ExxonMobil Refining & Supply Company

Global Remediation

4096 Piedmont Avenue #194 Oakland, California 94611 510.547.8196 510.547.8706 Fax jennifer.c.sedlachek@exxonmobil.com

Jennifer C. Sedlachek Project Manager

RECEIVED

By dehloptoxic at 1:29 pm, Aug 15, 2006

EXONMobilRefining & Supply

August 4, 2006

Mr. Jerry Wickham, P.G., C.E.G. Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RE: Former Exxon RAS #7-3567/3192 Santa Rita Road, Pleasanton, California.

Dear Mr. Wickham:

Attached for your review and comment is a letter report entitled Groundwater Monitoring Report, Second Quarter 2006, dated August 4, 2006, for the above-referenced site. The report was prepared by Environmental Resolutions, Inc. (ERI) of Novato, California, and details groundwater monitoring and sampling activities at the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at (510)547-8196.

Sincerely,

Jennifer C. Sedlachek Project Manager

ERI's Groundwater Monitoring Report, Second Quarter 2006, dated August 4; 2006.

cc:

Attachment:

w/ attachment

Mr. Eddy So, California Regional Water Quality Control Board, San Francisco Bay Region

Ms. Colleen Morf, Zone 7 Water Agency

Mr. Robert C. Ehlers, M.S., P.E., The Valero Companies, Environmental Liability Management

w/o attachment

Ms. Paula Sime, Environmental Resolutions, Inc.

August 4, 2006 ERI 243113.Q062

Ms. Jennifer C. Sedlachek ExxonMobil Refining & Supply - Global Remediation 4096 Piedmont Avenue #194 Oakland, California 94611

SUBJECT

Groundwater Monitoring Report, Second Quarter 2006

Former Exxon Service Station 7-3567

3192 Santa Rita Road, Pleasanton, California

INTRODUCTION

At the request of Exxon Mobil Corporation (Exxon Mobil), Environmental Resolutions, Inc. (ERI) performed second quarter 2006 groundwater monitoring and sampling activities at the subject site. Relevant tables, plates, and attachments are included at the end of this report. Currently, the site is operated as a Valero-branded service station.

GROUNDWATER MONITORING AND SAMPLING SUMMARY

Gauging and sampling date:

05/30/06

Wells gauged and sampled:

MW1 through MW8

Presence of NAPL:

Not observed

Laboratory:

TestAmerica Analytical Testing Corporation (formerly Sequoia Analytical), Morgan Hill,

California

Analyses performed:

EPA Method 8015B

TPHd, TPHg

EPA Method 8021B

MTBE, BTEX

EPA Method 8260B

MTBE, ETBE, TAME, TBA, EDB, 1,2-DCA, DIPE,

Ethanol

Waste disposal:

95 gallons purge and decon water delivered to

Romic Environmental Technologies

Corporation on 06/05/06

DOCUMENT DISTRIBUTION

ERI recommends forwarding copies of this report to:

Mr. Jerry Wickham, P.G., C.E.G. Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502-6577

Mr. Eddy So California Regional Water Quality Control Board San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

Ms. Colleen Morf Zone 7 Water Agency 100 North Canyon Parkway Livermore, California 94551

Mr. Robert C. Ehlers, M.S., P.E. The Valero Companies Environmental Liability Management 685 West Third Street Hanford, California 93230

LIMITATIONS

This report was prepared in accordance with generally accepted standards of environmental practice in California at the time this investigation was performed. This report has been prepared for Exxon Mobil, and any reliance on this report by third parties shall be at such party's sole risk.

Please call Ms. Paula Sime, ERI's project manager for this site, at (707) 766-2000 with any questions regarding this report.

Sincerely, Environmental Resolutions, Inc.

Karen L. Nataro
Technical Writes

Heldu Dell

Heidi Dieffenbach-Carle P.G. 6793 Attachments:

Table 1A: Cumulative Groundwater Monitoring and Sampling Data

Table 1B: Additional Cumulative Groundwater Monitoring and Sampling Data

Table 2: Well Construction Details

Plate 1: Site Vicinity Map

Plate 2: Select Analytical Results

Plate 3: Groundwater Elevation Map, Upper Water-Bearing Zone Plate 4: Groundwater Elevation Map, Lower Water-Bearing Zone

Attachment A: Groundwater Sampling Protocol

Attachment B: Laboratory Analytical Report and Chain-of-Custody Record

Attachment C: Waste Disposal Documentation

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 1 of 7)

The	Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Ţ	É	X
MWT									(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	
MWT 00/1599			<u> </u>						<2.5		<0.5	<0.5	<0.5	
MW1 08/25/99 340,88 20,34 320,52 N.PH a <0 <0,0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5							<50	<50	<2.5		<0.5	<0.5	<0.5	
MWI 09/24/99 340,86 20.42 320,44 NLPH <50 <50 24.6							а	<50	<2.0		<0.5	<0.5	<0.5	<0.5
MW1 12/22/99 340,86 21.11 319,75 NLPH <61 <50 <2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5							<50	<50	24.6		<0.5	<0.5	<0.5	<0.5
MWI 03/07/100 340.86 14.12 326.74 NLPH 57 <50 220 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.							<61	<50	<2		<0.5	<0.5	<0.5	<0.5
MW1							57	<50	220		<0.5	<0.5	<0.5	<0.5
MW1 07/13/100 340.86 19.02 321.84 NLPH <50 <50 51 38 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5								<50	5.4		<0.5	<0.5	<0.5	<0.5
MW1 07/31/00 340,86 19,02 321,84 NLPH <50 <50 51 38 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5							mpany.							
MW1								<50	51	38	<0.5	<0.5	<0.5	
MW1								<50	63		<0.5	<0.5	<0.5	
MW1 04/11/01 340.86 19.83 321.03 NLPH 960e <50 29 33 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5						NLPH	<50	<50	110	98	<0.5	<0.5	<0.5	
MW1						NLPH	960e	<50	29	33	<0.5	<0.5		
MV1						NLPH	<50	<50	27	20	<0.5	<0.5	<0.5	
MW1 Nov-2001 340.86 Well surveyed in compliance with AB 2886 requirements. MW1 01/28/02 340.86 19.72 321.14 NLPH <100 178 196 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50					321.38	NLPH	<50	<50	390	420	<0.5	<0.5	<0.5	<0.5
MW1 01/28/02 340.86 19.72 321.14 NLPH <100 178 196 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50				Well surveye		with AB 2886	6 requirements.							
MW1 04/17/02 340.86 22.17 318.69 NLPH <50 124 116.1 131 <0.5 <0.50 <0.50 <0.50 <0.50 MW1 07/17/02 340.86 22.51 318.35 NLPH <50 <50.0 5.1 8.76 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5									196		<0.50			
MW1 07/17/02 340.86 22.51 318.35 NLPH <50 <50.0 5.1 8.76 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5					318.69	NLPH	<50	124	116.1	131	<0.5	<0.50		
MW1 10/24/02 340.86 22.51 318.35 NLPH <50 217 574 302 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 MW1 03/21/03 340.86 21.32 319.54 NLPH <50 70.9 83.4 <0.50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.					318.35	NLPH	<50	<50.0	5.1	8.76	<0.5	<0.5		
MW1 03/21/03 340.86 21.32 319.54 NLPH <50 70.9 83.4 <0.50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.						NLPH	<50	217	574			<0.5		
MW1 04/10/03 340.86 21.27 319.59 NLPH <51 67.2 71.0 <0.50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <				21.32	319.54	NLPH	<50	70.9		83.4				
MW1 07/17/03 340.86 21.13 319.73 NLPH <50 88.9 44.6 <0.50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.				21.27	319.59	NLPH	<51	67.2						
MW1 10/09/03 340.86 21.55 319.31 NLPH <50 <50.0 32.3 41.2 <0.50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.			340.86	21.13	319.73	NLPH	<50							
MW1 01/21/04 340.86 19.96 320.90 NLPH <50 625 970 974 <0.50 <0.5 <0.5 <0.5 MW1 05/25/04 340.86 22.11 318.75 NLPH <50 196 234 204 <0.50 <0.5 <0.5 <0.5 <0.5 MW1 08/26/04 340.86 21.28 319.58 NLPH 57 148 153 153 <0.50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.			340.86	21.55	319.31	NLPH	<50							
MW1 05/25/04 340.86 22.11 318.75 NLPH <50 196 234 204 <0.50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.			340.86	19.96	320.90	NLPH	<50							
MW1 08/26/04 340.86 21.28 319.58 NLPH 57 148 153 153 <0.50 <0.5 <0.5 MW1 12/07/04 j 340.86 21.43 319.43 NLPH <50			340.86	22.11	318.75	NLPH								
MW1 12/07/04 j 340.86 21.43 319.43 NLPH <50 966 789 1,130 <0.50 <0.5 <0.5 MW1 03/17/05 340.86 17.99 322.87 NLPH 57k 1,720 2,600 <0.50			340.86	21.28	319.58	NLPH								
MW1 06/20/05 340.86 21.26 319.60 NLPH < 50 74.4 102 103 <0.50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	MW1	12/07/04 j	340.86	21.43	319.43	NLPH	<50	966	789					
MW1 09/20/05 340.86 17.33 323.53 NLPH 228k <50.0 15.4 15.3 <0.50 <0.50 <0.50 <0.50 <0.50 MW1 12/22/05 340.86 17.49 323.37 NLPH <50.0 <50.0 12.0 14.6 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 MW1 03/23/06 340.86 16.81 324.05 NLPH <47 <50 14 10.4 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 MW1 05/30/06 340.86 17.02 323.84 NLPH <47 <50 5.2 4.6 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	MW1	03/17/05	340.86	17.99	322.87		57k							
MW1 09/20/05 340.86 17.33 323.53 NLPH 228k <50.0 15.4 15.3 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	MW1	06/20/05	340.86	21.26	319.60	NLPH	<50	74.4						
MW1 03/23/06 340.86 16.81 324.05 NLPH <47 <50 14 10.4 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50		09/20/05	340.86	17.33	323.53		228k							
MW1 05/30/06 340.86 17.02 323.84 NLPH <47 <50 5.2 4.6 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	MW1	12/22/05	340.86	17.49	323.37	NLPH								
MW1 05/30/06 340.86 17.02 323.84 NLPH <47 <50 5.2 4.6 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	MW1	03/23/06	340.86	16.81	324.05	NLPH	<47							
MW2 03/15/99 340.61 28.35 312.26 NLPH 90 <50 12 12.5 0.73 1.1 2.4 2.2 MW2 06/25/99 340.61 25.20 315.41 NLPH a <50 <2.0 <0.5 <0.5 <0.5 <0.5 MW2 09/24/99 340.61 23.93 316.68 NLPH <50 <50 3.06 <0.5 <0.5 <0.5 <0.5 MW2 12/22/99 340.61 23.39 317.22 NLPH <56 <50 <2 <0.5 <0.5 <0.5 <0.5 <0.5 MW2 03/07/00 340.61 17.08 323.53 NLPH 52 <50 <2 <0.5 0.80 <0.5 <0.5		05/30/06	340.86	17.02	323.84	NLPH	<47	<50	5.2	4.6	<0.50	<0.50	<0.50	<0.50
MW2 03/15/99 340.61 28.35 312.26 NLPH 90 <50 12 12.5 0.73 1.1 2.4 2.2 MW2 06/25/99 340.61 25.20 315.41 NLPH a <50 <2.0 <0.5 <0.5 <0.5 <0.5 MW2 09/24/99 340.61 23.93 316.68 NLPH <50 <50 3.06 <0.5 <0.5 <0.5 <0.5 MW2 12/22/99 340.61 23.39 317.22 NLPH <56 <50 <2 <0.5 <0.5 <0.5 <0.5 <0.5 MW2 03/07/00 340.61 17.08 323.53 NLPH 52 <50 <2 <0.5 0.80 <0.5 <0.5														0.0
MW2 06/25/99 340.61 25.20 315.41 NLPH a <50 <2.0 <0.5 <0.5 <0.5 <0.5 MW2 09/24/99 340.61 23.93 316.68 NLPH <50 <50 3.06 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	MW2	11/17/98												
MW2 09/24/99 340.61 23.93 316.68 NLPH <50 <50 3.06 <0.5 <0.5 <0.5 <0.5 MW2 12/22/99 340.61 23.39 317.22 NLPH <56 <50 <2 <0.5 <0.5 <0.5 <0.5 MW2 03/07/00 340.61 17.08 323.53 NLPH 52 <50 <2 <0.5 0.80 <0.5 <0.5	MW2	03/15/99												
MW2 12/22/99 340.61 23.39 317.22 NLPH <56 <50 <2 <0.5 <0.5 <0.5 <0.5 MW2 03/07/00 340.61 17.08 323.53 NLPH 52 <50 <2 <0.5 0.80 <0.5 <0.5	MW2	06/25/99	340.61											
MW2 12/22/99 340.61 25.39 511.22 NETH 50 50 50 50 50 50 50 50 50 50 50 50 50	MW2	09/24/99												
	MW2													
	MW2	03/07/00	340.61	17.08	323.53									
MW2 06/06/00 340.61 21.01 319.60 NLPH <50 <50 <2 <0.5 <0.5 <0.5 <0.5	MW2	06/06/00	340.61	21.01	319.60	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 2 of 7)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	X
ID	Date	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW2	06/16/00	340.61		nsferred to Vale	ro Refining Co	mpany.			- -				
MW2	07/31/00	340.61	22.08	318.53	NLPH	<50	<50	6.8	<5	<0.5	<0.5	<0.5	<0.5
MW2	10/10/00	340.61	22.35	318.26	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5
MW2	01/11/01	340.61	23.74	316.87	NLPH	<50	<50	<2		0.54	<0.5	<0.5	<0.5
MW2	04/11/01	340.61	22.34	318.27	NLPH	760e	<50	<2		<0.5	1.4	<0.5	<0.5
MW2	07/20/01	340.61	23.74	316.87	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5
MW2	10/19/01	340.61	22.68	317.93	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5
MW2	Nov-2001	340.16	Well surveye	ed in compliance	with AB 2880	6 requirements.							
MW2	01/28/02	340.16	20.79	319.37	NLPH	<50.0	<50.0	0.70		<0.50	<0.50	<0.50	<0.50
MW2	04/17/02	340.16	25.52	314.64	NLPH	<50	<50.0	4.20	4.35	<0.5	0.90	<0.50	<0.50
MW2	07/17/02	340.16	28.18	311.98	NLPH	<50	<50.0	9.4	10.3	<0.5	0.6	2.4	2.0
MW2	10/24/02	340.16	28.42	311.74	NLPH	<50	<50.0	8.6	9.30	<0.5	<0.5	<0.5	<0.5
MW2	03/21/03	340.16	23.54	316.62	NLPH	<50	<50.0		<0.50	1.10	0.5	1.3	2.2
MW2	04/10/03	340.16	28.19	311.97	NLPH	<50	<50.0		2.10	0.60	0.5	0.8	1.0
MW2	07/17/03	340.16	24.13	316.03	NLPH	<50	<50.0		<0.50	<0.50	<0.5	<0.5	<0.5
MW2	10/09/03	340.16	26.21	313.95	NLPH	90	<50.0	0 .6	0.60	<0.50	<0.5	<0.5	<0.5
MW2	01/21/04	340.16	22.40	317.76	NLPH	<50	<50.0	<0.5	<0.50	0.50	<0.5	<0.5	<0.5
MW2	05/25/04	340.16	25.17	314.99	NLPH	<50	<50.0	1.2	1.8	<0.50	<0.5	8.0	1.3
MW2	08/26/04	340.16	27.56	312.60	NLPH	<50	<50.0	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW2	12/07/04 j	340.16	25.36	314.80	NLPH	<50	<50.0	8.0	8.6	<0.50	<0.5	<0.5	<0.5
MW2	03/17/05	340.16	20.28	319.88	NLPH	<50	57.8		1.10	<0.50	<0.5	<0.5	<0.5
MW2	06/20/05	340.16	23.48	316.68	NLPH	<53	<50.0	<0.5	<0.50	<0.50	<0.5	<0.5	1.0
MW2	09/20/05	340.16	23.11	317.05	NLPH	<50.0	<50.0	3.50	2.31	<0.50	<0.50	<0.50	<0.50
MW2	12/22/05	340.16	23.96	316.20	NLPH	<50.0	<50.0	<0.50	<0.500	<0.50	<0.50	<0.50	<0.50
MW2	03/23/06	340.16	21.11	319.05	NLPH	<47	<50	<2.5	1.82	<0.50	<0.50	<0.50	<0.50
MW2	05/30/06	340.16	20.15	320.01	NLPH	<47	<50	<2.5	<0.50	<0.50	<0.50	<0.50	<0.50
	4447100	040.05	00.50	306.37	NLPH	120	<50	180	220	<0.5	<0.5	<0.5	<0.5
MW3	11/17/98	342.95	36.58	300.37	NLPH	180	<50	290	314	<0.5	<0.5	<0.5	<0.5
MW3	03/15/99	342.95	40.01	296.12	NLPH	a	<50	107	113	<0.5	<0.5	<0.5	<0.5
MW3	06/25/99	342.95 342.95	46.83 47.71	295.12 295.24	NLPH								
MW3	09/24/99	342.95	43.82	299.13	NLPH	140	<50	65		<0.5	<0.5	<0.5	<0.5
MW3	12/22/99			310.20	NLPH	<50	<50	82		<0.5	0.88	<0.5	<0.5
MW3	03/07/00	342.95	- 32.75 36.05	306.90	NLPH	<50	<50	140		<0.5	<0.5	0.82	<0.5
MW3	06/06/00	342.95 342.95		asferred to Vale			~00	140		٠٥,٠	-0.0	0.02	
MW3	06/16/00				NLPH	<50	<50	230	160	<0.5	<0.5	<0.5	<0.5
MW3	07/31/00	342.95	36.77	306.18 307.13	NLPH	<50 <50	<50	200		<0.5	<0.5	<0.5	<0.5
MW3	10/10/00	342.95	35.82	307.13 304.87	NLPH	<50 <50	<50	280	230	<0.5	<0.5	<0.5	<0.5
MW3	01/11/01	342.95	38.08	304.67 306.92	NLPH	1,000e	<50	240	280	<0.5	<0.5	<0.5	<0.5
MW3	04/11/01	342.95	36.03	306.92 306.90	NLPH	<50	270	240	190	<0.5	<0.5	<0.5	<0.5
MW3	07/20/01	342.95	36.05		NLPH	<50 <50	<50	180	190	<0.5	<0.5	<0.5	<0.5
MW3	10/19/01	342.95	34.58	308.37	NLM	\50	~50	100	190	٠٠.٥	40.0	-0.0	-0.0

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 3 of 7)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	T	E	X
ID	Date	(feet)	(feet)	(feet)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW3	Nov-2001	342.95	Well surveye	ed in compliance		6 requirements.							-
MW3	01/28/02	342.95	34.96	307.99	NLPH	<100	167	179		<0.50	<0.50	<0.50	<0.50
MW3	04/17/02	342.95	38.21	304.74	NLPH	<50	194	179.3	216	<0.5	<0.50	<0.50	<0.50
MW3	07/17/02	342.95	g	g	g	<50h	163h	185	198h	<0.5h	<0.5h	<0.5h	<0.5h
MW3	10/24/02	342.95	38.68	304.27	NLPH	<50	128	163	183	<0.5	<0.5	<0.5	<0.5
MW3	03/21/03	342.95	36.50	306.45	NLPH	<50	119		141	<0.50	<0.5	<0.5	<0.5
MW3	04/10/03	342.95	36.82	306.13	NLPH	<53	119		130	<0.50	<0.5	<0.5	<0.5
MW3	07/17/03	342.95	37.98	304.97	NLPH				_				_
MW3	07/18/03	342.95			NLPH	<50	142		123	<0.50	<0.5	<0.5	<0.5
MW3	10/09/03	342.95	38.5	304.45	NLPH	<50	120	122	147	<0.50	<0.5	<0.5	<0.5
MW3	01/21/04	342.95	35.45	307.50	NLPH	94	90.6	118	148	<0.50	<0.5	<0.5	<0.5
MW3	05/25/04	342.95	38.07	304.88	NLPH	<0.50	139	170	146	<0.50	<0.5	<0.5	<0.5
MW3	08/26/04	342.95	36.00	306.95	NLPH	112	163	169	165	<0.50	<0.5	<0.5	<0.5
MW3	12/07/04 j	342.95	37.97	304.98	NLPH	<50	174	143	186	<0.50	<0.5	<0.5	<0.5
MW3	03/17/05	342.95	31.44	311.51	NLPH	<50	516		740	<0.50	<0.5	<0.5	<0.5
MW3	06/20/05	342.95	37.29	305.66	NLPH	<50	134	183	241	<0.50	<0.5	<0.5	0.5
MW3	09/20/05	342.95	36.11	306.84	NLPH	72.3e	129	116	125	<0.50	<0.50	<0.50	<0.50
MW3	12/22/05	342.95	34.52	308.43	NLPH	<50.0	87.5	73.0	92.9	<0.50	<0.50	<0.50	<0.50
MW3	03/23/06	342.95	32.04	310.91	NLPH	<47	63o	76	72.0	<0.50	<0.50	<0.50	<0.50
MW3	05/30/06	342.95	32.57	310.38	NLPH	120k,o	<50	46	44	<0.50	<0.50	<0.50	<0.50
		0.40.00	50.00	000 70	NI DU	72	<50	4.1	3.5	<0.5	<0.5	<0.5	<0.5
MW4	11/17/98	342.96	50.20	292.76	NLPH NLPH	91	<50 <50	280	260	<0.5	<0.5	<0.5	<0.5
MW4	03/15/99	342.96	47.93	295.03		91 		200					
MW4	06/25/99 b	342.96	48.15	294.81	NLPH NLPH								
MW4	09/24/99 b	342.96	49.29	293.67		<u></u> b							
MW4	12/22/99	342.96	49.33	293.63	NLPH NLPH	190	 <50	710		<0.5	0.84	<0.5	<0.5
MW4	03/07/00	342.96	49.05	293.91	NLPH	110	<50	460		<0.5	<0.5	<0.5	<0.5
MW4	06/06/00	342.96	49.02	293.94 nsferred to Vale			~00	-100		10.0	.0.0	-0.0	0.0
MW4	06/16/00	342.96		293.83	NLPH		<50	480	490	<0.5	<0.5	<0.5	<0.5
MW4	07/31/00	342.96	49.13	293.83 302.88	NLPH	C C	C C	c	C C	C	C C	-0.0 C	C
MW4	10/10/00	342.96	40.08		NLPH	110	< 5 0	27	21	<0.5	<0.5	<0.5	<0.5
MW4	01/11/01	342.96	36.41	306.55	NLPH	870e	<50	3.6	14	<0.5	0.56	<0.5	<0.5
MW4	04/11/01	342.96	36.43	306.53	f	670 c		5.0					
MW4	07/20/01	342.96		309.29	I NLPH	71	<50	15	16	<0.5	<0.5	<0.5	<0.5
MW4	10/19/01	342.96	33.67	309.29 ed in compliance			\J 0	15	10	٧٠.٥	-0.5	٠٥.٥	-0.0
MW4	Nov-2001	342.96			NLPH	148	<50.0	18.7		<0.50	<0.50	<0.50	<0.50
MW4	01/28/02	342.96	33.11	309.85		<50	<50.0 <50.0	19.10	23.4	<0.5	<0.50	<0.50	<0.50
MW4	04/17/02	342.96	36.03	306.93	NLPH	<50 <50	<50.0 <50.0	16.7	25.4 15.8	<0.5	<0.5	<0.5	<0.5
MW4	07/17/02	342.96	37.65	305.31	NLPH		<50.0 <50.0	8.7	8.90	<0.5 <0.5	<0.5	<0.5	<0.5
MW4	10/24/02	342.96	37.41	305.55	NLPH	<50 <56	<50.0 <50.0	0.7 —-	14.2	<0.50	<0.5	<0.5	<0.5
MW4	03/21/03	342.96	36.18	306.78	NLPH	<56	<50.0		14.2	~0.50	~0.0	~0.5	40.0

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 4 of 7)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	X
ID	Date	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW4	04/10/03	342.96	36.55	306.41	NLPH	<51	<50.0		15.3	<0.50	<0.5	<0.5	<0.5
MW4	07/17/03	342.96	36.45	306.51	NLPH	<50	<50.0	-	11.4	<0.50	<0.5	<0.5	<0.5
MW4	10/09/03	342.96	37.7	305.26	NLPH	<50	<50.0	8.5	6.90	<0.50	<0.5	<0.5	<0.5
MW4	01/21/04	342.96	35.78	307.18	NLPH	<50	<50.0	8.4	9.40	<0.50	<0.5	<0.5	<0.5
MW4	05/25/04	342.96	35.88	307.08	NLPH	<50	<50.0	18.0	14.40	<0.50	<0.5	<0.5	<0.5
MW4	08/26/04	342.96	i	i	i	<50i	<50.0i	8.3	11.1i	<0.50i	<0.5i	<0.5i	<0.5i
MW4	12/07/04 j	342.96	35.65	307.31	NLPH	f	f	f	f	f	f	f	f
MW4	03/17/05	342.96	29.34	313.62	NLPH	67k	<50.0		63.0	< 0.50	<0.5	<0.5	<0.5
MW4	06/20/05	342.96	34.61	308.35	NLPH	<50	70.4	97.1	116	< 0.50	<0.5	<0.5	<0.5
MW4	09/20/05	342.96	33.73	309.23	NLPH	159k	71.2	85.1	87.4	<0.50	<0.50	<0.50	<0.50
MW4	12/22/05	342.96	31.99	310.97	NLPH	<50.0	74.9	62.1	78.9	<0.50	<0.50	<0.50	<0.50
MW4	03/23/06	342.96	31.63	311.33	NLPH	<47	530	64	57.1	<0.50	<0.50	<0.50	<0.50
MW4	05/30/06	342.96	30.87	312.09	NLPH	<47	<50	53	45	<0.50	<0.50	<0.50	<0.50
MW5	06/16/00	342.87	Property tran	nsferred to Vale	ro Refining Co	mpany.							
MW5	07/31/00 b	342.87		-			_						
MW5	10/10/00	342.87	29.12	313.75	NLPH	150	<50	4.2		<0.5	<0.5	<0.5	<0.5
MW5	01/11/01	342.87	28.89	313.98	NLPH	b	b	b		b	b	b	b
MW5	04/11/01	342.87	28.23	314.64	NLPH	b	b	b		b	b	b	b
MW5	07/20/01 f	342.87											
MW5	10/19/01	342.87	27.62	315.25	NLPH	86	<50	3.4	5	<0.5	<0.5	<0.5	<0.5
MW5	Nov-2001	342.87	Well surveye	ed in compliance	with AB 2886	3 requirements.							
MW5	01/28/02	342.87	28.04	314.83	NLPH	<100	<50.0	5.90		<0.50	<0.50	< 0.50	<0.50
MW5	04/17/02	342.87	29.10	313.77	NLPH	85	<50.0	5.60	6.7	<0.5	<0.50	<0.50	<0.50
MW5	07/17/02	342.87	29.37	313.50	NLPH	ь	b	b	ь	b	b	b	ь
MW5	10/24/02	342.87	29.36	313.51	NLPH	b	b	ь	b	þ	þ	b	b
MW5	03/21/03	342.87	28.55	314.32	NLPH	b	57.8		8.70	2.50	1.0	3.5	5.9
MW5	04/10/03	342.87	29.10	313.77	NLPH	b	56.1		7.20	5.50	3.0	2.9	4.3
MW5	07/17/03	342.87	28.91	313.96	NLPH	b	<0.50		12.0	1.00	<0.50	0.7	1.2
MW5	10/09/03	342.87	29.17	313.70	NLPH	<100	<50.0	5.5	4.50	< 0.50	<0.5	<0.5	<0.5
MW5	01/21/04	342.87	28.75	314.12	NLPH	<50	<50.0	3.7	4.00	1.30	1.40	<0.5	2.4
MW5	05/25/04	342.87	28.95	313.92	NLPH		<50.0	3.6	2.90	0.70	0.7	1.8	2.9
MW5	08/26/04	342.87	i	i	i	<50i	<50.0i	5.1	5.20i	<0.50i	<0.5i	<0.5i	<0.5i
MW5	12/07/04 j	342.87	28.29	314.58	NLPH	106k,I	<50.0	1.9	2.00	0.70	<0.5	0.5	1.6
MW5	03/17/05	342.87	26.39	316.48	NLPH	143k	<50.0		4.40	<0.50	<0.5	<0.5	<0.5
MW5	06/20/05	342.87	28.01	314.86	NLPH	<59	<50.0	10.9	13.0	<0.50	<0.5	<0.5	0.5
MW5	09/20/05	342.87	28.61	314.26	NLPH	1,730k	75.3	8.06	6.38	<0.50	<0.50	<0.50	<0.50
MW5	12/22/05	342.87	28.67	314.20	NLPH	70.3k	104	8.76	9.00	4.95	4.69	2.34	39.0
MW5	03/23/06	342.87	28.03	314.84	NLPH	140k	<50	20	18.5	<0.50	<0.50	<0.50	<0.50
MW5	05/30/06	342.87	26.91	315.96	NLPH	130k,o	<50	29	28	<0.50	<0.50	<0.50	0.75

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 5 of 7)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	Т	Е	X
ID	Date	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
MW6	06/16/00	341.05		nsferred to Valer									
MW6	07/31/00	341.05	39.72	301.33	NLPH	<50	<50	<2	<5	<0.5	<0.5	<0.5	<0.5
MW6	10/10/00	341.05	40.12	300.93	NLPH	<50	c	С		С	С	С	С
MW6	01/11/01	341.05	46.13	294.92	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5
MW6	04/11/01	341.05	45.40	295.65	NLPH	b	b	b		b	b	b	b
MW6	07/20/01	341.05	41.75	299.30	NLPH	<50	<50	<5		<0.3	<0.3	<0.6	<0.6
MW6	10/19/01	341.05	44.10	296.95	NLPH	<50	<50	<2		<0.5	<0.5	<0.5	<0.5
MW6	Nov-2001	341.05	Well surveye	ed in compliance	with AB 2886	requirements.							
MW6	01/28/02	341.05	39.57	301.48	NLPH	<100	<50.0	<0.50		<0.50	<0.90	<0.50	<0.50
MW6	04/17/02	341.05	41.84	299.21	NLPH	52	<50.0	<0.50		<0.5	<0.50	<0.50	<0.50
MW6	07/17/02	341.05	42.85	298.20	NLPH	<50	<50.0	<0.5		<0.5	<0.5	<0.5	<0.5
MW6	10/24/02	341.05	42.10	298.95	NLPH	<50	<50.0	<0.5		<0.5	<0.5	<0.5	<0.5
MW6	03/21/03	341.05	44.81	296.24	NLPH	107	<50.0	<0.5		<0.50	<0.5	<0.5	<0.5
MW6	04/10/03	341.05	44.28	296.77	NLPH	60	<50.0		0.80	<0.50	<0.5	<0.5	<0.5
MW6	07/17/03	341.05	41.56	299.49	NLPH	<50	<50.0		<0.50	<0.50	<0.5	<0.5	<0.5
MW6	10/09/03	341.05	41.54	299.51	NLPH	452	<50.0	0.50	0.60	<0.50	<0.5	<0.5	<0.5
MW6	01/21/04	341.05	38.20	302.85	NLPH	<50	<50.0	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6	05/25/04	341.05	40.35	300.70	NLPH	<50	<50.0	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6	08/26/04	341.05	i	i	i	314i	<50.0i	0.6	1.00i	2.10i	0.9i	0.8i	2.9i
MW6	12/07/04 j, m	341.05											
MW6	03/17/05	341.05	37.44	303.61	NLPH	<50	<50.0		0.60	<0.50	<0.5	<0.5	<0.5
MW6	06/20/05	341.05	40.42	300.63	NLPH	<50	<50.0	<0.5	0.60	<0.50	<0.5	<0.5	<0.5
MW6	09/20/05	341.05	38.00	303.05	NLPH	117k	<50.0	0.66	0.570	<0.50	<0.50	<0.50	<0.50
MW6	12/22/05	341.05	37.55	303.50	NLPH	331k	<50.0	0.65	<0.500	0.86	1.39	<0.50	<0.50
MW6	03/23/06	341.05	35.72	305.33	NLPH	<47	<50	<2.5	<1.00	<0.50	<0.50	<0.50	<0.50
MW6	05/30/06	341.05	33.52	307.53	NLPH	<47	<50	<2.5	0.88	1.6	0.59	0.77	1.2
MW7	06/16/00	341.73	Property tran	nsferred to Valer	o Refining Cor	npany.							
MW7	07/31/00	341.73	24.22	317.51	NLPH	150	<50	13	8	<0.5	<0.5	<0.5	<0.5
MW7	10/10/00	341.73	24.09	317.64	NLPH	1,500	С	С	С	С	С	С	С
MW7	01/11/01	341.73	25.86	315.87	NLPH	330	<50	6.9	7	0.55	< 0.5	<0.5	<0.5
MW7	04/11/01	341.73	24.28	317.45	NLPH	980e	<250	<10		<2.5	<2.5	<2.5	<2.5
MW7	07/20/01	341.73	25.52	316.21	NLPH	300	<50	8.2	6	<0.5	< 0.5	<0.5	<0.5
MW7	10/19/01	341.73	24.99	316.74	NLPH	120	<50	4.9	<5	<0.5	<0.5	<0.5	<0.5
MW7	Nov-2001	341.73		d in compliance									
MW7	01/28/02	341.73	23.84	317.89	NLPH	· <100	<50.0	8.50		<0.50	< 0.50	<0.50	<0.50
MW7	04/17/02	341.73	28.19	313.54	NLPH	55	<50.0	9.70	11.6	<0.5	2.10	<0.50	<0.50
MW7	07/17/02	341.73	29.74	311.99	NLPH	69	<50.0	9.7	9.0	<0.5	<0.5	<0.5	<0.5
MW7	10/24/02	341.73	29.50	312.23	NLPH	262	<50.0	5.4	6.0	<0.5	<0.5	<0.5	<0.5
MW7		-											
101007	03/21/03	341.73	26.07	315.66	NLPH	<50	<50.0	6.00		<0.50	8.0	<0.5	<0.5

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 6 of 7)

 Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHd	TPHg	MTBE 8021B	MTBE 8260B	В	T	E	X
ID.	Date	(feet)	(feet)	(feet)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
 MW7	07/17/03	341.73	27.18	314.55	NLPH	<50	<50.0		9.10	<0.50	<0.5	<0.5	<0.5
MW7	10/09/03	341.73	28.27	313.46	NLPH	<50	<50.0	12.5	5.60	<0.50	<0.5	<0.5	<0.5
MW7	01/21/04	341.73	24.51	317.22	NLPH	140	<50.0	15.1	17.6	<0.50	<0.5	<0.5	<0.5
MW7	05/25/04	341.73	28.87	312.86	NLPH		<50.0	17.6	13.10	<0.50	<0.5	<0.5	<0.5
MW7	08/26/04	341.73	i	i	i	322i	<50.0i	20.4	19.9i	<0.50i	<0.5i	<0.5i	<0.5i
MW7	12/07/04 i	341.73	27.68	314.05	NLPH	469k	<50.0	4.4	5.30	<0.50	<0.5	<0.5	<0.5
MW7	03/17/05	341.73	22.80	318.93	NLPH	131k	<50.0	_	16.5	<0.50	<0.5	<0.5	<0.5
MW7	06/20/05	341.73	26.73	315.00	NLPH	68k	<50.0	9.4	11.1	<0.50	<0.5	<0.5	<0.5
MW7	09/20/05	341.73	24.28	317.45	NLPH	4,690k	<5,000n	<50.0n	<0.500	<50.0n	<50.0n	<50.0n	<50.0⊓
MW7	12/22/05	341.73	24.54	317.19	NLPH	799k	<50.0	<0.50	<0.500	<0.50	0.76	<0.50	0.64
MW7	03/23/06	341.73	22.46	319.27	NLPH	190k	<50	<2.5	<1.00	<0.50	<0.50	<0.50	<0.50
MW7	05/30/06	341.73	21.86	319.87	NLPH	<48	<50	3.1	2.7	<0.50	<0.50	<0.50	<0.50
MW8	06/16/00	341.44	Property tran	sferred to Valer	o Refining Cor	mpany.							
MW8	10/10/00 - 08/2	6/04 Well di	у.										
MW8	12/07/04 h, j	341.44	65.15	276.29	NLPH	b	<50.0	7.6	2.40	<0.50	<0.5	<0.5	<0.5
MW8	03/17/05	341.44	59.75	281.69	NLPH	<50	<50.0		<0.50	<0.50	<0.5	<0.5	<0.5
MW8	06/20/05	341.44	55.15	286.29	NLPH	<50	<50.0	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
8WM	09/20/05	341.44	55.39	286.05	NLPH	229k	<50.0	0.58	<0.500	<0.50	<0.50	<0.50	0.52
MW8	12/22/05	341.44	51.96	289.48	NLPH	<50.0	<50.0	<0.50	<0.500	<0.50	<0.50	<0.50	<0.50
8WM	03/23/06	341.44	46.63	294.81	NLPH	100k	<50	<2.5	<1.00	1.4	<0.50	0.83	<0.50
8WM	05/30/06	341.44	43.09	298.35	NLPH	70k	<50	<2.5	0.66	<0.50	<0.50	<0.50	<0.50

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 7 of 7)

Notes:		
TOC	=	Top of well casing elevation; datum is mean sea level.
SUBJ	=	Results of subjective evaluation, liquid-phase hydrocarbon thickness (HT) in feet.
NLPH	=	No liquid-phase hydrocarbons present in well.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using modified EPA Method 8015.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 5030/8015 (modified).
MTBE 8021B	=	Methyl tertiary butyl ether analyzed using EPA Method 8020 or 8021B.
MTBE 8260B	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8021B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertairy butyl alcohol analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
μg/L	=	Micrograms per liter.
<	=	Not detected at or above the stated laboratory method reporting limit.
	=	Not analyzed/Not applicable/Not sampled/Not measured.
а	=	No result because of sample loss during laboratory fire.
b	=	Not enough water to gauge and/or sample.
С	=	Samples were damaged during transportation to laboratory.
d	=	Analyzed using EPA Method 8260.
е	=	Diesel-range hydrocarbons detected in bailer blank; result is suspect.
f	=	Well inacessible.
g	=	DTW was not measured due to equipment failure.
h	=	Grab sample.
i	=	Groundwater elevation data invalidated; analytical results suspect.
j	=	Incorrect date recorded on the Chain-of-Custody form and/or laboratory analytical report. The correct date is shown.
k	=	Diesel-range organic compounds reported in sample; however, chromatogram pattern is not representative of diesel fuel.
I	=	Analyte detected in laboratory method blank; result is suspect.
m	=	Incorrect well monitored and sampled. Results invalidated.
n	=	Elevated reporting limit used due to sample matrix effects.
О	=	Result elevated due to single analyte peak in quantitation range.

TABLE 1B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 1 of 5)

Well	Sampling	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethanol
ID.	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)
MW1		Not analyzed for the	ese analytes.					
MW1	07/31/00	<10	<10	<500	<5	<5	<10	
MW1	10/10/00 - 10/24/02	2 Not analyzed for the	ese analytes.					
MW1	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	< 0.50	
MW1	04/10/03	< 0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW1	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW1	10/09/03	< 0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW1	01/21/04	<0.50	2.20	57.9	<0.50	<0.50	< 0.50	
MW1	05/25/04	<0.50	<0.50	<10.0	<0.50	<0.50	< 0.50	
MW1	08/26/04	< 0.50	< 0.50	<10.0	<0.50	<0.50	<0.50	
MW1	12/07/04 j	< 0.50	2.00	49.6	<0.50	<0.50	<0.50	
MW1	03/17/05	< 0.50	7.60	201	<0.50	<0.50	<0.50	
MW1	06/20/05	< 0.50	<0.50	135	<0.50	<0.50	<0.50	
MW1	09/20/05	< 0.500	< 0.500	30.6	<0.500	<0.500	<0.500	
MW1	12/22/05	<0.500	< 0.500	114	< 0.500	<0.500	< 0.500	
MW1	03/23/06	<1.00	<1.00	93.8	<1.00	<1.00	<1.00	<100
MW1	05/30/06	<0.50	<0.50	31	<0.50	<0.50	<0.50	<100
MW2	11/17/98 - 06/16/0	0 Not analyzed for the	ese analytes.					
MW2	07/31/00	<10	<10	<500	<5	<5	<10	
MW2		2 Not analyzed for the						
MW2	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW2	04/10/03	<0.50	<0.50	<10	<0.50	<0.50	< 0.50	
MW2	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW2	10/09/03	<0.50	<0.50	<10	<0.50	<0.50	< 0.50	
MW2	01/21/04	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW2	05/25/04	<0.50	<0.50	<10.0	<0.50	< 0.50	<0.50	
MW2	08/26/04	<0.50	<0.50	<10.0	< 0.50	<0.50	< 0.50	
MW2	12/07/04 j	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW2	03/17/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW2	06/20/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW2	09/20/05	<0.500	< 0.500	<10.0	< 0.500	<0.500	<0.500	
MW2	12/22/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW2	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	<100
MW2	05/30/06	<0.50	<0.50	<12	<0.50	<0.50	<0.50	<100
MW3	11/17/98 - 06/16/0	Not analyzed for the	ese analytes.					
MW3	07/31/00	<10	<10	<500	<5	<5	<10	
MW3		2 Not analyzed for the						

TABLE 1B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 2 of 5)

Well	Sampling	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethano
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW3	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW3	04/10/03	< 0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW3	07/17/03	<0.50	< 0.50	. <10	<0.50	<0.50	<0.50	
MW3	07/18/03	<0.50	< 0.50	<10	<0.50	<0.50	<0.50	
MW3	10/09/03	<0.50	< 0.50	<10	<0.50	<0.50	<0.50	
MW3	01/21/04	< 0.50	< 0.50	<10	<0.50	<0.50	<0.50	
MW3	05/25/04	< 0.50	< 0.50	<10.0	<0.50	<0.50	<0.50	
MW3	08/26/04	< 0.50	< 0.50	<10.0	<0.50	<0.50	<0.50	
MW3	12/07/04 j	< 0.50	< 0.50	<10.0	<0.50	<0.50	<0.50	
MW3	03/17/05	<0.50	<0.50	22.7	<0.50	<0.50	<0.50	
MW3	06/20/05	<0.50	< 0.50	13.3	<0.50	<0.50	<0.50	
MW3	09/20/05	< 0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW3	12/22/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW3	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	
MW3	05/30/06	<0.50	<0.50	<12	<0.50	<0.50	<0.50	<100
MW4	11/17/98 - 06/16/0	Not analyzed for the	ese analytes.					
MW4	07/31/00	<10	<10	<500	<5	<5	<10	
MW4	10/10/00 - 10/24/0	2 Not analyzed for the	ese analytes.					
MW4	03/21/03	< 0.50	< 0.50	<10	<0.50	<0.50	<0.50	
MW4	04/10/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW4	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW4	10/09/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW4	01/21/04	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW4	05/25/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW4	08/26/04	<0.50i	<0.50i	<10.0i	<0.50i	<0.50i	<0.50i	
MW4	12/07/04 f, j				_			
MW4	03/17/05	< 0.50	0.70	<10.0	<0.50	<0.50	<0.50	
MW4	06/20/05	< 0.50	<0.50	<10.0	< 0.50	<0.50	<0.50	
MW4	09/20/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW4	12/22/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW4	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	
MW4	05/30/06	<0.50	<0.50	<12	<0.50	<0.50	<0.50	<100
MW5	06/16/00							
MW5	07/31/00	<10	<10	<500	<5	<5	<10	
MW5	10/10/00 - 10/24/0	2 Not analyzed for the	ese analytes.					
MW5	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW5	04/10/03	< 0.50	<0.50	<10	< 0.50	<0.50	<0.50	

TABLE 1B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 3 of 5)

Well	Sampling	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethanoi
ID	Date	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW5	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW5	10/09/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW5	01/21/04	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW5	05/25/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
·MW5	08/26/04	<0.50i	<0.50i	<10.0i	<0.50i	<0.50i	<0.50i	
MW5	12/07/04 j	< 0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW5	03/17/05	< 0.50	<0.50	<10.0	<0.50	<0.50	< 0.50	
MW5	06/20/05	< 0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW5	09/20/05	< 0.500	<0.500	<10.0	< 0.500	<0.500	<0.500	
MW5	12/22/05	< 0.500	<0.500	<10.0	<0.500	<0.500	<0.500	_
MW5	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	
MW5	05/30/06	<0.50	<0.50	<12	<0.50	<0.50	<0.50	<100
MW6	06/16/00							
MW6	07/31/00	<10	<10	<500	<5	<5	<10	
MW6	10/10/00 - 10/24/02	Not analyzed for the	ese analytes.					
MW6	03/21/03	< 0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW6	04/10/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW6	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW6	10/09/03	<0.50	< 0.50	<10	<0.50	<0.50	<0.50	
MW6	01/21/04	<0.50	<0.50	<10	< 0.50	<0.50	<0.50	
MW6	05/25/04	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW6	08/26/04	<0.50i	<0.50i	<10.0i	<0.50i	<0.50i	<0.50i	
MW6	12/07/04 j,m	_						
MW6	03/17/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW6	06/20/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW6	09/20/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW6	12/22/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW6	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	
MW6	05/30/06	<0.50	<0.50	<12	<0.50	<0.50	<0.50	<100
MW7	06/16/00 - 10/24/02	Not analyzed for the						
MW7	03/21/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW7	04/10/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW7	07/17/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW7	10/09/03	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW7	01/21/04	<0.50	<0.50	<10	<0.50	<0.50	<0.50	
MW7	05/25/04	<0.50	< 0.50	<10.0	<0.50	<0.50	<0.50	
MW7	08/26/04	<0.50i	<0.50i	<10.0i	<0.50i	<0.50i	<0.50i	

TABLE 1B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 4 of 5)

Well	Sampling	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethanol
1D	Date	(µg/L)	(µg/L)	(µg/L)	(µg/ L)	(µg/L)	(µg/L)	(µg/L)
	12/07/04 j	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW7	03/17/05	< 0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW7	06/20/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW7	09/20/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW7	12/22/05	< 0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW7	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	<100
MW7	05/30/06	<0.50	<0.50	<12	<0.50	<0.50	<0.50	<100
MW8	07/31/00	<10	<10	<500	<5	<5	<10	
MW8	10/10/00 - 08/26/04	Well dry.						
MW8	12/07/04 h, i	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW8	03/17/05	< 0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW8	06/20/05	<0.50	<0.50	<10.0	<0.50	<0.50	<0.50	
MW8	09/20/05	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	
MW8	12/22/05	<0.500	<0.500	<10.0	< 0.500	<0.500	<0.500	
MW8	03/23/06	<1.00	<1.00	<10.0	<1.00	<1.00	<1.00	<100
MW8	05/30/06	<0.50	<0.50	<12	<0.50	<0.50	<0.50	<100

TABLE 1B

ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 5 of 5)

Notes:		
TOC	=	Top of well casing elevation; datum is mean sea level.
SUBJ	=	Results of subjective evaluation, liquid-phase hydrocarbon thickness (HT) in feet.
NLPH	=	No liquid-phase hydrocarbons present in well.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using modified EPA Method 8015.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 5030/8015 (modified).
MTBE 8021B	=	Methyl tertiary butyl ether analyzed using EPA Method 8020 or 8021B.
MTBE 8260B	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8021B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	±	Tertairy butyl alcohol analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
μg/L	=	Micrograms per liter.
ρg, <u>-</u>	=	Not detected at or above the stated laboratory method reporting limit.
	=	Not analyzed/Not applicable/Not Sampled/Not measured.
a	=	No result because of sample loss during laboratory fire.
ь	=	Not enough water to gauge and/or sample.
c	=	Samples were damaged during transportation to laboratory.
d	=	Analyzed using EPA Method 8260.
e	=	Diesel-range hydrocarbons detected in bailer blank; result is suspect.
f	=	Well inacessible.
g g	=	DTW was not measured due to equipment failure.
h	=	Grab sample.
i	=	Groundwater elevation data invalidated; analytical results suspect.
· ;	=	Incorrect date recorded on the Chain-of-Custody form and/or laboratory analytical report. The correct date is shown.
J Iz	=	Diesel-range organic compounds reported in sample; however, chromatogram pattern is not representative of diesel fuel.
k 1	=	Analyte detected in laboratory method blank; result is suspect.
m	=	Incorrect well monitored and sampled. Results invalidated.
m	=	Elevated reporting limit used due to sample matrix effects.
n	=	Result elevated due to single analyte peak in quantitation range.
0	-	repair clotated and to origin analyte posit in quantitation

TABLE 2
WELL CONSTRUCTION DETAILS

Former Exxon Service Station 7-3567 3192 Santa Rita Road Pleasanton, California (Page 1 of 1)

Well ID	Date Well Installed	Top of Casing Elevation (feet)	Borehole Diameter (inches)	Total Depth of Boring (feet)	Well Depth (feet)	Well Casing Diameter (inches)	Well Casing Material	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (feet)	Filter Pack Material
MW1	11/12/98	340.86	8	36.5	35	2	NS	20-35	0,200	19-36.5	#3 Sand
MW2	11/12/98	340.16	8	41.5	35	2	NS	20-35	0.020	19-35	#3 Sand
мwз	11/11/98	342.95	8	51.5	50	2	NS	35-50	0.020	34-51.5	#3 Sand
MW4	11/11/98	342.96	8	51.5	50	2	NS	35-50	0.020	34-51.5	#3 Sand
MW5	07/18/00	342.87	8	31	30	2	NS	20-30	0.020	19-31	#3 Sand
MW6	07/19/00	341.05	8	54	53	2	NS	43-53	0.020	42-54	#3 Sand
MW7	07/18/00	341.73	8	50	49	2	NS	39-49	0.020	38-50	#3 Sand
MW8	03/16/01	341. 44	8	70	70	2	NS	55-70	0.020	55-70	#3 Sand

Notes:

NS

Not specified.

=

FN 2431Topo

EXPLANATION

1/2-mile radius circle

SITE VICINITY MAP

FORMER EXXON SERVICE STATION 7-3567 3192 Santa Rita Road Pleasanton, California PROJECT NO. 2431

PLATE

TPW •

Tank Pit Well

0.88 Methyl Tertiary Butyl Ether (EPA Method 8260B)

< Less Than the Stated Laboratory
Reporting Limit
ug/L Micrograms per Liter

SELECT ANALYTICAL RESULTS May 30, 2006

FORMER EXXON SERVICE STATION 7-3567 3192 Santa Rita Road Pleasanton, California

PROJECT NO.

2431

PLATE

MW5

Groundwater Monitoring Well

0 315.96 Groundwater elevation in feet; datum is mean sea level

323-----Line of Equal Groundwater Elevation; datum is mean sea level

TPW **•**

Tank Pit Well

GROUNDWATER ELEVATION MAP UPPER WATER-BEARING ZONE

May 30, 2006 FORMER EXXON SERVICE STATION 7-3567 3192 Santa Rita Road Pleasanton, California

PROJECT NO.

2431

PLATE

FN 24310003_QM

EXPLANATION

Groundwater Monitoring Well

298.35 Groundwater elevation in feet; datum is mean sea level 318----- Line of Equal Groundwater Elevation; datum is mean sea level

TPW ◆

Tank Pit Well

Idik 11c wed

NOTE;

Groundwater Monitoring Well MW8 screened over deeper interval and not contoured.

GROUNDWATER ELEVATION MAP LOWER WATER-BEARING ZONE May 30, 2006

May 30, 2006

FORMER EXXON SERVICE STATION 7-3567
3192 Santa Rita Road
Pleasanton, California

PROJECT NO. 2431

PLATE

ATTACHMENT A GROUNDWATER SAMPLING PROTOCOL

GROUNDWATER SAMPLING PROTOCOL

The static water level and separate-phase product level, if present, in each well that contained water and/or separate-phase product are measured with a ORS Interface Probe, which is accurate to the nearest 0.01 foot. To calculate groundwater elevations and evaluate groundwater gradient, depth to water (DTW) levels are subtracted from top of casing elevations.

Groundwater samples collected for subjective evaluation are collected by gently lowering approximately half the length of a clean Teflon® or polypropylene bailer past the air-water interface (if possible) and collecting a sample from near the surface of the water in the well. The samples are checked for measurable free-phase hydrocarbons or sheen. If appropriate, free-phase hydrocarbons are removed from the well.

Before water samples are collected from the groundwater monitoring wells, the wells are purged until a minimum of three well casing volumes is purged and stabilization of the temperature, pH, and conductivity is obtained. Water samples from the wells that do not obtain stability of the temperature, pH, and conductivity are considered to be "grab samples." The quantity of water purged from each well is calculated as follows:

1 well casing volume = π^2 h(7.48) where:

r = radius of the well casing in feet.
h = column of water in the well in feet
(depth to bottom - depth to water)

7.48 = conversion constant from cubic feet to gallons π = ratio of the circumference of a circle to its diameter

Gallons of water purged/gallons in 1 well casing volume = well casing volumes removed.

After purging, each well is allowed to recharge to at least 80% of the initial water level. Water samples from wells that do not recover at least 80% (due to slow recharging of the well) between purging and sampling are considered to be "grab samples." Water samples are collected with a new, disposable Teflon® or polypropylene bailer. The groundwater is carefully poured into selected sample containers (40-milliliter [ml] glass vials, 1,000-ml glass amber bottles, etc.), which are filled so as to produce a positive meniscus.

Depending on the required analysis, each sample container is preserved with hydrochloric acid, nitric acid, etc., or it is preservative free. The type of preservative used for each sample is specified on the Chain-of-Custody form.

Each vial and glass amber bottle is sealed with a cap containing a Teflon® septum, and subsequently examined for air bubbles to avoid headspace, which would allow volatilization to occur. The samples are promptly transported in iced storage in a thermally-insulated ice chest, accompanied by a Chain-of-Custody record, to a California state-certified laboratory.

ATTACHMENT B

LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY RECORD

21 June, 2006

Paula Sime Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma, CA 94954

RE: Exxon 7-3567 Work Order: MPE1464

Enclosed are the results of analyses for samples received by the laboratory on 06/01/06 19:15. The samples arrived at a temperature of 4° C. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Christina Dell Project Manager

CA ELAP Certificate #1210

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project Number: 7-3567

Project: Exxon 7-3567

Project Manager: Paula Sime

MPE1464 Reported: 06/21/06 17:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW1	MPE1464-01	Water	05/30/06 14:40	06/01/06 19:15
MW2	MPE1464-02	Water	05/30/06 13:00	06/01/06 19:15
MW3	MPE1464-03	Water	05/30/06 15:10	06/01/06 19:15
MW4	MPE1464-04	Water	05/30/06 14:55	06/01/06 19:15
MW5	MPE1464-05	Water	05/30/06 14:15	06/01/06 19:15
MW6	MPE1464-06	Water	05/30/06 14:00	06/01/06 19:15
MW7	MPE1464-07	Water	05/30/06 13:40	06/01/06 19:15
MW8	MPE1464-08	Water	05/30/06 13:20	06/01/06 19:15
QCBB	MPE1464-09	Water	05/30/06 12:55	06/01/06 19:15

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Project Number: 7-3567

Project: Exxon 7-3567

Project Manager: Paula Sime

MPE1464 Reported: 06/21/06 17:54

MW1 (MPE1464-01) Water Sampled: 05/30/06 14:40 Received: 06/01/06 19:15

Petaluma CA, 94954

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6F08008	06/08/06	06/08/06	EPA 8015B/8021B	
Benzene	ND	0.50	11	U	***	II .	P	11	
Toluene	ND	0.50	11	***	11	u	"	u	
Ethylbenzene	ND	0.50	II	11	II	77	li	"	
Xylenes (total)	ND	0.50	II	п	II	n	п	11	
Methyl tert-butyl ether	5.2	2.5	ž ų	u	n	ıı	(r	п	
Surrogate: a,a,a-Trifluorotoluene		113 %	85-	120	u	"	и	n .	
Surrogate: 4-Bromofluorobenzene		91%	<i>75</i> -	125	n	u	ıı	"	

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Diesel Range Organics (C10-C28)	ND	47	ug/l	1	6F06047	06/06/06	06/15/06	EPA 8015B-SVOA	
Surrogate: n-Octacosane		66 %	30.	-115	"		"	n n	

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
tert-Amyl methyl ether	ND	0.50	ug/l	1	6F06008	06/06/06	06/07/06	EPA 8260B	
tert-Butyl alcohol	31	12	h	u	11	II	II	U	
Di-isopropyl ether	ND	0.50	II	u	11	II .	lt .	п	
1,2-Dibromoethane (EDB)	ND	0.50	li	11	II .	ŧ	11	ri	
1,2-Dichloroethane	ND	0.50	ır	II .	II .	11	n	**	
Ethanol	ND	100	Ħ	II .	9	u	II	u	
Ethyl tert-butyl ether	ND	0.50	п	u	п	rr	TT.	u	
Methyl tert-butyl ether	4,6	0.50	u	"	le .	11	п	u	
Surrogate: 1,2-Dichloroethane-d4		81%	60-	145	"	11	tr -	"	
Surrogate: 4-Bromofluorobenzene		94 %	60-	115	v	"	n	"	
Surrogate: Dibromofluoromethane		89 %	<i>75</i> -	130	tt	u	"	rt	
Surrogate: Toluene-d8		91%	70-	130	"	u	u	rr .	

Sequoia Analytical - Morgan Hill

601 North McDowell Blvd. Project
Petaluma CA, 94954 Project

Project: Exxon 7-3567

Project Number: 7-3567 Project Manager: Paula Sime MPE1464 Reported: 06/21/06 17:54

MW2 (MPE1464-02) Water

r Sampled: 05/30/06 13:00 Received: 06/01/06 19:15

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6F08008	06/08/06	06/08/06	EPA 8015B/8021B	
Benzene	ND	0.50	II	U	II	II	п	11	
Toluene	ND	0.50	u	п	"	17	и	II	
Ethylbenzene	ND	0.50	tr.	п	III	n	н	n	
Xylenes (total)	ND	0.50	11	**	II .	II	er er	П	
Methyl tert-butyl ether	ND	2.5	п	11	"	If	u	u	
Surrogate: a,a,a-Trifluorotoluene		112 %	85-I	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		97%	75-1	25	"	tt	"	п	

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Diesel Range Organics (C10-C28)	ND	47	ug/l	1	6F06047	06/06/06	06/15/06	EPA 8015B-SVOA	
Surrogate: n-Octacosane		64 %	30-	-115	"		"	tr	

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
ND	0.50	ug/l	1	6F06008	06/06/06	06/07/06	EPA 8260B	
ND	12	17	"	11	11	II .	ÞT	
ND	0.50	ц		b	'n	п	п	
ND	0.50	u	11	II	п	ħ	II .	
ND	0.50	**	ш	11	17	D	π	
ND	100		"	II .	II .	п	11	
ND	0.50	u	1)	u	11	ır	II.	
ND	0.50	71	п	u	ц	41	u	
	82 %	60-	145	"	"	n	"	
	95 %	60-	115	"	11	u	H	
	87 %	<i>75</i> -	130	"	"	"	"	
	88 %	70-	130	n	"	n	n	
	ND ND ND ND ND ND	Result Limit ND 0.50 ND 12 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 100 ND 0.50 ND 0.50 ND 959 82 % 95 % 87 %	ND 0.50 ug/l ND 12 " ND 0.50 " ND 0.50 " ND 0.50 " ND 0.50 " ND 100 " ND 0.50 " ND 0.50 " ND 0.50 " ND 0.50 " 82 % 60- 95 % 60- 87 % 75-	ND 0.50 ug/l 1 ND 12 " " ND 0.50 " " ND 0.50 " " ND 0.50 " " ND 0.50 " " ND 100 " " ND ND 0.50 " " ND ND 0.50 " " " ND 0.50 " " ND 0.50 " " ND 0.50 " " " ND 0.50 " " ND 0.50 " " ND 0.50 " " " ND 0.50 " " ND 0.50 " " ND 0.50 " " " ND 0.50 " " ND 0.50 " " ND 0.50 " " " ND 0.50 " " ND 0.50 " " ND 0.50 " " " ND 0.50 " " ND 0.50 " " ND 0.50 " " " ND 0.50	Result Limit Units Dilution Batch	ND	ND	Result Limit Units Dilution Batch Prepared Analyzed Method

Sequoia Analytical - Morgan Hill

Project: Exxon 7-3567

601 North McDowell Blvd. Petaluma CA, 94954 Project Number: 7-3567 Project Manager: Paula Sime MPE1464 Reported: 06/21/06 17:54

MW3 (MPE1464-03) Water

Sampled: 05/30/06 15:10 Received: 06/01/06 19:15

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6F08008	06/08/06	06/08/06	EPA 8015B/8021B	-
Benzene	ND	0.50	11	11	h	II	II .	11	
Toluene	ND	0.50	п	U	u	ш	11	п	
Ethylbenzene	ND	0.50	"	ш	ц	п	II .	п	
Xylenes (total)	ND	0.50	11	п	**	(r	*11	(r	
Methyl tert-butyl ether	46	2.5	11	u	11	"	11	ır	
Surrogate: a,a,a-Trifluorotoluene		114%	85	-120	"	"	11	п	
Surrogate: 4-Bromofluorobenzene		94 %	75	-125	n	n	11	n	

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Diesel Range Organics (C10-C28)	120	47	ug/l	1	6F06047	06/06/06	06/15/06	EPA 8015B-SVOA	HC-12, HC-11
Surrogate: n-Octacosane		65 %		-115	<i>"</i>	"	"	"	

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	A l 4	Method	Maria
		_	Oms	Dilution	Daten	rrepared	Analyzed	Method	Note
tert-Amyl methyl ether	ND	0.50	ug/l	1	6F06008	06/06/06	06/07/06	EPA 8260B	
tert-Butyl alcohol	ND	12	11	n	11	17	U	II .	
Di-isopropyl ether	ND	0.50	II .	"	ш	rt	**	II .	
1,2-Dibromoethane (EDB)	ND	0.50	ш	п	II	n	п	u	
1,2-Dichloroethane	ND	0.50	ш	ш	u	II	п	e	
Ethanol	ND	100	**	п	ly.	п	u	11	
Ethyl tert-butyl ether	ND	0.50	11	(t	11	11	tr.	п	
Methyl tert-butyl ether	44	0.50	n	*1	п	"	н	ıi.	
Surrogate: 1,2-Dichloroethane-d4		79 %	60-1	45	"	ıı	"		
Surrogate: 4-Bromofluorobenzene		95 %	60-1	15	"	ıı .	и	"	
Surrogate: Dibromofluoromethane		85 %	75-1	30	"	"	n	u	
Surrogate: Toluene-d8		87%	70-1	30	n	"	"	u	

Sequoia Analytical - Morgan Hill

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-3567

Project Number: 7-3567 Project Manager: Paula Sime MPE1464 Reported: 06/21/06 17:54

MW4 (MPE1464-04) Water

Sampled: 05/30/06 14:55 Received: 06/01/06 19:15

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6F08008	06/08/06	06/08/06	EPA 8015B/8021B	
Benzene	ND	0,50	11	u	1)	п	n	11	
Toluene	ND	0.50	11	17		IF	11	II .	
Ethylbenzene	ND	0.50	D	11	II .	u.	II .	u .	
Xylenes (total)	ND	0.50	ц	11	п	п	II	n	
Methyl tert-butyl ether	53	2.5	ír	п	11	11	It	п	
Surrogate: a,a,a-Trifluorotoluene		115%	85	120	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		91%	75	125	n	n	и	"	

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Diesel Range Organics (C10-C28)	ND	47	ug/l	1	6F06047	06/06/06	06/15/06	EPA 8015B-SVOA	-
Surrogate: n-Octacosane		69 %	<i>30-</i>	115	"	ii	ıı .	н	

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

Anelyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
tert-Amyl methyl ether	ND	0.50	ug/l	1	6F06008	06/06/06	06/07/06	EPA 8260B	
tert-Butyl alcohol	ND	12	11	11	u	n	п	п	
Di-isopropyl ether	ND	0.50	п	ii	п	*1	n n	tr	
1,2-Dibromoethane (EDB)	ND	0.50	n	п	79	11	п	n	
1,2-Dichloroethane	ND	0.50	11	u	n	II	le	п	
Ethanol	ND	100	11	H	II	ır	и	п	
Ethyl tert-butyl ether	ND	0.50	п	***	11	U	n	п	
Methyl tert-butyl ether	45	0.50	ü	п	n	n	II	ti .	
Surrogate: 1,2-Dichloroethane-d4		82 %	60-	145	"	"	11	п	
Surrogate: 4-Bromofluorobenzene		96 %	60-	115	и	n	"	u	
Surrogate: Dibromofluoromethane		88 %	75-	130	n	"	"	n .	
Surrogate: Toluene-d8		86 %	70-	130	u	u	u	11	

Sequoia Analytical - Morgan Hill

Project: Exxon 7-3567

601 North McDowell Blvd. Petaluma CA, 94954

Project Number: 7-3567 Project Manager: Paula Sime

MPE1464 Reported: 06/21/06 17:54

MW5 (MPE1464-05) Water

Sampled: 05/30/06 14:15 Received: 06/01/06 19:15

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6F08008	06/08/06	06/08/06	EPA 8015B/8021B	.,
Benzene	ND	0.50	п	D	n	rr.	II	u	
Toluene	ND	0.50	TT.	II .	**	n	n n	u	
Ethylbenzene	ND	0.50	11	u	U	11	ır	17	
Xylenes (total)	0.75	0.50	п	u	a	п	n	п	
Methyl tert-butyl ether	29	2.5	п	79	n	ц	11	п	
Surrogate: a,a,a-Trifluorotoluene		111%	85-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92 %	75-	125	u	"	n	"	

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Diesel Range Organics (C10-C28)	130	50	ug/l	l	6F06047	06/06/06	06/15/06	EPA 8015B-SVOA	HC-12, HC-11
Surrogate: n-Octacosane		74 %	30-	115	"	н	и	<i>n</i>	

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
tert-Amyl methyl ether	ND	0.50	ug/l	i	6F06008	06/06/06	06/07/06	EPA 8260B	
tert-Butyl alcohol	ND	12	ш	ur .	v	*1	п	u	
Di-isopropyl ether	ND	0.50	п	**	IJ	п	rr	78	
1,2-Dibromoethane (EDB)	ND	0.50	п	11	ii	II .	*1	п	
1,2-Dichloroethane	ND	0.50	17	II .	II.	lt.	п	n	
Ethanol	ND	100	II	α	ır	U	п	п	
Ethyl tert-butyl ether	ND	0.50	п	п	11	u	п	п	
Methyl tert-butyl ether	28	0.50	u	re .	п	11	ır	u	
Surrogate: 1,2-Dichloroethane-d4		83 %	60-1	45	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		92 %	60-1	15	n	n	n	и	
Surrogate: Dibromofluoromethane		87 %	75-1	30	"	"	<i>n</i>	n	
Surrogate: Toluene-d8		89 %	70- <i>1</i>	30	"	n	rr	n	

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exxon)Project:Exxon 7-3567MPE1464601 North McDowell Blvd.Project Number:7-3567Reported:Petaluma CA, 94954Project Manager:Paula Sime06/21/06 17:54

MW6 (MPE1464-06) Water Sampled: 05/30/06 14:00 Received: 06/01/06 19:15

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B

Sequoia Analytical - Morgan Hill

		Reporting						-	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Gasoline Range Organics (C4-C12)	ND	50	ug/I	!	6F08008	06/08/06	06/08/06	EPA 8015B/8021B	
Benzene	1.6	0.50	II .	п	ц	II	It	u	CF1
Toluene	0.59	0.50	Se .	tr	ti ti	II	ii	π	
Ethylbenzene	0.77	0.50	11	н	71	li .	п	**	
Xylenes (total)	1.2	0.50	li .	11	11	н	ır	II .	
Methyl tert-butyl ether	ND	2.5	"	п	11	11	ır	п	
Surrogate: a,a,a-Trifluorotoluene		116%	85-	-120	,,	n	u .	"	
Surrogate: 4-Bromofluorobenzene		95 %	75-	-125	'n	"	"	"	

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Diesel Range Organics (C10-C28)	ND	47	ug/l	1	6F06047	06/06/06	06/15/06	EPA 8015B-SVOA	
Surrogate: n-Octacosane		84 %	30-	115	n	"	"	"	

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

			<u> </u>						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
tert-Amyl methyl ether	ND	0.50	ug/l	1	6F06008	06/06/06	06/07/06	EPA 8260B	
tert-Butyl alcohol	ND	12		11	u	ti.	u	п	
Di-isopropyl ether	ND	0.50		II .	**	11	11	п	
1,2-Dibromoethane (EDB)	ND	0.50	п	II	II	II .	II	u .	
1,2-Dichloroethane	ND	0.50	ш	le .	II	ii .	IP.	11	
Ethanol	ND	100	n .	11	II	le .	"	II	
Ethyl tert-butyl ether	ND	0.50	II .	11	"	11	11	п	
Methyl tert-butyl ether	0.88	0.50	п	"	п	II	II	и	
Surrogate: 1,2-Dichloroethane-d4		80 %	60-	145	п.	"	n	"	
Surrogate: 4-Bromofluorobenzene		91 %	60-	115	"	"	u	n	
Surrogate: Dibromofluoromethane		87 %	75-	130	#	"	u	n .	
Surrogate: Toluene-d8		84 %	70-	130	"	u	"	rr r	

Sequoia Analytical - Morgan Hill

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-3567

Project Number: 7-3567 Project Manager: Paula Sime MPE1464 Reported: 06/21/06 17:54

MW7 (MPE1464-07) Water

Sampled: 05/30/06 13:40 Received: 06/01/06 19:15

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6F08008	06/08/06	06/08/06	EPA 8015B/8021B	
Benzene	ND	0.50		п	n	II	11	17	
Toluene	ND	0.50	ш	и	11	п	II	II .	
Ethylbenzene	ND	0.50	11	11*	11	II .	II .	II.	
Xylenes (total)	ND	0.50	**		n	11	II	U	
Methyl tert-butyl ether	3.1	2.5	1)	*1	11	u	I.	ш	
Surrogate: a,a,a-Trifluorotoluene		117 %	85	-120	"	"	"	lr .	<u>-</u>
Surrogate: 4-Bromofluorobenzene		92 %	75	-125	u	II	"	rr .	

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Diesel Range Organics (C10-C28)	ND	48	ug/l	1	6F06047	06/06/06	06/15/06	EPA 8015B-SVOA	
Surrogate: n-Octacosane		56 %	30-	-115	"	п	"	"	

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

			 -					
Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
ND	0.50	ug/l	1	6F06008	06/06/06	06/07/06	EPA 8260B	
ND	12	II .	11	u	ш	ıı .	u	
ND	0.50	II .	II .	11	(r	18	u	
ND	0.50	a	II	n	į.	ır	***	
ND	0.50	**	(r	11	11	U	n	
ND	100	"	U	n	11	n	n	
ND	0.50	п	**	п	li .	*1	п	
2.7	0.50	n	п	**	II	11	II	
	83 %	60-	.145	"	"	"	"	
	92 %	60-	115	H	n	"	"	
	89 %	75-	-130	u	"	"	"	
	88 %	70-	130	n	u	"	"	
	ND ND ND ND ND ND ND ND	Result Limit ND 0.50 ND 12 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50 AD 0.50 ND 100 ND 0.50 2.7 0.50 83 % 92 % 89 %	Result Limit Units ND 0.50 ug/l ND 12 " ND 0.50 " 2.7 0.50 " 83 % 60- 92 % 60- 89 % 75-	Result Limit Limit Limit Units Dilution ND 0.50 ug/l 1 ND 12 " " ND 0.50 " " ND 0.50 " " ND 100 " " ND 0.50 " " ND 0.50 " " 2.7 0.50 " " 83 % 60-145 60-115 89 % 75-130 75-130	Result Limit Units Dilution Batch ND 0.50 ug/l 1 6F06008 ND 12 " " " ND 0.50 " " " ND 0.50 " " " ND 100 " " " ND 0.50 " " " ND 0.50 " " " 2.7 0.50 " " " 83 % 60-145 " " 92 % 60-115 " " 89 % 75-130 " "	Result	Result Limit Units Dilution Batch Prepared Analyzed	Result Limit Units Dilution Batch Prepared Analyzed Method

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-3567

Project Number: 7-3567 Project Manager: Paula Sime MPE1464 Reported: 06/21/06 17:54

MW8 (MPE1464-08) Water

Sampled: 05/30/06 13:20 Received: 06/01/06 19:15

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6F08008	06/08/06	06/08/06	EPA 8015B/8021B	
Benzene	ND	0.50	"	u	11	II	II.	"	
Toluene	ND	0.50	11	n n	II .	u	11	10	
Ethylbenzene	ND	0.50	11	tr	II	II	п	"	
Xylenes (total)	ND	0.50	li .	**	11	II.	п	11	
Methyl tert-butyl ether	ND	2.5	ii	11	u	п	ır	II	
Surrogate: a,a,a-Trifluorotoluene		112 %	 85-	120	"	"	"	u	
Surrogate: 4-Bromofluorobenzene		98 %	<i>75</i> -	125	ii .	u	"	Tr .	

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Diesel Range Organics (C10-C28)	70	47	ug/l	1	6F06047	06/06/06	06/15/06	EPA 8015B-SVOA	HC-12
Surrogate: n-Octacosane		145 %	30-	·115	"	п	n	tt .	S04

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
tert-Amyl methyl ether	ND	0.50	ug/I	1	6F07003	06/07/06	06/07/06	EPA 8260B	
tert-Butyl alcohol	ND	12	II	II .	rt	u	U	п	
Di-isopropyl ether	ND	0.50	u	ш	"	(r	19	ш	
1,2-Dibromoethane (EDB)	ND	0.50	lt.	IJ	11	n	U	u	
1,2-Dichloroethane	ND	0.50	H		1)	11	*1	п	
Ethanol	ND	100	n	u	0	11	11	u	
Ethyl tert-butyl ether	ND	0.50	11	u	п	11	11	R	
Methyl tert-butyl ether	0.66	0.50	ш	u	đ	п	п		
Surrogate: 1,2-Dichloroethane-d4		91 %	60-1	45	"	"	п		***
Surrogate: 4-Bromofluorobenzene		90 %	60-1	15	n	и	"	"	
Surrogate: Dibromofluoromethane		96 %	75-1	30	"	"	"	"	
Surrogate: Toluene-d8		93 %	70-1	30	"	"	и	п	

Sequoia Analytical - Morgan Hill

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-3567

Project Number: 7-3567 Project Manager: Paula Sime MPE1464 Reported: 06/21/06 17:54

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6F08008 - EPA 5030B [P/T]							_			
Blank (6F08008-BLK1)				Prepared	& Analyze	ed: 06/08/	06			
Gasoline Range Organics (C4-C12)	ND	25	ug/l							
Велгене	ND	0.25	n							
Toluene	ND	0.25	u							
Ethylbenzene	ND	0.25	"							
Xylenes (total)	ND	0.25	11							
Methyl tert-butyl ether	ND	1.25	ıı							
Surrogate: a,a,a-Trifluorotoluene	89.8		"	80.0		112	85-120			
Surrogate: 4-Bromofluorobenzene	74.3		Ħ	80.0		93	75-125			
LCS (6F08008-BS1)				Prepared	& Analyz	ed: 06/08/	06			
Gasoline Range Organics (C4-C12)	205	50	ug/l	275		75	60-115			
Benzene	4.66	0.50	11	4.85		96	45-150			
Toluene	20.9	0.50	u	23.5		89	70-115			
Ethylbenzene	4.11	0.50	"	4.70		87	65-115			
Xylenes (total)	23.4	0.50	n	26.5		88	70-115			
Surrogate: a,a,a-Trifluorotoluene	85.2		"	80.0		106	85-120			· -
Surrogate: 4-Bromofluorobenzene	74.6		n	80.0		93	75-125			
Matrix Spike (6F08008-MS1)	So	urce: MPE14	64-02	Prepared	& Analyz	ed: 06/08/	06			
Gasoline Range Organics (C4-C12)	195	50	ug/l	275	ND	71	60-115			
Велгеле	4.78	0.50	u	4.85	ND	99	45-150			
Toluene	23.9	0.50	u	23.5	ND	102	70-115			
Ethylbenzene	4.79	0.50	"	4.70	ND	102	65-115			
Xylenes (total)	27.3	0.50	п	26.5	ND	103	70-115			
Surrogate: a,a,a-Trifluorotoluene	91.6		n	80.0		114	85-120			
Surrogate: 4-Bromofluorobenzene	75.3		"	80.0		94	75-125			
Matrix Spike Dup (6F08008-MSD1)	So	urce: MPE14	164-02	Prepared	& Analyz	ed: 0 6/08/	/ 06			
Gasoline Range Organics (C4-C12)	181	50	ug/l	275	ND	66	60-115	7	20	
Benzene	4.05	0.50	ш	4.85	ND	84	45-150	17	25	
Toluene	20.3	0.50	tr	23.5	ND	86	70-115	16	20	
Ethylbenzene	4.08	0.50	п	4.70	ND	87	65-115	16	25	

Sequoia Analytical - Morgan Hill

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Froject, 1

Project: Exxon 7-3567

Project Number: 7-3567 Project Manager: Paula Sime MPE1464 Reported: 06/21/06 17:54

Purgeable Hydrocarbons and BTEX by EPA 8015B/8021B - Quality Control Sequoia Analytical - Morgan Hill

		Evaluation		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
										

Batch 6F08008 - EPA 5030B [P/T]

Matrix Spike Dup (6F08008-MSD1)	Sour	ce: MPE14	64-02	Prepared o	& Analyze	ed: 06/08	/06			
Xylenes (total)	23.5	0.50	ug/l	26.5	ND	89	70-115	15	25	
Surrogate: a,a,a-Trifluorotoluene	88.5		н	80.0		111	85-120			
Surrogate: 4-Bromofluorobenzene	74.7		"	80.0		93	75-125			

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-3567

Project Number: 7-3567
Project Manager: Paula Sime

MPE1464 Reported: 06/21/06 17:54

Extractable Hydrocarbons with Silica Gel cleanup by EPA 8015B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6F06047 - EPA 3510C				•				•••		
Blank (6F06047-BLK1)				Prepared:	06/06/06	Analyzed	l: 06/15/06			•
Diesel Range Organics (C10-C28)	ND	25	ug/l							
Surrogate: n-Octacosane	29.1		п	50.0		58	30-115			
LCS (6F06047-BS1)				Prepared:	06/06/06	Analyzed	l: 06/15/06			
Diesel Range Organics (C10-C28)	211	50	ug/l	500		42	40-140			
Surrogate: n-Octacosane	32.6		и	50.0		65	30-115			
LCS Dup (6F06047-BSD1)				Prepared:	06/06/06	Analyzec	l: 06/16/06			
Diesel Range Organics (C10-C28)	227	50	ug/l	500	-	45	40-140	7	35	
Surrogate: n-Octacosane	36.5		n	50.0		73	30-115		_	

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-3567

Project Number: 7-3567 Project Manager: Paula Sime MPE1464 Reported: 06/21/06 17:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Amalida		Evaluation		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6F06008 - EPA 5030B P/T		<u>,</u>								
Blank (6F06008-BLK1)				Prepared	& Analyze	ed: 06/06/0	06			
tert-Amyl methyl ether	ND	0.25	ug/l	·	·				· · ·	
tert-Butyl alcohol	ND	6	II							
Di-isopropyl ether	ND	0.25	ıı							
1,2-Dibromoethane (EDB)	ND	0.25	п							
1,2-Dichloroethane	ND	0.25	u							
Ethanol	ND	50	11							
Ethyl tert-butyl ether	ND	0.25	It							
Methyl tert-butyl ether	ND	0.25	ír							
Surrogate: 1,2-Dichloroethane-d4	4.13	 	<i>n</i>	5.00		83	60-145			
Surrogate: 4-Bromofluorobenzene	4.57		n	5.00		91	60-115			
Surrogate: Dibromofluoromethane	4.52		"	5.00		90	75-130			
Surrogate: Toluene-d8	4.44		"	5.00		89	70-130			
LCS (6F06008-BS1)				Prepared	& Analyzo	ed: 06/06/0	06			
tert-Amyl methyl ether	14.6	0.50	ug/l	15.0		97	65-135			
tert-Butyl alcohol	160	12	Ħ	143		112	60-135			
Di-isopropyl ether	13.4	0.50	п	15.1		89	70-130			
1,2-Dibromoethane (EDB)	15.2	0.50	n	14.9		102	85-125			
1,2-Dichloroethane	13.1	0.50	11	14.7		89	75-125			
Ethanol	162	100	IJ	142		114	15-150			
Ethyl tert-butyl ether	14.1	0.50	11	15.0		94	65-130			
Methyl tert-butyl ether	6.72	0.50	lr	7.02		96	50-140			
Surrogate: 1,2-Dichloroethane-d4	4.26		п —	5.00		85	60-145			
Surrogate: 4-Bromofluorobenzene	4.77		"	5.00		95	60-115			
Surrogate: Dibromofluoromethane	4.34		"	5.00		87	75-130			
Surrogate: Toluene-d8	4.50		"	5.00		90	70-130			
Matrix Spike (6F06008-MS1)	Sou	rce: MPE14	40-03	Prepared:	06/06/06	Analyzed	: 06/07/06			
tert-Amyl methyl ether	746	25	ug/l	752	ND	99	65-135			
tert-Butyl alcohol	8130	600	ır	7160	ND	114	60-135			
Di-isopropyl ether	704	25	17	756	ND	93	70-130			
1,2-Dibromoethane (EDB)	796	25	lt.	744	ND	107	85-125			
. ,				, —	110	107	05-145			

Sequoia Analytical - Morgan Hill

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-3567

Project Number: 7-3567 Project Manager: Paula Sime MPE1464 Reported: 06/21/06 17:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6F06008 - EPA 5030B P/T				<u> </u>						
Matrix Spike (6F06008-MS1)	So	urce: MPE14	40-03	Prepared:	06/06/06	Analyzed	: 06/07/06		-	
1,2-Dichloroethane	672	25	ug/l	736	ND	91	75-125			
Ethanol	6910	5000	n	7080	ND	98	15-150			
Ethyl tert-butyl ether	733	25	u	752	ND	97	65-130			
Methyl tert-butyl ether	504	25	11	351	120	109	50-140			
Surrogate: 1,2-Dichloroethane-d4	4.38		r/	5.00		88	60-145	 .		
Surrogate: 4-Bromofluorobenzene	4.63		17	5.00		93	60-115			
Surrogate: Dibromofluoromethane	4.54		"	5.00		91	75-130			
Surrogate: Toluene-d8	4.51		"	5.00		90	70-130			
Matrix Spike Dup (6F06008-MSD1)	Source: MPE1440-03 Prepared: 06/06/06 Analyzed:					l: 06/07/06				
tert-Amyl mcthyl ether	754	25	ug/l	752	ND	100	65-135	1	25	
ert-Butyl alcohol	8440	600	"	7160	ND	118	60-135	4	35	
Di-isopropyl ether	696	25	11	756	ND	92	70-130	1	35	
1,2-Dibromoethane (EDB)	804	25	п	744	ND	108	85-125	I	15	
1,2-Dichloroethane	688	25	ıı	736	ND	93	75-125	2	10	
Ethanol	7300	5000	11.	7080	ND	103	15-150	5	35	
Ethyl tert-butyl ether	735	25	11	752	ND	98	65-130	0.3	35	
Methyl tert-butyl ether	498	25	11	351	120	108	50-140	1	25	
Surrogate: 1,2-Dichloroethane-d4	4.48		"	5.00		90	60-145		·	
Surrogate: 4-Bromofluorobenzene	4.68		"	5.00		94	60-115			
Surrogate: Dibromofluoromethane	4.39		н	5.00		88	75-130			
Surrogate: Toluene-d8	4.52		H	5.00		90	70-130			
Batch 6F07003 - EPA 5030B P/T				<u>.</u> .						
Blank (6F07003-BLK1)				Prepared	& Analyz	ed: 06/07/	06			
tert-Amyl methyl ether	ND	0.25	ug/l							
tert-Butyl alcohol	ND	10	ш							
Di-isopropyl ether	ND	0.25	u							
Ethyl tert-butyl ether	ND	0.25	**							
Methyl tert-butyl ether	ND	0.25	п							
Surrogate: 1,2-Dichloroethane-d4	4.60		н	5.00		92	60-135			
Surrogate: 4-Bromofluorobenzene	4.35		H	5.00		87	70-120			

Sequoia Analytical - Morgan Hill

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-3567

Project Number: 7-3567
Project Manager: Paula Sime

MPE1464 Reported: 06/21/06 17:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6F07003 - EPA 5030B P/T	-									
Blank (6F07003-BLK1)				Prepared	& Analyz	ed: 06/07/	06			
Surrogate: Dibromofluoromethane	4.89		ug/l	5.00		98	65-130			
Surrogate: Toluene-d8	4.75		"	5.00		95	70-120			
LCS (6F07003-BS1)				Prepared	& Analyz	ed: 06/07/	06			
ert-Amyl methyl ether	14.4	0.50	ug/l	15.0	•	96	80-115			
ert-Butyl alcohol	163	20	Щ	143		114	75-150			
Di-isopropyl ether	13.9	0.50	R	15.1		92	75-125			
thyl tert-butyl ether	14.4	0.50	17	15.0		96	75-130			
Methyl tert-butyl ether	6.98	0.50		7.02		99	65-125			
urrogate: 1,2-Dichloroethane-d4	4.66		"	5.00	<u>.</u>	93	60-135		-	
urrogate: 4-Bromofluorobenzene	4.34		"	5.00		87	70-120			
urrogate: Dibromofluoromethane	4.75		"	5.00		95	65-130			
'urrogate: Toluene-d8	4.61		ı	5.00		92	70-120			
Matrix Spike (6F07003-MS1)	So	urce: MPE14	65-01	Prepared	& Analyz	ed: 06/07/	06			
crt-Amyl methyl ether	15.3	0.50	ug/l	15.0	ND	102	80-115			
ert-Butyl alcohol	164	20		143	ND	115	75-120			
Di-isopropyl ether	16.8	0.50	u	15.1	2.0	98	75-125			
Ethyl tert-butyl ether	15.3	0.50	n	15.0	ND	102	75-130			
Aethyl tert-butyl ether	6.89	0.50	11	7.02	ND	98	65-125			
Surrogate: 1,2-Dichloroethane-d4	4.62		"	5.00		92	60-135			
lurrogate: 4-Bromofluorobenzene	4.61		"	5.00		92	70-120			
Surrogate: Dibromofluoromethane	4.70		"	5.00		94	65-130			
Surrogate: Toluene-d8	4.77		"	5.00		95	70-120			
Matrix Spike Dup (6F07003-MSD1)	So	urce: MPE14	65-01	Prepared	& Analyz	ed: 06/07	/06			
ert-Amyl methyl ether	15.3	0.50	ug/l	15.0	ND	102	80-115	0	15	
ert-Butyl alcohol	170	20	u	143	ND	119	75-120	4	25	
Di-isopropyl ether	16.1	0.50	u	15.1	2.0	93	75-125	4	15	
Ethyl tert-butyl ether	14.5	0.50		15.0	ND	97	75-130	5	25	
Methyl tert-butyl ether	6.83	0.50	11	7.02	ND	97	65-125	0.9	20	
Surrogate: 1,2-Dichloroethane-d4	4.63		и	5.00		93	60-135			
Surrogate: 4-Bromofluorobenzene	4.61		"	5.00		92	70-120			
Surrogate: Dibromofluoromethane	4.51		"	5.00		90	65-130			

Sequoia Analytical - Morgan Hill

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-3567

Project Number: 7-3567 Project Manager: Paula Sime MPE1464 Reported: 06/21/06 17:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Evaluation		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6F07003 - EPA 5030B P/T

Matrix Spike Dup (6F07003-MSD1)	Source	e: MPE1465-01	Prepared &	Analyzed: 06/07/0		
Surrogate: Toluene-d8	4.57	ug/l	5.00	91	70-120	

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project: Exxon 7-3567
Project Number: 7-3567
Project Manager: Paula Sime

MPE1464 Reported: 06/21/06 17:54

Notes and Definitions

The surrogate recovery for this sample is above control limits due to interference from the sample matrix.

HC-12 Hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.

HC-11 The result for this hydrocarbon is elevated due to the presence of single analyte peak(s) in the quantitation range.

CF1 Primary and confirmation results varied by greater than 40% RPD.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

CHAIN OF CUSTODY RECORD

Page ____ of ____

Test/America	Co	Consultant Name: Environmental Resolutions, Inc. Address: 601 North McDowell Blvd.							Mobil	Engl	neer	Jen	nifer	Sed	lache	k					
I LOUL MILITURE		Address	: 601 North M	cDowell Bl	lvd.			Tele	phon	e Nui	nber	(510	547-	8196							
408-776-9600		City/State/Zip	: Petaluma, C	alifornia	·				A	Ссоц	nt #:	1022	28								
Morgan Hill Division	P	roject Manage	r Paula Sime							F	O#:										
885 Jarvis Drive	Telep	shone Number	: <u>(707)</u> 766-20	000					Fa	cility	ID#	<u>7-3</u> 5	567								
Morgan, Hill, CA 95037		RI Job Number					_		. 0	Sloba	I ID#	T060	0191	822							
ExoniMobil		er Name: (Print pler Signature			.ev		-								a Roa lifornia		566				_
TAT	PROVIDE:	Special Instru	ıctions:					Γ	Matrix	,					Δn:	alyze	Eor:				
24 hour 72 hour 48 hour 96 hour	EDF Report	Use Sillca gel 7 CA Oxys = l Set TBA detec	MTBE, DIPE, tion limit at or	ETBE, EDI	B, TBA, TAI ug/l.						8015B	8015B	8021B	8021B	8260B						
✓ 8 day Sample ID / Descript	lon	DATE	DATE TIME COMP GRAB (VOA/liter)						Soil	Vapor	TPHd 80	TPHg 80	BTEX 80	MTBE 80	7 CA Oxys						
MW1	-0/	5-30-06									×	X	X	X	X				\dashv	7	
MW2	-02	1	1300	•		HCL/none	. 6/2	X			Х	Х	Х	Х	X					1	
MW3	-03		1510			HCL/none	6/2	Х			X	Х	Х	Х	Х						
MW4	-04		1455			HCL/none	6/2	х			Х	Х	Х	Х	X						
MW5	-05		1415			HCL/none	6/2	Х			Х	Х	Х	Х	х						
MW6	-06		1400			HCL/none	6/2·	X]	Х	Х	Х	х	Х						
	-07.		1340	_		HCL/none	6/2	Х			Х	X	Х	х	Х					T	
MW8	-08		1320		_	HCL/none	6/2	X			Х	Х	X	X	X				\neg	\top	
QCBB	-09	<u></u>	1255			HCL/none	6/2	х			Н	0	L	О							
	<u></u>																				
												ĺ									\Box
Relinquished by: Shawn Baker	5/	Date 5-30-06 Time 800 Received by: Samp 5/31/06 1400 Aug					Larama	· ·	-	•	00			Temp Samp	le Co	re Up ntaine	on Re	eceipt:	yes	*	
quished by:		- Date 4-61-04 Time 1434 Received by TestA						voAs Free of Headspace? Yes													

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: REC. BY (PRINT) WORKORDER:	ORI SMPEN464			DATE REC'D AT LAB: 5/3//06 TIME REC'D AT LAB: 1400 DATE LOGGED IN: 5/3//04				For Regulatory Purposes? DRINKING WATER YES / NO WASTE WATER YES / NO		
CIRCLE THE APPROP	RIATE RESPONSE	LAB SAMPLE#	DASH #	CLIENT ID	DESCRIPTION	PRESERV ATIVE	рН	SAMPLE MATRIX		REMARKS: CONDITION (ETC.)
1 O . t. t. O . 1/o)	Present / Absent			HW-1	6 VOAS	HU		W	5130/06	
1. Custody Seal(s)	Intact / Broken*			V	2XILA-			 	 \	
2. Chain-of-Custody	Present DAbsent*		<u> </u>	MW-2	Reme as	<u> </u>		 		
3. Traffic Reports or			<u> </u>		MEDI	<u> </u>		 }	 	
Packing List:	Present / Absent		<u> </u>	14)		11-0		 	 - 	
4. Airbili:	Airbill / Sticker		<u> </u>	MW-5	6 10AS	ACL		 	 - 	
	Present / Absent)	<u> </u>		10.1	1LA	 		 	 	
5. Airbiil#:			ļ	MW-6	pane as			 	1	
6. Sample Labels:	Present Absent	<u> </u>	∔	1 3 8	MW-1					
7. Sample IDs:	Listed / Not Listed		 	77				1		
	on Chain-of-Custody	 	- −	CCBB J						
8. Sample Condition:	Intact)/ Broken* / Leaking*					 				
9. Does information on	chain-of-custody,		<u> </u>			 		 		
traffic reports and sa			 		·	 		 	 	
agree?	(Yes) No*		ļ		 - ==	-		 	 	
10. Sample received withir	1							 	 	
hold time?	Yes No*		-			 -		`		
11. Adequate sample volu	me 🔿				1 0/-					
received?	(Yes/I No*				 /	 	 	-		
12. Proper preservatives u	ised? (es/ No*		——		 		 	†	 	
13. Trip Blank / Temp Blai	nk Received?	ļ	 	 /	 	- -	 	 	 	
(cîrcle which, if yes)	Yes (No)			 	 ` 	 		+		
14. Read Temp:	4.4			//_	 	 	 	 	 	
Corrected Temp:	4.4		 	 /	 	 -	 	 	1	
Is corrected temp 4 +	/-2°C? (Yes) No**			 /	 	 		_	-	
(Acceptance range for samples	requiring thermal pres.)		┦	 				 		
**Exception (if any): MET	ALS / DFF ON ICE				+	 	 			
or Problem COC		1		CONTACT PROJECT	1	D ATTACL	DECO	DD OF PI	MOLITION	

RL Revision 7 'aces Rev 5 (07/13/04) - 07/40/05

Page _____ of ____

ATTACHMENT C WASTE DISPOSAL DOCUMENTATION

2431 13X

STRAIGHT BILL OF LADING—SHORT FORM—Original—Not Negotiable

SHIPPER NO. _B 021089

CARRIER NO. ___

NVIRONME AME OF CARE	NTAL RESOLUTIONS	(SCAC) DATE: 5-30-06								
O ONSIGNEE TREET	ROMIC ENVIRONMENTAL TECHN. 2081 BAY ROAD EAST PALO ALTO, CA. 94303	CORP.	FROM SHIPPER EXXON MOBIL CORPORATION C/O ERI STREET 601 N. MCDOWELL BOULEVARD							
ESTINATION	STATE	ZiP	ORIGIN	PETAI	LUMA, CA. 9	4954 STAT	E ZIP			
OUTE:	6	AD 981	4110	85	U.S. DOT Haz		VEHICLE NUM	MBER		
NO. HIPPING O UNIT HM	Description of articles, spe	cial marks, a	nd excep	tions	*WEIGHT (Subject to correction)	Class or Rate (F	CHARGES For carrier use only)	Che colu		
	GROUNDWATER MONITORING W PROFILE: 301560 HANDLING CODE:	/ uly Laz NO_1	NATER	15/0J		950	ral			
EMIT C.O.D. T	0:				<u></u>	C.O.D. Fe	 ee:	L.		
DDRESS:			COD AMT:	\$	PREPAID	PREPAID				
eight". ote Where the recifically in writin he agreed or deci		e delivered to nsignor shall s il not make de er lawful char		this the CHARGE of Figure 1 control of the control	CHARGES: \$ FREIGHT CHARGES Freight Prepaid Check box except when If charges box at right to be					
or any of said prop aditions not prohibit	the classifications and tariffs in effect on the date of this Bill of and destined as indicated above, which said company (the ways to its usual place of delivery at said destination, if on its ownerty over all or any portion of said route to destination, and as ed by law, whether printed or written, herein contained (as spections).	road or its own water I to each party at any tir diffed in Appendix B to F	escribed above in derstood through line, otherwise to me interested in Part 1035) which	deliver to another carri all or any of said prope are hereby agreed to b	ier on the route to sale orty, that every service or the shipper and ex-	ents and condition of	of contents of packages			
III IO IO COIDIY	that the above-named materials are properly cludition for transportation according to the applic	accilian decombo	d pookogod		_1					
HIPPER:	EXXON MOBIL REFINING & SUPPI	LIES	CARRIE	ENVIRONMI R:	ENTAL RESC	DLUTIONS	1			
<u>:R: </u>	iguest Exxon [/lobil		PER:	11/	11/1	91				
	RESPONSE NUMBER: \$00-766-4248		DATE:	6 - 5- 6 AT ALL TIMES THE TORAGE INCIDENT	HAZARDOUS MA	ATERIAL IS IN T	RANSPORTATION			