
	04/15/03	NM NM	NM NM	NM NM	NM	NM	. NM	NM	NM	NM	NM	NM	NM
	07/21/03	NM 3.4*	146	NM	NM	NM	NM	NM.	NM	NM	NM	NM	NM
	10/30/03	Dry	Dry	NM NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
KMW-6	10/30/03	0.31	<-100	18.9	7.9	NM	397	NM	NM	2.49	<1.0	3.6	5.2
KIVI W-B	01/17/03	NM	<-100 <-100	21.1	6.8	13,3	530	16	<20	2.49	<1.0	<1,0	NM
	04/15/03	NM	<-100	19.3	6.06	9.4	526	6.4	<20	2.4	<1.0	12	NM
!	07/21/03	4.4*	-61	20,5	6.66	174,0	517	3.2	<20	0.17	<1,0	3.3	NM
	10/30/03	0.29	-90	20.9	6.82	0.9	481	1.7	<20	1.4	<1.0	3.9	NM
KMW-7	10/16/02	1,08	-75,0	17.4	7.9	NM	382	NM	NM	<0.05	<1.0	66	3.1
Au	01/17/03	0.47	-50	18.7	6.9	38.3	480	NM	NM	<0.05	<1.0	7.0	NM
	04/15/03	0.51	145	17.7	6.12	5,1	577	NM	NM	<0.05	15	97	NM
	07/21/03	4.7*	-64	19	6.98	151.0	440	NM	NM	0,16	<1.0	99	NM
1	10/30/03	0.00	-88	18.5	7.03	ND	391	NM	NM	<0.05	<1.0	53	NM
KMW-8	10/16/02	0.38	25.0	16.9	8.2	NM	341	NM	NM	<0.05	2.2	77	1,8
1	01/17/03	0.67	115	18.0	7.0	4.1	380	NM	NM	<0.05	<1.0	8.9	NM
	04/15/03	0.51	120	16.2	6.5	11.8	425	NM	NM	<0.05	2.4	81	NM
	07/21/03	3.9*	165	18.7	7.06	200.0	450	NM	NM	0.18	<1.0	110	NM
l	10/30/03	0.33	-37	17.2	7.18	ND	424	ÑМ	NM	< 0.05	1.6	110	NM

Notes: mV = millivolts

mg/L = milligrams per liter °C = degrees Celsius

pH = Hydrogen ion index
NTU = Nephelometric Turbidity Units
<= not detected above listed detection limit for the method

NM = not measured

BOD = Biological Oxygen Demand

COD = Chemical Oxygen Demand

TOC = Total Organic Carbon

Well KMW-5 was nearly dry, and DO and ORP could not be measured accurately.

* = Do measurements from 7/21/03 were not made using a down-hole probe, and therefore may be inaccurate.

ND = NTUs were not detected above zero.

APPENDIX A FIELD MONITORING NOTES

WELL SAMPLING RECORD

SCS ENG	INEERS							Environmental Consultants
WELL No	<u> </u>	(MW -	- (685		St., Suite 240 \ 94568-2920	Ph: (925) 829-0661 Fax: (925) 829-5493 www.scsengineers.com
PR <u>OJECT I</u>	INFORMATIO) <u>N</u>						
PROJECT N		Friesman Rand	ch					
JOB NUMBE	R	1203087.00			WEATHER/TEI	MP	SMIL	1600
PERSONNE	L	ech & tms			SITE CONDITIO	SNC		<u> </u>
MONITORI	NG WELL DA	<u>ATA</u>						
DATE/TIME		10/30/2003		_	GALLONS/FOO	TC		
WELL DIAME	ETER	4"			ONE WELL VO	LUME		
DEPTH TO V	NATER	13.85		_	THREE WELL	VOLUMES	i	
DEPTH OF V	NELL	23.40		_	REFERENCE F	POINT		
WATER HEI				_	80% RECHARG	GE LEVEL		
SHEEN	YES	NO		-	FREE PRODU	CT	YES .	NO
PURGING I	DATA ,							*
DATE		730103						
PURGE STA		1709		•	PURGE END			
PURGE STA		1 4 U n		•	PURGED VOL	(GAL)	• • • • • • • • • • • • • • • • • • • •	
TUBING (TY					PURGING DEF	. ,	-	
EQUIPMENT				•	FORGING DEFIN			
EUOn me.	1/1996-11		 					
TIME	VOL (🍇) W	Дрн	EC (mS/cm)	TEMP (C)	TURB (NTUs)	DO	ORP	COMMENT
12.10	174	589	1,73	17.2	-10.0		269	no odor
1212	700	6.23	1.64	 	-8,0		195	110 50.5
-				17.2		 	 	
1213	1000	6.41	1.61	17.2	<-10 <i>O</i>	<u> </u>	150	
1215	1200	6.54	1.62	17,1	2400	Í	114	
1217	1500	6.61	1.62	17.1	<-10.0	_	108	<u> </u>
OTHER COM	MMENTS:							
								
								
SAMPLING PUMP (TYPE	INFORMATION E)				BAILER (TYPE)	<u>:</u>		
SAM	PLE ID		CONTAINER	R	TIME		ANALYSIS	COMMENTS
KW		1 x 5	ovime		1220	m'	kalinit	
1 7	, , ,		500 ml				OD	7
			500 m	1.	+	30	· · · · · · · · · · · · · · · · · · ·	trute Fe sulfal
		3 NOA	2 WHZ	504:			OD	
		3 401	A - H (Ü _	†	700		
			glas				H-d	
					 			

WELL SAMPLING RECORD

K	1	
"	Y i	
ţ.	- /	
١.	7/	

SCS ENG	GINEERS						···	Environmental Consultants
WELL N	VELL No. KMW-6				68!	_	St., Suite 240 A 94568-2920	• •
PROJECT	INFORMATI	<u>ON</u>						
PROJECT I	NAME	Friesman Ran	ch					
JOB NUMBE	ER	1203087.00			WEATHER/TE	MP		
PERSONNE	<u></u>	ech & tms			SITE CONDIT	IONS		
MONITOR	ING WELL D	<u>ATA</u>						
DATE/TIME 10/30/2003				GALLONS/FO	от			
WELL DIAMETER 4"			<u>-</u>	ONE WELL VO	DLUME			
DEPTH TO		15.85	3		THREE WELL		·	
	DEPTH OF WELL 23.40			=	REFERENCE			
WATER HEIGHT			•	80% RECHAR				
SHEEN YES NO			•	FREE PRODU	ICT	YES	NO	
PURGING	<u>DATA</u>	. A . A -	. 7					
DATE		14.50-	05					
PURGE START 1430				PURGE END				
PURGING F				-	PURGED VOL (GAL)			
TUBING (TY				•	PURGING DEPTH			
EQUIPMEN	T/METH <u>OD</u>							
TIME	VOL 🍇 n	√ pH	EC (mS/cm)	TEMP (C)	TURB (NTUs)	DO	ORP	COMMENT
1432	179	6.85	1.74	20.5	1.3		-87	And-like od
41/-	650	6.82	1.74	20.9	0,9		-90	1000000
<u> </u>	0000	0.02	14:17	20.1	0, 1		1-10	
			· · · · · · · · · · · · · · · · · · ·		ļ			
jli								
OTHER CO	MMENTS:							
			·					
SAMPLING	INFORMATIO	<u>N</u>						
PUMP (TYP	E)			E	BAILER (TYPE)			
SAM	PLE ID		CONTAINER		TIME		ANALYSIS	COMMENTS
<u></u> <u></u> ₩	M-6	500.	nl_					
KM	W-16	510 n	<u> </u>					
		500,	nl					
		3 40	A> HZ	504				
		340	AH	U				
		11_	glas					
					L			

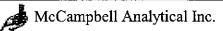
PVP)

WELL SAMPLING RECORD

SCS ENG	MINELIA							Environmental Consultants
WELL No).	KMW-	7		6850		St., Suite 240 A 94568-2920	Ph: (925) 829-0661 Fax: (925) 829-5493 www.scsengineers.com
PPOJECTI	INFORMATION	ON						
PROJECT N		Friesman Rand	_L					
			<u>an</u>		\^/= _TUED/TE!		CALL	MALL INFO
JOB NUMBE	************	1203087.00		•	WEATHER/TEN		Sw	my 60
PERSONNE		ech & tms			SITE CONDITIO	ONS		
MONITORI	NG WELL D	<u>ATA</u>						
DATE/TIME	ATE/TIME 10/30/2003				GALLONS/FOC	ΣT		
WELL DIAM	VELL DIAMETER 4"				ONE WELL VO	LUME	<u> </u>	
DEPTH TO V	DEPTH TO WATER 14.19				THREE WELL	VOLUMES	}	
DEPTH OF V	WELL	23.50	5		REFERENCE F	POINT		
WATER HE	GHT				80% RECHARG	GE LEVEL		
SHEEN	YES	NO		ı	FREE PRODUC	СТ	YES	NO
PURGING I DATE PURGE STA PURGING R	ART	1337	30-03 t	· .	PURGE END PURGED VOL	(GAL)		
TUBING (TY					PURGING DEP			
EQUIPMENT					1 2112	•••		
EQUIT MEST	1/14/211100							
TIME	VOL (gal)	pН	EC (m\$/cm)	TEMP (C)	TURB (NTUs)	DO	ORP	COMMENT
1338	175	7,06	1.64	18.5	-8.2		-88	fuel-like odor
1								1 D 111 1 1
1340	600	7.03	1.64	18.5	<-10.0		-08	trulikeodor
			. !	ĺ	Γ	-		
 			,		1		+	
		<u> </u>	, <u>.</u>				<u> </u>	
			. !		1 [
					†		 	
				<u></u>			<u> </u>	
OTHER COM	MMENTS:				·- ·			
SAMPLING I	INFORMATIO	<u>N</u>		1	BAILER (TYPE)			
CAM	PLE ID		CONTAINER		THE		ANAL VOIC	COMMENTS
7 4		т	A	<u> </u>	TIME			/COMMENTS
KM	W-7	500 v	nl		1345	At	Kalin	iti
		500	ml			300	1 1	y Cocallf
			~ ~ ~ .		+ - +			
		3 10	i Tro	HCP		V	OC 80	115 1802
		11	glass	•	T	TP	H-d	t = t
			<u> </u>		+			, , ,
 		ļ			 			
		l			1 1			
]		└			 			

(2)

WELL SAMPLING RECORD


SCS ENG	INEERS						E	invironmental Consultants
WELL No	WELL No. KMW-8			685		St., Suite 240 \ 94568-2920	Ph: (925) 829-0661 Fax: (925) 829-5493 www.scsengineers.com	
PROJECT I	<u>INFORMATI</u>	ON						
PROJECT N		Friesman Ran	ch					
JOB NUMBE	R	1203087.00			WEATHER/TEMP			
PERSONNE	L	ech & tms			SITE CONDITIONS			inny 60°
MONITORI	MONITORING WELL DATA DATE/TIME 10/30/2003						·	
DATE/TIME	DATE/TIME 10/30/2003			GALLONS/FOO	ΣT			
WELL DIAMETER		4"		•	ONE WELL VO	DLUME		
		15,23		•	THREE WELL	VOLUMES	-	
DEPTH OF V		23.64		•	REFERENCE			-
WATER HEI			·	•	80% RECHAR			·
SHEEN YES		NO		-	FREE PRODU		YES I	NO
				•				
<u>PURGING</u>	<u>DATA</u>	10.00	-377					
DATE		10-30	-05	-			(300
PURGE START 12.53		-	PURGE END	(0.41)		1300		
PURGING RATE			•	PURGED VOL				
TUBING (TY			1414	-	PURGING DEI	21H		
EQUIPMEN [®]	I/WE I HOD							
TIME	VOL NO	MP pH	EC (ms/cm)	TEMP (C)	TURB (NTUs)	DO	ORP	COMMENT
1250	175	7.12	1.78	17.2	44.3		-35	nooder
1258	400	7.18	1.80	17.2	-1.6		-34	noodr
1-50	100_	1,10	1.00	17, 6	1.0		-> 20	VIO OU IV
<u></u>								
							 	
<u></u>	<u>I </u>			<u> </u>	<u> </u>		<u> </u>	
OTHER CO	MMENTS:							ut.
SAMPLING PUMP (TYPI	INFORMATIO	<u> </u>			BAILER (TYPE)			
SAM	PLE ID		CONTAINER	₹	TIME		ANALYSIS/	COMMENTS
KM	W-8	1 × 50	ond		1300	Ail	Calinit	·u
- · · ·	· v	20	Ome			300	. L niti	Fe.SUIF
		21	DA < 1	HCe		VO	- 1 /	001519021
		11	a.h.			-	$^{2}H-d$	1013/0001
		+ L	· J mas		 	17	11 01	
					-			
-								
					1			

MIOD BOD

8:00 ted + 1 met & office, loaded, esy	7
7:30 amired on site	
	A CONTRACTOR OF THE PARTY OF TH
water levels well Fine Ideath to H20 DO (MD/L	
KMW-1 11 03 3.85 0-29 0.31	
-2 1045 ORY (3.70)** -3 1041 13.19 0.33 ° 82.00	V
-4 1026 15.40 O. 69 ORP: E 40 -5 1029 DET 16.02 (5.00 * 16'2" botto)
1 -16 No. 8 1 15.85 10.29	
- 4 1055 14.19 0.00 -8 1040 15.23 0.33	
* very little water here so Do rading may	
not be accivate Batter wint retrieve water so no ORP measurement	
sear Same as above. Total depth = 13.84	
ORder 1,0,7,6 KMW-1 and 6-COD+BOD	
KMW-land & - (OD+BOD)	

APPENDIX B

CHAIN-OF-CUSTODY RECORDS AND CERTIFIED ANALYTICAL LABORATORY REPORTS

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

SCS Engineers	Client Project ID: #01203087.00;	Date Sampled: 10/30/03
6601 Koll Center Park Way,	Friesman Ranch	Date Received: 10/30/03
Suite 140	Client Contact: Jim Lehrman	Date Reported: 11/05/03
Pleasanton, CA 94566	Client P.O.:	Date Completed: 11/05/03

WorkOrder: 0310512

November 05, 2003

Dear Jim:

Enclosed are:

- 1). the results of 6 analyzed samples from your #01203087.00; Friesman Ranch project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

Your truly

RECEIVED

NOV 1 7 2003

d	McCampbell Analytical	Inc.
---	-----------------------	------

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

SCS Engineers	Client Project ID: #01203087.00;	Date Sampled: 10/30/03
6601 Koll Center Park Way,	Friesman Ranch	Date Received: 10/30/03
Suite 140	Client Contact: Jim Lehrman	Date Extracted: 10/31/03-11/01/03
Pleasanton, CA 94566	Client P.O.:	Date Analyzed: 10/31/03-11/01/03

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	method: SW5030B			Analytical methods: SW8021B/8015Cm				Work Order: 0310512		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	KMW-1	w	ND	ND	ND	ND	ND	ND	1	108
002A	KMW-6	w	700,a	ND	23	1.1	8.0	8.3	1	91.0
003A	KMW-7	w	150,a	ND	0.54	ND	ND	ND	1	106
004A	KMW-8	W	ND	ND	ND	ND	ND	ND	1	107
005A	KMW-16	w	750,a	ND	24	1.3	8.5	8.8	ı	118
006A	Trip Blank	w	ND	ND	ND	ND	ND	ND	1	109
									-	
	,									
								W	-	
									 	
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-				,		
									+	
				}					<u> </u>	
ND means	g Limit for DF =1; s not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
above t	he reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

d	McCampbell Analytical	Inc.
	mocumpoon marytical	1110,

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

SCS Engineers	Client Project ID: #01203087.00; Friesman Ranch	Date Sampled: 10/30/03
6601 Koll Center Park Way,	THESHIAII KARCII	Date Received: 10/30/03
Suite 140 Pleasanton, CA 94566	Client Contact: Jim Lehrman	Date Extracted: 10/30/03
Transaction, Carty 15 Go	Client P.O.:	Date Analyzed: 10/31/03-11/01/03

		Client P.O.:	Date Analyz	ed: 10/31/03-11/01/	/03
Extraction method: SW			ractable Hydrocarbons as Diesel*	Work Order	· 031051
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0310512-001B	KMW-1	w	ND	. 1	98.9
0310512-002B	KMW-6	w	310,d	1	100
0310512-003B	KMW-7	w	100,d	1	99.0
0310512-004B	KMW-8	W	ND	1	102
0310512-005B	KMW-16	w	350,d	1	103
	···········				
	ans				
	imit for DF =1; ot detected at or	W	50		ıg/L
			NA	1 1	NT A

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

S

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

NA

NA

above the reporting limit

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

	McCampbell	Analytical	Inc.
--	------------	------------	------

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com/E-mail: main@mccampbell.com/

SCS Engineers 6601 Koll Center Park Way,	Client Project ID: #01203087.00;	Date Sampled: 10/30/03			
	Friesman Ranch	Date Received: 10/30/03			
Suite 140 Pleasanton, CA 94566	Client Contact: Jim Lehrman	Date Extracted: 10/30/03			
Trousunton, OTT 2 1300	Client P.O.:	Date Analyzed: 10/30/03-11/04/03			

Inorganic Anions by IC*

Extraction method: E300.1			Analytical methods: E300.1	Work Order: 0310512		
Lab ID	Client ID	Matrix	Nitrate as N	Sulfate	DF	% SS
0310512-001C	KMW-1	w	ND	84	1	110
0310512-002C	KMW-6	w	ND	3.9	1	113
0310512-003C	KMW-7	w	ND	53	1	96.9
0310512-004C	KMW-8	w	1.6	110	50	109.7
0310512-005C	KMW-16	w	ND	3.3	1	94.6
		-				
	-					
						[

Reporting Limit for DF =1; ND means not detected at or	W	1.0	1.0	mg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are filtered before analysis and reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipc, product/oil/non-aqueous liquid samples in mg/L.

[#] surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high inorganic content; k) sample arrived with head space.

Campbell Anal	lytical Inc.
	Campbell Anal

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

SCS Engineers 6601 Koll Center Park Way, Suite 140 Pleasanton, CA 94566	Client Project ID: #01203087.00; Friesman Ranch	Date Sampled: 10/30/03				
	Thesinan Raileii	Date Received: 10/30/03				
	Client Contact: Jim Lehrman	Date Extracted: 10/30/03				
, , , , , , , , , , , , , , , , , , , ,	Client P.O.:	Date Analyzed: 10/31/03				

				Ietals*		
Extraction method: E2			Analytical	Work Order:	0310512	
Lab ID	Client ID	Matrix	Extraction	Iron	DF	% SS
0310512-001C	KMW-1	w	DISS.	ND	1	N/A
0310512-002C	KMW-6	w	DISS.	1.4	1	N/A
0310512-003C	KMW-7	w	DISS.	ND	1	N/A
0310512-004C	KMW-8	W	DISS.	ND	1	N/A
0310512-005C	KMW-16	w	DISS.	1.1	1	N/A
			-			<u> </u>
		7,72,102	1000			
			75 %			
					NR 08. 47	

Reporting Limit for DF =1; ND means not detected at or	W	DISS.	0.05	mg/L
above the reporting limit	S	TTLC	NA	mg/kg

*water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, filter samples in μg/filter.

means surrogate recovery outside of acceptance range due to matrix interference; & means low or no surrogate due to matrix interference; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid-Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipe/filter - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; k) results are reported by dry weight; y) estimated values due to low surrogate recovery; z) reporting limit raised due to matrix interference.

X

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0310512

EPA Method: SW8021B/8	015Cm [Extraction:	SW5030E	3	BatchID: 9161 Spiked Sample ID: 0310498-011A					
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	60	110	116	5.42	102	103	0.891	70	130
МТВЕ	ND	10	113	112	1.31	82.2	81.9	0.439	70	130
Benzene	ND	10	108	106	1.19	89.8	87.5	2.58	70	130
Toluenc	ND	10	105	105	0	102	98.4	3.60	70	130
Ethylbenzene	ND	10	115	117	1.79	110	104	5.09	70	130
Xylenes	ND	30	107	107	0	110	107	3.08	70	130
%SS:	ND	100	107	107	0	101	99.9	0.949	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FiD.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0310512

EPA Method: SW8015C	E	Extraction: SW3510C				BatchID: 9131 S			piked Sample ID: N/A		
	Sample Spiked µg/L µg/L				MSD* MS-MSD	LCS LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)		
					% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(d)	N/A	7500	N/A	N/A	N/A	94.1	94.3	0.172	70	130	
%SS:	N/A	100	N/A	N/A	N/A	99.1	99.2	0.170	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR E200.7

Matrix: W

WorkOrder: 0310512

EPA Method: E200.7	E	extraction:	E200.7	BatchID: 9256 Spiked Sample ID: N/A						
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Iron	N/A	1	N/A	N/A	N/A	103	105	2.69	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR E300.1

Matrix: W

WorkOrder: 0310512

EPA Method: E300.1	6	Extraction: E300.1			BatchID: 9133			Spiked Sample ID: N/A		
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Sulfate	N/A	1000	N/A	N/A	N/A	110	110	0	85	115
%SS:	N/A	100	N/A	N/A	N/A	107	92.9	13.8	90	115

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Phone (209) 572-0900 Fax (209) 572-0916

CERTIFICATE OF ANALYSIS

Report # P304-05

Date: 11/04/03

McCampbell Analytical 110 2nd Ave. South #D7

Project: #01203087.00;Friesman Ranch

10/31/03 Date Rec'd: Date Started: 11/03/03

CA 94553 Pacheco

PO# 0310512

Date Completed:11/03/03 Date Sampled: 10/30/03

Time: Sampler:

			· · · · · · · · · · · · · · · · · · ·		
Lab ID	RL Method		Analyte	Results	Units
P309659	20	SM2320B	Total Alkalinity as CaCO₃	351	mg/L
	20	410.4	Chemical Oxygen Demand	ND	mg/L
P309660	20	SM2320B	Total Alkalinity as CaCO ₃	481	mg/L
	20	410.4	Chemical Oxygen Demand	ND	mg/L
P309661	20	SM2320B	Total Alkalinity as CaCO ₃	391	mg/L
P309662	20	SM2320B	Total Alkalinity as CaCO ₃	424	mg/L
P309663	20	SM2320B	Total Alkalinity as CaCO₃	481	mg/L
	P309659 P309660 P309661	P309659 20 20 P309660 20 20 P309661 20 P309662 20	P309659 20 SM2320B 20 410.4 P309660 20 SM2320B 20 410.4 P309661 20 SM2320B P309662 20 SM2320B	P309659 20 SM2320B Total Alkalinity as CaCO ₃ Chemical Oxygen Demand P309660 20 SM2320B Total Alkalinity as CaCO ₃ 20 410.4 Chemical Oxygen Demand P309661 20 SM2320B Total Alkalinity as CaCO ₃ Total Alkalinity as CaCO ₃ P309662 20 SM2320B Total Alkalinity as CaCO ₃	P309659 20 SM2320B 20 Total Alkalinity as CaCO ₃ 351 ND P309660 20 SM2320B 20 Total Alkalinity as CaCO ₃ 481 ND P309661 20 SM2320B 20 Total Alkalinity as CaCO ₃ 481 ND P309661 20 SM2320B Total Alkalinity as CaCO ₃ 391 P309662 20 SM2320B Total Alkalinity as CaCO ₃ 424

Kanti Gandhi Chemist

Donna Keller Laboratory Director

Certification # 1157

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Phone (209) 572-0900

Fax (209) 572-0916

CERTIFICATE OF ANALYSIS

Report # P304-05

McCampbell Analytical 110 2nd Ave. South #D7

Pacheco

CA 94553

Project: #01203087.00;Friesman Ranch

0310512 PO#

Date: 11/11/03

Date Rec'd:

10/31/03

Date Started:

10/31/03

Date Completed: 11/05/03

Date Sampled:

10/30/03

Time: Sampler:

Sample ID	Lab ID	RL	Method	Analyte		Resul	ts Units	
KMW-1	P309659	2.0	SM5210B	B.O.D	,	ND	mg/L	
1								
CMW-6	P309660	2.0	SM5210B	B.O.D		1.7	mg/L	

Kanti Gandhi Chemist

Donna Keller

Laboratory Director

Certification # 1157

GeoAnalytical Laboratories, Inc. 1405 Kansas Avenue Modesto, CA 95351 Phone (209) 572-0900 Fax (209) 5

Phone (209) 572-0900 Fax (209) 572-0916

Report# P304-05

QC REPORT

McCampbell Analytical 110 2nd Ave. South #D7

Pacheco

CA 94553

Analyte	Method	Batch #	Dates Analyzed	Orig.	Dupl.	MS %Rec	MSD %Rec	RPD	LCS %Rec	Blank	Comments
Total Alkalinity as CaCO3	SM2320B	107197	11/03/03			108.4	106.6 *			ND	
Chemical Oxygen Demand	410.4	I07199	11/03/03			100.8	100.8		100.0	ND	

* LCS/LCSD (see comments)

Kanti Gandhi Chemist

Certification # 1157

Donna Keller

Laboratory Director

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Phone (209) 572-0900 Fax (209) 572-0916

Report# P304-05

QC REPORT

McCampbell Analytical 110 2nd Ave. South #D7

Pacheco

CA 94553

Analyte	Method	Batch #	Dates Analyzed	Orig.	Dupl.	MS %Rec	MSD %Rec	RPD	LCS %Rec Blank	Comments
3.O.D	SM5210B	B00617	10/31/03-11/05/03	203	220			8.0	ND	

* LCS/LCSD (see comments)

Kanti Gandhi Chemist

Certification # 1157

Donna Keller Laboratory Director

McCampbell Analytical Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 2

WorkOrder: 0310512

Client:

SCS Engineers

6601 Koll Center Park Way, Suite 140

Pleasanton, CA 94566

TEL:

(925) 426-0080

FAX:

(925) 426-0707

ProjectNo:

#01203087.00; Friesman Ranch

PO:

Date Received:

10/30/03

Date Printed:

10/30/03

Sample ID								
	ClientSampiD	Matrix	Collection Date	Hold	Alkalinity	BOD	COD	E200_7
0310512-001	KMW-1	Water	10/30/03		D	D	D	С
0310512-002	KMW-6	Water	10/30/03		D	D	D	С
0310512-003	KMW-7	Water	10/30/03		D			С
0310512-004	KMW-8	Water	10/30/03		D			C
0310512-005	KMW-16	Water	10/30/03		D			С
0310512-006	Trip Blank	Water	10/30/03	П				

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical Inc.

CHAIN-OF-CUSTODY RECORD

Page 2 of 2

WorkOrder: 0310512

Client:

SCS Engineers

6601 Koll Center Park Way, Suite 140

Pleasanton, CA 94566

TEL:

(925) 426-0080

FAX:

(925) 426-0707

ProjectNo:

#01203087.00; Friesman Ranch

PO:

Date Received:

10/30/03

Date Printed:

10/30/03

				[Requi	ested Tests
Sample ID	CilentSampID	Matrix	Collection Date	Hold	E300_1	SW8015C	SW8021B/8015Cm
0310512-001	KMW-1	Water	10/30/03		С	В	A
0310512-002	KMW-6	Water	10/30/03		С	В	A
0310512-003	KMW-7	Water	10/30/03		С	В	Α
0310512-004	KMW-8	Water	10/30/03		С	В	A
0310512-005	KMW-16	Water	10/30/03		С	В	Α
0310512-006	Trip Blank	Water	10/30/03				Α

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

0310512 **CHAIN OF CUSTODY RECORD** LAB USE **SCS ENGINEERS Environmental Consultants** ANALYSES REQUESTED TOTAL NUMBER OF SAMPLES: ONLY PAGE OF 6601 Koll Center Parkway 925 426-0080 TURNAROUND TIME REQUIRED: Standard Suite 140 FAX 925 426-0707 Pleasanton, CA 94566 www.scsengineers.com ___5-Day ___3-Day ___Immediate ____Other PROJECT NUMBER: 01203087.00 Lehrman PROJECT MANAGER: Fresman Ranch PROJECT NAME: W.O. / S.O. #: LIVERMOVE CA PROJECT LOCATION: SAMPLER NAME AND SIGNATURE: FMILY HAVIS - TRA SISON SAMPLE PRESERVATIVE SAMPLE DATE/TIME CONTAINER SPECIAL INSTRUCTIONS/COMMENTS 1.D. NUMBER SAMPLE DESIGNATION MATRIX COLLECTED SIZE/TYPE H20 10-30-03 3 VOA KMW-1 HQ 1:500ml none 500 ml 500 ml H2504 LLamber none KMW-6 BNOA Ma 500 mp none 500ml none 500 me none H2504 3 VOA 1 Lamber none KMW-7 3 NOA H(0 500ml none 500 ml none Please filter and preserve Fe samples upon armal.
Invoice cyclother's Hospital directly SAMPLE CONDITION UPON RECEIPT: APPROPRIATE
CONTAINERS
PRESERVED IN LAB GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LA O&G | METALS | OTHER VOAS TIME: RECEIVE TO THE COMPANY: 17 RELINQUISHED BY: PRESHEVATION MECEIVED BY: COMPANY COMPANY: TIME: 4:30

				AIN	COSTOD)	Y				21		シ			LAB USE	
	NGINEERS E	nvironm	ental Cons	Onsultants TOTAL NUMBER OF SAMPLES: 🕡						ANALYSES REQUESTED						
6601 K	Coll Center Parkway	92	5 426-0080 X 925 426-070 vw.scsengineers.	7		OF IME REQUIRED: -DayImmedia		1,1,1	1	17.5 74						
PROJECT N	UMBER: 0120	3087.	00_			GER: J Leh			-	ই >	3		ļ			
PROJECT N	IAME: Fin	esman	Ranch		W.O. / S.O. #:			TPH9, BTEX MIRE		DITTER.	日はこととと					
PROJECT L		LIVERM	ove CA		(7-		3	18			İ	
SAMPLER N	IAME AND SIGNATURE	وخنتها النبط فالتجارات والمنازلين	SISON	- Pol-		-		压	1	100°		17				
I.D. NUMBER	SAMPLE DESIGNATION	SAMPLE MATRIX	DATE/TIME COLLECTED *	SIZE/TYPE	SAMPLE PRESERVATIVE	SPECIAL INSTRUCT	TIONS/COMMENTS	1=	1 1							
	KMW-7	H20	10-30-03	1 Lgials	none				X							
	KMW-8	\	10-30-03		HU			X								
				500 mg	T		· · · · · · · · · · · · · · · · · · ·		·	λ						
				500 ml	none				Í	7	1					
				1 camber			, , , , , , , , , , , , , , , , , , , ,		Δļ	-						
	KMW-16			3 VOA	HCP			X		_		T		+-1		
	X 10100-110							 		1	/	1	_		-	
				500 ml	none			-		. / /						
				500 Ml					V	X L	+			+		
	<u> </u>			1' "	rone		· · · · · · · · · · · · · · · · · · ·		4				-		· 	
	Trip Blank			3 NOA	HCL			X							<u> </u>	
			·····													
											_					
				:												
								2								
							ECE/F			χ			1/	1	1	
NOTES:	Her and pr voice Childh	reserve renis t	Fe sam lospital	ple pe	in aniva	Î.	HEAD SPA DECHLORI PRESERVA	CE ABS NATED	IN LA VOAS		PR		ED IN L		RECEIPT:	
REUNQUI SHED E	PAT C	E: 0-30-03.	RECEIVED BY	1//	DATE:	RELINQUISHED BY:	DATE	:	R	ECEIVE	D BY:			DATE:	**************************************	
COMPANY: SC	TiMI		COMPANY 7A	Z	TIME:	COMPANY:	TIME		c	MPAN	Y :			TIME:		