RECEIVED By dehloptoxic at 2:31 pm, Oct 31, 2006

Atlantic Richfield Company (a BP affiliated company)

P.O. Box 1257 San Ramon, CA 94583 Phone: (925) 275-3801 Fax: (925) 275-3815

October 31, 2006

Re: Third Quarter, 2006 Ground-Water Monitoring Report Former BP Station #11120 6400 Dublin Boulevard Dublin, California ACEH Case #RO0002431

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by:

Paul Supple

Environmental Business Manger

Third Quarter, 2006 Ground-Water Monitoring Report

Former BP Station #11120 6400 Dublin Road Dublin, California

Prepared for

Mr. Paul Supple Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

Prepared by

1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

October, 2006

Project No. 06-02-651

Broadbent & Associates, Inc. 1324 Mangrove Ave., Suite 212 Chico, CA 95926 Voice (530) 566-1400 Fax (530) 566-1401

ROBERT H.

MILLER

No. 4893

October 31, 2006

Project No. 06-02-651

Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583 Submitted via ENFOS

Attn.: Mr. Paul Supple

Re: Third Quarter, 2006 Ground-Water Monitoring Report, Former BP Station #11120, 6400

Dublin Boulevard, Dublin California. ACEH Case #RO0002431.

Dear Mr. Supple:

Provided herein is the *Third Quarter*, 2006 Ground-Water Monitoring Report for the Former BP Station #11120 (herein referred to as Station #11120) located at 6400 Dublin Boulevard, Dublin, California (Property). This report presents a summary of Third Quarter, 2006 ground-water monitoring results.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Matthew G. Herrick Project Hydrogeologist

Robert H. Miller, P.G., C.HG.

Principal Hydrogeologist

Enclosures

cc: Mr. Barney Chan, Alameda County Environmental Health (submitted via ACEH ftp

site)

Ms. Shelby Lathrop, ConocoPhillips (submitted via WebXtender)

GeoTracker

ARIZONA CALIFORNIA NEVADA TEXAS

STATION #11120 QUARTERLY GROUND-WATER MONITORING REPORT

Facility: #11120 Address: 6400 Dublin Boulevard, Dublin, CA Station #11120 Environmental Business Manager: Mr. Paul Supple Consulting Co./Contact Persons: Broadbent & Associates, Inc. (BAI)/Rob Miller & Matt Herrick Primary Agency/Regulatory ID No.: Alameda County Environmental Health (ACEH) / ACEH Case # RO0002431 Consultant Project No.: 06-02-651 Facility Permits/Permitting Agency.: NA

WORK PERFORMED THIS QUARTER (Third Quarter, 2006):

- 1. Submitted Second Quarter, 2006 report. Work performed by BAI.
- 2. Conducted ground-water monitoring/sampling for Third Quarter, 2006. Work performed by URS.
- 3. Abandoned well MW-9 to facilitate road widening work to be completed by the City of Dublin (approved by the ACEH in email dated June 16, 2006). Work performed by URS.

WORK PROPOSED FOR NEXT QUARTER (Fourth Quarter, 2006):

- 1. Submit Third Quarter, 2006 Report (contained herein).
- 2. Conduct quarterly ground-water monitoring/sampling for Fourth Quarter, 2006.

QUARTERLY RESULTS SUMMARY:

Current phase of project:	Ground-water Monitoring/Sampling
Frequency of ground-water sampling:	Wells MW-8, MW-10, and MW-11: Quarterly
Frequency of ground-water monitoring:	Wells MW-8, MW-10, and MW-11: Quarterly
Is free product (FP) present on-site:	No
Current remediation techniques:	None
Depth to ground water (below TOC):	6.87 (MW-10) to 8.07 (MW-11) feet
General ground-water flow direction:	East-southeast
Approximate hydraulic gradient:	0.012

DISCUSSION:

Gasoline range organics (GRO) were detected in MW-8 at 82 micrograms per liter ($\mu g/L$) during Third Quarter, 2006. Methyl tert-butyl ether (MTBE) was detected in wells MW-8 and MW-11 at 130 $\mu g/L$ and 26 $\mu g/L$, respectively. No other fuel analytes were detected in ground-water sampled collected during Third Quarter, 2006.

Drawing 1 depicts the ground-water elevation contour and an analytical summary map for the Third Quarter, 2006. Table 1 includes a summary of ground-water monitoring data including relative water elevations and laboratory analyses. Table 2 provides a summary of fuel additives analytical data.

Well MW-9 was abandoned on August 16, 2006 to facilitate road widening work that is scheduled to be completed by the City of Dublin. Abandonment of the well was approved by the ACEH in an email dated June 16, 2006. MW-9 has been removed from the ground-water monitoring/sampling scheduled summarized above.

CLOSURE:

The findings presented in this report are based upon: observations of URS field personnel (see Appendix A), the points investigated, and results of laboratory tests performed by TestAmerica Morgan Hill, California. Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of Atlantic Richfield Company. It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

ATTACHMENTS:

- Drawing 1. Ground-Water Elevation Contour and Analytical Summary Map, Station #11120, Dublin CA
- Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses, Station #11120, Dublin CA
- Table 2. Summary of Fuel Additives Analytical Data, Station #11120, Dublin CA
- Appendix A. URS Ground-Water Sampling Data Package (Includes Laboratory Report and Chain of Custody Documentation, Field and Laboratory Procedures, Field Data Sheets, and Co-Monitored Data)
- Appendix B. Historical Ground-Water Analytical Data for Former Wells Abandoned in 1999 (Source: Alisto Engineering)
- Appendix C. GeoTracker Upload Confirmation

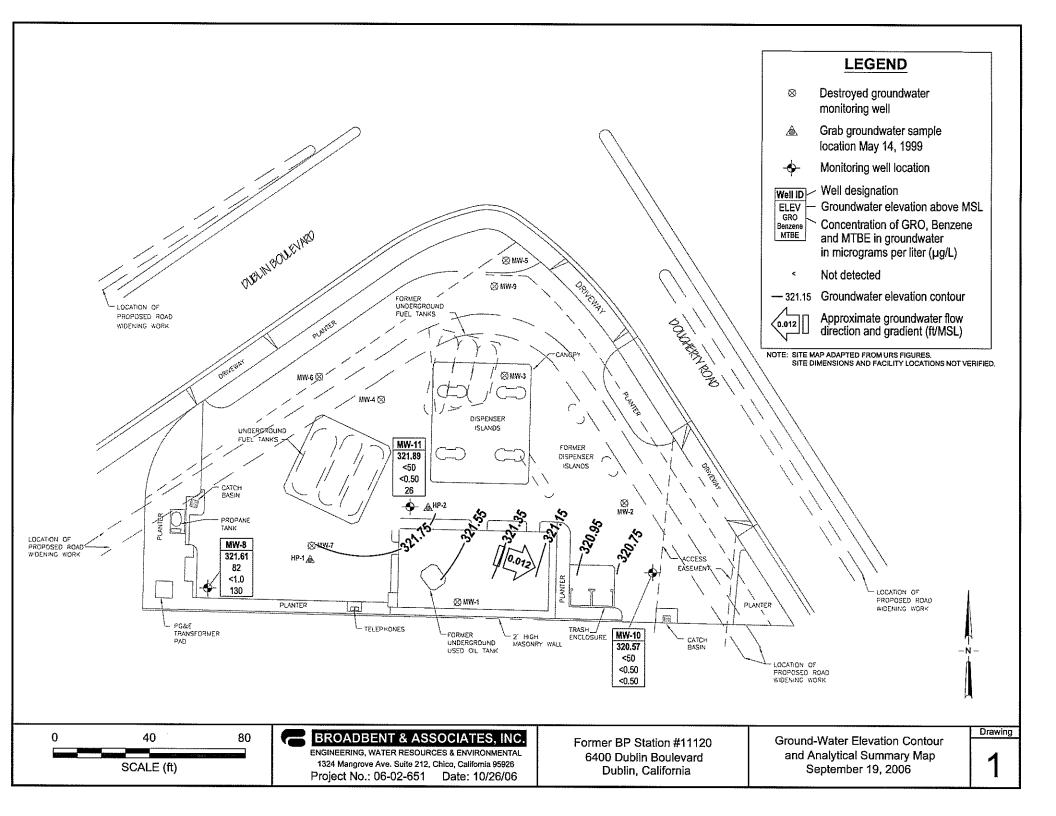


Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11120, 6400 Dublin Blvd., Dublin, CA

		тос	Depth to	Product	Water Level			Concentra	ntions in (µ	g/L)		,			
Well and	:	Elevation	Water	Thickness	Elevation	GRO/	:		Ethyl-	Total		(mg/L)			
Sample Date	P/NP	(feet msl)	(feet bgs)	(feet)	(feet msl)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	DO	Lab	pН	Comments
MW-8		:													
02/25/2002		328.94	6.02		322.92	<50	<0.5	<0.5	<0.5	<0.5	1.98		PACE		
09/30/2002		328.94	6.16		322.78	<50	<0.5	<0.5	<0.5	<0.5	2.9/4.8	·	SEQM		a
12/13/2002		328.94	5.81		323.13	<50	<0.5	<0.5	<0.5	<0.5	5.9/6.4		SEQM		a
03/12/2003		328.94	5.8		323.14	<50	<0.50	<0.50	<0.50	<0.50	4.3/3.8		SEQM		
06/28/2003		328.94	5.7		323.24	<50	<0.50	<0.50	<0.50	<0.50	4.1		SEQM		ь
09/30/2003		328.94	5.9		323.04	<50	<0.50	<0.50	<0.50	<0.50	4.1		SEQM		
12/05/2003	P	328.94	5.89		323.05	<50	<0.50	<0.50	<0.50	<0.50	6.7		SEQM	7.2	
03/10/2004	P	328.94	4.74		324.20	<50	<0.50	<0.50	<0.50	<0.50	5.1		SEQM	6,7	
06/21/2004	P	328.94	6.12		322.82	<50	<0.50	<0.50	<0.50	< 0.50	7.5		SEQM	7.0	
09/17/2004	P	328.94	6.38		322.56	<50	<0.50	<0.50	<0.50	<0.50	6.6		SEQM	7.2	
12/13/2004	P	328.94	5.47		323.47	<50	<0.50	<0.50	<0.50	<0.50	6.7		SEQM	6.8	
03/03/2005	P	328.94	4.43		324.51	<50	<0.50	<0.50	<0.50	<0.50	5.6		SEQM	6.9	
06/10/2005	P	328.94	5.35	· 	323.59	<50	<0.50	<0.50	<0.50	<0.50	6.2		SEQM	6.9	
09/16/2005	P	328.94	6.58		322.36	<50	<0.50	<0.50	<0.50	<0.50	5.7	7.0	SEQM	6.9	
12/15/2005	P	328.94	8.54		320.40	<50	<0.50	<0.50	<0.50	<0.50	2.6		SEQM	7.0	
03/01/2006	P ···:	328.94	7.55		321.39	<50	<0.50	<0.50	<0.50	<0.50	2.8		SEQM	7.1	
6/23/2006	P	328.94	8.14		320.80	<50	<0.50	<0.50	<0.50	<0.50	35		TAMC	7.2	
9/19/2006	P	328.94	7.33		321.61	82	<1.0	<1.0	<1.0	<1.0	130		TAMC	7.2	с
MW-9							! !								
02/25/2002		329.96	5.9		324.06	<250	<2.50	<2.50	<2.50	<5.00	<2.50		PACE		
09/30/2002		329.96	6.92		323.04	<50	<0.5	<0.5	<0.5	<0.5	1.4/3.3		SEQM		a
12/13/2002		329.96	6.51		323.45	<50	<0.5	<0.5	<0.5	<0.5	0.53/<2.5		SEQM		a
03/12/2003	1	329.96	6.86	-	323.1	<50	<0.50	<0.50	<0.50	<0.50	0.59/<2.5		SEQM		
06/28/2003		329.96	5.95		324.01	<50	<0.50	<0.50	<0.50	<0.50	1.0		SEQM		ь
09/30/2003		329.96	6.24		323.72	<50	<0.50	<0.50	<0.50	<0.50	16	15-21	SEQM		
12/05/2003	P	329.96	7.21		322.75	<50	<0.50	<0.50	<0.50	<0.50	33		SEQM	7.6	
03/10/2004	P : : :	329.96	5.37		324.59	<50	<0.50	<0.50	<0.50	<0.50	2.4		SEQM	7.1	
06/21/2004	P	329.96	6.67		323.29	<50	<0.50	<0.50	<0.50	<0.50	1.6		SEQM	7.8	
09/17/2004	P	329.96	7.89		322.07	<50	<0.50	<0.50	<0.50	<0.50	0.72		SEQM	7.5	
12/13/2004	P	329,96	5.22		324.74	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.6	

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11120, 6400 Dublin Blvd., Dublin, CA

		TOC	Depth to	Product	Water Level			Concentra	ations in (µ	g/L)					
Well and	:	Elevation	Water	Thickness	Elevation	GRO/			Ethyl-	Total		(mg/L)			
Sample Date	P/NP	(feet msl)	(feet bgs)	(feet)	(feet msl)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	DO	Lab	pН	Comments
MW-9 Cont.	1														
03/03/2005	P	329.96	5.12		324.84	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.6	
06/10/2005	P	329.96	5.90		324.06	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.5	
09/16/2005	P	329.96	6.99		322.97	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.6	
12/15/2005	P	329.96	8.52		321.44	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.7	
03/01/2006	P	329.96	8.06		321.90	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.7	
6/23/2006	P	329.96	8.56		321.40	<50	<0.50	<0.50	<0.50	<0.50	1.1		TAMC	7.3	
MW-10							1								
02/25/2002		327.44	4.21		323.23	53	2.58	<0.5	2.83	8.46	<0.5		PACE		
09/30/2002		327.44	4.71		322.73	<50	<0.5	<0.5	<0.5	<0.5	0.51/2.8		SEQM		а
12/13/2002	: :	327.44	6.36		321.08	<50	<0.5	<0.5	<0.5	<0.5	<0.5/<2.5		SEQM		a
03/12/2003		327.44	7.96		319.48	<50	<0.50	<0.50	<0.50	<0.50	0.76/<2.5		SEQM		
06/28/2003	:	327.44	7.7		319.74	<50	<0.50	<0.50	<0.50	<0.50	0.68		SEQM	l İ	ь
09/30/2003		327.44	7.57		319.87	<50	<0.50	<0.50	<0.50	<0.50	0.71		SEQM		
12/05/2003	P	327.44	6.64	**	320.80	<50	<0.50	<0.50	<0.50	<0.50	0.78		SEQM	7.1	
03/10/2004	P	327.44	5.20		322.24	<50	<0.50	<0.50	<0.50	<0.50	0.58		SEQM	6.4	
06/21/2004	P	327.44	7.45		319.99	<50	<0.50	<0.50	<0.50	<0.50	1.1		SEQM	7.0	
09/17/2004	P	327.44	7.49		319.95	<50	<0.50	<0.50	<0.50	<0.50	0.82		SEQM	7.0	
12/13/2004	P	327.44	5.19		322.25	<50	<0.50	<0.50	<0.50	<0.50	0.73		SEQM	6.8	
03/03/2005	P	327.44	4.86		322.58	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	6.9	
06/10/2005	P	327.44	4.00		323.44	<50	<0.50	<0.50	<0.50	<0.50	1.2		SEQM	6.8	
09/16/2005	P	327.44	4.78		322.66	<50	<0.50	<0.50	<0.50	<0.50	0.98		SEQM	6.9	
12/15/2005	P	327.44	6.67		320.77	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.0	
03/01/2006	P	327.44	5.67		321.77	<50	<0.50	<0.50	<0.50	<0.50	0.59		SEQM	7.1	
6/23/2006	P	327.44	5.83		321.61	<50	<0.50	<0.50	<0.50	<0.50	<0.50	-	TAMC	7.0	
9/19/2006	P	327.44	6.87		320.57	<50	<0.50	<0.50	<0.50	<0.50	<0.50	-	TAMC	7.1	
MW-11						A POSTER OF THE ASSESSMENT									
02/25/2002	: 	329.75	6.02		323.73	1,800	1.34	<0.5	<0.5	<1.0	2,550		PACE		
09/30/2002	-	329.75	7.12		322.63	<50	<0.5	<0.5	<0.5	<0.5	1,500/1,400		SEQM		a
12/13/2002		329.75	6.60		323.15	1,300	<10	<10	<10	<10	1,400/2,000		SEQM		a

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11120, 6400 Dublin Blvd., Dublin, CA

	;	тос	Depth to	Product	Water Level			Concentra	ntions in (µ	g/L)					
Well and		Elevation	Water	Thickness	Elevation	GRO/	:		Ethyl-	Total		(mg/L)			
Sample Date	P/NP	(feet msl)	(feet bgs)	(feet)	(feet msl)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	DO	Lab	pН	Comments
MW-11 Cont.															
03/12/2003	·	329.75	5.79		323.96	<500	<5.0	<5.0	<5.0	<5.0	650/2,900		SEQM		
06/28/2003		329.75	5.68		324.07	<5,000	<50	<50	<50	<50	2,500		SEQM		ь
09/30/2003		329.75	6.68		323.07	5,100	<25	<25	<25	<25	3,200		SEQM		
12/05/2003	P	329.75	6.69		323.06	<5,000	<50	<50	<50	<50	3,500	-	SEQM	7.2	
03/10/2004	P	329.75	5.29		324.46	3,000	<25	<25	<25	<25	1,800		SEQM	6.8	
06/21/2004	P	329.75	6.65		323.10	<5,000	<50	<50	<50	<50	1,900		SEQM	7.1	
09/17/2004	P	329.75	7.02		322.73	<2,500	<25	<25	<25	<25	1,700		SEQM	7.1	
12/13/2004	P	329.75	6.01		323.74	650	<5.0	<5.0	<5.0	<5.0	610		SEQM	6.9	
03/03/2005	P	329.75	5.13		324.62	250	<2.5	<2.5	<2.5	<2.5	190		SEQM	7.0	С
06/10/2005	P	329.75	6.00		323.75	<100	4,1	<1.0	<1.0	<1.0	100		SEQM	7.0	
09/16/2005	P	329.75	7.24		322.51	<100	<1.0	<1.0	<1.0	<1.0	52		SEQM	7.0	
12/15/2005	P	329.75	8.91		320.84	<50	<0.50	<0.50	<0.50	<0.50	9.0		SEQM	7.1	
03/01/2006	P	329.75	8.05		321.70	<50	<0.50	<0.50	<0.50	<0.50	21		SEQM	7.2	
6/23/2006	P	329.96	8.65		321.10	<50	<0.50	<0.50	<0.50	<0.50	23		TAMC	7.2	
9/19/2006	P	329.96	8.07		321.89	<50	<0.50	<0.50	<0.50	<0.50	26	_	TAMC	7.3	

ABBREVIATIONS AND SYMBOLS:

TOC = Top of casing in ft MSL

DTW = Depth to water in ft bgs

GWE = Groundwater elevation in ft MSL

GRO = Gasoline range organics

TPH-g = Total petroleum hydrocarbons as gasoline

MTBE = Methyl tert butyl ether by EPA method 8021B (prior to 6/28/03) or 8260B

DO = Dissolved oxygen

μg/L = Micrograms per liter

mg/L = Milligrams per liter

< = Not detected at or above laboratory reporting limit

-- = Not sampled/applicable/analyzed/measured

PACE = Pace, Inc.

SEQM = Sequoia Analytical Laboratory

TAMC = TestAmerica

P/NP = Well purged/not purged prior to sampling

ft bgs = Feet below ground surface

ft MSL = Feet above mean sea level

FOOTNOTES:

- a = Analyzed by EPA method 8260 B; fuel oxygenates include ethanol, tert-butyl alcohol, di-isopropyl ether, ethyl tert-butyl ether, tert-amyl methyl ether; lead scavengers include: 1,2-dichloroethane & ethylene dibromide.
- b = Beginning on the second quarter 2003 monitoring event (6/28/03), TPH-g, benzene, toluene, ethylbenzene, total xylenes, MTBE and fuel oxygenates analyzed by EPA method 8260B.
- c = The hydrocarbon result for GRO was partly due to individual peaks in the quantitative range.

NOTES:

TOC elevations surveyed relative to an elevation of 18.409 ft MSL.

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential inclusion of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 2. Summary of Fuel Additives Analytical Data Station #11120, 6400 Dublin Blvd., Dublin, CA

Well and				Concentrati	ons in (μg/L)				
Sample Date	Ethanol	TBA	MTBE	DIPE	ЕТВЕ	TAME	1,2-DCA	EDB	Comments
MW-8									
03/12/2003	<100	<20	4.3/3.8	<0.50	<0.50	<0.50	<0.50	<0.50	
06/28/2003	<100	<20	4.1	<0.50	<0.50	<0.50	<0.50	<0.50	
09/30/2003	<100	<20	4.1	<0.50	<0.50	<0.50	<0.50	<0.50	
12/05/2003	<100	<20	6.7	<0.50	<0.50	<0.50	<0.50	<0.50	
03/10/2004	<100	<20	5.1	<0.50	<0.50	<0.50	<0.50	<0.50	and the second of the second o
06/21/2004	<100	<20	7.5	<0.50	<0.50	<0.50	<0.50	<0.50	
09/17/2004	16	<20	6.6	<0.50	<0.50	<0.50	<0.50	<0.50	terror de la companya
12/13/2004	<100	<20	6.7	<0.50	<0.50	<0.50	<0.50	<0.50	
03/03/2005	<100	<20	5.6	<0.50	<0.50	<0.50	<0.50	<0.50	
06/10/2005	<100	<20	6.2	<0.50	<0.50	<0.50	<0.50	<0.50	
09/16/2005	<100	<20	5.7	<0.50	<0.50	<0.50	<0.50	<0.50	1
12/15/2005	<100	<20	2.6	<0.50	<0.50	<0.50	<0.50	<0.50	
03/01/2006	<300	<20	2.8	<0.50	<0.50	<0.50	<0.50	<0.50	
6/23/2006	<300	<20	35	<0.50	<0.50	<0.50	<0.50	< 0.50	
9/19/2006	<600	<40	130	<1.0	<1.0	<1.0	<1.0	<1.0	a (ethanol)
MW-9	-								
03/12/2003	<100	<20	0.59/<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	
06/28/2003	<100	<20	1.0	<0.50	<0.50	<0.50	<0.50	<0.50	
09/30/2003	<100	<20	16	<0.50	<0.50	<0.50	<0.50	<0.50	
12/05/2003	<100	<20	33	<0.50	<0.50	<0.50	<0.50	<0.50	
03/10/2004	<100	<20	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	a
06/21/2004	<100	<20	1.6	<0.50	<0.50	<0.50	<0.50	<0.50	
09/17/2004	13	<20	0.72	<0.50	<0.50	<0.50	<0.50	<0.50	b
12/13/2004	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	processors of the state of the
03/03/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
06/10/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	The second of th
09/16/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
12/15/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
03/01/2006	<300	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/23/2006	<300	<20	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 2. Summary of Fuel Additives Analytical Data Station #11120, 6400 Dublin Blvd., Dublin, CA

337-17 3						0, 0400 Dan	•	,	
Well and Sample Date	Ethanol	ТВА	MTBE	DIPE	ons in (µg/L) ETBE	TAME	1,2-DCA	EDB	Comments
MW-10									
03/12/2003	<100	<20	0.76/<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	
06/28/2003	<100	<20	0.68	< 0.50	<0.50	<0.50	<0.50	<0.50	
09/30/2003	<100	<20	0.71	<0.50	<0.50	<0.50	<0.50	<0.50	
12/05/2003	<100	<20	0.78	<0.50	<0.50	<0.50	<0.50	<0.50	
03/10/2004	<100	<20	0.58	<0.50	<0.50	<0.50	<0.50	<0.50	a
06/21/2004	<100	<20	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	
09/17/2004	9.4	<20	0.82	<0.50	<0.50	<0.50	<0.50	<0.50	b
12/13/2004	<100	<20	0.73	<0.50	<0.50	<0.50	<0.50	<0.50	
03/03/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
06/10/2005	<100	<20	1.2	<0.50	<0.50	<0.50	<0.50	<0.50	
09/16/2005	<100	<20	0.98	<0.50	<0.50	<0.50	<0.50	<0.50	
12/15/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
03/01/2006	<300	<20	0.59	< 0.50	<0.50	<0.50	<0.50	< 0.50	
6/23/2006	<300	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
9/19/2006	<300	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	a (ethanol)
MW-11									
03/12/2003	<1,000	<200	650/2,900	<5.0	<5.0	<5.0	<5.0	<5.0	
06/28/2003	<10,000	<2,000	2,500	<50	<50	<50	<50	<50	
09/30/2003	<5,000	<1,000	3,200	<25	<25	<25	<25	<25	
12/05/2003	<10,000	<2,000	3,500	<50	<50	<50	<50	<50	
03/10/2004	<5,000	<1,000	1,800	<25	<25	<25	<25	<25	a
06/21/2004	<10,000	<2,000	1,900	<50	<50	<50	<50	<50	
09/17/2004	13	<1,000	1,700	<25	<25	<25	<25	<25	ь
12/13/2004	<1,000	<200	610	<5.0	<5.0	<5.0	<5.0	<5.0	
03/03/2005	<500	<100	190	<2.5	<2.5	<2.5	<2.5	<2.5	
06/10/2005	<200	<40	100	<1.0	<1.0	<1.0	<1.0	<1.0	a, c
09/16/2005	<200	<40	52	<1.0	<1.0	<1.0	<1.0	<1.0	-,, •
12/15/2005	<100	<20	9.0	<0.50	<0.50	<0.50	<0.50	<0.50	
03/01/2006	<300	<20	21	<0.50	<0.50	<0.50	<0.50	<0.50	
6/23/2006	<300	<20	23	<0.50	<0.50	<0.50	<0.50	<0.50	
9/19/2006	<300	<20	26	<0.50	<0.50	<0.50	<0.50	<0.50	a (ethanol)

ABBREVIATIONS AND SYMBOLS:

TBA = tert-Butyl alcohol

MTBE = Methyl tert-butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

TAME = tert-Amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

µg/L = micrograms per liter

< = Not detected at or above laboratory reporting limits

FOOTNOTES:

a = The continuing calibration verification was outside of client contractual acceptance limits. However, it was within method acceptance limits. The data should still be useful for its intended purpose.

b = Split samples were analyzed for ethanol by EPA Method 8260B SIM; ethanol was detected in trip blank at 34 micrograms per liter. Ethanol was not detected in confirmatory analysis of samples and trip blank on a different instrument; however, holding time had expired by then.

c = LCS recorded above methanol control limits. Analyte not detected. Data not impacted.

NOTES:

All volatile organic compounds analyzed using EPA Method 8260B.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

APPENDIX A

URS GROUNDWATER SAMPLING DATA PACKAGE (INCLUDES LABORATORY REPORT AND CHAIN OF CUSTODY DOCUMENTATION, FIELD AND LABORATORY PROCEDURES, FIELD DATA SHEETS, AND CO-MONITORED DATA)

October 13, 2006

Mr. Rob Miller Broadbent & Associates, Inc. 2000 Kirman Avenue Reno, NV 89502

Groundwater Sampling Data Package

Former BP Service Station #11120 6400 Dublin Boulevard Dublin, CA Field Work Performed: 09/19/06

General Information

Data Submittal Prepared/Reviewed by: Alok Kolekar

Phone Number: 510-874-3152

On-Site Supplier Representative: Blaine Tech

Scope of Work Performed: Groundwater Monitoring in accordance with 3rd Quarter 2006 protocols as identified in the Quarterly Monitoring Program Table in the Field and Laboratory Procedures

Attachment.

Variations from Work Scope: Well MW-9 was destroyed. Therefore, it was not gauged or sampled.

This submittal presents the tabulation of data collected in association with routine groundwater monitoring. The attachments include, at a minimum, sampling procedures, field data collected, laboratory results, chain of custody documentation, and waste management activities. The information is being provided to BP-ARCO's Scoping Supplier for use in preparing a report for regulatory submittal. This submittal is limited to presentation of collected data and does not include data interpretation or conclusions or recommendations. Any questions concerning this submittal should be addressed to the Preparer/Reviewer identified above.

Alok D. Kolekar, P.E.

Project Manager

cc:

Paul Supple, Atlantic Richfield Company (RM), electronic copy uploaded to ENFOS

No. 69548

URS

Attachments

Field and Laboratory Procedures
Laboratory Report
Chain of Custody Documentation
Field Data Sheets
Well Gauging Data
Well Monitoring Data Sheets

FIELD & LABORATORY PROCEDURES

Sampling Procedures

The sampling procedure for each well consists first of measuring the water level and depth to bottom, and checking for the presence of free phase petroleum product (free product), using either an electronic indicator and a clear TeflonTM bailer or an oil-water interface probe. Wells not containing free product are purged approximately three casing volumes of water (or until dewatered) using a centrifugal pump, gas displacement pump, or bailer. Equipment and purging method used for the current sampling event is noted on the attached field data sheets. During purging, temperature, pH, and electrical conductivity are monitored to document that these parameters are stable prior to collecting samples. After purging, water levels are allowed to partially (approximately 80%) recover. Groundwater samples (both purge and no purge) are collected using a Teflon bailer, placed into appropriate Environmental Protection Agency- (EPA) approved containers, labeled, logged onto chain-of-custody records, and transported on ice to a California State-certified laboratory. Wells with free product are not sampled and free product is removed according to California Code of Regulation, Title 23, Div. 3, Chap. 16, Section 2655, UST Regulations.

Laboratory Procedures

The groundwater samples were analyzed for the presence of the chemicals mentioned in the chain of custody using standard EPA methods. The methods of analysis for the groundwater samples are documented in the certified analytical report. The certified analytical reports and chain-of-custody record are presented in this attachment. The analytical data provided by the laboratory approved by RM have been reviewed and verified by that laboratory.

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.testamericainc.com

11 October, 2006

Alok Kolekar URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland, CA 94612

RE: BP Heritage #11120, Dublin, CA

Work Order: MPI0576

Enclosed are the results of analyses for samples received by the laboratory on 09/20/06 16:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lisa Race

Senior Project Manager

CA ELAP Certificate # 1210

The results in this laboratory report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the BPGCLN Technical Specifications, applicable Federal, State, local regulations and certification requirements as well as the methodologies as described in laboratory SOPs reviewed by the BPGCLN. This entire report was reviewed and approved for release.

Project: BP Heritage #11120, Dublin, CA

MPI0576

Project Number: G07TM-0013 Project Manager: Alok Kolekar Reported: 10/11/06 13:56

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-8	MP10576-01	Water	09/19/06 12:25	09/20/06 16:15
MW-10	MPI0576-02	Water	09/19/06 12:50	09/20/06 16:15
MW-11	MPI0576-03	Water	09/19/06 13:10	09/20/06 16:15
TB-11120-09192006	MPI0576-04	Water	09/19/06 00:00	09/20/06 16:15

The carbon range for the TPH-GRO has been changed from C6-C10 to C4-C12. The carbon range for TPH-DRO has been changed from C10-C28 to C10-C36. EPA 8015B has been modified to better meet the requirements of California regulatory agencies. These samples were received with no custody seals.

Project: BP Heritage #11120, Dublin, CA

MPI0576 Reported: 10/11/06 13:56

Project Number: G07TM-0013
Project Manager: Alok Kolekar

Total Purgeable Hydrocarbons by GC/MS (CA LUFT)

TestAmerica - Morgan Hill, CA

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-8 (MPI0576-01) Water	Sampled: 09/19	/06 12:25	Received: (09/20/06	16:15	····		***************************************	-11_1	PV
Gasoline Range Organics (C4-	-C12)	82	50	ug/l	1	6130008	09/30/06	09/30/06	LUFT GCMS	**
Surrogate: 1,2-Dichloroethane-	d4		98 %	60-	145	"	*	n	n	
MW-10 (MPI0576-02) Water	Sampled: 09/1	9/06 12:50	Received:	09/20/06	16:15					
Gasoline Range Organics (C4-C	12)	ND	50	ug/l	1	6130008	09/30/06	09/30/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-	d4		105 %	60-	145	н	81	п	н	
MW-11 (MPI0576-03) Water	Sampled: 09/1	9/06 13:10	Received:	09/20/06	16:15					
Gasoline Range Organics (C4-C	212)	ND	50	ug/l	1	6130008	09/30/06	09/30/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-	d4		110 %	60-	145	"	**	79	n	

Project: BP Heritage #11120, Dublin, CA

Project Number: G07TM-0013 Project Manager: Alok Kolekar MPI0576 Reported: 10/11/06 13:56

Volatile Organic Compounds by EPA Method 8260B TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-8 (MPI0576-01) Water S	Sampled: 09/19/06 12:25	Received:	09/20/06 16	i:15				**************************************	
tert-Amyl methyl ether	ND	1.0	ug/l	2	6J02002	10/02/06	10/02/06	EPA 8260B	
Benzene	ND	1.0	as	tr	rr	11	n)ı	
tert-Butyl alcohol	ND	40	n	"	ti	q	ŗı	at .	
Di-isopropyl ether	ND	1.0	0	"	н	55	н	tr	
1,2-Dibromoethane (EDB)	ND	1.0	11	**	**	(F	a)	II .	
1,2-Dichloroethane	ND	1.0	tr	n	**	11	at .	II .	
Ethanol	ND	600	11	n	H	11	n	n	IC
Ethyl tert-butyl ether	ND	1.0	IN	н	ır	* **	II	и	
Ethylbenzene	ND	1.0	19	19	U	*	11	U	
Methyl tert-butyl ether	130	1.0	n	**	11	IF	11	\$1	
Toluene	ИD	1.0	**	žr	H	ft	н	n	
Xylenes (total)	ND	1.0	h	U	μ	D	ıt	U	
Surrogate: Dibromofluoromethan		93 %	75-13	0	Ħ	#	at .	tt .	
Surrogate: 1,2-Dichloroethane-d	4	96 %	60-14	5	14	#	"	"	
Surrogate: Toluene-d8		90 %	70-13	0	ø	**	"	n	
Surrogate: 4-Bromofluorobenzen	e	90 %	60-12	0	Ħ	tr .	tt	n	
MW-10 (MPI0576-02) Water	Sampled: 09/19/06 12:50	Received:	09/20/06 1	6:15					
tert-Amyl methyl ether	ND	0.50	ug/l	1	6130008	09/30/06	09/30/06	EPA 8260B	
Benzene	ND	0.50	tr	19	19	11	**	••	
tert-Butyl alcohol	ND	20	tr	38	"	11	H	0	
Di-isopropyl ether	ND	0.50	11	Ħ	•	**	н	to	
1,2-Dibromoethane (EDB)	ND	0.50	n	\$1	++	**	#1	II .	
1,2-Dichloroethane	ND	0.50	н	n	U	Ħ	ŧi	H	
Ethanol	ND	300	П	89	U.	Ħ	tı	n	IC
Ethyl tert-butyl ether	ND	0.50	11	o	n	17	10	11	
Ethylbenzene	ND	0.50	11	EF.	12	#	tt.	11	
Methyl tert-butyl ether	ND	0.50	15	*	#	*	n	п	
Toluene	ND	0.50	12	"	H	D	п	11	
Xylenes (total)	ND	0.50	18	Ħ	ŧř	**	ļi .	34	
Surrogate: Dibromofluoromethan	1e	106 %	75-13	0	и	"	"	ø	,,,,,,,
Surrogate: 1,2-Dichloroethane-d-	4	105 %	60-14	5	"	"	29	n	
Surrogate: Toluene-d8		74 %	70-13	o	**	"	n	st	
Surrogate: 4-Bromofluorobenzen	e	71 %	60-12	0	**	u	н	н	

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.testumericaine.com

URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland CA, 94612 Project: BP Heritage #11120, Dublin, CA

Project Number: G07TM-0013 Project Manager: Alok Kolekar MPI0576 Reported: 10/11/06 13:56

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-11 (MPI0576-03) Water	Sampled: 09/19/06 13:10	Received:	09/20/06	16:15			· · · · · · · · · · · · · · · · · · ·		
tert-Amyl methyl ether	ND	0.50	ug/l	1	6130008	09/30/06	09/30/06	EPA 8260B	
Benzene	ND	0.50	n	n	££	13	ıı	n	
tert-Butyl alcohol	ND	20	41	n	u	a	н	11	
Di-isopropyl ether	ND	0.50	tu .	п	11	"	i)	u	
1,2-Dibromoethane (EDB)	ND	0.50	LE	73	II	r	•	н	
1,2-Dichloroethane	ND	0.50	11	at .	U	rt	lt .	n	
Ethanol	ND	300	IP.	n	U	rr	11	•	1C
Ethyl tert-butyl ether	ND	0.50	н	h	р	l†	п	9	
Ethylbenzene	ND	0.50	II	n	11	ŧ	n	11	
Methyl tert-butyl ether	26	0.50	11	n	17	ıı .	n	B	
Toluene	ND	0.50	0	h	n	**	31	17	
Xylenes (total)	ND	0.50	1 1	к	H	11	į:	17	
Surrogate: Dibromofluoromethan	ie	111%	75-1.	30	Ŋ	n n	п	μ	
Surrogate: 1,2-Dichloroethane-d-	4	110 %	60-14	<i>‡5</i>	n	**	v	4	
Surrogate: Toluene-d8		73 %	70-13	30	"	и	**	n	
Surrogate: 4-Bromofluorobenzen	e	67 %	60-12	20	"	u	n	u	

Project: BP Heritage #11120, Dublin, CA

Project Number: G07TM-0013
Project Manager: Alok Kolekar

MPI0576 Reported: 10/11/06 13:56

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica - Morgan Hill, CA

· ·		Reporting		Spike	Source		%REC		RPD	
Analyte :	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6130008 - EPA 5030B P/T / L1	UFT GCMS		·							
Blank (6130008-BLK1)				Prepared	& Analyze	ed: 09/30/	06			
Gasoline Range Organics (C4-C12)	ND	50	ug/I							
Surrogate: 1,2-Dichloroethane-d4	2.78		ii	2.50		111	60-145			
Laboratory Control Sample (6I30008-BS	S2)			Prepared	& Analyze	d: 09/30/	06			
Gasoline Range Organics (C4-C12)	470	50	ug/l	440		107	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.35		ø	2.50		94	60-145			
Matrix Spike (6I30008-MS1)	Source: MI	10641-01		Prepared .	& Analyze	ed: 09/30/	06			
Gasoline Range Organics (C4-C12)	22900	1000	ug/l	14000	10000	92	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.62		"	2.50		105	60-145			
Matrix Spike Dup (6I30008-MSD1)	Source: MF	10641-01		Prepared	& Analyze	d: 09/30/	06			
Gasoline Range Organics (C4-C12)	22200	1000	ug/l	14000	10000	87	75-140	3	20	
Surrogate: 1,2-Dichloroethane-d4	2.57		rr rr	2.50		103	60-145			

Project: BP Heritage #11120, Dublin, CA

Project Number: G07TM-0013 Project Manager: Alok Kolekar MPI0576 Reported: 10/11/06 13:56

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
					*********	71.000	4111110		Onne	110103
Batch 6I30008 - EPA 5030B P/T /	EPA 8260B	•		-			.			
Blank (6I30008-BLK1)				Prepared	& Analyze	d: 09/30/	06			
tert-Amyl methyl ether	ND	0.50	ug/l							
Benzene	ND	0.50	14							
tert-Butyl alcohol	ND	20	10							
Di-isopropyl ether	ND	0.50								
1,2-Dibromoethane (EDB)	ND	0.50	**							
1,2-Dichloroethane	ND	0.50								
Ethanol	ND	300	**							
Ethyl tert-butyl ether	ND	0.50	"							
Ethylbenzene	ND	0.50	**							
Methyl tert-butyl ether	ND	0.50	***							
Toluene	ND	0.50	11							
Xylenes (total)	ND	0.50	n							
Surrogate: Dibromofluoromethane	2.75		"	2.50		110	75-130			
Surrogate: 1,2-Dichloroethane-d4	2.78		u	2.50		111	60-145			
Surrogate: Toluene-d8	1.85		и	2.50		74	70-130			
Surrogate: 4-Bromofluorobenzene	1.63		v	2.50		65	60-120			
Laboratory Control Sample (6130008	-BS1)			Prepared a	& Analyze	d: 09/30/0)6			
tert-Amyl methyl ether	8.38	0.50	ug/l	10.0		84	65-135			
Benzene	9.99	0.50	o	10.0		100	70-125			
tert-Butyl alcohol	182	20	lt.	200		91	60-135			
Di-isopropyl ether	8.96	0.50	n	10.0		90	70-130			
1,2-Dibromoethane (EDB)	9.57	0.50	n	10.0		96	80-125			
1,2-Dichloroethane	8.95	0.50	n	10.0		90	75-125			
Ethanol	218	300	p	200		109	15-150			
Ethyl tert-butyl ether	8.43	0.50	п	10.0		84	65-130			
Ethylbenzene	9.30	0.50	п	10.0		93	70-130			
Methyl tert-butyl other	9.31	0.50	11	10.0		93	50-140			
Toluene	9.77	0.50	n	10.0		98	70-120			
Xylenes (total)	28.6	0.50	ij	30.0		95	80-125			
Surrogate: Dibromofluoromethane	2,41		"	2.50		96	75-130			
Surrogate: 1,2-Dichloroethane-d4	2.40		a	2.50		96	60-145			
Surrogate: Toluene-d8	2.48		ы	2.50		99	70-130			
Surrogate: 4-Bromofluorobenzene	2.33		"	2,50		93	60-120			

Project: BP Heritage #11120, Dublin, CA

Project Number: G07TM-0013 Project Manager: Alok Kolekar MPI0576 Reported: 10/11/06 13:56

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		Smire		23101					-zenjak	, 1V1603
Batch 6I30008 - EPA 5030B P/T / E										
Matrix Spike (6I30008-MS1)		IPI0641-01			& Analyze					
tert-Amyl methyl ether	182	10	ug/l	200	ND	91	65-135			
Benzene	413	10	0	200	210	102	70-125			
tert-Butyl alcohol	6080	400	0	4000	2200	97	60-135			
Di-isopropyl ether	184	10		200	6.4	89	70-130			
1,2-Dibromoethane (EDB)	202	10	11	200	ND	101	80-125			
I,2-Dichloroethane	193	10		200	ИD	96	75-125			
Ethanol	6170	6000		4000	ND	154	15-150			LN
Ethyl tert-butyl ether	188	10	11	200	ИD	94	65-130			
Ethylbenzene	549	10		200	380	84	70-130			
Methyl tert-butyl ether	1610	10	41	200	1400	105	50-140			
Toluene	226	10	41	200	20	103	70-120			
Xylenes (total)	654	10		600	86	95	80-125	-		
Surrogate: Dibromofluoromethane	2.54		11	2.50		102	75-130			
Surrogate: 1,2-Dichloroethane-d4	2.62		н	2.50		105	60-145			
Surrogate: Toluene-d8	2.56		"	2.50		102	70-130			
Surrogate: 4-Bromofluorobenzene	2.26		"	2,50		90	60-120			
Matrix Spike Dup (6130008-MSD1)	Source: M	IPI0641-01		Prepared	Prepared & Analyzed: 09/30/06					
tert-Amyl methyl other	183	10	ug/l	200	ND	92	65-135	0.5	25	
Benzene	407	10	11	200	210	98	70-125	1	15	
tert-Butyl alcohol	5910	400	H	4000	2200	93	60-135	3	35	
Di-isopropyl ether	185	10	н	200	6.4	89	70-130	0.5	35	
1,2-Dibromocthane (EDB)	194	10	11	200	ND	97	80-125	4	15	
1,2-Dichloroethane	186	10	n	200	ND	93	75-125	4	10	
Ethanol	4400	6000	11	4000	ND	110	15-150	33	35	
Ethyl tert-butyl ether	184	10	п	200	ND	92	65-130	2	35	
Ethylbenzene	557	10		200	380	88	70-130	1	15	
Methyl tert-butyl ether	1550	10	и	200	1400	75	50-140	4	25	
Toluene	227	10	n	200	20	104	70-120	0.4	15	
Xylenes (total)	662	10	U	600	86	96	80-125	1	15	
Surrogate: Dibromofluoromethane	2.41		"	2.50		96	75-130	·		
Surrogate: 1,2-Dichloroethane-d4	2.57		"	2,50		103	60-145			
Surrogate: Toluene-d8	2.38		u	2,50		95	70-130			
Surrogate: 4-Bromofluorobenzene	2.29		"	2.50		92	60-120			

Project: BP Heritage #11120, Dublin, CA

Project Number: G07TM-0013 Project Manager: Alok Kolekar MPI0576 Reported: 10/11/06 13:56

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		~!!!!!!	_,,,,,,	22.41						,.0123
Batch 6J02002 - EPA 5030B P/T /	EPA 8260B			<u> </u>						
Blank (6J02002-BLK1)	Pa	<u> </u>		Prepared o	& Analyze	ed: 10/02/0	16			
tert-Amyl methyl ether	ND	0.50	ug/l							
Benzene	ND	0.50	#I 							
tert-Butyl alcohol	ND	20								
Di-isopropyl ether	ND	0.50	11							
1,2-Dibromoethane (EDB)	ND	0.50	n							
1,2-Dichloroethane	ND	0.50	#1							
Ethanol	ND	300	11							
Ethyl tert-butyl ether	ND	0.50	ti							
Ethylbenzene	ND	0.50	н							
Methyl tert-butyl ether	ND	0.50	**							
Toluene	ND	0.50	11							
Xylenes (total)	ND	0.50	(1							
Surrogate: Dibromofluoromethane	2.42		"	2.50		97	75-130			
Surrogate: 1,2-Dichloroethane-d4	2.54		u	2.50		102	60-145			
Surrogate: Toluene-d8	2.25		"	2.50		90	70-130			
Surrogate: 4-Bromofluorobenzene	2.25		**	2.50		90	60-120			
Laboratory Control Sample (6J02002	-BS1)			Prepared a	& Analyze	d: 10/02/0	06			
tert-Amyl methyl ether	12.1	0.50	ug/l	10.0		121	65-135			
Benzene	10.2	0.50	U	10.0		102	70-125			
tert-Butyl alcohol	202	20	b	200		101	60-135			
Di-isopropyl ether	11.1	0.50	n	10.0		111	70-130			
1,2-Dibromoethane (EDB)	10.6	0.50	te	10.0		106	80-125			
1,2-Dichloroethane	10.8	0.50	10	10.0		108	75-125			
Ethanol	150	300	11	200		75	15-150			
Ethyl tert-butyl ether	12.1	0.50	11	10,0		121	65-130			
Ethylbenzene	11.4	0.50	LE	10.0		114	70-130			
Methyl tert-butyl ether	12.1	0.50	It	10.0		121	50-140			
Toluene	10.5	0.50	ıı	10.0		105	70-120			
Xylenes (total)	34.8	0.50	10	30.0		116	80-125			
Surrogate: Dibromofluoromethane	2.28			2.50		91	75-130			
Surrogate: 1,2-Dichloroethane-d4	2.41		u	2.50		96	60-145			
Surrogate: Toluene-d8	2.34		u	2.50		94	70-130			
Surrogate: 4-Bromofluorobenzene	2.46		"	2.50		98	60-120			

Project: BP Heritage #11120, Dublin, CA

Spike

Source

Project Number: G07TM-0013
Project Manager: Alok Kolekar

MPI0576 Reported: 10/11/06 13:56

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6J02002 - EPA 5030B P/T / E	PA 8260B									
Matrix Spike (6J02002-MS1)	Source: M	PI0683-01		Prepared	& Analyze	d: 10/02/	06			
tert-Amyl methyl ether	126	5.0	ug/I	100	2.7	123	65-135			
Benzene	103	5.0	**	100	ND	103	70-125			
tert-Butyl alcohol	1920	200	**	2000	ND	96	60-135			
Di-isopropyl ether	118	5.0	ŧŧ	100	ND	118	70-130			
1,2-Dibromoethane (EDB)	106	5.0	н	100	ND	106	80-125			
1,2-Dichloroethane	126	5.0	n	100	ND	126	75-125			LN
Ethanol	1390	3000	11	2000	ND	70	15-150			
Ethyl tert-butyl ether	125	5.0	#1	100	ND	125	65-130			
Ethylbenzene	115	5.0	н	100	ND	115	70-130			
Methyl tert-butyl ether	620	5.0	н ,	100	470	150	50-140			BB,LN
Toluene	104	5.0	n	100	ND	104	70-120			•
Xylenes (total)	361	5.0	**	300	ND	120	80-125			
Surrogate: Dibromofluoromethane	2.50		"	2.50		100	75-130			
Surrogate: 1,2-Dichloroethane-d4	2.81		"	2.50		112	60-145			
Surrogate: Toluene-d8	2.34		"	2.50		94	70-130			
Surrogate: 4-Bromofluorobenzene	2.50		**	2.50		100	60-120			
Matrix Spike Dup (6J02002-MSD1)	Source: M	P10683-01		Prepared	& Analyze	:d: 10/02/0	06			
tert-Amyl methyl ether	125	5.0	ug/l	100	2.7	122	65-135	0.8	25	
Benzene	104	5.0	12	100	ND	104	70-125	1	15	
tert-Butyl alcohol	2000	200	u	2000	ND	100	60-135	4	35	
Di-isopropyl ether	116	5.0	ıt	100	ND	116	70-130	2	35	
1,2-Dibromoethane (EDB)	105	5.0	II .	100	ND	105	80-125	0.9	15	
1,2-Dichloroethane	126	5.0	tr	100	ND	126	75-125	0	10	LN
Ethanol	1800	3000	U	2000	ND	90	15-150	26	35	
Ethyl tert-butyl ether	124	5.0	u .	100	ND	124	65-130	0.8	35	
Ethylbenzene	115	5.0	μ	100	ND	115	70-130	0	15	
Methyl tert-butyl ether	615	5.0	n	100	470	145	50-140	0.8	25	BB,LM
Toluene	104	5.0	n	100	ND	104	70-120	0	15	,
Xylenes (total)	358	5.0	D	300	ND	119	80-125	0.8	15	
Surrogate: Dibromofluoromethane	2.48		11	2.50		99	75-130			
Surrogate: 1,2-Dichloroethane-d4	2.72		u	2.50		109	60-145			
Surrogate: Toluene-d8	2.30		n	2.50		92	70-130			
Surrogate: 4-Bromofluorobenzene	2.42		,,	2.50		97	60-120			

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.testamericainc.com

URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland CA, 94612

Project: BP Heritage #11120, Dublin, CA

MPI0576

Project Number: G07TM-0013 Project Manager: Alok Kolekar

Reported: 10/11/06 13:56

Notes and Definitions

PV

Hydrocarbon result partly due to individ. peak(s) in quant. range

LM

MS and/or MSD above acceptance limits. See Blank Spike(LCS).

IC

Calib. verif. is within method limits but outside contract limits

BB,LM

Sample > 4x spike concentration. MS and/or MSD above acceptance limits. See Blank Spike(LCS).

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified

NR

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

DO
 * "

`In Place Yes

Temp Blank Yes

No_

White Copy - Laboratory / Yellow Copy - BP/Atlantic Richfield Co / Pink Copy - Consultant/Contractor

Chain of Custody Record

Dago	1		1
Page	•	Of:	

Direction:

Trip Blank Yes

CALMAN VA	Auntor's Trecold		Page of I
Project Name: Analytical for QMI) sometime		
	Sampining	On-site Time: [/3]	Temp: 70 3
BP BU/AR Region/Enfos Segment:	BP > Americas > West Coast > Retail > WCBU >	Off-site Time: /72 v	Temp: 7-5 °
	CA > Central > 11120 > HistoricalBL	Sky Conditions: Clean	
State or Lead Regulatory Agency:	California Regional Water Quality Control Board - San Fire	Meteorological Events	

Wind Speed:

10 Day TAT

Requested Due Date (mm/dd/yy): Lab Name: Sequoia BP/AR Facility No.: 11120 Consultant/Contractor: URS Address: 885 Jarvis Drive BP/AR Facility Address: 6400 Dublin Blvd., Dublin, CA 94568 Address: 1333 Broadway, Suite 800 Morgan Hill, CA 95037 Site Lat/Long: 37.704742 / -121.909 Oakland, CA 94612 Lab PM: Lisa Race / Katt Min California Global ID No.: T0600101432 Consultant/Contractor Project No.: 38487130 Tele/Fax: 408.782.8156/408.782.6308 Enfos Project No.: G07TM-0013 Consultant/Contractor PM: Alok Kolekar BP/AR PM Contact: Paul Supple Provision or RCOP: Provision 510.874.3152 / 510.874.3268 Tele/Pax: Address: P.O. Box 6549 Phase/WBS: 04 - Mon/Remed by Natural Attenuation Report Type & QC Level: Level 1 with EDF Moraga, CA 94570 Sub Phase/Task: 03 - Analytical E-mail EDD To: jane field@urscorp.com Tele/Fax: 925-299-8891 Cost Element: 05 - Subcontracted Costs Invoice to: Atlantic Richfield Company Lab Bottle Order No: 11120 Matrix Preservative Requested Analysis No. of Containers GRO/BTEX (\$260) MTBE, TAME, EIBE DIPE, TBA (\$260) DB, 1,2-DCA (8260) Water/Liquid Item Unpreserved Sample Description Soil/Solid Laboratory No. No. Sample Point Lat/Long and hano! (8260) Comments NO. E MPIOSTL 1 MU-8 1225 04/9/00 X 3 01 XX MW-10 × 1750 × 02 MW-11 3 1310 Ж **بر** × 03 X XX TB-11120-09152006 04 ~_ ON MOCH 5 б 8 9 S. Cornell : D Rough Blaine Tech Ferrica Sampler's Name: Relinquished By / Affiliation Date Time Accepted By/Affiliation Sampler's Company: Date Time Shipment Date: 455 Shipment Method: 10000 Levos ipment Tracking No: 9/20 Instructions: CC to rhmiller@broadbentine.com

Cooler Temperature on Receipt 4 7

TEST AMERICA SAMPLE RECEIPT LOG CLIENT NAME: DATE REC'D AT LAB: 9/20/06. For Regulatory Purposes? REC. BY (PRINT) TIME REC'D AT LAB: DRINKING WATER YES INO WORKORDER: MPIOSTY DATE LOGGED IN: 9/21/06 WASTE WATER YES / NO-CIRCLE THE APPROPRIATE RESPONSE LAB CONTAINER : PRESER CLIENT ID SAMPLE DATE REMARKS: SAMPLE # DESCRIPTION VATIVE MATRIX SAMPLED Custody Seal(s) Present / Absent CONDITION (ETC.) Intact / Broken* 2. Chain-of-Custody. Present / Absent* 3. Traffic Reports or Packing List: Present / Absent 4. Airbill: Airbill / Sticker Present / Absent 5. Airbill #: 6. Sample Labels: Present PAbsent 7. Sample IDs: Listed / Not Listed on Chain-of-Custody 8. Sample Condition: Intast / Broken* / 9. Does information on chain-of-custody, traffic reports and sample labels agree? Yes No* 10. Sample received within hold time? (Yes/No* Adequate sample volume received? Yes / No* 12. Proper preservatives used? Yes / No* 13. Trip Blank / Temp Blank Received? (circle which, if yes) Mes/No* 4. Read Temp: Corrected Temp: ls corrected temp 4 +/-2°C? (Acceptance range for samples requiring thermal pres.) **Exception (if any): METALS / DFF ON ICE or Problem COC ****... *IF CIRCLED, CONTACT PROJECT MANAGER AND ATTACH RECORD OF RESOLUTION. RL Revision 8 'aces Rev 7 (07/19/05) 09/13/06

WELL GAUGING DATA

Project # 060919-5C2	Date 09/19/06	Client BP ///2 0	
site 6400 Publin Blug.	- Dublin, CA		

Well Depth to Odor Thickness Volume of Immiscibles Depth to water Depth to well Tob Well ID Time (in.) Odor Liquid (ft.) Liquid (ft.) (ml) (ft.) Survey Poin Removed Depth to water Depth to well Tob Thickness Volume of Immiscibles Poin Removed Depth to water Depth to well Tob Tob Tob Tob Tob Tob Tob Thickness Volume of Immiscibles Poin Thickness Volume of Immiscibles Tob	ey
Poli	
Well ID Time (in) Odor Liquid (9) I jurid	nt:
Well ID Time (in) Odor High (A) I in 12 (A)	⇔oΣ .
Well ID Time (in.) Odor Liquid (ft.) Liquid (ft.) (ml) (ft.) bottom (ft.)	C Notes
MV-8 1154 2 7.33 19.55	
MW-9 - 2 Well destroyed per Clant	
MW-9 - 2 Well destroyed per Clant - /	
MW-10 1200 2 6.87 19.79	
MW-1 1158 2 8.07 19.37 V	
[[1,1,1]	
thells allowed to stabilize between openins raps + gaussi-s	
The allawed in tribute between opening top of gausing	
	f
	•
	ļ.
	1
	ļ
	
	· ·

BTS#:	06091	j-jc 2		Station # \mathcal{B}_{i}	P11120					
Sampler	Sc	SF		Date: 09	19/06					
Well I.D	.: Mi	7-8		Well Diamete	r: 2 3 4	6 8	8			
Total We	ell Depth:	19.55		Depth to Wate	er: 7.33 '					
Depth to	Free Prod	uct:		Thickness of Free Product (feet):						
Referenc	ed to:	(evc)	Grade	D.O. Meter (if		YSI	HACU			
Purae Mesh	Well Diameter Multiplier 1" 0.04 2" 0.16 3" 0.37				D.O. Well Diameter Multiplier 4" 0.65 6" 1 47 Other radius ² * 0.163					
r argo michi	-	Danier Disposable Bai	iler	Sampling Method						
		ive Air Displa			Disposable Bailer					
		ectric Submer		Other	Extraction Port					
	I	Extraction Pur	np	omer						
	Other:									
Top of Scree	:n:	·······	If well is listed as a of screen. Otherwi	no-purge, confirm se, the well must be	that water level is be	low the t	ор			
	ょ	٠0	7	6.0	58					
		ume (Gals.)	x		Gals.					
	1 Case 101	unic (Gais.)	Specified Vo	lumes Cal	culated Volume					
Time	Temp (°F)	Hq	Conductivity (mS or (S)	Gals. Removed	Observations					
1212	71.6	7.3	2603	2.0		dr				
1215	71.4	7.3	2586	4.0	slocktly close	7	· · · · · · · · · · · · · · · · · · ·			
1218	71.1	7.2	2565	6.0	ł (<u></u>				
										
Did well o	lewater?	Yes	No)	Gallons actuall	y evacuated: 6	· D				
Sampling		725		Sampling Date	: 09/19/06					
Sample I.I	D.: MW-	8		Laboratory:	Pace Sequoia	Other	TA			
Analyzed		RO BTEY MT	BE DRO OXY'S 12-DC	3 / /	Other:					
D.O. (if re	q'd):		Pre-purge:	mg/L	Post-purge:		mg, L			
O.R.P. (if	• •		Pre-purge;	mV	Post-purge:		mV			
Blaine To	ch Serv	ices, Inc	. 1680 Rogers	Ave., San Jo	se, CA 95112	(408) 5	73-0555			

BTS #:	1)6091	9-5c Z	100	Station #	RO	÷11 57				
Sampler	: 5°	1-3c2		Date:	080	1120	<u></u>			
				 	09//	A STATE OF THE PARTY OF THE PAR				
Well I.D	1.00	<u>- </u>		Well Diam	neter:	(2) 3	4 6	8		
Total We	eli Depth:			Depth to Water:						
	Free Prod	uct:		Thickness of Free Product (feet):						
Referenc		(evc)	Grade	D.O. Meter (if req'd): YSI HACH						
Purge Meth	Ele Positi Ele I	Bailer Dispesable Baive Air Displa ectric Submer Extraction Pul	0.04 0.16 0.37 Let sible	Well Diameter 4" 6" Other Sampling Met	Χź					
Top of Scree		ume (Gals.)	If well is listed as a of screen. Otherwing X	se, the well mu	ist be pu	t water level rged. Gals ted Volume		e top		
Time	Temp (°F)	pH	Conductivity (mS or µS)	Gals. Remov		Observations		**************************************	7	
	rell .	has be	er gationed	for Ct	à ext.					
Did well o		Yes	No	Gallens act	ually e	vacuated:				
Sampling		(P)		Sampling D	ate	09/19/	06		-	
Sample I.I	D.: M N2	19		Laboratory:	Pac	e Sequoia	Othe	er TA	1	
Analyzed	for: (g	RO BYEN MI	BE DRO ONYS 12-DC	A EDB Ethanol		ier:			\dashv	
D.O. (if re	:q'd):		Pre-purge:		mg/L	Post-purg	e	mg/	1	
D.R.P. (if	req'd):		Pre-purge:		nV	Post-purg			-	
Blaine To	ech Serv	ices, Inc	. 1680 Rogers	Ave San	loss	CA DEA	VA CARRY	m\		

BTS #:	060919	1-5cZ		Station #	BP 1112	0			
Sampler:	: Sc	SP		Date:	09/19/0	6	<u>*************************************</u>		
Well I.D	.: MW			Well Diame	eter: (2)	3 4	6	8	
Total We	ell Depth:	19.70	ĵ	Depth to W	ater: 6-0	87			
Depth to	Free Prod	uct:		Thickness o	of Free Pro	duct (fee	 :t);		·
Referenc	ed to:	(PVC)	Grade	D.O. Meter		· · · · · · · · · · · · · · · · · · ·	YSI	TI A CT	
	2" 0.04 2" 0.16 3" 0.37			Vell Diameter 4" 6" Other	Multiplier 0.65 1 47 radius ² * 0.163		1 (1)	НАСН	!
Purge Meth	od:	Bailer		Sampling Meth		niler		J	
-		Disposable Ba	ile r	printbing picil	Disposal				
	Posit	ive Air Displa	cement			tion Port			
		ectric Submer		Ot	her:				
		Extraction Pur	np						
	Other								
Top of Scree	en:		If well is listed as a of screen. Otherwi	no-purge, conf se, the well mus	irm that water at be purged.	r level is be	low th	e top	
	0	_	7		7				
	I Case Vo	lume (Gals.)	X		<u>,,, </u>	Gals.			
		(data.)		iumes	Calculated Vo.	lume			
Time	Temp (°F)	pH	Conductivity (mS or (mS)	Gals. Remov	ed Obser	vations			
1236	75.6	7.2	7060	1.6		<u> </u>			
1239	73.5	7-1	73.08	4.2					
1242	73.1	7-1	7560	6-3	cldy	r barros	45A	- ofo-	
· · · · · · · · · · · · · · · · · · ·					7		7		
<u>.</u>									
Did well	dewater?	Yes (No)	Gallons actu	ıally evacu	ated:	.7		
Sampling	Time:	250		Sampling D	ate: 09	/19/06			
Sample I.	D.: M	m-(0		Laboratory:	Pace S	Sequoia	Oth	er <u>TA</u>	
Analyzed	for: C	RO BTEY M	THE DRO OAY'S 12-DO	$\mathcal{N} = \mathcal{N} = \mathcal{N}$	Other:	****			
D.O. (if re	eq'd):	- 	Pre-purge:		ng/L Pos	st-purge:			mg/L
O.R.P. (if			Pre-purge:	n	nV Pos	st-purge:	Mile, policies _{all} er antiques (de		mΥ
piaine T	ech Serv	ices, Inc	. 1680 Rogers	Ave., San	Jose, CA	95112	(408	573-05	55

BTS #:	06091	9-5c2		Station # B	011120					
Sampler	: Sc	151-			119/06					
Well I.D	: MU	-01		Well Diameter	r: (2) 3 4	6	8			
Total We	ell Depth:	19.37		Depth to Water: 8.07						
Depth to	Free Prod	luct:		Thickness of Free Product (feet):						
Referenc	ed to:	(evc)	Grade	D.O. Meter (if		YSI	HAC	LI		
Divers Mark	Well Diam I" 2" 3"		Multiplier 0.04 0.16 0.37	Wel <u>l Diameter</u> <u>!</u> 4" 6" Other radi	<u>Multiplier</u> 0.65 1 47 us ² ▼ 0.163		IIAC			
Purge Meth		Bailer	. 11_	Sampling Method:						
	-	Disposable Ba ive Air Displa		i	Disposable Bailer					
		ectric Submer		Extraction Port						
		Extraction Pur		Other:						
	Other:		•							
Top of Scre	en:		If well is listed as	no purce coefi-	**	. <u>.</u>				
			of screen. Otherwi	no-purge, confirm se, the well must be	that water level is t	oelow the	top			
•	1	9	~~							
	I Case Vol	lume (Gals.)	X Specified Vo		· 7 Gals.					
····		1	Conductivity	iunies Can	ulated Volume					
Time	Temp (°F)	pH	(mS or (is)	Cata D						
1				Gals. Removed	Observations					
1253	724	7.4	2119	1.9	cldy lt. brown	<i>ખે</i>				
1257	720	7.3	1915,	3.8	سد در در		**			
1300	71.8	7.3	2189	5.7	te 64 66	•				
										
Did well	lewater?	Yes (No)	Gallons actuall	ر :y evacuated	1.7		**********		
Sampling	Time:	710		Sampling Date:	09/19/01	6	<u></u>			
Sample [.]	D.: M	W-(1		Laboratory:	Pace Sequoia	Othe	JA			
Analyzed	for: (G	RO BTEX MI	BE DRO Oxy's 12-DC	<i>3</i>	Other:		- /-/-			
D.O. (if re	eq'd):		Pre-purge:	mg/L	Post-purge:			mg,		
O.R.P. (if			Pre-purge:	mV	Post-purge:		PRINCE TO SERVICE STATE OF THE PRINCE STATE STATE OF THE PRINCE STATE STAT	mV		
Blaine T	ech Servi	icas Inc	1680 Rogers	Ava Samila				111 7		

BP GEM OIL COMPANY TYPE A BILL OF LADING

SOURCE RECORD BILL OF LADING FOR NON-**PURGEWATER** RECOVERED HAZARDOUS FROM GROUNDWATER WELLS AT ATLANTIC RICHFIELD COMPANY (ARC) A BP AFFILIATED COMPANY FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGEWATER WHICH HAS BEEN RECOVERED FROM GROUNDWATER WELLS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY AN ARC DIRECT BILL WASTE TRANSPORTER TO AN ARC APPROVED DISPOSAL FACILITY.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Avenue, San Jose, CA 95112 (phone [408] 573-0555), 4731 Pell Drive #5, Sacramento, CA 95838. Blaine Tech Services, Inc. is authorized by ARC to recover, collect, apportion into loads the Non-Hazardous Well Purgewater that is drawn from wells at the ARC facility indicated below and deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one ARC facility to the designated destination point; from one ARC facility to the designated destination point via another ARC facility; from a ARC facility to the designated destination point via the contractor's facility, or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of ARC.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the ARC facility described below:

7	
BPIIIZO	
Station #	
6400 Rellin Bly. Delling Ca	
Station Address	
Total Gallons Collected From Groundwater Monitoring Wells:	
added equip.	any other
added equip. 6	adjustments
TOTAL GALS. /20 RECOVERED	loaded onto BTS vehicle #
BTS event #) time date
060919-102	1330 05/18/06
signature	
********	******
REC'D AT	time date
unloaded by	
signature	

WELLHEAD INSPECTION CHECKLIST BP / GEM

	1	1
Page	of	

Date 89/	9/06			· ·				
Site Address	6400 Put	Fin Blu	id. (ublin,	ICA_			
Job Number _	6400 Put 060919-5	cr		Tec	hnician	S.Co	rmack	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
1011-8	X				710,000			
WM-11 WM-10 WM-0	Well	whote	per clie	4				
MM-M	X					. <u></u>		
NW-11	X							
			<u> </u>					
			<u> </u>			<u> </u>		
NOTES:	Boxes w/ N	<u>ን" ኊላና".</u>	3/0/69/	19 4 ptx	Jonture	ions ot,	<u>υ</u>	
					···-·			
								
							• • • • • • • • • • • • • • • • • • • •	

APPENDIX B

HISTORICAL GROUND-WATER ANALYTICAL DATA FOR FORMER WELLS ABANDONED IN 1999 (SOURCE: ALISTO ENGINEERING)

TABLE 1 - SUMMARY OF RESULTS OF GROUNDWATER SAMPLING BP OIL COMPANY SERVICE STATION NO. 11120 6400 DUBLIN BOULEVARD, DUBLIN, CALIFORNIA

ALISTO PROJECT NO. 10-170

ID WELL		DATE OF SAMPLING MONITORING	CASING ELEVATION (a) (Feet)	DEPTH TO WATER (Feel)	GROUNDWATER ELEVATION (b) (Feel)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/1)	(n0\1)	X (ug/l)	MTBE (ug/l)	DO (ppm)	BAJ
	(c)	10/27/92	328,96	8.19	320,77	ND<50	ND<50	ND on			· · · · · · · · · · · · · · · · · · ·	·		
MVV-1		04/09/93	320,96	4.79	324.17	ND<50	100	ND<0.5	ND<0,5	ND<0.5	ND<0.5	~		PACE
MVV-1		08/25/93	328.96	6.85	322.11	ND <50	70	ND<0.5	ND<0,5	ND<0.5	ND<0.5			PACE
MW-1		11/22/93	328,96	7.38	321.50	ND<50	ND<50	ND<0,5	ND<0.5	NO<0.5	ND<0.5	****	****	PACE
MW-1		03/07/94	326,96	5.80	323.07	ND<50		ND<0.5	ND<0.5	ND<0,5	NO<0.5			PACE
MW-1		06/09/94	328.96	6.42	322.54	ND<50	√ ND<50 ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	***	4,9	PACE
MYV-1		09/12/94	328,96	7,33	321,63	ND<50		ND<0,5	ND<0.5	ND<0.5	ND<0,5		8.0	PACE
MW-1		12/20/94	328.96	6.34	322.62	110 €30	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		7,8	PAGE
MVV-1		03/16/95	328,96	4.37	324.59	ND<50			_		_		****	
MW-1		06/28/95	328.96	5,35	323,61	MD450	ND<500	ND<0.50	ND<0,50	ND<0.50	ND<1.0		5.6	ΑП
M99-1		09/06/95	326.96	6.44	322.52	ND<50			_				5.0	A11
MW-1		12/22/95	328.96	6.04	322.92		340	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<5.0	7.4	ATI
MW-1		08/20/96	328.96	5.65	323.31		***			_				
MW-1		08/21/96	328.96				_						****	
MW-1		10/31/96	320.96	5,99	700.07	ND<50	160	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	_	
MW-1 ((d)	12/02/96	328.96	-~	322,97			_	***	-	110<1.0	MOSIO	6,8	SPL
	(d)	06/26/98	328.96		_	_	_					_	-	_
					_	~	****	***			_		_	
MW-2		10/27/92	328,50	7.64	500.00						_			
MW-2		04/09/93	328.50	4.12	320.66	ND<50	ND<50	ND<0.5	ND<0.5	ND<0,5	NO<0.5			
MW-2		08/25/93	320,50		324.38	ND<50	80	ND<0.5	ND-:0.5	ND<0,5			-	PACE
MW-2		11/22/93	328,50	6.31 7.12	322.19	NO<50	70	ND<0.5	ND<0.5	ND<0.5	ND<0.5			PACE
MW-2		03/07/94	328.50		321.38	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<0.5	Trime	_	PACE
MW-2		06/09/4	328,50	5.60 5.91	322.90	ND<50	ND<50	ND<0.5	ND<0.5		ND<0.5			PACE
MW-2		09/12/94	328,50		322.59	ND<50	70	ND<0.5	ND<0.5	ND<0.5	ND<0.5		4,3	PACE
MW-5		12/20/94	328,50	6.87	321.63	ND<50	160	ND<0.5		ND<0.5	ND<0,5		8.2	PACE
MW:2		03/16/95	328.50	5.06	322.64			ND40.5	ND<0.5	ND<0.5	ND<0.5		7.5	PACE
MW-2		03/16/95	328.50	3.77	324.73	ND<50	ND<500	ND<0.50	- LITS		_	-	****	—
MW-2		06/20/95	328.50	3.77	324.73	ND<50	ND<500	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.6	ATI
MW-5		09/06/95	328.50	4.33	324.17	_	-	NO40250	ND<0,50	ND<0.50	ND<1.0		6,6	ATI
MW-5		12/22/95	328.50	5.05	322.65	ND<50	210	ND<0,50		_		_	***	
WW-S		08/20/06	328,50	5,50	323,00		_		ND<0.50	ND<0.50	ND<1.0	ND<5.0	7.0	ATI
MVV-2		08/21/96	328,50	5.07	323,43		-		_		-			/(I)
MW-2		10/31/96	328.50		_	ND<50	ND<50	. ND<0.5						
MW-2		12/02/16	328.50	5.44	323.06	-	- 12705	- 110(1).5	ND<1.0	ND<1.0	ND<1.0	ND<10	7,0	SPL
MW-2		03/27/97	328.50	5.50	323.00				-		-	_	***	
WM-S		06/03/97	328,50	4.61	323,89	ND<50	ND<100	.— ND<0,5		_			***	****
VW-2		09/16/97	328.50	7.14	321.36	-			ND<1.0	ND<1.0	ND<1.0	ND<10	5.8	SPL
AW-2		12/03/97	328,50	6.10	322.40	ND<50	ND<100	ND-0.E			-		~~	—
VIVY-2		06/26/98	328.50	6.22	322.28			ND<0.5	ND<1.0	ND<1,0	ND<1.0	ND<10	5.2	SPL
			040,0U	4.86	323.64	ND<50	_	ND or			_	_		
							•	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	4.6	SPL

TABLE 1 - SUMMARY OF RESULTS OF GROUNDWATER SAMPLING BP OIL COMPANY SERVICE STATION NO. 11120 6400 DUBLIN BOULEVARD, DUBLIN, CAUFORNIA

ALISTO PROJECT NO. 10-170

			~										
NECT.	DATE OF SAMPLINGA MONITORING	CASING ELEVATION (a) (Feel)	DEPTH TO WATER (Feel)	GROUNDWATER ELEVATION (b) (Feel)	TPH-G (ug/l)	7Pl·l·D (ug/l)	. B (ug/l)	T (ug/l)	E (ug·l)	X (ug/l)	MTBE (vg/l)	رادا) (دا)	
MIV-3 MIV-3 MIV-3 MIV-3 MIV-3 MIV-3 OC-1 (I)	10/27/92 04/09/93 08/25/93 11/22/93 03/07/94 05/09/94 05/09/94 09/12/04 12/20/94 12/20/94 12/20/94 03/16/95 06/28/95 06/28/95 08/28/95 08/28/95 08/28/95 08/28/95 08/28/95 08/28/96 12/22/96 10/21/96 11/21/96 11/21/96 12/22/96 03/27/97 06/03/97 06/03/97 06/03/97 12/03/97 12/03/97 12/03/97	329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36 329.36	8.43 4.90 7.13 7.60 6.08 6.51 7.63 6.41 4.39 6.66 6.31 5.87 6.20 6.20 5.39 7.92 6.67 6.81 5.08	323.09 323.97 321.44 322.69 322.55	210 400 2000 1800 1300 1300 8500 8600 2100 18000 17000 6300 6300 9000 10000 9700 9200 — 3700 3500 ND<250 ND<250 ND<250 ND<250 ND<250 ND<250 ND<50 ND		3 6.1 ND-0.5 ND-2.5 22 25 23 ND-5.0 ND-5.0 79 79 470 500 ND-10 ND-50 ND-65 ND-25	0.7 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<2.5 4.0 8.3 6.3 ND<5.0	0.9 ND-0.5 ND-2.5 ND-2.5 ND-2.5 0.5 0.5 0.5 0.6 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	30 ND-0.5 ND-0.5 ND-2.5 3.8 15 10 20 10 9.3 ND-2.5 9.9 13 ND-20 ND-100 ND-100 ND-100 ND-100 ND-50 ND-50 ND-5.0	3300 910 7200 13000 3800 3800 3900 ————————————————————————————————	(e) — (e) 3.1 (e) 7.2 (e) 7.3 7.4 — 7.1 — 6.8 — 6.8 — 6.4 — 6.2 5.9 — 5.5 5.0	PACE PACE PACE PACE PACE PACE PACE PACE

TABLE 1 - SUMMARY OF RESULTS OF GROUNDWATER SAMPLING BP OIL COMPANY SERVICE STATION NO. 11120 6400 DUBLIN BOULEVARD, DUBLIN, CALIFORNIA

WELL		DATE OF SAMPLING	CASING	DEPTHTO	GHOUNDWATER	TPH-G	TPH-D								
and the second second	an extra v	MONITORING	ELEVATION (a) (Feet)	WATER (Feet)	ELEVATION (E (Feet)		(ug/l)	(Ug/1)	T (ug/1)	E (ug/1)	X (ug/l)	(ug/l)		DO (ppm)	LA
MVV-4 MVV-1		10/27/92	329,45	8,61	320.84	2300	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·				Till Market	-
MW-4		04/09/99 08/25/BB	329,45	5.25	324.20	1600	190	23	54	50	320				
QC-1	(f)	08/25/93	329,45	7.32	322.13	1800	500	78	3.5	68	1.0				PAC
MW-1	(•)	11/22/93		-		1600	380	ND<0.5	ND<0,5	ND<0.5	ND<0.5	2100	(c)	_	PAC
	(1)	11/22/93	329.45	7.83	321.62	610	260	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2100	(e) (8)		PAC
MW-4	(7	03/07/94	220.45		-	1700	200	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	(0)		PAC
	(f)	03/07/94	329.45	6.29	323.16	710	1400	ND<2.5	ND<2.5	ND<2.5	NDc2.5	3500	(e)	_	PAC PAC
MW-4	.,	06/09/94	329,45			1600	1400	0,5 ND<0.5	8,0	ND<0.5	ND<0.5	5900	(0)	3.8	PACI
MW-4		09/12/94	329,45	6.76	322.69	6400	1800		ND<0.5	1.4	0.6	4200	(e)	_	PACE
MW-4		12/20/94	329.45	7.83	321.62	2000	2700	ND<10 ND<0.5	ND<10	ND<10	ND<10	10000		7.5	PACE
MVV-4		03/16/95	329.45	6.68	322.77	9200	2400	ND<5.0	ND<0.5	ND<0,5	ND<0.5	4200		7.2	PACE
MW-4		06/28/95	329.45	4.66 5.93	324,79	1400	960	140	ND<5.0	ND<5.0	ND<5.0			G.1	PACE
MW-4		09/06/95	329,45	6.83	323.52	5000	5400	(g) 240	ND<2.5	58	· 14	. 		5.5	ATI
MVY-4		12/22/95	329,45	6.42	322.62	4400	4500	ND<13	NU<5.0	220	ND<10	-		7.4	AΠ
	(I)	12/22/95		0.42	323.03	3800	4700	15	ND<13	ND<13	ND<25	12000		7.6	ATI
MVV-4		00/20/96	329,45	5.01		3900	-	16	ND<13	ND<13	ND<25	9200		7.1	ΑTI
MYV-4		08/21/96	329.45	-	323,44				ND<13	ND<13	ND-25	8600			ATI
MYV-4 MVV-4		10/31/96	329.45	5.37	323,08	ND<250	470	ND<12	ND≪5	— ND<25				_	
MW-4		12/02/96	329.45	6.71	322,74	ND<250 ND<50	1600	ND<2.5	ND<5.0	ND<5.0	ND<25	ND<250		7.7	SPL.
	(f)	03/27/97 03/27/97	329.45	5.70	323.75		13000	ND<5	ND<10	ND<10	ND<5.0 ND<10	ND<50		7.1	SPL
MW-4		06/03/97	n	_	_	8200 6900	1500	44	· ND-25	ND<2S	ND-25	2200		7.3	SPL
MW-4		09/16/97	329.45	8.37	321.08	2800		51	ND<25	ND⊲5	ND<25	8000 8500		5,2	SPL
00-1 (f)	09/16/97	329.45	6.91	322,54	110	270	62	ND<1.0	ND<1.0	ND<1.0	7000			SPL
MW-4		12/03/97	329,45			130	1800	0.50	ND<1.0	ND<1.0	ND<1.0	7700 7700		7.1	SPL
MYY-4		06/26/08	329,45	7.16	322,29	ND<50	ND<200	1.2	ND<1.0	ND<1.0	1.1	7100		5.2	SPL
			- Lo. 10	5.15	924.30	520	.12.200	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10			SPL
MW-5		04/09/93	329.60	5,18				0.52	ND<1.0	ND<1.0	ND<1.0	1100		.0 .3	SPL
MW-5		00/25/93	329.60	7.28	324.42	ND<50	ND<50	ND<0.5	4.00			1100	ນ	.3	SPL,
VIVV-5		11/22/93	329,60	7.82	322.32	ND<50	70	ND<0.5	ND<0.5	ND<0.5	ND<0.5			***	DAOE
MV4-5 MW-5		03/07/94	329.60	6.27	321.78	ND-20	ND<50	NO<0.5	ND<0.5	ND<0.5	ND<0.5				PACE
иу-5 иу-5		06/19/94 09/12/94	329.60	6.73	323,33 322,87	ND<50	120	ND<0.5	ND<0.5 ND<0.5	ND<0.5	ND<0,5	-			PACE
/W-5		12/20/94	329,60	7.78	321.82	ND<50	70	ND<0.5	ND<0.5	ND<0.5	NO<0.5		5.		PACE
AVV-5		03/16/95	329.60	6.63	322.97	ND<50	120	ND<0.5	ND<0.5	ND<0.5 ND<0.5	ND<0.5	~	7.		PACE
1V Y -5		06/28/95	329.60	4.65	324.95	_ ND<50	3100		_		ND<0,5	-	7.		PACE
(W-5		09/06/95	329.60 329.60	5.69	323,91	11500	ND<500	ND<0,50	ND<0.50	ND<0.50	ND -4 c	-	_		
IVV-5		12/22/95	329.60	6.82	322.78	ND<50	200		i		ND<1.0	_	4.	9	АΠ
IW-5		08/2U/96	329.60	6.40	323.20			ND<0.50	ND<0.50	ND<0.50	ND<1.0	MD 6.4	~-		
W-5		08/21/96	329.60	5.98	353.62		-		~-			ND<5.0	7.	3	ATI
IW-5		10/31/96			~	ND<50		-	_					-	
W-5		12/02/96	329.60	6.29	323.31		ND<50	ND<0.50	ND<1.0	110				-	~~
W-5		03/27/97	329.60	6.37	323.23		_		0.15GM	ND<1.0	ND<1.0	ND<10	6.9	,	SPL
W-5		0.8/0.3/97	329.60	5.33	20107			-		_	-		0.3	•	
W-5		09/16/97	329.60	8.00	321.60	√D<50	ND<100	ND<0.5	ND<1.0	* 150			_		_ `
W-5		12/03/97		6,89	000 74			~	UD<170	ND<1.0	ND<1.0	ND<10	5,8		en:
N-5		06/26/98	329.60	6,99	322.61	ND<50	ND<100	ND<0,5	ND<1.0	Fitte 4 m			J,1.		SPL
•		OCA 1890	329,60	5.11	004.40	 ID<50			110<1,0	0.1>GM	ND<1.0	27	5.4		SPL
						0.430	Philips.	ND<0.5	ND<1.0	ND<1.0	— ND<1.0	***			

TABLE 1 - SUMMARY OF RESULTS OF GROUNDWATER SAMPUNG BP OIL COMPANY SERVICE STATION NO. 11120 6400 DUBLIN BOULEYARD, DUBLIN, CALIFORNIA

ALISTO PROJECT NO. 10-170

ID MEIT	DATE OF SAMPLING/ MONITOHING	CASING ELEVATION (a) (Feel)	DEPTH TO WATER (Feet)	GROUNDWATER ELEVATION (L (Fee!)	1PH-G) (ug/l)	TPI4-D (ug/l)	(rg/l)	T (ug4)	E (ug/l)	X (ug/l)	MTBE (ug/l)	DO (ppm)	LAB
MW-6	04/09/93	329.55	5,37	324.18	NED de								
MW-6	06/55/90	329.55	7.42	322.13	ND<50	ND<50	ND<0.5	ND<0,5	ND<0.5	ND<0.5			
MW-6	11/22/93	329.55	7.93	321.62	ND<50	170	ND<0.5	ND<0.5	ND<0.5			****	PACE
MW-5	03/07/04	329.55	6.25	323.30	ND-50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	*		PACE
MW-6	06/09/94	329,55	6.85	322.70	ND<50	90	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_		PACE
MW-6	09/12/94	329.55	7,91	321.64	ND<50	ND<50	ND<0.5	ND<0.5		ND<0.5	n-n	4.2	PACI
MVV-6	12/20/94	329.55	6.82		ND<50	240	ND<0,5	ND<0.5	ND<0.5 ND<0.5	ND<0.5		7.0	PACI
MW-6	03/16/95	329,55	4,78	322.73		~~				ND<0,5		6,7	PACE
MW-6	06/28/95	329,55	5.97	324.77	ND<50	ND<500	ND<0.50	ND oro				_	-
MW-6	09/06/95	329.55	5.97 6.94	323.58				ND<0.50	ND<0.50	ND<1.0	_	6.1	TA
MW-6	12/22/95	329.55	6.53	322,61	ND<50	340	ND<0.50						
MW-6	08/20/96	329,55		323.02		-		ND<0.50	ND<0.50	ND<1.0	ND<5.0	7.2	TTA
MVV-6	08/21/96	329.55	6.18	323,37	****	_	-	_					
MW-6	10/31/96	329.55	_		ND<50	120	ND 05		_	_	_		-
MW-6	12/02/9G	329.55	6.52	323.03	_	-	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		
VIW-6	03/27/97	329,55	6.55	323,00		_	_		_				SPL
\£\V-¢	06/03/97	329,55 329,55	5.50	324,05	ND<50			_	-		_		
MYY-G	09/16/97	329,55	8.19	321.36	_	ND<100	ND<0.5	ND<1.0	ND<1.0	ND<1.0		_	
4W-6	12/03/97	329,55 329,55	6.95	322.60	ND<250				_		ND<10	6.3	SPL
vIW-6	06/26/98	329.55	7.22	322,33		680	ND<2.5	ND<5,0	ND<5.0	ND<5.0	ND<50		
		UE0.00	5.20	324.35	ND<50				_		14D<20	5.5	SPL
AW-7	04/09/93	329.49					ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		_
W-7	DD/25/93		5.36	324.13	ND<50	MD co			,	110 (1.0	NOSIU	4.6	SPL
W-7	11/22/90	329.49	7.44	322.05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0,5	ND<0.5			
1VV-7	03/07/04	329,49	7.92	321.57	ND<50	150	ND<0.5	ND<0.5	ND<0.5				PACE
W-7	06/09/94	329,49	6.20	323.29		ND<50	ND<0.5	ND<0,5	ND<0.5	ND<0.5	-	***	PACE
	09/12/04	329,49	6.89	322.60	ND<50 ND<50	ND<50	ND<0.5	ND-0,5		ND<0.5			PACE
W-7	12/20/94	329.49	7.87	321.62		70	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	3.7	PAGE
W-7	03/16/95	329,49	6.77	322.72	ND<50	50	ND<0.5	ND<0,5	NO<0.5	ND<0,5		6.8	PACE
W-7	06/28/95	329,49	4.77	324.72	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		6.8	PACE
W-7	09/06/95	329.49	5.94	323,55	ND<50	ND<500	ND<0.50	ND-0.50	ND<0.5	ND<0.5		6.5	PACE
W-7	12/22/05	329,49	6,98	322,51	ND<50	350	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.9	ATI
W-7	08/20/96	329.49	6.65	322.84	ND<50	240	ND<0.50	ND<0.50	ND<0.50	ND<1.0	_	7.8	ATI
N-7	08/21/96	329,49	6.22	323.27	NO<50	ND<50	ND<0,50	ND<0.50	ND<0.50	ND<1.0	8.5	7,5	ITA
N-7	10/31/96	329,49			 51D	744			ND<0.50	ND<1.0	7.2	6.9	ATI
Y-7	12/02/9G	029.49	6,56	200.00	ND<50	ND<50	ND<0.5	ND<1.0	MICS: 4 m	· · · ·		-	AH
Y-7		329,49	6.13	222.20	ND<50	ND<100	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		SPL
1-7 √-7	03/27/97	329,49	5.08	204.44	ND<50	ND<50	ND<0.5		ND<1.0	ND<1.0	86		
v-7 V-7	06/03/97		7.80	324.41 321.co	ND<50	ND<100	ND<0.5	ND<1.0	ND<1.0	ND<1.0	59	6.8	SPL
¥-7 Y-7	09/16/97		6.50	321.69	650	ND<100	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	7.3	SPL
	12/03/97		6.66	322.99 323.00	120	ND<100	ND<0.5	ND<1.0	ND<1.0	ND<1.0	630	6.6	SPL
V-7 (h)	06/26/98	200 10	4.96	322.83	VD<50	ND<200	ND<0.5	ND<1.0	ND<1.0	ND<1.0	2200	6.8	SPL
				324.53	VD<50			ND<1.0	ND<1.0	ND<1.0	ND<10		SPL
				•			ND<0.5	ND<1,0	ND<1.0	ND<1.0		5.0	SPL
									ハレくしひ	19672 (1)	ND<10	5.1	SPL

TABLE 1 - SUMMARY OF RESULTS OF GROUNDWATER SAMPLING BP OIL COMPANY SERVICE STATION NO. 11120 6400 DUBLIN BOULEVARD, DUBLIN, CALIFORNIA

ALISTO PROJECT NO. 10-170

-					WIRLDE	HOJECT NO. 1	0-170						
WELL	DATE OF SAMPLING MONITORING	CASING ELEVATION (e) (Feel)	DEPTH TO WATER (Feet)	GROUNDWATER ELEVATION (b) (Fee1)	TPH-G (ug/l)	TPH-D (ug/l)	(ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	DO (ppm)	LVR
GC-2 GC-2 GC-2 GC-2 GC-2 GC-2 GC-2	(i) 00/25/93 (i) 11/27/93 (i) 03/07/94 (i) 05/08/94 (i) 09/12/94 (i) 12/20/94 (i) 03/16/95 (i) 06/28/95 (i) 06/06/95 (ii) 12/22/95				ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 NO<50 NO<50 ND<50 ND<50		ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.50 ND<0.50 ND<0.50 ND<0.50	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.50 ND<0.50 ND<0.50	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.50 ND<0.50 ND<0.50 ND<0.50	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<1.0 ND<1.0 ND<1.0			PACE PACE PACE PACE PACE ATI ATI
BBREVIAT			· · · · · ·	NOTE	S:						70000 		ATI
PH-G PH-D	Total petroleum hyd Total petroleum hyd Benzene	recarbons as gasolina recarbons as diasal	l	(a) T	op of casing	elevations surv	eyed to an arbitra	ery datum.					
	Toluene Ethylbenzene						ve to an arbitrary						
	Total xylenes			(c) A	vnalysis did no	of defect total of	and prease and	beloconstadium	-17-				

Mallyl lert bulyl ether Disselved oxygen MITTE DO ug/l Micrograms por liter ppm Parts per million

Not detected above reported detection limit Not analyzed/applicable/measured ND

PACE Pace, Inc.

Analytical Technologies, Inc. Southern Petroleum Laboratories ATI SPL

- Analysis did not detect total oil and grease and halogenated votatile organic compounds obove reported detection limits.
- Well inaccessible.
- A copy of the documentation for this data is included in Appendix C of Alisto report 10-170-05-001.
- Blind duplicate.
- MTBE peak. Refer to documentation for this data in Appendix C of Alisto report 10-170-05-001.
- Analysis did not detect voletile organic compounds above reported detection limits.
- Travel blank

F/01/10 170/170-5-4.Y/O2

TABLE 2 - SUMMARY OF RESULTS OF GROUNDWATER SAMPLING FOR EPA METHOD 8260 ANALYSIS BP OIL COMPANY SERVICE STATION NO. 11120 6400 DUBLIN BOULEVARD, DUBLIN, CALIFORNIA

*ALISTO PROJECT NO. 10-170

						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
WELL ID	DATE OF SAMPLING/ MONITORING	B (ug/l)	7 · (ug/l)	E (ug/I)	X (ug/l)	MTBE (ug/l)	DIPE (ug/l)	ETBE (ug/l)	TBA (ug/l)	TAME (ug/l)	LAis
1-10-10-10-10-10-10-10-10-10-10-10-10-10		<del> </del>									
MW-4	06/26/98	ND<5	ND m	_			- <u> </u>				
	01,124,00	14065	ND<5	ND<5	ND<ٍ5	ND<10	ND<10	ND<10	ND<500	ND<10	SPa
MW-7	06/26/98	ND<5	ND<5	ND<5					.10 000	110<10	SPE
			_		ND<5	ND<10	ND<10	ND<10	ND<500	ND<10	SPt
	CONTRACTOR	A NAME OF TAXABLE PARTY								• -	

#### ABBREVIATIONS:

В	Benzene
T	Toluene
E	Ethylbenzene
Х,	Total xylenes
A ATTOM A	New State .

TAME tert-amyl methyl ether ug/l Micrograms per liter

ND Not detected above reported detection limit

SPL Southern Petroleum Laboratories

F:\01\10-170\10-170EC.WQ2

# APPENDIX C

GEOTRACKER UPLOAD CONFIRMATION

# **Electronic Submittal Information**

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 4837427854

**Date/Time of Submittal:** 10/26/2006 11:40:30 AM

Facility Global ID: T0600101432 Facility Name: BP #11120

**Submittal Title:** 3Q 06 GW MONITORING **Submittal Type:** GW Monitoring Report

Click here to view the detections report for this upload.

**BP #11120** Regional Board - Case #: 01-1556 6400 DUBLIN SAN FRANCISCO BAY RWQCB

6400 DUBLIN SAN FRANCISCO BAY RWQCB (REGION 2)
DUBLIN, CA 94568 Local Agency (lead agency) - Case #: RO0002431

ALAMEDA COUNTY LOP - (BC)

 CONF #
 TITLE
 QUARTER

 4837427854
 3Q 06 GW MONITORING
 Q3 2006

SUBMITTED BY SUBMIT DATE STATUS

Broadbent & Associates, Inc. 10/26/2006 PENDING REVIEW

### SAMPLE DETECTIONS REPORT

# FIELD POINTS SAMPLED 3
# FIELD POINTS WITH DETECTIONS 2
# FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL 1

### METHOD QA/QC REPORT

TECHNICAL HOLDING TIME VIOLATIONS

SAMPLE MATRIX TYPES

METHODS USED 8260FA,8260TPH
TESTED FOR REQUIRED ANALYTES? Y
LAB NOTE DATA QUALIFIERS Y

#### QA/QC FOR 8021/8260 SERIES SAMPLES

METHOD HOLDING TIME VIOLATIONS 0 LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT 0 LAB BLANK DETECTIONS 0 DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK - MATRIX SPIKE Υ - MATRIX SPIKE DUPLICATE Υ - BLANK SPIKE Y - SURROGATE SPIKE Υ

### WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% N
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% Y
SURROGATE SPIKES % RECOVERY BETWEEN 85-115% Y
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130% Y

WATER

SOIL SAMPLES FOR	8021/8260 SERIES		
MATRIX SPIKE / MATRIX S	PIKE DUPLICATE(S) % RECOV	ERY BETWEEN 65-135%	n/a
MATRIX SPIKE / MATRIX S	PIKE DUPLICATE(S) RPD LESS	5 THAN 30%	n/a
SURROGATE SPIKES % RE	COVERY BETWEEN 70-125%		n/a
r vocazi est cumazi hericum nutri d'amenti in municim en est escazionem en per prima interessiva mentini.	KE DUPLICATES % RECOVERY	BETWEEN 70-130%	n/a
BLANK SPIKE / BLANK SPI FIELD QC SAMPLES SAMPLE	KE DUPLICATES % RECOVERY  COLLECTED	iller er och mit er en	estative or surpress
FIELD QC SAMPLES	egymen a Strong egymen y roll y med en egymen y serien y strong en egymen a strong en egymen egymen egymen egy Egymen a strong egymen egy	DETECTIONS > 0	estative or surpress
FIELD QC SAMPLES SAMPLE	COLLECTED	iller er och mit er en	estative or surpress

Logged in as BROADBENT-C (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.



# **Electronic Submittal Information**

Main Menu | View/Add Facilities | Upload EDD | Check EDD

### **UPLOADING A GEO_WELL FILE**

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title: 3Q

3Q 06 GEO_WELL

Submittal Date/Time:

10/26/2006 11:37:54 AM

**Confirmation Number:** 

4704360783

Back to Main Menu

Logged in as BROADBENT-C (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.