

January 21, 2005

Mr. Robert Schultz Alameda County Health Services Agency, Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

The April of Collins Fourth Quarter 2004 Groundwater Monitoring Report

Former BP Service Station # 11120 6400 Dublin Road

Dublin, California **URS Project #38486798**

Dear Mr. Schultz:

Re:

On behalf of Atlantic Richfield Company (RM), a BP affiliated company, URS Corporation (URS) is submitting the Fourth Quarter 2004 Groundwater Monitoring Report for the Former BP Service Station #11120, located at 6400 Dublin Road, Dublin, California.

If you have any questions regarding this submission, please call me at (510) 874-1720.

Sincerely,

URS CORPORATION

Leonard P. Niles, R.G./C.H.G.

Project Manager

Fourth Quarter 2004 Groundwater Monitoring Report Enclosure:

Mr. Kyle Christie, Atlantic Richfield Company (RM), electronic copy uploaded to cc:

Ms. Liz Sewell, ConocoPhillips, electronic copy uploaded to URS ftp site

REPORT

FOURTH QUARTER 2004 GROUNDWATER MONITORING REPORT

FORMER BP SERVICE STATION #11120 6400 DUBLIN ROAD DUBLIN, CALIFORNIA

Prepared for RM

January 21, 2005

URS Corporation 1333 Broadway, Suite 800 Oakland, California 94612

Date:	January 21, 2005					
Quarter:	4Q 04					

RM QUARTERLY GROUNDWATER MONITORING REPORT

Former Facility No.: 11120	Address:	6400 Dublin Road, Dublin, CA					
RM Environmental Business Manager:		Kyle Christie					
Consulting Co./Contact Person:		URS Corporation / Leonard Niles					
Consultant Project No.:		38486798					
Primary Agency:		Alameda County Environmental Health (ACEH)					

WORK PERFORMED THIS QUARTER

(Fourth - 2004):

- 1. Performed fourth quarter 2004 groundwater monitoring event on December 13, 2004.
- 2. Prepared and submitted third quarter 2004 groundwater monitoring report.

WORK PROPOSED FOR NEXT QUARTER (First – 2005):

- 1. Prepare and submit this fourth quarter 2004 groundwater monitoring report.
- 2. Perform first quarter 2005 groundwater monitoring event.
- 3. Prepare and submit first quarter 2005 groundwater monitoring report.

Current Phase of Project:	GW monitoring/sampling
Frequency of Groundwater Sampling:	Wells MW-8 through MW-11 quarterly
Frequency of Groundwater Monitoring:	Quarterly
Is Free Product (FP) Present On-Site:	No
Current Remediation Techniques:	Natural Attenuation
Approximate Depth to Groundwater:	5.19 (MW-10) to 6.01 (MW-11) Feet
Groundwater Gradient (direction):	South-Southeast
Groundwater Gradient (magnitude):	0.02 feet per foot

DISCUSSION:

Methyl tert-butyl ether (MTBE) was detected at or above the laboratory reporting limit in three of the four wells sampled this quarter at concentrations ranging from 0.73 μg/L (MW-10) to 610 μg/L (MW-11). Gasoline range organics (GRO) were detected at or above the laboratory reporting limit in one well (MW-11) at a concentration of 650 μg/L. Benzene, toluene, ethylbenzene, and xylenes (BTEX), and other fuel additives were not detected at or above the laboratory reporting limit in any of the four wells sampled this quarter.

ATTACHMENTS:

- Figure 1- Groundwater Elevation Contour and Analytical Summary Map December 13, 2004
- Table 1 Groundwater Elevation and Analytical Data
- Table 2 Fuel Additives Analytical Data
- Attachment A Field Procedures and Field Data Sheets
- Attachment B Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records
- Attachment C Error Check Reports and EDF/Geowell Submittal Confirmations
- Attachment D Historical Groundwater Analytical Data for Former Wells Abandoned in 1999 (Source Alisto Engineering)

18, 2005 - 4:40pm env_wate\BP GEA\Stes\LNles

URS

Project No. 38486798

Former BP Station #11120 6400 Dublin Boulevard Dublin, California GROUNDWATER ELEVATION CONTOUR AND ANALYTICAL SUMMARY MAP Fourth Quarter 2004 (December 13, 2004)

FIGURE

1

Table 1
Groundwater Elevation and Analytical Data

Former BP Station #11120 6400 Dublin Blvd., Dublin, CA

Well No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рΗ	Comments
MW-8	02/25/2002	_	328.94	6.02		322.92	<50	<0.5	<0.5	<0.5	<0.5	1.98		PACE		. <u></u>
	09/30/2002		328.94	6.16	-	322.78	<50	<0.5	<0.5	<0.5	<0.5	2.9/4.8		SEOM		a
	12/13/2002	-	328.94	5.81	_	323.13	<50	<0.5	<0.5	<0.5	<0.5	5.9/6.4	**	SEQM		а
	03/12/2003		328.94	5.80	-	323.14	<50	<0.50	<0.50	<0.50	<0.50	4.3/3.8		SEQM		
ALBERTA (17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	06/28/2003		328.94	5.70		323.24	<50	<0.50	<0.50	<0.50	<0.50	4.1		SEQM	-	b
	09/30/2003		328.94	5.90	-	323.04	<50	<0.50	<0.50	<0.50	<0.50	4.1	_	SEQM		
	12/05/2003	Р	328.94	5.89		323.05	<50	<0.50	<0.50	<0.50	<0.50	6.7	-	SEQM	7.2	
•	03/10/2004	Р	328.94	4.74		324.20	<50	<0.50	<0.50	<0.50	<0.50	5.1		SEQM	6.7	
	06/21/2004	P	328.94	6.12	_	322.82	<50	<0.50	<0.50	<0.50	<0.50	7.5	-	SEQM	7.0	
	09/17/2004	Р	328.94	6.38		322.56	<50	<0.50	<0.50	<0.50	<0.50	6.6		SEQM	7.2	
	12/13/2004	Р	328.94	5.47	-	323.47	<50	<0.50	<0.50	<0.50	<0.50	6.7		SEQM	6.8	
MW-9	02/25/2002		329.96	5.90	_	324.06	<250	<2.50	<2.50	<2.50	<5.00	<2.50	-	PACE		
	09/30/2002		329.96	6.92		323.04	<50	<0.5	<0.5	<0.5	<0.5	1.4/3.3		SEQM	_	а
	12/13/2002		329.96	6.51		323.45	<50	<0.5	<0.5	<0.5	<0.5	0.53/<2.5		SEQM		а
	03/12/2003		329.96	6.86		323.10	<50	<0.50	<0.50	<0.50	<0.50	0.59/<2.5	-	SEQM		
	06/28/2003		329.96	5.95		324.01	<50	<0.50	<0.50	<0.50	<0.50	1.0		SEQM	-	b
	09/30/2003		329.96	6.24	_	323.72	<50	<0.50	<0.50	<0.50	<0.50	16	-	SEQM	_	
	12/05/2003	P	329.96	7.21		322.75	<50	<0.50	<0.50	<0.50	<0.50	33	T -	SEQM	7.6	
	03/10/2004	Р	329.96	5.37		324.59	<50	<0.50	<0.50	<0.50	<0.50	2.4		SEQM	7.1	
	06/21/2004	Р	329.96	6.67		323.29	<50	<0.50	<0.50	<0.50	<0.50	1.6		SEQM	7.8	
	09/17/2004	Р	329.96	7.89	**	322.07	<50	<0.50	<0.50	<0.50	<0.50	0.72	T	SEQM	7.5	
	12/13/2004	P	329.96	5.22		324.74	<50	<0.50	<0.50	<0.50	<0.50	<0.50		SEQM	7.6	
MW-10	02/25/2002		327.44	4.21	_	323.23	53	2.58	<0.5	2.83	8.46	<0.5	T	PACE	<u> </u>	
*****	09/30/2002		327.44	4,71		322.73	<50	<0.5	<0.5	<0.5	<0.5	0.51/2.8	-	SEQM		а
	12/13/2002		327.44	6.36	_	321.08	<50	<0.5	<0.5	<0,5	<0.5	<0.5/<2.5	_	SEQM	-	а
	03/12/2003		327.44	7.96		319.48	<50	<0.50	<0.50	<0.50	<0.50	0.76/<2.5		SEQM		
	06/28/2003	-	327.44	7.70	-	319.74	<50	<0.50	<0.50	<0.50	<0.50	0.68		SEQM		b
	09/30/2003		327.44	7.57	_	319.87	<50	<0.50	<0.50	<0.50	<0.50	0.71		SEQM		
	12/05/2003	Р	327.44	6.64		320.80	<50	<0.50	<0.50	<0.50	<0.50	0.78		SEQM	7.1	
L	03/10/2004	P	327.44	5.20	-	322.24	<50	<0.50	<0.50	<0.50	<0.50	0.58		SEQM	6.4	
	06/21/2004	Р	327.44	7.45		319.99	<50	<0.50	<0.50	<0.50	<0.50	1.1		SEQM		
	09/17/2004	P	327.44	7.49	-	319.95	<50	<0.50	<0.50	<0.50	<0.50	0.82		SEQM		
	12/13/2004	P	327.44	5.19	-	322.25	<50	<0.50	<0.50	<0.50	<0.50	0.73		SEQM	6.8	

Table 1

Groundwater Elevation and Analytical Data

Former BP Station #11120 6400 Dublin Blvd., Dublin, CA

Welf No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	ĐO (mg/L)	Lab	рН	Comments
MW-11	02/25/2002		329.75	6.02	_	323.73	1,800	1.34	<0.5	<0.5	<1.0	2,550		PACE	_	
	09/30/2002		329.75	7.12		322.63	<50	<0.5	<0.5	<0.5	<0.5	1,500/1,400		SEQM		а
·····	12/13/2002		329.75	6.60		323.15	1,300	<10	<10	<10	<10	1,400/2,000	-	SEQM	-	а
	03/12/2003		329.75	5.79		323.96	<500	<5.0	<5.0	<5.0	<5.0	650/2,900		SEQM	-	
	06/28/2003		329.75	5.68		324.07	<5,000	<50	<50	<50	<50	2,500	-	SEQM		b
	09/30/2003		329.75	6.68		323.07	5,100	<25	<25	<25	<25	3,200		SEQM		
	12/05/2003	Р	329.75	6.69		323.06	<5,000	<50	<50	<50	<50	3,500		SEQM	7.2	
	03/10/2004	P	329.75	5.29	-	324.46	3,000	<25	<25	<25	<25	1,800	-	SEQM	6.8	
	06/21/2004	P	329.75	6.65		323.10	<5,000	<50	<50	<50	<50	1,900		SEQM	7.1	
	09/17/2004	P	329.75	7.02		322.73	<2,500	<25	<25	<25	<25	1,700		SEQM	7.1	
····	12/13/2004	P	329.75	6.01	***	323.74	650	<5.0	<5.0	<5.0	<5.0	610		SEQM	6.9	

Table 1

Groundwater Elevation and Analytical Data

Former BP Station #11120 6400 Dublin Blvd., Dublin, CA

ABBREVIATIONS AND SYMBOLS:

TOC = Top of Casing
DTW = Depth to Water

GWE = Groundwater Elevation

GRO = Gasoline range organics, C4-C12

TPH-g = Total petroleum hydrocarbons as gasoline

MTBE = Methyl tert butyl either by EPA method 8021B (prior to 6/28/03) or 8260B

DO = Dissolved oxygen

ug/L = Micrograms per liter

mg/L = Milligrams per liter

- < = Not detected at or above laboartory reporting limit
- -- = Not sampled/applicable/analyzed/measured

PACE = Pace, Inc.

SEQM = Sequoia Analytical Laboratory

FOOTNOTES:

(a) Analyzed by EPA method 8260 B; fuel oxygenates include ethanol, tert-butyl achohol (TBA), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), tert-amyl methly ether (TAME); lead scavengers include: 1,2 dichloroethane (1,2-DCA) & ethylene dibromide (EDB

(b) Beginning on the second quarter 2003 monitoring event (6/28/03), TPHg, BTEX, MTBE and fuel oxygenates analyzed by EPA Method 8260B.

NOTES:

Top of casing elevations surveyed relative to an elevation of 18,409 feet above mean sea level.

Groundwater elevations in feet above mean sea level.

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential inclusion of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

The data within this table collected prior to June 2002 was provided to URS by RM and their previous consultants. URS has not verified the accuracy of this information.

Table 2

Fuel Additives Analytical Data

Former BP Station #11120 6400 Dublin Blvd., Dublin, CA

Well	Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnotes/
Number	Sampled	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Comments
MW-8	03/12/2003	<100	<20	4.3/3.8	<0.50	<0.50	<0.50	<0.50	<0.50	
	06/28/2003	<100	<20	4.1	<0.50	<0.50	<0.50	<0.50	<0.50	
	09/30/2003	<100	<20	4.1	<0.50	<0.50	<0.50	<0.50	<0.50	
	12/05/2003	<100	<20	6.7	<0.50	<0.50	<0.50	<0.50	<0.50	
	03/10/2004	<100	<20	5.1	<0.50	<0.50	<0.50	<0.50	<0.50	a
	06/21/2004	<100	<20	7.5	<0.50	<0.50	<0.50	<0.50	<0.50	
	09/17/2004	16	<20	6.6	<0.50	<0.50	<0.50	<0.50	<0.50	b
	12/13/2004	<100	<20	6.7	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-9	03/12/2003	<100	<20	0.59/<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	
	06/28/2003	<100	<20	1.0	<0.50	<0.50	<0.50	<0.50	<0.50	
	09/30/2003	<100	<20	16	<0.50	<0.50	<0.50	<0.50	<0.50	
	12/05/2003	<100	<20	33	<0.50	<0.50	<0.50	<0.50	<0.50	
	03/10/2004	<100	<20	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	a
	06/21/2004	<100	<20	1.6	<0.50	<0.50	<0.50	<0.50	<0.50	
	09/17/2004	13	<20	0.72	<0.50	<0.50	<0.50	<0.50	<0.50	b
,	12/13/2004	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-10	03/12/2003	<100	<20	0.76/<2.5	<0.50	<0.50	<0.50	<0.50	<0.50	
	06/28/2003	<100	<20	0.68	<0.50	<0.50	<0.50	<0.50	<0.50	
	09/30/2003	<100	<20	0.71	<0.50	<0.50	<0.50	<0.50	<0.50	
	12/05/2003	<100	<20	0.78	<0.50	<0.50	<0.50	<0.50	<0.50	
	03/10/2004	<100	<20	0.58	<0.50	<0.50	<0.50	<0.50	<0.50	а
	06/21/2004	<100	<20	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	
	09/17/2004	9.4	<20	0.82	<0.50	<0.50	<0.50	<0.50	<0.50	b
	12/13/2004	<100	<20	0.73	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-11	03/12/2003	<1,000	<200	650/2,900	<5.0	<5.0	<5.0	<5.0	<5.0	
<u>.</u>	06/28/2003	<10,000	<2,000	2,500	<50	<50	<50	<50	<50	
	09/30/2003	<5,000	<1,000	3,200	<25	<25	<25	<25	<25	
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	12/05/2003	<10,000	<2,000	3,500	<50	<50	<50	<50	<50	
	03/10/2004	<5,000	<1,000	1,800	<25	<25	<25	<25	<25	a
	06/21/2004	<10,000	<2,000	1,900	<50	<50	<50	<50	<50	
	09/17/2004	13	<1,000	1,700	<25	<25	<25	<25	<25	b
	12/13/2004	<1,000	<200	610	<5.0	<5.0	<5.0	<5.0	<5.0	

Table 2

Fuel Additives Analytical Data

Former BP Station #11120 6400 Dublin Blvd., Dublin, CA

ABBREVIATIONS AND SYMBOLS:
TBA = Tert-Butyl Alcohol
MTBE = Methyl tert-Butyl Ether
DIPE = Di-isopropyl Ether
ETBE = Ethyl tert-Butyl Ether
TAME = Tert-Arnyl Methyl Ether
1,2-DCA = 1,2-Dichloroethane
EDB = 1,2-Dibromoethane
ug/L = micrograms per liter
< = Not detected at or above laboratory reporting limits.

FOOTNOTES:

(a) The continuing calibration verification was outside of client contractual acceptance limits. However, it was within method acceptance limits. The data should still be useful for its intended purpose. (b) Split samples were analyzed for ethanol by EPA Method 8260B SIM; Ethanol was detected in trip blank at 34 micrograms per liter. Ethanol was not detected in confirmatory analysis of samples and trip blank on a different instrument; however, holding time had expired by then.

NOTES:

All volatile organic compounds (Ethanol, TBA, MTBE, DIPE, ETBE, TAME, EDC, and EDB) analyzed using EPA Method 8260B

ATTACHMENT A FIELD PROCEDURES AND FIELD DATA SHEETS

FIELD PROCEDURES

Sampling Procedures

The sampling procedure for each well consists first of measuring the water level and depth to bottom, and checking for the presence of free phase petroleum product (free product), using either an electronic indicator and a clear TeflonTM bailer or an oil-water interface probe. Wells not containing free product are purged approximately three casing volumes of water (or until dewatered) using a centrifugal pump, gas displacement pump, or bailer. Equipment and purging method used for the current sampling event is noted on the attached field data sheets. During purging, temperature, pH, and electrical conductivity are monitored to document that these parameters are stable prior to collecting samples. After purging, water levels are allowed to partially (approximately 80%) recover. Groundwater samples (both purge and no purge) are collected using a Teflon bailer, placed into appropriate Environmental Protection Agency- (EPA) approved containers, labeled, logged onto chain-of-custody records, and transported on ice to a California State-certified laboratory. Wells with free product are not sampled and free product is removed according to California Code of Regulation, Title 23, Div. 3, Chap. 16, Section 2655, UST Regulations.

WELL GAUGING DATA

Project # <u>841213-972</u>	Date _[3	2/13/04	 Client _	Br mzo	
Site byon Dublin Alud - Dublin					

		,		Thickness	Volume of	1			
	Well Size	Sheen /	Depth to Immiscible	of Immissible	Immiscibles Removed	Depth to water	Denth to well	Survey Point: TOB	
Well ID	(in.)	Odor	Liquid (ft.)			\ (ft.)	bottom (ft.)	or 2000	
			. , ,						
MW-8	2					5.47	19.62	TOC	
MM.d	7					5,22	19.63		
WM-(0	2					5.19	19-69		
MM-11	2					6.01	19.45	l l	
		-							
									,
		70	0.05 TEMB	ued 15m	n Pribr +	gaue Le			
	•								•
									·
									,
						·			

BTS#: 👵	11213-PCL			Station # BP	11/20				<u> </u>			
Sampler: P	د			Date: (2/13)	рЦ							
Well I.D.:	4W-8			Well Diamet	er: 🖄	3 4	6	8				
Total Well	Depth: 1	4.62		Depth to War	ter: 5.L	(ዓ						
Depth to Fi	-			Thickness of Free Product (feet):								
Referenced	to:	MS	Grade	D.O. Meter (if req'd): YSI HACH								
	Well Diamete	r !		Vell Diameter	Multiplier							
	[" 2"		0.04 0.16	4" 6"	0.65 1.47							
	3"		0.37	6" 1.47 Other radius ² * 0.163								
Purge Method	•	Bailer		Sampling Metho	od:	Bailer		•				
1 (1160 1/1011100		sposable Bail	er			sable Bailer						
		e Air Displac			· -	action Port						
		tric Submers		Oth	er:							
		ctraction Pun		J								
			-									
				~			1					
Top of Screen	<u> </u>		If well is listed as a	, -			elow th	е тор				
	·		of screen. Otherwi	ise, the well must	be purge	1.			1			
	2-3		x 3	_	6-9	Gals.			ļ			
	1 Case Volu		Specified Vo		Calculated							
L	1 0000 1 010	ane (Gais.)		T	1				<u></u>			
	- (OD)		Conductivity			.•						
Time '	Temp (°F)	pH	(mS or ക്രീ)	Gals, Remove	ed Obs	ervations						
1235	108.2	6.8	2696	2.3	ct	oude						
1240	68-7	(e-B	2731	4.6								
1245	69.0	6-B	2686	6.9		ų						
12.12												
					-		<u>.</u>					
Did well d	ewater?	Yes	®	Gallons actu	ally eva	cuated: 7	-	•				
Sampling '				Sampling Da								
		55	<u>,</u>	Laboratory:	Pace		Otl					
Sample I.I Analyzed 1		O BTEX	0.4	·	Sednosi		101	···				
		OBIEX	MTBE DRO	2 LE 1	<u>6</u>				ni g /			
D.O. (if re			Pre-purge	 		Post-purge:	 					
O.R.P. (if	Pre-purg				ıV .	Post-purge:			mγ			

BTS#: ø	11213-PCZ			Station # BPIII20								
Sampler:				Date: 12 13	θΥ		 					
Well I.D.:	MW-9			Well Diamet	_	3 4	6	8				
Total Wel	l Depth:	19-63		Depth to Wa	ter: 🤶	5-22	· · · · · · · · · · · · · · · · · · ·					
Depth to l	Free Produ			Thickness of Free Product (feet):								
Reference	ed to:	CVC.	Grade	D.O. Meter (if req'd): YSI HACH								
Purge Metho	Di 🐧 Positiv	Bailer sposable Ba e Air Displa tric Submer	0.04 0.16 0.37 iler cement	Well Diameter A* 0.65 6* 1.47 Other radius²* 0.163 Sampling Method: Bailer Disposable Bailer Extraction Port Other:								
Top of Scree	Ex Other:	Arnetion Pu	mp	a no-purge, confi	rm that v	vater level is t	elow tl	ne top	٦			
	2 - 1 Case Volu		X		Calculate	Gals. d Volume						
Time	Temp (°F)	pН	Conductivity (mS or µS)	Gais. Remove	ed O	bservations						
1204	66-3	7-6	1885	2,3								
1210	66.5	7-6	922	4.6								
1215	lale-9	7.6	889	6-1								
		<u> </u>							 .			
Did well	dewater?	Yes	62	Gallons actu	ally ev	/acuated: 7	••••••••••••••••••••••••••••••••••••••					
Sampling	Time: 12	24		Sampling Da	ate: 1	2/13/04						
Sample I.	D.: Mw-9			Laboratory:	Pace	Sequoja	Ot	her	· · · · · · · · · · · · · · · · · · ·			
Analyzed	l for: GR	O BTEX	MTBE DRO	Other: see C	o¢							
D.O. (if r	eq'd):		Pre-purge:	l n	^{ng} /L	Post-purge:			^{ing} /[
O.R.P. (i	f req'd):		Pre-purge:	: n	ıV	Post-purge:			mV			

BTS #: وع	1(213-pcz			Station # BF 11	120							
Sampler:				Date: 12/13/6	Υ							
Well I.D.:	MV-10			Well Diameter: 2 3 4 6 8								
Total Well		9.69		Depth to Water	r: 5.19							
Depth to F				Thickness of Free Product (feet):								
Reference		CDO	Grade	D.O. Meter (if req'd): YSI HACH								
	Well Dinmet		Multiplier V		Aultiplier							
	ļ**	_	0.04		0.65	ļ						
	2" 3"		0.16	=	1.47 us ² * 0.163							
	L		0.37									
Purge Metho		Bailer		Sampling Method:								
		sposable Bai			Disposable Bailer							
	•	re Air Displa			Extraction Port							
		etric Submen		Other:								
		xtraction Pur	•									
	Other:											
Top of Scree	n:		If well is listed as a	a no-purge, confirm	that water level is b	below the	top					
,				ise, the well must be			•					
Ī	- 											
į	2.3		x3		Gals.							
	1 Case Vol	ume (Gals.)	Specified Vo	olumes Cal	culated Volume							
i			Conductivity									
Time	Temp (°F)	pH	(mS or KS)	Gals. Removed	Observations							
11110	10.1.15 (1)	h _{1.1}	(110 01 109)	Cais. Removed	Observations	<u> </u>						
1125	106.6	6.7	7297	7-3	cloudy							
1128	107.3	6.8	7123	4.6								
1134	67.4	6-8	7230	6.9	1							
	16º F*4	(9 × (2)	1210	_ ,			· · · · · · · · · · · · · · · · · · ·					
		<u> </u>										
Did well d	lewater?	Yes	@	Gallons actual	ly evacuated:	7	·					
Sampling	Time: 11	50		Sampling Date: 12/15/04								
Sample I.l	D.: M. W-186)		Laboratory:	Pace Sequoia	Othe	er					
Analyzed			MTBE DRO	Other: see Co.								
D.O. (if re			Pre-purge:	mu	T		mg/I					
O.R.P. (if			Pre-purge:			-	mV					
	. ,			I	<u> </u>	l .						

BTS#:	41213-Pc2	,		Station # By 11120						
Sampler:				Date: 12/13/04						
Well I.D.:	Mw-Il			Well Diameter:	Ø 3 4	6 8				
Total We	ll Depth:	9.45		Depth to Water:	6.01					
Depth to	Free Produ			Thickness of Fr	_	t):				
Reference		KO	Grade	D.O. Meter (if r	req'd):	YSI HACH				
Purge Metho	Di Positiv Elec E	Bailer sposable Bai e Air Displa stric Submen straction Pur	0.04 0.16 0.37 ler cement	4" 0. 6* 1. Other radius Sampling Method:	ultiplier 65 47 47 2 * 0.163 Bailer Disposable Bailer Extraction Port					
Top of Scre	Other:	7	of screen. Otherwi			clow the top				
	I Case Vol	ime (Gals.)	Specified Vo	olumes Calc	ulated volume					
Time	Temp (°F)	pН	Conductivity (mS or 🖎)	Gals. Removed	Observations					
1308	69.3	7.0	2093	2.2						
13 14	68-0	7.0	2017	4.4						
1318	65.0	6.9	2011	6.6						
Did well	dewater?	Yes	(A)	Gallons actuall	y evacuated: 🕻	.6				
Sampling	g Time: 13	28		Sampling Date	: 12/13/04					
	I.D.: Mutl			Laboratory:	Pace Ecquoin	Other				
Analyze	d for: GR	O BTEX	MTBE DRO	Other: See. 100						
D.O. (if 1	req'd):		Pre-purge	this is	Post-purge:	mg/				
O.R.P. (i			Pre-purge		Post-purge:	mV				
Blaine 1	Tech Serv	ices, In	c. 1680 Roger	s Ave., San Jo	se, CA 95112	(408) 573-0555				

BP GEM OIL COMPANY TYPE A BILL OF LADING

RECORD BILL OF LADING FOR NON-SOURCE PURGEWATER RECOVERED FROM HAZARDOUS GROUNDWATER WELLS AT BP GEM OIL COMPANY FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY DILLARD ENVIRONMENTAL TO THE ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY IN LIVERMORE, CALIFORNIA.

The contractor performing this work is PLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Avenue, San Jose, CA 95112 (phone [408] 573-0555). Blaine Tech Services, Inc. is authorized by BP GEM OIL COMPANY to recover, collect, apportion into loads the Non-Hazardous Well Purgewater that is drawn from wells at the BP GEM Oil Company facility indicated below and deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one BP GEM facility to the designated destination point; from one BP GEM facility; from a BP GEM facility to the designated destination point via another BP GEM facility; from a BP GEM facility, or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of BP GEM Oil Company.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the BP GEM Oil Company facility described below:

BP(1)20	
Station #	
6400 Dublin Blud, Dubli	٠
Station Address	
Total Gallons Collected From Gro	oundwater Monitoring Wells:
added equip.	any other
rinse water 8	adjustments
TOTAL GALS. RECOVERED <u>\$6</u>	loaded onto BTS vehicle # _ 52
BTS event#	time date
041213-PeZ	1230 12/13/or
signature <u>O.H.</u>	
* * * * * * * * * * * * * * * * * * * *	*****
REC'D AT	time date
unloaded by	12/13/04
signature value	

ATTACHMENT B

LABORATORY PROCEDURES, CERTIFIED ANALYTICAL REPORTS, AND CHAIN-OF-CUSTODY RECORDS

LABORATORY PROCEDURES

Laboratory Procedures

The groundwater samples were analyzed for the presence of the chemicals mentioned in the chain of custody using standard EPA methods. The methods of analysis for the groundwater samples are documented in the certified analytical report. The certified analytical reports and chain-of-custody record are presented in this attachment. The analytical data provided by the laboratory approved by RM have been reviewed and verified by that laboratory.

28 December, 2004

Leonard Niles URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland, CA 94612

RE: BP Heritage #11120, Dublin, CA

Work Order: MNL0444

Enclosed are the results of analyses for samples received by the laboratory on 12/14/04 12:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Leticia Reyes For Lisa Race Senior Project Manager

Leticio Rujes

CA ELAP Certificate #1210

URS Corporation [Areo]	Project:BP Heritage #11120, Dublin, CA	MNL0444
1333 Broadway, Suite 800	Project Number: G07TM-0007	Reported:
Oakland CA, 94612	Project Manager:Leonard Niles	12/28/04 16:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-8	MNL0444-01	Water	12/13/04 12:55	12/14/04 12:30
MW-9	MNL0444-02	Water	12/13/04 12:24	12/14/04 12:30
MW-10	MNL0444-03	Water	12/13/04 11:50	12/14/04 12:30
MW-11	MNL0444-04	Water	12/13/04 13:28	12/14/04 12:30
TB-1112012132004	MNL0444-05	Water	12/13/04 00:00	12/14/04 12:30

The carbon range for the TPH-GRO has been changed from C6-C10 to C4-C12. The carbon range for TPH-DRO has been changed from C10-C28 to C10-C36. EPA 8015B has been modified to better meet the requirements of California regulatory agencies. These samples were received with intact custody seals.

Project:BP Heritage #11120, Dublin, CA Project Number:G07TM-0007 Project Manager:Leonard Niles MNL0444 Reported: 12/28/04 16:51

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-8 (MNL0444-01) Water	Sampled: 12/13/04 12:55	Received:	12/14/04	12:30					
tert-Amyl methyl ether	ND	0.50	ug/l	1	4L23018	12/23/04	12/24/04	EPA 8260B	
Benzene	ND	0.50	н		**	*	**	н	
tert-Butyl alcohol	ND	20	n	*	н	#		11	
Di-isopropyl ether	ND	0.50	H	**	54	Ħ	н	11	
1,2-Dibromoethane (EDB)	ND	0.50	n	Ħ	19	*	H*	H	
1,2-Dichloroethane	ND	0.50	н	v	11	*	**	11	
Ethanol	ND	100	Ħ	n	11	*	**	11	
Ethyl tert-butyl ether	ND	0.50	н	v	п	**	IF.	11	
Ethylbenzene	ND	0.50	FF	u	#	11		11	
Methyl tert-butyl ether	6.7	0.50	n	ø	u		"	11	
Toluene	ND	0.50	H	0	п		"	11	
Xylenes (total)	ND	0.50	H	*	**	9	*	**	
Gasoline Range Organics (C4-C	12) ND	50	p	**	**		n	н	
Surrogate: 1,2-Dichloroethane-a	14	92 %	78-	129	"	н	"	"	
MW-9 (MNL0444-02) Water	Sampled: 12/13/04 12:24	Received:	12/14/04	12:30					
tert-Amyl methyl ether	ND	0.50	ug/l	1	4L23018	12/23/04	12/24/04	EPA 8260B	
Benzene	ND	0.50	н	н	w	n	if	н	
tert-Butyl alcohol	ND	20	I+	•	u	H	ŋ	н	
Di-isopropyl ether	ND	0.50	H	*		Ħ	H	H	
1,2-Dibromoethane (EDB)	ND	0.50	H	**		H	н	**	
1,2-Dichloroethane	ND	0.50	ŋ	**		Ħ	H	n	
Ethanol	ND	100	11	**	n	II	И	**	
Ethyl tert-butyl ether	ND	0.50	н	*		H	н	*	
Ethylbenzene	ND	0.50	н	*	*	H	11	**	
		0.50	n	**	Ħ	17	11	**	
Methyl tert-butyl ether	ND								
-	ND ND	0.50	H	**	17	н	**	*	
Methyl tert-butyl ether			n n	**	17	н	"	er tr	
Methyl tert-butyl ether Toluene	ND ND	0.50		17 17					

Project:BP Heritage #11120, Dublin, CA
Project Number:G07TM-0007
Project Manager:Leonard Niles

MNL0444 Reported: 12/28/04 16:51

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Analyte									
MW-10 (MNL0444-03) Water S	Sampled: 12/13/04 11:50	Received	: 12/14/0	4 12:30					
tert-Amyl methyl ether	ND	0.50	ug/l	1	4L23018	12/23/04	12/24/04	EPA 8260B	
Benzene	ND	0.50	н		π	н	H		
tert-Butyl alcohol	ND	20		"	"	#	"	"	
Di-isopropyl ether	ND	0.50	**	н	"	**			
1,2-Dibromoethane (EDB)	ND	0.50	*	н	H	*	•		
1,2-Dichloroethane	ND	0.50	n	n	11	n	"		
Ethanol	ND	100	14		"	71	H	W	
Ethyl tert-butyl ether	ND	0.50	H	,,	*	n	н		
Ethylbenzene	ND	0.50	**	u	n	PI	*	•	
Methyl tert-butyl ether	0.73	0.50	н	н	H	N		11	
Toluene	ND	0.50		Ħ	It	**	#	II	
Xylenes (total)	ND	0.50		*	H	*	,	н	
Gasoline Range Organics (C4-C12)) ND	50	н	**	"		"		
Surrogate: 1,2-Dichloroethane-d4		101 %	78-	-129	Ħ	,	H	tt	
MW-11 (MNL0444-04) Water	Sampled: 12/13/04 13:28	Received	1: 12/14/	04 12:30					
tert-Amyl methyl ether	ND	5.0	ug/l	10	4L23018	12/23/04	12/24/04	EPA 8260B	
Benzene	ND	5.0	u u	**	11	#	**	n	
tert-Butyl alcohol	ND	200	н	**	FF	4	"	P	
Di-isopropyl ether	ND	5.0	Ħ	*	"	**	"		
1,2-Dibromoethane (EDB)	ND	5.0	"	*	*	н	11	1+	
1,2-Dichloroethane	ND	5.0	*	11	77	**	n	II.	
Ethanol	ND	1000		H	u	**	"	4	
Ethyl tert-butyl ether	ND	5.0	**	II	11	77		н	
Ethylbenzene	ND	5.0	н	"	H	*	**	и	
Methyl tert-butyl ether	610	5.0	H	77	н	**		OF	
Toluene	ND	5.0	**			11	a	IP.	
Xylenes (total)	ND	5.0	*	"	**	н	н	**	
Gasoline Range Organics (C4-C		500	Ħ	п	*	н	11		
Surrogate: 1,2-Dichloroethane-d4		99 %	78	-129	"	11	"	#	

Project:BP Heritage #11120, Dublin, CA Project Number:G07TM-0007 Project Manager:Leonard Niles MNL0444 Reported: 12/28/04 16:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4L23018 - EPA 5030B P/T / EPA 8260B									
Blank (4L23018 - EFA 5030B 1717 EFA 5200B			Prepared	& Analyze	:d: 12/23/0)4			
ert-Amyl methyl ether ND	0.50	ug/l				<u> </u>			
Benzene ND	0.50	н							
tert-Butyl alcohol ND	20	н							
Di-isopropyl ether ND	0.50	**							
1,2-Dibromoethane (EDB) ND	0.50	*							
1,2-Dichloroethane ND	0.50	*							
Ethanol ND	100	+1							
Ethyl tert-butyl ether ND	0.50	14							
Ethylbenzene ND	0.50	If							
Methyl tert-butyl ether ND	0.50	н							
Toluene ND	0.50	D							
Xylenes (total) ND	0.50	N							
Gasoline Range Organics (C4-C12) ND	50	*							
Surrogate: 1,2-Dichloroethane-d4 5.27		n	5.00		105	78-129			·
Laboratory Control Sample (4L23018-BS1)			Prepared	& Analyz	ed: 12/23/				
tert-Amyl methyl ether 10.5	0.50	ug/l	10.0		105	82-140			
Benzene 10.2	0.50	"	10.0		102	69-124			
tert-Butyl alcohol 50.9	20		50.0		102	56-131			
Di-isopropyl ether 10.6	0.50	**	10.0		106	76-130			
1,2-Dibromoethane (EDB) 10.8	0.50	и	10.0		108	77-132			
1,2-Dichloroethane 10.7	0.50	н	10.0		107	77-136			
Ethanol 184	100	н	200		92	31-143			
Ethyl tert-butyl ether 10.1	0.50	**	10.0		101	81-121			
Ethylbenzene 10.7	0.50	**	10.0		107	84-132			
Methyl tert-butyl ether 10.6	0.50	**	10.0		106	63-137			
Toluene 10.2	0.50	**	10.0		102	78-129			
Xylenes (total) 31.8	0.50	11	30.0		106	83-137			
Surrogate: 1,2-Dichloroethane-d4 4.64		"	5.00		93	78-129			

Project:BP Heritage #11120, Dublin, CA Project Number:G07TM-0007 Project Manager:Leonard Niles MNL0444 Reported: 12/28/04 16:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

And an	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Filmt	Oide	Devel	ACSILI	/98000	Contract of the Contract of th			. 10103
Batch 4L23018 - EPA 5030B P/T /	EPA 8260B									
Laboratory Control Sample (4L23018-	-BS2)			Prepared	& Analyz	ed: 12/23/				
Benzene	5.67	0.50	ug/l	6.40		89	69-124			
Ethylbenzene	8.45	0.50	**	7.52		112	84-132			
Methyl tert-butyl ether	10.3	0.50	"	9.92		104	63-137			
Toluene	33.4	0.50	**	31.9		105	78-129			
Xylenes (total)	40.5	0.50	•	36.6		111	83-137			
Gasoline Range Organics (C4-C12)	429	50	77	440		98	70-124			
Surrogate: 1,2-Dichloroethane-d4	5.16		"	5.00		103	78-129			
Laboratory Control Sample Dup (4L2	3018-BSD1)			Prepared:	12/23/04	Analyzed	1: 12/24/04			
tert-Amyl methyl ether	10.5	0.50	ug/l	10.0		105	82-140	0	20	
Benzene	10.0	0.50	19	10.0		100	69-124	2	20	
tert-Butyl alcohol	52.4	20	If	50.0		105	56-131	3	20	
Di-isopropyl ether	10.6	0.50		10.0		106	76-130	0	20	
1,2-Dibromoethane (EDB)	10.5	0.50	H	10.0		105	77-132	3	20	
1,2-Dichloroethane	11.2	0.50	Ħ	10.0		112	77-136	5	20	
Ethanol	162	100	Ħ	200		81	31-143	13	20	
Ethyl tert-butyl ether	10.0	0.50	**	10.0		100	81-121	1	20	
Ethylbenzene	10.4	0.50	**	10.0		104	84-132	3	20	
Methyl tert-butyl ether	10.8	0.50	*	10.0		108	63-137	2	20	
Toluene	9.95	0.50	*	10.0		100	78-129	2	20	
Xylenes (total)	30.0	0.50	••	30.0		100	83-137	6	20	
Surrogate: 1,2-Dichloroethane-d4	4.80		"	5.00		96	78-129			
Laboratory Control Sample Dup (4L2	3018-BSD2)			Prepared	12/23/04	Analyzed	1: 12/24/04			
Benzene	5.57	0.50	ug/l	6.40		87	69-124	2	20	
Ethylbenzene	8.36	0.50	н	7.52		111	84-132	1	20	
Methyl tert-butyl ether	9.01	0.50	н	9.92		91	63-137	13	20	
Toluene	36.6	0.50	U	31.9		115	78-129	9	20	
Xylenes (total)	42.2	0.50	H	36.6		115	83-137	4	20	
Gasoline Range Organics (C4-C12)	414	50	H	440		94	70-124	4	20	
Surrogate: 1,2-Dichloroethane-d4	4.34		11	5.00		87	78-129			

Project:BP Heritage #11120, Dublin, CA
Project Number:G07TM-0007
Project Manager:Leonard Niles

MNL0444 Reported: 12/28/04 16:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Reporting Spike Source %REC RPD

Result Limit Units Level Result %REC Limits RPD Limit Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Limit	Notes
Batch 4L23018 - EPA 5030B P/T	/EPA 8260B						·			
Matrix Spike (4L23018-MS1)	Source: MN	TL0349-01		Prepared:	12/23/04	Analyzed	1: 12/24/04			
tert-Amyl methyl ether	206	10	ug/l	200	1.8	102	82-140			
Benzene	306	10	н	200	140	83	69-124			
tert-Butyl alcohol	1680	400	н	1000	840	84	56-131			
Di-isopropyl ether	211	10	**	200	ND	106	76-130			
1,2-Dibromoethane (EDB)	209	10	**	200	ND	104	77-132			
1,2-Dichloroethane	227	10		200	26	100	77-136			
Ethanol	3580	2000	17	4000	ND	90	31-143			
Ethyl tert-butyl ether	199	10	•	200	1.6	99	81-121			
Ethylbenzene	215	10	n	200	ND	108	84-132			
Methyl tert-butyl ether	1440	10	-	200	1500	NR	63-137			BB,LN
Toluene	213	10	**	200	ND	106	78-12 9			
Xylenes (total)	642	10	11	600	ND	107	83-137			
Surrogate: 1,2-Dichloroethane-d4	4,44		*	5.00		89	78-129			
Matrix Spike (4L23018-MS2)	Source: MN	NL0427-23		Prepared:	12/23/04	Analyze	d: 12/24/04			
tert-Amyl methyl ether	109	5.0	ug/l	100	ND	109	82-140			
Benzene	588	5.0	"	100	410	178	69-124			BB,LN
tert-Butyl alcohol	525	200	**	500	31	99	56-131			
Di-isopropyl ether	112	5.0	10	100	0.80	111	76-130			
1,2-Dibromoethane (EDB)	106	5.0	**	100	ND	106	77-132			
1,2-Dichloroethane	123	5.0	**	100	ND	123	77-136			
Ethanol	1490	1000	*	2000	ND	74	31-143			
Ethyl tert-butyl ether	106	5.0	11	100	ND	106	81-121			
Ethylbenzene	117	5.0	н	100	6.8	110	84-132			
Methyl tert-butyl ether	115	5.0	н	100	ND	115	63-137			
Toluene	102	5.0	n	100	2.7	99	78-129			
Xylenes (total)	323	5.0	n	300	5.0	106	83-137			

Project:BP Heritage #11120, Dublin, CA Project Number:G07TM-0007

Project Manager:Leonard Niles

MNL0444 Reported: 12/28/04 16:51

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4L23018 - EPA 5030B P/T / E	PA 8260B	-		·		<u> </u>				
Matrix Spike Dup (4L23018-MSD1)	Source: N	MNL0349-01		Prepared:	12/23/04	Analyzed:	12/24/04			
tert-Amyl methyl ether	215	10	ug/l	200	1.8	107	82-140	4	20	
Benzene	307	10	**	200	140	84	69-124	0.3	20	
tert-Butyl alcohol	1710	400		1000	840	87	56-131	2	20	
Di-isopropyl ether	214	10	*	200	ND	107	76-130	1	20	
1,2-Dibromoethane (EDB)	215	10	•	200	ND	108	77-132	3	20	
1,2-Dichloroethane	250	10	**	200	26	112	77-136	10	20	
Ethanol	3320	2000	п	4000	ND	83	31-143	8	20	
Ethyl tert-butyl ether	204	10	н	200	1.6	101	81-121	2	20	
Ethylbenzene	212	10	n	200	ND	106	84-132	1	20	
Methyl tert-butyl ether	150 0	10	н	200	1500	0	63-137	4	20	BB,LN
Toluene	201	10		200	ND	100	78-129	6	20	
Xylenes (total)	631	10	•	600	ND	105	83-137	2	20	
Surrogate: 1,2-Dichloroethane-d4	4.93		rt	5.00		99	78-129			
Matrix Spike Dup (4L23018-MSD2)	Source: 1	MNL0427-23		Prepared:	12/23/04	Analyzed:	12/24/04			
tert-Amyl methyl ether	104	5.0	ug/I	100	ND	104	82-140	5	20	
Benzene	581	5.0	*	100	410	171	69-124	1	20	BB,LM
tert-Butyl alcohol	550	200	#	500	31	104	56-131	5	20	
Di-isopropyl ether	107	5.0	н	100	0.80	106	76-130	5	20	
1,2-Dibromoethane (EDB)	103	5.0	н	100	ND	103	77-132	3	20	
1,2-Dichloroethane	114	5.0	H	100	ND	114	77-136	8	20	
Ethanol	2060	1000	**	2000	ND	103	31-143	32	20	RE
Ethyl tert-butyl ether	99.3	5.0	**	100	ND	99	81-121	7	20	
Ethylbenzene	115	5.0		100	6.8	108	84-132	2	20	
Methyl tert-butyl ether	110	5.0	79	100	ND	110	63-137	4	20	
Toluene	104	5.0	r	100	2.7	101	78-129	2	20	
Xylenes (total)	319	5.0	n	300	5.0	105	83-137	l	20	
Surrogate: 1,2-Dichloroethane-d4	4.51		"	5.00		90	78-129			

Project:BP Heritage #11120, Dublin, CA

Project Number: G07TM-0007 Project Manager: Leonard Niles MNL0444 Reported: 12/28/04 16:51

Notes and Definitions

RB RPD exceeded method control limit; % recoveries within limits.

BB,LN Sample > 4x spike concentration.

BB,LM Sample > 4x spike concentration. MS and/or MSD above acceptance limits. See Blank Spike(LCS).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

瓣 bp

Chain of Custody Record

Project Name: BP 11120 Analytical for QMR sampling

BP BU/AR Region/Enfos Segment:

8P > Americas > West Coast > Relati > WCBU >

CA > Central > 11120 > Historical81.

State or Lead Regulatory Agency: Akmoda County
Requested Due Date (num/dd/yy);

Alamada County Environmental Nea'th Agency

On-site Time: 100 Temp: 700

Off-site Time: 1600 Temp: 700

Sky Conditions: clear
Meteorological Events: none
Wind Speed: Direction:

Lab Na	inie: Sequois					BP/AR Facility No	.:	111	20									Coast	ıltant	Cont	racto	or:	U	RS				
Addres	s: 885 Jarvis Drive					BP/AR Facility Ad	dres	5; 64	OO TO	սիյի	Rly	d., D	uhlin	CA	945	68		Addre	58:	13	33 <u>I</u>	3roac	dwa	y, Sui	(c 80)	<u> </u>		
	Morgan Hill, CA 25037					Site Lat/Long:		37.7	U47	42/-	1213	109											_	74612				
Lab PN	5: Lisa Roce					California Global l	T) N	0,‡	TO6	0010	1432	!						Const	dest	/Cont	tacto	or Pro	ject	No.:		186830		
Tele/Pa	ax: 408.782.8156/408.782.6308					Enfos Project No.:		G07	TM	0007	,							Const	ltant							onard i	Vilas	
BIYAR	PM Contact: Paul Supple					Provision or RCO	•	Prm	visio	n.								Tele/I	AA;	51	0.87	74.17	20	/ 510.	<u>874.3</u>	268		
Addres	s: P.O. Box 6549					Phase/WBS:	04 -	Moı	νRei	nie d (y N	atural	Atta	mual	ion						_		_	evel l				
	Moniga, CA 94570					Sub Phase/Task:		Апа								<u>,</u> -								spen@				
Tolo Te	ex: 925,299,8891 / 925,299,8872			·		Cost Element:	05 -	Sub	соли	racted	Coa	ts					1				lant	ic Ri	chti	ield C	ompa	υλ		
Lab B	ottle Order No:			M	atrix				P	ecsc i	ya(i	ye]	έ σημ	ested.	Vual	ysis			1					
Ilem No.	Sample Description	Time	Date	Soil/Soild	WuterLiquid Air	Laboratory No.	No. of Containers	Uzpreserved	H ₂ SO ₄	HNO	нсі	Methanol		GRC/BTEX (R260)	7. BE, LAME, BIBE, D.PE, TBA (8250)	EJR, 12-JCA (R260)	Ethanol (8260)						/		~~~~	Comir	i.ai/i.oog ixais	and
1	p/10-16	1755	12/3/01		٨	<i>(9)</i>	3				1			1	1	4	1					\prod			·			
2	MW.9	1224			٢.	w	3				1			1	4	۸`	/	\perp		\perp	1		1					
3	Mm-10	1150		Ш	1	Ui,	3	 	<u> </u>		1		_	4	4				4				_ _					
4	Mn.(/	1320			<u> </u>	oy.	3	<u> </u>	<u></u>		\triangle			4	<u>د</u>	<u>*</u>	上	_		\bot	┸		_ _					
5	[Byll2012/32064		<u> </u>	Ш	<u> </u>	u-t	2	<u> </u>					_		_	_			_	_ _	4	_ _	╬	orh	ماط			
6					\bot		<u> </u>	<u> </u>									_		_ _		_	_					•	· ·
7						.			L														_					
8							1					ŀ									1							
9																												
10				П											Ī				T			Т	7					
	er's Name: Recordist	d la		5		Reling	ulsh	d Ry	/ / /ff	ilia (fe	HO.		T	De			me			Ace	cepte	ďÝy ,	/ Afi	Ölistior	1		Date	THE PARTY OF THE P
	ler's Company: Blasse Tech					Putt LCV							Ī	124	1/4	12	00	12	1-1-1			Ž,					12/14/11	
	rent Date:					MA VIII		46	_					19/8	10	12	14			L	1	$\sqcup I$					1710	1230
31	ient Method:					7]	\square						<u> </u>	10					···-	<u> ' '</u>	<u> </u>
Shipp	nent Tracking No:																										<u> </u>	
Specia	al fustructions:																											
Chisto	Sy Seals In Place Yes No			Тел	np Bla	nk Yes 🙉 No						ler 1) earl	perat	ure (on 8	lecei	pt	q	F/C		Tr	_	Mank.				

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: RÉC. BY (PRINT) WORKORDER:	BP 11/2 p IN MN2 by	wy		DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:	123g 12-16	5-04	ina pre		DRINKING WASTE WA	X-2
CIRCLE THE APPROI	PRIATE RESPONSE	LAB Sample #	OASH #	CLIENT ID	CONTAINER DESCRIPTION	PRESERV	рH	SAMPLE	DATE SAMPLEO	REMARKS: CONDITION (ETC.)
1. Cuslody Seal(s)	(70sent / Absent	01 62	<u>ه.</u> د	MV-8	<u>Vof</u> (3)	1101		\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	12/13/34	
Chain-of-Custody Traffic Reports or	(Present / Absent*	55 44		-10	+ +					
Packing List:	Present / Absent	or	A.B	TP-111201212 2004	(2)	1	4	4	4	
4. Airbill:	Airbill / Sticker Present / Absent									
5. Airbiii #:										
6, Sample Labels:	Present / Absent									<u></u>
7. Sample IDs:	Tisted / Not Listed on Chain of Custody									
8. Sample Condition:	Intact / Broken* / Loaking*					1				
9. Oces information on	chain-of-custody,					1,2/0/1	_	ļi		
traffic reports and sa	•				.\\.\				<u> </u>	
agreo?	Yes / No*		ļ	1	\ \ 	 				
10. Sample received within hold time?	¹ (Yes/No•		 							
11. Adequate sample volu					X					
received?	(Yeş / No*			\X						
12. Proper Preservatives										
used?	CYes / No*		ļ	· · ·						
13. Trip Blank / Temp Blar		<u> </u>						1		
(circle which, if yes)	CXes / No		 	_				-		
14. Temp Rec. at Lab:	<u> </u>		1	f		 		 		
Is temp 4+/-2°C? (Acceptance range for samples of	7.77		/ 	•				1	•	
**Exception (if any): MET.										
or Problem COC				-00-000-00-00-00-00-00-00-00-00-00-00-0	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	V. G. (100)		***************************************	**************************************

SRL Revision 6
Replaces Rev 5 (06/07/04)
Effective 07/13/04

"IF CIRCLED, CONTACT PROJECT MANAGER AND ATTACH RECORD OF RESOLUTION.

Page ___or___

ATTACHMENT C

ERROR CHECK REPORTS AND EDF/GEOWELL SUBMITTAL CONFIRMATIONS

Main Menu | View/Add Facilities | Upload EDD | Check EDD

SUCCESSFUL GEO_WELL CHECK - NO ERRORS

ORGANIZATION NAME:

URS Corporation-Oakland Office

USER NAME:

URSCORP-OAKLAND

DATE CHECKED:

1/11/2005 3:21:19 PM

Processing is complete. No errors were found! You may now proceed to the <u>upload</u> page.

Back to Main Menu

Logged in as URSCORP-OAKLAND (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

4Q 2004 Geowell File BP Site

Submittal Date/Time: 1/11/2005 3:24:11 PM

Confirmation

Number:

9193119645

11120

Back to Main Menu

Logged in as URSCORP-OAKLAND (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.

Main Menu | View/Add Facilities | Upload EDD | Check EDD

SUCCESSFUL EDF CHECK - NO ERRORS

ORGANIZATION NAME:

URS Corporation-Oakland

Office

USER NAME:

URSCORP-OAKLAND

DATE CHECKED:

1/11/2005 3:25:30 PM

GLOBAL ID:

T0600101432

FILE UPLOADED:

BP#11120-EDF-MNL0444.zip

No errors were found in your EDF upload file.

If you want to submit this file to the SWRCB, choose the "Upload EDD" option in the above menu and follow the instructions.

When you complete the submittal process, you will be given a confirmation number for your submittal.

Click here to view the detections report for this upload.

BP

Regional Board - Case #: 01-1556

6400 DUBLIN

SAN FRANCISCO BAY RWQCB (REGION 2) -

BLVD

DUBLIN, CA 94568

Local Agency (lead agency) - Case #: 2095

ALAMEDA COUNTY LOP - (RWS)

SAMPLE DETECTIONS REPORT

- # FIELD POINTS SAMPLED
- # FIELD POINTS WITH DETECTIONS
- # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL

SAMPLE MATRIX TYPES

WATER

3

METHOD QA/QC REPORT

METHODS USED

8260FA

TESTED FOR REQUIRED ANALYTES?

MISSING PARAMETERS NOT TESTED:

- 8260FA REQUIRES DBFM TO BE TESTED
- 8260FA REQUIRES BR4FBZ TO BE TESTED
- 8260FA REQUIRES BZMED8 TO BE TESTED

LAB NOTE DATA QUALIFIERS

Υ

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS

0 0

METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT

LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?

- LAB METHOD BLANK

Y Υ

0

0

- MATRIX SPIKE

Υ

- MATRIX SPIKE DUPLICATE - BLANK SPIKE

- SURROGATE SPIKE			Y
WATER SAMPLES F	OR 8021/8260 SERIES		
MATRIX SPIKE / MATRIX 135%	SPIKE DUPLICATE(S) % REC	COVERY BETWEEN 65-	Y
MATRIX SPIKE / MATRIX	SPIKE DUPLICATE(S) RPD L	ESS THAN 30%	Υ
SURROGATE SPIKES % R	ECOVERY BETWEEN 85-115	%	Υ
BLANK SPIKE / BLANK SF	PIKE DUPLICATES % RECOV	ERY BETWEEN 70-130%	Υ
SURROGATE SPIKES % R	SPIKE DUPLICATE(S) RPD L ECOVERY BETWEEN 70-125 PIKE DUPLICATES % RECOV	%	n/a n/a n/a
FIELD QC SAMPLES SAMPLE	COLLECTED	DETECTIONS > R	EPDL
QCTB SAMPLES	N	0	
QCEB SAMPLES OCAB SAMPLES	N N	0	
		n	

Logged in as URSCORP-OAKLAND (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 5130272507

Date/Time of Submittal: 1/11/2005 3:27:03 PM

Facility Global ID: T0600101432

Facility Name: BP

Submittal Title: 4Q 2004 QMR BP Site 11120

Submittal Type: GW Monitoring Report

Click here to view the detections report for this upload.

6400 DUBLIN BLVD DUBLIN, CA 94568 Regional Board - Case #: 01-1556

SAN FRANCISCO BAY RWQCB (REGION 2) - (BG)

Local Agency (lead agency) - Case #: 2095

ALAMEDA COUNTY LOP - (RWS)

CONF# 5130272507

TITLE

4Q 2004 QMR BP Site 11120

QUARTER Q4 2004

SUBMIT DATE STATUS

SUBMITTED BY Srijesh Thapa

1/11/2005

PENDING REVIEW

SAMPLE DETECTIONS REPORT

FIELD POINTS SAMPLED

FIELD POINTS WITH DETECTIONS

FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL

SAMPLE MATRIX TYPES

1 WATER

3

METHOD QA/QC REPORT

METHODS USED

8260FA

TESTED FOR REQUIRED ANALYTES?

MISSING PARAMETERS NOT TESTED:

- 8260FA REQUIRES DBFM TO BE TESTED
- 8260FA REQUIRES BR4FBZ TO BE TESTED
- 8260FA REQUIRES BZMED8 TO BE TESTED
- LAB NOTE DATA QUALIFIERS

Y

0

0

0

Y

Υ

OA/OC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS

METHOD HOLDING TIME VIOLATIONS
LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT

LAB BLANK DETECTIONS

DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?

- LAB METHOD BLANK
- MATRIX SPIKE
- MATRIX SPIKE DUPLICATE
- BLANK SPIKE
- SURROGATE SPIKE

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%

MAIKIX SPIKE / MAIRIX S	PIKE DUPLICATE(S) RPD LESS	THAN 30%	Y						
SURROGATE SPIKES % RE	COVERY BETWEEN 85-115%		Υ						
BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY	BETWEEN 70-130%	Y						
SOIL SAMPLES FOR	8021/8260 SERIES								
MATRIX SPIKE / MATRIX S	PIKE DUPLICATE(S) % RECOVI	ERY BETWEEN 65-135%	n/a						
MATRIX SPIKE / MATRIX S	PIKE DUPLICATE(S) RPD LESS	THAN 30%	n/a						
SURROGATE SPIKES % RE	COVERY BETWEEN 70-125%	•	n/a						
SURROGATE SPIKES % RECOVERY BETWEEN 70-125% BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%									
BLANK SPIKE / BLANK SPI	KE DUPLICATES % RECOVERY	BETWEEN 70-130%	n/a						
BLANK SPIKE / BLANK SPI FIELD QC SAMPLES	KE DUPLICATES % RECOVERY	BETWEEN 70-130%	n/a						
	KE DUPLICATES % RECOVERY COLLECTED	BETWEEN 70-130% DETECTIONS >							
FIELD QC SAMPLES									
FIELD QC SAMPLES SAMPLE	COLLECTED								

Logged in as URSCORP-OAKLAND (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.

ATTACHMENT D

HISTORICAL GROUNDWATER ANALYTICAL DATA FOR FORMER WELLS ABANDONDED IN 1999 (SOURCE ALISTO ENGINEERING)

endus 7 - Brandoust un fordultisper superlutisperiter BP CIL COMPANY SEPNICE BYATION NO. 11120 4400 DUBLIN EROULENATIO, DUBLIN, CALIFORNA

ALBEID PROJECT NO. 10-170

	Монтолию.	(Feet)	(Fee)	(Pant)		· - ·	· - ·	·	, , ,	 . 	. 	••	
MOV-1 MOV-1 MOV-1 MOV-1 MOV-1	112290 0007/04 86/00/04 03/12/04 18/20/04	328,98 828,98 828,98 328,98 328,98	7,38 8,69 6,49 7,59 6,84	321.56 921.56 922.54 821.69 322.62	#13-500 #13-500 #13-500 #13-500	M2-50 M2-50 M2-50 M2-50 M2-60	MD-0.5 MD-0.5 MD-0.5 MD-0.5	ND-0.5 ND-0.5 ND-0.5 ND-0.5 ND-0.5	10-0.5 10-0.5 10-0.5 10-0.5 10-0.5	MO-QE NO-QE NO-QE NO-QE NO-QE	-	4.8 8.8 7.8	PACE PACE PACE PACE PACE
RGA-1 BGA-1	19/23/05 00/20/95	329.08 329.08	8.05 8.05	192 SQ 16,830		~ ~	 Lengtin	*RV40,50	PRJ-0250	— Let≻drn	₩J-65,0 	, 7A 	<u>-</u>
1494-1 (4) 1494-2	10:2000 10:2000	328,00 368.50	v 7.91	770 200 58	im Miletin	in in the second	HO an	-			-		-
1045 1045	, 05/07/64 08/09/94	895.50 329.50	5,00 5,01	. OCLUB 892.00 392.50	NO-689 NO-60 NO-60	ND-60 ND-60 76	120-0.5 140-0.5 140-0.5	NO-05 NO-05 No-ne	10:05 10:05 10:45	ND-da6 ND-da6 ND-da6	***	4.3	PACE -
1000年 1704年 1404年	03/10/03 ` 08/05/00 08/00/00	258°20 368°20 268°20	8.77 4.35 Han	294.73 994.77	ND-20	NDdto	NO-aso	163-62.50 ND-62.50	NG-0250 NG-0250	ND<1.0 0,150%	=	5,5 6,8	ATI ATI
TWES TWES TWES	19/31/96 12/02/96 co.69269	325.50 368.50	5.44 5.50	253.08 ·	ND-650	ND-59	- NO-05	ND-cLo	HD4.0	NO<1.0	NOcto	7.0	sēt.
909-3 6011-4	366200	320,50 320,50	6.22 4.88	322.25 323.64	ND-20		110-015 110-05	ND-1.0	MD410 MD410	ND41.0	NOcio Mocio	92 46 .	epl

* TABLE 1 - SUMMERLY OF PERSONS OF GROUNDWATER SMAPLING BP OL COMPANY SERVICE STATEMEND, 11120

ALIENO PROJECT NO., NI-170.

	· 	WORKLOHENC	(Fost)	(Feel)	(Facq)	ea lend	207 ·	(107	(võt	(<u>m</u>)	(LOL)	M1865 (Jeju)		DO (pper)	, LAB
MAN- MAN- MAN- CIC- MAN-) (3)	11/46/93 03/02/94 08/92/94 08/19/94	329.36 329.36 329.36	7.13 7.80 6.00 6.51	322.20 201.76 3301.00 202.00	2000 1800 1805 8000 8800	440 860 5620 8600	5.7 ND-0.8 HD-2.8 22 26	ND-015 ND-025 ND-025 4.0 0.5	ND-05 ND-05 ND-05 ND-05 22 05	ND-0.5 ND-0.3 ND-0.8 5.8 19	\$300 910 7200 13000	(a) (w) (w) (a)	 3.7 70	PACE PACE PACE PACE PACE PACE
NBAN-A CIC-1 LANEA	s. (i)	03/16/95 03/16/04	320.34	. 439	#W	17000 6300	7000	79 70 42n	\$5 \$5) \$14	82 80	ë3 R⊅OH	:# .	(e)	rīs 	PAGE PAGE PAGE
WAS SAME SAME SAME SAME SAME SAME SAME SA	W	090505 124945 002096	328.36 329.30	**** ****	#22.70 523.66	, 1000g 97go Earn	2000	WO-90 WO-90	NDcfo NDcfo NDcfo	ND-39 ND-39 ND-89	ND-400 ND-400	= 87000		7.1 ,	ITA '
DC-1 MW-3 CO-1	w (i)	10/31/06 12/08/06	382.36 382.36	0.20 0.27	323,16 323 m.	(5) (50) (5) (5) (5) (5)	ND-500	ND-es ND-es Nn-e n	ND-80 ND-80	MD-460 MD-460 mu-eou	NEJ-450 NEJ-450 NEJ-450	4100 4000 ND-30		6.8 —	67L, 8PL,
MA'S MA'S		00/10/97 10/10/97 10/10/97	329.36 329.30	18.67	467.46 462.89	ND-220 HD-220 ND-80	160	NU-CES NO-CES	160-610 160-610 160-610	ND-19 ND-50 ND-50	ND-1.0 ND-5.0	190-080 490 84	-	6.2 5.9	SP1. SP1
						THERMAL		ND-02.5	ND-80	AD-GA AD-GA	ND-d.0 ND-6.0	ND-da ND-60		 4.8	SPL SPL

TABLE 1-SUMMERCOPRESENTS OF GROUNDWATES CALPLING EPOL COMPANY SERVICE STATION NO. 11400 PROCESSAND AND AUGUST CALFORNA

ALLETO PROJECT NO. 10-170

ψ.		MONTORING	(Feet) ETEAVLICH (#)	(Feet)	ELEVATION (Feet)	#	(tot)	(Los)	(vět	((ú))	(vg/q	φ α φ	(nby) un sec		(M. 11)	ve
NW-4 004 NW-4	60	08/25/88 08/26/29 11/28/23	329.45 329.45	7.55	**************************************		1800 1800	500 500	78 ND-0.5 ND-0.5	3.5 110-0.5 110-0.5	€8 HD:423 ND:435	1.9 (40-cu,s · ND-cu,s ·	2100 2100	(e) (e)	-	PACE PACE PACE
IMM4	()	11/28/03 03/07/94	329,45	6.39	321.18 323.18		610 1700 1700	260	HD-CH	Noas Noas	ides ides	NO-05 NO-05	2500	(0)	=	PACE
3804-4 3604-4		12/20/94	829,45 820,45	E.68	961.MC 962.77		2000 2000	2700 8400	ROOM -	ND-0.5 ND-8.0	10-05 ND-60	ND 45 ND 450	4200	(ĕ)	72 4.1	PACE
heat.a		harans	Substitute of the substitute o	7.50	25479		1400	980	940	kin ac	~	**				-
MARA MARA MARA	W	19/22/95 98/20/96 98/21/96	329.46 189.46	<u>•</u>	363,44	,	8000	 	10 18	- NO48 - NO48	ND«13	ND-48 ND-48 	9830 8510		7.1 =	ATI
100-1 198-4 100-4	(0	09/27/27 09/03/27 09/19/67	329.45 729.45	· 8.87	\$25.78 50.755		#300 ##(#2 #300	1500 270	44 51 110	ND-es	ND-co ND-co	NO-25 NO-25)8904) 9000 5504		4.2 62	art BPL BPL
******		Wiczay	GOLAS	B.18	89L80		50	· PLICENT	ND:415	NDet#. NDet#	10ds 10ds	MD<1.0 ND<1.0	ND<10 . 1190		6.0 5.3	SPL SPL
MAG		040093	220.5 0	\$.to	Stag 470		-									Gr.
MYS MYS		00/08/04 10/12/04 13/20/04	399.60 399.60 . SP9.60	6.73 7.78	962.27 962.27 961.82	1	10-40 10-40 10-40	129 70 189	ND-0.5 ND-0.5 ND-0.5	ND-0.5 ND-0.5	ND-0.5 ND-0.5	NO-05	~~ ~~ ~~		 5.7 7.7	PACE PACE PACE
747.2 141.2 141.2		12/22/19 09/20/95	329.60 329.60	4.62 4,40 5.06	302.70 ° 323.20 323.00	ı	ND:40	200 100	NO-430	ND-state	 	ND<1.9	ND-5.9		7.5 7.9	ATI
MVG		09/27/07	#24.80 328.80	6.37 5.33	323.23			_	. <u> </u>		1717-LLD ,	HUGIN	MUCIO		<u>~</u> 823 ·	8PL ,
MOV-5		05/03/07	829.00	8.00	324 <i>ET</i>	•	1040	* -ND<100	Mican	445.		**	***		_	`
			AREA AND	a.ii	354.49	ħ	ව්ද්ර	<u> </u>	ND-0.5	NOcta	 NO:cl.o	ND-1.0	== #D∉10		9.4 	ert. EPL

A school

CARLE 1 - BUMMARY OF RESULTS OF GROUNDWATER SAMPLING IP CIL COMPANY RESYNCE STATION NO. 11 120 PAGE SUBJECTION PARKETS IN MEM. CAN 107 CARA-

ALISTO PROJECTNO, 10-170 .

-3.s.	MUMICENS	(Fost)	(Fest)	(Fleet)	** ***	general establishen (september 1922) An Alak	1444	104	Port	(Pg4)	, (upt	(ppr))
1070 1771 1071	03/07/04 96/08/94	220.85 320.85	 9.25 9.83	361,90; 361,80 362,70	10/89 10/80 NO-80	#0<59 \$0 80-50	ND-0.6 NO-0.5 ND-0.5	,ND 495 .	ND-0.5	· 100-01.5		- 14	PACE PACE PACE
MAG MAG	09/12/94 12/20/94 (3/18/95	329,55 329,55	7.91 6.52 4.78	321,84 322,79 884,77	ND-80	20	NO 45	ND-645	140-46.6 140-46.5 	MD-dus MD-dus		7.0 6.7	PACE PACE
Mar Mar Mar	08/20/96 56/21/66 10/11/10	329.55 329.55	6,16	903.07 803.07	ND-60	**** **** ****	Man Man Mills along	-		men F	W4D	72. 	ATI —
NEV S NEV S NEV S	09/19/97 18/03/87	20,225 20,256 24,465	8,10 4,95 7,42	311.30 562.60 363.55	ND-date	MU-CRUI MU-CRUI	HD-0.5	ND4.0	140×1.9	10dD	NO<10	6.3	SPL
1874-7 1874-7 1874-7	CHESCAS 1 Means Calumo4	329,40 520,40 200 40	7.44 7.32	302,05 302,05 301,67	ND-dio ND-dio ND-dio	180 180 Mren	MD-015 MD-016	श्चित्रः श्चितः	NO-0.5 NO-0.5	ND-48 ND-48	<u>=</u> .	•••	PACE
MANUT MANUT MANUT	00/18/85 00/18/85	339,49 329,49	6.77 4.77 5.94	32272 35172 21074	ND-40 ND-40	ND-50 ND-600	Mods Mods Mods	ND-415 ND-415 Mr.non	HD-Q5 HD-Q5	110-01 110-02		6.6 8.5	PACE PACE PACE
LAN-7 BAN-7	19/31/08 19/31/08	389,49 829,40 890,49	5,80 6,10	365.53	NO-ano NO-ano	NO-da Militaria	Moda	ND4.0	ND-010	NOct.D NOct.D	7.2 Mileto	<u></u>	Ali
M47 (b)	1903/07 09/24/86	369,49 362,49	5.50 5.60 4,96	\$22,00 \$24,00 \$24,00	120 ND-00	MIJCHOO MD-CAOO MD-CAOO	ND-as NO-as NO-as	NO-LE HO-LE	NDcia NDcia	60-410 60-410 60-410	ND<10 • 830 8200	6.6 6.8 6.0	SPL SPL

TABLE 1—BURGLARY OFFICEULIES OF CHOUNDWISHSTS NABPLAND BY CR. COMPANY SERVICE STATION NO. 11429 BURGLESS SERVICE STATION NO. 11429

ALKNOPROJECTNO, 10-170

	MONITORI	NG (Fort)	(Final)	(Free)	17 PP1	\$****	e .	••••	144	(4.2.h	444	Admit	<u> </u>
004 004 004 004 004 002	77 USAN (19 0) (-	## ## ## ## ##	1 1 1 1	ND-680 ND-680 ND-680 ND-680 ND-680		NO-0.5 NO-0.5 NO-0.5 NO-0.0 NO-0.00	NO-025 NO-025 NO-025 NO-026 NO-020	MO-020 MO-025 MO-025 MO-025	HD-0.5 HD-0.5 HD-0.5 (4D-6.5 HD-1.0			PACE PACE PACE PACE RACE ATI
ABOREVI	ATIONS	··· ··································	•	H	DTEA:			***					, A11
ä T S	Bergine Taluege Fühlbergen		 ,	ĝi.) Givershrider	eimajiona tak	oller to socialism	ydske <u>n.</u>		•			
four riou	Microgrammy Perio per mili	or ther		(4) 		bis				•		•	
ATI SPL	Analytical Tec Southern Pet	ajem fapatatolisk special fabritatolisk		(a)	MTBEpark	Refer to choos	tamikilien for this d	Ininin Appundis	C of Aliche repor	i 19-170-06-001	I.	,	•
			·										

THE PROPERTY OF PERSONS

٠.

4.1

24/Aug-98

TABLE 2 - SUMMARY OF RESULTS OF GROUNDWATER RAMPI ING FINE EDA METHY'N 1999) AMAI VOIC MY UIL CUMPANY SERVICE STATION NO. 11120 9400 DUBLIN BOULEWARD, DUBLIN, CALIFORNIA

WELL	DATEOF	N.	**	• (•	,			
		<u> </u>				•					
MW-4	Q8/26/98	NO c 5	ND-65	ND<5	ND⊴s	·ND<10	NO<10	ND<10	ND-500	ND-46	QL.
				***						·	
BEREVIAT	ONS:				,						
	Tokene Ethythenzene				•					•	
TRE .	Di leopropyi ether Ethyl + butyl ether		,				•				
g/t D	Micrograms per liter Not detected above re	ported dateatin	n timb			-			••		
lando em en	18-170EC.W02	·									

Ď٠.