RECEIVED

By Alameda County Environmental Health at 2:49 pm, Feb 07, 2014

January 31, 2014

Timothy L. BishopProject Manager
Marketing Business Unit

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel 925.790.6463 TimBishop@chevron.com

Mr. Keith Nowell Alameda County Health Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

RE: Site Investigation and Conceptual Site Model 10151 International Blvd, Oakland, California

Fuel Leak Case No.: RO0002444

Dear Mr. Nowell,

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact me at (925) 790-6463.

Sincerely,

Timothy L. Bishop

Union Oil of California - Project Manager

Attachment:

Site Investigation and Conceptual Site Model Report

Union Oil Company of California

Site Investigation and Conceptual Site Model

Union Oil Station No. 7124 10151 International Boulevard Oakland, California ACEH Case No. RO2444

January 2014

Darla Zalanak

Darla Zelenak Project Engineer

Katherine Brandt Certified Project Manager

David Lay Professional Geologist

Site Investigation and Conceptual Site Model

Union Oil Service Station No. 7124 10151 International Boulevard, Oakland, California

Prepared for:

Union Oil Company of California

Prepared by:

ARCADIS U.S., Inc.

2000 Powell Street

Suite 700

Emeryville

California 94608

Tel 510.652.4500

Fax 510.652.4906

Our Ref.:

B0047297.0002

Date:

January 2014

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

Ac	ronyms	and Ab	breviations	i
1.	Introdu	ıction		1
2.	Site De	scription	on	1
3.	2013 S	ite Inve	stigation	2
	3.1	Work F	Plan Modifications	2
	3.2	Permit	ting and Utility Locating	3
	3.3	Site-Sp	pecific Health and Safety Plan	3
	3.4	Cone F	Penetrometer Testing	3
	3.5	Soil an	d Groundwater Sample Collection	4
		3.5.1	Soil Sample Collection	4
		3.5.2	Groundwater Sample Collection	4
	3.6	BTEX	by USEPA Method 8260B Investigation Results	5
		3.6.1	Cone Penetrometer Test Investigation Results	5
		3.6.2	Soil Results	5
		3.6.3	Groundwater Results	6
	3.7	Equipn	nent Decontamination	6
	3.8	Boreho	ole Abandonment	6
	3.9	Investi	gation-Derived Waste Disposal	6
4.	Conce	ptual Si	ite Model	7
	4.1	Region	nal and Site Geology and Hydrogeology	7
	4.2	Summa	ary of Previous Work	8
	4.3		t and Historical Distribution of Residual Petroleum Hydrocarbons lel Oxygenates	8
	4.4	Distribu	ution of Constituents of Concern in Soil	9
	4.5	Distribu	ution of Constituents of Concern in Groundwater	9
	4.6	Linear	Regression Analysis and Plume Stability	10
		4.6.1	Linear Regression Methodology	11
		4.6.2	Linear Regression Results	12

Table of Contents

			4.6.2.1	rotal Petroleum Hydrocarbons-Gasoline Range Organics	12
			4.6.2.2	Methyl Tert-Butyl Ether	13
	4.7	Groun	dwater Ge	eochemical Data	13
		4.7.1	Nitrate		14
		4.7.2	Iron		14
		4.7.3	Sulfate		14
		4.7.4	Methan	е	15
5.	Summa	ary and	d Conclu	sions with Recommendations	15
6.	Referen	nces			17
Та	bles				
	Table	1	Well Co	onstruction Details	
	Table	2	Soil Ana	alytical Results	
	Table	3	Ground	water Analytical Results	
	Table	4	Summa	ry of Statistical Analysis of Groundwater Analytical Data	
	Table	5	Summa	ry of Natural Biodegradation Data	
Fiç	gures				
	Figure	e 1	Site Loc	cation Map	
	Figure	2	Site Pla	n	
	Figure	: 3	Ground	water Elevation Contour Map	
	Figure	4	Soil Ana	alytical Results	
	Figure	5	Ground	water Analytical Results	
	Figure	6	TPH-g	Concentration Map	
	Figure	· 7	Benzen	e Concentration Map	
	Figure	8 :	MTBE (Concentration Map	

Appendices

Appendix A Site History

Appendix B Boring Logs

Appendix C Well Permits

Appendix D Geologic Cross-Sections

Appendix E Laboratory Analytical Report (November 2013)

Appendix F Linear Regression Analysis Outputs

Acronyms and Abbreviations

1,2-DCA 1,2-dichloroethane

ACEH Alameda County Environmental Health Services

ARCADIS ARCADIS U.S., Inc.

BC Laboratories BC Laboratories Inc.

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

CDWR California Department of Water Resources

COC constituent of concern

CPT cone penetrometer test

CSM Site Investigation and Conceptual Site Model

CUG cleanup goal

DIPE di-isopropyl ether

DN denitrifying bacteria

EBMUD East Bay Municipal Utilities District

EDB 1,2-dibromoethane

ESL environmental screening level

ETBE ethyl tert-butyl ether

HASP Health and Safety Plan

IDW investigation-derived waste

MCL Maximum Contaminant Level

mg/kg milligrams per kilogram

mg/L milligrams per liter

MRL method reporting limit

MTBE methyl tertiary-butyl ether

PAH polycyclic aromatic hydrocarbon

R² value coefficient of determination

revised work plan Revised Site Assessment Work Plan

SB soil boring

SFRWQCB San Francisco Regional Water Quality Control Board

site Union Oil Service Station No. 7124, located at 10151

International Boulevard in Oakland, California

SRB sulfate-reducing bacteria

TAME tert-amyl methyl ether

TBA tertiary-butyl alcohol

TPH-g total petroleum hydrocarbons - gasoline range organics

Union Oil Union Oil Company of California

USEPA United States Environmental Protection Agency

UST underground storage tank

work plan Site Assessment Work Plan Work Plan

μg/L micrograms per liter

°C degrees Celsius

Union Oil Service No. 7124 Oakland, California

1. Introduction

On behalf of Chevron Environmental Management Company's affiliate, Union Oil Company of California (Union Oil), ARCADIS U.S., Inc. (ARCADIS) prepared this Site Investigation and Conceptual Site Model (CSM) for the Union Oil Service Station No. 7124, located at 10151 International Boulevard in Oakland, California (site; Figure 1).

This CSM describes the site investigation work conducted from November 12 through 18, 2013, in accordance with Response to Comments and Revised Site Assessment Work Plan (revised work plan [ARCADIS 2013a]) and the September 13, 2013 email correspondence with Alameda County Environmental Health (ACEH) containing the Revised Site Investigation Work Plan Addendum (addendum [ARCADIS 2013b]). This CSM also includes a comprehensive site assessment, regional and site-specific geology and hydrogeology, review of soil and groundwater conditions at the site (including the distribution of constituents of concern [COCs]), and linear regression evaluation).

2. Site Description

The site is located at the western corner of the intersection of International Boulevard and 102nd Avenue in Oakland, California (Figures 1 and 2). The site is currently an operational, Royal-branded service station.

The site is located in a mixed commercial and residential use area. Properties immediately adjacent to the site are primarily commercial, including Abe's Lotto Liquors to the north, Commercial Auto Transmissions to the south across 102nd Avenue, and check cashing, hardware, and auto transmission stores to the east across International Boulevard. A residential property is located immediately adjacent to the west of the site.

A leaking underground storage tank site (Quan's Automotive) is located at the eastern corner of 101st Avenue and International Boulevard (Alameda County Environmental Health Services [ACEH] #RO0000162).

There are four site monitoring wells and well construction details are provided on Table 1. The average groundwater depth at the site is approximately 16.7 feet below ground surface (bgs) and the flow direction is predominantly toward the north-northwest but has varied overtime between west to northwest.

Union Oil Service No. 7124 Oakland, California

Appendix A provides additional information regarding the site history.

3. 2013 Site Investigation

Between November 12 through 18, 2013, ARCADIS implemented the work plan and addendum (ARCADIS 2013a, 2013b). Using a direct-push drill rig, cone penetrometer test (CPT) borings were advanced to collect soil lithology and soil samples and depth discrete groundwater samples were collected using HydroPunchTM technology. All soil boring (SB) and CPT locations are shown on Figure 2 and soil boring logs are provided in Appendix B.

3.1 Work Plan Modifications

Modifications to the work plan (ARCADIS 2013a) are summarized below:

- The work plan and addendum (ARCADIS 2013a, 2013b) proposed advancing four CPT locations (CPT-1 through CPT-4) to an approximate depth of 30 feet bgs. Per the revised work plan and addendum (ARCADIS 2013a, 2013b):
 - One additional CPT location (CPT-5) was advanced to close potential data gaps in data collection as noted by the ACEH in correspondence and presented in the addendum (ARCADIS 2013b).
 - Borehole total depths were adjusted as indicated below based on field observations, including refusal:
 - CPT-1: 66.1 feet bgs
 - SB-8/CPT-2: 44.6 feet bgs
 - CPT-3: 41.5 feet bgs
 - CPT-4: 43.1 feet bgs
 - CPT-5: 44.6 feet bgs
- The work plan and addendum (ARCADIS 2013a, 2013b) proposed collecting soil samples at 5 and 8 feet bgs or where petroleum impacts were observed. Per the revised work plan and addendum (ARCADIS 2013a, 2013b):
 - In borehole location SB-8/CPT-2, additional soil samples were collected from each 5-foot interval from 10 to 40 feet bgs.

Union Oil Service No. 7124 Oakland, California

- The soil samples were submitted for laboratory analysis as described in Section 3.5.1.
- The revised work plan and addendum (ARCADIS 2013a, 2013b) proposed submitting soil samples for polycyclic aromatic hydrocarbon (PAH) analysis, including naphthalene, at locations CPT-1 and CPT-2. Per the revised work plan and addendum (ARCADIS 2013a, 2013b), all soil samples submitted for laboratory analysis were analyzed for PAHs, including naphthalene.

3.2 Permitting and Utility Locating

ARCADIS secured the necessary soil boring permits from the Alameda County Public Works Agency prior to commencing field activities. The executed permits are included in Appendix C.

Underground Service Alert North was contacted 48 hours prior to the start of any intrusive subsurface activities. Each boring location was cleared of utilities by a private utility locator prior to work.

3.3 Site-Specific Health and Safety Plan

ARCADIS prepared a site-specific Health and Safety Plan (HASP) for direct-push drilling and soil and groundwater sampling activities at the site, as required by the Occupational Health and Safety Administration Standard Hazardous Waste Operations and Emergency Response guidelines (29 Code of Federal Regulations 1910.120). The HASP was reviewed and signed by ARCADIS personnel and subcontractors prior to performing work at the site.

3.4 Cone Penetrometer Testing

Prior to drilling, the proposed CPT boring locations were manually cleared of underground utilities by advancing a hand auger to approximately 8 feet, 1 inch bgs. Boring CPT-1 was advanced to 66.1 feet bgs to vertically define the extent of hydrocarbon impacts. Borings SB-8/CPT-2, CPT-3, CPT-4, and CPT-5 were terminated at depths ranging from 41.5 to 44.6 feet bgs due to refusal. CPTs were conducted using a piezocone connected by stainless steel rods to a hydraulic direct-push system that advanced the piezocone through the soil. The piezocone measured friction, tip resistance, and pore pressure; these parameters were recorded and used to determine the lithology on a nearly continuous geologic log. CPT was performed in

Union Oil Service No. 7124 Oakland, California

accordance with ASTM International standard D-5778-95 (2000). The CPT logs are included in Appendix B. Geologic cross sections are included in Appendix D.

3.5 Soil and Groundwater Sample Collection

Soil and groundwater samples were collected during borehole advancement. This section describes the sample collection and laboratory analytical methods.

3.5.1 Soil Sample Collection

Soil samples were collected and placed into laboratory-provided sealed containers for field screening and laboratory analysis. The field screening data were collected using a photo ionization detector to measure the total organic vapor concentration in the head space of the sealed containers. Shallow soil samples were collected for laboratory analysis during hand augering at CPT-1, CPT-2, CPT-3, CPT-4, and CPT-5 at 5 and 8 feet bgs. One soil boring (SB-8/CPT-2) was advanced to 44.6 feet bgs via direct-push technology. Soil samples from SB-8/CPT-2 were collected for laboratory analysis from each 5-foot interval between 10 to 40 feet bgs. All soil samples were placed on ice, cooled to approximately 4 degrees Celsius (°C) and transported to BC Laboratories Inc. (BC Laboratories), a California Department of Public Health certified analytical laboratory, under proper chain of custody procedures. The soil samples were analyzed for the following:

- Total petroleum hydrocarbons-gasoline range organics (TPH-g [C₆-C₁₂]) by United States Environmental Protection Agency (USEPA) Method 8015B
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by USEPA Method 8260B
- Methyl tertiary-butyl ether (MTBE), di-isopropyl ether (DIPE), tert-amyl methyl ether (TAME), ethyl tert-butyl ether (ETBE), ethanol, 1,2-dibromoethane (EDB), and 1,2-dibroroethane (1,2-DCA) by USEPA Method 8260B
- PAHs, including naphthalene, by USEPA Method 8270C

3.5.2 Groundwater Sample Collection

A direct-push rig was used to advance soil borings into the groundwater bearing zone. Groundwater samples (HP-1 through HP-5) were collected using a HydroPunch™ sampling device from two 4-foot intervals at each boring location. The sampled

Union Oil Service No. 7124 Oakland, California

intervals ranged from 28 to 59 feet bgs. Grab groundwater sample collection was attempted at shallower depths (10 to 20 feet bgs), but groundwater was not encountered. All groundwater samples were placed on ice, cooled to approximately 4 °C and transported to BC Laboratories under proper chain of custody procedures. The groundwater samples were analyzed for the following:

TPH-g (C₆-C₁₂) USEPA Method 8015B

3.6 BTEX by USEPA Method 8260B Investigation Results

3.6.1 Cone Penetrometer Test Investigation Results

Soil types encountered during the CPT investigation were consistent with previous subsurface observations at the site. Silts and clays were the dominant soil type from approximately 8 to 38 feet bgs. A layer of sand was encountered at depths ranging from approximately 38 to 42 feet bgs. The sand layer varies in thickness from 2 to 6 feet. Geologic cross sections are included in Appendix D. Additional lithology details are provided in Section 4.1.

3.6.2 Soil Results

Soil samples were submitted for laboratory analysis to BC Laboratories. Soil samples with detected COCs are summarized below; all other soil samples were below the method reporting limit (MRL):

- TPH-g was detected at 7.6 milligrams per kilogram (mg/kg) in the soil sample collected at approximately 26.5 feet bgs from SB-8/CPT-2.
- Tert-butyl alcohol (TBA) was detected at four borehole locations: CPT-1, SB-8/CPT-2, CPT-3, and CPT-4. Detected TBA concentrations ranged from 0.093 (CPT-1 at 8 feet bgs) to 0.29 mg/kg (SB-8/CPT-2 at 19.5 feet bgs).
- MTBE was detected at 0.0060 mg/kg in the soil sample collected at 36 feet bgs from SB-8/CPT-2.

All soil sample analytical results for site COCs were below their respective Environmental Screening Level (ESL). The soil analytical results are presented in Table 2 and on Figure 4. The laboratory analytical data are provided in Appendix E.

Union Oil Service No. 7124 Oakland, California

3.6.3 Groundwater Results

Groundwater samples were submitted for laboratory analysis to BC Laboratories. Groundwater samples with detected COCs are summarized below; all other groundwater samples were below the MRL. All groundwater sample analytical results for site COCs, except TPH-g, were below their respective ESL for groundwater as a potential drinking water source. The TPH-g concentration is below the ESL for groundwater that is not a potential drinking water source.

- TPH-g was detected at 230 micrograms per liter (μg/L) in HP-2 at 40-44 feet bgs.
- MTBE was detected at 1.6 μg/L in HP-5 at 28-32 feet bgs.

The groundwater analytical results are presented in Table 3 and on Figure 5. The laboratory analytical data are provided in Appendix E.

3.7 Equipment Decontamination

All down-hole equipment was washed with Alconox[®] and water upon completion of each borehole. All rods and sampling equipment were steam-cleaned following the completion of each borehole.

3.8 Borehole Abandonment

Following completion of borehole advancement, each borehole was backfilled to approximately 1 foot bgs using neat cement. The ground surface to 1 foot bgs interval was backfilled with concrete to match the existing surface conditions.

3.9 Investigation-Derived Waste Disposal

Investigation-derived waste (IDW) produced during drilling operations was containerized in 55-gallon drums and temporarily stored on site pending characterization for off-site disposal. A composite IDW sample was collected for waste profiling purposes. IDW will be removed from the site and transported to an approved landfill based on the analytical results of the composite soil sample.

Union Oil Service No. 7124 Oakland, California

4. Conceptual Site Model

This section summarizes the CSM, which includes site geology and hydrogeology, previous work conducted at the site, distribution of fuel hydrocarbons and oxygenates in the subsurface, and linear regression analysis.

4.1 Regional and Site Geology and Hydrogeology

The site is located in the East Bay Plain Subbasin within the Santa Clara Valley Groundwater Basin. According to the California Department of Water Resources (CDWR) Bulletin 118, this subbasin is a northwest-trending alluvial plain bounded to the north by San Pablo Bay, to the east by Franciscan Basement Rock, and to the south by the Niles Cone Groundwater Basin. The East Bay Plain Subbasin extends to the west beneath San Francisco Bay. The East Bay Plain aquifer consists of unconsolidated sediment of Quaternary age. These deposits include the early Pleistocene Santa Clara Formation, late Pleistocene Alameda Formation, early Holocene Temescal Formation, and artificial fill (CDWR 2004).

Based on the soil investigation activities performed at the site, the site is underlain by silt and clay to depths of approximately 38 feet bgs. Thin lenses of interbedded sand and silty sand are present in this interval. A layer of sand was encountered at depths ranging from approximately 38 to 42 feet bgs. The sand layer varies in thickness from 2 to 6 feet. Below the sand layer, silt and clay are encountered to a total explored depth of 68 feet bgs. Copies of available boring logs are provided in Appendix B. Geologic cross sections are included in Appendix C.

Water in the City of Oakland is provided by the East Bay Municipal Utilities District (EBMUD). A majority of EBMUD's water supply (90 percent) comes from the Mokelumne River watershed in the Sierra Nevada Mountains. EBMUD uses its six water treatment facilities to filter and process more than 375 million gallons of water per day (EBMUD 2013).

Groundwater elevations at the site have historically ranged from approximately 19.11 to 25.52 feet above mean sea level. Groundwater elevations fluctuate seasonally by only a few feet. Four active groundwater monitoring wells (MW-1 through MW-4) are located at the site. Previous groundwater data have indicated a variable groundwater flow direction. During the most recent groundwater monitoring event in the second half of 2013, groundwater flow was to the south-southwest with a hydraulic gradient of 0.007 foot per foot (ARCADIS 2013c). The groundwater elevation contour map for the

Union Oil Service No. 7124 Oakland, California

most recent sampling event conducted in October 2013 is presented on Figure 3. Well construction details are provided in Table 1.

4.2 Summary of Previous Work

Investigations and remedial actions have been conducted at the site since 1997. The investigations conducted at the site have primarily been in response to elevated levels of petroleum hydrocarbons discovered during product line and dispenser removal and replacement. This section summarizes site assessment and remediation activities. Previous environmental investigations with site characterizations, release history, and sampling results are summarized in Appendix A.

In 1997, a soil gas survey was conducted to determine baseline concentrations of petroleum hydrocarbons in soil vapor at the site. Five soil gas probes were installed near the underground storage tank (USTs), product islands, and product piping. Laboratory analytical results were not available in the reviewed material reviewed (Pacific Environmental Group 1997).

In March 2000, the product lines and dispensers were removed and replaced. Eight soil samples were collected from beneath the product dispensers and three soil samples were collected from beneath the product lines. Elevated concentrations of TPH-g, BTEX, and MTBE were detected. Subsequently, approximately 60 cubic yards of impacted soil were excavated.

In February 2002, groundwater monitoring wells MW-1 through MW-4 were installed at the site. Well construction details are provided in Table 1. Boring logs are included in Appendix B. Soil and groundwater samples were collected during well installation activities. The results are discussed in Appendix A.

In September 2008, seven soil borings (SB-1 through SB-7) were advanced (two on site and five off site). The soil borings were advanced to depths ranging from 30 to 40 feet bgs. Soil and groundwater samples were collected during soil boring advancement activities. The results are discussed in Appendix A.

4.3 Current and Historical Distribution of Residual Petroleum Hydrocarbons and Fuel Oxygenates

Subsurface fuel hydrocarbon and oxygenate concentrations have decreased through time as a result of natural biodegradation, and are likely to continue decreasing. The

Union Oil Service No. 7124 Oakland, California

distribution of residual petroleum hydrocarbons and fuel oxygenates in soil and groundwater is described in the following sections.

4.4 Distribution of Constituents of Concern in Soil

More than 70 soil samples have been collected at the site since 2002 (post soil excavation activities conducted in 2000). Soil samples were collected at depths ranging from 5 to 40 feet bgs to characterize residual concentrations of fuel hydrocarbons and oxygenates in the site soil. Detected hydrocarbons and fuel oxygenates were identified in soil collected at depths between 6.5 and 36 feet bgs. The highest COCs were reported between 16 and 19.5 feet bgs. Soil samples collected below 20 feet bgs represent saturated soil conditions. Although hydrocarbons and fuel oxygenates were detected, none of the concentrations exceed the ESL. The highest concentration of each hydrocarbon or fuel oxygenate compound is provided below:

- TPH-g at 42 mg/kg on February 28, 2002 (MW-3 at16 feet bgs)
- MTBE at 1.2 mg/kg on February 28, 2002 (MW-3 at 16 feet bgs)
- Ethylbenzene at 0.36 mg/kg on February 28,2002 (MW-3 at 16 feet bgs)
- Total xylenes at 0.26 mg/kg on February 28, 2002 (MW-3 at 16 feet bgs)
- TBA at 0.29 mg/kg on November 18, 2013 (SB-8/CPT-2 at 19.5 feet bgs)

Soil analytical results, including ESLs, are provided in Table 2. Soil sample locations are presented on Figure 2. Cross sections showing the vertical distribution of fuel hydrocarbons and oxygenates in soil are included in Appendix C.

4.5 Distribution of Constituents of Concern in Groundwater

COCs in groundwater at the site include TPH-g, BTEX, and MTBE. Site COCs in groundwater at the site have been monitored since April 8, 2002. The monitoring well network consists of four wells (MW-1 through MW-4). The monitoring wells were sampled quarterly from 2002 until 2010 when the sampling frequency was reduced to semiannual. Recent and historical groundwater analytical results are presented in Table 3 and well construction details are presented in Table 1.

Dissolved-phase concentrations in groundwater samples collected during the second semiannual sampling event 2013 (ARCADIS 2013c), as well as historical maximum concentrations reported in groundwater, indicate the following:

Union Oil Service No. 7124 Oakland, California

- TPH-g. In October 2013, TPH-g concentrations at the site ranged from less than the MRL of 50 μg/L in monitoring well MW-1 to 880 μg/L in well MW-3. The historical maximum concentration of TPH-g was 130,000 μg/L at monitoring wells MW-3 and MW-4 on April 2, 2003.
- Benzene. In October 2013, benzene concentrations were not detected above the MRL of 0.50 μg/L. The historical maximum concentration of benzene was 65 μg/L at monitoring well MW-3 on April 8, 2002.
- Toluene. In October 2013, toluene concentrations were not detected above the MRL of 1 μg/L. The historical maximum concentration of toluene (0.99 μg/L) was detected in monitoring well MW-3 on January 12, 2005. The maximum concentration of toluene does not exceed the ESL for groundwater as a potential drinking water resource (12 μg/L).
- Ethylbenzene. In October 2013, ethylbenzene concentrations were not detected above the MRL of 0.5 μg/L. The historical maximum concentration of ethylbenzene (400 μg/L) was detected in monitoring well MW-3 on April 8, 2002.
- Total xylenes. In October 2013, total xylene concentrations were not detected above the MRL of 1 μg/L. The historical maximum concentration of total xylenes (2.2 μg/L) was detected in monitoring well MW-3 on January 12, 2005. The maximum concentration of toluene does not exceed the ESL for groundwater as a potential drinking water resource (20 μg/L).
- MTBE. In October 2013, MTBE was detected in well MW-3 at a concentration of 12 μg/L. The historical maximum concentration of MTBE was 10,000 μg/L at monitoring well MW-3 on January 24, 2003.

Isoconcentration maps for select COCs (TPH-g, benzene, and MTBE) are included on Figures 6, 7, and 8. Impacted groundwater appears to be the greatest north of the UST area, near monitoring well MW-3.

4.6 Linear Regression Analysis and Plume Stability

A statistical analysis of historical groundwater monitoring data was completed to assess trends in TPH-g and MTBE concentrations with time. Graphs of log-normalized concentration versus time were created, and a linear regression trend test was used to evaluate the statistical significance of both increasing and decreasing COC

Union Oil Service No. 7124 Oakland, California

concentration trends (Appendix F). The statistical analysis was based on a review of the available historical groundwater monitoring data collected between April 2002 and October 2013 for four monitoring wells (MW-1 through MW-4).

COC concentrations were screened against cleanup goals (CUGs), which were defined as the relevant Maximum Contaminant Levels (MCLs), or where an MCL did not exist, the ESLs. The COCs at the site include TPH-g, BTEX, and MTBE. The California Primary MCLs for BTEX constituents in groundwater are 1, 150, 300, and 1,750 μ g/L, respectively. The primary MCL for MTBE is 13 μ g/L. An MCL has not been established for TPH-g. Therefore, the San Francisco Regional Water Quality Control Board (SFRWQCB) ESL for groundwater as a potential drinking water source of 500 μ g/L was used for TPH-g (SFRWQCB 2013).

There has been no active remediation at the site, and historical concentration trends are expected to be representative of ongoing trends in COC concentrations under natural attenuation for the foreseeable future.

Linear regression analysis was completed for those monitoring wells where:

- COC concentrations were above the respective MRL for at least 50 percent of data collected between April 2002 and October 2013.
- COC concentrations were greater than the relevant CUG at least once in the last 4 years (since January 2010).
- At least eight data points were present in the dataset.

4.6.1 Linear Regression Methodology

Linear regression analyses using natural log-normalized concentration data were conducted to estimate trend direction, attenuation rates, and approximate time to achieve CUGs for the selected locations and COCs (USEPA 2002). Results of the linear regression analyses, including coefficients of determination (R² values), p-values of the correlation, and trend directions, are summarized in Table 4; individual analyses are included in Appendix F. The R² value is a measure of how well the linear regression model fits the site data. R² values less than 0.1 indicate a weak model fit, while R² values closer to 1 indicate a stronger model fit. The p-value of the correlation provides a measure of the level of statistical significance of the slope of the trend line. Trends were accepted as statistically significant for p-values less than or equal to 0.05

Union Oil Service No. 7124 Oakland, California

(95 percent confidence level). The trend direction was defined as decreasing if the slope of the linear regression was negative and increasing if the slope of the regression was positive.

Where concentrations were less than reporting limits (nondetect), the concentrations were set equal to the MRLs. Use of the MRL for concentrations that were below detection provides a conservative estimate for evaluating the concentration trends through time. No qualified data were used in the regression analyses.

Concentrations of all COCs at MW-1 were less than the MRLs for the majority of the sampling history. Concentrations of BTEX constituents at MW-2, MW-3, and MW-4 and MTBE at MW-2 and MW-4 were less than the MRL for the majority of the sampling history and did not meet the linear regression criteria outlined above

4.6.2 Linear Regression Results

Results of the linear regression analyses are summarized in Table 4, and the distributions of COCs in groundwater are presented on Figures 6, 7, and 8. Results from the linear regression analyses indicate the following:

- There is evidence of natural attenuation of COCs at the site.
- Concentrations of COCs at all monitoring wells where current concentrations are greater than the CUG exhibit statistically significant decreasing trends.
- The most recent concentrations of COCs at monitoring wells sampled during October 2013 were less than the relevant CUGs or detection, except TPH-g in monitoring well MW-3.

Concentration trends specific to each COC are discussed below.

4.6.2.1 Total Petroleum Hydrocarbons-Gasoline Range Organics

Concentrations of TPH-g at MW-3 showed a statistically significant decreasing trend, with concentrations fluctuating around the CUG since June 2013.

Union Oil Service No. 7124 Oakland, California

4.6.2.2 Methyl Tert-Butyl Ether

Concentrations of MTBE were less than the CUG at MW-4 in October 2013 and showed a statistically significant decreasing trend.

4.7 Groundwater Geochemical Data

Decreasing TPH-g and MTBE concentration trends represent the primary line of evidence for natural attenuation of the dissolved-phase petroleum hydrocarbons and overall plume stability. However, geochemical indicator parameters can provide an additional line of evidence to document that groundwater conditions are favorable for biodegradation processes to occur.

Hydrocarbon compounds in groundwater can serve as sources of carbon and/or energy (substrate) for naturally occurring bacteria, and biodegradation of these constituents can occur by both aerobic and anaerobic microbial processes. Bacteria obtain energy for cell production and maintenance by facilitating reduction-oxidation reactions involving the transfer of electrons from electron donors (i.e., the target substrate or hydrocarbon constituent) to available electron acceptors. In aerobic environments, oxygen serves as the electron acceptor and becomes reduced while the primary substrate is oxidized. Oxidation of the primary substrate results in its mineralization to harmless byproducts (carbon dioxide and water). Under anaerobic conditions, other inorganic compounds act as electron acceptors and become reduced while the primary substrate is oxidized.

Anaerobic oxidation processes consume these alternate electron acceptors in the following order of preference: nitrate (nitrate reduction), ferric iron (ferric iron reduction), sulfate (sulfate reduction), and carbon dioxide (methanogenesis). The key bacteria involved in anaerobic oxidation are the denitrifying bacteria (DN), iron-reducing bacteria, sulfate-reducing bacteria (SRB), and methanogenic bacteria, all of which are widely distributed in the natural environment.

DN, iron-reducing bacteria, and SRB use nitrate, oxidized iron, and sulfate as electron acceptors resulting in depleted concentrations of these electron acceptors in areas where biodegradation of organic compounds is occurring. The electron acceptors nitrate, ferric iron, and sulfate are subsequently converted to their reduced form, nitrite or nitrogen gas, dissolved (ferrous) iron, and hydrogen sulfide, respectively. Methanogens use carbon dioxide as an electron acceptor, reducing it to methane,

Union Oil Service No. 7124 Oakland, California

which results in elevated concentrations of methane in areas where biodegradation is occurring.

Geochemical indicator parameters were measured in June and October 2013 at MW-1, MW-2, MW-3, and MW-4. These data are included in Table 5 and discussed below.

4.7.1 Nitrate

Concentrations of nitrate measured at the site in June and October 2013 were depleted (< 0.44 milligrams per liter [mg/L]) at monitoring wells where COCs were detected, compared to concentrations of nitrate between 24 and 26 mg/L at MW-1, where COCs have not been detected. The data indicate that biodegradation by nitrate reducing bacteria is occurring.

4.7.2 Iron

When ferric iron is used as an electron acceptor by iron-reducing bacteria, it is reduced to the more soluble ferrous iron species, as indicated by increased concentrations of dissolved iron. Dissolved iron concentrations measured in June and October 2013 were below detection (< 50 μ g/L) at monitoring well MW-1, where COCs have not been detected. However, at monitoring wells MW-2, MW-3, and MW-4, where COCs are present at concentrations above detection, dissolved iron concentrations were typically elevated (between 120 and 710 μ g/L). The dissolved iron concentrations suggest that biodegradation of organic material is occurring via iron reduction in areas where elevated concentrations of COCs are present.

4.7.3 Sulfate

Sulfate concentrations measured in June and October 2013 ranged from 22 to 23 mg/L at monitoring well MW-1, where COCs have not been detected. Sulfate concentrations ranged from below detection (< 1.0 mg/L) to 20 mg/L at MW-2, MW-3, and MW-4, where concentrations of COCs are elevated. In general, sulfate concentrations are depleted at locations where COCs are present, indicating that biodegradation of organic material via sulfate reduction may be active in these areas.

Union Oil Service No. 7124 Oakland, California

4.7.4 Methane

Methane concentrations measured in June 2013 were below detection (< 0.0010 mg/L) at all wells except MW-3 (0.075 mg/L). In October 2013, methane concentrations were greater than the MRL in MW-1, MW-2, and MW-3 and ranged from 0.015 mg/L at MW-1 to 0.071 mg/L at MW-3. The low methane concentrations indicate that methanogenesis is not a dominant biodegradation mechanism at the site.

5. Summary and Conclusions with Recommendations

The November 2013 investigation provided additional site lithology data, as well as soil and groundwater analytical data. The site lithology data are consistent with previous observations. The site is underlain by silt and clay to depths of approximately 38 feet bgs. A layer of sand was encountered at depths ranging from approximately 38 to 42 feet bgs. The sand layer varies in thickness from 2 to 6 feet. Below the sand layer, silt and clay are encountered to a total explored depth of 68 feet bgs.

The analytical data for soil samples collected in November 2013 indicate that all detected COC concentrations are below the ESL.

The analytical data for grab groundwater samples collected in November 2013 indicate that all detected COC concentrations are below the ESL for groundwater as a potential drinking water resource, except TPH-g. Sample HP-2, collected from 32 to 35 feet bgs, had a TPH-g concentration of 230 μ g/L; this concentration is less than the ESL for groundwater that is not a potential drinking water resource.

Groundwater data collected from monitoring wells in October 2013 indicate similar results. At monitoring well MW-3, the TPH-g concentration exceeds the ESL for groundwater that is not a potential drinking water resource and the MTBE concentration does not exceed the MCL for groundwater (13 μ g/L). However MTBE concentration slightly exceeds the ESL for groundwater that is a potential drinking water resource.

Due to the COC concentrations in groundwater exceeding the ESL, a linear regression analysis was performed. The results were analyzed in conjunction with geochemical indicator parameter groundwater data. Where COC concentrations were greater than the CUGs during the past 4 years and data met the criteria for linear regressions analysis, statistically significant decreasing trends in COC concentration were observed, suggesting that natural attenuation is effective at reducing concentrations of

Union Oil Service No. 7124 Oakland, California

COCs to below the CUGs. Geochemical indicator parameter data suggest that reducing conditions are present at the site and that biodegradation of organic compounds via nitrate, iron, and sulfate reduction is occurring. To date, natural attenuation has been effective in reducing concentrations of TPH-g, BTEX, and MTBE at MW-1, MW-2, and MW-4 to less than their respective CUGs. In monitoring wells where concentrations greater than the CUG remain, it is likely that natural attenuation will continue to reduce COC concentrations to be consistently less than the CUG.

Based on the soil, groundwater, and linear regression analyses completed, ARCADIS recommends submission of a no Further Action Request based on historical and current data.

Union Oil Service No. 7124 Oakland, California

6. References

- ARCADIS U.S., Inc. 2013a. Response to Comments and Revised Site Investigation Work Plan. July 2.
- ARCADIS U.S., Inc. 2013b. Revised Site Investigation Work Plan Addendum. Email Correspondence with ACEH RE: Fuel Leak Case No. RO0002444. September 13.
- ARCADIS U.S., Inc. 2013c. Second Half 2013 Semi-Annually Groundwater Monitoring Report Submittal. December 27.
- California Department of Water Resources. 2004. California's Groundwater Bulletin 118: Santa Clara Valley Groundwater Basin, East Bay Plain Subbasin. February 27
- East Bay Municipal Utilities District. 2013. http://ebmud.com/our-water/water-quality. Viewed on February 4.
- Pacific Environmental Group, Inc. 1997. Soil Gas Survey Results, UNOCAL Service Station 7124, 10151 E 14th St, Oakland, California. October 29.
- San Francisco Bay Regional Water Quality Control Board. 2013. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. November 2013.
- United States Environmental Protection Agency. 2002. Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies. EPA/540/S-02/500, National Risk Management Research Laboratory, Office of Research and Development, Cincinnati, OH. November.

www.epa.gov/swerust1/oswermna/mna epas.htm

Tables

Table 1 - Well Construction Details Union Oil Company of California Service Station Number 7124 10151 International Boulevard, Oakland, California

			Total Depth of	Total Depth	Casing	Screen
Well	Installation	TOC Elevation	Boring	of Well	Diameter	Interval
Identification	Date	(ft aMSL)	(ft bgs)	(ft bgs)	(in)	(ft bgs)
MW-1	02/28/2002	37.73	25	25	4	10.0 - 25.0
MW-2	03/01/2002	38.27	25	25	4	10.0 - 25.0
MW-3	02/28/2002	38.03	25	25	4	10.0 - 25.0
MW-4	03/01/2002	38.77	25	25	4	10.0 - 25.0

Standard Abbreviations

ft Feet

ft bgs Feet below ground surface

in Inches

ft aMSL Feet above Mean Sea Level

ARCADIS Page 1 of 1

Table 2 - Soil Analytical Results Union Oil Company of California Service Station Number 7124 10151 International Boulevard, Oakland, California

		Sample														
Well	Date	Depth				Ethyl-	Total									
Identification	Sampled	(ft bgs)	TPH-g	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1,2-DCE	PAHs	Ethanol
Environmental Scr	reening Levels ²		1,000	1.2	9.3	4.7	11	8.4	110				0.51			
MW-1-6.5	02/28/2002	6.5	< 5.0	< 0.050	< 0.050	< 0.050	< 0.050	< 0.025	< 0.50	< 0.025	< 0.025	< 0.025	< 0.025			< 5.0
MW-1-16.5	02/28/2002	16.5	< 5.0	< 0.050	< 0.050	< 0.050	< 0.050	< 0.025	< 0.50	< 0.025	< 0.025	< 0.025	< 0.025			< 5.0
MW-1-26.5	02/28/2002	26.5	< 5.0	< 0.050	< 0.050	< 0.050	< 0.050	< 0.025	< 0.50	< 0.025	< 0.025	< 0.025	< 0.025			< 5.0
MW-2-6.5	03/01/2002	6.5	< 5.0	< 0.050	< 0.050	< 0.050	< 0.050	< 0.025	< 0.50	< 0.025	< 0.025	< 0.025	< 0.025			< 5.0
MW-2-16.5	03/01/2002	16.5	< 5.0	< 0.050	< 0.050	< 0.050	< 0.050	0.085	< 0.50	< 0.025	< 0.025	< 0.025	< 0.025			< 5.0
MW-2-26.5	03/01/2002	26.5	16	< 0.050	< 0.050	< 0.050	< 0.050	0.16	< 0.50	< 0.025	< 0.025	< 0.025	< 0.025			< 5.0
MW-3-6	02/28/2002	6	< 5.0	< 0.050	< 0.050	< 0.050	< 0.050	< 0.025	< 0.50	< 0.025	< 0.025	< 0.025	< 0.025			< 5.0
MW-3-16	02/28/2002	16	42	< 0.20	< 0.20	0.36	0.26	1.2	< 2.0	< 0.10	< 0.10	< 0.10	< 0.10			<20
MW-3-26.5	02/28/2002	26.5	< 5.0	< 0.050	< 0.050	< 0.050	< 0.050	0.23	< 0.50	< 0.025	< 0.025	< 0.025	< 0.025			< 5.0
MW-4-6.5	03/01/2002	6.5	5.6	< 0.050	< 0.050	< 0.050	< 0.050	< 0.025	< 0.50	< 0.025	< 0.025	< 0.025	< 0.025			< 5.0
MW-4-11.5	03/01/2002	11.5	< 5.0	< 0.050	< 0.050	< 0.050	< 0.050	< 0.025	< 0.50	< 0.025	< 0.025	< 0.025	< 0.025			< 5.0
MW-4-26.5	03/01/2002	26.5	< 5.0	< 0.050	< 0.050	< 0.050	< 0.050	0.028	< 0.50	< 0.025	< 0.025	< 0.025	< 0.025			< 5.0
SB-1-5	09/05/2008	5	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-1-10	09/05/2008	10	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-1-15	09/05/2008	15	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	0.062	0.15							
SB-1-20	09/05/2008	20	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-1-25	09/05/2008	25	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-1-30	09/05/2008	30	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-1-35	09/05/2008	35	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-1-40	09/05/2008	40	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-2-5	09/03/2008	5	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-2-10	09/03/2008	10	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-2-15	09/03/2008	15	0.30	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-2-20	09/03/2008	20	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-2-21.5	09/03/2008	21.5	7.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-2-25	09/03/2008	25	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-2-30	09/03/2008	30	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							

ARCADIS Page 1 of 4

Table 2 - Soil Analytical Results Union Oil Company of California Service Station Number 7124 10151 International Boulevard, Oakland, California

		Sample														
Well	Date	Depth				Ethyl-	Total									
Identification	Sampled	(ft bgs)	TPH-g	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1,2-DCE	PAHs	Ethanol
Environmental Scr			1,000	1.2	9.3	4.7	11	8.4	110				0.51			
SB-3-5	09/04/2008	5	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-3-10	09/04/2008	10	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-3-15	09/04/2008	15	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-3-20	09/04/2008	20	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-3-25	09/04/2008	25	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-4-5	09/03/2008	5	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-4-10	09/03/2008	10	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-4-15	09/03/2008	15	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-4-19	09/03/2008	19	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-4-28	09/03/2008	28	4.6	< 0.025	< 0.025	< 0.025	< 0.050	< 0.025	< 0.25							
SB-4-29.5	09/03/2008	29.5	1.1	< 0.0050	< 0.0050	< 0.0050	< 0.010	0.011	< 0.050							
SB-5-5	09/03/2008	5	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-5-10	09/03/2008	10	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-5-15	09/03/2008	15	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-5-20	09/03/2008	20	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-5-25	09/03/2008	25	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-5-30	09/03/2008	30	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-6-5	09/05/2008	5	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-6-10	09/05/2008	10	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-6-15	09/05/2008	15	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-6-20	09/05/2008	20	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-6-25	09/05/2008	25	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-6-30	09/05/2008	30	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-6-32	09/05/2008	32	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							

ARCADIS Page 2 of 4

Table 2 - Soil Analytical Results Union Oil Company of California Service Station Number 7124 10151 International Boulevard, Oakland, California

		Sample														
Well	Date	Depth				Ethyl-	Total									
Identification	Sampled	(ft bgs)	TPH-g	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1,2-DCE	PAHs	Ethanol
Environmental Scr		_	1,000	1.2	9.3	4.7	11	8.4	110				0.51			
SB-7-5	09/04/2008	5	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-7-10	09/04/2008	10	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-7-15	09/04/2008	15	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-7-20	09/04/2008	20	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-7-25	09/04/2008	25	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
SB-7-30	09/04/2008	30	< 0.20	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050							
CPT-1-5	11/18/2013	5	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
CPT-1-8	11/18/2013	8	< 0.78	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	0.093	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
CPT-2-5	11/15/2013	5	< 0.78	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	0.17	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
CPT-2-8	11/15/2013	8	< 0.80	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	0.12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
SB-8/CPT-2-15.5	11/18/2013	15.5	< 0.74	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
SB-8/CPT-2-19.5	11/18/2013	19.5	< 0.81	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	0.29	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
SB-8/CPT-2-22.5	11/18/2013	22.5	< 0.74	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
SB-8/CPT-2-26.5	11/18/2013	26.5	7.6	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
SB-8/CPT-2-31.5	11/18/2013	31.5	< 0.76	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
SB-8/CPT-2-36	11/18/2013	36	< 0.71	< 0.0050	< 0.0050	< 0.0050	< 0.010	0.0060	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
SB-8/CPT-2-40	11/18/2013	40	< 0.71	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
CPT-3-5	11/15/2013	5	< 0.78	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	0.12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
CPT-3-8	11/15/2013	8	< 0.96	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
CPT-4-5	11/14/2013	5	< 0.79	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	0.21	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
CPT-4-8	11/14/2013	8	< 0.76	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	0.10	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
CPT-5-5	11/18/2013	5	< 0.90	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	<1.0
CPT-5-8	11/18/2013	8	< 0.78	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050			< 0.0050		ND	<1.0

ARCADIS Page 3 of 4

Table 2 - Soil Analytical Results Union Oil Company of California Service Station Number 7124 10151 International Boulevard, Oakland, California

		Sample														
Well	Date	Depth				Ethyl-	Total									
Identification	Sampled	(ft bgs)	TPH-g	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1,2-DCE	PAHs	Ethanol
Environmental Scre	Environmental Screening Levels			1.2	9.3	4.7	11	8.4	110				0.51			

Notes

- 1) Analytical results reported in milligrams per kilogram (mg/kg), unless otherwise stated.
- 2) San Francisco Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for deep soil samples (>3 meters below ground surface [bgs]), commercial/industrial land use, where groundwater is not a current or potential drinking water resource (Table D-2; SFRWQCB 2013).
- 3) All samples analyzed by EPA Method 8260B, except for TPH-g, which is analyzed by EPA Method 8015B.

Standard Abbreviations

- < Not detected at or above the laboratory detection limit
- -- Not analyzed, measured, or collected
- ft bgs Feet below ground surface

1,2-DCE 1,2-Dichloroethane

Bold Indicates detected concentration exceeded the Environmental Screening Level

Analytes

-	
TPH-g	Total petroleum hydrocarbons - gasoline range organics
MTBE	Methyl tertiary-butyl ether
TBA	Tertiary-butyl alcohol
DIPE	Di-isopropyl ether
ETBE	Ethyl tert-butyl ether
TAME	Tert-amyl methyl ether
PAHs	Polycyclic aromatic hydrocarbons
EDB	1,2-Dibromoethane

ARCADIS Page 4 of 4

Table 3 - Groundwater Analytical Results Union Oil Company of California Service Station Number 7124 10151 International Boulevard, Oakland, California

		Sample	TOC		LPH	GW	Change in														
Well	Date	Depth	Elevation	DTW	Thickness	Elevation	Elevation		_		Ethyl-	Total									_
Identification	Sampled	(ft bgs)	(ft MLS)	(ft bTOC)	(ft)	(ft MSL)	(ft)	TPH-g	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1,2-DCE	Ethanol	Comments
ESLs (groundwate	•	2						500	27	130	43	100	1,800	18,000							
ESLs (groundwate	er is a potential re	esource) ²						100	1	40	30	20	5	12							
MCL ³									5	1,000	700	10,000	13								
MW-1	04/08/2002		37.37	14.27	0.00	23.10			< 0.50	< 0.50	< 0.50	< 0.50	<2.0								
MW-1	07/28/2002		37.37	15.88	0.00	21.49	-1.61	< 50	< 0.50	< 0.50	< 0.50	<1.0	<2.0	<100	<2.0	<2.0	<2.0	<2.0			
MW-1	11/03/2002		37.37	16.75	0.00	20.62	-0.87	<50	< 0.50	< 0.50	< 0.50	<1.0	<2.0	<100	<2.0	<2.0	<2.0	<2.0			
MW-1	01/24/2003		37.37	13.94	0.00	23.43	2.81	<50	< 0.50	< 0.50	< 0.50	<1.0	<2.0	<100	<2.0	<2.0	<2.0	<2.0			
MW-1	04/02/2003		37.37	14.99	0.00	22.38	-1.05	460	< 0.50	< 0.50	< 0.50	<1.0	<2.0	<100	<2.0	<2.0	<2.0	<2.0			
MW-1	07/01/2003		37.37	15.48	0.00	21.89	-0.49	<50	< 0.50	< 0.50	< 0.50	<1.0	<2.0	<100	<2.0	<2.0	<2.0	<2.0			
MW-1	10/02/2003		37.37	16.68	0.00	20.69	-1.20	<50	< 0.50	< 0.50	< 0.50	<1.0	<2.0	<100	<2.0	<2.0	<2.0	<2.0		< 500	
MW-1	01/09/2004		37.37	13.79	0.00	23.58	2.89	<50	< 0.50	< 0.50	< 0.50	<1	<2	<100	<2	<2	<2	<2		< 500	
MW-1	04/26/2004		37.37	15.21	0.00	22.16	-1.42	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	< 5.0	< 0.50	<1.0	< 0.50	< 0.50		< 50	
MW-1	07/22/2004		37.37	16.43	0.00	20.94	-1.22	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	< 5.0	< 0.50	<1.0	< 0.50	< 0.50		< 50	
MW-1	10/29/2004		37.37	16.14	0.00	21.23	0.29	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	< 5.0	< 0.50	<1.0	< 0.50	< 0.50		< 50	
MW-1	01/12/2005		37.37	12.83	0.00	24.54	3.31	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	< 5.0	< 0.50	<1.0	< 0.50	< 0.50		< 50	
MW-1	06/20/2005		37.37	14.38	0.00	22.99	-1.55	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<1,000	
MW-1	09/23/2005		37.37	15.92	0.00	21.45	-1.54	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<1,000	
MW-1	12/13/2005		37.37	16.09	0.00	21.28	-0.17	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	03/24/2006		37.37	11.85	0.00	25.52	4.24	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	05/30/2006		37.37	13.30	0.00	24.07	-1.45	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	08/22/2006		37.37	15.11	0.00	22.26	-1.81	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	10/31/2006		37.37	16.11	0.00	21.26	-1.00	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	01/12/2007		37.37	15.55	0.00	21.82	0.56	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	04/04/2007		37.37	15.31	0.00	22.06	0.24	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	07/05/2007		37.37	16.21	0.00	21.16	-0.90	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	10/01/2007		37.37	17.13	0.00	20.24	-0.92	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	01/11/2008		37.37	14.48	0.00	22.89	2.65	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	04/04/2008		37.37	16.17	0.00	21.20	-1.69	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	07/02/2008		37.37	16.70	0.00	20.67	-0.53	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	10/02/2008		37.37	17.50	0.00	19.87	-0.80	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	01/14/2009		37.37	17.30	0.00	20.07	0.20	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	04/16/2009		37.37	15.60	0.00	21.77	1.70	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	07/16/2009		37.37	16.90	0.00	20.47	-1.30	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	01/06/2010		37.37	16.35	0.00	21.02	0.55	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	11/02/2011		37.37	16.38	0.00	20.99	-0.03	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	04/06/2012		37.37	14.20	0.00	23.17	2.18	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	06/13/2013		37.37	16.81	0.00	20.56	-2.61	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-1	10/07/2013		37.37	17.62	0.00	19.75	-3.42	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	

ARCADIS Page 1 of 5

Table 3 - Groundwater Analytical Results Union Oil Company of California Service Station Number 7124 10151 International Boulevard, Oakland, California

		Sample	TOC		LPH	GW	Change in														
Well	Date	Depth	Elevation	DTW	Thickness	Elevation	Elevation				Ethyl-	Total									
Identification	Sampled	(ft bgs)	(ft MLS)	(ft bTOC)	(ft)	(ft MSL)	(ft)	TPH-g	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1,2-DCE	Ethanol	Comments
ESLs (groundwate	•	2						500	27	130	43	100	1,800	18,000							
ESLs (groundwate	er is a potential re	esource) ²						100	1	40	30	20	5	12							
MCL ³									5	1,000	700	10,000	13								
MW-2	04/08/2002		37.87	15.86	0.00	22.01			<2.5	<2.5	6.4	<2.5	490	<2,000	<40	<40	<40	<40			
MW-2	07/28/2002		37.87	17.28	0.00	20.59	-1.42	3,200	<2.5	<2.5	<2.5	< 5.0	170	< 500	<10	<10	<10	<10			
MW-2	11/03/2002		37.87	18.03	0.00	19.84	-0.75	3,800	< 5.0	< 5.0	< 5.0	<10	72	<1,000	<20	<20	<20	<20			
MW-2	01/24/2003		37.87	15.59	0.00	22.28	2.44	410	<2.5	<2.5	<2.5	< 5.0	490	<500	<10	<10	<10	<10			
MW-2	04/02/2003		37.87	16.50	0.00	21.37	-0.91	1,000	< 5.0	< 5.0	< 5.0	<10	180	<1,000	<20	<20	<20	<20			
MW-2	07/01/2003		37.87	16.94	0.00	20.93	-0.44	1,900	<2.5	<2.5	<2.5	< 5.0	120	< 500	<10	<10	<10	<10			
MW-2	10/02/2003		37.87	17.93	0.00	19.94	-0.99	6,900	< 0.50	< 0.50	< 0.50	<1.0	32	<100	<2.0	<2.0	<2.0	<2.0		< 500	
MW-2	01/09/2004		37.87	15.42	0.00	22.45	2.51	1,000	<2.5	<2.5	<2.5	< 5.0	300	< 500	<10	<10	<10	<10		<2,500	
MW-2	04/26/2004		37.87																		
MW-2	07/22/2004		37.87																		
MW-2	10/29/2004		37.87		0.00																
MW-2	01/12/2005		37.87																		
MW-2	06/20/2005		37.87	15.94	0.00	21.93		120	< 0.50	< 0.50	< 0.50	<1.0	46	25	< 0.50	< 0.50	< 0.50	< 0.50		<1,000	
MW-2	09/23/2005		37.87	17.29	0.00	20.58	-1.35	120	< 0.50	< 0.50	< 0.50	<1.0	10	<10	< 0.50	< 0.50	< 0.50	< 0.50		<1,000	
MW-2	12/13/2005		37.87	17.41	0.00	20.46	-0.12	< 50	< 0.50	< 0.50	< 0.50	<1.0	11	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	03/24/2006		37.87	13.77	0.00	24.10	3.64	190	< 0.50	< 0.50	< 0.50	<1.0	15	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	05/30/2006		37.87	15.16	0.00	22.71	-1.39	120	< 0.50	< 0.50	< 0.50	<1.0	6.6	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	08/22/2006		37.87	16.49	0.00	21.38	-1.33	81	< 0.50	< 0.50	< 0.50	< 0.50	3	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	10/31/2006		37.87	17.15	0.00	20.72	-0.66	93	< 0.50	< 0.50	< 0.50	< 0.50	2	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	01/12/2007		37.87	17.07	0.00	20.80	0.08	230	< 0.50	< 0.50	< 0.50	< 0.50	4.3	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	04/04/2007		37.87	17.84	0.00	20.03	-0.77	110	< 0.50	< 0.50	< 0.50	< 0.50	2.5	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	07/05/2007		37.87	17.51	0.00	20.36	0.33	150	< 0.50	< 0.50	< 0.50	< 0.50	2.6	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	10/01/2007		37.87	18.25	0.00	19.62	-0.74	160	< 0.50	< 0.50	< 0.50	< 0.50	2	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	01/11/2008		37.87	16.80	0.00	21.07	1.45	130	< 0.50	< 0.50	< 0.50	<1.0	7.7	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	05/22/2008		37.87	17.46	0.00	20.41	-0.66	140	< 0.50	< 0.50	< 0.50	<1.0	4.2	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	07/02/2008		37.87	17.94	0.00	19.93	-0.48	75	< 0.50	< 0.50	< 0.50	<1.0	2.4	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	10/02/2008		37.87	18.65	0.00	19.22	-0.71	130	< 0.50	< 0.50	< 0.50	<1.0	2.1	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	01/14/2009		37.87	18.40	0.00	19.47	0.25	66	< 0.50	< 0.50	< 0.50	<1.0	2.5	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	04/16/2009		37.87	16.94	0.00	20.93	1.46	93	< 0.50	< 0.50	< 0.50	<1.0	3.2	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	07/16/2009		37.87	18.15	0.00	19.72	-1.21	92	< 0.50	< 0.50	< 0.50	<1.0	1.6	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	01/06/2010		37.87	17.68	0.00	20.19	0.47	150	< 0.50	< 0.50	< 0.50	<1.0	2	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	11/02/2011		37.87	17.15	0.00	20.72	0.53	96	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	04/06/2012		37.87	15.63	0.00	22.24	1.52	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	06/13/2013		37.87	18.03	0.00	19.84	-2.40	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-2	10/07/2013		37.87	18.74	0.00	19.13	-3.11	99	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	

ARCADIS Page 2 of 5

Table 3 - Groundwater Analytical Results Union Oil Company of California Service Station Number 7124 10151 International Boulevard, Oakland, California

XV 11	D.	Sample	TOC	DTW	LPH	GW	Change in				Ed 1	T 1									
Well Identification	Date Sampled	Depth (ft bgs)	Elevation (ft MLS)	DTW (ft bTOC)	Thickness (ft)	Elevation (ft MSL)	Elevation (ft)	TPH-g	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1,2-DCE	Ethanol	Comments
ESLs (groundwate		` ;	(It MLS)					500	27	130	43	100	1,800	18,000							
ESLs (groundwate	•	2						100	1	40	30	20	5	12							
MCL ³	a is a potential re	,source)							5	1,000	700	10,000	13								
MW-3	04/08/2002		38.36	16.59	0.00	21.77			<5.0	<5.0	28	<5.0	980								
MW-3	07/28/2002		38.36	17.93	0.00	20.43	-1.34	4,500	<2.5	<2.5	<2.5	< 5.0	170								
MW-3	11/03/2002		38.36	18.66	0.00	19.70	-0.73	25,000	< 0.50	< 0.50	< 0.50	<1.0	5.7								
MW-3	01/24/2003		38.36	16.27	0.00	22.09	2.39	6,000	<10	<10	<10	<20	1,000								
MW-3	04/02/2003		38.36	17.19	0.00	21.17	-0.92	130,000	<100	<100	<100	< 200	<400								
MW-3	07/01/2003		38.36	17.61	0.00	20.75	-0.42	9,400	< 2.5	< 2.5	< 2.5	< 5.0	170								
MW-3	10/02/2003		38.36	18.58	0.00	19.78	-0.97	73,000	<10	<10	<10	<20	70	<10,000	< 200	< 200	< 200	< 200		<50,000	
MW-3	01/09/2004		38.36	16.15	0.00	22.21	2.43	8,700	<10	<10	<10	<20	530	<5,000	<100	<100	<100	<100		<25,000	
MW-3	04/26/2004		38.36	17.20	0.00	21.16	-1.05	6,700	<10	<10	<10	<20	240	<250	<25	< 50	<25	<25		<2,500	
MW-3	07/22/2004		38.36	18.34	0.00	20.02	-1.14	13,000	<10	<10	<10	<20	48	<250	<25	< 50	<25	<25		<2,500	
MW-3	10/29/2004		38.36	18.13	0.00	20.23	0.21	4,600	< 2.5	< 2.5	< 2.5	< 5.0	76	< 50	< 5.0	<10	< 5.0	< 5.0		< 500	
MW-3	01/12/2005		38.36	15.22	0.00	23.14	2.91	6,100	< 0.50	< 0.50	< 0.50	<1.0	620	1,300	<25	< 50	<25	<25		<2,500	
MW-3	06/20/2005		38.36	16.63	0.00	21.73	-1.41	1,900	< 0.50	< 0.50	< 0.50	<1.0	110	39	0.31J	< 0.50	< 0.50	< 0.50		<1,000	
MW-3	09/23/2005		38.36	17.93	0.00	20.43	-1.30	2,400	< 0.50	< 0.50	< 0.50	<1.0	34	<10	< 0.50	< 0.50	< 0.50	< 0.50		<1,000	
MW-3	12/13/2005		38.36	18.04	0.00	20.32	-0.11	2,100	< 0.50	< 0.50	< 0.50	<1.0	36	< 50	< 2.5	<2.5	<2.5	<2.5		<1,200	
MW-3	03/24/2006		38.36	14.48	0.00	23.88	3.56	2,200	<12	<12	<12	<25	200	<100	< 5.0	< 5.0	< 5.0	< 5.0		<2,500	
MW-3	05/30/2006		38.36	15.79	0.00	22.57	-1.31	1,500	<2.5	<2.5	<2.5	< 5.0	130	<250	<12	<12	<12	<12		<6,200	
MW-3	08/22/2006		38.36	17.26	0.00	21.10	-1.47	1,900	< 0.50	< 0.50	< 0.50	< 0.50	33	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-3	10/31/2006		38.36	18.08	0.00	20.28	-0.82	2,200	< 0.50	< 0.50	< 0.50	< 0.50	10	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-3	01/12/2007		38.36	17.57	0.00	20.79	0.51	2,600	< 0.50	<0.50	< 0.50	<0.50	28	43	< 0.50	< 0.50	< 0.50	<0.50		<250	
MW-3	04/04/2007		38.36	17.40	0.00	20.96	0.17	1,700	<0.50	<0.50	< 0.50	< 0.50	41	130	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-3	07/05/2007		38.36	18.02	0.00	20.34	-0.62	2,400	< 0.50	< 0.50	< 0.50	< 0.50	7	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-3	10/01/2007		38.36	18.89	0.00	19.47	-0.87	1,700	<0.50	< 0.50	< 0.50	< 0.50	3	<20	<1.0	<1.0	<1.0	<1.0		<500	
MW-3 MW-3	01/11/2008 04/04/2008		38.36 38.36	16.56	0.00	21.80 20.26	2.33	2,200 1,600	<0.50	<0.50	<0.50 <0.50	<1.0	21	<10 <20	<0.50	<0.50 <1.0	< 0.50	< 0.50		<250 <500	
MW-3	04/04/2008		38.36	18.10 18.55	0.00	19.81	-1.54 -0.45	1,000	<0.50 <0.50	<0.50 <0.50	< 0.50	<1.0 <1.0	5.6 3.3	<10	<1.0 <0.50	<0.50	<1.0 <0.50	<1.0 <0.50		<250	
MW-3	10/02/2008		38.36	19.25	0.00	19.11	-0.43	2,100	< 0.50	< 0.50	< 0.50	<1.0	2.4	<10	<0.50	< 0.50	< 0.50	< 0.50		<250	
MW-3	01/14/2009		38.36	19.10	0.00	19.26	0.15	2,000	< 0.50	< 0.50	< 0.50	<1.0	2.4	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-3	04/16/2009	<u></u>	38.36	17.61	0.00	20.75	1.49	1,800	< 0.50	< 0.50	< 0.50	<1.0	16	<50	<2.5	<2.5	<2.5	<2.5		<1,200	
MW-3	07/16/2009	<u></u>	38.36	18.70	0.00	19.66	-1.09	1,900	< 0.50	< 0.50	< 0.50	<1.0	3.2	<100	<5.0	<5.0	<5.0	<5.0		<2,500	
MW-3	01/06/2010		38.36	18.28	0.00	20.08	0.42	2,200	< 0.50	< 0.50	< 0.50	<1.0	2.4	<100	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-3	11/02/2011		37.72	17.55	0.00	20.17	0.10	880	< 0.50	< 0.50	< 0.50	<1.0	35	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-3	04/06/2012		37.72	16.40	0.00	21.32	1.15	1,000	< 0.50	< 0.50	< 0.50	<1.0	210	85	< 0.50	< 0.50	< 0.50	< 0.50		<250	A01
MW-3	06/13/2013		37.72	17.45	0.00	20.27	-1.05	<50	< 0.50	< 0.50	< 0.50	<1.0	6.5	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	- -
MW-3	10/07/2013		37.72	18.62	0.00	19.10	-2.22	880	< 0.50	< 0.50	< 0.50	<1.0	12	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	

ARCADIS Page 3 of 5

Table 3 - Groundwater Analytical Results Union Oil Company of California Service Station Number 7124 10151 International Boulevard, Oakland, California

		Sample	TOC		LPH	GW	Change in														
Well	Date	Depth	Elevation	DTW	Thickness	Elevation	Elevation				Ethyl-	Total									
Identification	Sampled	(ft bgs)	(ft MLS)	(ft bTOC)	(ft)	(ft MSL)	(ft)	TPH-g	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1,2-DCE	Ethanol	Comments
ESLs (groundwate	•	2						500	27	130	43	100	1,800	18,000							
ESLs (groundwate	er is a potential re	esource) ²						100	1	40	30	20	5	12							
MCL ³	0.4/0.0/2.002		20.26	16.50					5	1,000	700	10,000	13	 	100	100	100				
MW-4	04/08/2002		38.36	16.59	0.00	21.77	1.04		< 5.0	< 5.0	28	<5.0	980	<5,000	<100	<100	<100	<100			
MW-4	07/28/2002		38.36	17.93	0.00	20.43	-1.34	18,000	<2.5	<2.5	<2.5	<5.0	170	<500	<10	<10	<10	<10			
MW-4	11/03/2002		38.36	18.66	0.00	19.70	-0.73	220	< 0.50	< 0.50	< 0.50	<1.0	5.7	<100	<2.0	<2.0	<2.0	<2.0			
MW-4	01/24/2003		38.36	16.27	0.00	22.09	2.39	<1,000	<10	<100	<100	<20	1,000	<2,000	<40	<40	<40	<40			
MW-4 MW-4	04/02/2003 07/01/2003		38.36 38.36	17.19 17.61	0.00 0.00	21.17 20.75	-0.92 -0.42	130,000 15,000	<100 <2.5	<100 <2.5	<100 <2.5	<200 <5.0	<400 170	<20,000 <500	<400 <10	<400 <10	<400 <10	<400 <10			
MW-4	10/02/2003		38.36	18.58	0.00	19.78	-0.42 -0.97	7,100	<10	<10	<10	<20	70	<2,000	<10 <40	<40	<40	<40		<1,0000	
MW-4	01/09/2004		38.36	16.15	0.00	22.21	2.43	18,000	<10	<10	<10	<20	530	<2,000	<40	<40	<40	<40		<10,000	
MW-4	04/26/2004		38.36	17.20	0.00	21.16	-1.05	6,500	<10	<10	<10	<20	240	430	<10	<20	<10	<10		<1,000	
MW-4	07/22/2004		38.36	18.34	0.00	20.02	-1.14	18,000	<10	<10	<10	<20	48	<100	<10	<20	<10	<10		<1,000	
MW-4	10/29/2004		38.36	18.13	0.00	20.23	0.21	2,700	<2.5	<2.5	<2.5	<5.0	76	63	<2.5	<5.0	<2.5	<2.5		<250	
MW-4	01/12/2005		38.36	15.22	0.00	23.14	2.91	1,300	< 0.50	< 0.50	< 0.50	<1.0	620	1,300	<2.5	<5.0	<2.5	<10		<250	
MW-4	06/20/2005		38.36	16.63	0.00	21.73	-1.41	980	< 0.50	< 0.50	< 0.50	<1.0	110	580	< 0.50	< 0.50	< 0.50	< 0.50		<1,000	
MW-4	09/23/2005		38.36	17.93	0.00	20.43	-1.30	1,500	< 0.50	< 0.50	< 0.50	<1.0	34	92	< 0.50	< 0.50	< 0.50	< 0.50		<1,000	
MW-4	12/13/2005		38.36	18.04	0.00	20.32	-0.11	3,900	< 0.50	< 0.50	< 0.50	<1.0	36	50	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	03/24/2006		38.36	14.48	0.00	23.88	3.56	1,500	<12	<12	<12	<25	200	1,900	<12	<12	<12	<12		<6,200	
MW-4	05/30/2006		38.36	15.79	0.00	22.57	-1.31	1,200	<2.5	<2.5	< 2.5	< 5.0	130	<50	<2.5	<2.5	<2.5	<2.5		<1,200	
MW-4	08/22/2006		38.36	17.26	0.00	21.10	-1.47	980	< 0.50	< 0.50	< 0.50	< 0.50	33	150	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	10/31/2006		38.36	18.08	0.00	20.28	-0.82	1,300	< 0.50	< 0.50	< 0.50	< 0.50	10	43	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	01/12/2007		38.36	17.57	0.00	20.79	0.51	820	< 0.50	< 0.50	< 0.50	< 0.50	28	72	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	04/04/2007		38.36	17.40	0.00	20.96	0.17	460	< 0.50	< 0.50	< 0.50	< 0.50	41	260	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	07/05/2007		38.36	18.02	0.00	20.34	-0.62	920	< 0.50	< 0.50	< 0.50	< 0.50	7	18	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	10/01/2007		38.36	18.89	0.00	19.47	-0.87	560	< 0.50	< 0.50	< 0.50	< 0.50	3	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	01/11/2008		38.36	16.56	0.00	21.80	2.33	340	< 0.50	< 0.50	< 0.50	<1.0	21	140	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	05/22/2008		38.36	18.10	0.00	20.26	-1.54	520	< 0.50	< 0.50	< 0.50	<1.0	5.6	52	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	07/02/2008		38.36	18.55	0.00	19.81	-0.45	340	< 0.50	< 0.50	< 0.50	<1.0	3.3	15	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	10/02/2008		38.36	19.25	0.00	19.11	-0.70	790	< 0.50	< 0.50	< 0.50	<1.0	2.4	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	01/14/2009		38.36	19.10	0.00	19.26	0.15	430	< 0.50	< 0.50	< 0.50	<1.0	2.4	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	04/16/2009		38.36	17.61	0.00	20.75	1.49	390	< 0.50	< 0.50	< 0.50	<1.0	16	170	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	07/16/2009		38.36	18.70	0.00	19.66	-1.09	310	< 0.50	< 0.50	< 0.50	<1.0	3.2	20	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	01/06/2010		38.36	18.28	0.00	20.08	0.42	380	< 0.50	< 0.50	< 0.50	<1.0	2.4	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	11/02/2011		38.36	18.27	0.00	20.09	0.01	170	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	04/06/2012		38.36	15.68	0.00	22.68	2.59	200	< 0.50	< 0.50	< 0.50	<1.0	1.7	58	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	06/13/2013		38.36	18.65	0.00	19.71	-2.97	< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
MW-4	10/07/2013		38.36	19.33	0.00	19.03	-3.65	95	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50		<250	
SB-1	09/05/2008							< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10							
SB-2	09/05/2008							3,400	< 5.0	< 5.0	< 5.0	<1.0	< 5.0	<100							
SB-3	09/05/2008							480	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10							
SB-4	09/05/2008							45,000	<12	<12	<12	<25	62	<250							
SB-5	09/05/2008							67	< 0.50	< 0.50	< 0.50	<1.0	25	120							
SB-6	09/05/2008							< 50	< 0.50	< 0.50	< 0.50	<1.0	2.0	<10							
SB-7	09/05/2008							< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10							

ARCADIS Page 4 of 5

Table 3 - Groundwater Analytical Results Union Oil Company of California Service Station Number 7124 10151 International Boulevard, Oakland, California

		Sample	TOC		LPH	GW	Change in														
Well	Date	Depth	Elevation	DTW	Thickness	Elevation	Elevation				Ethyl-	Total									
Identification	Sampled	(ft bgs)	(ft MLS)	(ft bTOC)	(ft)	(ft MSL)	(ft)	TPH-g	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1,2-DCE	Ethanol	Comments
ESLs (groundwater is not a potential resource) ¹								500	27	130	43	100	1,800	18,000							
ESLs (groundwater is a potential resource) ²								100	1	40	30	20	5	12							
MCL ³									5	1,000	700	10,000	13								
HP-1-32-36	11/18/2013	32 - 36						< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
HP-1-42-46	11/18/2013	42 - 46						< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
HP-2-30-34	11/15/2013	30 - 34						< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
HP-2-40-44	11/15/2013	40 - 44						230	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
HP-3-32-35	11/15/2013	32 - 35						< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
HP-3-39-44	11/15/2013	39 - 44						< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
HP-4-35-59	11/14/2013	35 - 59						< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
HP-4-41-45	11/14/2013	41 - 45						< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
HP-5-28-32	11/18/2013	28 - 32						< 50	< 0.50	< 0.50	< 0.50	<1.0	1.6	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
HP-5-39-42	11/18/2013	39 - 42						< 50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	

Notes

- 1) San Francisco Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) where groundwater is not a current or potential drinking water resource (Table F-1a; SFRWQCB 2013)
- 2) San Francisco Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) where groundwater is a current or potential drinking water resource (Table F-1b; SFRWQCB 2013)
- 3) California Maximum Contaminant Level (MCL) for MTBE; SFRWQCB ESL for TPH-g
- 4) Beginning in second quarter 2010 through third quarter 2011, the site was inaccessible due to the installation of a chain-link fence at the site perimeter.
- 5) All samples analyzed by EPA Method 8260B, except for TPH-g, which is analyzed by EPA Method 8015B.
- 6) Analytical results provided in micrograms per liter (ug/L), unless otherwise stated.
- 7) Hydropunch locations taken directly adjacent to CPT locations.

Standard Abbreviations

- -- Not analyzed, measured, or collected
- < Not detected at or above the method reporting limit
- TOC Top of casing
- ft bgs Feet below ground surface
- ft MSL Feet above mean sea level
- DTW Depth to water
- ft bTOC Feet below top of casing
- LPH Liquid phase hydrocarbons
- GW Groundwater
- A01 PQL's and MDL's are raised due to sample dilution.
- PQL Practical Quantitation Limit
- MDL Method Detection Limit
- **Bold** Indicates the detected concentration exceeded the ESL for groundwater as a potential water resource

Analytes

TPH-g Total petroleum hydrocarbons - gasoline range organics

MTBE Methyl tertiary-butyl ether

TBA Tertiary-butyl alcohol

DIPE Di-isopropyl ether

ETBE Ethyl tert-butyl ether

TAME Tert-amyl methyl ether

EDB 1,2-Dibromoethane

1,2-DCE 1,2-Dichloroethane

ARCADIS Page 5 of 5

						Data Ra	inge				1	Linear Regress	ion Analysis		
Well	Constituent	Well	Screening Level ¹ (µg/L)	Minimum Concentration (μg/L)	Maximum Concentration (μg/L)	Concentration Measured Most Recently (µg/L)	% of Data Above Laboratory Reporting Limit	Start Date	End Date	Coefficient of Determination, R- squared	p-value of Correlation (Significance of Slope)	Attenuation Half-life (days)	Trend Direction	Significance of Trend ²	Projected Year to Screening Level
MW-3	TPH-G	MW-3	500	50	130,000	880	97	7/28/2002	10/7/2013	0.61	< 0.01	718	Decreasing	Significant	2012 ³
MW-3	MTBE	MW-3	13	7	10,000	12	100	4/8/2002	10/7/2013	0.58	< 0.01	583	Decreasing	Significant	BCUG 6/2013

Notes

- 1) California Maximum Contaminant Level (MCL) for MTBE; San Francisco Bay Regional Water Quality Control Board Environmental Screening Level (ESL) for TPH-G
- Statistically significant trend defined as having p-value ≤ 0.05
- 3) Concentrations are fluctuating around the CUG (less than CUG in June 2013 and greater than CUG in October 2013)

Standard Abbreviations

ug/L Micrograms per liter

BCUG Below Clean-up Goal since the date indicated (shown as month/year)

MTBE Methyl tert-butyl ether

TPH-g Total petroleum hydrocarbons - gasoline range organics

Italics ND taken at reporting limit/reported value

Table 5 - Summary of Natural Biodegradation Data Union Oil Company of California Service Station Number 7124 10151 International Boulevard, Oakland, California

										Iron (II)	Dissolved	Total	
	Well	Date		Total Alkalinity						Species	Iron	Manganese	
Ide	entification	Sampled	Methane	as CaCO3	NO3	NO2	Sulfate	Total Sulfide	NVOC	(ug/L)	(ug/L)	(ug/L)	Comments
	MW-1	06/13/2013	< 0.0010	140	24	< 0.17	23	< 0.50	1.1	<100	< 50	31,000	A10
	MW-1	10/07/2013	0.015	150	26	< 0.17	22	< 0.10	3.4	<100	< 50	13,000	
	MW-2	06/13/2013	< 0.0010	180	< 0.44	< 0.17	20	< 0.10	1.0	250	120	9,700	
	MW-2	10/07/2013	0.0049	200	< 0.44	< 0.17	9.6	< 0.10	3.2	2700	260	5,600	
	MW-3	06/13/2013	0.075	260	< 0.44	< 0.17	<1.0	< 0.10	1.4	3,200	160	5,700	
	MW-3	10/07/2013	0.071	260	< 0.44	< 0.17	<1.0	< 0.10	3.1	9,000	710	9,600	A01
	MW-4	06/13/2013	< 0.0010	210	< 0.44	< 0.17	15	< 0.50	4.7	5,200	< 50	7,900	A01, A10
	MW-4	10/07/2013	< 0.0010	190	< 0.44	< 0.17	18	< 0.10	8.2	13,000	220	5,000	A01

Notes:

1) Analytical results given in milligrams per liter (mg/l), unless otherwise stated.

Abbreviations:

-- Not analyzed, measured, or collected

< Not detected at or above the laboratory detection limit

ug/l Micrograms per Liter

CaCO3 Calcium Carbonate

NO3 Nitrate

NO2 Nitrite

NVOC Non-Volatile Organic Carbon

PQL Practical Quantitation Limit

MDL Method Detection Limit

A01 PQL's and MDL's are raised due to sample dilution.

A10 PQL's and MDL's were raised due to matrix interference.

Analytes

Methane RSK-175M

Total Alkalinity EPA Method 310.1
Nitrate EPA Method 300.0
Nitrite EPA Method 353.2
Sulfate EPA Method 300.0
Total Sulfide Method SM-4500SD
NVOC EPA Method 415.1
Iron (II) Species Method SM-3500-FeD
Dissolved Iron EPA Method 6010B
Total Manganese EPA Method 6010B

ARCADIS Page 1 of 1

Figures

PM:K. ABBOTT TM:K. ABBOTT LYR:(Opt)ON=";OFF="REF" LAYOUT: 1SAVED: 3/11/2011 4:53 AM ACADVER: 18.0S (LMS TECH) PAGESETUP: CITY: PETALUMA, CA DIVIGROUP: ENV DB: J. HARRIS LD: J. HARRIS PIC: J. VOGELEY C:Documents and Settingsljharris/Desktop/ENVCAD\B0047297\00010WG\47297\01104Wg

- BASE MAP PROVIDED BY TRC, DATED JANUARY 2010, AT A SCALE OF 1"=20'. ADDITIONAL SITE INFORMATION PROVIDED BY STANTEC, DATED SEPTEMBER 23, 2008, AT
- 2. ALL SITE FEATURES AND LOCATIONS ARE APPROXIMATE.
- ALL MONITORING WELLS WERE SAMPLED AND GAUGED ON OCTOBER 7, 2013.

UNION OIL STATION NO. 7124 10151 INTERNATIONAL BOULEVARD OAKLAND, CALIFORNIA

BENZENE CONCENTRATION MAP

FIGURE

Appendix A

Site History

ARCADIS

The Site is a former Royal-branded service station that is currently a fenced-off, non-operational service station located at 10151 International Boulevard in Oakland, California. Four groundwater monitoring wells (MW-1 through MW-4) have been sampled semi-annually since their installation in 2002. Access issues, including the construction of a chain link fence surrounding the site, have prohibited sampling during part of 2011. Existing site features include two dispenser islands under a common canopy, a station kiosk, and three 10,000-gallon gasoline underground storage tanks (USTs). Based on available information, the site has been a gasoline service station since at least 1997.

In 1997, a soil gas survey was conducted in order to determine baseline concentrations of petroleum hydrocarbons in soil vapor at the site. Five soil gas probes were installed in the vicinity of the USTs, product islands, and product piping. Two of the samples were collected from the UST area at depths ranging from 3 to 15 feet below ground surface (bgs). The remaining three samples were collected near the product dispenser islands at depths of approximately 3 feet bgs. Grab soil vapor samples were collected. Soil vapor samples were analyzed from total petroleum hydrocarbons in the gasoline range (TPH-g), benzene, toluene, ethylbenzene, and total xylenes (BTEX, collectively), and methyl tertiary butyl ether (MTBE). Laboratory analytical results were not available in the referenced material reviewed (Pacific Environmental Group 1997).

In March 2000, the product lines and dispensers were removed and replaced. Eight soil samples were collected from beneath the product dispensers and three soil samples were collected from beneath the product lines. Soil samples were analyzed for TPH-g, BTEX, and MTBE. TPH-g and benzene were detected in 6 of the 11 samples collected, and MTBE was detected in 7 of the 11 samples collected. The maximum concentrations of TPH-g, benzene, and MTBE were 6,200, 7.4, and 120 milligrams per kilogram (mg/kg), respectively, all collected beneath the product dispensers. Approximately 60 cubic yards of soil was excavated from areas that exhibited high concentrations of petroleum hydrocarbons. Three confirmation samples were collected from the base of the excavation area and analyzed for TPH-g, benzene, and MTBE. TPH-g was detected in two of the samples collected at a maximum concentration of 108 mg/kg. Benzene was detected in one of the samples collected at a concentration of 0.162 mg/kg. MTBE was detected in all of the soil samples collected at a maximum concentration of 43.8 mg/kg. Other stockpiled soil generated during these site activities was analyzed for TPH-g and BTEX. This soil did not reveal significant concentrations of petroleum hydrocarbons. Approximate 133 cubic yards of non-hazardous waste soil was ultimately removed from the site (Secor International Incorporated [SECOR] 2000a).

In February 2002, groundwater monitoring wells MW-1 through MW-4 were installed at the site. The wells were advanced to 25 feet bgs, with a screened interval from 10 to 25 feet bgs. Soil samples were collected during the well installation activities and analyzed for TPH-g, BTEX, MTBE, and other fuel oxygenates. Groundwater samples were also collected and analyzed for TPH-g, BTEX, and MTBE. TPH-g and MTBE were detected in the soil samples collected from monitoring wells MW-2, MW-3, and MW-4. The maximum concentrations of TPH-g and MTBE were 42 and 1.2 mg/kg, respectively, both collected in MW-3 at a depth of 16 feet bgs. The maximum concentration of TPH-g (13,000 micrograms per liter [μ g/L]) was detected in the groundwater sample collected from MW-4. The maximum concentrations of benzene (65 μ g/L), ethylbenzene (400 μ g/L), and MTBE (8,300 μ g/L) were detected in the groundwater sample collected from MW-3 (SECOR 2002b).

ARCADIS

In September 2008, seven soil borings (SB-1 through SB-7) were advanced (two on-site and five off-site). The soil borings were advanced to depths ranging from 30 to 40 feet bgs and a grab groundwater sample was collected from each boring. Soil and groundwater samples were analyzed for TPH-g, BTEX, MTBE and other fuel oxygenates. MTBE (0.062 mg/kg) and tert-butyl alcohol (TBA; 0.15 mg/kg) were the only analytes detected above environmental screening levels in the soil sample collected from SB-1 at 15 feet bgs. The following summary of groundwater data indicate concentrations of constituents detected above environmental screening levels. TPH-g was detected in the groundwater samples collected from SB-2 through SB-4 at concentrations ranging from 480 to 45,000 μ g/L. MTBE was detected in the groundwater samples collected from SB-4 and SB-5 at concentrations of 62 μ g/L and 25 μ g/L, respectively. TBA was detected in the groundwater sample collected from SB-5 at a concentration of 120 μ g/L (Stantec Consulting Corporation 2008).

References:

Pacific Environmental Group, Inc. 1997. Soil Gas Survey Results, UNOCAL Service Station 7124, 10151 E 14th St, Oakland, California. October 29.

Secor International Incorporated (SECOR) 2000a. Removal and Replacement of Product Lines and Dispensers, Tosco (Unocal) Service Station #77124, 10151 East 4th Street, Oakland, California. April 14.

SECOR 2002b. Groundwater Monitoring Well Installation, Tosco Service Station No. 7124, 10151 East 14th Street, Oakland, California. May 14.

Stantec Consulting Corporation 2008. Additional Assessment Report, Former 76 Service Station No. 7124, 10151 International Blvd., Oakland, California. October 15.

Appendix B

Boring Logs

GREGG DRILLING & TESTING, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

November 14, 2013

Arcadis

Attn: Kathy Brandt

Subject: CPT Site Investigation

Chevron Facility #351638, 10151 International Blvd.

Oakland, California

GREGG Project Number: 13-186MA

Dear Ms. Brandt:

The following report presents the results of GREGG Drilling & Testing's Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

1	Cone Penetration Tests	(CPTU)	
2	Pore Pressure Dissipation Tests	(PPD)	
3	Seismic Cone Penetration Tests	(SCPTU)	, Tra
4	UVOST Laser Induced Fluorescence	(UVOST)	so D
5	Groundwater Sampling	(GWS)	
6	Soil Sampling	(SS)	
7	Vapor Sampling	(VS)	
8	Pressuremeter Testing	(PMT)	
9	Vane Shear Testing	(VST)	
10	Dilatometer Testing	(DMT)	

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (925) 313-5800.

Sincerely,

GREGG Drilling & Testing, Inc.

Mayabeden

Mary Walden

Operations Manager

GREGG DRILLING & TESTING, INC. GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Cone Penetration Test Sounding Summary

-Table 1-

CPT Sounding	Date	Termination	Depth of Groundwater	Depth of Soil	Depth of Pore
Identification		Depth (feet)	Samples (feet)	Samples (feet)	Pressure Dissipation
					Tests (feet)
CPT-01	11/13/13	66	-	-	-
CPT-02	11/13/13	44	-	-	44.6
CPT-03	11/12/13	41	-	-	41.5
CPT-04	11/12/13	43	-	-	38.7
CPT-05	11/13/13	44	-	-	44.6
	_				

GREGG DRILLING & TESTING, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Bibliography

Lunne, T., Robertson, P.K. and Powell, J.J.M., "Cone Penetration Testing in Geotechnical Practice" E & FN Spon. ISBN 0 419 23750, 1997

Roberston, P.K., "Soil Classification using the Cone Penetration Test", Canadian Geotechnical Journal, Vol. 27, 1990 pp. 151-158.

Mayne, P.W., "NHI (2002) Manual on Subsurface Investigations: Geotechnical Site Characterization", available through www.ce.gatech.edu/~geosys/Faculty/Mayne/papers/index.html, Section 5.3, pp. 107-112.

Robertson, P.K., R.G. Campanella, D. Gillespie and A. Rice, "Seismic CPT to Measure In-Situ Shear Wave Velocity", Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8, 1986 pp. 791-803.

Robertson, P.K., Sully, J., Woeller, D.J., Lunne, T., Powell, J.J.M., and Gillespie, D.J., "Guidelines for Estimating Consolidation Parameters in Soils from Piezocone Tests", Canadian Geotechnical Journal, Vol. 29, No. 4, August 1992, pp. 539-550.

Robertson, P.K., T. Lunne and J.J.M. Powell, "Geo-Environmental Application of Penetration Testing", Geotechnical Site Characterization, Robertson & Mayne (editors), 1998 Balkema, Rotterdam, ISBN 9054109394 pp 35-47.

Campanella, R.G. and I. Weemees, "Development and Use of An Electrical Resistivity Cone for Groundwater Contamination Studies", Canadian Geotechnical Journal, Vol. 27 No. 5, 1990 pp. 557-567.

DeGroot, D.J. and A.J. Lutenegger, "Reliability of Soil Gas Sampling and Characterization Techniques", International Site Characterization Conference - Atlanta, 1998.

Woeller, D.J., P.K. Robertson, T.J. Boyd and Dave Thomas, "Detection of Polyaromatic Hydrocarbon Contaminants Using the UVIF-CPT", 53rd Canadian Geotechnical Conference Montreal, QC October pp. 733-739, 2000.

Zemo, D.A., T.A. Delfino, J.D. Gallinatti, V.A. Baker and L.R. Hilpert, "Field Comparison of Analytical Results from Discrete-Depth Groundwater Samplers" BAT EnviroProbe and QED HydroPunch, Sixth national Outdoor Action Conference, Las Vegas, Nevada Proceedings, 1992, pp 299-312.

Copies of ASTM Standards are available through www.astm.org

Sounding: CPT-01

Engineer: K.BRANDT

Date: 11/14/2013 02:56

Max. Depth: 66.109 (ft) Avg. Interval: 0.328 (ft)

Sounding: CPT-02

Engineer: K.BRANDT

Date: 11/13/2013 09:11

Avg. Interval: 0.328 (ft)

Sounding: CPT-03

Engineer: K.BRANDT

Date: 11/12/2013 02:03

Avg. Interval: 0.328 (ft)

Sounding: CPT-04

Engineer: K.BRANDT

Date: 11/12/2013 11:32

Avg. Interval: 0.328 (ft)

Sounding: CPT-05

Engineer: K.BRANDT

Date: 11/14/2013 12:03

Avg. Interval: 0.328 (ft)

SOIL CLASSIFICATION CHART

		IL CLASSII			
I м	AJOR DIVISI	ONS	_	BOLS	TYPICAL
	ACCION DIVION		GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE- GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
}				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE				мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SILE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
н	GHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: SOR, CONDITIONS INDICATED BY BORING LOGS APPLY AT THE LOCATION OF THE PARTICULAR BORING AND AT THE TIME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THE BORING LOCATION WITH THE PASSAGE OF TIME, DATA PRESENTED IN THE LOGS REPRESENTS A SMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED. SOIL CONDITIONS INDICATED BETWEEN SAMPLE INTERVALS ARE INFERRED.

Depth, (ft.)	Boring Diam.(in.): 10 Blows/15 Blows/15	SEI	Surface ilev.(ft.): 37.73	⊽	Groundwater Depth (ft. 17 First Water 15 Stabilized Water Lithologic	er	Total Depth (ft.): 26.5	Drive wt.(lbs.): 140	Dist.	op (in.);	
-	Sample Recovery Blows/12"				Lithologic	Descri				5	
-						Descri	ption			PID (ppm)	
40	6		YELLOWI grained san Hand auger	d sand ISH B nd, loo red to	ISH BROWN (10 YF d, damp, loose (70, 2 BROWN (10 YR 5/4) ose, damp (0, 20, 75, o 5 feet below ground N (7.5 YR 4/2) increa	25, 5, 0) SAND , 5) d surface	Y SILT (ML) tr	race clay, fine		0.4	
10-	17		BROWN (10 YR 4/3) SILTY CLAY (CL) trace fine grained sand, stiff, moist, dark brown mottling (0, 5, 30, 65)								
y ¥ 15	15		Grades BL	ACK	(5 Y 2.5/2) increasin	ng clay o	content, orange	veins (0, 5, 26	0, 75)	1	
20—	16		Grades OLIVE BROWN (2.5 Y 4/4) increasing fine grained sand and silt content, wet (0, 20, 30, 50)						1	0	
y 25	20							(0, 0, 20, 80)	·	1	
y	10—	10 17 17 15 15 16 20 20 20 20 20	10 17 15 15 16 20 20 20 20 20 20 20 20 20 20 20 20 20	Grades BROWN (1) BROWN (1) dark brown 15 Grades BLA Grades OLI content, we 25 Bottom of b	Grades BROWN BROWN (10 YR dark brown mott Grades BLACK Grades OLIVE B content, wet (0, 2) Grades DARK B Bottom of boring	Grades BROWN (7.5 YR 4/2) increase BROWN (10 YR 4/3) SILTY CLAY dark brown mottling (0, 5, 30, 65) Grades BLACK (5 Y 2.5/2) increasing Grades OLIVE BROWN (2.5 Y 4/4) content, wet (0, 20, 30, 50) Grades DARK BROWN (2.5 Y 4/4) Bottom of boring @ 26.5 feet below	Grades BROWN (7.5 YR 4/2) increasing said and brown mottling (0, 5, 30, 65) BROWN (10 YR 4/3) SILTY CLAY (CL) to dark brown mottling (0, 5, 30, 65) Grades BLACK (5 Y 2.5/2) increasing clay of the content, wet (0, 20, 30, 50) Grades OLIVE BROWN (2.5 Y 4/4) increasing clay of the content, wet (0, 20, 30, 50) Grades DARK BROWN (2.5 Y 4/4) increasing clay of the content, wet (0, 20, 30, 50) Bottom of boring @ 26.5 feet below ground	Grades BROWN (7.5 YR 4/2) increasing sand content (0, 30 dark brown mottling (0, 5, 30, 65) BROWN (10 YR 4/3) SILTY CLAY (CL) trace fine grained dark brown mottling (0, 5, 30, 65) Grades BLACK (5 Y 2.5/2) increasing clay content, orange content, wet (0, 20, 30, 50) Grades OLIVE BROWN (2.5 Y 4/4) increasing fine grained content, wet (0, 20, 30, 50) Grades DARK BROWN (2.5 Y 4/4) increasing clay content Bottom of boring @ 26.5 feet below ground surface	Grades BROWN (7.5 YR 4/2) increasing sand content (0, 30, 65, 5) BROWN (10 YR 4/3) SILTY CLAY (CL) trace fine grained sand, stiff, r dark brown mottling (0, 5, 30, 65) Grades BLACK (5 Y 2.5/2) increasing clay content, orange veins (0, 5, 2) Grades OLIVE BROWN (2.5 Y 4/4) increasing fine grained sand and silt content, wet (0, 20, 30, 50) Grades DARK BROWN (2.5 Y 4/4) increasing clay content (0, 0, 20, 80)	Grades BROWN (7.5 YR 4/2) increasing sand content (0, 30, 65, 5) BROWN (10 YR 4/3) SILTY CLAY (CL) trace fine grained sand, stiff, moist, dark brown mottling (0, 5, 30, 65) Grades BLACK (5 Y 2.5/2) increasing clay content, orange veins (0, 5, 20, 75) Grades OLIVE BROWN (2.5 Y 4/4) increasing fine grained sand and silt content, wet (0, 20, 30, 50) Grades DARK BROWN (2.5 Y 4/4) increasing clay content (0, 0, 20, 80) Bottom of boring @ 26.5 feet below ground surface	

The substrata descriptions above are generalized representations the substrata description of cuttings and/or samples obtained during drilling. Predominant material type to another could be different material type to another could be different material. The priors on this log apply only at the specific location at the time of drilling and may not be representative of product of the priors of times.

Project No. 6TO.03996.00

Date 3/12/02

MW'S.GPJ LOG OF BOREHOLE DOUGLAS T YOUNG

5859

Log of Well: MW-1

Approved by

Figure (sheet 1 of 1)

Light Solid Casing Elev: 37.87 Sand Whole Casing Elev: 37.87 Casing Elev: 37.87	Logged By: Date	Drilled:		illing Cont		$\overline{}$	Pro	ject N	Vame:			Method/Equipm		Well Nu	ımber:
Charry for USCS Soil Classifications Diam (iii) Sa.27 Ia.5 First Water Depth (ii) Wi (lib.) Dist (iii)	LF 3	/1/02	V				Tos	sco#	7124					MW	/-2
Well Construction Casing Elev.: 37.87 Christy Box Grout 4" Sch. 40 PVC Blank Seal Bentonite Seal Content (0, 30, 65, 5) Collive Brown (2.5 Y 2/2) Sill CLAY (CL) trace fine subangular gravel, very stiff, damp (5, 0, 15, 80) Collive Brown (2.5 Y 3/2) increasing clay content, orange montling, petroleum odor (0, 0, 10, 90) Grades with increasing silt, wet (0, 0, 20, 80) Grades with increasing clay (0, 0, 10, 90) Casing Elev.: 37.87 Asphalt Fill - YELLOWISH BROWN (10 YR 5/4) SANDY GRAVEL (GP) trace silt, fine grained sand, loose, damp (70, 25, 5, 0) LIGHT OLIVE BROWN (2.5 Y 5/4) SANDY SILT (ML) trace clay, fine grained sand, loose, damp (0, 20, 75, 5) Grades VERY DARK GRAYISH BROWN (2.5 Y 3/2) Hand augered to 5 feet below ground surface Grades LIGHT OLIVE BROWN (2.5 Y 5/6) increasing fine grained sand content (0, 30, 65, 5) OLIVE BROWN (2.5 Y 2/2) SILT CLAY (CL) trace fine subangular gravel, very stiff, damp (5, 0, 15, 80) Grades DARK OLIVE GRAY (5 Y 3/2) increasing clay content, orange montling, petroleum odor (0, 0, 10, 90) Grades with increasing silt, wet (0, 0, 20, 80) Grades with increasing clay (0, 0, 10, 90)	Chart" for USCS Soil	חנ	Diar	ım.(in.):	EI	Elev.(ft.): ☐ 18.5 First Water				Water		Depth (ft.):	wt.(lbs.):	Dist.	(in.):
4" Sch. 40 PVC Blank Bentonite Scal 18 Condes VERY DARK GRAYISH BROWN (2.5 Y 3/2)	Construction	Depth, (ft.)	Sample Recovery	Blows/12"		Lithologic Description								PID (ppm)	
Monterey Sand 13 Grades DARK OLIVE GRAY (5 Y 3/2) increasing clay content, orange mottling, petroleum odor (0, 0, 10, 90) 0.1 4" Sch. 40 0.020" Slotted PVC Screen End Cap #3 Monterey Grades with increasing silt, wet (0, 0, 20, 80) Grades with increasing clay (0, 0, 10, 90)	Christy Box Grout 4" Sch. 40 PVC Bland Bentonite Seal	s –				Fill - YELL fine grained LIGHT OL grained san Grades VEI Hand auger Grades LIG content (0, 1	IVE id, lo RY I red to 30, o	DAR to 5 fe OLL OS, 5	oose, dam OWN (2 damp (0 K GRAY eet below VE BRO)	sp (70, 2 5 Y 5/4) , 20, 75, YISH BR v ground wN (2.5	5, 5, 0) SAND 5) COWN (surface 5 Y 5/6)	Y SILT (ML) to (2.5 Y 3/2)	race clay, find	đ	
PVC Screen 10 Grades with increasing sitt, wet (0, 0, 20, 80) End Cap #3 Grades with increasing clay (0, 0, 10, 90)	Sand 4" Sch. 40 0.020"	*		13								easing clay con	tent, orange		0.1
#3 Monterey Grades with increasing clay (0, 0, 10, 90)	PVC Screen	20-		10		Grades with	inc	reasi	ng silt, w	vet (0, 0,	20, 80))			0
	#3 Monterey	25—	-	28								surface			6.9

The substrata descriptions above are generalized representations and the substrata descriptions above are generalized representations and the substrate obtained during drilling. Predominant material types of the substrated contain different materials and the change from one predominant material type to another could be different for producted. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of substrate conditions at other legations or times.

Project No. 6TO.03996.00

Date 3/12/02

MW'S.GPJ LOG OF BOREHOLE DOUGLAS T YOUNG
5859

Log of Well: MW-2

Approved by

Figure

(sheet 1 of 1)

	Drilled:		lling Cont Voodwa	rd			ject Name;		Method/Equipm CA Split Spo	on	Well N	
LF 2/2 See "Soil Classification Chart" for USCS Soil Classifications	18/02 n	Dia	Drillin oring m.(in.):	S El	urface ev.(ft.):	Tos	Groundwater Depth (ft. 17 First Water 16 Stabilized Wate		Total Depth (ft.): 26.5	Drive wt.(lbs.): 140	Dist	v-3 rop .(in.):
Well Construction Casing Elev.: 37.72	Depth, (ft.)	Sample Recovery	Blows/12"					PID (ppm)				
Christy Box Grout 4" Sch. 40 PVC Blank Bentonite Seal	5-		12		sand, loose Hand auger Grades DA	, dan red to RK (N (10 YR 3/3) SAND np (0, 20, 75, 5) o 5 feet below ground GRAYISH BROWN (content, increasing s	surfac	e 4/2) increasing			28
	10-		23		VERY DAl grained san	RK E d, ve	BROWN (10 YR 2/2) ery stiff, damp (0, 5, 2	SILTY 20, 70)	CLAY (CL) tr	ace fine to co	arse	10.5
#3 Monterey Sand 4" Sch. 40	15- ¥	***	38		Grades BL/ (0, 0, 10, 90	ACK))	(2.5 Y 2.5/1) increas	ing clay	y content, petro	leum odor		2.5
0.020" Slotted PVC Screen	20-	***	14		Grades DA (0, 0, 40, 60		GRAY (5 Y 4/1) incre	easing s	ilt content, wet,	, petroleum o	dor	208
End Cap #3 Monterey Sand	25-		22		0, 0, 15, 85	5)	GRAY (5Y 5/2) incre					470

The substrata descriptions above are generalized representations and based and visual/manual classification of cuttings and/or samples obtained during drilling. Predominant material types should be different that the contain different materials and the change from one predominant material type to another could be different that the country of drilling and may not be representative of subsurface onditions at other leadings or times.

Project No. 6TO.03996.00

Date 3/12/02

MW'S.GPJ LOG OF BOREHOLE DOUGLAS T YOUNG
5859

SPACE OF CALIFORNIA

Log of Well: MW-3

Approved by

Figure

(sheet 1 of 1)

	Drilled:	W	ng Cont oodwa Drillin	ırd		-	ect Name:		Method/Equipm CA Split Spo 580B OVM	on	Well No	
See "Soil Classification Chart" for USCS Soil Classifications	1	Bori Diam.	.(in.):	E	Elev.(ft.):				Total Depth (ft.): 26.5	Drive wt.(lbs.); 140	Dist.	rop (in.): 60
Well Construction Casing Elev.: 38.36	Depth, (ft.)	Sample Recovery Blows/12"					Lithologic	Descri	ption			PID (nom)
Christy Box Grout 4" Sch. 40 PVC Blank Bentonite Seal	10-		22		Grades LIG fine grained Hand auger	HT of san	GRAYISH BROWN (d (0, 15, 65, 20) OLIVE BROWN (2.3 d, loose, damp (0, 20 o 5 feet below ground SH BROWN (2.5 Y 5 ery stiff, damp, orang	5 Y 5/4) 9, 75, 5) 1 surface) SANDY SILT e AYEY SILT (M	(ML), trace of	clay,	2.5
Sand 4" Sch. 40 0.020" Slotted	20-		30		petroleum o	odor	(5 Y 4/2) SILTY CL/ (0, 0, 30, 70)					20
PVC Screen End Cap	25—		12		odor (0, 0, 2	25, 7	DARK GRAY (5 Y 3/5)			eni, wet, peti	oleum	17
Monterey Sand	-		8				g @ 26.5 feet below					35

The substrata descriptions above are generalized representations and based upon visual/manual classification of cuttings and/or samples obtained during drilling. Predominant material types shows a substrate or may contain different materials and the change from one predominant material type to another could be different that additions in this log apply only at the specific location at the time of drilling and may not be representative of substrate of substrate and upon visual/manual classification of cuttings and/or samples obtained during drilling and the change from one predominant material type to another could be different that additions a contain of the could be different that additions are contained to the could be different that the could be different that additions are contained to the could be different that addition of the could be different to the could be different that addition of the could be different to the could be different that addition of the could be different that addit

Project No. 6TO.03996.00

Date 3/12/02

MW'S.GPJ LOG OF BOREHOLE DOUGLAS T YOUNG
5859

Log of Well: MW-4

Approved by

Figure

(sheet 1 of 1)

PROJECT: ConocoPhilips Circle K Store No. 7124 LOCATION: 10151 International Boulevard, Oakland, CA

PROJECT NUMBER: **77CP.01634.44**

STARTED 9/5/08 COMPLETED: 9/5/08 INSTALLATION: STARTED 9/5/08 COMPLETED: 9/5/08

DRILLING COMPANY: Test America Drilling

DRILLING EQUIPMENT: Geoprobe DRILLING METHOD: Direct Push SAMPLING EQUIPMENT: Macro Core

DRILLING:

WELL / PROBEHOLE / BOREHOLE NO:

SB-1 PAGE 1_OF 1

NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft):

INITIAL DTW (ft): 21.5 9/5/08 BOREHOLE DEPTH (ft): 40.0

STATIC DTW (ft): **NE**

WELL CASING DIAMETER (in): ---LOGGED BY: B. Deboer

WELL DEPTH (ft): ---BOREHOLE DIAMETER (in): 2.75

PROJECT: ConocoPhilips Circle K Store No. 7124 LOCATION: 10151 International Boulevard, Oakland, CA PROJECT NUMBER: **77CP.01634.44**

COMPLETED: 9/3/08

STARTED 9/3/08 INSTALLATION: STARTED 9/3/08 COMPLETED: 9/3/08

DRILLING COMPANY: Test America Drilling

DRILLING EQUIPMENT: Geoprobe DRILLING METHOD: Direct Push

DRILLING:

WELL / PROBEHOLE / BOREHOLE NO:

STATIC DTW (ft): **NE**

SB-2 PAGE 1_OF 1

NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft): INITIAL DTW (ft): 17.8 9/3/08

BOREHOLE DEPTH (ft): 30.5

WELL DEPTH (ft): ---

BOREHOLE DIAMETER (in): 2.75

WELL CASING DIAMETER (in): ---SAMPLING EQUIPMENT: Macro Core LOGGED BY: C. Melancon CHECKED BY: B. Chevlen Sample Graphic Log USCS Time & Depth (feet) Blow PID (units) Depth (feet) Time Description Sample ID Asphalt with baserock SM SILTY SAND; SM; 10YR-5/3 brown; fine-grained; medium dense; moist; poorly graded; (0,60,40,0) ML SILT WITH CLAY; ML; 10YR-4/2 dark grayish brown; medium plasticity; medium stiff; moist; (0,0,80,20) 0915 5 SILTY CLAY; CL; 10YR-3/1 very dark gray; medium plasticity; very CL 0.0 SB-2,5' stiff; moist; (0,0,20,80) 0930 10 10 0.0 SB-2,10' SILTY SAND; SM; 10YR3/2 very dark grayish brown; medium dense; moist; (0,60,40,0) Slight odor 0940 15 15 0.0 SB-2,15' FAT CLAY; CH; 2YR4/1 very dark gray; high plasticity; very stiff; CH moist; (0,0,0,100) 7.5YR3/2 dark brown 1005 20 20 SANDY SILT WITH CLAY; ML; 2.5YR5/3 light olive brown; medium ML 2.0 SB-2,20' plasticity; medium stiff; moist; (0,0,80,20) СН 1010 FAT CLAY; CH; 7.5YR3/1 very dark gray; high plasticity; very stiff; 30.0 SB-2,21.5' moist; strong odor (0,0,0,100) 2.5YR5/1 gray 1010 25 25 SILT WITH CLAY; ML; 2.5YR5/2 grayish brown; medium plasticity; 0.0 ML SB-2,25' stiff; moist; medium dilatency; medium toughness; (0,0,75,25) 10YR4/3 dark yellowish brown; trace staining 30 1050 30 0.0 SB-2,30' Grab groundwater sample contained product sheen Hole terminated at 30.5 feet. 35 35 40 40

PROJECT: ConocoPhilips Circle K Store No. 7124 LOCATION: 10151 International Boulevard, Oakland, CA PROJECT NUMBER: **77CP.01634.44**

STARTED 9/4/08 COMPLETED: 9/4/08 INSTALLATION: STARTED 9/4/08 COMPLETED: 9/4/08

DRILLING COMPANY: Test America Drilling

DRILLING EQUIPMENT: Geoprobe DRILLING METHOD: Direct Push SAMPLING EQUIPMENT: Macro Core

DRILLING:

WELL / PROBEHOLE / BOREHOLE NO:

SB-3 PAGE 1 OF 1

NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft):

INITIAL DTW (ft): 18.7 9/4/08 BOREHOLE DEPTH (ft): 30.0 STATIC DTW (ft): **NE**

WELL DEPTH (ft): ---

WELL CASING DIAMETER (in): ---BOREHOLE DIAMETER (in): 2.75 LOGGED BY: C. Melancon CHECKED BY: B. Chevlen

PROJECT: ConocoPhilips Circle K Store No. 7124 WELL / PROBEHOLE / BOREHOLE NO: LOCATION: 10151 International Boulevard, Oakland, CA PROJECT NUMBER: **77CP.01634.44** NORTHING (ft): DRILLING: **STARTED 9/3/08** COMPLETED: 9/3/08

SB-4 PAGE 1 OF 1

LATITUDE:

EASTING (ft): LONGITUDE:

TOC ELEV (ft): BOREHOLE DEPTH (ft): 30.0

WELL DEPTH (ft): ---BOREHOLE DIAMETER (in): 2.75

CHECKED BY: B. Chevlen

DRILLING COMPANY: Test America Drilling

DRILLING METHOD: Direct Push

SECOR INTL.GDT

INSTALLATION: STARTED 9/3/08

GROUND ELEV (ft): INITIAL DTW (ft): 19.3 9/3/08 DRILLING EQUIPMENT: Geoprobe STATIC DTW (ft): **NE** WELL CASING DIAMETER (in): ---SAMPLING EQUIPMENT: Macro Core LOGGED BY: C. Melancon

COMPLETED: 9/3/08

Sample Graphic Log USCS Time & Depth (feet) Blow Count PID (units) Depth (feet) Time Description Sample ID Asphalt with baserock SM SILTY SAND LITTLE ORGANICS; SM; 10YR5/3 brown; moist; little micropores; (0,60,40,0) 1510 5 0.0 SB-4,5' CLAY LITTLE FINE SAND LITTLE SILT: CL: 7.5YR3/1 very dark gray; high plasticity; very stiff; moist; (0,10,10,80) 1520 10 10 0.0 SB-4,10' ML SANDY SILT WITH CLAY; ML; 2.5YR5/3 light olive brown; medium plasticity; medium stiff; moist; (0,30,50,20) 1530 15 15 0.0 SB-4,15' FAT CLAY TRACE SILT; CH; 10YR4/1 dark gray; high plasticity; stiff; moist; (0,0,5,95) 1600 20 0.0 SB-4,20' SM SILTY SAND TRACE CLAY; SM; 5YR4/1 very dark gray; fine-grained; moist; poorly graded; (0,60,35,5) PID reading 10 FAT CLAY TRACE SILT; CH; 10YR4/1 dark gray; high plasticity; stiff; СН moist; strong odor; (0,0,5,95) 1630 25 25 24 SB-4,28' 571 PID reading SM SILTY SAND TRACE CLAY; SM; 5YR4/1 very dark gray; fine-grained; moist; strong odor; poorly graded; product sheen observed; poor recovery; (0,60,35,5) FAT CLAY TRACE SILT; CH; 10YR4/1 dark gray; high plasticity; stiff; moist; moderate odor; (0,0,5,95) 30 1635 30 10 Hole terminated at 30 feet. SB5,29.5' 35 35 40 40

PROJECT: ConocoPhilips Circle K Store No. 7124 LOCATION: 10151 International Boulevard, Oakland, CA

PROJECT NUMBER: **77CP.01634.44**

STARTED 9/3/08 COMPLETED: 9/3/08 INSTALLATION: STARTED 9/3/08 COMPLETED: 9/3/08

DRILLING COMPANY: Test America Drilling

DRILLING EQUIPMENT: Geoprobe DRILLING METHOD: Direct Push SAMPLING EQUIPMENT: Macro Core

DRILLING:

WELL / PROBEHOLE / BOREHOLE NO:

SB-5 PAGE 1_OF 1

NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft):

INITIAL DTW (ft): 19.7 4/10/08

STATIC DTW (ft): **NE**

WELL CASING DIAMETER (in): ---

BOREHOLE DEPTH (ft): 30.0

WELL DEPTH (ft): ---

BOREHOLE DIAMETER (in): 2.75 CHECKED BY: B. Chevlen

PROJECT: ConocoPhilips Circle K Store No. 7124 LOCATION: 10151 International Boulevard, Oakland, CA PROJECT NUMBER: 77CP.01634.44

COMPLETED: 9/5/08

INSTALLATION: STARTED 9/5/08 COMPLETED: 9/5/08

DRILLING COMPANY: Test America Drilling

STARTED 9/5/08

DRILLING EQUIPMENT: **Geoprobe**DRILLING METHOD: **Direct Push**SAMPLING EQUIPMENT: **Macro Core**

DRILLING:

WELL / PROBEHOLE / BOREHOLE NO:

SB-6 PAGE 1 OF 1

NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft):

INITIAL DTW (ft): 33.70 9/5/08

STATIC DTW (ft): **NE**

WELL CASING DIAMETER (in): --- LOGGED BY: **B. Deboer**

TOC ELEV (ft):
BOREHOLE DEPTH (ft): **30.0**

WELL DEPTH (ft): ---

BOREHOLE DIAMETER (in): 2.75 CHECKED BY: **B. Chevlen**

CONOCOPHILLIPS.GPJ SECOR INTL.GDT

PROJECT: ConocoPhilips Circle K Store No. 7124 LOCATION: 10151 International Boulevard, Oakland, CA

PROJECT NUMBER: **77CP.01634.44**

STARTED 9/4/08 INSTALLATION: STARTED 9/4/08 COMPLETED: 9/4/08 COMPLETED: 9/4/08

DRILLING COMPANY: Test America Drilling

DRILLING EQUIPMENT: Geoprobe DRILLING METHOD: Direct Push SAMPLING EQUIPMENT: Macro Core

DRILLING:

WELL / PROBEHOLE / BOREHOLE NO:

SB-7 PAGE 1_OF 1

NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft):

INITIAL DTW (ft): 21.0 9/4/08 BOREHOLE DEPTH (ft): 34.0

STATIC DTW (ft): **NE** WELL DEPTH (ft): ---

WELL CASING DIAMETER (in): ---BOREHOLE DIAMETER (in): 2.75 LOGGED BY: C. Melancon CHECKED BY: B. Chevlen

Appendix C

Well Permits

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 11/06/2013 By jamesy Permit Numbers: W2013-0901 to W2013-0902 Permits Valid from 11/12/2013 to 11/22/2013

Application Id: 1383064736395 City of Project Site:Oakland

Site Location: 10151 International Boulevard, Oakland, CA

Project Start Date: 11/12/2013 Completion Date:11/22/2013
Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org

Applicant: Arcadis - Katie Wynne Phone: 916-865-3172

101 Creekside Ridge Ct #200, Roseville, CA 95678

Property Owner: Inrahim Abbushi 10125 International Blvd, Oakland, CA 94603

Client: Tim Bishop Chevron Phone: 925-790-6463

6101 Bollinger Canyon Road, San Ramon, CA 94583

Total Due: \$530.00

Receipt Number: WR2013-0416 Total Amount Paid: \$530.00

Payer Name : Arcadis Paid By: CHECK PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 5 Boreholes

Driller: Gregg - Lic #: 485165 - Method: other Work Total: \$265.00

Specifications

 Permit
 Issued Dt
 Expire Dt
 #
 Hole Diam
 Max Depth

 Number
 Boreholes

 W2013 11/06/2013
 02/10/2014
 5
 2.00 in.
 40.00 ft

 0901

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 6. NOTE:

Alameda County Public Works Agency - Water Resources Well Permit

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

- 7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Borehole(s) for Investigation-Geotechnical Study/CPT's - 10 Boreholes

Driller: Gregg - Lic #: 485165 - Method: other Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2013-	11/06/2013	02/10/2014	10	2.00 in.	40.00 ft
0902					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 5. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters

Alameda County Public Works Agency - Water Resources Well Permit

generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

- 7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Appendix D

Geologic Cross Sections

LEGEND: WELL/BORING ID (DATE INSTALLED) **GROUND SURFACE** LITHOLOGIC CONTACT (DASHED WHERE INFERRED) DEPTH TO WATER HYDROPUNCH ATTEMPT/WELL SCREEN WELL/BORING BOTTOM CLAY AND SILTY CLAY (CL/CH) (ML) SANDY SILT AND CLAYEY SILT (SM/ML) SAND (SP/SW) TOTAL PETROLEUM HYDROCARBONS AS GASOLINE G B BENZENE M METHYL TERTIARY BUTYL ETHER < LESS THAN REPORTING LIMIT SOIL CONCENTRATIONS ARE IN MILLIGRAMS PER KILOGRAM (mg/kg); TOP OF BOX AT ASSOCIATED DEPTH OF SAMPLE TAKEN GROUNDWATER CONCENTRATIONS ARE IN MICROGRAMS PER LITER (µg/L); TOP OF BOX AT ASSOCIATED DEPTH OF SAMPLE TAKEN VERTICAL SCALE (FEET)

> UNION OIL STATION NO. 7124 10151 INTERNATIONAL BOULEVARD OAKLAND, CALIFORNIA

HORIZONTAL SCALE (FEET)

GEOLOGIC CROSS SECTION B-B'

D-3

XREFS: IMAGES: PROJECTNAME: -

Appendix E

Laboratory Analytical Report (2013)

Date of Report: 12/03/2013

Kathy Brandt

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608

Project: 7124

BC Work Order: 1325158
Invoice ID: B161089

Enclosed are the results of analyses for samples received by the laboratory on 11/16/2013. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

molly meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; AK UST101

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	4
Laboratory / Client Sample Cross Reference	8
Sample Results	
1325158-01 - CPT-4-5-S-131114	
Volatile Organic Analysis (EPA Method 8260/5035)	13
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	
1325158-02 - CPT-4-8-S-131114	
Volatile Organic Analysis (EPA Method 8260/5035)	18
Total Petroleum Hydrocarbons (EPA 8015/5035)	19
1325158-03 - HP-4-35-39-W-131114	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	21
1325158-04 - HP-4-41-45-W-131114	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	23
1325158-05 - CPT-3-5-S-131115	
Volatile Organic Analysis (EPA Method 8260/5035)	
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	28
1325158-06 - CPT-3-8-S-131115	
Volatile Organic Analysis (EPA Method 8260/5035)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	30
1325158-07 - HP-3-32-35-W-131115	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	32
1325158-08 - HP-3-39-44-W-131115	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	34
1325158-09 - CPT-2-5-S-131115	
Volatile Organic Analysis (EPA Method 8260/5035)	
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	39
1325158-10 - CPT-2-8-S-131115	40
Volatile Organic Analysis (EPA Method 8260/5035)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	41
1325158-11 - HP-2-30-34-W-131115	40
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	43
	4.4
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	40
1325158-13 - Trip Blank-W-131115 Volatile Organic Analysis (EPA Method 8260)	46
	40
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260)	A 77
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy	49
Volatile Organic Analysis (EPA Method 8260/5035)	F0
Method Blank AnalysisLaboratory Control Sample	
Precision and Accuracy	
r recision and Accuracy	52

Table of Contents

	Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
	Method Blank Analysis	53
	Laboratory Control Sample	56
	Precision and Accuracy	57
	Purgeable Aromatics and Total Petroleum Hydrocarbons	
	Method Blank Analysis	59
	Laboratory Control Sample	60
	Precision and Accuracy	61
	Total Petroleum Hydrocarbons (EPA 8015/5035)	
	Method Blank Analysis	62
	Laboratory Control Sample	63
	Precision and Accuracy	
Notes		
	Notes and Definitions	6.5

Union Oil Company of California a 6101 Bollinger Canyon Koad a San Kamon, CA 94563 Union Oil Consultant: ACL ADIS Consultant Contact: KATAY おみかて Consultant Phone No.: 570・596・40-75	
iampling Com	Sampling Company: TRC Sampled By (PRINT):
iampler Sig	Sampler Signature
BC Laboratories, inc. Project Manager: Molly Meyers 4100 Allas Court, Bekersfield, CA 93308 Phone No. 651-327-4911	ALJE시V - O写了G3G - O - CT 1 1 This is a LEGAL document. ALL fields must be illied out CORRECTLY and cOMPLETELY.
Sample Time	Sc (bpmmdd)
25:01	
DE: 81	13.11.14
02:41	
9:50	
70:01	
11.11	13-11-15
02:50	
14:10	
14:50	الا: الا
151 10	1311.15 151
Relingulshe	Relinquished By
To Nawen	
Received E	Received By

Chain of Custody and Cooler Receipt Form for 1325158 Page 2 of 4 24 Hours 🗆 72 Hours 🗅 Turnaround Time (TAT): Special Instructions Notes / Comments ď Standard IZ 48 Hours Date / Time: NO III Company Relinquished By Union Oil Company of California 🗷 6101 Bollinger Canyon Road 🗷 San Ramon, CA 94583 EPA 8260B Full List with OXYS Ethanol by EPA 82608 BTEX/MTBE/OXYS by EPA 8260B TPH - G by GC/MS TPH - Diesel by EPA 8015 ~ CHAIN OF CUSTODY FORM # of Containers 4100 Atlas Court, Bakersfield, CA 93308 Phone No. 661-327-4911 96-965-915 Project Manager: Molly Meyers ACKO E JESSE Brochmon 万 Sampling Company: TRC Consultant Phone No.: To Nayen Union Oil Consultant: Consultant Contact: Sampled By (PRINT Sample Time Sampler Signatur Relinquished By Received By This is a LEGAL document. <u>ALL</u> fields must be filled out CORRECTLY and COMPLETELY. 15:25 Date Site Address: 10151 International Blocks of bland וו/נג/נו Date / Time: Inion Oil PM Phone No.: 485-740-6463 ₹ NUENV-0351638-0-014 SAMPLE ID APLAD 2 S FSSE BRECHAN SICHOR A.S.A Matrix W-S-A Charge Code: NWRTB-10711 Julon Oil Site ID: 351638 Fleld Point Name TO NGUYCA Union Oil PM: Tin TRIP BLANK Relinquished By Site Global ID: Received By

Chain of Custody and Cooler Receipt Form for 1325158 Page 3 of 4

BC LABORATORIES INC.		COOL	ER RECE	IPT FOR	VI	Rev. No. 1	5 07/01	/13 P a	ge <u> </u>	<u>Z</u>
Submission #: 13-25158						j				
. SHIPPING INFOR				SH	IRPING (CONTAIN	VER	l F	REE LIQU	סוו
	Hand Deli				st &			1	ES No	- 11
BC Lab Field Service Other Other					r 🗆 (Spec			_		
•										
Refrigerant: Ice Blue Ice [□ Non	ie 🗆	Other □	Comm	ents:					
Custody Seals Ice Chest	Contair	iers 🗆	None	Com	nante:					
	Intact? Yes		/	BL 001111	nems.				NV 11/18	113
				.					$\overline{}$	ř.
			s intact? Y	_/ _			tion(s) matc	h COC? Y	es XI No 7	<u>×</u>
COC Received En	nissivity:	0.97	Container:	Voa	Thermom	eter ID:	207	Date/Tim	e <i> i </i>	1205
MYEO MINO									1.100	- ''
	Temperatur	re: (A)	ا الر	_°C /	(0)_3	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	°C	Analyst li	nit <u>HPP</u> K	→
					SAMPLE	NUMBERS		, ,	-	1
SAMPLE CONTAINERS	1	2	3	4	5	6	7	В	9	10
QT GENERAL MINERAL/ GENERAL		,								
PT PE UNPRESERVED										
QT INORGANIC CHEMICAL METALS			1				T		[
PT INORGANIC CHEMICAL METALS									1	
PT CYANIDE										
PT CTANIDE PT NITROGEN FORMS	1									
	1									
PT TOTAL SULFIDE							 			
20z. NITRATE / NITRITE	1						 			
PT TOTAL ORGANIC CARBON	1		 		<u> </u>	-	 	-	i	
PT TOX	1		-				1		 	
PT CHEMICAL OXYGEN DEMAND	1		}		<u> </u>		-			
PtA PHENOLICS	<u> </u>		1			<u> </u>	ļ			i
40ml VOA VIAL TRAVEL BLANK	 		1 1	A-14			A 1/	111		
40ml VOA VIAL	(1	<u> </u>	A.4,	A-17	()	1	A 14	A.4.	' '	' '
QT EPA 413.1, 413.2, 418.1						ļ				
PT ODOR		<u> </u>							-	ļ
RADIOLOGICAL	<u> </u>		·	ļ						
BACTERIOLOGICAL	↓		<u> </u>				<u> </u>			
40 ml VOA VIAL- 504										ļ
QT EPA 508/608/8080				<u> </u>						
QT EPA 515.1/8150										
QT EPA 525										
QT EPA 525 TRAVEL BLANK										
100ml EPA 547										
100ml EPA 531.1										
QT EPA 548										
QT EPA 549										
QT EPA 632					1					
QT EPA 8015M					1	1				
QT AMBER		<u> </u>	1			1	1			
	В	В	†		BC	B	1	<u> </u>	BC	3
8 OZ. JAR		1 1				 '' -			100	
32 OZ. JAR					†	 				
SOIL SLEEVE	1	-		 	 	+	-	 	<u> </u>	
PCB VIAL		-	 			<u> </u>		 	 	
PLASTIC BAG		 		-		-		 -	 	
FERROUS IRON	 	ļ	 					ļ		
THEODE	1					 	-		 	
ENCORE	= //	1 /1	1	I	1 /1	Ι Δ	1	1	I A	ı A l
SMART KIT	A	$\perp \neg$			<u> </u>	1		 	 /	
	14	1-7-			173					

Chain of Custody and Cooler Receipt Form for 1325158 Page 4 of 4

BC LABORATORIES INC. Submission #: 13-2515	8 1	C00	LER RECE	IPT FOR	M	Rev. No. 1	5 07/01	/13 Pa	ige <u>Z</u> Of	2
SHIPPING INFO						CONTAIN	NER	F	REE LIQU	IID
Federal Express ☐ UPS ☐ BC Lab Field Service ☐ Other	Hand Del □ (Specify			Ice Che Othe		None 🗆		_	ES INC	
Refrigerant: Ice Blue Ice	□ №г	ie 🗆	Other □	Comm	ents:		4	٠,		
Custody Seals ice Chesting	Confair		None	Com	nents:	,			MI 11/18	113
All samples received? Yes X No □	All sample	s container	s intact? Y	es No] ·	Descript	ion(s) mate	h COC? Y	QS X NO S	£
COC Received E	missivity: _	0.97	Container:	Voa	Thermon	neter ID:	207		e 11/16/13	1205
A.120	Temperatur	e: (A)	2,7	_°C /	(C)	3.3	°C .	Analyst I	nit _ <i>HPL</i> _	-
SAMPLE CONTAINERS					-	NUMBERS		T		
OT CPANED AT MONEY AT A CENTER AT	1 11	2	Ìз	4	5	6	7	В	9	10
QT GENERAL MINERAL/ GENERAL PT PE UNPRESERVED								·	-	
OT INORGANIC CHEMICAL METALS										
PT INORGANIC CHEMICAL METALS	1		-							
PT CYANIDE										
PT NITROGEN FORMS	1									
PT TOTAL SULFIDE							<u> </u>			
20z. NITRATE / NITRITE						<u> </u>				
PT TOTAL ORGANIC CARBON								l		
PT TOX										
PT CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS			, ,					-	1	
40mi VOA VIAL TRAVEL BLANK	<u> </u>	4	$A(\iota)$							
40ml VOA VIAL	A 14,	AH	()	()	1 1		()	1 1	1 1	()
OT EPA 413.1, 413.2, 418.1						ļ <u>.</u>				
PT ODOR	_									
RADIOLOGICAL	_		٠.			ļ				
BACTERIOLOGICAL							ļ	ļ		
40 ml VOA VIAL-504			-			ļ		<u> </u>		
OT EPA 508/608/8080	-						ļ	ļ		
OT EPA 515.1/8150							-		 	
OT EPA 525	-					<u> </u>				
QT EPA 525 TRAVEL BLANK							 		 	
100ml EPA 547 100ml EPA 531.1										
QT EPA 548						ļ				
QT EPA 549										
QT EPA 632										
QT EPA 8015M						·				
QT AMBER						-				
8 OZ. JAR					-			<u> </u>		
32 OZ. JAR							<u> </u>			
SOIL SLEEVE						i				
PCB VIAL				-	<u> </u>		<u> </u>			
PLASTIC BAG						1	1			
FERROUS IRON										
ENCORE										
SMART KIT										
Summa Canister										
Comments: TIMES ON SEMPLE	Canta la	es for	So, (, -) /Time:/	10 10 l	70 (f	11/18	1:		L	

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/03/2013 12:44

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1325158-01 COC Number:

> **Project Number:** 7124 Sampling Location:

Sampling Point: CPT-4-5-S-131114

Sampled By:

AREC

11/16/2013 12:05 Receive Date: Sampling Date: 11/14/2013 10:15

Sample Depth: Lab Matrix: Solids Soil Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): CPT-4

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1325158-02 **COC Number:**

> **Project Number:** 7124

Sampling Location: Sampling Point:

Sampled By:

CPT-4-8-S-131114

AREC

11/16/2013 12:05 Receive Date: 11/14/2013 10:55 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): CPT-4

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1325158-03 COC Number:

> 7124 **Project Number:** Sampling Location:

HP-4-35-39-W-131114 Sampling Point:

AREC Sampled By:

Receive Date:

11/16/2013 12:05

Sampling Date:

11/14/2013 13:30

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): HP-4

Matrix: W

Sample QC Type (SACode): CS

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/03/2013 12:44

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1325158-04 COC Number:

> **Project Number:** 7124 Sampling Location:

Sampling Point: HP-4-41-45-W-131114

Sampled By:

AREC

11/16/2013 12:05 Receive Date: Sampling Date: 11/14/2013 14:20

Sample Depth: Lab Matrix: Water Water Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): HP-4

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1325158-05 **COC Number:**

> **Project Number:** 7124 Sampling Location:

CPT-3-5-S-131115 Sampling Point:

AREC Sampled By:

11/16/2013 12:05 Receive Date: 11/15/2013 09:50 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): CPT-3

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1325158-06 COC Number:

> 7124 **Project Number:**

Sampling Location:

CPT-3-8-S-131115 Sampling Point:

AREC Sampled By:

Receive Date: 11/16/2013 12:05

11/15/2013 10:07 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): CPT-3

Matrix: SO

Sample QC Type (SACode): CS

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/03/2013 12:44

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1325158-07 COC Number:

> **Project Number:** 7124 Sampling Location:

Sampling Point: HP-3-32-35-W-131115

Sampled By:

AREC

11/16/2013 12:05 **Receive Date:** Sampling Date: 11/15/2013 11:15

Sample Depth: Lab Matrix: Water Water Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): HP-3

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1325158-08 **COC Number:**

> **Project Number:** 7124

Sampling Location:

HP-3-39-44-W-131115 Sampling Point:

AREC Sampled By:

11/16/2013 12:05 Receive Date: Sampling Date: 11/15/2013 11:45

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): HP-3

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1325158-09 COC Number:

> 7124 **Project Number:**

Sampling Location:

CPT-2-5-S-131115 Sampling Point:

AREC Sampled By:

Receive Date: 11/16/2013 12:05

11/15/2013 13:50 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): CPT-2

Matrix: SO

Sample QC Type (SACode): CS

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1325158-10 COC Number: --

Project Number: 7124
Sampling Location: ---

Sampling Point: CPT-2-8-S-131115

Sampled By: AREC

Receive Date: 11/16/2013 12:05 **Sampling Date:** 11/15/2013 14:10

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil

Delivery Work Order:

Global ID:

Location ID (FieldPoint): CPT-2

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1325158-11 COC Number: ---

Project Number: 7124
Sampling Location: ---

Sampling Point: HP-2-30-34-W-131115

Sampled By: AREC

Receive Date: 11/16/2013 12:05 **Sampling Date:** 11/15/2013 14:50

Sample Depth: --Lab Matrix: Water
Sample Type: Water
Delivery Work Order:

Global ID:

Location ID (FieldPoint): HP-2

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1325158-12 COC Number: --

Project Number: 7124 Sampling Location: ---

Sampling Point: HP-2-40-44-W-131115

Sampled By: AREC

Receive Date: 11/16/2013 12:05

Sampling Date: 11/15/2013 15:10

Sample Depth: --Lab Matrix: Water
Sample Type: Water
Delivery Work Order:

Global ID:

Location ID (FieldPoint): HP-2

Matrix: W

Sample QC Type (SACode): CS

Arcadis Reported: 12/03/2013 12:44

2000 Powell Street 7th FloorProject: 7124Emeryville, CA 94608Project Number: 351638Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1325158-13 COC Number: ---

Project Number: 7124
Sampling Location: ---

Sampling Point: Trip Blank-W-131115

Sampled By: AREC

Receive Date: 11/16/2013 12:05 **Sampling Date:** 11/15/2013 15:33

Sample Depth: --Lab Matrix: Water
Sample Type: Trip Blank

Delivery Work Order:

Global ID:

Location ID (FieldPoint): Trip Blank

Matrix: W

Sample QC Type (SACode): CS

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/03/2013 12:44

Project: 7124

Project Number: 351638 Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID: 132515	68-01 Client	Sample Name:	7124, CPT-4-	7124, CPT-4-5-S-131114, 11/14/2013 10:15:00AM					
Constituent	Res	sult Units	PQL	Method	MB Bias	Lab Quals	Run #		
Benzene	N	D mg/kg	0.0050	EPA-8260B	ND		1		
1,2-Dibromoethane	N	D mg/kg	0.0050	EPA-8260B	ND		1		
1,2-Dichloroethane	N	D mg/kg	0.0050	EPA-8260B	ND		1		
Ethylbenzene	N	D mg/kg	0.0050	EPA-8260B	ND		1		
Methyl t-butyl ether	N	D mg/kg	0.0050	EPA-8260B	ND		1		
Toluene	N	D mg/kg	0.0050	EPA-8260B	ND		1		
Total Xylenes	N	D mg/kg	0.010	EPA-8260B	ND		1		
t-Amyl Methyl ether	N	D mg/kg	0.0050	EPA-8260B	ND		1		
t-Butyl alcohol	0.:	21 mg/kg	0.050	EPA-8260B	ND		1		
Diisopropyl ether	N	D mg/kg	0.0050	EPA-8260B	ND		1		
Ethanol	N	D mg/kg	1.0	EPA-8260B	ND		1		
Ethyl t-butyl ether	N	D mg/kg	0.0050	EPA-8260B	ND		1		
1,2-Dichloroethane-d4 (Surrogate)	10	11 %	70 - 121 (LCL - l	JCL) EPA-8260B			1		
Toluene-d8 (Surrogate)	10)1 %	81 - 117 (LCL - l	JCL) EPA-8260B			1		
4-Bromofluorobenzene (Surrogate)) 93	.4 %	74 - 121 (LCL - l	JCL) EPA-8260B			1		

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/18/13	11/18/13 10:50	ADC	MS-V2	1	BWK1462	

Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

BCL Sample ID:	1325158-01	Client Sampl	e Name:	7124, CPT-4-	5-S-131114, 11/14/2013	10:15:00AM	10:15:00AM			
				DO!		MB	Lab	_ "		
Constituent Acenaphthene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run #		
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		<u>'</u> 1		
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		<u>'</u> 1		
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		<u>'</u> 1		
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		<u>'</u> 1		
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		<u>·</u> 1		
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1		
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1		
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1		
beta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1		
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1		
gamma-BHC (Lindane)		ND	mg/kg	0.10	EPA-8270C	ND		1		
bis(2-Chloroethoxy)meth	nane	ND	mg/kg	0.10	EPA-8270C	ND		1		
bis(2-Chloroethyl) ether		ND	mg/kg	0.10	EPA-8270C	ND		1		
bis(2-Chloroisopropyl)et	her	ND	mg/kg	0.10	EPA-8270C	ND		1		
bis(2-Ethylhexyl)phthala	te	ND	mg/kg	0.20	EPA-8270C	ND		1		
4-Bromophenyl phenyl e	ether	ND	mg/kg	0.10	EPA-8270C	ND		1		
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1		
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1		
4-Chlorophenyl phenyl e	ether	ND	mg/kg	0.10	EPA-8270C	ND		1		
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1		
4,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1		
4,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1		
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1		
Dibenzo[a,h]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1		
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1		

Reported: 12/03/2013 12:44

2000 Powell Street 7th FloorProject: 7124Emeryville, CA 94608Project Number: 351638Project Manager: Kathy Brandt

BCL Sample ID:	1325158-01	Client Sampl	e Name:	7124, CPT-4-				
Constituent		Result	Units	PQL	Method	MB	Lab	Bun #
1,3-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	Bias ND	Quals	Run # 1
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		1
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Dimethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadie	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
Indeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Isophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
4-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Constituent Result Units PQL Method Blas Bas Quals Quals Renut N-Nitrosodimethylamine ND mg/kg 0.10 EPA-8270C ND 1 N-Nitrosodi-N-propylamine ND mg/kg 0.10 EPA-8270C ND 1 N-Nitrosodiphenylamine ND mg/kg 0.10 EPA-8270C ND 1 Phenanthrene ND mg/kg 0.10 EPA-8270C ND 1 Pyrene ND mg/kg 0.10 EPA-8270C ND 1 4-Chloro-3-methylphenol ND mg/kg 0.10 EPA-8270C ND 1 2-Chlorophenol ND mg/kg 0.10 EPA-8270C ND 1 2-Chloriophenol ND mg/kg 0.10 EPA-8270C ND 1 2-Chloriophenol ND mg/kg 0.10 EPA-8270C ND 1 2-Chloriophenol ND mg/kg 0.50 EPA-8270C ND	BCL Sample ID:	1325158-01	Client Sample	e Name:	7124, CPT-4-5-S-13	31114, 11/14/2013	3 10:15:00AM	
N-Nitrosodimethylamine ND mg/kg 0.10 EPA-8270C ND 1	Constituent		Result	Units	PQL	Method		Run #
No		е	ND	mg/kg	0.10	EPA-8270C		1
Phenanthrene ND mg/kg 0.10 EPA-8270C ND 1	N-Nitrosodi-N-propylan	nine	ND	mg/kg	0.10	EPA-8270C	ND	1
Pyrene	N-Nitrosodiphenylamin	е	ND	mg/kg	0.10	EPA-8270C	ND	1
1,2,4-Trichlorobenzene ND mg/kg 0.10 EPA-8270C ND 1 4-Chloro-3-methylphenol ND mg/kg 0.20 EPA-8270C ND 1 2-Chlorophenol ND mg/kg 0.10 EPA-8270C ND 1 2,4-Dichlorophenol ND mg/kg 0.10 EPA-8270C ND 1 2,4-Dimethylphenol ND mg/kg 0.50 EPA-8270C ND 1 4,6-Dinitro-2-methylphenol ND mg/kg 0.50 EPA-8270C ND 1 2,4-Dinitrophenol ND mg/kg 0.50 EPA-8270C ND 1 2,4-Bitrophenol ND mg/kg 0.20 EPA-8270C ND 1	Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND	1
Achloro-3-methylphenol ND mg/kg 0.20 EPA-8270C ND 1	Pyrene		ND	mg/kg	0.10	EPA-8270C	ND	1
2-Chlorophenol ND mg/kg 0.10 EPA-8270C ND 1	1,2,4-Trichlorobenzene	:	ND	mg/kg	0.10	EPA-8270C	ND	1
2,4-Dichlorophenol ND mg/kg 0.10 EPA-8270C ND 1 2,4-Dimethylphenol ND mg/kg 0.50 EPA-8270C ND 1 4,6-Dinitro-2-methylphenol ND mg/kg 0.50 EPA-8270C ND 1 2,4-Dimethylphenol ND mg/kg 0.50 EPA-8270C ND 1 2,4-Dinitrophenol ND mg/kg 0.50 EPA-8270C ND 1 2,4-Dinitrophenol ND mg/kg 0.50 EPA-8270C ND 1 2-Methylphenol ND mg/kg 0.10 EPA-8270C ND 1 3-8-4-Methylphenol ND mg/kg 0.20 EPA-8270C ND 1 2-Nitrophenol ND mg/kg 0.10 EPA-8270C ND 1 4-Nitrophenol ND mg/kg 0.20 EPA-8270C ND 1 4-Nitrophenol ND mg/kg 0.20 EPA-8270C ND 1 Pentachlorophenol ND mg/kg 0.20 EPA-8270C ND 1 Phenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,5-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 1 2-Fluorophenol (Surrogate) 73.5 % 28-144 (LCL - UCL) EPA-8270C ND 1 1 Nitrophenol-d5 (Surrogate) 72.1 % 36-136 (LCL - UCL) EPA-8270C 1 Nitrophenol (Surrogate) 72.1 % 36-136 (LCL - UCL) EPA-8270C 1 1 Nitrophenol (Surrogate) 27.5 % 20-140 (LCL - UCL) EPA-8270C 1 1 2-Fluorobiphenyl (Surrogate) 27.5 % 20-140 (LCL - UCL) EPA-8270C 1	4-Chloro-3-methylphen	ol	ND	mg/kg	0.20	EPA-8270C	ND	1
2,4-Dimethylphenol ND mg/kg 0.10 EPA-8270C ND 1 4,6-Dinitro-2-methylphenol ND mg/kg 0.50 EPA-8270C ND 1 2,4-Dinitrophenol ND mg/kg 0.50 EPA-8270C ND 1 2-Methylphenol ND mg/kg 0.10 EPA-8270C ND 1 3-8-4-Methylphenol ND mg/kg 0.20 EPA-8270C ND 1 2-Nitrophenol ND mg/kg 0.10 EPA-8270C ND 1 4-Nitrophenol ND mg/kg 0.10 EPA-8270C ND 1 4-Nitrophenol ND mg/kg 0.20 EPA-8270C ND 1 Pentachlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,5-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 <	2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND	1
4,6-Dinitro-2-methylphenol ND mg/kg 0.50 EPA-8270C ND 1 2,4-Dinitrophenol ND mg/kg 0.50 EPA-8270C ND 1 2-Methylphenol ND mg/kg 0.10 EPA-8270C ND 1 3- & 4-Methylphenol ND mg/kg 0.20 EPA-8270C ND 1 2-Nitrophenol ND mg/kg 0.10 EPA-8270C ND 1 4-Nitrophenol ND mg/kg 0.20 EPA-8270C ND 1 Pentachlorophenol ND mg/kg 0.20 EPA-8270C ND 1 Phenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2-Fluorophenol (Surrogate) 73.5 % 28 - 144 (LCL - UCL) EPA-8270C	2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND	1
2,4-Dinitrophenol ND mg/kg 0.50 EPA-8270C ND 1 2-Methylphenol ND mg/kg 0.10 EPA-8270C ND 1 3- & 4-Methylphenol ND mg/kg 0.20 EPA-8270C ND 1 2-Nitrophenol ND mg/kg 0.10 EPA-8270C ND 1 4-Nitrophenol ND mg/kg 0.20 EPA-8270C ND 1 Pentachlorophenol ND mg/kg 0.20 EPA-8270C ND 1 Phenol ND mg/kg 0.10 EPA-8270C ND 1 2,4,5-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2-Fluorophenol (Surrogate) 73.5 % 28 - 144 (LCL - UCL) EPA-8270C ND 1 Phenol-d5 (Surrogate) 72.1 % 36 - 136 (LCL - UCL) EPA-8270C 1	2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND	1
2-Methylphenol ND mg/kg 0.10 EPA-8270C ND 1 3- & 4-Methylphenol ND mg/kg 0.20 EPA-8270C ND 1 2-Nitrophenol ND mg/kg 0.10 EPA-8270C ND 1 4-Nitrophenol ND mg/kg 0.20 EPA-8270C ND 1 4-Nitrophenol ND mg/kg 0.20 EPA-8270C ND 1 Pentachlorophenol ND mg/kg 0.20 EPA-8270C ND 1 Phenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,5-Trichlorophenol ND mg/kg 0.10 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 NEPA-8270C ND 1 ND mg/kg 0.20 EPA-8270C ND 1 NEPA-8270C ND 1 NEPA-8270C ND 1 NEPA-8270C ND 1	4,6-Dinitro-2-methylphe	enol	ND	mg/kg	0.50	EPA-8270C	ND	1
3- & 4-Methylphenol ND mg/kg 0.20 EPA-8270C ND 1 2-Nitrophenol ND mg/kg 0.10 EPA-8270C ND 1 4-Nitrophenol ND mg/kg 0.20 EPA-8270C ND 1 Pentachlorophenol ND mg/kg 0.20 EPA-8270C ND 1 Phenol ND mg/kg 0.20 EPA-8270C ND 1 Phenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,5-Trichlorophenol ND mg/kg 0.10 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2-Fluorophenol (Surrogate) 73.5 % 28 - 144 (LCL - UCL) EPA-8270C ND 1 Nitrobenzene-d5 (Surrogate) 50.5 % 31 - 135 (LCL - UCL) EPA-8270C 1 2-Fluorobiphenyl (Surrogate) 27.5 % 20 - 140 (LCL - UCL) EPA-8270C 1	2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND	1
2-Nitrophenol ND mg/kg 0.10 EPA-8270C ND 1 4-Nitrophenol ND mg/kg 0.20 EPA-8270C ND 1 Pentachlorophenol ND mg/kg 0.20 EPA-8270C ND 1 Phenol ND mg/kg 0.10 EPA-8270C ND 1 2,4,5-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2-Fluorophenol (Surrogate) 73.5 % 28 - 144 (LCL - UCL) EPA-8270C ND 1 Phenol-d5 (Surrogate) 72.1 % 36 - 136 (LCL - UCL) EPA-8270C 1 Nitrobenzene-d5 (Surrogate) 50.5 % 31 - 135 (LCL - UCL) EPA-8270C 1 2-Fluorobiphenyl (Surrogate) 27.5 % 20 - 140 (LCL - UCL) EPA-8270C 1	2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND	1
4-Nitrophenol ND mg/kg 0.20 EPA-8270C ND 1 Pentachlorophenol ND mg/kg 0.20 EPA-8270C ND 1 Phenol ND mg/kg 0.10 EPA-8270C ND 1 2,4,5-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 Phenol-d5 (Surrogate) 73.5 % 28 - 144 (LCL - UCL) EPA-8270C 1 Phenol-d5 (Surrogate) 72.1 % 36 - 136 (LCL - UCL) EPA-8270C 1 Nitrobenzene-d5 (Surrogate) 50.5 % 31 - 135 (LCL - UCL) EPA-8270C 1 2-Fluorobiphenyl (Surrogate) 27.5 % 20 - 140 (LCL - UCL) EPA-8270C 1	3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND	1
Pentachlorophenol ND mg/kg 0.20 EPA-8270C ND 1	2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND	1
Phenol ND mg/kg 0.10 EPA-8270C ND 1 2,4,5-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2-Fluorophenol (Surrogate) 73.5 % 28 - 144 (LCL - UCL) EPA-8270C 1 Phenol-d5 (Surrogate) 72.1 % 36 - 136 (LCL - UCL) EPA-8270C 1 Nitrobenzene-d5 (Surrogate) 50.5 % 31 - 135 (LCL - UCL) EPA-8270C 1 2-Fluorobiphenyl (Surrogate) 27.5 % 20 - 140 (LCL - UCL) EPA-8270C 1	4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND	1
2,4,5-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2-Fluorophenol (Surrogate) 73.5 % 28 - 144 (LCL - UCL) EPA-8270C 1 Phenol-d5 (Surrogate) 72.1 % 36 - 136 (LCL - UCL) EPA-8270C 1 Nitrobenzene-d5 (Surrogate) 50.5 % 31 - 135 (LCL - UCL) EPA-8270C 1 2-Fluorobiphenyl (Surrogate) 27.5 % 20 - 140 (LCL - UCL) EPA-8270C 1	Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND	1
2,4,6-Trichlorophenol ND mg/kg 0.20 EPA-8270C ND 1 2-Fluorophenol (Surrogate) 73.5 % 28 - 144 (LCL - UCL) EPA-8270C 1 Phenol-d5 (Surrogate) 72.1 % 36 - 136 (LCL - UCL) EPA-8270C 1 Nitrobenzene-d5 (Surrogate) 50.5 % 31 - 135 (LCL - UCL) EPA-8270C 1 2-Fluorobiphenyl (Surrogate) 27.5 % 20 - 140 (LCL - UCL) EPA-8270C 1	Phenol		ND	mg/kg	0.10	EPA-8270C	ND	1
2-Fluorophenol (Surrogate) 73.5 % 28 - 144 (LCL - UCL) EPA-8270C 1 Phenol-d5 (Surrogate) 72.1 % 36 - 136 (LCL - UCL) EPA-8270C 1 Nitrobenzene-d5 (Surrogate) 50.5 % 31 - 135 (LCL - UCL) EPA-8270C 1 2-Fluorobiphenyl (Surrogate) 27.5 % 20 - 140 (LCL - UCL) EPA-8270C 1	2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND	1
Phenol-d5 (Surrogate) 72.1 % 36 - 136 (LCL - UCL) EPA-8270C 1 Nitrobenzene-d5 (Surrogate) 50.5 % 31 - 135 (LCL - UCL) EPA-8270C 1 2-Fluorobiphenyl (Surrogate) 27.5 % 20 - 140 (LCL - UCL) EPA-8270C 1	2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND	1
Nitrobenzene-d5 (Surrogate) 50.5 % 31 - 135 (LCL - UCL) EPA-8270C 1 2-Fluorobiphenyl (Surrogate) 27.5 % 20 - 140 (LCL - UCL) EPA-8270C 1	2-Fluorophenol (Surrog	jate)	73.5	%	28 - 144 (LCL - UCL)	EPA-8270C		1
2-Fluorobiphenyl (Surrogate) 27.5 % 20 - 140 (LCL - UCL) EPA-8270C 1	Phenol-d5 (Surrogate)		72.1	%	36 - 136 (LCL - UCL)	EPA-8270C		1
	Nitrobenzene-d5 (Surro	ogate)	50.5	%	31 - 135 (LCL - UCL)	EPA-8270C		1
2,4,6-Tribromophenol (Surrogate) 47.8 % 20 - 150 (LCL - UCL) EPA-8270C 1	2-Fluorobiphenyl (Surro	ogate)	27.5	%	20 - 140 (LCL - UCL)	EPA-8270C		1
	2,4,6-Tribromophenol (Surrogate)	47.8	%	20 - 150 (LCL - UCL)	EPA-8270C		1
p-Terphenyl-d14 (Surrogate) 76.5 % 30 - 150 (LCL - UCL) EPA-8270C 1	p-Terphenyl-d14 (Surro	ogate)	76.5	%	30 - 150 (LCL - UCL)	EPA-8270C		1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	11/25/13	12/02/13 18:42	SKC	MS-B1	0.970	BWL0089	

Reported: 12/03/2013 12:44

Project Manager: Kathy Brandt

Project: 7124 2000 Powell Street 7th Floor Emeryville, CA 94608 Project Number: 351638

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325158-01	Client Sampl	e Name:	7124, CPT-4-5-S-13	31114, 11/14/2013	3 10:15:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Gasoline Range Orga	nics (C6 - C12)	ND	mg/kg	0.79	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	92.5	%	70 - 130 (LCL - UCL)	EPA-8015B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/19/13	11/21/13 11:05	JJH	GC-V8	0.789	BWK1457	

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	1325158-02	Client Sampl	e Name:	7124, CPT-4-8-S-13	31114, 11/14/2013	3 10:55:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		0.10	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (S	urrogate)	105	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (\$	Surrogate)	91.7	%	74 - 121 (LCL - UCL)	EPA-8260B			1

		Ru	ın			QC
Run # Met	thod Pre	ep Date Date/	Time Analyst	Instrument	Dilution	Batch ID
1 EP/	A-8260B 11	1/18/13 11/18/13	3 11:17 ADC	MS-V2	1	BWK1462

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/03/2013 12:44

Project: 7124 Project Number: 351638

Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325158-02	Client Sampl	e Name:	7124, CPT-4-8-S-13	31114, 11/14/2013	3 10:55:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	0.76	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	90.0	%	70 - 130 (LCL - UCL)	EPA-8015B			1

		Run						
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/19/13	11/21/13 11:36	JJH	GC-V8	0.756	BWK1457	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 13	325158-03	Client Sampl	e Name:	7124, HP-4-35-39-V	V-131114, 11/14/2	2013 1:30:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surr	ogate)	103	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		93.8	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	103	%	80 - 120 (LCL - UCL)	EPA-8260B			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/26/13	11/26/13 17:50	EAR	MS-V12	1	BWK1962	

Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1325158-03	Client Sampl	e Name:	7124, HP-4-35-39-V	7124, HP-4-35-39-W-131114, 11/14/2013 1:30:00PM					
Constituent		Deculé	Unita	DO!	Mathad	MB	Lab	D #		
Constituent Gasoline Range Organ	nics (C6 - C12)	Result ND	Units ug/L	PQL 50	Method EPA-8015B	Bias ND	Quals	Run #		
	· , ,					110		<u>'</u>		
a,a,a-Trifluorotoluene	(FID Surrogate)	94.6	%	70 - 130 (LCL - UCL)	EPA-8015B			1		

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B	11/21/13	11/26/13 17:34	jjh	GC-V9	1	BWK1675

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 13	325158-04	Client Sampl	e Name:	7124, HP-4-41-45-V	V-131114, 11/14/2	2013 2:20:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	104	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		96.7	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	rogate)	94.9	%	80 - 120 (LCL - UCL)	EPA-8260B			1

	Run						QC		
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8260B	11/26/13	11/26/13 18:08	EAR	MS-V12	1	BWK1962		

Mul

Arcadis

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1325158-04	Client Sampl	e Name:	7124, HP-4-41-45-V				
Constituent		Result	Units	PQL	Method	MB	Lab	Dun #
Gasoline Range Organ	nics (C6 - C12)	ND	ug/L	50	EPA-8015B	Bias ND	Quals	Run # 1
a,a,a-Trifluorotoluene	(FID Surrogate)	90.6	%	70 - 130 (LCL - UCL)	EPA-8015B			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/21/13	11/26/13 17:54	jjh	GC-V9	1	BWK1675	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	1325158-05	Client Sampl	e Name:	7124, CPT-3-5-S-13	31115, 11/15/2013	3 9:50:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		0.12	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (S	Surrogate)	96.1	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		98.9	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)	79.1	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	11/18/13	11/18/13 11:43	ADC	MS-V2	1	BWK1462

 Arcadis
 Reported:
 12/03/2013
 12:44

 2000 Powell Street 7th Floor
 Project:
 7124

Emeryville, CA 94608 Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325158-05	Client Sampl	e Name:	7124, CPT-3-				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Acenaphthene		ND	mg/kg	0.10	EPA-8270C	ND	quaio	1
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		1
		ND	mg/kg	0.10	EPA-8270C	ND		1
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		1
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
beta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
gamma-BHC (Lindane))	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroethoxy)me	thane	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroethyl) ethe	r	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroisopropyl)e	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Ethylhexyl)phthal	ate	ND	mg/kg	0.20	EPA-8270C	ND		1
4-Bromophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chlorophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzo[a,h]anthracen	е	ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

Reported: 12/03/2013 12:44

2000 Powell Street 7th FloorProject: 7124Emeryville, CA 94608Project Number: 351638Project Manager: Kathy Brandt

BCL Sample ID:	1325158-05	Client Sampl	e Name:	7124, CPT-3-	5-S-131115, 11/15/2013			
						MB	Lab	
1,3-Dichlorobenzene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run #
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
3,3-Dichlorobenzidine		ND		0.20	EPA-8270C	ND		
Dieldrin		ND ND	mg/kg	0.20	EPA-8270C	ND ND		1
Diethyl phthalate		ND ND	mg/kg	0.10	EPA-8270C	ND ND		1
		ND ND	mg/kg	0.10		ND ND		1
Dimethyl phthalate			mg/kg		EPA-8270C			1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND 	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadie	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
Indeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Isophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
4-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608 Project

BCL Sample ID:	1325158-05	Client Sampl	e Name:	7124, CPT-3-5-S-13	7124, CPT-3-5-S-131115, 11/15/2013 9:50:00AM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
N-Nitrosodimethylamine)	ND	mg/kg	0.10	EPA-8270C	ND		1		
N-Nitrosodi-N-propylam	ine	ND	mg/kg	0.10	EPA-8270C	ND		1		
N-Nitrosodiphenylamine	•	ND	mg/kg	0.10	EPA-8270C	ND		1		
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1		
1,2,4-Trichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1		
4-Chloro-3-methylpheno	ol	ND	mg/kg	0.20	EPA-8270C	ND		1		
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1		
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1		
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1		
4,6-Dinitro-2-methylphe	nol	ND	mg/kg	0.50	EPA-8270C	ND		1		
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND		1		
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1		
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1		
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND		1		
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND		1		
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1		
Phenol		ND	mg/kg	0.10	EPA-8270C	ND		1		
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1		
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1		
2-Fluorophenol (Surroga	ate)	67.0	%	28 - 144 (LCL - UCL)	EPA-8270C			1		
Phenol-d5 (Surrogate)		85.4	%	36 - 136 (LCL - UCL)	EPA-8270C			1		
Nitrobenzene-d5 (Surro	gate)	68.4	%	31 - 135 (LCL - UCL)	EPA-8270C			1		
2-Fluorobiphenyl (Surro	gate)	46.6	%	20 - 140 (LCL - UCL)	EPA-8270C			1		
2,4,6-Tribromophenol (S	Surrogate)	56.3	%	20 - 150 (LCL - UCL)	EPA-8270C			1		
p-Terphenyl-d14 (Surro	gate)	62.6	%	30 - 150 (LCL - UCL)	EPA-8270C			1		

Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	11/25/13	12/02/13 19:09	SKC	MS-B1	1.014	BWL0089	

Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	GCL Sample ID: 1325158-05 Client Sample Name:				7124, CPT-3-5-S-131115, 11/15/2013 9:50:00AM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	0.78	EPA-8015B	ND		1		
a,a,a-Trifluorotoluene	(FID Surrogate)	90.0	%	70 - 130 (LCL - UCL)	EPA-8015B			1		

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/19/13	11/21/13 12:06	JJH	GC-V8	0.778	BWK1457	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	1325158-06	Client Sampl	e Name:	7124, CPT-3-8-S-13	31115, 11/15/2013	3 10:07:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Su	rrogate)	107	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (S	urrogate)	94.2	%	74 - 121 (LCL - UCL)	EPA-8260B			1

				QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	11/18/13	11/18/13 12:10	ADC	MS-V2	1	BWK1462

Reported: 12/03/2013 12:44

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325158-06	Client Sampl	e Name:	7124, CPT-3-8-S-13	7124, CPT-3-8-S-131115, 11/15/2013 10:07:00AM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	0.96	EPA-8015B	ND		1		
a,a,a-Trifluorotoluene	(FID Surrogate)	92.5	%	70 - 130 (LCL - UCL)	EPA-8015B			1		

					QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/19/13	11/21/13 12:36	JJH	GC-V8	0.958	BWK1457	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1325158-07	Client Sampl	e Name:	7124, HP-3-32-35-V	V-131115, 11/15/2	2013 11:15:00)AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Su	rrogate)	103	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		94.7	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	urrogate)	100	%	80 - 120 (LCL - UCL)	EPA-8260B			1

			Run			QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/26/13	11/26/13 18:26	EAR	MS-V12	1	BWK1962	

MUL

Arcadis

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1325158-07	Client Sampl	e Name:	7124, HP-3-32-35-W-131115, 11/15/2013 11:15:00AM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Gasoline Range Organ	nics (C6 - C12)	ND	ug/L	50	EPA-8015B	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	87.9	%	70 - 130 (LCL - UCL)	EPA-8015B			1	

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/21/13	11/26/13 18:14	jjh	GC-V9	1	BWK1675	

MU

Arcadis

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1	325158-08	Client Sample	e Name:	7124, HP-3-39-44-V	V-131115, 11/15/2	2013 11:45:00	DAM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	103	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		102	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sui	rrogate)	103	%	80 - 120 (LCL - UCL)	EPA-8260B			1

			Run			QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/26/13	11/26/13 18:43	EAR	MS-V12	1	BWK1962	

Reported: 12/03/2013 12:44

2000 Powell Street 7th Floor Project: 7124

Emeryville, CA 94608 Project Number: 351638

Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1325158-08	Client Sampl	e Name:	7124, HP-3-39-44-V	V-131115, 11/15/2			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C6 - C12)	ND	ug/L	50	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	84.8	%	70 - 130 (LCL - UCL)	EPA-8015B			1

			Run			QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8015B	11/21/13	11/27/13 14:35	jjh	GC-V9	1	BWK1675		

Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID: 1325158-0	9 Client Sample	e Name:	7124, CPT-2-5-S-13	31115, 11/15/201	3 1:50:00PM		
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene	ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene	ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes	ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol	0.17	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol	ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surrogate)	105	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)	99.6	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)	89.4	%	74 - 121 (LCL - UCL)	EPA-8260B			1

	Run						QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/18/13	11/18/13 12:36	ADC	MS-V2	1	BWK1462	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID:	1325158-09	Client Sampl	e Name:	7124, CPT-2-	5-S-131115, 11/15/2013	1:50:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Acenaphthene		ND	mg/kg	0.10	EPA-8270C	ND	Q ual3	1
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		1
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
oeta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
gamma-BHC (Lindane)		ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroethoxy)met	hane	ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroethyl) ether		ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroisopropyl)e	ther	ND	mg/kg	0.10	EPA-8270C	ND		1
pis(2-Ethylhexyl)phthala	ite	ND	mg/kg	0.20	EPA-8270C	ND		1
1-Bromophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chlorophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1
1,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzo[a,h]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID:	1325158-09	Client Sampl	e Name:	7124, CPT-2-	5-S-131115, 11/15/2013	1:50:00PM		
O-matitus int		Decult	l lucita	DOL	Mathaal	MB	Lab	D #
Constituent 1,3-Dichlorobenzene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run #
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		<u>'</u> 1
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		<u>'</u> 1
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND		<u>'</u> 1
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		<u>'</u> 1
Dimethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		<u>·</u> 1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadien	e	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
ndeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
sophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
1-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID: 13	25158-09	Client Sample	e Name:	7124, CPT-2-5-S-1	31115, 11/15/201	3 1:50:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
N-Nitrosodimethylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodi-N-propylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodiphenylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2,4-Trichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloro-3-methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4,6-Dinitro-2-methylphenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Phenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Fluorophenol (Surrogate)		78.7	%	28 - 144 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)		93.2	%	36 - 136 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surrogate)		79.5	%	31 - 135 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surrogate)		70.5	%	20 - 140 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol (Surrog	gate)	69.4	%	20 - 150 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surrogate)		72.5	%	30 - 150 (LCL - UCL)	EPA-8270C			1

	Run					QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8270C	11/25/13	12/02/13 19:37	SKC	MS-B1	0.976	BWL0089		

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/03/2013 12:44

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325158-09	Client Sampl	e Name:	7124, CPT-2-5-S-13	31115, 11/15/2013	3 1:50:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	0.78	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	85.0	%	70 - 130 (LCL - UCL)	EPA-8015B			1

	Run						QC		
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8015B	11/19/13	11/21/13 13:07	JJH	GC-V8	0.784	BWK1457		

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID: 132515	S8-10 Client Sar	nple Name:	7124, CPT-2-8-S-1	131115, 11/15/2013	3 2:10:00PM		
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene	ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes	ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol	0.12	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol	ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surrogate)	96.1	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)	98.1	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate) 84.3	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/18/13	11/18/13 13:03	ADC	MS-V2	1	BWK1462	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325158-10	Client Sampl	e Name:	7124, CPT-2-8-S-13	7124, CPT-2-8-S-131115, 11/15/2013 2:10:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Orga	nics (C6 - C12)	ND	mg/kg	0.80	EPA-8015B	ND		1		
a,a,a-Trifluorotoluene	(FID Surrogate)	87.5	%	70 - 130 (LCL - UCL)	EPA-8015B			1		

	Run						QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/19/13	11/21/13 13:37	JJH	GC-V8	0.800	BWK1457	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 13	25158-11	Client Sampl	e Name:	7124, HP-2-30-34-V	V-131115, 11/15/2	2013 2:50:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	108	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		99.5	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surro	ogate)	97.0	%	80 - 120 (LCL - UCL)	EPA-8260B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/26/13	11/26/13 19:01	EAR	MS-V12	1	BWK1962	

Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1325158-11	Client Sampl	e Name:	7124, HP-2-30-34-V	7124, HP-2-30-34-W-131115, 11/15/2013 2:50:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Organ	nics (C6 - C12)	ND	ug/L	50	EPA-8015B	ND		1		
a,a,a-Trifluorotoluene	(FID Surrogate)	89.7	%	70 - 130 (LCL - UCL)	EPA-8015B			1		

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/21/13	11/26/13 22:35	jjh	GC-V9	1	BWK1675	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 13	325158-12	Client Sample	e Name:	7124, HP-2-40-44-V	V-131115, 11/15/2	2013 3:10:00	PM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	104	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	ogate)	105	%	80 - 120 (LCL - UCL)	EPA-8260B			1

			Run			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260B	11/26/13	11/26/13 19:18	EAR	MS-V12	1	BWK1962			

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1325158-12	Client Sampl	e Name:	7124, HP-2-40-44-V	7124, HP-2-40-44-W-131115, 11/15/2013 3:10:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Orga	nics (C6 - C12)	230	ug/L	50	EPA-8015B	ND		1		
a,a,a-Trifluorotoluene	(FID Surrogate)	107	%	70 - 130 (LCL - UCL)	EPA-8015B			1		

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/21/13	11/27/13 02:39	jjh	GC-V9	1	BWK1675	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1325158-13	Client Sampl	e Name:	7124, Trip Blank-W	-131115, 11/15/20 ²	13 3:33:00P	3:33:00PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1		
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1		
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1		
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1		
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1		
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1		
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1		
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1		
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1		
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1		
Ethanol		ND	ug/L	250	EPA-8260B	ND		1		
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1		
Total Purgeable Petroleum Hydrocarbons (C6-C12)	ו	ND	ug/L	50	Luft-GC/MS	ND		1		
1,2-Dichloroethane-d4 (Su	rrogate)	102	%	75 - 125 (LCL - UCL)	EPA-8260B			1		
Toluene-d8 (Surrogate)		101	%	80 - 120 (LCL - UCL)	EPA-8260B			1		
4-Bromofluorobenzene (Si	urrogate)	100	%	80 - 120 (LCL - UCL)	EPA-8260B			1		

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/26/13	11/27/13 10:48	EAR	MS-V12	1	BWK1962	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWK1962						
Benzene	BWK1962-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BWK1962-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BWK1962-BLK1	ND	ug/L	0.50		
Ethylbenzene	BWK1962-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BWK1962-BLK1	ND	ug/L	0.50		
Toluene	BWK1962-BLK1	ND	ug/L	0.50		
Total Xylenes	BWK1962-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BWK1962-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BWK1962-BLK1	ND	ug/L	10		
Diisopropyl ether	BWK1962-BLK1	ND	ug/L	0.50		
Ethanol	BWK1962-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BWK1962-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons (C6-I	BWK1962-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BWK1962-BLK1	100	%	75 - 12	5 (LCL - UCL)	
Toluene-d8 (Surrogate)	BWK1962-BLK1	100	%	80 - 12	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BWK1962-BLK1	98.8	%	80 - 12	0 (LCL - UCL)	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

							Control Limits			
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BWK1962										
Benzene	BWK1962-BS1	LCS	27.010	25.000	ug/L	108		70 - 130		
Toluene	BWK1962-BS1	LCS	23.710	25.000	ug/L	94.8		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BWK1962-BS1	LCS	9.9900	10.000	ug/L	99.9		75 - 125		
Toluene-d8 (Surrogate)	BWK1962-BS1	LCS	9.6300	10.000	ug/L	96.3		80 - 120		
4-Bromofluorobenzene (Surrogate)	BWK1962-BS1	LCS	10.360	10.000	ug/L	104		80 - 120		

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

		•		•			•	•			
								Control Limits			
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BWK1962	Use	ed client samp	ole: N								
Benzene	MS	1325794-05	ND	27.570	25.000	ug/L		110		70 - 130	
	MSD	1325794-05	ND	27.850	25.000	ug/L	1.0	111	20	70 - 130	
Toluene	MS	1325794-05	ND	25.790	25.000	ug/L		103		70 - 130	
	MSD	1325794-05	ND	25.210	25.000	ug/L	2.3	101	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1325794-05	ND	9.6900	10.000	ug/L		96.9		75 - 125	
	MSD	1325794-05	ND	9.8700	10.000	ug/L	1.8	98.7		75 - 125	
Toluene-d8 (Surrogate)	MS	1325794-05	ND	9.6300	10.000	ug/L		96.3		80 - 120	
	MSD	1325794-05	ND	9.6100	10.000	ug/L	0.2	96.1		80 - 120	
4-Bromofluorobenzene (Surrogate)	MS	1325794-05	ND	10.460	10.000	ug/L		105		80 - 120	
	MSD	1325794-05	ND	10.940	10.000	ug/L	4.5	109		80 - 120	

Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

Volatile Organic Analysis (EPA Method 8260/5035)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWK1462						
Benzene	BWK1462-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BWK1462-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BWK1462-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BWK1462-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BWK1462-BLK1	ND	mg/kg	0.0050		
Toluene	BWK1462-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BWK1462-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BWK1462-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BWK1462-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BWK1462-BLK1	ND	mg/kg	0.0050		
Ethanol	BWK1462-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BWK1462-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane-d4 (Surrogate)	BWK1462-BLK1	93.6	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BWK1462-BLK1	101	%	81 - 117	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BWK1462-BLK1	90.4	%	74 - 121	(LCL - UCL)	

2000 Powell Street 7th Floor

Emeryville, CA 94608

Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

Quality Control Report - Laboratory Control Sample

								Control Limits					
				Spike		Percent		Percent		Lab			
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals			
QC Batch ID: BWK1462													
Benzene	BWK1462-BS1	LCS	0.13618	0.12500	mg/kg	109		70 - 130					
Toluene	BWK1462-BS1	LCS	0.12429	0.12500	mg/kg	99.4		70 - 130					
1,2-Dichloroethane-d4 (Surrogate)	BWK1462-BS1	LCS	0.045630	0.050000	mg/kg	91.3		70 - 121					
Toluene-d8 (Surrogate)	BWK1462-BS1	LCS	0.048920	0.050000	mg/kg	97.8		81 - 117					
4-Bromofluorobenzene (Surrogate)	BWK1462-BS1	LCS	0.043920	0.050000	mg/kg	87.8		74 - 121					

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits		
Constituent	Туре	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery	Lab Quals	
QC Batch ID: BWK1462	Use	d client samp	le: N									
Benzene	MS	1323260-77	ND	0.14236	0.12500	mg/kg		114		70 - 130		
	MSD	1323260-77	ND	0.13892	0.12500	mg/kg	2.4	111	20	70 - 130		
Toluene	MS	1323260-77	ND	0.12707	0.12500	mg/kg		102		70 - 130		
	MSD	1323260-77	ND	0.13028	0.12500	mg/kg	2.5	104	20	70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	MS	1323260-77	ND	0.049130	0.050000	mg/kg		98.3		70 - 121		
	MSD	1323260-77	ND	0.045680	0.050000	mg/kg	7.3	91.4		70 - 121		
Toluene-d8 (Surrogate)	MS	1323260-77	ND	0.050040	0.050000	mg/kg		100		81 - 117		
	MSD	1323260-77	ND	0.049100	0.050000	mg/kg	1.9	98.2		81 - 117		
4-Bromofluorobenzene (Surrogate)	MS	1323260-77	ND	0.046300	0.050000	mg/kg		92.6		74 - 121		
	MSD	1323260-77	ND	0.043930	0.050000	mg/kg	5.3	87.9		74 - 121		

Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL Lab Quals	
QC Batch ID: BWL0089						
Acenaphthene	BWL0089-BLK1	ND	mg/kg	0.10		
Acenaphthylene	BWL0089-BLK1	ND	mg/kg	0.10		
Aldrin	BWL0089-BLK1	ND	mg/kg	0.10		
Aniline	BWL0089-BLK1	ND	mg/kg	0.20		
Anthracene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzidine	BWL0089-BLK1	ND	mg/kg	3.0		
Benzo[a]anthracene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzo[b]fluoranthene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzo[k]fluoranthene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzo[a]pyrene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzo[g,h,i]perylene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzoic acid	BWL0089-BLK1	ND	mg/kg	0.50		
Benzyl alcohol	BWL0089-BLK1	ND	mg/kg	0.10		
Benzyl butyl phthalate	BWL0089-BLK1	ND	mg/kg	0.10		
alpha-BHC	BWL0089-BLK1	ND	mg/kg	0.10		
beta-BHC	BWL0089-BLK1	ND	mg/kg	0.10		
delta-BHC	BWL0089-BLK1	ND	mg/kg	0.10		
gamma-BHC (Lindane)	BWL0089-BLK1	ND	mg/kg	0.10		
bis(2-Chloroethoxy)methane	BWL0089-BLK1	ND	mg/kg	0.10		
bis(2-Chloroethyl) ether	BWL0089-BLK1	ND	mg/kg	0.10		
bis(2-Chloroisopropyl)ether	BWL0089-BLK1	ND	mg/kg	0.10		
bis(2-Ethylhexyl)phthalate	BWL0089-BLK1	ND	mg/kg	0.20		
4-Bromophenyl phenyl ether	BWL0089-BLK1	ND	mg/kg	0.10		
4-Chloroaniline	BWL0089-BLK1	ND	mg/kg	0.10		
2-Chloronaphthalene	BWL0089-BLK1	ND	mg/kg	0.10		
4-Chlorophenyl phenyl ether	BWL0089-BLK1	ND	mg/kg	0.10		
Chrysene	BWL0089-BLK1	ND	mg/kg	0.10		
4,4'-DDD	BWL0089-BLK1	ND	mg/kg	0.10		
4,4'-DDE	BWL0089-BLK1	ND	mg/kg	0.10		
4,4'-DDT	BWL0089-BLK1	ND	mg/kg	0.10		
Dibenzo[a,h]anthracene	BWL0089-BLK1	ND	mg/kg	0.10		
Dibenzofuran	BWL0089-BLK1	ND	mg/kg	0.10		
1,2-Dichlorobenzene	BWL0089-BLK1	ND	mg/kg	0.10		
1,3-Dichlorobenzene	BWL0089-BLK1	ND	mg/kg	0.10		

Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

QC Batch ID: BWL0089 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Dieldrin Diethyl phthalate Dimethyl phthalate Din-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Din-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1	ND N	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.10	
1,4-Dichlorobenzene 3,3-Dichlorobenzidine Dieldrin Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.20 0.10 0.10 0.10 0.10 0.10	
Dieldrin Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.10 0.10 0.10 0.10 0.10	
Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND ND ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg	0.10 0.10 0.10 0.10	
Dimethyl phthalate Di-n-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg	0.10 0.10 0.10	
Di-n-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND ND ND	mg/kg mg/kg mg/kg	0.10 0.10	
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND ND ND	mg/kg mg/kg	0.10	
2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND ND	mg/kg		
Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1	ND		0.10	
1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1		mg/ka		
Endosulfan I		ND	J J	0.10	
-	BWL0089-BLK1	ND	mg/kg	0.10	
Endosulfon II		ND	mg/kg	0.20	
Liluosullati ti	BWL0089-BLK1	ND	mg/kg	0.20	
Endosulfan sulfate	BWL0089-BLK1	ND	mg/kg	0.10	
Endrin	BWL0089-BLK1	ND	mg/kg	0.20	
Endrin aldehyde	BWL0089-BLK1	ND	mg/kg	0.50	
Fluoranthene	BWL0089-BLK1	ND	mg/kg	0.10	
Fluorene	BWL0089-BLK1	ND	mg/kg	0.10	
Heptachlor	BWL0089-BLK1	ND	mg/kg	0.10	
Heptachlor epoxide	BWL0089-BLK1	ND	mg/kg	0.10	
Hexachlorobenzene	BWL0089-BLK1	ND	mg/kg	0.10	
Hexachlorobutadiene	BWL0089-BLK1	ND	mg/kg	0.10	
Hexachlorocyclopentadiene	BWL0089-BLK1	ND	mg/kg	0.10	
Hexachloroethane	BWL0089-BLK1	ND	mg/kg	0.10	
Indeno[1,2,3-cd]pyrene	BWL0089-BLK1	ND	mg/kg	0.10	
Isophorone	BWL0089-BLK1	ND	mg/kg	0.10	
2-Methylnaphthalene	BWL0089-BLK1	ND	mg/kg	0.10	
Naphthalene	BWL0089-BLK1	ND	mg/kg	0.10	
2-Naphthylamine	BWL0089-BLK1	ND	mg/kg	3.0	
2-Nitroaniline	BWL0089-BLK1	ND	mg/kg	0.10	
3-Nitroaniline	BWL0089-BLK1	ND	mg/kg	0.20	
4-Nitroaniline	BWL0089-BLK1	ND	mg/kg	0.20	
Nitrobenzene	BWL0089-BLK1	ND	mg/kg	0.10	
N-Nitrosodimethylamine	BWL0089-BLK1	ND	mg/kg	0.10	
N-Nitrosodi-N-propylamine	BWL0089-BLK1	ND	mg/kg	0.10	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	OC Samula ID	MD Decult	l luite	PQL	MDL	Lab Ovala
Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWL0089						
N-Nitrosodiphenylamine	BWL0089-BLK1	ND	mg/kg	0.10		
Phenanthrene	BWL0089-BLK1	ND	mg/kg	0.10		
Pyrene	BWL0089-BLK1	ND	mg/kg	0.10		
1,2,4-Trichlorobenzene	BWL0089-BLK1	ND	mg/kg	0.10		
4-Chloro-3-methylphenol	BWL0089-BLK1	ND	mg/kg	0.20		
2-Chlorophenol	BWL0089-BLK1	ND	mg/kg	0.10		
2,4-Dichlorophenol	BWL0089-BLK1	ND	mg/kg	0.10		
2,4-Dimethylphenol	BWL0089-BLK1	ND	mg/kg	0.10		
4,6-Dinitro-2-methylphenol	BWL0089-BLK1	ND	mg/kg	0.50		
2,4-Dinitrophenol	BWL0089-BLK1	ND	mg/kg	0.50		
2-Methylphenol	BWL0089-BLK1	ND	mg/kg	0.10		
3- & 4-Methylphenol	BWL0089-BLK1	ND	mg/kg	0.20		
2-Nitrophenol	BWL0089-BLK1	ND	mg/kg	0.10		
4-Nitrophenol	BWL0089-BLK1	ND	mg/kg	0.20		
Pentachlorophenol	BWL0089-BLK1	ND	mg/kg	0.20		
Phenol	BWL0089-BLK1	ND	mg/kg	0.10		
2,4,5-Trichlorophenol	BWL0089-BLK1	ND	mg/kg	0.20		
2,4,6-Trichlorophenol	BWL0089-BLK1	ND	mg/kg	0.20		
2-Fluorophenol (Surrogate)	BWL0089-BLK1	96.3	%	28 - 144	(LCL - UCL)	
Phenol-d5 (Surrogate)	BWL0089-BLK1	111	%	36 - 136	(LCL - UCL)	
Nitrobenzene-d5 (Surrogate)	BWL0089-BLK1	100	%	31 - 13	(LCL - UCL)	
2-Fluorobiphenyl (Surrogate)	BWL0089-BLK1	96.5	%	20 - 140	(LCL - UCL)	
2,4,6-Tribromophenol (Surrogate)	BWL0089-BLK1	83.2	%	20 - 150	(LCL - UCL)	
p-Terphenyl-d14 (Surrogate)	BWL0089-BLK1	90.6	%	30 - 150	(LCL - UCL)	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Quality Control Report - Laboratory Control Sample

					· · ·					
								Control I	<u> Limits</u>	
		_		Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BWL0089										
Acenaphthene	BWL0089-BS1	LCS	1.5291	1.6835	mg/kg	90.8		50 - 140		
1,4-Dichlorobenzene	BWL0089-BS1	LCS	1.5334	1.6835	mg/kg	91.1		40 - 140		
2,4-Dinitrotoluene	BWL0089-BS1	LCS	2.1332	1.6835	mg/kg	127		40 - 140		
Hexachlorobenzene	BWL0089-BS1	LCS	1.9633	1.6835	mg/kg	117		46 - 140		
Hexachlorobutadiene	BWL0089-BS1	LCS	1.7013	1.6835	mg/kg	101		40 - 120		
Hexachloroethane	BWL0089-BS1	LCS	1.4806	1.6835	mg/kg	87.9		40 - 120		
Nitrobenzene	BWL0089-BS1	LCS	1.2658	1.6835	mg/kg	75.2		40 - 130		
N-Nitrosodi-N-propylamine	BWL0089-BS1	LCS	1.2978	1.6835	mg/kg	77.1		40 - 120		
Pyrene	BWL0089-BS1	LCS	1.9049	1.6835	mg/kg	113		40 - 150		
1,2,4-Trichlorobenzene	BWL0089-BS1	LCS	1.6578	1.6835	mg/kg	98.5		40 - 140		
4-Chloro-3-methylphenol	BWL0089-BS1	LCS	1.2789	1.6835	mg/kg	76.0		40 - 130		
2-Chlorophenol	BWL0089-BS1	LCS	0.83712	1.6835	mg/kg	49.7		40 - 130		
2-Methylphenol	BWL0089-BS1	LCS	1.0549	1.6835	mg/kg	62.7		40 - 140		
3- & 4-Methylphenol	BWL0089-BS1	LCS	2.2547	3.3670	mg/kg	67.0		40 - 120		
4-Nitrophenol	BWL0089-BS1	LCS	0.29499	1.6835	mg/kg	17.5		20 - 120		L21
Pentachlorophenol	BWL0089-BS1	LCS	0.24187	1.6835	mg/kg	14.4		20 - 130		L21
Phenol	BWL0089-BS1	LCS	0.77938	1.6835	mg/kg	46.3		40 - 120		
2,4,6-Trichlorophenol	BWL0089-BS1	LCS	0.97307	1.6835	mg/kg	57.8		44 - 130		
2-Fluorophenol (Surrogate)	BWL0089-BS1	LCS	2.2461	2.6936	mg/kg	83.4		28 - 144		
Phenol-d5 (Surrogate)	BWL0089-BS1	LCS	2.5787	2.6936	mg/kg	95.7		36 - 136		
Nitrobenzene-d5 (Surrogate)	BWL0089-BS1	LCS	2.3312	2.6936	mg/kg	86.5		31 - 135		
2-Fluorobiphenyl (Surrogate)	BWL0089-BS1	LCS	2.3880	2.6936	mg/kg	88.7		20 - 140		
2,4,6-Tribromophenol (Surrogate)	BWL0089-BS1	LCS	2.5417	2.6936	mg/kg	94.4		20 - 150		
p-Terphenyl-d14 (Surrogate)	BWL0089-BS1	LCS	1.1443	1.3468	mg/kg	85.0		30 - 150		

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Quality Control Report - Precision & Accuracy

Type	Source	Source					_			
Type		Oodicc		Spike			Percent		Percent	Lab
	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
Use	ed client samp	le: N								
	-		1.5692	1.6722	ma/ka		93.8		40 - 140	
						6.6	98.9	30	40 - 140	
							9E E		20 150	
						15.5		30		
						10.0		- 50		
						77		20		Q03
MSD					mg/kg	7.7		30		QUS
MS					mg/kg					
MSD	1320257-79	ND	2.0034	1.6949	mg/kg	1.8	118	30	30 - 150	
MS	1320257-79	ND	1.6623	1.6722	mg/kg		99.4		20 - 140	
MSD	1320257-79	ND	1.9424	1.6949	mg/kg	15.5	115	30	20 - 140	
MS	1320257-79	ND	1.4949	1.6722	mg/kg		89.4		30 - 140	
MSD	1320257-79	ND	1.8258	1.6949	mg/kg	19.9	108	30	30 - 140	
MS	1320257-79	ND	2.0204	1.6722	mg/kg		121		30 - 140	
MSD	1320257-79	ND	2.3708	1.6949	mg/kg	16.0	140	30	30 - 140	
MS	1320257-79	ND	1.1886	1.6722	mg/kg		71.1		30 - 120	
MSD	1320257-79	ND	1.3254	1.6949	mg/kg	10.9	78.2	30	30 - 120	
MS	1320257-79	ND	1.9772	1.6722	ma/ka		118		40 - 150	
	1320257-79	ND	2.1095	1.6949		6.5	124	30	40 - 150	
	1320257-79	ND	1 6061	1 6722			96.0		30 - 150	
						16 1		30		
						10 1		30		
						10.1				
						40.0		••		Q03
MSD	1320257-79	ND	0.96542	1.6949	mg/kg	49.6	57.0	30		Q02
MS	1320257-79	ND	1.2604	1.6722	mg/kg		75.4		30 - 140	
MSD	1320257-79	ND	1.3512	1.6949	mg/kg	7.0	79.7	30	30 - 140	
MS	1320257-79	ND	2.1983	3.3445	mg/kg		65.7		40 - 130	
MSD	1320257-79	ND	2.6715	3.3898	mg/kg	19.4	78.8	30	40 - 130	
MS	1320257-79	ND	0.34600	1.6722	mg/kg		20.7		20 - 140	
MSD	1320257-79	ND	0.37322	1.6949	mg/kg	7.6	22.0	30	20 - 140	
MS	1320257-79	ND	0.39207	1.6722	mg/kg		23.4		20 - 130	
MSD	1320257-79	ND	0.41966	1.6949	mg/kg	6.8	24.8	30	20 - 130	
MS	1320257-79	ND	0.78415	1.6722	ma/ka		46.9		30 - 130	
						19.6		30		
						6.0		30		
	MSD MS MSD	MSD 1320257-79 MS 1320257-79 MSD 1320257-79	MSD 1320257-79 ND MS 1320257-79 ND MSD 1320257-79 ND MSD 1320257-79 ND MSD 1320257-79 ND MSD 1320257-79 ND MS 1320257-79 ND MS 1320257-79 ND MS 1320257-79 ND MS 1320257-79 ND MSD 1320257-79 ND	MSD 1320257-79 ND 1.6769 MS 1320257-79 ND 1.4298 MSD 1320257-79 ND 1.6702 MS 1320257-79 ND 2.2276 MSD 1320257-79 ND 2.4061 MS 1320257-79 ND 2.0401 MSD 1320257-79 ND 1.6623 MSD 1320257-79 ND 1.6623 MSD 1320257-79 ND 1.4949 MSD 1320257-79 ND 1.4949 MSD 1320257-79 ND 1.4949 MSD 1320257-79 ND 1.8258 MS 1320257-79 ND 2.0204 MSD 1320257-79 ND 1.1886 MSD 1320257-79 ND 1.3254 MS 1320257-79 ND 1.6061 MSD 1320257-79 ND 1.6061 MSD 1320257-79 ND 1.3513 MSD	MSD 1320257-79 ND 1.6769 1.6949 MS 1320257-79 ND 1.4298 1.6722 MSD 1320257-79 ND 1.6702 1.6949 MS 1320257-79 ND 2.2276 1.6722 MSD 1320257-79 ND 2.0401 1.6722 MSD 1320257-79 ND 2.0034 1.6949 MS 1320257-79 ND 1.6623 1.6722 MSD 1320257-79 ND 1.6623 1.6722 MSD 1320257-79 ND 1.4949 1.6722 MSD 1320257-79 ND 1.4949 1.6722 MSD 1320257-79 ND 2.0204 1.6722 MSD 1320257-79 ND 2.3708 1.6949 MS 1320257-79 ND 1.1886 1.6722 MSD 1320257-79 ND 1.9772 1.6722 MSD 1320257-79 ND 1.6061 1.6722	MSD 1320257-79 ND 1.6769 1.6949 mg/kg MS 1320257-79 ND 1.4298 1.6722 mg/kg MSD 1320257-79 ND 1.6702 1.6949 mg/kg MSD 1320257-79 ND 2.2276 1.6722 mg/kg MSD 1320257-79 ND 2.4061 1.6949 mg/kg MSD 1320257-79 ND 2.0034 1.6949 mg/kg MSD 1320257-79 ND 1.6623 1.6722 mg/kg MSD 1320257-79 ND 1.6623 1.6722 mg/kg MSD 1320257-79 ND 1.4949 1.6722 mg/kg MSD 1320257-79 ND 1.4949 1.6722 mg/kg MSD 1320257-79 ND 2.0204 1.6722 mg/kg MSD 1320257-79 ND 1.1886 1.6722 mg/kg MSD 1320257-79 ND 1.1886 1.6722 <td< td=""><td>MSD 1320257-79 ND 1.6769 1.6949 mg/kg 6.6 MS 1320257-79 ND 1.4298 1.6722 mg/kg 15.5 MSD 1320257-79 ND 1.6702 1.6949 mg/kg 15.5 MS 1320257-79 ND 2.4061 1.6949 mg/kg 7.7 MS 1320257-79 ND 2.0401 1.6722 mg/kg 1.8 MSD 1320257-79 ND 2.0034 1.6949 mg/kg 1.8 MSD 1320257-79 ND 1.6623 1.6722 mg/kg 1.8 MSD 1320257-79 ND 1.9424 1.6949 mg/kg 15.5 MS 1320257-79 ND 1.4949 1.6722 mg/kg 15.5 MS 1320257-79 ND 1.8258 1.6949 mg/kg 19.9 MS 1320257-79 ND 2.3708 1.6949 mg/kg 16.0 MS 1320257-79</td><td>MSD 1320257-79 ND 1.6769 1.6949 mg/kg 6.6 98.9 MS 1320257-79 ND 1.4298 1.6722 mg/kg 15.5 98.5 MSD 1320257-79 ND 1.6702 1.6949 mg/kg 15.5 98.5 MSD 1320257-79 ND 2.0461 1.6949 mg/kg 7.7 142 MSD 1320257-79 ND 2.0401 1.6722 mg/kg 1.22 MSD 1320257-79 ND 2.0401 1.6722 mg/kg 1.8 118 MS 1320257-79 ND 2.034 1.6949 mg/kg 1.5 115 MSD 1320257-79 ND 1.6623 1.6722 mg/kg 15.5 115 MS 1320257-79 ND 1.4949 1.6722 mg/kg 19.9 108 MS 1320257-79 ND 2.0204 1.6722 mg/kg 16.0 140 MS 1320257-79</td><td>MSD 1320257-79 ND 1.6769 1.6949 mg/kg 6.6 98.9 30 MS 1320257-79 ND 1.4298 1.6722 mg/kg 85.5 MSD 1320257-79 ND 1.6702 1.6949 mg/kg 15.5 98.5 30 MS 1320257-79 ND 2.276 1.6722 mg/kg 133 132 MSD 1320257-79 ND 2.4061 1.6949 mg/kg 7.7 142 30 MS 1320257-79 ND 2.0034 1.6949 mg/kg 1.8 118 30 MS 1320257-79 ND 1.6623 1.6722 mg/kg 9.9.4 115 30 MS 1320257-79 ND 1.9424 1.6949 mg/kg 15.5 115 30 MS 1320257-79 ND 1.8258 1.6949 mg/kg 16.0 140 30 MS 1320257-79 ND 2.0204 1.</td><td>MSD 1320257-79 ND 1.6769 1.6949 mg/kg 6.6 98.9 30 40 - 140 MS 1320257-79 ND 1.4298 1.6722 mg/kg 15.5 98.5 30 - 150 MSD 1320257-79 ND 2.2276 1.6722 mg/kg 15.5 98.5 30 30 - 150 MSD 1320257-79 ND 2.24661 1.6849 mg/kg 17.7 142 30 30 - 140 MSD 1320257-79 ND 2.0401 1.6722 mg/kg 122 30 - 150 MSD 1320257-79 ND 2.0401 1.6722 mg/kg 1.8 118 30 30 - 150 MS 1320257-79 ND 1.6623 1.6722 mg/kg 1.5 115 30 20 - 140 MS 1320257-79 ND 1.4949 1.6722 mg/kg 19.4 20 - 140 MSD 1320257-79 ND 1.4849 1.6722 mg/kg 19.9 108 30 - 140 <</td></td<>	MSD 1320257-79 ND 1.6769 1.6949 mg/kg 6.6 MS 1320257-79 ND 1.4298 1.6722 mg/kg 15.5 MSD 1320257-79 ND 1.6702 1.6949 mg/kg 15.5 MS 1320257-79 ND 2.4061 1.6949 mg/kg 7.7 MS 1320257-79 ND 2.0401 1.6722 mg/kg 1.8 MSD 1320257-79 ND 2.0034 1.6949 mg/kg 1.8 MSD 1320257-79 ND 1.6623 1.6722 mg/kg 1.8 MSD 1320257-79 ND 1.9424 1.6949 mg/kg 15.5 MS 1320257-79 ND 1.4949 1.6722 mg/kg 15.5 MS 1320257-79 ND 1.8258 1.6949 mg/kg 19.9 MS 1320257-79 ND 2.3708 1.6949 mg/kg 16.0 MS 1320257-79	MSD 1320257-79 ND 1.6769 1.6949 mg/kg 6.6 98.9 MS 1320257-79 ND 1.4298 1.6722 mg/kg 15.5 98.5 MSD 1320257-79 ND 1.6702 1.6949 mg/kg 15.5 98.5 MSD 1320257-79 ND 2.0461 1.6949 mg/kg 7.7 142 MSD 1320257-79 ND 2.0401 1.6722 mg/kg 1.22 MSD 1320257-79 ND 2.0401 1.6722 mg/kg 1.8 118 MS 1320257-79 ND 2.034 1.6949 mg/kg 1.5 115 MSD 1320257-79 ND 1.6623 1.6722 mg/kg 15.5 115 MS 1320257-79 ND 1.4949 1.6722 mg/kg 19.9 108 MS 1320257-79 ND 2.0204 1.6722 mg/kg 16.0 140 MS 1320257-79	MSD 1320257-79 ND 1.6769 1.6949 mg/kg 6.6 98.9 30 MS 1320257-79 ND 1.4298 1.6722 mg/kg 85.5 MSD 1320257-79 ND 1.6702 1.6949 mg/kg 15.5 98.5 30 MS 1320257-79 ND 2.276 1.6722 mg/kg 133 132 MSD 1320257-79 ND 2.4061 1.6949 mg/kg 7.7 142 30 MS 1320257-79 ND 2.0034 1.6949 mg/kg 1.8 118 30 MS 1320257-79 ND 1.6623 1.6722 mg/kg 9.9.4 115 30 MS 1320257-79 ND 1.9424 1.6949 mg/kg 15.5 115 30 MS 1320257-79 ND 1.8258 1.6949 mg/kg 16.0 140 30 MS 1320257-79 ND 2.0204 1.	MSD 1320257-79 ND 1.6769 1.6949 mg/kg 6.6 98.9 30 40 - 140 MS 1320257-79 ND 1.4298 1.6722 mg/kg 15.5 98.5 30 - 150 MSD 1320257-79 ND 2.2276 1.6722 mg/kg 15.5 98.5 30 30 - 150 MSD 1320257-79 ND 2.24661 1.6849 mg/kg 17.7 142 30 30 - 140 MSD 1320257-79 ND 2.0401 1.6722 mg/kg 122 30 - 150 MSD 1320257-79 ND 2.0401 1.6722 mg/kg 1.8 118 30 30 - 150 MS 1320257-79 ND 1.6623 1.6722 mg/kg 1.5 115 30 20 - 140 MS 1320257-79 ND 1.4949 1.6722 mg/kg 19.4 20 - 140 MSD 1320257-79 ND 1.4849 1.6722 mg/kg 19.9 108 30 - 140 <

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Quality Control Report - Precision & Accuracy

	-		-			-				
								Cont	rol Limits	
	Source	Source		Spike			Percent		Percent	Lab
Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
Use	d client samp	ole: N								
MS	1320257-79	ND	2.2730	2.6756	mg/kg		85.0		28 - 144	
MSD	1320257-79	ND	2.8302	2.7119	mg/kg	21.8	104		28 - 144	
MS	1320257-79	ND	2.5116	2.6756	mg/kg		93.9		36 - 136	
MSD	1320257-79	ND	2.9308	2.7119	mg/kg	15.4	108		36 - 136	
MS	1320257-79	ND	2.1634	2.6756	mg/kg		80.9		31 - 135	
MSD	1320257-79	ND	2.5783	2.7119	mg/kg	17.5	95.1		31 - 135	
MS	1320257-79	ND	2.3229	2.6756	mg/kg		86.8		20 - 140	
MSD	1320257-79	ND	2.5844	2.7119	mg/kg	10.7	95.3		20 - 140	
MS	1320257-79	ND	2.5440	2.6756	mg/kg		95.1		20 - 150	
MSD	1320257-79	ND	2.4793	2.7119	mg/kg	2.6	91.4		20 - 150	
MS	1320257-79	ND	1.1670	1.3378	mg/kg		87.2		30 - 150	
MSD	1320257-79	ND	1.2908	1.3559	mg/kg	10.1	95.2		30 - 150	
	MS MSD MS	Type Sample ID Used client samp MS 1320257-79 MSD 1320257-79	Type Sample ID Result Used client sample: N MS 1320257-79 ND MSD 1320257-79 ND MS 1320257-79 ND MS 1320257-79 ND MSD 1320257-79 ND MSD 1320257-79 ND MSD 1320257-79 ND MS 1320257-79 ND MS 1320257-79 ND MSD 1320257-79 ND MSD 1320257-79 ND MSD 1320257-79 ND MS 1320257-79 ND	Type Sample ID Result Result Used client sample: N MS 1320257-79 ND 2.2730 MSD 1320257-79 ND 2.8302 MS 1320257-79 ND 2.5116 MSD 1320257-79 ND 2.9308 MS 1320257-79 ND 2.1634 MSD 1320257-79 ND 2.3229 MSD 1320257-79 ND 2.5844 MS 1320257-79 ND 2.5440 MSD 1320257-79 ND 2.4793 MS 1320257-79 ND 1.1670	Type Sample ID Result Result Added Used client sample: N MS 1320257-79 ND 2.2730 2.6756 MSD 1320257-79 ND 2.8302 2.7119 MS 1320257-79 ND 2.5116 2.6756 MSD 1320257-79 ND 2.9308 2.7119 MS 1320257-79 ND 2.1634 2.6756 MSD 1320257-79 ND 2.3229 2.6756 MSD 1320257-79 ND 2.5844 2.7119 MS 1320257-79 ND 2.5440 2.6756 MSD 1320257-79 ND 2.4793 2.7119 MS 1320257-79 ND 2.4793 2.7119 MS 1320257-79 ND 1.1670 1.3378	Type Sample ID Result Result Added Units Used client sample: N MS 1320257-79 ND 2.2730 2.6756 mg/kg MSD 1320257-79 ND 2.8302 2.7119 mg/kg MS 1320257-79 ND 2.5116 2.6756 mg/kg MSD 1320257-79 ND 2.9308 2.7119 mg/kg MS 1320257-79 ND 2.1634 2.6756 mg/kg MSD 1320257-79 ND 2.3229 2.6756 mg/kg MSD 1320257-79 ND 2.5844 2.7119 mg/kg MS 1320257-79 ND 2.5440 2.6756 mg/kg MSD 1320257-79 ND 2.5440 2.6756 mg/kg MSD 1320257-79 ND 2.4793 2.7119 mg/kg MS 1320257-79 ND 2.4793 2.7119 mg/kg	Type Sample ID Result Result Added Units RPD Use∪ client sample: N MS 1320257-79 ND 2.2730 2.6756 mg/kg MSD 1320257-79 ND 2.8302 2.7119 mg/kg 21.8 MS 1320257-79 ND 2.5116 2.6756 mg/kg 15.4 MS 1320257-79 ND 2.9308 2.7119 mg/kg 15.4 MS 1320257-79 ND 2.1634 2.6756 mg/kg 17.5 MS 1320257-79 ND 2.3229 2.6756 mg/kg 10.7 MS 1320257-79 ND 2.5844 2.7119 mg/kg 10.7 MS 1320257-79 ND 2.5440 2.6756 mg/kg MSD 1320257-79 ND 2.4793 2.7119 mg/kg 2.6 MS 1320257-79 ND 2.4793 2.7119 mg/kg 2.6 MS	Type Sample ID Result Result Added Units RPD Recovery Use-Client sample: N MS 1320257-79 ND 2.2730 2.6756 mg/kg 21.8 104 MSD 1320257-79 ND 2.8302 2.7119 mg/kg 21.8 104 MS 1320257-79 ND 2.5116 2.6756 mg/kg 93.9 MSD 1320257-79 ND 2.9308 2.7119 mg/kg 15.4 108 MS 1320257-79 ND 2.1634 2.6756 mg/kg 80.9 MSD 1320257-79 ND 2.5783 2.7119 mg/kg 17.5 95.1 MS 1320257-79 ND 2.3229 2.6756 mg/kg 10.7 95.3 MS 1320257-79 ND 2.5844 2.7119 mg/kg 10.7 95.3 MS 1320257-79 ND 2.5440 2.6756 mg/kg 95.1	Source Source Result Spike Added Units Percent Recovery RPD MS 1320257-79 ND 2.2730 2.6756 mg/kg 85.0 MSD 1320257-79 ND 2.8302 2.7119 mg/kg 21.8 104 MS 1320257-79 ND 2.5116 2.6756 mg/kg 93.9 MSD 1320257-79 ND 2.9308 2.7119 mg/kg 15.4 108 MS 1320257-79 ND 2.1634 2.6756 mg/kg 80.9 MSD 1320257-79 ND 2.5783 2.7119 mg/kg 17.5 95.1 MS 1320257-79 ND 2.3229 2.6756 mg/kg 86.8 MSD 1320257-79 ND 2.5844 2.7119 mg/kg 10.7 95.3 MS 1320257-79 ND 2.5440 2.6756 mg/kg 95.1 MSD 1320257-79 ND 2.5440 2.6756 mg/kg <	Type Sample ID Result Added Units RPD Recovery RPD Recovery Used client sample: N MS 1320257-79 ND 2.2730 2.6756 mg/kg 85.0 28 - 144 MSD 1320257-79 ND 2.8302 2.7119 mg/kg 21.8 104 28 - 144 MS 1320257-79 ND 2.5116 2.6756 mg/kg 93.9 36 - 136 MSD 1320257-79 ND 2.9308 2.7119 mg/kg 15.4 108 36 - 136 MS 1320257-79 ND 2.1634 2.6756 mg/kg 80.9 31 - 135 MSD 1320257-79 ND 2.5783 2.7119 mg/kg 17.5 95.1 31 - 135 MSD 1320257-79 ND 2.5844 2.7119 mg/kg 10.7 95.3 20 - 140 MS 1320257-79 ND 2.5440 2.6756 mg/kg 95.1 20 - 150 </td

Reported: 12/03/2013 12:44

2000 Powell Street 7th FloorProject: 7124Emeryville, CA 94608Project Number: 351638Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWK1675						
Gasoline Range Organics (C6 - C12)	BWK1675-BLK1	ND	ug/L	50		
a,a,a-Trifluorotoluene (FID Surrogate)	BWK1675-BLK1	79.4	%	70 - 130	(LCL - UCL)	

Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

								Control L	imits		
				Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	
QC Batch ID: BWK1675											
Gasoline Range Organics (C6 - C12)	BWK1675-BS1	LCS	901.76	1000.0	ug/L	90.2		85 - 115			

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

						Control Limits					
		Source	Source		Spike			Percent	<u> </u>	Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BWK1675	Use	d client samp	le: N								
Gasoline Range Organics (C6 - C12)	MS	1323260-89	ND	908.94	1000.0	ug/L		90.9		70 - 130	
	MSD	1323260-89	ND	863.26	1000.0	ug/L	5.2	86.3	20	70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	MS	1323260-89	ND	34.575	40.000	ug/L		86.4		70 - 130	
	MSD	1323260-89	ND	35.173	40.000	ug/L	1.7	87.9		70 - 130	

12/03/2013 12:44 Reported:

> Project Number: 351638 Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Project: 7124 Emeryville, CA 94608

Total Petroleum Hydrocarbons (EPA 8015/5035)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	. Lab Quals		
QC Batch ID: BWK1457								
Gasoline Range Organics (C6 - C12)	BWK1457-BLK1	ND	mg/kg	1.0				
a,a,a-Trifluorotoluene (FID Surrogate)	BWK1457-BLK1	82.5	%	70 - 130	(LCL - UCL)			

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

Quality Control Report - Laboratory Control Sample

								Control Limits			
				Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	
QC Batch ID: BWK1457											
Gasoline Range Organics (C6 - C12)	BWK1457-BS1	LCS	5.6060	5.0000	mg/kg	112		85 - 115			

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/03/2013 12:44

Project Number: 351638
Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

Quality Control Report - Precision & Accuracy

		•		•			-	<u> </u>			
					Control Limits						
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BWK1457	Use	d client samp	ole: N								
Gasoline Range Organics (C6 - C12)	MS	1323260-84	ND	5.5990	5.0000	mg/kg		112		70 - 130	
	MSD	1323260-84	ND	5.6300	5.0000	mg/kg	0.6	113	20	70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	MS	1323260-84	ND	0.037000	0.040000	mg/kg		92.5		70 - 130	
	MSD	1323260-84	ND	0.036000	0.040000	mg/kg	2.7	90.0		70 - 130	

Reported: 12/03/2013 12:44

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

Notes And Definitions

Emeryville, CA 94608

2000 Powell Street 7th Floor

Arcadis

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit RPD Relative Percent Difference

L21 The Laboratory Control Sample Soil (LCSS) recovery is not within laboratory established control limits.

Q02 Matrix spike precision is not within the control limits.

Q03 Matrix spike recovery(s) is(are) not within the control limits.

Date of Report: 12/04/2013

Kathy Brandt

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608

Project: 7124
BC Work Order: 1325252
Invoice ID: B161170

Enclosed are the results of analyses for samples received by the laboratory on 11/19/2013. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

molly meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; AK UST101

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	4
Laboratory / Client Sample Cross Reference	8
Sample Results	
1325252-01 - CPT-5-5-S-131118	
Volatile Organic Analysis (EPA Method 8260/5035)	14
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	
1325252-02 - CPT-5-8-S-131118	
Volatile Organic Analysis (EPA Method 8260/5035)	19
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	20
Total Petroleum Hydrocarbons (EPA 8015/5035)	23
1325252-03 - HP-5-28-32-W-131118	
Volatile Organic Analysis (EPA Method 8260)	24
Purgeable Aromatics and Total Petroleum Hydrocarbons	25
1325252-04 - HP-5-39-42-W-131118	
Volatile Organic Analysis (EPA Method 8260)	26
Purgeable Aromatics and Total Petroleum Hydrocarbons	27
1325252-05 - CPT-1-5-S-131118	
Volatile Organic Analysis (EPA Method 8260/5035)	28
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	32
1325252-06 - CPT-1-8-S-131118	
Volatile Organic Analysis (EPA Method 8260/5035)	
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	34
Total Petroleum Hydrocarbons (EPA 8015/5035)	37
1325252-07 - HP-1-32-36-W-131118	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	39
1325252-08 - HP-1-42-46-W-131118	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	41
1325252-09 - SB-8-15.5-S-131118	
Volatile Organic Analysis (EPA Method 8260/5035)	
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	46
1325252-10 - SB-8-19.5-S-131118	
Volatile Organic Analysis (EPA Method 8260/5035)	
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	51
1325252-11 - SB-8-22.5-S-131118	
Volatile Organic Analysis (EPA Method 8260/5035)	
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	56
1325252-12 - SB-8-26.5-S-131118	
Volatile Organic Analysis (EPA Method 8260/5035)	
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	61
1325252-13 - SB-8-31.5-S-131118	
Volatile Organic Analysis (EPA Method 8260/5035)	
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Total Petroleum Hydrocarbons (EPA 8015/5035)	66
1325252-14 - SB-8-36-S-131118	07
Volatile Organic Analysis (EPA Method 8260/5035)	6/

Table of Contents

	Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	68
	Total Petroleum Hydrocarbons (EPA 8015/5035)	
	1325252-15 - SB-8-40-S-131118	
	Volatile Organic Analysis (EPA Method 8260/5035)	72
	Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
	Total Petroleum Hydrocarbons (EPA 8015/5035)	
	1325252-16 - Travel Blank-W-131118	
	Volatile Organic Analysis (EPA Method 8260)	77
	Purgeable Aromatics and Total Petroleum Hydrocarbons	78
Qualit	y Control Reports	
•	Volatile Organic Analysis (EPA Method 8260)	
	Method Blank Analysis	79
	Laboratory Control Sample	80
	Precision and Accuracy	
	Volatile Organic Analysis (EPA Method 8260/5035)	
	Method Blank Analysis	82
	Laboratory Control Sample	83
	Precision and Accuracy	84
	Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
	Method Blank Analysis	85
	Laboratory Control Sample	88
	Precision and Accuracy	89
	Purgeable Aromatics and Total Petroleum Hydrocarbons	
	Method Blank Analysis	91
	Laboratory Control Sample	92
	Precision and Accuracy	93
	Total Petroleum Hydrocarbons (EPA 8015/5035)	
	Method Blank Analysis	94
	Laboratory Control Sample	95
	Precision and Accuracy	96
Notes		
	Notes and Definitions	97

Chain of Custody and Cooler Receipt Form for 1325252 Page 1 of 4 24 Hours 🗆 72 Hours 🗆 on-lul 802 in on-told Turnaround Time (TAT): 02-60 o4-40 Special Instructions Notes / Comments : 802 m 7 Standard X 48 Hours 🗆 = 8.27 802 Date / Time: Date ANALYSES SHHJ Relinquished By Union Oil Company of Callfornia 🗷 6101 Bollinger Canyon Road 🗷 San Ramon, CA 94583 EPA 8260B Full List with OXYS Ethanol by EPA 82608 χ بز \searrow BLEX/MTBE/OXYS by EPA 8260B بحز TPH - G by GC/MS TPH - Diesel by EPA 8015 CHAIN OF CUSTODY FORM Date / Time 925.274.118B Project Manager: Molly Meyers 4100 Atlas Court, Bakersfield, CA 93308 Phone No. 661-327-4911 1 مال 7 7 7 BC Laboratories, Inc. Sampling Company: 1355 Consultant Phone No.: Sampled By (PRINT): Union Oil Consultant: Rob Moniz Sample Time Consultant Contact Sampler Signature 0460 ₹20 1000 レカト Relinquished By (055 450 711 135 1200 1150 Received By ALL fields must be filled out CORRECTLY and (yymmdd) Date <u>@</u> ۲ = = Ξ Ź ラ -0- UTUZ 0 DTW(++) 11.18.13 Charge Code: NWRTB-03 51 633 -0-LAB Date / Time Blud 351638 24.40 193 7. SAMPLE ID Indostrial 4 (Ws-A Ø-S-A Matrix W.S-A A-S-0 W(S)A W(S-A w(S)A MFS)A W(S)A W@A WER W.S.A Browks TIM BIShop ž NUJEJ ジー This is a LEGAL document , COMPLETELY. 1015 Jaion Oil PM Phone No. -5-28-33 Field Point Name 47.46 8-15.5 4P-1-37 <u>.</u> 7 00 Jnion Oil Site ID: 1 25 1 Relinquished By Site Global ID; 166M2 Site Address: Julon Oil PM: Received By α 1-1--1-dh

Chain of Custody and Cooler Receipt Form for 1325252 Page 2 of 4 72 Hours 24 Hours □ Turnaround Time (TAT): られられる Special Instructions ٥ Notes / Comments Standard X 7 Date / Time: B Date / Time ANALYSES DOZZS Relinquished By X Received By Union Oil Company of California 🏻 6101 Bollinger Canyon Road 🖪 San Ramon, CA 94583 EPA 8260B Full List with OXYS Ethanol by EPA 82608 У BTEX/MTBE/OXYS by EPA 8260B 乂 × TPH - G by GC/MS X TPH - Diesel by EPA 8015 CHAIN OF CUSTODY FORM Date / Time # of Containers 925.274.1100 Project Manager: Molty Mayers 4100 Atlas Court, Bakersfield, CA 93308 Phone No. 661-327-4911 PMR 45C401 T BC Laboratories Company Sampling Company: FRC Consultant Phone No. Sampled By (PRINT): Union Oil Consultant: Rob Menic Consultant Contact: Sampler Signatifige: 69 25 0)9 Relinquished By This is a LEGAL document. <u>ALL</u> fields must be filled out CORRECTLY and COMPLETELY. Date (yymmdd) NWENV- 6755163 8-0-6762 \mathcal{G} 11.13.13 Date / Time: 351638 SAMPLE ID Matrix W-S-A W-S-A W-S-A WGA W-S-A W-S-A W-S-A W-S-A w(S)A W.S.A W-S-A Company \times Blank 40 Jnion Oil PM Phone No. Field Point Name ŏ Jnion Oll Site ID: 255 Site Global ID SR-8 ல Site Address: Juion Oil PM: ₽ 20 Received By

Chain of Custody and Cooler Receipt Form for 1325252 Page 3 of 4

		COC	DLER RECE	IPT FOR	M	Rev. No. 1	15 07/01	/13 Pa	ige 📙 O	f <u>Z</u>
Submission #: 13-2525	2					1,001,100	07701	713 16	<u>ige_i_</u> 0	
SHIPPING INFO		· · · · · · · · · · · · · · · · · · ·		C.	JIDDING	CONTAI	NED		DEE HO	
Federal Express ☐ UPS □	Hand Del	livery 🗆		Ice Che		None		167	REE LIQI ES □ N	1
BC Lab Field Service ☐ Other	· □ (Specify	()		Othe	r 🖟 (Spe	cify)	DOX [CO 14.	ا ت ا
					•					
Refrigerant: Ice Blue Ice	☐ Nor	ne 🗆	Other □	Comm	ents:			. 18		
Custody Seals Ice Chest ⊡	Contair		7	Č√ Comi						
Intact? Yes □ No □	Intact? Yes	the state of the s		Ly Comi	nents;					
All samples received? Yes No□	All sample	s containe	rs intact? Y	es 🗶 No	O	Descrip	tion(s) matc	h COC? Y	es 🗆 , No \	*
COC Received	Emissivity: C).97	Container:	VOA	Thermon	neter ID: 2	.c 7	Data/Tim	e [1] [19]	13
□\VES □ NO			47		/	7. le		Date/Till	avan?	1005
	Temperatu	re: (A)_	1.7	_°C /	(C)	7.0	°C	Analyst la	液VIC(1)	
					SAMPLE	NUMBERS				
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	816	10
QT GENERAL MINERAL/GENERAL										
PT PE UNPRESERVED	_									
QT INORGANIC CHEMICAL METALS										
PT INORGANIC CHEMICAL METALS										
PT CYANIDE							 			
PT NITROGEN FORMS	-									
PT TOTAL SULFIDE			-			-				
20z. NITRATE / NITRITE				_ -			 			
PT TOTAL ORGANIC CARBON PT TOX	-		1							
PT CHEMICAL OXYGEN DEMAND			· · · · · · · · · · · · · · · · · · ·							
PLA PHENOLICS										
60ml VOA VIAL TRAVEL BLANK			 						A(2)	
10ml VOA VIAL		,	A.4	AU	ι ι		A.4.	A.4.	71(2)	():
QT EPA 413.1, 413.2, 418.1										
PT ODOR										
RADIOLOGICAL			_							
BACTERIOLOGICAL										
10 ml VOA VIAL- 504										
QT EPA 508/608/8080										
QT EPA 515.1/8150										
QT EPA 525										
OT EPA 525 TRAVEL BLANK										
180ml EPA 547										
90ml EPA 531.1										
OT EPA 548			 							
OT EPA 549			-							
2T EPA 632			 				 			
OT AMBER										
OT AMBER	BC	В			BC	В				 -[
OZ. JAR 2 OZ. JAR	1		1		سارړ	12				
OIL SLEEVE			-							
CB VIAL			1						-	
PLASTIC BAG										
ERROUS IRON										
ENCORE			1							
	14	Δ			A	Δ				
	8 /				/ \	<i></i>				
MART KIT Summa Canister Domments:						•				

Chain of Custody and Cooler Receipt Form for 1325252 Page 4 of 4

BC LABORATORIES INC.		C00	LER REC	EIPT FOR	M	Rev. No. 1	5 07/01	/13 Pa	ge <u>2</u> 0	of 2
Submission #: 13-25252						<u> </u>				·
, SHIPPING INFOR		·			UDDING	CORITAIR	IED.	7		
1.		vi elivery □		Ice Che		CONTAIN			REE LIQ	
BC Lab Field Service Other	☐ (Specif	γ}		Othe	er 🗓 (Spe	cify)	ъох Ц	Y	ES 🗆 N	10 🗆
					_ (-,-	,-				
Refrigerant: Ice 🕼 Blue Ice 🛭	□ No	ne 🗆	Other □	Comn	ents:					
Custody Seals Ice Chest □	. A PAU YER	VII Section Co. Co.								
13.95EE-17-58EE-17-58EE-17-5EE-1	The state of the s	ners⊡ s □ No □	None	Com	ments:				•	
All samples received? Yes X No □	All sample	es container	s intact? . Y	es 🗹 No	<u> </u>	Descript	ion(s) matc	h COC? Y	es □ ,No)	×
COC Received En	nissivity).97	Container	Ġla55	Thermon	natar In	7	Date/Time	1/2/	/
VITVES INO			//		_ ``````` /	1 -				
<u>y</u> 1	Temperatu	ire: (A)	45	_°C /	(C)	<u>1·2</u>	°C	Analyst Ir	# <i>14011</i> 2	<u>1</u> 000
			,		SAMPLE	NUMBERS			11 19/1	
SAMPLE CONTAINERS	19	110	811	MZ			115			
OT GENERAL MINERAL/ GENERAL		<u> </u>				1	کر ا ہ	419		-10
PT PE UNPRESERVED										1
OT INORGANIC CHEMICAL METALS								_		1
T INORGANIC CHEMICAL METALS										
T CYANIDE										
T NITROGEN FORMS										
T TOTAL SULFIDE										
oz. NITRATE / NITRITE										
T TOTAL ORGANIC CARBON										
ттох						"				
T CHEMICAL OXYGEN DEMAND										
TA PHENOLICS										
0ml VOA VIAL TRAVEL BLANK								A(2)		
0ml VOA VIAL	į ;) {	1)	()	t I	1 1	1 1	1 1	()	ſ
T EPA 413.1, 413.2, 418.1										
T ODOR										
tADIOLOGICAL										
BACTERIOLOGICAL										
10 ml VOA VIAL- 504										
OT EPA 508/608/8080										
Y EPA 515.1/8150										
YT EPA 525										
OT EPA 525 TRAVEL BLANK										
00ml EPA 547										
00ml EPA 531.1										
T EPA 548										
T EPA 549										
PT EPA 632										· · · · · · · · · · · · · · · · · · ·
PT EPA 8015M										
T AMBER										
OZ. JAR	В	В	13	B	В	13	13			
2 OZ. JAR						*				
OIL SLEEVE										···
CB VIAL										 -
LASTIC BAG										
ERROUS IRON										
NCORE										
MART KIT	1	1	$\overline{\lambda}$	4	A		A			
	/~	1-1		T	<u> </u>	/-	_/¬			
umma Canister	-				i					

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1325252-01 COC Number: --

Project Number: 7124 Sampling Location: ---

Sampling Point: CPT-5-5-S-131118

Sampled By: AREC

Receive Date: 11/19/2013 10:05 **Sampling Date:** 11/18/2013 08:47

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil

Delivery Work Order:

Global ID:

Location ID (FieldPoint): CPT-5

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1325252-02 COC Number: ---

Project Number: 7124
Sampling Location: ---

Sampling Point: CPT-5-8-S-131118

Sampled By: AREC

Receive Date: 11/19/2013 10:05 **Sampling Date:** 11/18/2013 09:00

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): CPT-5

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1325252-03 COC Number: --

Project Number: 7124
Sampling Location: ---

Sampling Point: HP-5-28-32-W-131118

Sampled By: AREC

Receive Date: 11/19/2013 10:05

Sampling Date: 11/18/2013 09:40

Sample Depth: --Lab Matrix: Water
Sample Type: Water
Delivery Work Order:

Global ID:

Location ID (FieldPoint): HP-5

Matrix: W

Sample QC Type (SACode): CS

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/04/2013 9:20

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1325252-04 COC Number:

> **Project Number:** 7124 Sampling Location:

Sampling Point: HP-5-39-42-W-131118

Sampled By:

AREC

11/19/2013 10:05 Receive Date: Sampling Date: 11/18/2013 10:00

Sample Depth: Lab Matrix: Water Water Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): HP-5

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

Sampling Date:

1325252-05 **COC Number:**

> **Project Number:** 7124 Sampling Location:

CPT-1-5-S-131118 Sampling Point:

Sampled By:

AREC

11/19/2013 10:05 Receive Date: 11/18/2013 10:55

Sample Depth: Solids Lab Matrix: Soil Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): CPT-1

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1325252-06 COC Number:

> 7124 **Project Number:** Sampling Location:

CPT-1-8-S-131118 Sampling Point: **AREC**

Sampled By:

Receive Date:

11/19/2013 10:05

Sampling Date:

11/18/2013 11:15

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): CPT-1

Matrix: SO

Sample QC Type (SACode): CS

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1325252-07 COC Number: --

Project Number: 7124 Sampling Location: ---

Sampling Point: HP-1-32-36-W-131118

AREC

Sampled By:

Receive Date: 11/19/2013 10:05 **Sampling Date:** 11/18/2013 11:50

Sample Depth: --Lab Matrix: Water
Sample Type: Water

Delivery Work Order:

Global ID:

Location ID (FieldPoint): HP-1

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1325252-08 COC Number: ---

Project Number: 7124 Sampling Location: ---

Sampling Point: HP-1-42-46-W-131118

Sampled By: AREC

Receive Date: 11/19/2013 10:05 **Sampling Date:** 11/18/2013 12:00

Sample Depth: --Lab Matrix: Water
Sample Type: Water
Delivery Work Order:

Global ID:

Location ID (FieldPoint): HP-1

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1325252-09 COC Number: ---

Project Number: 7124
Sampling Location: ---

Sampling Point: SB-8-15.5-S-131118

Sampled By: AREC

Receive Date: 11/19/2013 10:05

Sampling Date: 11/18/2013 16:35

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: 12/04/2013 9:20

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1325252-10 **COC Number:**

> **Project Number:** 7124 Sampling Location:

Sampling Point: SB-8-19.5-S-131118

Sampled By:

AREC

11/19/2013 10:05 Receive Date: Sampling Date: 11/18/2013 14:45

Sample Depth: Lab Matrix: Solids Soil Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1325252-11 **COC Number:**

> **Project Number:** 7124 Sampling Location:

SB-8-22.5-S-131118 Sampling Point:

AREC

Sampled By:

11/19/2013 10:05 Receive Date: 11/18/2013 15:20 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1325252-12 COC Number:

7124 **Project Number:** Sampling Location:

SB-8-26.5-S-131118 Sampling Point:

AREC Sampled By:

Receive Date: 11/19/2013 10:05

11/18/2013 15:30 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1325252-13 COC Number:

Project Number: 7124 Sampling Location: ---

Sampling Point: SB-8-31.5-S-131118

Sampled By: AREC

Receive Date: 11/19/2013 10:05 **Sampling Date:** 11/18/2013 15:55

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1325252-14 COC Number: ---

Project Number: 7124
Sampling Location: ---

Sampling Point: SB-8-36-S-131118

Sampled By: AREC

Receive Date: 11/19/2013 10:05 **Sampling Date:** 11/18/2013 16:00

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1325252-15 COC Number: --

Project Number: 7124 Sampling Location: ---

Sampling Point: SB-8-40-S-131118

Sampled By: AREC

Receive Date: 11/19/2013 10:05 **Sampling Date:** 11/18/2013 16:10

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

Arcadis Reported: 12/04/2013 9:20

2000 Powell Street 7th FloorProject: 7124Emeryville, CA 94608Project Number: 351638Project Manager: Kathy Brandt

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1325252-16 COC Number: ---

Project Number: 7124
Sampling Location: ---

Sampling Point: Travel Blank-W-131118

Sampled By: AREC

Receive Date: 11/19/2013 10:05 **Sampling Date:** 11/18/2013 00:00

Sample Depth: --Lab Matrix: Water
Sample Type: Trip Blank

Delivery Work Order:

Global ID:

Location ID (FieldPoint): Travel Blank

Matrix: W

Sample QC Type (SACode): CS

MU

Arcadis

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID : 1325252	2-01 Client Sam	ple Name:	7124, CPT-5-5-S-1	31118, 11/18/2013	8:47:00AM		
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene	ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene	ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes	ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol	ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol	ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surrogate)	99.3	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)	102	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)	90.6	%	74 - 121 (LCL - UCL)	EPA-8260B			1

		QC						
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/19/13	11/22/13 13:55	ADC	MS-V2	1	BWK1462	

2000 Powell Street 7th Floor Emeryville, CA 94608

12/04/2013 9:20 Reported:

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

BCL Sample ID:	1325252-01	Client Sampl	e Name:	7124, CPT-5-5	5-S-131118, 11/18/2013	8:47:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Acenaphthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		1
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
oeta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
gamma-BHC (Lindane)		ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroethoxy)metha	ine	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroethyl) ether		ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroisopropyl)ethe	er	ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Ethylhexyl)phthalate		ND	mg/kg	0.20	EPA-8270C	ND		1
4-Bromophenyl phenyl eth	ner	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chlorophenyl phenyl etl	ner	ND	mg/kg	0.10	EPA-8270C	ND		1
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1
1,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzo[a,h]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-01	Client Sampl	e Name:	7124, CPT-5-	5-S-131118, 11/18/2013	8:47:00AM		
						MB	Lab	
1,3-Dichlorobenzene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run # 1
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
3,3-Dichlorobenzidine		ND		0.20	EPA-8270C	ND		
Dieldrin		ND ND	mg/kg	0.20	EPA-8270C	ND ND		1
Diethyl phthalate		ND ND	mg/kg	0.10	EPA-8270C	ND ND		1
		ND ND	mg/kg	0.10		ND ND		1
Dimethyl phthalate			mg/kg		EPA-8270C			1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND 	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadie	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
Indeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Isophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
4-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported:

12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-01	Client Sample	e Name:	7124, CPT-5-5-S-13	31118, 11/18/2013	8:47:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
N-Nitrosodimethylamin	ie	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodi-N-propylar	mine	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodiphenylamin	ie	ND	mg/kg	0.10	EPA-8270C	ND		1
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2,4-Trichlorobenzene	9	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloro-3-methylpher	nol	ND	mg/kg	0.20	EPA-8270C	ND		1
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4,6-Dinitro-2-methylpho	enol	ND	mg/kg	0.50	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Phenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Fluorophenol (Surrog	gate)	96.2	%	28 - 144 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)		106	%	36 - 136 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surre	ogate)	87.9	%	31 - 135 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surr	ogate)	78.2	%	20 - 140 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol ((Surrogate)	80.7	%	20 - 150 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surro	ogate)	78.5	%	30 - 150 (LCL - UCL)	EPA-8270C			1

	Run QC								
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8270C	11/25/13	12/02/13 20:04	SKC	MS-B1	1.007	BWL0089		

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325252-01	Client Sampl	e Name:	7124, CPT-5-5-S-13	31118, 11/18/2013	3 8:47:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	0.90	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	92.5	%	70 - 130 (LCL - UCL)	EPA-8015B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/19/13	11/21/13 14:08	JJH	GC-V8	0.898	BWK1457	

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	1325252-02	Client Sampl	e Name:	7124, CPT-5-8-S-13	31118, 11/18/2013	9:00:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	99.2	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		97.7	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	82.0	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/19/13	11/19/13 13:47	ADC	MS-V2	1	BWK1462	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-02	Client Sampl	e Name:	7124, CPT-5-	8-S-131118, 11/18/2013	9:00:00AM		
Comptituent		Pagult	Unita	DOL	Mathad	MB	Lab	D #
Constituent Acenaphthene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run #1
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		<u>.</u> 1
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		1
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
beta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
gamma-BHC (Lindane)		ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroethoxy)me	thane	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroethyl) ether	r	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroisopropyl)e	ther	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Ethylhexyl)phthal	ate	ND	mg/kg	0.20	EPA-8270C	ND		1
4-Bromophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chlorophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzo[a,h]anthracene	9	ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

12/04/2013 9:20 Reported:

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

BCL Sample ID:	1325252-02	Client Sampl	e Name:	7124, CPT-5-	8-S-131118, 11/18/2013	9:00:00AM		
Constituent		Decult	l lusida	DOL	Madhad	MB	Lab	D #
Constituent 1,3-Dichlorobenzene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run #1
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		1
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Dimethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadier	ie	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
Indeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Isophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
4-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

Reported:

12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

BCL Sample ID:	1325252-02	Client Sampl	e Name:	7124, CPT-5-8-S-13	31118, 11/18/2013	9:00:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
N-Nitrosodimethylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodi-N-propylamir	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodiphenylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2,4-Trichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloro-3-methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4,6-Dinitro-2-methylphen	ol	ND	mg/kg	0.50	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Phenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Fluorophenol (Surrogat	te)	84.7	%	28 - 144 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)		100	%	36 - 136 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surrog	ate)	82.3	%	31 - 135 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surrog	ate)	65.5	%	20 - 140 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol (Su	urrogate)	72.1	%	20 - 150 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surroga	ate)	88.4	%	30 - 150 (LCL - UCL)	EPA-8270C			1

					QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	11/25/13	12/02/13 20:32	SKC	MS-B1	1.014	BWL0089	

Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325252-02	Client Sampl	e Name:	7124, CPT-5-8-S-13				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	0.78	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	92.5	%	70 - 130 (LCL - UCL)	EPA-8015B			1

			Run				QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8015B	11/19/13	11/21/13 14:38	JJH	GC-V8	0.780	BWK1457		

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1	325252-03	Client Sample	e Name:	7124, HP-5-28-32-V	V-131118, 11/18/2	2013 9:40:00	AM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		1.6	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surr	ogate)	100	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		96.0	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	95.8	%	80 - 120 (LCL - UCL)	EPA-8260B			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/22/13	11/25/13 16:51	EAR	MS-V12	1	BWK1806	

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project: 7124
Project Number: 351638

Project Number: 351638
Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1325252-03	Client Sampl	Sample Name: 7124, HP-5-28-32-W-131118, 11/18/2013 9:40:00AM						
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Organ	nics (C6 - C12)	ND	ug/L	50 50	EPA-8015B	ND	Quais	1	
a,a,a-Trifluorotoluene	(FID Surrogate)	81.7	%	70 - 130 (LCL - UCL)	EPA-8015B			1	

			Run				QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8015B	11/25/13	11/27/13 20:58	jjh	GC-V9	1	BWL0013			

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1	325252-04	Client Sampl	e Name:	7124, HP-5-39-42-V	V-131118, 11/18/2	2013 10:00:00	MAC	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surr	rogate)	99.0	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		97.8	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	95.2	%	80 - 120 (LCL - UCL)	EPA-8260B			1

Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/22/13	11/25/13 17:09	EAR	MS-V12	1	BWK1806	

Reported: 12/04/2013 9:20

2000 Powell Street 7th Floor Project: 7124

Emeryville, CA 94608 Project Number: 351638

Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1325252-04	Client Sampl	e Name:	7124, HP-5-39-42-V	V-131118, 11/18/2	1/18/2013 10:00:00AM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Organ	nics (C6 - C12)	ND	ug/L	50	EPA-8015B	ND	Quuis	1		
a,a,a-Trifluorotoluene	(FID Surrogate)	83.8	%	70 - 130 (LCL - UCL)	EPA-8015B			1		

			Run		QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/25/13	11/27/13 21:18	jjh	GC-V9	1	BWL0013	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	1325252-05	Client Sampl	e Name:	7124, CPT-1-5-S-1	31118, 11/18/2013	3 10:55:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	87.2	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		92.8	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	74.2	%	74 - 121 (LCL - UCL)	EPA-8260B			1

		QC						
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/19/13	11/19/13 14:14	ADC	MS-V2	1	BWK1462	

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-05	Client Sampl	e Name:	7124, CPT-1-	5-S-131118, 11/18/2013	10:55:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Bun #
Acenaphthene		ND	mg/kg	0.10	EPA-8270C	ND ND	Quais	Run #1
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		1
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
oeta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
gamma-BHC (Lindane)		ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroethoxy)metl	nane	ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroethyl) ether		ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroisopropyl)et	her	ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Ethylhexyl)phthala	te	ND	mg/kg	0.20	EPA-8270C	ND		1
I-Bromophenyl phenyl e	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
I-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
I-Chlorophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1
1,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1
1,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzo[a,h]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

Reported: 12/04/2013 9:20

2000 Powell Street 7th Floor Project: 7124
Emeryville, CA 94608 Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-05	Client Sampl	e Name:	7124, CPT-1-	5-S-131118, 11/18/2013	10:55:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
1,3-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND	Quais	1
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		1
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Dimethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadien	е	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
ndeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
sophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
laphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
1-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project: 7124

Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-05	Client Sampl	le Name:	7124, CPT-1-5-S-1	31118, 11/18/2013	3 10:55:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
N-Nitrosodimethylamir	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodi-N-propylar	mine	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodiphenylamir	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2,4-Trichlorobenzene	е	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloro-3-methylpher	nol	ND	mg/kg	0.20	EPA-8270C	ND		1
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4,6-Dinitro-2-methylph	enol	ND	mg/kg	0.50	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Phenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Fluorophenol (Surro	gate)	91.7	%	28 - 144 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)		105	%	36 - 136 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surr	ogate)	84.4	%	31 - 135 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surr	ogate)	76.7	%	20 - 140 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol	(Surrogate)	70.3	%	20 - 150 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surr	ogate)	87.2	%	30 - 150 (LCL - UCL)	EPA-8270C			1

				QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	11/25/13	12/02/13 20:59	SKC	MS-B1	1.003	BWL0089	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325252-05	Client Sampl	e Name:	7124, CPT-1-5-S-13	31118, 11/18/2013	3 10:55:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	1.0	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	77.5	%	70 - 130 (LCL - UCL)	EPA-8015B			1

			Run			QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/19/13	11/21/13 15:08	JJH	GC-V8	1.010	BWK1457	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported:

12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	1325252-06	Client Sampl	e Name:	7124, CPT-1-8-S-13				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		0.093	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Su	rrogate)	105	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		99.0	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	ırrogate)	88.5	%	74 - 121 (LCL - UCL)	EPA-8260B			1

		Run					QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8260B	11/19/13	11/19/13 14:40	ADC	MS-V2	1	BWK1462		

Reported: 12/04/2013 9:20

2000 Powell Street 7th FloorProject7124Emeryville, CA 94608Project Number:351638Project Manager:Kathy Brandt

BCL Sample ID:	1325252-06	Client Sample Name:		7124, CPT-1-				
Constituent		Result	Units	PQL	Method	MB	Lab	Bun #
Acenaphthene		ND ND	mg/kg	0.10	EPA-8270C	Bias ND	Quals	Run #
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		 1
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		1
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
beta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
gamma-BHC (Lindane))	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroethoxy)me	thane	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroethyl) ethe	r	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroisopropyl)e	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Ethylhexyl)phthal	ate	ND	mg/kg	0.20	EPA-8270C	ND		1
4-Bromophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chlorophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzo[a,h]anthracen	e	ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608

12/04/2013 9:20 Reported:

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

BCL Sample ID:	1325252-06	252-06 Client Sample Name:			7124, CPT-1-8-S-131118, 11/18/2013 11:15:00AM				
Constituent		Popult	Heite	POI.	Mothod	MB	Lab	D #	
Constituent 1,3-Dichlorobenzene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run # 1	
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1	
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		<u>·</u> 1	
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND		1	
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1	
Dimethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1	
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1	
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1	
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1	
1,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1	
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1	
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1	
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1	
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1	
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1	
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1	
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1	
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Hexachlorocyclopentadie	ne	ND	mg/kg	0.10	EPA-8270C	ND		1	
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1	
Indeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Isophorone		ND	mg/kg	0.10	EPA-8270C	ND		1	
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1	
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1	
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1	
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1	
4-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1	
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1	

Reported: 12/04/2013 9:20

2000 Powell Street 7th Floor Project: 7124
Emeryville, CA 94608 Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-06	Client Sampl	e Name:	7124, CPT-1-8-S-13				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
N-Nitrosodimethylamin	e	ND	mg/kg	0.10	EPA-8270C	ND	40.0.0	1
N-Nitrosodi-N-propylan	nine	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodiphenylamin	е	ND	mg/kg	0.10	EPA-8270C	ND		1
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2,4-Trichlorobenzene	:	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloro-3-methylphen	iol	ND	mg/kg	0.20	EPA-8270C	ND		1
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4,6-Dinitro-2-methylpho	enol	ND	mg/kg	0.50	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Phenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Fluorophenol (Surrog	gate)	90.7	%	28 - 144 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)		107	%	36 - 136 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surro	ogate)	91.4	%	31 - 135 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surre	ogate)	64.7	%	20 - 140 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol (Surrogate)	73.7	%	20 - 150 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surro	ogate)	82.2	%	30 - 150 (LCL - UCL)	EPA-8270C			1

	Run						QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	11/25/13	12/02/13 21:26	SKC	MS-B1	0.997	BWL0089	

2000 Powell Street 7th Floor Emeryville, CA 94608

12/04/2013 9:20 Reported:

Project: 7124

Project Number: 351638 Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325252-06	Client Sampl	e Name:	7124, CPT-1-8-S-13	7124, CPT-1-8-S-131118, 11/18/2013 11:15:00AM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	0.78	EPA-8015B	ND		1		
a,a,a-Trifluorotoluene	(FID Surrogate)	77.5	%	70 - 130 (LCL - UCL)	EPA-8015B			1		

			Run			QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8015B	11/19/13	11/21/13 15:38	JJH	GC-V8	0.776	BWK1457		

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1	325252-07	Client Sample	e Name:	7124, HP-1-32-36-V	V-131118, 11/18/2	2013 11:50:00	DAM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Suri	ogate)	100	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		96.3	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	96.7	%	80 - 120 (LCL - UCL)	EPA-8260B			1

			Run			QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/22/13	11/25/13 17:26	EAR	MS-V12	1	BWK1806	

Arcadis 2000 Powell Street 7th Floor

Project: 7124 Emeryville, CA 94608 Project Number: 351638 Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

Reported: 12/04/2013 9:20

BCL Sample ID:	1325252-07	Client Sampl	e Name:	9: 7124, HP-1-32-36-W-131118, 11/18/2013 11:50:00AM						
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Organ	nics (C6 - C12)	ND	ug/L	50	EPA-8015B	ND ND	Quuis	1		
a,a,a-Trifluorotoluene	(FID Surrogate)	84.9	%	70 - 130 (LCL - UCL)	EPA-8015B			1		

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/25/13	11/27/13 21:38	jjh	GC-V9	1	BWL0013	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 13	325252-08	Client Sampl	e Name:	7124, HP-1-42-46-V	V-131118, 11/18/2	2013 12:00:00	DPM	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surr	ogate)	96.6	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		95.9	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	98.9	%	80 - 120 (LCL - UCL)	EPA-8260B			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/22/13	11/25/13 17:44	EAR	MS-V12	1	BWK1806	

Reported: 12/04/2013 9:20

2000 Powell Street 7th Floor Project: 7124

Emeryville, CA 94608 Project Number: 351638

Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1325252-08	Client Sampl	e Name:	7124, HP-1-42-46-W-131118, 11/18/2013 12:00:00PM						
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Organ	nics (C6 - C12)	ND	ug/L	50	EPA-8015B	ND		1		
a,a,a-Trifluorotoluene	(FID Surrogate)	85.8	%	70 - 130 (LCL - UCL)	EPA-8015B			1		

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/25/13	11/27/13 21:58	jjh	GC-V9	1	BWL0013	

Reported: 12/04/2013 9:20

2000 Powell Street 7th Floor Project: 7124
Emeryville, CA 94608 Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	1325252-09	Client Sampl	e Name:	7124, SB-8-15.5-S-	131118, 11/1 <mark>8/20</mark>	13 4:35:00PN	1	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	105	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	92.8	%	74 - 121 (LCL - UCL)	EPA-8260B			1

	Run						QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID				
1	EPA-8260B	11/19/13	11/19/13 15:06	ADC	MS-V2	1	BWK1462				

Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

BCL Sample ID:	1325252-09	Client Sampl	e Name:	7124, SB-8-1	5.5-S-131118, 11/18/201	13 4:35:00PN	Л	
						МВ	Lab	
Constituent Acenaphthene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run #
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		
Aniline		ND	mg/kg	0.10	EPA-8270C	ND ND		1
Anthracene		ND		0.20	EPA-8270C	ND ND		1
Benzidine			mg/kg	3.0				1
		ND	mg/kg		EPA-8270C	ND		1
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		<u> </u>
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
beta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
gamma-BHC (Lindane)		ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroethoxy)meth	ane	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroethyl) ether		ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroisopropyl)eth	ner	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Ethylhexyl)phthalat	e	ND	mg/kg	0.20	EPA-8270C	ND		1
4-Bromophenyl phenyl e	ther	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chlorophenyl phenyl e	ther	ND	mg/kg	0.10	EPA-8270C	ND		1
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzo[a,h]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-09	Client Sampl	e Name:	7124, SB-8-15	5.5-S-131118, 11/18/201	13 4:35:00PN	Л	
Constituent		Result	Units	PQL	Method	MB	Lab	D #
1,3-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	Bias ND	Quals	Run #1
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		1
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Dimethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadie	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
ndeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
sophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
4-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

Reported:

12/04/2013 9:20

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-09	Client Sampl	e Name:	7124, SB-8-15.5-S-	131118, 11/18/20	13 4:35:00PI	Л	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
N-Nitrosodimethylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodi-N-propylamin	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodiphenylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2,4-Trichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloro-3-methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4,6-Dinitro-2-methylphen	ol	ND	mg/kg	0.50	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Phenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Fluorophenol (Surrogat	e)	48.3	%	28 - 144 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)		63.8	%	36 - 136 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surroga	ate)	43.9	%	31 - 135 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surrog	ate)	31.2	%	20 - 140 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol (Su	urrogate)	53.2	%	20 - 150 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surroga	ate)	74.6	%	30 - 150 (LCL - UCL)	EPA-8270C			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	11/25/13	12/02/13 21:53	SKC	MS-B1	0.987	BWL0089	

Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325252-09	Client Sampl	e Name:	7124, SB-8-15.5-S-	131118, 11/18/20 ⁻	13 4:35:00PN	M	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	0.74	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	95.0	%	70 - 130 (LCL - UCL)	EPA-8015B			1

	Run					QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8015B	11/19/13	11/21/13 18:41	JJH	GC-V8	0.743	BWK1457			

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	1325252-10	Client Sampl	e Name:	7124, SB-8-19.5-S-	131118, 11/18/20	13 2:45:00PN	Л	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		0.29	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (\$	Surrogate)	106	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		98.2	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)	93.9	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/19/13	11/19/13 15:32	ADC	MS-V2	1	BWK1462	

2000 Powell Street 7th Floor

Emeryville, CA 94608

Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-10	Client Sampl	e Name:	7124, SB-8-19.5-S-131118, 11/18/2013 2:45						
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Acenaphthene		ND	mg/kg	0.10	EPA-8270C	ND	Quais	1		
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		1		
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		1		
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		1		
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1		
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1		
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1		
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1		
beta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1		
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1		
gamma-BHC (Lindane)		ND	mg/kg	0.10	EPA-8270C	ND		1		
bis(2-Chloroethoxy)met	hane	ND	mg/kg	0.10	EPA-8270C	ND		1		
bis(2-Chloroethyl) ether		ND	mg/kg	0.10	EPA-8270C	ND		1		
bis(2-Chloroisopropyl)et	ther	ND	mg/kg	0.10	EPA-8270C	ND		1		
bis(2-Ethylhexyl)phthala	ite	ND	mg/kg	0.20	EPA-8270C	ND		1		
4-Bromophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1		
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1		
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1		
4-Chlorophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1		
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1		
4,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1		
4,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1		
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1		
Dibenzo[a,h]anthracene	,	ND	mg/kg	0.10	EPA-8270C	ND		1		
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1		
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1		

Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

BCL Sample ID:	1325252-10	Client Sampl	e Name:	7124, SB-8-19	9.5-S-131118, 11/18/20	13 2:45:00PN	И	
Constituent		Popult	Hnita	PQL	Method	MB	Lab	D #
1,3-Dichlorobenzene		Result ND	Units mg/kg	0.10	EPA-8270C	Bias ND	Quals	Run # 1
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		 1
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		 1
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Dimethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadie	ene	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
ndeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
sophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
laphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-10	Client Sample	e Name:	7124, SB-8-19.5-S-	131118, 11/18/2013	2:45:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
N-Nitrosodimethylamin	ie	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodi-N-propylar	mine	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodiphenylamin	ie	ND	mg/kg	0.10	EPA-8270C	ND		1
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2,4-Trichlorobenzene	9	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloro-3-methylpher	nol	ND	mg/kg	0.20	EPA-8270C	ND		1
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4,6-Dinitro-2-methylph	enol	ND	mg/kg	0.50	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Phenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Fluorophenol (Surro	gate)	48.2	%	28 - 144 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)		59.6	%	36 - 136 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surr	ogate)	40.1	%	31 - 135 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surr	ogate)	34.1	%	20 - 140 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol	(Surrogate)	57.6	%	20 - 150 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surre	ogate)	89.6	%	30 - 150 (LCL - UCL)	EPA-8270C			1

					QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	11/25/13	12/02/13 22:20	SKC	MS-B1	0.970	BWL0089	

2000 Powell Street 7th Floor Emeryville, CA 94608

12/04/2013 9:20 Reported:

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325252-10	Client Sampl	e Name:	M				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	0.81	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	95.0	%	70 - 130 (LCL - UCL)	EPA-8015B			1

					QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/19/13	11/21/13 19:11	JJH	GC-V8	0.814	BWK1457	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID: 1	325252-11	Client Sampl	e Name:	7124, SB-8-22.5-S-	131118, 11/18/20	13 3:20:00PI	М	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surr	rogate)	103	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		100	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	96.5	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/19/13	11/19/13 15:59	ADC	MS-V2	1	BWK1462	

Reported: 12/04/2013 9:20

2000 Powell Street 7th Floor Project: 7124
Emeryville, CA 94608 Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-11	Client Sampl	e Name:	7124, SB-8-2	22.5-S-131118, 11/18/201	13 3:20:00PI	M	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Acenaphthene		ND	mg/kg	0.10	EPA-8270C	ND	Qualit	1
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		1
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
beta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
gamma-BHC (Lindane)	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroethoxy)me	thane	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroethyl) ethe	r	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Chloroisopropyl)	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
bis(2-Ethylhexyl)phtha	ate	ND	mg/kg	0.20	EPA-8270C	ND		1
4-Bromophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chlorophenyl phenyl	ether	ND	mg/kg	0.10	EPA-8270C	ND		1
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzo[a,h]anthracen	e	ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

Reported: 12/04/2013 9:20

2000 Powell Street 7th Floor Project: 7124
Emeryville, CA 94608 Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-11	Client Sampl	e Name:	7124, SB-8-22	2.5-S-131118, 11/18/201	13 3:20:00PM	Л	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Pun#
1,3-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND	Quals	Run # 1
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		1
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Dimethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadie	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
Indeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Isophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
4-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/0

12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Client Sample	e Name:	7124, SB-8-22.5-S-	131118, 11/18/20	13 3:20:00PN	1	
Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
ND	mg/kg	0.10	EPA-8270C	ND ND	4000	1
ND	mg/kg	0.10	EPA-8270C	ND		1
ND	mg/kg	0.10	EPA-8270C	ND		1
ND	mg/kg	0.10	EPA-8270C	ND		1
ND	mg/kg	0.10	EPA-8270C	ND		1
ND	mg/kg	0.10	EPA-8270C	ND		1
ND	mg/kg	0.20	EPA-8270C	ND		1
ND	mg/kg	0.10	EPA-8270C	ND		1
ND	mg/kg	0.10	EPA-8270C	ND		1
ND	mg/kg	0.10	EPA-8270C	ND		1
ND	mg/kg	0.50	EPA-8270C	ND		1
ND	mg/kg	0.50	EPA-8270C	ND		1
ND	mg/kg	0.10	EPA-8270C	ND		1
ND	mg/kg	0.20	EPA-8270C	ND		1
ND	mg/kg	0.10	EPA-8270C	ND		1
ND	mg/kg	0.20	EPA-8270C	ND		1
ND	mg/kg	0.20	EPA-8270C	ND		1
ND	mg/kg	0.10	EPA-8270C	ND		1
ND	mg/kg	0.20	EPA-8270C	ND		1
ND	mg/kg	0.20	EPA-8270C	ND		1
57.8	%	28 - 144 (LCL - UCL)	EPA-8270C			1
70.9	%	36 - 136 (LCL - UCL)	EPA-8270C			1
48.9	%	31 - 135 (LCL - UCL)	EPA-8270C			1
29.1	%	20 - 140 (LCL - UCL)	EPA-8270C			1
62.9	%	20 - 150 (LCL - UCL)	EPA-8270C			1
90.8	%	30 - 150 (LCL - UCL)	EPA-8270C			1
	Result	ND mg/kg ND mg/kg <td>Result Units PQL ND mg/kg 0.10 ND mg/kg 0.50 ND mg/kg 0.50 ND mg/kg 0.20 ND<!--</td--><td>Result Units PQL Method ND mg/kg 0.10 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.10 EPA-8270C ND mg/kg 0.20 EPA-8270C ND mg/kg 0.20 EPA-8270C ND mg/kg 0.20 EPA-8270C ND mg/kg</td><td>Result Units PQL Method Bias ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.20 EPA-8270C ND ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.50 EPA-8270C ND ND mg/kg 0.50 EPA-8270C ND ND mg/kg 0.50 EPA-8270C ND ND mg/kg 0.20 EPA-8270C ND ND mg/kg 0.20</td><td> No</td></td>	Result Units PQL ND mg/kg 0.10 ND mg/kg 0.50 ND mg/kg 0.50 ND mg/kg 0.20 ND </td <td>Result Units PQL Method ND mg/kg 0.10 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.10 EPA-8270C ND mg/kg 0.20 EPA-8270C ND mg/kg 0.20 EPA-8270C ND mg/kg 0.20 EPA-8270C ND mg/kg</td> <td>Result Units PQL Method Bias ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.20 EPA-8270C ND ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.50 EPA-8270C ND ND mg/kg 0.50 EPA-8270C ND ND mg/kg 0.50 EPA-8270C ND ND mg/kg 0.20 EPA-8270C ND ND mg/kg 0.20</td> <td> No</td>	Result Units PQL Method ND mg/kg 0.10 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.50 EPA-8270C ND mg/kg 0.10 EPA-8270C ND mg/kg 0.20 EPA-8270C ND mg/kg 0.20 EPA-8270C ND mg/kg 0.20 EPA-8270C ND mg/kg	Result Units PQL Method Bias ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.20 EPA-8270C ND ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.10 EPA-8270C ND ND mg/kg 0.50 EPA-8270C ND ND mg/kg 0.50 EPA-8270C ND ND mg/kg 0.50 EPA-8270C ND ND mg/kg 0.20 EPA-8270C ND ND mg/kg 0.20	No

					QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	11/25/13	12/02/13 22:47	SKC	MS-B1	0.997	BWL0089	

2000 Powell Street 7th Floor Emeryville, CA 94608

12/04/2013 9:20 Reported:

Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325252-11	Client Sampl	M					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Orga	nics (C6 - C12)	ND	mg/kg	0.74	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	92.5	%	70 - 130 (LCL - UCL)	EPA-8015B			1

			Run		QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/19/13	11/21/13 19:41	JJH	GC-V8	0.738	BWK1457	

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	325252-12	Client Sampl	e Name:	7124, SB-8-26.5-S-	·131118, 11/1 <mark>8/20</mark>	13 3:30:00PN	1	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	102	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		102	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	92.4	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/19/13	11/19/13 16:25	ADC	MS-V2	1	BWK1462	

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-12	Client Sampl	e Name:	7124, SB-8-26	6.5-S-131118, 11/18/201	13 3:30:00PM			
Constituent		Dogult	Unita	DOL	Mathad	MB	Lab	D #	
Constituent Acenaphthene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run #1	
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		<u>·</u> 1	
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		<u>·</u> 1	
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		<u>·</u> 1	
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		 1	
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1	
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1	
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1	
beta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1	
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1	
gamma-BHC (Lindane)		ND	mg/kg	0.10	EPA-8270C	ND		1	
bis(2-Chloroethoxy)meth	nane	ND	mg/kg	0.10	EPA-8270C	ND		1	
bis(2-Chloroethyl) ether		ND	mg/kg	0.10	EPA-8270C	ND		1	
bis(2-Chloroisopropyl)et	her	ND	mg/kg	0.10	EPA-8270C	ND		1	
bis(2-Ethylhexyl)phthala	te	ND	mg/kg	0.20	EPA-8270C	ND		1	
4-Bromophenyl phenyl e	ther	ND	mg/kg	0.10	EPA-8270C	ND		1	
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1	
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1	
4-Chlorophenyl phenyl e	ther	ND	mg/kg	0.10	EPA-8270C	ND		1	
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1	
4,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1	
4,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1	
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1	
Dibenzo[a,h]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1	
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1	

2000 Powell Street 7th Floor

Emeryville, CA 94608

Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-12	Client Sampl	e Name:	7124, SB-8-26	6.5-S-131118, 11/18/201	13 3:30:00PM	И	
Constituent		Result	Units	PQL	Method	MB	Lab	D #
1,3-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	Bias ND	Quals	Run # 1
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		1
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Dimethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadie	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
Indeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Isophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
4-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported:

12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID: 1325252-12	Client Sample	e Name:	7124, SB-8-26.5-S-	131118, 11/18/20 ⁻	13 3:30:00PN	И	
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
N-Nitrosodimethylamine	ND	mg/kg	0.10	EPA-8270C	ND	-	1
N-Nitrosodi-N-propylamine	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodiphenylamine	ND	mg/kg	0.10	EPA-8270C	ND		1
Phenanthrene	ND	mg/kg	0.10	EPA-8270C	ND		1
Pyrene	ND	mg/kg	0.10	EPA-8270C	ND		1
1,2,4-Trichlorobenzene	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloro-3-methylphenol	ND	mg/kg	0.20	EPA-8270C	ND		1
2-Chlorophenol	ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dichlorophenol	ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dimethylphenol	ND	mg/kg	0.10	EPA-8270C	ND		1
4,6-Dinitro-2-methylphenol	ND	mg/kg	0.50	EPA-8270C	ND		1
2,4-Dinitrophenol	ND	mg/kg	0.50	EPA-8270C	ND		1
2-Methylphenol	ND	mg/kg	0.10	EPA-8270C	ND		1
3- & 4-Methylphenol	ND	mg/kg	0.20	EPA-8270C	ND		1
2-Nitrophenol	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Nitrophenol	ND	mg/kg	0.20	EPA-8270C	ND		1
Pentachlorophenol	ND	mg/kg	0.20	EPA-8270C	ND		1
Phenol	ND	mg/kg	0.10	EPA-8270C	ND		1
2,4,5-Trichlorophenol	ND	mg/kg	0.20	EPA-8270C	ND		1
2,4,6-Trichlorophenol	ND	mg/kg	0.20	EPA-8270C	ND		1
2-Fluorophenol (Surrogate)	55.5	%	28 - 144 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)	68.1	%	36 - 136 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surrogate)	50.4	%	31 - 135 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surrogate)	32.7	%	20 - 140 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol (Surrogate)	56.7	%	20 - 150 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surrogate)	89.6	%	30 - 150 (LCL - UCL)	EPA-8270C			1

	Run						QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8270C	11/25/13	12/02/13 23:14	SKC	MS-B1	0.990	BWL0089			

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608

Reported: Project: 7124 Project Number: 351638 Project Manager: Kathy Brandt

12/04/2013 9:20

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325252-12	Client Sampl	e Name:	7124, SB-8-26.5-S-131118, 11/18/2013 3:30:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Orga	nics (C6 - C12)	7.6	mg/kg	0.79	EPA-8015B	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	102	%	70 - 130 (LCL - UCL)	EPA-8015B			1	

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/19/13	11/21/13 20:12	JJH	GC-V8	0.792	BWK1457	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID: 1	325252-13	Client Sampl	e Name:	7124, SB-8-31.5-S-	131118, 11/18/20	13 3:55:00PI	M	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surr	rogate)	107	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		99.6	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	91.3	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/19/13	11/19/13 16:51	ADC	MS-V2	1	BWK1462	

MU

Arcadis

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-13	Client Sampl	e Name:	7124, SB-8-3	1.5-S-131118, 11/18/201	13 3:55:00PM			
Constituent		Dogult	Unita	DOL	Mathad	MB	Lab	D #	
Constituent Acenaphthene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run #1	
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		 1	
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		 1	
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		<u>.</u> 1	
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		 1	
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		1	
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1	
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1	
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1	
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1	
beta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1	
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1	
gamma-BHC (Lindane)		ND	mg/kg	0.10	EPA-8270C	ND		1	
bis(2-Chloroethoxy)meth	nane	ND	mg/kg	0.10	EPA-8270C	ND		1	
bis(2-Chloroethyl) ether		ND	mg/kg	0.10	EPA-8270C	ND		1	
bis(2-Chloroisopropyl)etl	her	ND	mg/kg	0.10	EPA-8270C	ND		1	
bis(2-Ethylhexyl)phthala	te	ND	mg/kg	0.20	EPA-8270C	ND		1	
4-Bromophenyl phenyl e	ther	ND	mg/kg	0.10	EPA-8270C	ND		1	
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1	
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1	
4-Chlorophenyl phenyl e	ther	ND	mg/kg	0.10	EPA-8270C	ND		1	
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1	
4,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1	
4,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1	
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1	
Dibenzo[a,h]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1	
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1	
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1	

Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

BCL Sample ID:	1325252-13	Client Sampl	e Name:	7124, SB-8-3	1.5-S-131118, 11/18/201	13 3:55:00PM	И	
						МВ	Lab	
1,3-Dichlorobenzene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run #
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		1
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND ND		1
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND ND		1
				0.10				1
Dimethyl phthalate		ND	mg/kg		EPA-8270C	ND		1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		<u> </u>
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadie	ene	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
Indeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Isophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
4-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

BCL Sample ID:	1325252-13	Client Sampl	e Name:	7124, SB-8-31.5-S-	131118, 11/18/20 ⁻	13 3:55:00PN	Л	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
N-Nitrosodimethylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodi-N-propylamir	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodiphenylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2,4-Trichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloro-3-methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4,6-Dinitro-2-methylphen	ol	ND	mg/kg	0.50	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Phenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Fluorophenol (Surrogat	e)	62.1	%	28 - 144 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)		74.5	%	36 - 136 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surrog	ate)	50.0	%	31 - 135 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surrog	ate)	39.2	%	20 - 140 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol (Su	urrogate)	66.4	%	20 - 150 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surroga	ate)	99.5	%	30 - 150 (LCL - UCL)	EPA-8270C			1

	Run							
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	11/25/13	12/02/13 23:40	SKC	MS-B1	1	BWL0089	

Reported: 12/04/2013 9:20

Project Number: 351638 Project Manager: Kathy Brandt

Project: 7124 2000 Powell Street 7th Floor Emeryville, CA 94608

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325252-13	Client Sampl	e Name:	7124, SB-8-31.5-S-	7124, SB-8-31.5-S-131118, 11/18/2013 3:55:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	0.76	EPA-8015B	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	95.0	%	70 - 130 (LCL - UCL)	EPA-8015B			1	

	Run							
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/21/13	11/21/13 20:42	JJH	GC-V8	0.756	BWK1694	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID: 1	325252-14	Client Sample	e Name:	7124, SB-8-36-S-13	31118, 11/18/2013	4:00:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		0.0060	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surr	rogate)	101	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		91.3	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rrogate)	79.1	%	74 - 121 (LCL - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	11/19/13	11/19/13 17:17	ADC	MS-V2	1	BWK1462

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-14	Client Sampl	e Name:	7124, SB-8-36	S-S-131118, 11/18/2013	4:00:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Acenaphthene		ND	mg/kg	0.10	EPA-8270C	ND	Quais	1
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		1
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
oeta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
gamma-BHC (Lindane)		ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroethoxy)meth	nane	ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroethyl) ether		ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroisopropyl)etl	her	ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Ethylhexyl)phthala	te	ND	mg/kg	0.20	EPA-8270C	ND		1
I-Bromophenyl phenyl e	ther	ND	mg/kg	0.10	EPA-8270C	ND		1
I-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
-Chlorophenyl phenyl e	ther	ND	mg/kg	0.10	EPA-8270C	ND		1
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1
,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1
1,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzo[a,h]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1
,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

BCL Sample ID:	1325252-14	Client Sampl	e Name:	7124, SB-8-36	6-S-131118, 11/18/2013	4:00:00PM		
Constituent		Popult	Units	PQL	Method	MB	Lab	D #
1,3-Dichlorobenzene		Result ND	mg/kg	0.10	EPA-8270C	Bias ND	Quals	Run #
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		1
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Dimethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadien	e	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
ndeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
sophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608

Arcadis

BCL Sample ID:	1325252-14	Client Sampl	e Name:	7124, SB-8-36-S-13	31118, 11/18/2013	4:00:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
N-Nitrosodimethylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodi-N-propylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodiphenylamine		ND	mg/kg	0.10	EPA-8270C	ND		1
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2,4-Trichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloro-3-methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4,6-Dinitro-2-methylphenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Phenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Fluorophenol (Surrogate)	ı	73.6	%	28 - 144 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)		83.5	%	36 - 136 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surrogate	e)	59.0	%	31 - 135 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surrogate	e)	45.8	%	20 - 140 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol (Surr	ogate)	74.3	%	20 - 150 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surrogate	e)	89.0	%	30 - 150 (LCL - UCL)	EPA-8270C			1

	Run							
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	11/25/13	12/03/13 00:07	SKC	MS-B1	0.973	BWL0089	

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325252-14	Client Sampl	e Name:	7124, SB-8-36-S-13	31118, 11/18/2013			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Gasoline Range Orga	nics (C6 - C12)	ND	mg/kg	0.71	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	95.0	%	70 - 130 (LCL - UCL)	EPA-8015B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/21/13	11/21/13 21:13	JJH	GC-V8	0.714	BWK1694	

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

BCL Sample ID:	1325252-15	Client Sampl	e Name:	7124, SB-8-40-S-13	31118, 11/18/2013	3 4:10:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260B	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (S	Surrogate)	101	%	70 - 121 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	81 - 117 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)	89.7	%	74 - 121 (LCL - UCL)	EPA-8260B			1

	Run						QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260B	11/19/13	11/19/13 17:44	ADC	MS-V2	1	BWK1462			

Arcadis 2000 Powell Street 7th Floor

Emeryville, CA 94608

Reported: 12/04/2013 9:20 Project: 7124

Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID:	1325252-15	Client Sampl	e Name:	7124, SB-8-40	D-S-131118, 11/18/2013	4:10:00PM		
O-matitus int		Dogult	Heite	DOL	Madhad	MB	Lab	D #
Constituent Acenaphthene		Result ND	Units mg/kg	PQL 0.10	Method EPA-8270C	Bias ND	Quals	Run #1
Acenaphthylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Aldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Aniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Anthracene		ND	mg/kg	0.10	EPA-8270C	ND		<u>'</u> 1
Benzidine		ND	mg/kg	3.0	EPA-8270C	ND		1
Benzo[a]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[k]fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[a]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzoic acid		ND	mg/kg	0.50	EPA-8270C	ND		1
Benzyl alcohol		ND	mg/kg	0.10	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
alpha-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
peta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
delta-BHC		ND	mg/kg	0.10	EPA-8270C	ND		1
gamma-BHC (Lindane)		ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroethoxy)metha	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroethyl) ether		ND	mg/kg	0.10	EPA-8270C	ND		1
ois(2-Chloroisopropyl)ethe	r	ND	mg/kg	0.10	EPA-8270C	ND		1
pis(2-Ethylhexyl)phthalate		ND	mg/kg	0.20	EPA-8270C	ND		1
4-Bromophenyl phenyl eth	er	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Chloronaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chlorophenyl phenyl eth	er	ND	mg/kg	0.10	EPA-8270C	ND		1
Chrysene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,4'-DDD		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDE		ND	mg/kg	0.10	EPA-8270C	ND		1
4,4'-DDT		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzo[a,h]anthracene		ND	mg/kg	0.10	EPA-8270C	ND		1
Dibenzofuran		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

 Arcadis
 Reported:
 12/04/2013
 9:20

 2000 Powell Street 7th Floor
 Project:
 7124

Emeryville, CA 94608 Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID:	1325252-15	Client Sampl	e Name:	7124, SB-8-40)-S-131118, 11/18/2013	4:10:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Bun #
1,3-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND	Quais	Run # 1
1,4-Dichlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
3,3-Dichlorobenzidine		ND	mg/kg	0.20	EPA-8270C	ND		1
Dieldrin		ND	mg/kg	0.10	EPA-8270C	ND		1
Diethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Dimethyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-butyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	mg/kg	0.10	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	mg/kg	0.10	EPA-8270C	ND		1
Endosulfan I		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan II		ND	mg/kg	0.20	EPA-8270C	ND		1
Endosulfan sulfate		ND	mg/kg	0.10	EPA-8270C	ND		1
Endrin		ND	mg/kg	0.20	EPA-8270C	ND		1
Endrin aldehyde		ND	mg/kg	0.50	EPA-8270C	ND		1
Fluoranthene		ND	mg/kg	0.10	EPA-8270C	ND		1
Fluorene		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor		ND	mg/kg	0.10	EPA-8270C	ND		1
Heptachlor epoxide		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorobutadiene		ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachlorocyclopentadie	ne	ND	mg/kg	0.10	EPA-8270C	ND		1
Hexachloroethane		ND	mg/kg	0.10	EPA-8270C	ND		1
Indeno[1,2,3-cd]pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Isophorone		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Methylnaphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
Naphthalene		ND	mg/kg	0.10	EPA-8270C	ND		1
2-Naphthylamine		ND	mg/kg	3.0	EPA-8270C	ND		1
2-Nitroaniline		ND	mg/kg	0.10	EPA-8270C	ND		1
3-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
4-Nitroaniline		ND	mg/kg	0.20	EPA-8270C	ND		1
Nitrobenzene		ND	mg/kg	0.10	EPA-8270C	ND		1

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 1

12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID:	1325252-15	Client Sampl	e Name:	7124, SB-8-40-S-13	31118, 11/18/2013	4:10:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
N-Nitrosodimethylamin	е	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodi-N-propylan	nine	ND	mg/kg	0.10	EPA-8270C	ND		1
N-Nitrosodiphenylamin	е	ND	mg/kg	0.10	EPA-8270C	ND		1
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	ND		1
Pyrene		ND	mg/kg	0.10	EPA-8270C	ND		1
1,2,4-Trichlorobenzene	•	ND	mg/kg	0.10	EPA-8270C	ND		1
4-Chloro-3-methylphen	nol	ND	mg/kg	0.20	EPA-8270C	ND		1
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4,6-Dinitro-2-methylpho	enol	ND	mg/kg	0.50	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	ND		1
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	ND		1
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
Phenol		ND	mg/kg	0.10	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	ND		1
2-Fluorophenol (Surrog	gate)	79.0	%	28 - 144 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)		87.6	%	36 - 136 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surro	ogate)	63.8	%	31 - 135 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surre	ogate)	51.6	%	20 - 140 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol ((Surrogate)	79.0	%	20 - 150 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surro	ogate)	98.1	%	30 - 150 (LCL - UCL)	EPA-8270C			1

Run						QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8270C	11/25/13	12/03/13 00:34	SKC	MS-B1	0.987	BWL0089		

Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

2000 Powell Street 7th Floor Emeryville, CA 94608 Proje

Total Petroleum Hydrocarbons (EPA 8015/5035)

BCL Sample ID:	1325252-15	Client Sampl	e Name:	7124, SB-8-40-S-13	31118, 11/18/2013			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C6 - C12)	ND	mg/kg	0.71	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	95.0	%	70 - 130 (LCL - UCL)	EPA-8015B			1

	Run						QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/21/13	11/21/13 21:43	JJH	GC-V8	0.713	BWK1694	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 13	325252-16	Client Sampl	e Name:	7124, Travel Blank-	W-131118, 11/18/	2013 12:00:0	MA00	
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
Ethanol		ND	ug/L	250	EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	109	%	75 - 125 (LCL - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		98.4	%	80 - 120 (LCL - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	rogate)	94.0	%	80 - 120 (LCL - UCL)	EPA-8260B			1

Run						QC		
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/22/13	11/25/13 20:39	EAR	MS-V12	1	BWK1806	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project Number: 351638
Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1325252-16	Client Sampl	e Name:	7124, Travel Blank-W-131118, 11/18/2013 12:00:00AM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Organ	nics (C6 - C12)	ND	ug/L	50	EPA-8015B	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	74.1	%	70 - 130 (LCL - UCL)	EPA-8015B			1	

	Run						QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/25/13	11/28/13 02:22	jjh	GC-V9	1	BWL0013	

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWK1806						
Benzene	BWK1806-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BWK1806-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BWK1806-BLK1	ND	ug/L	0.50		
Ethylbenzene	BWK1806-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BWK1806-BLK1	ND	ug/L	0.50		
Toluene	BWK1806-BLK1	ND	ug/L	0.50		
Total Xylenes	BWK1806-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BWK1806-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BWK1806-BLK1	ND	ug/L	10		
Diisopropyl ether	BWK1806-BLK1	ND	ug/L	0.50		
Ethanol	BWK1806-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BWK1806-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane-d4 (Surrogate)	BWK1806-BLK1	103	%	75 - 12	5 (LCL - UCL)	
Toluene-d8 (Surrogate)	BWK1806-BLK1	100	%	80 - 12	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BWK1806-BLK1	96.2	%	80 - 12	0 (LCL - UCL)	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

	•		•		•		•			
								Control I	Limits	
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BWK1806										
Benzene	BWK1806-BS1	LCS	26.380	25.000	ug/L	106		70 - 130		
Toluene	BWK1806-BS1	LCS	24.860	25.000	ug/L	99.4		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BWK1806-BS1	LCS	10.050	10.000	ug/L	100		75 - 125		
Toluene-d8 (Surrogate)	BWK1806-BS1	LCS	10.010	10.000	ug/L	100		80 - 120		
4-Bromofluorobenzene (Surrogate)	BWK1806-BS1	LCS	10.100	10.000	ug/L	101		80 - 120		

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260)

									Cont	rol Limits	
Constituent	Туре	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery	Lab Quals
QC Batch ID: BWK1806	Use	d client samp	ole: N								
Benzene	MS	1323260-99	ND	26.370	25.000	ug/L		105		70 - 130	
	MSD	1323260-99	ND	27.300	25.000	ug/L	3.5	109	20	70 - 130	
Toluene	MS	1323260-99	ND	25.520	25.000	ug/L		102		70 - 130	
	MSD	1323260-99	ND	25.630	25.000	ug/L	0.4	103	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1323260-99	ND	9.3700	10.000	ug/L		93.7		75 - 125	
	MSD	1323260-99	ND	10.040	10.000	ug/L	6.9	100		75 - 125	
Toluene-d8 (Surrogate)	MS	1323260-99	ND	10.060	10.000	ug/L		101		80 - 120	
	MSD	1323260-99	ND	9.8800	10.000	ug/L	1.8	98.8		80 - 120	
4-Bromofluorobenzene (Surrogate)	MS	1323260-99	ND	10.000	10.000	ug/L		100		80 - 120	
	MSD	1323260-99	ND	10.560	10.000	ug/L	5.4	106		80 - 120	

Arcadis Reported:

2000 Powell Street 7th Floor Project: 7124
Emeryville, CA 94608 Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

12/04/2013 9:20

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWK1462						
Benzene	BWK1462-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BWK1462-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BWK1462-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BWK1462-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BWK1462-BLK1	ND	mg/kg	0.0050		
Toluene	BWK1462-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BWK1462-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BWK1462-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BWK1462-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BWK1462-BLK1	ND	mg/kg	0.0050		
Ethanol	BWK1462-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BWK1462-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane-d4 (Surrogate)	BWK1462-BLK1	93.6	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BWK1462-BLK1	101	%	81 - 117	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BWK1462-BLK1	90.4	%	74 - 121	(LCL - UCL)	

2000 Powell Street 7th Floor

Emeryville, CA 94608

Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

Quality Control Report - Laboratory Control Sample

	•		•		•		•			
								Control I	imits	
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BWK1462										
Benzene	BWK1462-BS1	LCS	0.13618	0.12500	mg/kg	109		70 - 130		
Toluene	BWK1462-BS1	LCS	0.12429	0.12500	mg/kg	99.4		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BWK1462-BS1	LCS	0.045630	0.050000	mg/kg	91.3		70 - 121		
Toluene-d8 (Surrogate)	BWK1462-BS1	LCS	0.048920	0.050000	mg/kg	97.8		81 - 117		
4-Bromofluorobenzene (Surrogate)	BWK1462-BS1	LCS	0.043920	0.050000	mg/kg	87.8		74 - 121		

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Volatile Organic Analysis (EPA Method 8260/5035)

		•		•			•	-			
									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BWK1462	Use	ed client samp	ole: N								
Benzene	MS	1323260-77	ND	0.14236	0.12500	mg/kg		114		70 - 130	
	MSD	1323260-77	ND	0.13892	0.12500	mg/kg	2.4	111	20	70 - 130	
Toluene	MS	1323260-77	ND	0.12707	0.12500	mg/kg		102		70 - 130	
	MSD	1323260-77	ND	0.13028	0.12500	mg/kg	2.5	104	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1323260-77	ND	0.049130	0.050000	mg/kg		98.3		70 - 121	
	MSD	1323260-77	ND	0.045680	0.050000	mg/kg	7.3	91.4		70 - 121	
Toluene-d8 (Surrogate)	MS	1323260-77	ND	0.050040	0.050000	mg/kg		100		81 - 117	
	MSD	1323260-77	ND	0.049100	0.050000	mg/kg	1.9	98.2		81 - 117	
4-Bromofluorobenzene (Surrogate)	MS	1323260-77	ND	0.046300	0.050000	mg/kg		92.6		74 - 121	
	MSD	1323260-77	ND	0.043930	0.050000	mg/kg	5.3	87.9		74 - 121	

Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Arcadis 2000 Powell Street 7th Floor Emeryville, CA 94608

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWL0089						
Acenaphthene	BWL0089-BLK1	ND	mg/kg	0.10		
Acenaphthylene	BWL0089-BLK1	ND	mg/kg	0.10		
Aldrin	BWL0089-BLK1	ND	mg/kg	0.10		
Aniline	BWL0089-BLK1	ND	mg/kg	0.20		
Anthracene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzidine	BWL0089-BLK1	ND	mg/kg	3.0		
Benzo[a]anthracene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzo[b]fluoranthene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzo[k]fluoranthene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzo[a]pyrene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzo[g,h,i]perylene	BWL0089-BLK1	ND	mg/kg	0.10		
Benzoic acid	BWL0089-BLK1	ND	mg/kg	0.50		
Benzyl alcohol	BWL0089-BLK1	ND	mg/kg	0.10		
Benzyl butyl phthalate	BWL0089-BLK1	ND	mg/kg	0.10		
alpha-BHC	BWL0089-BLK1	ND	mg/kg	0.10		
beta-BHC	BWL0089-BLK1	ND	mg/kg	0.10		
delta-BHC	BWL0089-BLK1	ND	mg/kg	0.10		
gamma-BHC (Lindane)	BWL0089-BLK1	ND	mg/kg	0.10		
bis(2-Chloroethoxy)methane	BWL0089-BLK1	ND	mg/kg	0.10		
bis(2-Chloroethyl) ether	BWL0089-BLK1	ND	mg/kg	0.10		
bis(2-Chloroisopropyl)ether	BWL0089-BLK1	ND	mg/kg	0.10		
bis(2-Ethylhexyl)phthalate	BWL0089-BLK1	ND	mg/kg	0.20		
4-Bromophenyl phenyl ether	BWL0089-BLK1	ND	mg/kg	0.10		
4-Chloroaniline	BWL0089-BLK1	ND	mg/kg	0.10		
2-Chloronaphthalene	BWL0089-BLK1	ND	mg/kg	0.10		
4-Chlorophenyl phenyl ether	BWL0089-BLK1	ND	mg/kg	0.10		
Chrysene	BWL0089-BLK1	ND	mg/kg	0.10		
4,4'-DDD	BWL0089-BLK1	ND	mg/kg	0.10		
4,4'-DDE	BWL0089-BLK1	ND	mg/kg	0.10		
4,4'-DDT	BWL0089-BLK1	ND	mg/kg	0.10		
Dibenzo[a,h]anthracene	BWL0089-BLK1	ND	mg/kg	0.10		
- Dibenzofuran	BWL0089-BLK1	ND	mg/kg	0.10		
1,2-Dichlorobenzene	BWL0089-BLK1	ND	mg/kg	0.10		
1,3-Dichlorobenzene	BWL0089-BLK1	ND	mg/kg	0.10		

____]]\\\]\\\ 49

Arcadis

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

QC Batch ID: BWL0089 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Dieldrin Diethyl phthalate Dimethyl phthalate Din-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Din-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1	ND N	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.10	
1,4-Dichlorobenzene 3,3-Dichlorobenzidine Dieldrin Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.20 0.10 0.10 0.10 0.10 0.10	
Dieldrin Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.10 0.10 0.10 0.10 0.10	
Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND ND ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg mg/kg	0.10 0.10 0.10 0.10	
Dimethyl phthalate Di-n-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND ND ND ND ND	mg/kg mg/kg mg/kg mg/kg	0.10 0.10 0.10	
Di-n-butyl phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND ND ND	mg/kg mg/kg mg/kg	0.10 0.10	
2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND ND ND	mg/kg mg/kg	0.10	
2,6-Dinitrotoluene Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1 BWL0089-BLK1	ND ND	mg/kg		
Di-n-octyl phthalate 1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1 BWL0089-BLK1	ND		0.10	
1,2-Diphenylhydrazine Endosulfan I	BWL0089-BLK1		mg/ka		
Endosulfan I		ND	J J	0.10	
-	BWL0089-BLK1	ND	mg/kg	0.10	
Endosulfon II		ND	mg/kg	0.20	
Liluosullati ti	BWL0089-BLK1	ND	mg/kg	0.20	
Endosulfan sulfate	BWL0089-BLK1	ND	mg/kg	0.10	
Endrin	BWL0089-BLK1	ND	mg/kg	0.20	
Endrin aldehyde	BWL0089-BLK1	ND	mg/kg	0.50	
Fluoranthene	BWL0089-BLK1	ND	mg/kg	0.10	
Fluorene	BWL0089-BLK1	ND	mg/kg	0.10	
Heptachlor	BWL0089-BLK1	ND	mg/kg	0.10	
Heptachlor epoxide	BWL0089-BLK1	ND	mg/kg	0.10	
Hexachlorobenzene	BWL0089-BLK1	ND	mg/kg	0.10	
Hexachlorobutadiene	BWL0089-BLK1	ND	mg/kg	0.10	
Hexachlorocyclopentadiene	BWL0089-BLK1	ND	mg/kg	0.10	
Hexachloroethane	BWL0089-BLK1	ND	mg/kg	0.10	
Indeno[1,2,3-cd]pyrene	BWL0089-BLK1	ND	mg/kg	0.10	
Isophorone	BWL0089-BLK1	ND	mg/kg	0.10	
2-Methylnaphthalene	BWL0089-BLK1	ND	mg/kg	0.10	
Naphthalene	BWL0089-BLK1	ND	mg/kg	0.10	
2-Naphthylamine	BWL0089-BLK1	ND	mg/kg	3.0	
2-Nitroaniline	BWL0089-BLK1	ND	mg/kg	0.10	
3-Nitroaniline	BWL0089-BLK1	ND	mg/kg	0.20	
4-Nitroaniline	BWL0089-BLK1	ND	mg/kg	0.20	
Nitrobenzene	BWL0089-BLK1	ND	mg/kg	0.10	
N-Nitrosodimethylamine	BWL0089-BLK1	ND	mg/kg	0.10	
N-Nitrosodi-N-propylamine	BWL0089-BLK1	ND	mg/kg	0.10	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL La	ab Quals
QC Batch ID: BWL0089						
N-Nitrosodiphenylamine	BWL0089-BLK1	ND	mg/kg	0.10		
Phenanthrene	BWL0089-BLK1	ND	mg/kg	0.10		
Pyrene	BWL0089-BLK1	ND	mg/kg	0.10		
1,2,4-Trichlorobenzene	BWL0089-BLK1	ND	mg/kg	0.10		
4-Chloro-3-methylphenol	BWL0089-BLK1	ND	mg/kg	0.20		
2-Chlorophenol	BWL0089-BLK1	ND	mg/kg	0.10		
2,4-Dichlorophenol	BWL0089-BLK1	ND	mg/kg	0.10		
2,4-Dimethylphenol	BWL0089-BLK1	ND	mg/kg	0.10		
4,6-Dinitro-2-methylphenol	BWL0089-BLK1	ND	mg/kg	0.50		
2,4-Dinitrophenol	BWL0089-BLK1	ND	mg/kg	0.50		
2-Methylphenol	BWL0089-BLK1	ND	mg/kg	0.10		
3- & 4-Methylphenol	BWL0089-BLK1	ND	mg/kg	0.20		
2-Nitrophenol	BWL0089-BLK1	ND	mg/kg	0.10		
4-Nitrophenol	BWL0089-BLK1	ND	mg/kg	0.20		
Pentachlorophenol	BWL0089-BLK1	ND	mg/kg	0.20		
Phenol	BWL0089-BLK1	ND	mg/kg	0.10		
2,4,5-Trichlorophenol	BWL0089-BLK1	ND	mg/kg	0.20		
2,4,6-Trichlorophenol	BWL0089-BLK1	ND	mg/kg	0.20		
2-Fluorophenol (Surrogate)	BWL0089-BLK1	96.3	%	28 - 14	4 (LCL - UCL)	
Phenol-d5 (Surrogate)	BWL0089-BLK1	111	%	36 - 13	6 (LCL - UCL)	
Nitrobenzene-d5 (Surrogate)	BWL0089-BLK1	100	%	31 - 13	5 (LCL - UCL)	
2-Fluorobiphenyl (Surrogate)	BWL0089-BLK1	96.5	%	20 - 14	0 (LCL - UCL)	
2,4,6-Tribromophenol (Surrogate)	BWL0089-BLK1	83.2	%	20 - 15	0 (LCL - UCL)	
p-Terphenyl-d14 (Surrogate)	BWL0089-BLK1	90.6	%	30 - 15	0 (LCL - UCL)	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Quality Control Report - Laboratory Control Sample

								Control I	imits	
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BWL0089										
Acenaphthene	BWL0089-BS1	LCS	1.5291	1.6835	mg/kg	90.8		50 - 140		
1,4-Dichlorobenzene	BWL0089-BS1	LCS	1.5334	1.6835	mg/kg	91.1		40 - 140		
2,4-Dinitrotoluene	BWL0089-BS1	LCS	2.1332	1.6835	mg/kg	127		40 - 140		
Hexachlorobenzene	BWL0089-BS1	LCS	1.9633	1.6835	mg/kg	117		46 - 140		
Hexachlorobutadiene	BWL0089-BS1	LCS	1.7013	1.6835	mg/kg	101		40 - 120		
Hexachloroethane	BWL0089-BS1	LCS	1.4806	1.6835	mg/kg	87.9		40 - 120		
Nitrobenzene	BWL0089-BS1	LCS	1.2658	1.6835	mg/kg	75.2		40 - 130		
N-Nitrosodi-N-propylamine	BWL0089-BS1	LCS	1.2978	1.6835	mg/kg	77.1		40 - 120		
Pyrene	BWL0089-BS1	LCS	1.9049	1.6835	mg/kg	113		40 - 150		
1,2,4-Trichlorobenzene	BWL0089-BS1	LCS	1.6578	1.6835	mg/kg	98.5		40 - 140		
4-Chloro-3-methylphenol	BWL0089-BS1	LCS	1.2789	1.6835	mg/kg	76.0		40 - 130		
2-Chlorophenol	BWL0089-BS1	LCS	0.83712	1.6835	mg/kg	49.7		40 - 130		
2-Methylphenol	BWL0089-BS1	LCS	1.0549	1.6835	mg/kg	62.7		40 - 140		
3- & 4-Methylphenol	BWL0089-BS1	LCS	2.2547	3.3670	mg/kg	67.0		40 - 120		
4-Nitrophenol	BWL0089-BS1	LCS	0.29499	1.6835	mg/kg	17.5		20 - 120		L21
Pentachlorophenol	BWL0089-BS1	LCS	0.24187	1.6835	mg/kg	14.4		20 - 130		L21
Phenol	BWL0089-BS1	LCS	0.77938	1.6835	mg/kg	46.3		40 - 120		
2,4,6-Trichlorophenol	BWL0089-BS1	LCS	0.97307	1.6835	mg/kg	57.8		44 - 130		
2-Fluorophenol (Surrogate)	BWL0089-BS1	LCS	2.2461	2.6936	mg/kg	83.4		28 - 144		
Phenol-d5 (Surrogate)	BWL0089-BS1	LCS	2.5787	2.6936	mg/kg	95.7		36 - 136		
Nitrobenzene-d5 (Surrogate)	BWL0089-BS1	LCS	2.3312	2.6936	mg/kg	86.5		31 - 135		
2-Fluorobiphenyl (Surrogate)	BWL0089-BS1	LCS	2.3880	2.6936	mg/kg	88.7		20 - 140		
2,4,6-Tribromophenol (Surrogate)	BWL0089-BS1	LCS	2.5417	2.6936	mg/kg	94.4		20 - 150		
p-Terphenyl-d14 (Surrogate)	BWL0089-BS1	LCS	1.1443	1.3468	mg/kg	85.0		30 - 150		

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BWL0089	Use	ed client samp	ole: N								
Acenaphthene	⊥ MS	1320257-79	ND	1.5692	1.6722	mg/kg		93.8		40 - 140	
, iconaphia icine	MSD	1320257-79	ND	1.6769	1.6949	mg/kg	6.6	98.9	30	40 - 140	
1.4 Diablorobonzono		1320257-79		1.4298						30 - 150	
1,4-Dichlorobenzene	MS MSD	1320257-79	ND ND	1.4296	1.6722 1.6949	mg/kg mg/kg	15.5	85.5 98.5	30	30 - 150	
							10.0		30		
2,4-Dinitrotoluene	MS	1320257-79	ND	2.2276	1.6722	mg/kg		133	20	30 - 140	000
	MSD	1320257-79	ND	2.4061	1.6949	mg/kg	7.7	142	30	30 - 140	Q03
Hexachlorobenzene	MS	1320257-79	ND	2.0401	1.6722	mg/kg		122		30 - 150	
	MSD	1320257-79	ND	2.0034	1.6949	mg/kg	1.8	118	30	30 - 150	
Hexachlorobutadiene	MS	1320257-79	ND	1.6623	1.6722	mg/kg		99.4		20 - 140	
	MSD	1320257-79	ND	1.9424	1.6949	mg/kg	15.5	115	30	20 - 140	
Hexachloroethane	MS	1320257-79	ND	1.4949	1.6722	mg/kg		89.4		30 - 140	
	MSD	1320257-79	ND	1.8258	1.6949	mg/kg	19.9	108	30	30 - 140	
Nitrobenzene	MS	1320257-79	ND	2.0204	1.6722	mg/kg		121		30 - 140	
	MSD	1320257-79	ND	2.3708	1.6949	mg/kg	16.0	140	30	30 - 140	
N-Nitrosodi-N-propylamine	MS	1320257-79	ND	1.1886	1.6722	mg/kg		71.1		30 - 120	
	MSD	1320257-79	ND	1.3254	1.6949	mg/kg	10.9	78.2	30	30 - 120	
Pyrene	MS	1320257-79	ND	1.9772	1.6722	mg/kg		118		40 - 150	
ryrene	MSD	1320257-79	ND	2.1095	1.6949	mg/kg	6.5	124	30	40 - 150	
4.0.4.Triablesebasses											
1,2,4-Trichlorobenzene	MS	1320257-79 1320257-79	ND ND	1.6061 1.8875	1.6722 1.6949	mg/kg	16.1	96.0 111	30	30 - 150 30 - 150	
	MSD					mg/kg	10.1		30		
4-Chloro-3-methylphenol	MS	1320257-79	ND	1.3513	1.6722	mg/kg	40.4	80.8		40 - 130	
	MSD	1320257-79	ND	1.2210	1.6949	mg/kg	10.1	72.0	30	40 - 130	
2-Chlorophenol	MS	1320257-79	ND	0.58176	1.6722	mg/kg		34.8		40 - 130	Q03
	MSD	1320257-79	ND	0.96542	1.6949	mg/kg	49.6	57.0	30	40 - 130	Q02
2-Methylphenol	MS	1320257-79	ND	1.2604	1.6722	mg/kg		75.4		30 - 140	
	MSD	1320257-79	ND	1.3512	1.6949	mg/kg	7.0	79.7	30	30 - 140	
3- & 4-Methylphenol	MS	1320257-79	ND	2.1983	3.3445	mg/kg		65.7		40 - 130	
	MSD	1320257-79	ND	2.6715	3.3898	mg/kg	19.4	78.8	30	40 - 130	
4-Nitrophenol	MS	1320257-79	ND	0.34600	1.6722	mg/kg		20.7		20 - 140	
•	MSD	1320257-79	ND	0.37322	1.6949	mg/kg	7.6	22.0	30	20 - 140	
Pentachlorophenol	MS	1320257-79	ND	0.39207	1.6722	mg/kg		23.4		20 - 130	
	MSD	1320257-79	ND	0.41966	1.6949	mg/kg	6.8	24.8	30	20 - 130	
Dhonal							***				
Phenol	MS	1320257-79 1320257-79	ND ND	0.78415 0.95458	1.6722 1.6949	mg/kg mg/kg	19.6	46.9 56.3	30	30 - 130 30 - 130	
	MSD					mg/kg	19.0		30		
2,4,6-Trichlorophenol	MS	1320257-79	ND	1.2023	1.6722	mg/kg		71.9		40 - 140	
	MSD	1320257-79	ND	1.2878	1.6949	mg/kg	6.9	76.0	30	40 - 140	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BWL0089	Use	d client samp	ole: N								
2-Fluorophenol (Surrogate)	MS	1320257-79	ND	2.2730	2.6756	mg/kg		85.0		28 - 144	
	MSD	1320257-79	ND	2.8302	2.7119	mg/kg	21.8	104		28 - 144	
Phenol-d5 (Surrogate)	MS	1320257-79	ND	2.5116	2.6756	mg/kg		93.9		36 - 136	
	MSD	1320257-79	ND	2.9308	2.7119	mg/kg	15.4	108		36 - 136	
Nitrobenzene-d5 (Surrogate)	MS	1320257-79	ND	2.1634	2.6756	mg/kg		80.9		31 - 135	
	MSD	1320257-79	ND	2.5783	2.7119	mg/kg	17.5	95.1		31 - 135	
2-Fluorobiphenyl (Surrogate)	MS	1320257-79	ND	2.3229	2.6756	mg/kg		86.8		20 - 140	
	MSD	1320257-79	ND	2.5844	2.7119	mg/kg	10.7	95.3		20 - 140	
2,4,6-Tribromophenol (Surrogate)	MS	1320257-79	ND	2.5440	2.6756	mg/kg		95.1		20 - 150	
	MSD	1320257-79	ND	2.4793	2.7119	mg/kg	2.6	91.4		20 - 150	
p-Terphenyl-d14 (Surrogate)	MS	1320257-79	ND	1.1670	1.3378	mg/kg		87.2		30 - 150	
	MSD	1320257-79	ND	1.2908	1.3559	mg/kg	10.1	95.2		30 - 150	

 Arcadis
 Reported:
 12/04/2013
 9:20

 2000 Powell Street 7th Floor
 Project:
 7124

Emeryville, CA 94608 Project Number: 351638
Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWL0013						
Gasoline Range Organics (C6 - C12)	BWL0013-BLK1	ND	ug/L	50		
a,a,a-Trifluorotoluene (FID Surrogate)	BWL0013-BLK1	82.3	%	70 - 130	(LCL - UCL)	

. ..

 Arcadis
 Reported:
 12/04/2013
 9:20

 2000 Powell Street 7th Floor
 Project:
 7124

 Emeryville, CA 94608
 Project Number:
 351638

Project Number: 351638
Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

								Control L	imits		
				Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	
QC Batch ID: BWL0013											
Gasoline Range Organics (C6 - C12)	BWL0013-BS1	LCS	941.31	1000.0	ug/L	94.1		85 - 115			
• • • • • • • • • • • • • • • • • • • •					•						

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Purgeable Aromatics and Total Petroleum Hydrocarbons

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BWL0013	Use	d client samp	ole: N								
Gasoline Range Organics (C6 - C12)	MS	1325870-01	ND	1047.9	1000.0	ug/L		105		70 - 130	
	MSD	1325870-01	ND	949.87	1000.0	ug/L	9.8	95.0	20	70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	MS	1325870-01	ND	35.571	40.000	ug/L		88.9		70 - 130	
	MSD	1325870-01	ND	34.936	40.000	ug/L	1.8	87.3		70 - 130	

2000 Powell Street 7th Floor Emeryville, CA 94608 **Reported:** 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BWK1457						
Gasoline Range Organics (C6 - C12)	BWK1457-BLK1	ND	mg/kg	1.0		
a,a,a-Trifluorotoluene (FID Surrogate)	BWK1457-BLK1	82.5	%	70 - 130 (LCL - UCL)		
QC Batch ID: BWK1694						
Gasoline Range Organics (C6 - C12)	BWK1694-BLK1	ND	mg/kg	1.0		
a,a,a-Trifluorotoluene (FID Surrogate)	BWK1694-BLK1	95.0	%	70 - 13	0 (LCL - UCL)	

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

Quality Control Report - Laboratory Control Sample

							Control Limits			
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BWK1457										
Gasoline Range Organics (C6 - C12)	BWK1457-BS1	LCS	5.6060	5.0000	mg/kg	112		85 - 115		
a,a,a-Trifluorotoluene (FID Surrogate)	BWK1457-BS1	LCS	0.037000	0.040000	mg/kg	92.5		70 - 130		
QC Batch ID: BWK1694										
Gasoline Range Organics (C6 - C12)	BWK1694-BS1	LCS	4.9800	5.0000	mg/kg	99.6		85 - 115		
a,a,a-Trifluorotoluene (FID Surrogate)	BWK1694-BS1	LCS	0.037000	0.040000	mg/kg	92.5		70 - 130		

2000 Powell Street 7th Floor Emeryville, CA 94608 Reported: 12/04/2013 9:20

Project: 7124
Project Number: 351638
Project Manager: Kathy Brandt

Total Petroleum Hydrocarbons (EPA 8015/5035)

				•			-	<u></u>			
				·	•	•		•	Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BWK1457	Use	d client samp	ole: N								
Gasoline Range Organics (C6 - C12)	MS	1323260-84	ND	5.5990	5.0000	mg/kg		112		70 - 130	
	MSD	1323260-84	ND	5.6300	5.0000	mg/kg	0.6	113	20	70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	MS	1323260-84	ND	0.037000	0.040000	mg/kg		92.5		70 - 130	
	MSD	1323260-84	ND	0.036000	0.040000	mg/kg	2.7	90.0		70 - 130	
QC Batch ID: BWK1694	Use	d client samp	ole: N								
Gasoline Range Organics (C6 - C12)	MS	1323260-92	ND	5.0700	5.0000	mg/kg		101		70 - 130	
	MSD	1323260-92	ND	5.0790	5.0000	mg/kg	0.2	102	20	70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	MS	1323260-92	ND	0.037000	0.040000	mg/kg		92.5		70 - 130	
	MSD	1323260-92	ND	0.037000	0.040000	mg/kg	0	92.5		70 - 130	

Arcadis Reported: 12/04/2013 9:20

2000 Powell Street 7th Floor Project: 7124 Emeryville, CA 94608 Project Number: 351638 Project Manager: Kathy Brandt

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit RPD Relative Percent Difference

L21 The Laboratory Control Sample Soil (LCSS) recovery is not within laboratory established control limits.

Q02 Matrix spike precision is not within the control limits.

Q03 Matrix spike recovery(s) is(are) not within the control limits.

Appendix F

Linear Regression Analysis Outputs

Sample Information Sample Location Constituent MW-3 TPH-g

Sample Date	Concentration	LN Concentration
Sample Date	(ug/L)	LIN CONCENTIATION
7/28/2002	4500	8.41
11/3/2002	25000	10.13
1/24/2003	6000	8.70
4/2/2003	130000	11.78
7/1/2003	9400	9.15
10/2/2003	73000	11,20
1/9/2004	8700	9.07
4/26/2004	6700	8.81
7/22/2004	13000	9.47
10/29/2004	4600	8.43
1/12/2005	6100	8.72
6/20/2005	1900	7.55
9/23/2005	2400	7.78
12/13/2005	2100	7.65
3/24/2006	2200	7.70
5/30/2006	1500	7.31
8/22/2006	1900	7.55
10/31/2006	2200	7.70
1/12/2007	2600	7.86
4/4/2007	1700	7.44
7/5/2007	2400	7.78
10/1/2007	1700	7.44
1/11/2008	2200	7.70
4/4/2008	1600	7.38
7/2/2008	1200	7.09
10/2/2008	2100	7.65
1/14/2009	2000	7.60
4/16/2009	1800	7.50
7/16/2009	1900	7.55
1/6/2010	2200	7.70
11/2/2011	880	6.78
4/6/2012	1,000	6.91
6/13/2013	50	3.91
10/7/2013	880	6.78

Notes:

ND taken at reporting limit/reported value

Data quality		
Total # of data points used in regression	34	
# of nondetects	1	
% of data as detects	97	

Results		
Coefficient of Determination (R2) =	0.6117	
p-Value =	4.69E-08	
Attenuation Rate in Groundwater (K) =	0.0010	days ⁻¹
Attenuation Rate in Groundwater at 90% confidence (K) =	8000.0	days ⁻¹
Chemical Half Life in Groundwater $(t_{1/2}) =$	7.18E+02	days

Date Screening Level Reached	
Screening Level	500
LN Screening Level	6.2
Intercept	45.716
Slope	-0.0010
Date to Screening Level	1/21/2012

Abbreviations and Notes

ug/l = micrograms per liter LN = Natural Logarithm

Sample Information Sample Location Constituent MW-3 MTBE

Sample Date	Concentration	LN Concentration
•	(ug/L)	
4/8/2002	8300	9.02
7/28/2002	1100	7.00
11/3/2002	470	6.15
1/24/2003	10000	9.21
4/2/2003	4400	8.39
7/1/2003	2200	7.70
10/2/2003	460	6.13
1/9/2004	3800	8.24
4/26/2004	3900	8.27
7/22/2004	980	6.89
10/29/2004	640	6.46
1/12/2005	6900	8.84
6/20/2005	960	6.87
9/23/2005	160	5.08
12/13/2005	340	5.83
3/24/2006	970	6.88
5/30/2006	760	6.63
8/22/2006	160	5.08
10/31/2006	58	4.06
1/12/2007	680	6.52
4/4/2007	650	6.48
7/5/2007	160	5.08
10/1/2007	87	4.47
1/11/2008	1300	7.17
4/4/2008	470	6.15
7/2/2008	91	4.51
10/2/2008	84	4.43
1/14/2009	320	5.77
4/16/2009	560	6.33
7/16/2009	100	4.61
1/6/2010	1300	7.17
11/2/2011	35	3.56
4/6/2012	210	5.35
6/13/2013	6.5	1.87
10/7/2013	12	2.48

Notes:

ND taken at reporting limit/reported value

Data quality		_
Total # of data points used in regression	35	
# of nondetects	0	
% of data as detects	100	

Results		
Coefficient of Determination (R ²) =	0.5796	
p-Value =	1.10E-07	
Attenuation Rate in Groundwater (K) =	0.0012	days ⁻¹
Attenuation Rate in Groundwater at 90% confidence (K) =	0.0010	days ⁻¹
Chemical Half Life in Groundwater (t _{1/2}) =	5.83E+02	days

Date Screening Level Reached	
Screening Level	13
LN Screening Level	2.6
Intercept	52.554
Slope	-0.0012
Date to Screening Level	1/21/2015

Abbreviations and Notes

ug/l = micrograms per liter LN = Natural Logarithm