

REMEDIAL ACTION PLAN

for the

Learner Property 768-46th Avenue Oakland, California

prepared by

Weiss Associates 5500 Shellmound Street Emeryville, California 94608

WA Job #84-486-00

We certify that Weiss Associates's work on the Learner Company's Project was conducted under our supervision. To the best of our knowledge the data contained herein are true and accurate and satisfy the specified scope of work for this project.

evan

Robert O. Devany, C.E.G. Project Hydrogeologist No. EG-1560

Jacima 5 Lelec

Fatima S. Lelic, P.E., D.E.E Principal Engineer No. 43319

Fax: 415-547-5043

Phone: 415-547-5420

5500 Shellmound Street, Emeryville, CA 94608

REMEDIAL ACTION PLAN

for the

Learner Property 768-46th Avenue Oakland, California 94601

Ave 21, 1991

prepared for

Learner Investment Company 2711 Navy Drive Stockton, California 95206

August 21, 1991

A Division of AguaTierra Associates Incorporated

WEISS ASSOCIATES

CONTENTS

1

Page

1. INTRODUCTION	1
1.1 BACKGROUND	1
1.2 REGIONAL BACKGROUND	3
1.3 CHEMICALS OF CONCERN	4
2. REMEDIAL ALTERNATIVES	5
2.1 SCREENING OF REMEDIAL ALTERNATIVES	5
2.1.1 Excavation and Off-Site Disposal	5
2.1.2 Stabilization and Capping	5
2.1.3 Solidification and Stabilization	6
2.1.4 Reuse and Recycle	6
2.1.5 Biotreatment	6
2.2 DETAILED ANALYSIS OF SELECTED ALTERNATIVES	6
2.2.1 Excavation and Off-Site Disposal	7
2.2.2 Stabilization and Capping	7
2.2.3 Solidification and Stabilization	8
3. SITE MITIGATION PLAN	9
REFERENCES	10
PROJECT PERSONNEL	11

FIGURES

- 1. Site Location Map
- 2. Sampling Location Map Access Drive
- 3. Sampling Location Map Former Bailer Area and Soil Piles
- 4. Soil Sample Location Map

TABLES

- 1. Summary of Analytical Results (from Dames and Moore, 1988)
- 2. Surface Soil Sampling Analytical Results Summary (from Kleinfelder, 1990)
- 3. Summary of Remedial Action Alternatives
- 4. Cost Comparison of Remedial Alternatives

APPENDICES

- A. Tables and Figures
- B. Analytic Reports and Chain-of-Custody Documentation

SUMMARY

Weiss Associates reviewed site historical data and environmental investigations at the Learner Investment Company property at 768-46th Avenue in Oakland, California. These data indicate that total petroleum hydrocarbons (TPHs) concentrations exceed 1,000 part per million (ppm) in several locations. However, the affected soils have negative corrosivity, reactivity, ignitability and aquatic toxicity characteristics. Site historical information suggests that the TPHs are hydraulic fluids and oils which are relatively insoluble and of low toxicity. Data also indicate that lead and zinc concentrations exceed State criteria for defining hazardous waste. The average lead concentration is 1,568 ppm, based on 11 analyses. While elevated, this concentration is only 27 percent higher than the average soil lead concentration in residential yards in the same region as Learner's property based on a recent State study. Consequently, a significant overall risk reduction for lead can be achieved only by a regional remedial plan which addresses all heavy metals sources and provides a common technical approach to the problem.

Several approaches to mitigate the contaminants of concern in soil were screened and evaluated using criteria established by the U.S. Environmental Protection Agency (EPA). The three approaches evaluated in detail are:

- 1. Excavation and Off-Site Disposal. This alternative achieves only a very small overall reduction in public health and environmental risks at a very high monetary cost. Approximately 86 percent of the total cost is due to disposal fees and Federal, State and local taxes. Excavation and land disposal would not be appropriate for regional lead contamination, since the disposal costs are staggering. In addition, this technique does not meet State and Federal on-site cleanup goals.
- 2. Stabilization and Capping. This alternative achieves reduction in public health and environmental risks at relatively low cost compared other viable methods. Stabilization relies on chemical reactions to fix metals in a matrix that reduces their solubility and mobility. Lead and zinc form low solubility complexes with the major anions of natural environmental systems. Capping of the site with asphalt will curtail the infiltration of meteoric water and entrained soluble hydrocarbons, if present. Since the TPHs present are suspected to exhibit very low volatility, vapor phase diffusion of hydrocarbons to ground water is expected to be negligible.
- 3. Solidification and Stabilization. This alternative may achieve a moderate reduction in public health and environmental risks at moderate cost compared other viable methods. The objective of solidification and stabilization technologies is to achieve physical and chemical immobilization of contaminants. Chemical constituents are mechanically locked within a solidified matrix to form a monolithic structure similar to concrete. Although solidification may improve the physical characteristics of the soil, it has limited effect on the chemistry of the waste; solubility and mobility reduction are achieved by stabilization, the same chemical reaction used in Alternative 2. This technology increases the treated soil volume and requires off-site disposal of excess volumes and as such, does not meet State and Federal on-site cleanup goals. Also, TPH in soil may interfere with the setting

process, and as such, requires additional bench and field testing to ensure its effectiveness at the site.

The preferred remedial action plan is Alternative 2. Stabilization and capping provides overall protection of human health and the environment, reduction of contaminant toxicity and mobility, and worker and community protection during remedial actions. The alternative is technically and economically implementable at site and on a regional scale.

1. INTRODUCTION

Weiss Associates (WA) reviewed site investigation data and remedial action alternatives for the Learner Investment Company property ("the Property") located at 768 46th Avenue, Oakland, California. This report summarizes WA's review of site and regional background data, screens remedial alternatives in accordance with U.S. Environmental Protection Agency (EPA) and State criteria, and presents a proposed site mitigation plan.

1.1 BACKGROUND

The Learner Investment Company, of Stockton, California, owns the property located at 768-46th Avenue in Oakland, California (Figure 1). Currently the Property is used as a storage yard for mechanical equipment. From the 1960's to 1982 a scrap-metal baling plant was operated on the Property. After plant closure, Learner Company representatives reported that vandals had caused a spill of up to 200 gallons of hydraulic fluid at the baler (Weiss Associates, 1991a). Subsequent to this spill, the Learner Company dismantled the baler, removed the onsite railroad spur and graded both the baling area and the former spur area, placing the soil in two piles on either side of the baling area, (Weiss Associates, 1991b). WA was retained by the Learner Company to review site investigation data collected by Dames and Moore, (Dames and Moore, 1988) and Kleinfelder, Inc., (Kleinfelder, 1989), and to prepare a remedial action plan.

Both site investigations focused on three main areas: the access drive, the former baling area and the soil piles (Plates 2 and 3, Appendix A). In June 1990, both piles were consolidated into a single pile.

During the Dames and Moore investigation, fifteen discrete depth soil samples and five composite soil samples were collected. The samples were analyzed for Total Petroleum Hydrocarbons (TPHs) by EPA Method 418.1 and for polychlorinated biphenyls (PCBs) by EPA Method 8080. Analytical results are shown in Table 1, Appendix A. Sampling locations are shown in Plates 2 and 3, Appendix A. Ten shallow soil samples were collected in the former baling area. Four (2S, 3S, 6S, 11S) contained TPH concentrations over 1,000 parts per million (ppm); TPH concentrations were less than 16 ppm in the other six. TPHs were not detected in three of the four deeper (4.5 ft depth) soils samples, and were slightly above the detection limit in the fourth sample.

Three composite soil samples were collected in the vicinity of the access drive, and two composites were collected from the soil piles. One access drive sample (composite R3 and R4) and both soil pile samples (composites P1A and P1B; P2A and P2B) contained TPH above 1,000 ppm. Two access drive (composites R1 and R2; R3 and R4) and the two soil pile samples contained PCBs above detection limits. One sample contained 25.2 ppm total PCBs, exceeding Federal PCB cleanup requirements (CFR, 1988) for restricted access areas by 0.8 percent (composite P1A and P1B).

Kleinfelder, Inc. collected eleven surface soil samples in June 1989. Most samples contained debris including metal scraps, glass and wood. All samples were analyzed for TPH (by EPA Method 418.1), lead, chromium, cadmium, nickel and zinc, corrosivity, reactivity, ignitability and aquatic toxicity; one sample was analyzed for the 17 California Code of Regulations (CCR) Title 22 metals and three samples were analyzed by Waste Extraction Test (WET) procedures (CCR, 1984a). Analytical results and methods are summarized in Table 2, Appendix A. Sampling locations are indicated in Plate 4, Appendix A. Analytical reports and chain-of-custody documentation from the Kleinfelder report are included as Appendix B. Four samples each were collected from the former baling area and the soil pile; three samples were collected from the access drive area.

Two samples from the former baling area (B-07 and B-09) contained TPH concentrations above 1,000 ppm. The average TPH concentration for the four samples was 1,130 mg/kg. Lead concentrations at the baling area are below regional background levels. Soil pH varies from neutral to strongly alkaline. These pHs reduce heavy metal solubility and mobility.

TPH concentrations from all three samples collected along the paved access drive were over 1,000 ppm. Lead exceeded its Total Threshold Limit Concentration (TTLC) level (CCR, 1984b) in one sample. Two samples have slightly alkaline pH; the third is slightly acidic; lead concentration in this slightly acidic sample is well below regional background levels. Three of the four TPH results from the soil pile reported by Kleinfelder (Table 2) are one order of magnitude higher than those for the *in-situ* composite samples collected by Dames and Moore (B-06, B-11 and B-12). Because the soil pile consists of graded surface materials, this elevated TPH concentrations may have resulted from the application of hydrocarbon products for dust and runoff control. Lead and zinc were detected above their respective Soluble Threshold Limit Concentrations (STLC) and TTLCs in samples from the soil pile. Hazardous waste identification analyses included corrosivity, reactivity, ignitability and aquatic toxicity. Results for these analyses were below detection limits for all 11 samples (Table 2). The samples' lack of ignitability and site background suggest that hydraulic fluids, and possibly other oils are the predominant hydrocarbons in soil.

1.2 REGIONAL BACKGROUND

WA reviewed the interim report prepared by the California Department of Health Services (CDHS) as part of the Childhood Lead Poisoning Prevention Program (CLPPP) (DHS, 1989). WA also reviewed cases on file at the Regional Water Quality Control Board (RWQCB) on toxics and underground tank leaks for the 0.4 square mile area bounded by 46th Avenue and 57th Avenue, the Nimitz Freeway and East 14th Street (Figure 1).

CDHS studies indicate that background soil lead levels in the Oakland neighborhoods in the vicinity of the Learner site are high, exceeding State and Federal environmental standards in most cases. The average lead concentration in soil was 1,232 ppm, based on 531 samples collected from residential yards in East Oakland. Lead concentrations ranged from 400 to 4,600 ppm. The study attributed lead in soil to industrial and automobile emissions and lead-based paints. The CDHS report recommended a 500 ppm lead abatement goal for residential areas, based on background levels in urban soils and CLPPP studies.

The RWQCB files contain twenty-two cases located in the study area. Twelve files are toxic cases and ten are underground fuel leak cases. Toxic case files indicate that lead, zinc, PCBs, and chlorinated solvents are present in soils and ground water at several locations.

1.3 CHEMICALS OF CONCERN

TPHs, consisting of predominantly hydraulic fluid and other oils, are present in concentrations greater than 1,000 ppm in the access drive, the soil pile, and in the area surrounding the former baler. Although TPH concentrations in excess of 1,000 ppm are often classified as being materials of concern by State and local agencies, available data indicate that soil on the Property has negative corrosivity, reactivity, ignitability and aquatic toxicity characteristics. Site historical information suggests that the TPHs present are mainly hydraulic fluids and oils which are relatively insoluble and of low toxicity.

Available data indicate that lead and zinc are the only metals of concern at the site. Since lead was detected in concentrations exceeding its TTLCs and STLCs in the soil piles and the access drive, the soil from these areas is classified as hazardous waste. The average lead concentration is 1,568 ppm, based on 11 analyses. While elevated, this concentration is only 27 percent higher than the average soil lead concentration in residential yards near the Property. Consequently, a significant overall risk reduction and lead ARARs compliance can be achieved only by a regional remedial plan which addresses all heavy metals sources and provides a common technical approach to the problem. Total zinc concentrations exceeds the TTLC in the soil piles only.

Based on existing data, the overall affected soil area is approximately 3,800 square yards (1,725 sq. yds. in the baling area and 2,075 sq. yds. in the access road area). The total volume of affected soil, assuming an average depth of about 1.7 ft, is approximately 2,150 cubic yards.

1200 ppm Bockrowd Pb in Oakland Interin Mpr to Car State Legislahure June F9 Childhood lead poisonny in Car causes I grevention Olifford Allenby Sec of H1W Agency Kenneth Kiser - Dir DHS (ar hur time)

2. REMEDIAL ALTERNATIVES

2.1 SCREENING OF REMEDIAL ALTERNATIVES

WA reviewed the following alternatives to remedy soil affected by lead and zinc, and hydraulic fluid and other oils:

- 1. Excavation and off-site disposal
- 2. Stabilization and capping
- 3. Solidification and stabilization
- 4. Reuse and recycle
- 5. Biotreatment

These alternatives are briefly described below. Alternatives 1, 2 and 3 were retained for detailed analysis. Additional definition of areal and vertical extent of contamination may be advisable and/or required for these alternatives. Alternatives 4 and 5 were discarded by the screening process.

2.1.1 Excavation and Off-Site Disposal

This alternative consists of excavating affected soils to approved cleanup levels. Soil are disposed of at an approved Class I facility. After verification sampling, the excavation is filled with clean imported soils, if necessary. This alternative transfers risk and is not consistent with State and Federal on-site cleanup goals.

2.1.2 Stabilization and Capping

This alternative consists of chemically stabilizing metals via adsorption and chemical fixation. The soil is treated with lime to a pH level consistent with remediation goals. The site is capped with asphaltic pavement. A deed restriction is placed on the property. The asphaltic cap is inspected yearly for integrity.

2.1.3 Solidification and Stabilization

This alternative consists of solidifying and stabilizing affected soils with a cement mixture, immobilizing both hydrocarbons and metals. The soils are excavated and treated onsite. After treatment, the soils are placed on a lined pit on-site and excessive volumes are disposed off-site. This alternative transfers risk and is inconsistent with State and Federal onsite cleanup goals.

2.1.4 Reuse and Recycle

This alternative consists of recycling metal scrap by screening. After metal removal, soils containing TPH are reused by a permitted asphalt processing plant. WA collected and analyzed one metal scrap sample from the site. This sample did not contain lead or zinc particulates. Unless additional sampling substantiates an opposite conclusion, this technology probably will not reduce heavy metals concentration to a level acceptable to the asphalt processing plant. In addition, only 2 of the 25 asphalt plants contacted in California are authorized to process soils containing TPH.

2.1.5 Biotreatment

This alternative consists in landfarming the soils containing TPH with or without nutrients and bacterial addition. This alternative will reduce TPH content, but it will not remove lead and zinc. Therefore, this method is not evaluated further.

2.2 DETAILED ANALYSIS OF SELECTED ALTERNATIVES

Three alternatives remain for more detailed analysis. Table 3 compares the three selected remedial alternatives according to the nine EPA assessment factors (U.S. EPA, 1988). Table 4 presents a cost comparison of the alternatives.

All three alternatives are technically feasible and provide overall protection of human health and the environment, reduction of contaminants toxicity and mobility, and worker and community protection during remedial actions.

2.2.1 Excavation and Off-Site Disposal

This alternative would achieve only a very small overall reduction in public health and environmental risks at a very high monetary cost. Approximately 86 percent of the total cost is due to disposal fees and Federal, State and local taxes. Excavation and land disposal would not be appropriate at the regional level, since the disposal costs of large volumes are staggering. Furthermore, among the negative environmental impacts associated with this remediation alternative are transfer of risk, air emissions caused by approximately 140-400 mile truck trips, dust emissions, and use of landfill space that may be better put toward other waste disposal. In addition, this alternative is inconsistent with State and Federal on-site treatment goals.

2.2.2 Stabilization and Capping

Lead and zinc form low solubility complexes with the major anions of natural environmental systems. Equilibrium solubility is a function of soil pH, redox potential and soil chemistry. Stabilization relies on chemical reactions to fix metals in a matrix that reduces their solubility and mobility. Research data indicate that most lead and zinc compounds are virtually insoluble at pH 10 (Dragun, 1988).

Stabilization and capping, used together, can effectively reduce risks to public health and the environment at this site. Human health risks are minimized by reducing air-borne metal and hydrocarbon emissions; risk to ground water becomes negligible by reducing metal solubility. Capping of the site with asphalt will curtail the infiltration of meteoric water and entrained soluble hydrocarbons, if present. Since the majority of hydrocarbons present are suspected to exhibit very low vapor pressures, vapor phase diffusion of hydrocarbons to ground water is expected to be negligible.

Long term effectiveness of this alternative can be predicted from chemical reaction rates and solubility data from literature, and from conducting a field-scale pilot study. This alternative is technically and economically feasible at regional level, and consequently, it deserves maximum consideration.

2.2.3 Solidification and Stabilization

The objective of solidification and stabilization technologies is to achieve physical and chemical immobilization of contaminants. Chemical constituents are mechanically locked within a solidified matrix to form a monolithic structure similar to concrete. Although solidification may improve the physical characteristics of the soil, it has limited effect on the chemistry of the waste; solubility and mobility reduction are achieved by stabilization, the same chemical reaction used in Alternative 2.

This technology increases the treated soil volume and requires off-site disposal of excess volumes. Also TPH in soil may interfere with the setting process and as such, requires additional bench and field scale pilot testing to verify the site-specific effectiveness of this alternative.

3. SITE MITIGATION PLAN

The preferred remedial alternative is stabilization and capping. The proposed site mitigation provides overall protection of human health and the environment, reduction of contaminant toxicity and mobility, and worker and community protection during remedial actions. The alternative is technically and economically implementable at site and regional levels.

The proposed site mitigation plan consists of two phases. In the first phase, evaluation, the soil lime requirement is estimated by a buffer or titration curve. Soil samples are treated by lime addition and tested for metal and hydrocarbon leaching potential by a test method approved by the regulatory agency.

In the second phase, implementation, the soil is graded and treated by lime addition to a uniform depth in the affected areas, and to deeper levels and high pH in selected hot spots. Air particulate emissions are kept below EPA standards by applying water and other engineering controls. Dust concentrations are monitored continuously during remediation work. A gravel base and an asphalt cap are placed over the site. A deed restriction prohibiting cap removal is placed on the property.

REFERENCES

California Code of Regulations, 1984a, Title 22, Chapter 30, Article 11, Section 66700.

- California Code of Regulations, 1984b, Title 22, Chapter 30, Article 11, Section 66699 (a) (1) through (2), (b).
- California Department of Health Services, 1989, Childhood Lead Poisoning in California, Causes and Prevention, Interim Report to the State Legislature, June 1989.

Code of Federal Regulations, Title 40, Part 761, Paragraph 125, (c) (3) (i) through (v).

- Dames and Moore, 1988, Phase II Environmental Site Assessment, Learner Investment Company Property, Job no. 17212-001-043, August 1988.
- Dragun, J., 1988, The Soil Chemistry of Hazardous Materials, Hazardous Materials Control Research Institute, Silver Spring, Maryland; 458 p.
- Kleinfelder, Inc., 1990, Site Assessment Findings, Bench Test Results, and Remedial Action Plan, prepared for the Learner Company, Job No. 24-214100-1300, February 1990.
- United States Environmental Protection Agency (U.S. EPA), Office of Emergency Response, 1988, Guidance in Remedial Actions for Contaminated Sites, EPA/540/G-88/003.
- Weiss Associates, 1991a, Personal Communication; telephone conversation between Jack Hecht of the Learner Company and Judy Gaitnes-Arneson of Weiss Associates February 6, 1991 concerning a spill of hydraulic fluid at the Learner Company, Oakland, California.
- Weiss Associates, 1991b, Personal communication; telephone conversation between Jack Hecht of the Learner Company and Judy Gaitens-Arneson of Weiss Associates February 5, 1991 concerning site activities at the Learner Company, Oakland, California.

PROJECT PERSONNEL

The following Weiss Associates personnel worked on this project:

Name and Position	Responsibilities
Richard B. Weiss, Principal Hydrogeologist	Technical guidance, report quality assurance.
Fatima Lelic, Principal Engineer	Technical guidance, project management, data review and synthesis.
Robert O. Devany, Project Hydrogeologist	Project management, data review and synthesis, report writing and editing.
Robert Riddell, Senior Staff Engineer	Data compilation and synthesis, report writing.
Judy Gaitens-Arneson, Staff Geologist	Data compilation and synthesis, report writing.
Teresa McClish, Technical Assistant	Data compilation, report preparation.

TABLE 1 SUMMARY OF ANALYTICAL RESULTS DAMES AND MOORE PHASE II ENVIRONMENTAL SITE ASSESSMENT

Location	Sample ID	Sample Depth feet	Concentrat TPH	<u>ion, mg/kg</u> Total PCBs
FORMER BA	LING AREA			
1 1 2 3 3 4 4 4 5 5 5 6 7 8 9 10 11	1S 1D 2S 3S 3D 4S 4D 5S 5D 6S 7S 8S 9S 10S 11S	2.5 4.5 2.5 2.5 4.5 2.5 4.5 2.5 4.5 2.5 4.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	7.9 ND 3770 3430 ND ND 15.3 7.2 2860 ND ND ND ND ND ND ND ND ND ND ND	ND ¹ NA NA ND NA ND NA NA NA NA NA NA NA NA NA
ACCESS DRI	VE			
Composite Composite Composite	R1&R2 R3&R4 R5&R6	1.5-2.0 1.5-2.0 1.5-2.0	645 1830 247	0.6 0.57 ND
SOIL PILES				
Composite Composite	P1A&P1B P2A&P2B		3610 3920	25.2 19.9

1. ND - Not detected (5 mg/kg for TPH and 0.01 mg/kg for PCBs); NA - Not analyzed.

1

TABLE 2 SURFACE SOIL SAMPLING ANALYTICAL RESULTS SUMMARY LEARNER COMPANY OAKLAND, CALIFORNIA

Date Sampled Sample ID # Laboratory ID # Analyzing Lab Sample Locations	B-02 06/22/89 35142 47854-01 Enseco Drive	B-03 06/22/89 35141 47854-02 Enseco Drive	B-04 06/22/89 35140 47854-03 Enseco Drive	B-05 06/22/89 35139 47854-08 Enseco N. Pile	B-06 06/22/89 35138 47854-10 Enseco N. Pile	B-07 06/22/89 35137 47854-09 Enseco Bailing Ar	ea			
Petroleum Hydrocarbons	Results	Results	Results	Results	Results	Results	TTLC	STLC	C Lim	it Units
TPH by IR	28000	<mark>3500</mark>	7700	5400	22000	1800	NA	NA	*	mg/Kg
<u>Metals Analysis</u> Cadmium Chromium Lead Nickel Zinc	4.7 39 322 44 849	19 218 5150 698 3900	8.7 44 624 61 1530	30 75 1940 149 6600	43 178 1810 265 8820	ND ND 218 ND 531	100 500 1000 2000 5000	1.0 5.0 5.0 20 250	0.5 1 5 4 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg
<u>Other Analysis</u> Cyanide Reactive Sulfide Reactive pH Ignitability Bioassay	ND ND 6.5 ND >750	ND ND 7.4 ND >750	ND ND 7.5 ND >750	ND ND 7.6 ND >750	ND ND 7.6 ND >750	ND ND 8.9 ND >750			0.1 0.5 0.0 140	mg/Kg

Notes:

ND - Not detected above laboratory reporting limit. * - The detection limit was raised due to high level of analyte present in the sample. TTLC - Toxic Threshold Limit & Concentration, mg/kg. STLC - Soluble Threshold Limit Concentration, mg/l.

TABLE 2 (continued) SURFACE SOIL SAMPLING ANALYTICAL RESULTS SUMMARY LEARNER COMPANY OAKLAND, CALIFORNIA

			OANLAN	D, CALIFOI	111/2					
						not su	e when	e to p	le t	
Date Sampled Sample ID # Laboratory ID # Analyzing Lab Sample Locations	35136 47854-11 Enseco	B-09 06/22/89 35147 47854-07 Enseco Bailing Area	B-10 06/22/89 35146 47854-06 Enseco Bailing Are	B-11 06/22/89 35145 47854-05 Enseco a S. Pile	B-12 06/22/89 35144 47854-04 Enseco S: Pile	Composite 06/22/89 35135 47854-12 Enseco Bench Test	Soil			
Petroleum Hydrocarbons	Results	Results	Results	Results	Results	Results	TTLC	STLC	C Limi	t Units
TPH by IR	780	1200	740	28000	25000	11000	NA	NA	*	mg/Kg
Metals Analysis										
Cadmium Chromium Lead (Total, Soluable) Nickel Zinc (Total, Soluable)	3.8 50 209, 9.6 54 779, 68.4	9.7 60 433 69 1760	16 88 551 203 2500	42 131 5230, 83.5 181 8180, 379	16 238 1210,102 129 2090, 240	998, 127 3830, 448	100 500 1000 2000 5000		5 n 4	mg/Kg mg/Kg ng/Kg,mg/L mg/Kg mg/Kg, mg/
Other Analysis										17.5
CyanideND Sulfide ND pH IgnitabilityND	ND ND 8.0 ND	ND ND 7.6 ND	ND ND 7.2 ND	ND ND 7.1 ND	7.4				0.1 0.5 0.01 140	mg/Kg mg/Kg ⁰ F
Bioassay > 750	>750	>750	>750	>750						mg/L

Notes:

ND - Not detected above laboratory reporting limit. * - The detection limit was raised due to high level of analyte present in the sample. TTLC - Toxic Threshold Limit & Concentration, mg/kg. STLC - Soluble Threshold Limit Concentration, mg/l.

1ET90-3

10/19/90

M - 6

Table 3. Summary of Remedial Action Alternatives

ASS	ESSMENT FACTORS	ALTERNATIVE 1	ALTERNATIVE 2	ALTERNATIVE 3
		Excavation and off-site disposal.	Stabilization and capping.	Solidification and stabilization.
1.	Overall protection of Human Health and the Environment			
	How risks are eliminated, reduced or controlled	Risk to human health & the environment from the site is substantially reduced. Effect on regional risk to human health and the environment are slightly reduced.	Risk to human health & the environment from the site is substantially reduced. Effect on regional risk to human health and the environment are slightly reduced.	Risk to human health & the environment from the site is substantially reduced. Effect on regional risk to human health and the environment are slightly reduced.
	Transfer of risk	Yes	No	Yes
2.	Compliance with ARARs/TBCS (to-be-considered criteria)			
	Compliance with ARARs	Lead air ARARs may not be met at site due to regional problems.	Lead air ARARs may not be met due to regional problems.	Lead air ARARs may not be met due to regional problems.
	Appropriateness of waivers	Not required	To be determined	To be determined
	Compliance with criteria, advisories and guidance	Complies most with State and local criteria and federal advisories. Inconsistent with State and Federal on-site cleanup goals.	Subject to approval from State and local authorities.	Subject to approval from State and local authorities. Partial off-site disposal inconsistent with State and Federal on-site cleanup goals.
3.	Long-Term Effectiveness and Permanence			
	Magnitude of residual risk	Negligible	Negligible - A risk estimate will be prepared prior to implementation.	Negligible
	Adequacy of controls	Excavation effectively removes TPH and heavy metals	Stabilization is a proven technology; cap is accessible for integrity monitoring at all times. A deed restriction prohibiting cap removal is required.	Although solidification is a proven technology, effectiveness at this site is uncertain due to the TPH content. A deed restriction prohibiting further excavation is required.

-- Table 3 continues on next page --

Table 3. Summary of Remedial Action Alternatives (continued)

ASS	ESSMENT FACTORS	ALERNATIVE 1	ALTERNATIVE 2	ALTERNATIVE 3
4.	Reliability of controls	Reliability remedy since soil is removed.	Reliable remedy since chemical fixation and asphalt cap will provide effective mitigation controls.	Reliable remedy since solidification and chemical fixation will provide effective mitigation controls.
5.	Reduction of Toxicity, Mobility or Volume	Toxicity, mobility & volume of TPH and metals in soil reduced to negligible levels.	Mobility of TPH and metals in soil are reduced to negligible levels.	Mobility of TPH and metals in soils are reduced to negligible levels.
6.	Short-Term Effectiveness			
	Time until protection is achieved	Cost may delay implementation indefinitely.	Short-term implementation is feasible, pending regulatory approval.	Short-term implementation is feasible, pending regulatory approval.
	Protection of community during remedial actions	Dust will be controlled if necessary.	Dust will be controlled if necessary.	Dust will be controlled if necessary.
	Protection of workers during remedial actions	Air monitoring and personal protective equipment required.	Air monitoring and personal protective equipment required.	Air monitoring and personal protective equipment required.
	Environmental impacts	Potential for air emissions during soil transportation - will generate TPH, NO _X , and dust emissions. Uses valuable landfill space.	Only if cap integrity is breached.	Only if integrity of flexible membrane liner is breached.
7.	Implementability			
	Technical feasibility	Technically feasible	Technically feasible	Technically feasible
	Administrative feasibility	Permits required but should be readily obtainable.	Permits required, but should be readily obtainable.	Permits required, but should be readily obtainable.
8.	Cost			
	Initial cost	\$1,543,000	\$125,000	\$244,000
9.	State acceptance	To be addressed.	To be addressed.	To be addressed.
10.	Community acceptance	To be addressed jointly with regional remedy.	To be addressed jointly with regional remedy.	To be addressed jointly with regional remedy.

X

Table 4. Cost Comparison of Remedia	l Action Alternatives
-------------------------------------	-----------------------

ALTERNATIVE 1 Excavation and Disposal		ALTERNATIVE 2 Stabilization and Capping	ALTERNATIVE 3 Stabilization and Solidificatio	ALTERNATIVE 3 Stabilization and Solidification		
Class I Disposal (Kettleman Hills Facility)	862	Site Grading and Excavation	25	Excavation	40	
Federal, State and Local Taxes	461	Lime Application	28	Flexible Membrane Liner	10	
Transportation	140	Asphalt Cap	42	Solidification	141	
Excavation and Backfill	60	Deed Restrictions	10	Deed Restrictions	40	
Laboratory, Engineering & Safety	20	Laboratory, Engineering & Safety	20	Laboratory, Engineering & Safety	44	
Cost, \$1,000	1,543	Cost, \$1,000	125	Cost, \$1,000	244	
Basis: 2,150 Bank Cubic Yards 2,500 Loose Cubic Yards		Basis: 3,800 Square Yards 1 ft liming depth pH goal 10		Basis: 2,150 Bank Cubic Yards 3,800 Square Yards		

WEISS ASSOCIATES

APPENDIX B

ANALYTICAL REPORTS & CHAIN-OF-CUSTODY DOCUMENTATION

• • • • • • • •

July 20, 1989 Lab ID: 047854

Eric Findlay Kleinfelder, Inc. 9795 Business Park Dr. Suite D Sacramento, CA 95827

Dear Mr. Findlay:

Enclosed is the report for the twelve soil samples for your Project #24-214100, P.O. #P2057 which were received at Enseco-Cal Lab on 22 June 1989.

The report consists of the following sections:

- Ι Sample Description
- ΙI Analysis Request
- III Quality Control Report
- I۷ Analysis Results

The analysis for Reactivity was performed at Enseco-RMAL and the Aquatic Toxicity analysis was performed at Enseco-Ventura. The results for both analyses are enclosed.

Due to contamination of the method blank for the Total Petroleum Hydrocarbon analysis, the samples were re-extracted. Sample 35138 was not re-extracted due to loss of the sample during aliquoting for shipment to RMAL and Ventura. Re-extraction was performed within the recommended holding times.

If you have any questions, please feel free to call.

Sincerely,

Karen a. derma

Karen A. Verrue Program Administrator

tđ Enseco Incorporated 2544 Industrial Boulevard West Sacramento, California 95691

🖲 Enseco

1 Sample Description

See the attached Sample Description Information.

The samples were received under chain-of-custody.

II Analysis Request

÷

The following analytical tests were requested.

<u>Lab ID</u> <u>Analysis Description</u> 047854-1 thru 12 Total Petroleum Hydrocarbons

> -1 thru 11 Corrosivity Ignitability Selected Metals Cyanide, Reactive Sulfide, Reacitve Aquatic Toxicity

-9 CAC Metals

III Quality Control

- A. <u>Project Specific QC.</u> No project specific QC (i.e., spikes and/or duplicates) was requested.
- B. <u>Method Blank Results.</u> A method blank is a laboratory-generated sample which assesses the degree to which laboratory operations and procedures cause false-positive analytical results for your samples.

No target parameters were detected in the method blanks associated with your samples at the reporting limit levels noted on the data sheets in the Analytical Results section.

C. Laboratory Control Samples - The LCS Program

<u>Duplicate Control Samples.</u> A DCS is a well-characterized matrix (blank water, sand or celite) which is spiked with certain target parameters and analyzed at approximately 10% of the sample load in order to establish method-specific control limits. The DCS results associated with your samples are on the attached Duplicate Control Sample Report.

🗄 Enseco

Accuracy is measured by Percent Recovery as in:

Precision is measured using duplicate tests by Relative Percent Difference (RPD) as in:

 $RPD = \frac{(\% recovery test 1 - \% recovery test 2)}{(\% recovery test 1 + \% recovery test 2)/2} \times 100$

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/-3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate DCS results) to the average, historical relative percent difference + 3 standard deviation units. In cases where there is not enough historical data, EPA limits or advisory limits are set, with the approval of the Quality Assurance department.

IV Analysis Results

Test methods may include minor modifications of published EPA Methods such as reporting limits or parameter lists. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis; i.e., no correction is made for moisture content.

Results are on the attached data sheets.

🗄 Enseco

SAMPLE DESCRIPTION INFORMATION for Kleinfelder, Inc.

÷.

-	Lab ID	Client ID	Matrix	Sampled Date Time	Received Date
	047854-0001-SA 047854-0002-SA 047854-0003-SA 047854-0004-SA 047854-0005-SA 047854-0006-SA 047854-0007-SA 047854-0008-SA 047854-0009-SA 047854-0010-SA 047854-0011-SA 047854-0012-SA	35142 35141 35140 35144 35145 35146 35147 35139 35137 35138 35136 35135	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	22 JUN 89 22 JUN 89	22 JUN 89 22 JUN 89

🗄 Enseco

1.125.1

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
047854-0001-SA 047854-0002-SA 047854-0003-SA 047854-0004-SA 047854-0005-SA 047854-0006-SA 047854-0007-SA 047854-0008-SA	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	TPH-IR-S TPH-IR-S TPH-IR-S TPH-IR-S TPH-IR-S TPH-IR-S TPH-IR-S TPH-IR-S TPH-IR-S	05 JUL 89-A 05 JUL 89-A	(SCS/BLANK) - - - - - - - - - -
047854-0009-SA 047854-0010-SA 047854-0011-SA 047854-0012-SA	SOIL SOIL SOIL SOIL	TPH-IR-S TPH-IR-S TPH-IR-S TPH-IR-S	05 JUL 89-A 05 JUL 89-A 05 JUL 89-A 05 JUL 89-A	·

🗄 Enseco

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC

	Concentration					Accuracy		ion
Analyte	Spiked	DCS1	Measured DCS2	AVG	Aver DCS	age(%) Limits	(RPD) DCS Li	
Category: TPH-IR-S Matrix: SOIL QC Lot: 05 JUL 89-A Concentration Units: ug/kg								
Total Petroleum Hydrocarbons	200000	202000	208000	205000	103	76-115	2.9	13

Calculations are performed before rounding to avoid round-off errors in calculated results.

QC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

.

1.2.2.

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
047854-0001-SA .047854-0002-SA 047854-0003-SA 047854-0004-SA 047854-0005-SA 047854-0006-SA 047854-0007-SA 047854-0008-SA 047854-0009-SA 047854-0009-SA 047854-0010-SA 047854-0011-SA	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	ICP-S ICP-S ICP-S ICP-S ICP-S ICP-S ICP-S ICP-S ICP-S ICP-S ICP-S ICP-S	27 JUN 89-A 27 JUN 89-A	27 JUN 89-B 27 JUN 89-B

🗒 Enseco

Calculations are performed before rounding to avoid round-off errors in calculated results.

🖗 Enseco

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation

				•						
An	alyte	·	Conc Spiked	entration DCS1	Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Li	
Ma QC QC A1 An An An Ba Bo Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	ategory: ICP-S atrix: SOIL Lot: 27 JUN 89-A oncentration Units: luminum atimony rsenic arium eryllium oron admium alcium hromium obalt opper ron ead ithium anganese olybdenum ickel otassium elenium ilver odium hallium in itanium anadium inc ategory: HG-CVAA-S atrix: SOIL C Lot: 27 JUN 89-A oncentration Units:	mg/kg	$\begin{array}{c} 200\\ 50\\ 200\\ 200\\ 5.0\\ 100\\ 5.0\\ 10000\\ 20\\ 50\\ 25\\ 100\\ 50.0\\ 5$	$199 \\ 48.8 \\ 201 \\ 207 \\ 5.24 \\ 102 \\ 4.59 \\ 9890 \\ 19.8 \\ 50.9 \\ 25.5 \\ 99.0 \\ 43.6 \\ 21.3 \\ 4970 \\ 49.0 \\ 19.5 \\ 50.0 \\ 4720 \\ 204 \\ 4.67 \\ 10200 \\ 209 \\ 40.6 \\ 21.5 \\ 48.1 \\ 45.8 \\ 145.8 \\ 1000 \\ 200 \\ 200 \\ 21.5 \\ 48.1 \\ 45.8 \\ 1000 \\ 200 \\$	202 49.4 189 209 5.27 99.7 4.85 9980 19.8 48.8 25.5 100 48.8 21.3 5030 49.3 20.1 45.6 4800 205 4.73 10300 210 40.6 21.6 48.4 46.1	200 49.1 195 208 5.26 101 4.72 9940 19.8 49.8 25.5 99.5 46.2 21.3 5000 49.2 19.8 47.8 204 4.70 10200 210 40.6 21.6 48.2 46.0	100 98 98 104 105 101 99 99 100 102 100 92 107 100 98 95 102 95 102 105 101 108 97 92	84-115 81-115 82-115 85-115 70-106 85-115 85-115 80-115 80-115 85-115 80-115 85-115 80-115 85-115 80-115 82-115 82-115 84-115 82-115 84-115 82-115 85-115 82-115 85-115 82-115 82-115 82-115 82-115	$\begin{array}{c} 1.5\\ 1.2\\ 0.6\\ 3.5\\ 0.0\\ 0.2\\ 0.0\\ 1.0\\ 0.0\\ 0.0\\ 0.5\\ 0.0\\ 0.5\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6$	11 10 10 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10
	ercury	mg/kg	0.50	0.497	0.497	0.497	99	84-126	0.0	30

Calculations are performed before rounding to avoid round-off errors in calculated results.
Total Petroleum Hydrocarbons (TPH), IR

🗟 Enseco

EPA 418.1

Client Name: Client ID: Lab ID: Matrix: Authorized:	Kleinfelder, I Method Blank 1 047854-MB 1 SOIL NA	Enseco ID: Sampled:		Receive Analyze	ed: NA ed: 05 JUL 89	
Parameter			Result	Units	Reporting Limit	
Total Petrol	eum Hydrocarbon	IS	ND	mg/kg	20	

ND=Not Detected NA=Not Applicable

Reported by: Jim Chernobieff

Approved by: Karla Saavedra

🔮 Enseco

Total Petroleum Hydrocarbons (TPH), IR

EPA 418.1

Client ID:	Kleinfelder, Inc Method Blank 2 047854-MB 2 SOIL NA	Enseco ID: Sampled:		Receive Analyze	ed: NA ed: 05 JUL 89
Parameter			Result	Units	Reporting Limit
Total Petrol	eum Hydrocarbons		27	mg/kg	20

ND=Not Detected NA=Not Applicable

Reported by: Jim Chernobieff

Approved by: Karla Saavedra

	[©] Ense
CRL Environmental - Ventura	RECEIVED
2810 Bunsen Avenue • Ventura, CA 93003 (805) 650-0546 • (800) LAB-1-CRL FAX: (805) 648-2755	JUL 1 4 1989
	Ans'i.
Cal Analytical 2544 Industrial Blvd. West Sacramento, CA 95691 FAX 916/372-1059	07/09/89
Attn: Karen Verrue 916/372/1059	Project: Kleinfelder
Sample #: 9179145601 Received: 06/28/89 Type: Soil	Collector: Client Sampling Date & Time: 06/22/89, ****
I,D.: 47854-001	Method: Not Specified
CONSTITUENI	
-CCR Bioassay- Fathead Minnow	
Sample #: 9179145602 Received: 06/28/89 Type: Soil	Collector: Client Sampling Date & Time: 06/22/89, **** Method: Not Specified
I.D.: 47854-002	
-CCR Bioassay- Fathead Minnow	22 CCR 66696 >750 mg/L =96Hr.LC50 ,
Sample #: 9179145603 Received: 06/28/89 Type: Soil	Collector: Client Sampling Date & Time: 06/22/89, **** Method: Not Specified
I.D.: 47854-003	
	22 CCR 66696 >750 mg/L =96Hr.LC50
Sample #: 9179145604 Received: 06/28/89 Type: Soil	Collector: Client Sampling Date & Time: 06/22/89, **** Method: Not Specified
Sample #: 9179145604 Received: 06/28/89	Sampling Date & Time: 06/22/89, ****

Page: 1 (cont.)

.....

[ND = None Detected; (G) = Grab; MDL = Minimum Detection Limit}

	Ensec
CRL Environmental - Ventura	
2810 Bunsen Avenue • Ventura, CA 93003 (805) 650-0546 • (800) LAB-1-CRL FAX: (805) 648-2755	JUL 1 4 1989
	Ans'u
	07/09/89
Cal Analytical 2544 Industrial Blvd. West Sacramento, CA 95691 FAX 916/372-1059	, whether
Attn: Karen Verrue 916/372/1059	Project: Kleinfelder
Sample #: 9179145601 Received: 06/28/89 Type: Soil	Collector: Client Sampling Date & Time: 06/22/89, **** Method: Not Specified
I.D.: 47854-001	
-CCR Bioassay- Fathead Minnow	
Sample #: 9179145602 Received: 06/28/89 Type: Soil	Collector: Client Sampling Date & Time: 06/22/89, **** Method: Not Specified
I.D.: 47854-002	
-CCR Bioassay- Fathead Minnow	22 CCR 66696 >750 mg/L =96Hr.1C50
Sample #: 9179145603 Received: 06/28/89 Type: Soil	Collector: Client Sampling Date & Time: 06/22/89, **** Method: Not Specified
I.D.: 47854-003	
-CCR Bioassay- Fathead Minnow	22 CCR 66696 >750 mg/L =96Hr.LC50
Sample #: 9179145604 Received: 06/28/89 Type: Soil	Collector: Client Sampling Date & Time: 06/22/89, **** Method: Not Specified
I.D.: 47854-004	
-CCR Bioassay- Fathead Minnow	v 22 CCR 66696 >750 mg/L =96Hr.LC50
1	in a patention limit

Page: 1 (cont.)

[ND = None Detected; (G) = Grab; MDL = Minimum Detection Limit]

	🗟 Ense
CRL Environmental - Ventura	RECEIVED
2810 Bunsen Avenue • Ventura, CA 93003 (805) 650-0546 • (800) LAB-1-CRL FAX: (805) 648-2755	UL 1 4 1989
	Ans'd
Cal Analytical 2544 Industrial Blvd. West Sacramento, CA 95691 FAX 916/372-1059	07/09/89
Attn: Karen Verrue 916/372/1059	Project: Kleinfelder
Sample #: 9179145601 Received: 06/28/89 Type: Soil	Collector: Client Sampling Date & Time: 06/22/89, **** Method: Not Specified
I.D.: 47854-001	
-CCR Bioassay- Fathead Minnow	METHOD RESULT UNIT MDI 22 CCR 66696 >750 mg/L =96Hr.LC50
Sample #: 9179145602 Received: 06/28/89 Type: Soil	Collector: Client Sampling Date & Time: 06/22/89, **** Method: Not Specified
I.D.: 47854-002	,
-CCR Bioassay- Fathead Minnow	22 CCR 66696 >750 mg/L =96Hr.LC50
Sample #: 9179145603 Received: 06/28/89 Type: Soil	Collector: Client Sampling Date & Time: 06/22/89, ****
Type. Boll	Method: Not Specified
	Method: Not specified
I.D.: 47854-003	22 CCR 66696 >750 mg/L =96Hr.1C50
I.D.: 47854-003	
I.D.: 47854-003 -CCR Bioassay- Fathead Minnow Sample #: 9179145604 Received: 06/28/89	22 CCR 66696 >750 mg/L =96Hr.LC50 Collector: Client Sampling Date & Time: 06/22/89, ****

. .

-

.

Enseco -CRL Environmental - Ventura 2810 Bunsen Avenue • Ventura, CA 93003 (805) 650-0546 • (800) LAB-1-CRL FAX: (805) 648-2755 Collector: Client Sample #: 9179145605 Received: 06/28/89 Sampling Date & Time: 06/22/89, **** Method: Not Specified Type: Soil I.D.: 47854-005 ______METHOD_____RESULT___UNIT____MDL____ ------CONSTITUENT-----CCR Bioassay- Fathead Minnow 22 CCR 66696 >750 mg/L =96Hr.1C50 _____ Collector: Client Sampling Date & T Sample #: 9179145606 Received: 06/28/89 Sampling Date & Time: 06/22/89, **** Method: Not Specified Type: Soil I.D.: 47854-006 -CCR Bioassay- Fathead Minnow 22 CCR 66696 >750 mg/L =96Hr.LC50 Collector: Client Sampling Date & Time: 06/22/89, **** Sample #: 9179145607 Received: 06/28/89 Method: Not Specified Type: Soil I.D.: 47854-007 -CCR Bioassay- Fathead Minnow 22 CCR 66696 >750 mg/L =96Hr.LC50 _____ Collector: Client Sample #: 9179145608 Sampling Date & Time: 06/22/89, **** Received: 06/28/89 Method: Not Specified Type: Soil I.D.: 47854-008 -CCR Bioassay- Fathead Minnow 22 CCR 66696 >750 mg/L =96Hr.LC50

Page: 2 (cont.)

[ND = None Detected; (G) = Grab; MDL = Minimum Detection Limit]

CRL Environmental - Ventura 2810 Bunsen Avenue • Ventura, CA 93003 (805) 650-0546 • (800) LAB-1-CRL FAX: (805) 648-2755 Sample #: 9179145609 Received: 06/28/89 Collector: Client Sampling Date & Time: 06/22/89, **** Type: Soil Method: Not Specified I.D.: 47854-009 CONSTITUENT _____METHOD____ =RESULT ==UNIT == MDL= -CCR Bioassay- Fathead Minnow 22 CCR 66696 >750 mg/L =96Hr.LC50 Sample #: 9179145610 Collector: Client Received: 06/28/89 Sampling Date & Time: 06/22/89, **** Type: Soil Method: Not Specified I.D.: *47854-010* -CCR Bioassay- Fathead Minnow 22 CCR 66696 >750 mg/L =96Hr.LC50

Collector: Client

Method: Not Specified

Sample #: 9179145611 Received: 06/28/89 Type: Soil

I.D.: 47854-011

-CCR Bioassay- Fathead Minnow 22 CCR 66696

>750 mg/L =96Hr.1C50

Sampling Date & Time: 06/22/89, ****

hou

Enseco

Page: 3

[ND = None Detected; (G) = Grab; MDL = Minimum Detection Limit]

Total Petroleum Hydrocarbons (TPH), IR

EPA 418.1

	Matrix:	Kleinfelder, SOIL mg/kg	Received: Authorized:				
-	Lab İD	Client ID	Result	Reporting Limit	Date Prepared	Date Analyzed	
	047854-0001-S 047854-0002-S 047854-0003-S 047854-0004-S 047854-0005-S 047854-0006-S 047854-0007-S 047854-0008-S 047854-0009-S 047854-0009-S 047854-0010-S 047854-0011-S 047854-0012-S	35141 35140 35144 35145 35145 35146 35147 35139 35137 35138 35138 35138	28000 3500 7700 25000 28000 740 1200 5400 1800 22000 780 11000	1000 400 400 1000 1000 200 400 100 2000 100 2000	05 JUL 89 05 JUL 89 27 JUN 89 05 JUL 89 05 JUL 89 05 JUL 89	06 JUL 89 06 JUL 89	000000000000000000000000000000000000000

Note o : Reporting Limit raised due to high level of analyte present in sample.

N.D. = Not Detected N.A. = Not Applicable

Reported By: Jim Chernobieff Approved By: Ben Gulizia

🔮 Enseco

Corrosivity, pH

Method 9040

Client Name: Matrix: Units:	Kleinfelder, SOIL units	Inc.	Received: Authorized:		·	
Lab ID	Client ID		Result	Reporting Limit	Date Prepared	Date Analyzed
047854-0001- 047854-0002- 047854-0003- 047854-0004- 047854-0005- 047854-0006- 047854-0008- 047854-0008- 047854-0009- 047854-0010- 047854-0011-	SA 35141 SA 35140 SA 35144 SA 35145 SA 35146 SA 35147 SA 35139 SA 35137 SA 35138		6.5 7.4 7.5 7.4 7.1 7.2 7.6 7.6 8.9 7.6 8.9	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	NA NA NA NA NA NA NA NA NA	28 JUN 89 28 JUN 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bill Pinos

Approved By: Candy Williams

🖗 Enseco

Ignitability, Closed Cup

Method 1010

	einfelder, Ind HL grees F	Received: 2 Authorized: 2			
Lab ID	Client ID	Result	Reporting Limit	Date Prepared	Date Analyzed
047854-0001-SA 047854-0002-SA 047854-0003-SA 047854-0005-SA 047854-0005-SA 047854-0006-SA 047854-0007-SA 047854-0008-SA 047854-0009-SA 047854-0010-SA	35142 35141 35140 35144 35145 35146 35147 35139 35137 35138 35136	ND ND ND ND ND ND ND ND ND ND ND	140 140 140 140 140 140 140 140 140 140	NA NA NA NA NA NA NA NA	10 JUL 89 10 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Bill Pinos

Approved By: Candy Williams

The cover letter is an integral part of this report. Rev 230787

2

METALS

🗟 Enseco

(Soil/Solid - Total)

Client Name: Client ID: Lab ID: Matrix: Authorized:	Kleinfelder, Inc. 35142 047854-0001-SA SOIL 23 JUN 89		107628 22 JUN 89 See Below		22 JUN 89 See Below	
Parameter	Result		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cadmium Chromium Lead Nickel Zinc	4.7 39 322 44 849	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 5 4 1	Method 6010 Method 6010 Method 6010 Method 6010 Method 6010	27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89	05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang

Approved By: Jeanne Flaig

Enseco

METALS

.

(Soil/Solid - Total)

Client Name: Client ID: Lab ID: Matrix: Autharized:	Kleinfelder, I 35141 047854-0002-SA SOIL 23 JUN 89	Enseco Samp	ID: 107629 led: 22 JUN red: See Bel		d: 22 JUN 89 d: See Below	
Parameter	Re		wt. Reporti its Limit	ng Analytical Method	Prepared Date	Analyzed Date
Cadmium Chromium Lead Nickel Zinc	2 51	18 mg 50 mg 98 mg	/kg 0.5 /kg 1 /kg 5 /kg 4 /kg 1	Method 6010 Method 6010 Method 6010 Method 6010 Method 6010	27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89	05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang

Approved By: Jeanne Flaig

The cover letter is an integral part of this report. Rev 230787

METALS

(Soil/Solid - Total)

Client Name Client ID: Lab ID: Matrix: Authorized	: Kleinfelder, Inc. 35140 047854-0003-SA SOIL 23 JUN 89	Enseco ID: Sampled:	107630 22 JUN 89 See Below		22 JUN 89 See Below	
Parameter	Resul	Wet wt. t Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cadmium Chromium Lead Nickel Zinc	8. 44 624 61 1530	7 mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 5 4 1	Method 6010 Method 6010 Method 6010 Method 6010 Method 6010	27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89	05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang

Approved By: Jeanne Flaig

The cover letter is an integral part of this report. Rev 230787 Enseco

遵 Enseco

÷

METALS

(Soil/Solid - Total)

Client Name: Client ID: Lab ID: Matrix: Authorized:	Kleinfelder, Inc. 35144 047854-0004-SA SOIL 23 JUN 89		107631 22 JUN 89 See Below		22 JUN 89 See Below	
Parameter	Result		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cadmium Chromium Lead Nickel Zinc	16 238 1210 129 2090	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 5 4 1	Method 6010 Method 6010 Method 6010 Method 6010 Method 6010	27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89	05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang

Approved By: Jeanne Flaig

🔅 Enseco

·

METALS

(Soil/Solid - Total)

Client Name: Client ID: Lab ID: Matrix: Authorized:	Kleinfelder, Inc. 35145 047854-0005-SA SOIL 23 JUN 89		107632 22 JUN 89 See Below	Received: Analyzed:	22 JUN 89 See Below	
Parameter	Result		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cadmium Chromium Lead Nickel Zinc	42 131 5230 181 8180	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 5 4 1	Method 6010 Method 6010 Method 6010 Method 6010 Method 6010	27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89	05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang

Approved By: Jeanne Flaig

🔅 Enseco

METALS

(Soil/Solid - Total)

Client Name: Client ID: Lab ID: Matrix: Authorized:	Kleinfelder, Inc. 35146 047854-0006-SA SOIL 23 JUN 89		107633 22 JUN 89 See Below		22 JUN [,] 89 See Below	
Parameter	Result		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cadmium Chromium Lead Nickel Zinc	16 88 551 203 2500	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 5 4 1	Method 6010 Method 6010 Method 6010 Method 6010 Method 6010	27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89	05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang

Approved By: Jeanne Flaig

🗄 Enseco

METALS

(Soil/Solid - Total)

Client Name: Client ID: Lab ID: Matrix: Authorized:	Kleinfelder, Inc. 35147 047854-0007-SA SOIL 23 JUN 89	Enseco ID: Sampled: Prepared:	107634 22 JUN 89 See Below		22 JUN 89 See Below	
Parameter	Result	Wet wt. Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cadmium Chromium Lead Nickel Zinc	9.7 60 433 69 1760	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 5 4 1	Method 6010 Method 6010 Method 6010 Method 6010 Method 6010	27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89	05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang

Approved By: Jeanne Flaig

ł

Enseco

METALS

(Soil/Solid - Total)

Client Name: Client ID: Lab ID: Matrix: Authorized:	Kleinfelder, Inc. 35139 047854-0008-SA SOIL 23 JUN 89	Enseco ID: Sampled: Prepared:	107635 22 JUN 89 See Below	Received: Analyzed:	22 JUN 89 See Below	
Parameter	Result		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cadmium Chromium Lead Nickel Zinc	30 75 1940 149 6600	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 5 4 1	Method 6010 Method 6010 Method 6010 Method 6010 Method 6010	27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89	05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang Approved By: Jeanne Flaig

🗄 Enseco

.

METALS

÷ .

(Soil/Solid - Total)

Clie Lab Matr		Kleinfelder 35137 047854-0009 SOIL 23 JUN 89	-		107636 22 JUN 89 See Below		22 JUN 89 See Below	
Para	meter		Result		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Arse Bari Bery Cadm Chro Copp Leac Moly Nick Sele Silv Thal	um v]lium nium omium oer l vbdenum kel enium ver lium adium	· ·	ND ND ND ND ND ND 218 ND ND ND ND ND ND S31	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	$50.0 \\ 50.0 \\ 1000 \\ 5.0 \\ 5.0 \\ 50.0 \\ 200 \\ 50.0 \\ 300 \\ 200 \\ 50.0 \\ 50.0 \\ 100 \\ 200 \\ 500 \\ 500 $	Method 6010 Method 6010	 27 JUN 89 	05 JUL 89 05 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang

Approved By: Jeanne Flaig

The cover letter is an integral part of this report. , $$\operatorname{Rev}\ 230787$$

Enseco

C.A.C METALS California Title 22 (Title 26) Protocol TTLC (Total) Data Sheet

Client Name: Client ID: Lab ID: Matrix: Authôrized:	Kleinfelder, Inc. 35137 047854-0009-SA SOIL 23 JUN 89		107636 22 JUN 89 See Below		22 JUN 89 See Below	
Parameter	Resul		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Mercury Selenium	ND ND	mg/kg mg/kg	2.0 5.0	Method 7471 Method 7740	27 JUN 89 27 JUN 89	27 JUN 89 28 JUN 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Ron Hubbartt

Approved By: Jeanne Flaig

Enseco

METALS

(Soil/Solid - Total)

Client Name: Client ID: Lab ID: Matrix: Authorized:	Kleinfelder, Inc. 35138 047854-0010-SA SOIL 23 JUN 89	Enseco ID: Sampled: Prepared:	22 JUN 89		22 JUN 89 See Below	
Parameter	Result		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cadmium Chromium Lead Nickel Zinc	43 178 1810 265 8820	mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 5 4 1	Method 6010 Method 6010 Method 6010 Method 6010 Method 6010	27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89	05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang

Approved By: Jeanne Flaig

🖏 Enseco

METALS

:------25274

(Soil/Solid - Total)

	Client Name: Client ID: Lab ID: Matrix: Authorized:	Kleinfelder, Inc 35136 047854-0011-SA SOIL 23 JUN 89	Enseco ID: Sampled:	107639 22 JUN 89 See Below	Received: Analyzed:	22 JUN 89 See Below	
•	Parameter	Resu		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
	Cadmium Chromium Lead Nickel Zinc	3 50 209 54 779	mg/kg mg/kg	0.5 1 5 4 1	Method 6010 Method 6010 Method 6010 Method 6010 Method 6010	27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89 27 JUN 89	05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89 05 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang

Approved By: Jeanne Flaig

Enseco

General Inorganics

Client Name: Kleinfelder Client ID: 35142 Enseco ID: 1043159 Sampled: 22 JUN 89 Prepared: See Below 005509-0001-SA Lab ID: Received: 22 JUN 89 Matrix: SOIL Analyzed: See Below 27 JUN 89 Authòrized: Analyzed Reporting Analytical Prepared Date Date Result Limit Method Parameter Units 09 JUL 89 08 JUL 89 Cyanide, Reactive Sulfide, Reactive EPA/OSW EPA/OSW ND mg/kg 0.1 NA mg/kg NA ND 0.5

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Lusk

🖥 Enseco

Client Name: Kleinfelder Client ID: 35141 Lab ID: 005509-0002-SA Enseco ID: 1043160 Received: 22 JUN 89 Analyzed: See Below Sampled: 22 JUN 89 Matrix: SOIL Authorized: 27 JUN 89 Prepared: See Below Reporting Analytical Prepared Analyzed Date Parameter Result Units Limit Method Date 09 JUL 89 08 JUL 89 mg/kg mg/kg Cyanide, Reactive Sulfide, Reactive ND 0.1 EPA/OSW NA EPA/OSW NA ND 0.5

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Lusk

Client Name: Kleinfelder Client ID: 35140 Lab ID: 005509-0003-SA Enseco ID: 1043161 Matrix: Sampled: 22 JUN 89 Received: 22 JUN 89 SOIL Analyzed: See Below 27 JUN 89 Prepared: See Below Authorized: Prepared Analyzed Reporting Analytical Result Limit Method Date Date Parameter Units 09 JUL 89 08 JUL 89 EPA/OSW EPA/OSW ٠ Cyanide, Reactive Sulfide, Reactive mg/kg mg/kg NA ND 0.1 NA ND 0.5

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Lusk

13 م

Enseco

🗄 Enseco

1. IF. 12

General Inorganics

Client Name: Kleinfelde Client ID: 35144 Lab ID: 005509-000 Matrix: SOIL Authorized: 27 JUN 89	4-SA E		1043162 22 JUN 89 See Below		22 JUN 89 See Below	
Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cyanide, Reactive Sulfide, Reactive	ND ND	mg/kg mg/kg	0.1 0.5	EPA/OSW EPA/OSW	NA NA	09 JUL 89 08 JUL 89

:-

• خبيب -

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

. . ..

Approved By: Toni Lusk

200 200 200

Client Name: Client ID: Lab ID: Matrix: Authorized:	Kleinfe 35145 005509- SOIL 27 JUN	0005-SA		1043163 22 JUN 89 See Below		22 JUN 89 See Below	
Parameter		Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cyanide, Rea Sulfide, Rea		ND ND	mg/kg mg/kg	0.1 0.5	EPA/OSW EPA/OSW	NA NA	09 JUL 89 08 JUL 89

-

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Lusk

Enseco

Client Name: Kleinfelder Client ID: 35146 Enseco ID: 1043164 Sampled: 22 JUN 89 Lab ID: 005509-0006-SA Received: 22 JUN 89 Matrix: SOIL Authorized: 27 JUN 89 Prepared: See Below Analyzed: See Below Reporting Analytical Limit Method Prepared Analyzed Date Date Parameter Result Units Cyanide, Reactive Sulfide, Reactive 09 JUL 89 ND mg/kg 0.1 EPA/OSW NA mg/kg ND 0.5 EPA/OSW NA 08 JUL 89

......

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Lusk

. –

. .

Enseco

Client Name: Kleinfelder Client ID: 35147 Lab ID: 005509-0007-SA Enseco ID: 1043165 Sampled: 22 JUN 89 Prepared: See Below Received: 22 JUN 89 SOIL Matrix: Analyzed: See Below 27 JUN 89 Authorized: Prepared Analyzed Reporting Analytical Date Date Result Units Limit Method Parameter EPA/OSW EPA/OSW NA 09 JUL 89 mg/kg mg/kg Cyanide, Reactive Sulfide, Reactive ND 0.1 NA 08 JUL 89 ND 0.5

-

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Lusk

🗒 Enseco

Client Name: Kleinfelder Client ID: 35139 Enseco ID: 1043166 Sampled: 22 JUN 89 005509-0008-SA Lab ID: Received: 22 JUN 89 Analyzed: See Below SOIL Matrix: Prepared: See Below Authorized: 27 JUN 89 Reporting Analytical Prepared Analyzed Date Result Units Method Date Parameter Limit 09 JUL 89 08 JUL 89 Cyanide, Reactive Sulfide, Reactive ND mg/kg 0.1 EPA/OSW NA mg/kg NA -ND 0.5 EPA/OSW

......

. -

. - نوب ا

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Lusk

🖥 Enseco

Lab ID: Matrix:	Kleinfelder 35137 005509-0009 SOIL 27 JUN 89			1043167 22 JUN 89 See Below		22 JUN 89 See Below	
Parameter		Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cyanide, Reac Sulfide, Reac		ND ND	mg/kg mg/kg	0.1 0.5	EPA/OSW EPA/OSW	NA NA	09 JUL 89 08 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Lusk

į

👌 Enseco

Client Name: Kleinfelder Client ID: 35138 Enseco ID: 1043168 Sampled: 22 JUN 89 Prepared: See Below Lab ID: 005509-0010-SA Received: 22 JUN 89 Analyzed: See Below Matrix: SOIL 27 JUN 89 Authorized: Prepared Reporting Analytical Analyzed Parameter Result. Units: Limit Method Date Date mg∕kg mg∕kg Cyanide, Reactive ND 0.1 EPA/OSW NA 09 JUL 89 . Sulfide, Reactive EPA/OSW ND 0.5 NA 08 JUL 89

.

General Inorganics

🗿 Enseco

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Lusk

🗄 Enseco

General Inorganics

Client Name: Client ID: Lab ID: Matrix: Authorized:	35136 005509-0011 SOIL			1043169 22 JUN 89 See Below		22 JUN 89 See Below	
Parameter		Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Cyanide, Rea Sulfide, Rea		ND ND	mg/kg mg/kg	0.1 0.5	EPA/OSW EPA/OSW	NA NA	09 JUL 89 08 JUL 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Mike Settell

Approved By: Toni Lusk

._____

O. PROJECT N	AME		NO.		_	$\langle z \rangle$	Z		ĂĔ,		\sum	۶X	./	$\left[\right]$	
SAMPLERS	-Vis it	029_	OF CON-	aval Po							Y				REMARKS
SAMPLE I.D. TIME HH:MM:SS	DC. CSAMPLE I.D	· ·	TAINERS	Æ	K	14	Ż	×	X	1/20/	\square	\square	Ĺ	\square	/
0815	35142	(8.2)	<u> </u>	×		×	\times	X		<u>×</u>					
0855	35.141	(8-3)		×	×	×	+	×		<u> </u>					1
0905	35140	<u>(P,-1-)</u>		×	*	× ⊀	X	4	-+	<u>×</u>					glass soil zeurs
0435	35144	(B-12)		×	r K	* ×	× ×	X		<u>×</u>					Galler Sole Scoles
0945	35145	(B-11)	<u>l</u>	 	~ +	*	×	1 1		<u>×</u>	1				
1013	35146	(B-10) (B-9)		×	T X	X		X		×					
1063	35147	(13-5)	<u>+</u>	×	X		Ϋ́	ĸ		x					
1030	35139	(R7)	! `i	X	×	X	4	Y	×						
1035	35 137	(Pr(c))		×	*	x	X	×		×	1				
1040	35136	(4:2)		ix	x	X	X			X					
1115	35 135	(Corrip)	1					×				<u> </u>			
											1				
											·				
			L		<u> </u>			<u> </u>					┨───		
													<u> </u>		
														┨╼┤	
	<u></u>							<u> </u>					<u>†</u>		
ed by: (Signature)	Date/Time	Received by: (Signature)	<u>1 </u>	Re-	marks	4		J		LI			- I		Send Results To
ed by: (Signalure)	4-50 1450	Received by: (Signature)		-	Ŧ	Ze	مرا	, l	<u>.</u> 0-1	<u> </u>	ir 4	n 3r(-)u	nd	KLEINFELDER 9795 BUSINESS PARK DRIVE SUITE D SACRAMENTO, CALIFORNIA 95827 (918) 366-1701
ed by: (Signature)	6/22 51/0	Received for Laborator (Signature)	y by:												ERIC FINDLAW

ς.

California Analytical Laboratory

:-

2

September 11, 1989 Lab ID: 048860

Eric Findlay Kleinfelder, Inc. 9795 Business Park Drive Suite D Sacramento, CA 95827

Dear Mr. Findlay:

Enclosed is the report for the four samples that were resubmitted for your Project ID #24-214100, under Purchase Order #P2197 which were received at Enseco-Cal Lab on 23 August 1989.

The report consists of the following sections:

- I Sample Description
- II Analysis Request
- III Quality Control Report
- IV Analysis Results

If you have any questions, please feel free to call.

Sincerely,

Faren a. Herry

Karen A. Verrue Program Administrator

jo

I Sample Description

See the attached Sample Description Information.

The samples were originally received under chain-of-custody.

<u>نې</u>

<u>II Analysis Request</u>

The following analytical tests were requested.

<u>Lab ID</u> 048860-1,2,3,4 <u>Analysis Description</u> C.C.R. Lead, Zinc STLC

-4 C.C.R. Lead, Zinc TTLC

<u>III Quality Control</u>

A. <u>Project Specific QC.</u> No project specific QC (i.e., spikes and/or duplicates) was requested.

Enseco

2

B. <u>Method Blank Results</u>. A method blank is a laboratory-generated sample which assesses the degree to which laboratory operations and procedures cause false-positive analytical results for your samples.

No target parameters were detected in the method blanks associated with your samples at the reporting limit levels noted on the attached Method Blank Report.

C. Laboratory Control Samples - The LCS Program

<u>Duplicate Control Samples.</u> A DCS is a well-characterized matrix (blank water, sand or celite) which is spiked with certain target parameters and analyzed at approximately 10% of the sample load in order to establish method-specific control limits. The DCS results associated with your

samples are on the attached Duplicate Control Sample Report.

Accuracy is measured by Percent Recovery as in:

% recovery = <u>(measured concentration)</u> x 100 (actual concentration)

Precision is measured using duplicate tests by Relative Percent Difference (RPD) as in:

 $RPD = \frac{(\% recovery test 1 - \% recovery test 2)}{(\% recovery test 1 + \% recovery test 2)/2} \times 100$

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/-3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate DCS results) to the average, historical relative percent difference + 3 standard deviation units. In cases where there is not enough historical data, EPA limits or advisory limits are set, with the approval of the Quality Assurance department. Enseco

:

IV Analysis Results

Test methods may include minor modifications of published EPA Methods such as reporting limits or parameter lists. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e., no correction is made for moisture content, unless the method requires or the client requests that such correction be made.

Results are on the attached data sheets.

- ĒEnseco

:-

SAMPLE DESCRIPTION INFORMATION for Kleinfelder, Inc.

._____.

	7.		•	Samp]	ed	Received
•	Lab ID	Client ID	Matrix	Date	Time	Date
	048860-0001-SA 048860-0002-SA 048860-0003-SA 048860-0004-SA	35144 35145	SOIL SOIL SOIL SOIL	22 JUN 89 22 JUN 89	09:45 09:45	23 AUG 89 23 AUG 89 23 AUG 89 23 AUG 89 23 AUG 89

- -

÷

]

]

• • ••

Enseco

2

QC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
-048860-0004-SA	SOIL	ICP-S	25 AUG 89-A	29 AUG 89-A

:-

METHOD BLANK REPORT Metals Analysis and Preparation

Analyte	Result	Units	Reporting Limit
Test: ICP-CAMT-S Matrix: SOIL QC Lot: 25 AUG 89-A QC Run:	29 AUG 89-A		
Lead Zinc	ND ND	mg/kg mg/kg	50 500

ر بي و وجده

- ĒEnseco

<u>ند</u>

·			<u>.</u>	, <u> </u>			En	seco
DUPLICATE CONTROL SAMPLE REPOR Metals Analysis and Preparatio								
Analyte	Con Spiked	centratio	n Measured			uracy age(%)	Precis (RPD)	
	Spired	DCS1	DCS2	AVG	DCS	Limits	DCS Li	, imit
Category: ICP-S Matrix: SOIL QC Lot: 25 AUG 89-A Concentration Units: mg/kg								
Aluminum Antimony	200 50	205 52.2	195 48.4	200 50,3	100 101	84-115 81-115	5.0 7.6	11 10
Arsenic	200	202	189	196	98	82-115	6.6	10
Barium	200	209	207	208	104	85-115	1.0	10
Beryllîum Boron	5.0 100	4.79 97.2	5.13 99.2	4.96 98.2	99 98	70-106 85-115	6.9 2.0	10 10
Boron Cadmium	5.0	5.95	99.2 517	90.2 5.56	111	72-108	2.0	15
Calcium	10000	10900	10300	10600	106	85-115	5.7	10
Chromium	20	20.2	20.0	20.1	101	84-115	1.0	17
Cobalt '	50	52.2	50.1	51.2	102	80-115	4.1	10
Copper	25	28.3	29.1	28.7	115	81-115	2.8	10
Iron Lead	100 50	103 52.5	100 47.8	102 50.2	102 100	85-115 80-115	3.0 9.4	14 11
Lithium	20.0	20.6	20.5	20.6	103	85-115	0.5	10
Magnesium	5000	5110	4780	4940_	<u>2:</u> 99	85-115	6.7	10
Manganese	50.0	51.3	49.1	50.2	100	80-115	4.4	10
Molýbdenum	20.0	19.9	19.8	19.8	99	85-115	0.5	10
Nickel	50.0 5000	50.7	49.2 4920	50.0 5060	100 101	80-115 82-115	3.0 5.3	10
Potassium Selenium	200.0	5190 209	1920	204	101	84-115	5.3 4.9	10 10
Silver	5.0	5-33	4.92	5.12	103	62-115	8.0	10 -
Sodium	10000	10500	10100	10300	103	85-115	3.9	10
Thallium ····	200.0	201	197	199	100	68-102	2.0	10
Tin	40.0	32.9	32.4	32.6	82	80-120	1.5	10
Titanium	20.0	20.3	21.3	20.8	104	85-115	4.8	10
Vanadium Zinc	50.0 50	50.8 53.3	48.3 48.0	49.6 50.6	99 101	85-115 82-115	5.0 10	10 10
	50	55.5	-U.U.	50.0	101	05.113	10	10

. v Dani

•

Calculations are performed before rounding to avoid round-off errors in calculated results.

Enseco

. 1

1

C.C.R. METALS California Title 22 (Title 26) Protocol STLC Data Sheet (Citrate Buffer Leachate)

Client Name: Client ID: Lab ID: Matrix: Authorized:	SOIL	Enseco ID: Sampled: Prepared:	22 JUN 89		23 AUG 89 See Below	
Parameter	Result		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Lead Zinc	9.6 68.4	mg/L mg/L	0.50 20.0	Method 200.7 Method 200.7	31 AUG 89 31 AUG 89	07 SEP 89 07 SEP 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Keith Varvell

Approved By: Barry Votaw

Enseco

:-

14.A

C.C.R. METALS California Title 22 (Title 26) Protocol STLC Data Sheet (Citrate Buffer Leachate)

Client Name: Client ID:	Kleinfelder, Inc. 35144					
Lab ID: Matrix:	048860-0002-SA SOIL 24 AUG 89		116163 22 JUN 89 See Below		23 AUG 89 See Below	
Parameter	Result		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Lead Zinc	102 240	mg/L mg/L	0.50 20.0	Method 200.7 Method 200.7	31 AUG 89 31 AUG 89	07 SEP 89 07 SEP 89

-

N.D. = Not Detected N.A. = Not Applicable

Reported By: Keith Varvell

Approved By: Barry Votaw

Enseco 🗐

۲r

C.C.R. METALS California Title 22 (Title 26) Protocol STLC Data Sheet (Citrate Buffer Leachate)

Client Name: Client ID: Lab ID: Matrix: Authorized:	Kleinfelder, Inc. 35145 048860-0003-SA SOIL 24 AUG 89		116164 22 JUN 89 See Below		23 AUG 89 See Below	
Parameter	Result		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Lead Zinc	83.! 379	5 mg/L mg/L	0.50 20.0	Method 200.7 Method 200.7	31 AUG 89 31 AUG 89	07 SEP 89 07 SEP 89

N.D. = Not Detected N.A. = Not Applicable

Reported By: Keith Varvell

Approved By: Barry Votaw

ز نیم.

Enseco

12

 $\pm 10^{\circ}$

C.C.R. METALS California Title 22 (Title 26) Protocol STLC Data Sheet (Citrate Buffer Leachate)

	Client ID: Lab ID:	Kleinfelder, Ind 35135 048860-0004-SA SOIL 24 AUG 89	Enseco ID: Sampled:	116165 22 JUN 89 See Below		23 AUG 89 See Below	· .
•	Parameter	Resi		Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
	Lead Zinc	12 44		0.50 20.0	Method 200.7 Method 200.7	31 AUG 89 31 AUG 89	07 SEP 89 07 SEP 89

......

N.D. = Not Detected N.A. = Not Applicable

Reported By: Keith Varvell

Approved By: Barry Votaw

. –

2

C.C.R. METALS California Title 22 (Title 26) Protocol TTLC (Total) Data Sheet

.

Enseco

2

Lab ID: Matrix:	35135 048860-0004- SOIL		Enseco ID: Sampled: Prepared:	22 JUN 89		23 AUG 89 See Below	
Parameter		Result	Wet wt. Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
1 di dilecci		NESUIL	VIIIUS		nethod	Date	Dale

N.D. = Not Detected N.A. = Not Applicable

Reported By: Grace Chang

Approved By: Barry Votaw

.____

.____