

Ree'd 10/13/94

October 7, 1994

Ms. Eva Chu Alameda County Health Agency 80 Swan Way, Room 200 Oakland, California 94621

Dear Ms. Chu:

SUBJECT: JUNE 1994 QUARTERLY GROUND WATER MONITORING AND INTERIM REMEDIATION REPORT FOR THE FORMER ALAMEDA SERVICE STATION A-528, 7608 AMADOR VALLEY BOULEVARD, DUBLIN, CALIFORNIA

Enclosed please find the above-captioned report, and a copy of a Bill of Lading for the disposal of ground water generated during purging of the monitoring wells. If you should have any questions, please do not hesitate to call Brad Wright at (510) 748-5697.

Sincerely,

Brad Wright

Senior Geoscientist

Project Manager

Enclosures

David Watts

Environmental Scientist

JUNE 1994 QUARTERLY GROUND WATER
MONITORING AND INTERIM
REMEDIATION REPORT FOR THE
FORMER ALAMEDA
SERVICE STATION A-528
TARGET DUBLIN
7608 AMADOR VALLEY BOULEVARD
DUBLIN, CALIFORNIA

September 6, 1994

Prepared For:

Target Stores
33 South Sixth Street
Minneapolis, Minnesota 55440-1342

Prepared By:

McLaren/Hart Environmental Engineering 1135 Atlantic Avenue Alameda, California 94501 (510) 521-5200

Project No: 04.0122629.000

The Information Contained Herein Is Submitted in Partial Fulfillment of Contract No. 465 For the Sole and Exclusive Use of Target Stores and Shall Not Be Disclosed or Furnished to Any Other Entity, Corporation, or Third Party, For Purposes Outside the Specific Scope and Intent of This Contract Without the Express Written Consent of McLaren/Hart.

Reviewed By

Written 1

INTRODUCTION

This report presents the June 1994 quarterly ground water monitoring results for the former Alameda Service Station A-528, located at 7608 Amador Valley Boulevard in Dublin, California ("the site"). This report was prepared in accordance with McLaren/Hart's quarterly ground water sampling and interim remediation measure plan (McLaren/Hart, 1993a) and followed previously presented recommendations (McLaren/Hart, 1993b). These recommendations included extracting ground water from MW-2 as part of quarterly interim remediation and conducting four sampling events between September 1993 and June 1994. This work was approved by Ms. Eva Chu of the Alameda County Health Care Services Agency, Department of Environmental Health, Hazardous Materials Division in a September 27, 1993 letter.

OBJECTIVES AND SCOPE OF WORK

A site location map is presented as Figure 1 and a site map showing monitoring well locations is included as Figure 2. Quarterly monitoring of site wells is being conducted to monitor lateral extent of petroleum hydrocarbons in shallow ground water beneath the site, while ground water removal from MW-2 serves as interim remediation of impacted ground water from the well currently containing the highest detected concentration of benzene.

The work associated with the June 1994 quarterly monitoring event included: sampling monitoring wells MW-2, MW-3, MW-4, MW-5, and MW-6 for the presence of gasoline-related constituents; collecting water elevations from six monitoring wells (MW-1 through MW-6); and extracting 1,200 gallons of impacted ground water from monitoring well MW-2. As specified in a letter dated December 18, 1992 from the Alameda County Health Care Services Agency,

well MW-3 is scheduled for annual sampling. MW-3 was therefore sampled during the June 1994 quarterly sampling event.

Groundwater Elevations and Flow Directions

Groundwater surface elevations were measured on June 16, 1994, prior to sampling and pumping activities (Table 1). These data were used to construct the June 1994 ground water contour map (Figure 2). The inferred groundwater flow direction is generally toward the east and is apparently influenced by the presence of more permeable materials in the excavation area causing a small ground water mound to form. This flow direction is consistent with historic ground water flow directions. Based on the observed contour pattern, MW-2 and MW-5 appear to be downgradient, while MW-4 is down to cross-gradient of the former excavation area.

The static depth to ground water ranges from 4.93 to 6.58 feet below ground surface or 334.68 to 335.94 feet above mean sea level. The average hydraulic gradient is approximately 0.011 feet/foot. The June water level measurements indicate that ground water levels have decreased in all wells except MW-5 since March 1994. These decreases range from 0.01 to 0.11 feet, while the water level at MW-5 was unchanged. The average decrease was .04 feet. Historic ground water elevation data are presented in Table 2.

Groundwater Sampling Activities

Groundwater samples were collected from MW-3, MW-4, MW-5 and MW-6 on June 16, 1994, and from MW-2 on June 17, 1994. Prior to sampling MW-3, MW-4, MW-5, and MW-6, four casing volumes were purged from each well. A centrifugal pump was used to purge MW-2, MW-3, MW-4, and MW-5. A peristaltic pump was used to purge MW-6. Temperature, pH, electrical conductivity, and turbidity were measured after each casing volume was removed. After all parameters had stabilized, with the turbidity at or below 6.9 Nephelometric Turbidity Units (NTUs), sampling was performed using a disposable bailer. At MW-2, in conjunction with the interim remediation, 125 casing volumes were removed prior to sample collection and parameters were collected during the last four casing volumes. Sampling Event Data Sheets are enclosed as Appendix I.

Ground water samples were stored in a container filled with ice and delivered to MBT Environmental Laboratories, a state-certified laboratory located in Rancho Cordova, California. A chain-of-custody record was completed during sampling and accompanied each sample shipment to the laboratory. The samples were submitted for analysis by EPA Method 5030 (LUFT) for total petroleum hydrocarbons as gasoline (TPH/G) and for benzene, toluene, ethyl benzene, and xylenes (BTEX) analyses by EPA Method 8020. Trip blanks were included in the shipments to the laboratory to be analyzed for TPH/G and BTEX.

Groundwater Analytical Results

Table 3 and Figure 3 present the June 1994 sampling event analytical results. Consistent with

previous results, water samples collected at monitoring well MW-3 did not contain

concentrations of either TPH/G or BTEX at or above the reporting limit.

Benzene (14 ppb), ethylbenzene (4.1 ppb), total xylenes (4.9 ppb), and TPH/G (95 ppb) were

detected in the sample collected from MW-2. These results represent an increase from the

March 1994 sampling event. Toluene at or above the reporting limits was not detected in the

sample collected from MW-2.

Benzene (1.5 ppb) was detected in the sample collected from MW-5. This was the first

detection of a target analyte in MW-5. No other chemical at or above the reporting limits were

detected.

At MW-4, located adjacent to the tank excavation, there were no detections of TPH/G or BTEX

at or above the reporting limits.

Benzene (0.79 ppb), ethylbenzene (5.9 ppb), total xylenes (8.7 ppb), and TPH/G (120 ppb) were

detected in the sample collected from MW-6. These levels are generally consistent with recent

analytical results.

The trip blank sample did not contain any contaminants above the reporting limits. The

Analytical Data Sheets and Chain-of-Custody Records for the ground water samples are included

as Appendix II.

The DHS Maximum Contaminant Levels (MCLs) for BTEX compounds in drinking water include: 1 ppb benzene; 680 ppb ethyl benzene; and 1,750 ppb total xylenes. The Federal MCL for toluene is 1,000 ppb. There is no state action level for TPH/G. Benzene was detected in ground water from monitoring wells MW-2 and MW-5 at concentrations in excess of the MCL. However, ground water beneath the site is reportedly not used for drinking water or other beneficial uses, and the MCL concentrations are presented only for purposes of comparison.

Interim Remediation

The most recent interim remediation at the site occurred on June 16 and 17, 1994, when 1,200 gallons were removed from MW-2 at an average pumping rate of 1.5 gpm. Depth to ground water was measured at the six wells during each day of interim remediation, once before pumping started, then again just before pumping stopped for the day (Table 4). Three remedial efforts (September 1993, December 1993 and March 1994) have previously occurred at MW-2. Approximately 3,440 gallons of water were extracted during those three episodes. Changes in water elevations at site wells associated with extraction at MW-2 are shown on Table 4.

Prior to this remedial effort, ten interim remediation episodes occurred at MW-6 between October 1991 and June 1993. Changes in ground water elevations at the monitoring wells as a result of extracting ground water from MW-6 during this time period are shown in Table 5. A total of approximately 3,300 gallons of ground water were extracted during the ten interim remediation episodes, at an average pumping rate of 0.9 gallons per minute (gpm).

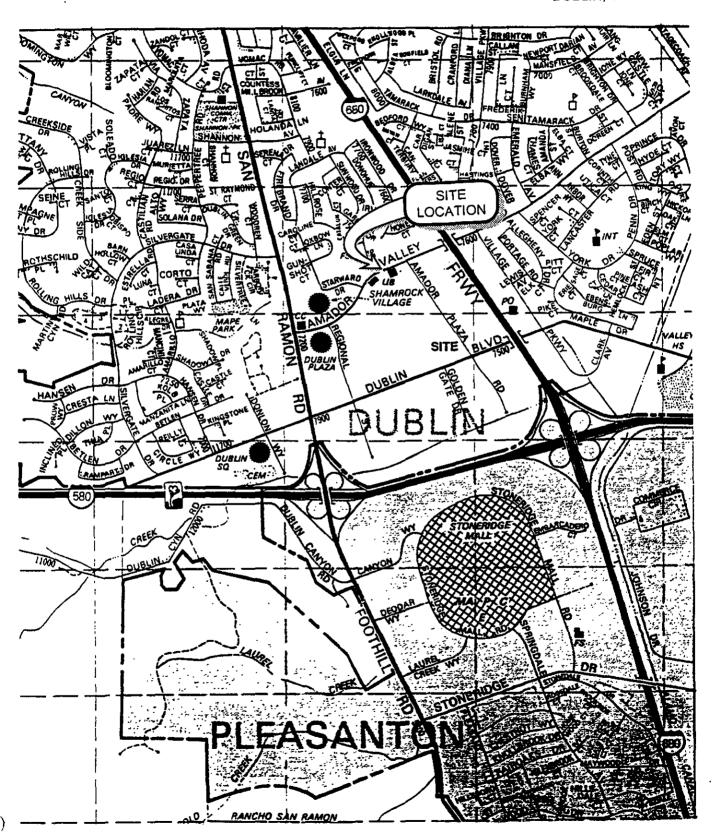
As shown on Tables 4 and 5, the extraction of ground water from MW-2 and MW-6 typically reduces the water level in each of the six wells. The exception to this was in October and

December 1992, when water levels rose during interim remediation pumping as a result of excessive rainfall during the remediation.

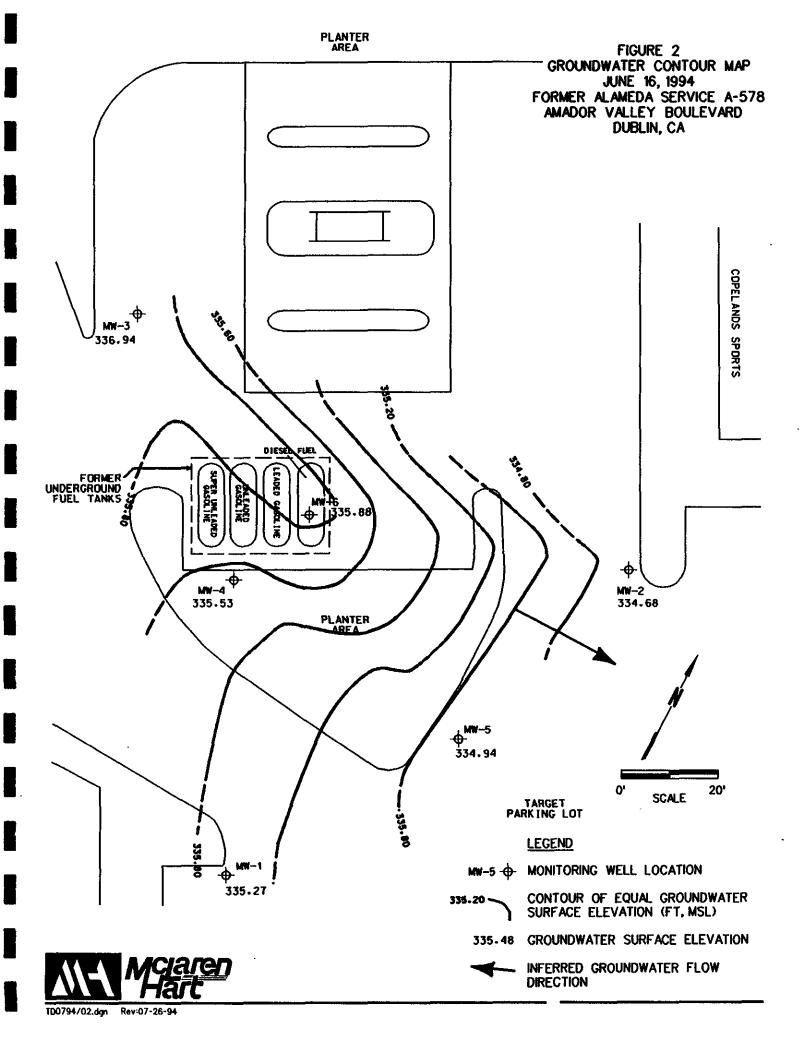
The June 1994 change in water level measurements resulting from extraction of ground water from MW-2 (Table 4) reveal that the greatest response during the first day of pumping was at MW-5, MW-6 and MW-4 (decreases of 0.34, 0.31, and 0.25 feet, respectively). Measurements collected after the second day of pumping showed that MW-5 (0.32 feet) and MW-6 (0.24 feet) registered the most response. These responses indicate the hydraulic connections of the aquifer downgradient from the former tank location.

CONCLUSIONS

The following conclusions are based on data collected to date:


- Free-floating petroleum product was not observed in any of the wells.
- Consistent with previous sampling results, gasoline-related constituents were not detected in up-gradient well MW-3.
- Concentrations of gasoline-related constituents detected in wells MW-2 and MW-6 increased from those detected during the March 1994 quarterly. Concentrations of benzene were observed in well MW-5 for the first time.
- As shown on Figure 2, the apparent ground water flow direction at the site is generally to the east, consistent with historic flow directions.
- Groundwater elevations decreased an average of 0.04 feet since March 1994.
- The interim remediation at MW-2 removed approximately 1,200 gallons of ground water at a flow rate of 1.5 gpm and appears to be capable of effectively lowering water levels at other wells on-site.

Future work at the site consists of:


- Ground water sampling as scheduled in September 1994;
- As per the request of Ms. Eva Chu of the Alameda County Health Care Services Agency, one well sample will be analyzed for total dissolved solids. The interim remediation will be discontinued in order to evaluate what effect such cessation will have on site ground water quality.

REFERENCES

- Alameda County Health Care Service Agency, 1992, "Revision of Quarterly Monitoring Program at the former Alameda Service Station A-558, 7608 Amador Valley Boulevard, Dublin", Letter to McLaren/Hart, December 18, 1992
- McLaren/Hart, 1993a, "Proposal to Conduct Quarterly Ground Water Sampling and Interim Remediation at the Target Store T-328 Dublin, California", September 13, 1993
- McLaren/Hart, 1993b, "December 1993 Quarterly Ground Water Monitoring and Interim Remediation Report for the Former Alameda Service Station A-528", September 13, 1993

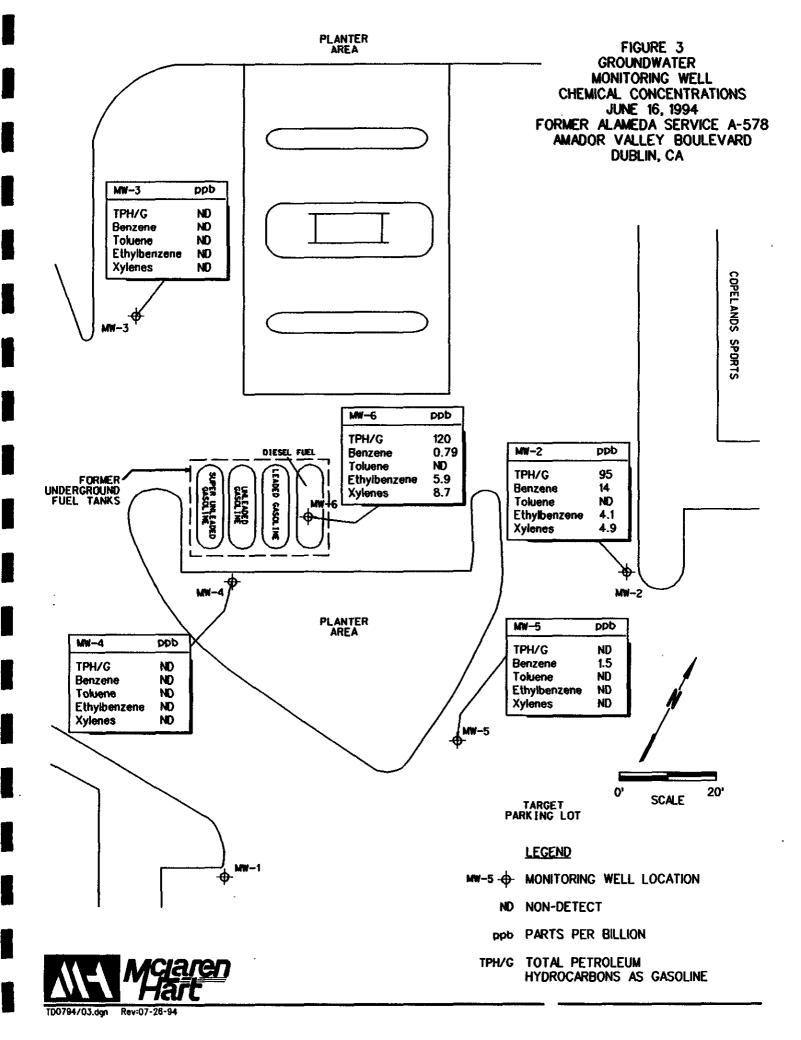


TABLE 1

WELL CONSTRUCTION DETAILS AND GROUND WATER SURFACE ELEVATIONS
FORMER ALAMEDA SERVICE STATION, A-578
DUBLIN, CALIFORNIA

	WELL DESIGNATION	SCREENED INTERVAL (feet below grade)	GROUND SURFACE ELEVATION (MSL)*	SCREENED INTERVAL (MSL)	TOP OF CASING ELEVATION (MSL)	STATIC WATER LEVEL 06/16/94 (feet below TOC)	GROUND WATER ELEVATION 06/16/94 (MSL)
	MW-1	5-20	340.30	335.30 - 320.30	340.20	4.93	335.27
	MW-2	5-20	340.52	335.52 - 320.52	340.27	5.59	334.68
_	MW-3	5-20	341.67	336.67 - 321.67	341.00	5.06	335.94
	MW-4	5-20	342.31	337.31 - 322.31	342.11	6.58	335.53
	MW-5	5-20	340.52	335.52 - 320.52	340.09	5.15	334.94
	MW-6	4.5 - 14.5	341.13	336.63 - 326.63	340.81	4.93	335.88

*Feet above mean sea level

TABLE 2
SUMMARY OF GROUND WATER ELEVATION DATA FORMER ALAMEDA SERVICE STATION A-578 DUBLIN, CALIFORNIA

VELL I.D.	TOP OF CASING ELEVATION (MSL)*	DATE MEASURED	DEPTH TO WATER (ft)	WATER ELEVATIONS (MSL)	CHANGE SINCE LAST READING (ft)
MW-1	340.20	02/28/91	5.00	335.20	
		06/14/91	5.53	334.67	-0.59
		09/26/91	5.97	334.23	-0.38
		12/30/91	5.50	334.70	0.47
		03/26/92	4.65	335.55	0.85
		06/23/92	4.92	335.28	-0.27
		09/24/92	5.10	335.10	-0.18
		12/29/92	4.89	335.31	0.21
		03/24/93	3.57	336.63	1.32
			3.79		
		06/28/93		336.41	-0.22
		09/28/93	4.24	335.96	-0.45
		12/16/93	4.72	335.48	-0.48
		03/28/94	4.90	335.30	-0.18
		06/16/94	4.93	335.27	-0.03
W-2	340.27	02/28/91	5.46	334.81	
		06/14/91	5.90	334.37	-0.44
		09/26/91	6.54	333.73	-0.64
		12/30/91	5.83	334.44	0.71
		03/27/92	5.35	334 .9 2	0.48
		06/23/92	5.69	334.58	-0.34
		09/24/92	5.70	334.57	-0.01
		12/29/92	5.52	334.75	0.18
		03/24/93	4.48	335.79	1.04
		06/28/93	4.67	335.60	-0.19
		09/28/93	5.01	335.26	-0.34
		12/16/93	5.40	334.87	-0.39
		03/28/94	5.58	334.69	-0.18
		06/16/94	5.59	334.68	-0.01
W-3	341.00	02/28/91	5.61	335.39	
	212100	06/14/91	5.40	335.60	0.21
		09/26/91	6.29	334.71	-0.89
		12/30/91	5.75	335.25	0.54
		03/26/92	4.58	336.42	1.17
		06/23/92	4.36 5.27	335.73	-0.69
		09/24/92	5.47	335.53	-0.20
		12/29/92	5.47 5.08	335.33 335.92	-0.20 0.39
		03/24/93	3.83	333.92 337.17	1.25
				337.17 336.98	
		06/28/93	4.02		-0.19
		09/28/93	4.42	336.58	-0.40
		12/16/93	4.97	336.03	-0.55
		03/28/94	4.99	336.01	-0.02
		06/16/94	5.06	335.94	-0.07

TABLE 2
SUMMARY OF GROUND WATER ELEVATION DATA FORMER ALAMEDA SERVICE STATION A-578
DUBLIN, CALIFORNIA
(continued)

WELL I.D.	TOP OF CASING ELEVATION (MSL)*	DATE MEASURED	DEPTH TO WATER (ft)	WATER ELEVATIONS (MSL)	CHANGE SINCE LAST READING (ft)
MW-4	342.11	02/28/91	7.01	335.10	
		06/14/91	7.01	335.10	0.00
		09/26/91	7.81	334.30	-0.80
		12/30/91	7.17	334.94	0.64
		03/27/92	6.44	335.67	0.73
		06/23/92	6.70	335.41	-0.26
		09/24/92	6.84	335.27	-0.14
		12/29/92	6.59	335.52	0.25
		03/24/93	5.38	336.73	1.21
		06/28/93	5.52	336.59	-0.14
		09/28/93	5.89	336.22	-0.37
		12/16/93	6.51	335.60	-0.62
		03/28/94	6.54	335.57	-0.02
		06/16/94	6.58	335.53	-0.04
		00/10/24	0.50	333.33	-0.04
MW-5	340.09	06/14/91	5.81	334.28	
		09/26/91	5.92	334.17	-0.11
		12/30/91	5.52	334.57	0.40
		03/26/92	4.80	335.29	0.72
		06/23/92	5.23	334.86	-0.43
		09/24/92	5.07	335.02	0.16
		12/29/92	5.04	335.05	0.03
		03/24/93	3.99	336.10	1.05
		06/28/93	4.11	335.98	-0.12
		09/28/93	4.50	335.59	-0.39
		12/16/93	4.99	335.10	-0.49
		03/28/94	5.15	334.94	-0.16
		06/16/94	5.15	334.94	0.00
	212.21	00/06/04			
MW-6	340.81	09/26/91	6.45	334.36	
		12/30/91	5.71	335.10	0.74
		03/27/92	5.03	335.78	0.68
		06/23/92	5.38	335.43	-0.35
		09/24/92	5.57	335.24	-0.19
		12/29/92	5.22	335.59	0.35
		03/24/93	3.86	336.95	1.36
		06/28/93	3.95	336.86	-0.09
		09/28/93	4.30	336.51	-0.35
		12/16/93	5.05	335.76	-0.75
		03/28/94	4.82	335.99	0.23
		06/16/94	4.93	335.88	-0.11

^{*} MSL = Mean Sea Level

TABLE 3 ANALYTICAL RESULTS OF GROUND WATER SAMPLES (ppb) FORMER ALAMEDA SERVICE STATION, A-578 DUBLIN, CALIFORNIA

WELL DESIGNATION	<u>DATE</u>	TPH/G	TPH/D	BENZENE	TOLUENE	ETHYL BENZENE	XYLENES TOTAL
MW-1	2/91	< 50	<500	< 0.5	< 0.5	< 0.5	<0.5
	6/91	< 50	_	< 0.5	< 0.5	< 0.5	< 0.5
	9/91	< 50		< 0.5	< 0.5	< 0.5	< 0.5
	12/91	< 50		< 0.5	< 0.5	< 0.5	< 0.5
	3/92	< 50	_	< 0.3	< 0.3	< 0.3	< 0.3
	6/92	< 50		< 0.3	< 0.3	< 0.3	< 0.3
	9/92	<50		< 0.3	< 0.3	< 0.3	< 0.3
	3/94	<50		< 0.3	< 0.3	< 0.3	< 0.3
MW-2	2/91	50	< 500	2.0	0.8	1.1	5.8
	6/91	51	-	6.6	< 0.5	1.1	1.33
	9/91	< 50	_	5.0	< 0.5	0.64	< 0.5
	12/91	<50		6.1	< 0.5	< 0.5	<0.5
	3/92	<50		3.6	< 0.5	< 0.5	< 0.5
	6/92	<50		9.5	< 0.3	< 0.3	< 0.3
	9/92	<50	-	1.3	< 0.3	< 0.3	< 0.3
	12/92	150		35 ^b	0.81	4.0	3.2
	3/93	< 50		3.2	<0.3	< 0.3	0.86
	6/93	<50		17.0 ^b	< 0.3	0.93	0.41
	9/93	81		5.0 ^b	< 0.3	3.8	4.06
	12/93	< 50	_	0.53	< 0.3	< 0.3	< 0.3
	3/94	67		9.2	0.47	2.5	4.40
	6/94	95		14.0	< 0.5	4.1	4.90
MW-3	2/91	<50	<500	< 0.5	< 0.5	< 0.5	<0.5
	6/91	< 50		< 0.5	< 0.5	< 0.5	< 0.5
	9/91	< 50		< 0.5	< 0.5	< 0.5	< 0.5
	12/91	< 50		< 0.5	< 0.5	< 0.5	< 0.5
	3/92	< 50		< 0.3	< 0.3	< 0.3	< 0.3
	6/92	< 50	_	< 0.3	< 0.3	< 0.3	< 0.3
	9/92	< 50		< 0.3	< 0.3	< 0.3	< 0.3
	6/94	<50		< 0.5	<0.5	< 0.5	<0.5
MW-4	2/91	6,000	<500	680	<20	160	250
	6/91	6,100		680	<25	150	<25
	9/91	< 50		100	< 0.5	45	8.1
	12/91	180		6.4	<1.0	16	25.8
	3/92	560		120	6.0	5.0	< 0.5
	6/92	< 50		< 0.3	< 0.3	< 0.3	< 0.3
	9/92	< 50		< 0.3	< 0.3	< 0.3	< 0.3
	12/92	<50		0.92	< 0.3	< 0.3	< 0.3
	3/93	< 50		4.3	< 0.3	0.98	< 0.3
	6/93	<50		2.1	< 0.3	< 0.3	0.31
	9/93	<50		2.8	< 0.3	< 0.3	< 0.3
	12/93	< 50		1.0	< 0.3	< 0.3	< 0.3
	3/94	460 ⁶		3.2^{b}	<3.0	45 ^b	19 ^b
	6/94	< 500°		<5°	<5°	<5°	<5°

TABLE 3

ANALYTICAL RESULTS OF GROUND WATER SAMPLES (ppb) FORMER ALAMEDA SERVICE STATION, A-578 DUBLIN, CALIFORNIA (Continued)

WELL DESIGNATION	<u>DATE</u>	<u>TPH/G</u>	TPH/D	BENZENE	TOLUENE	ETHYL <u>BENZENE</u>	XYLENES	TOTAL
MW-5	6/91	<50		< 0.5	< 0.5	< 0.5	< 0.5	
	9/91	<50		< 0.5	< 0.5	< 0.5	< 0.5	
	12/91	< 50	_	< 0.5	< 0.5	< 0.5	< 0.5	
	3/92	<50		< 0.3	< 0.3	< 0.3	< 0.3	
	6/92	<50		< 0.3	< 0.3	< 0.3	< 0.3	
	9/92	< 50		< 0.3	< 0.3	< 0.3	< 0.3	
	12/92	<50		< 0.3	< 0.3	< 0.3	< 0.3	
	3/93	<50		< 0.3	< 0.3	< 0.3	< 0.3	
	6/93	< 50	<u></u>	< 0.3	< 0.3	< 0.3	< 0.3	
	9/93	<50		< 0.3	< 0.3	< 0.3	< 0.3	
	12/93	<50		< 0.3	< 0.3	< 0.3	< 0.3	
	3/94	< 50		< 0.3	< 0.3	< 0.3	< 0.3	
	6/94	<50		1.5	< 0.5	< 0.5	< 0.5	
MW-6	9/91	2,300		760	11	360	236	
	10/91	1,900		230	<5	140	12.1	
	12/91	2,500	< 500	360	< 50°	260	<50°	
	3/92	2,600	< 500	400	< 50°	280	< 50°	
	6/92	1,500	_	220	<3 ^b	190	<3b	
	9/92	< 480 ^b		28	<3 ^b	120	<3 ^b	
	12/92	250		16 ^b	< 0.3	33 ^b	16.4	
	3/93	<50	< 500	< 0.3	< 0.3	0.37	0.88	
	6/93	< 50		< 0.3	< 0.3	0.72	1.48	
	9/93	230	-	0.46	< 0.3	6.4	12.6	
	12/93	<50		2.5	< 0.3	2.6	3.5	
	3/94	45		0.34	< 0.3	2.2	2.2	
	6/94	120		0.79	< 0.5	5.9	8.7	

The analysis was run at a 1:100 dilution to bring target analytes within linear working range of the GC.
 The analysis was run at a 1:10 dilution to bring target analytes within linear working range of the GC.
 The analysis was run at a 1:10 dilution due to the presence of non-target analyte interferences.

⁼ Not analyzed.

TABLE 4

CHANGE IN GROUND WATER ELEVATION AT MONITORING WELLS
DURING INTERIM REMEDIATION AT MW-2
FORMER ALAMEDA SERVICE STATION A-578
DUBLIN, CALIFORNIA

			MW-1		MW-2		MW-3		MW-4		MW-5		MW-6
DATE	TIME	Depth	Change*	Depth	Change*	Depth	Change*	Depth	Change'	Depth	Change*	Depth	Change*
09-28-93	0959	4.24		5.01		4.42		5.89		4.50	···	4.30	
	1809	4.37	-0.13	12.85	-7.84	4.55	-0.13	6.09	-0.20	4.79	-0.29	4.42	-0.12
09-29-93	0809	4.30	-0.06	5.09	-0.08	4.48	-0.06	5.97	-0.08	4.61	-0.11	4.35	-0.05
	1321	4.40	-0.16	19.51	-14.50	4.57	-0.15	6.14	-0.25	4.86	-0.36	4.47	-0.17
12-16-93	0826 16 0 5	4.72 4.88	 -0.16	5.40 16.90	-11.5	4.97 5.11	 -0.14	6.51 6.71	-0.20	4.99 5.27	-0.28	5.05 5.22	 -0.17
12-17-93	0750 1326	4.86 4.94	-0.14 -0.22	5.52 17.03	-0.12 -11.63	5.10 5.18	-0.13 -0.21	6.65 6.78	-0.14 -0.27	5.11 5.34	-0.12 -0.35	5.18 5.30	-0.13 -0.25
03-28-94	0910 1500	4.90 5.00	 -0.10	5.58 14.44	 -8.86	4.99 5.11	 -0.12	6.54 6.71	 -0.17	5.15 5.41	 -0.26	4.82 4.99	 -0.17
03-29-94	0756 1502	4.93 5.01	-0.03 -0.11	5.63 18.18	-0.05 -12.60	5.02 5.12	-0.03 -0.13	6.57 6.71	-0.03 -0.17	5.17 5.42	-0.02 -0.27	4.86 5.03	-0.04 -0.21
06/16/94	1014 1835	4.93 5.09	 -0.16	5.59 19.62	-14.03	5.06 5.25	 -0.19	6.58 6.83	 -0.25	5.15 5.49	-0.34	4.93 5.24	- 0 .31
06/17/94	0829 1316	5.01 5.08	-0.08 -0.15	5.67 19.65	-0.08 -14.06	5.15 5.20	-0.09 -0.14	6.68 6.79	-0.10 -0.21	5.26 5.47	-0.11 -0.32	5.05 5.17	-0.12 -0.24

*NOTE:

Changes in water elevation are measured from the initial depth to ground water on the first day of pumping. Groundwater was pumped from MW-2 at approximately 1.5 gpm during June 1994.

TABLE 5

CHANGE IN GROUND WATER ELEVATION AT MONITORING WELLS DURING INTERIM REMEDIATION AT MW-6 FORMER ALAMEDA SERVICE STATION A-578 DUBLIN, CALIFORNIA (continued)

			MW-1	MW-2			MW-3		MW-4]	MW-5		MW-6
DATE	TIME	Depth	Change	Depth	Change								
10-17-91	1000	6.19		6.74		6.40		7.96		წ.28		6.65	
	1600	6.24	-0.05	6.80	-0.06	6.59	-0.19	8.10	-0.14	6.45	-0.17	11.26	-4.61
10-18-91	0900	6.24	-0.05	6.82	-0.08	6.55	-0.15	8.04	-0.08	6.40	-0.12	6.72	-0.07
	1600	6.28	-0.09	6.84	-0.10	6.64	-0.24	8.13	-0.17	6.48	-0.20	12.80	-6.15
12-30-91	0800	5.50		5.83		5.75		7.17		5.52		5.72	
12-31-91	1500	5.69	-0.19	6.00	-0.17	5.83	-0.08	7.29	-0.12	5.68	-0.16	7.36	-1.65
3/26/92	1000	4.65		5.35		4.58		6.44		4.80		5.03	
	1500	4.82	-0.17	5.43	-0.08	5.01	-0.43	6.70	-0.26	5.15	-0.35	12.72	-7.69
3/27/92	0845	4.74	-0.09	5.41	-0.06	4.95	-0.37	6.52	-0.08	5.01	-0.21	5.10	-0.07
	1400	4.80	-0.15	5.48	-0.13	5.04	-0.46	6.72	-0.28	6.11	-1.31	13.12	-8.07
6/23/92	0930	4.92		5.69		5.27		6.70		5.23		5.38	
	1830	5.04	-0.12	5.82	-0.13	5.38	-0.11	6.95	-0.25	5.39	-0.16	13.70	-8.32
6/24/92	0900	5.04	-0.12	5.76	-0.07	5.33	-0.06	6.84	-0.14	5.34	-0 .11	5.48	-0.10
	1130	5.09	-0.17	5.79	-0.10	5.38	-0.11	6.95	-0.25	5.39	-0 .16	9.77	-4.39
9/24/92	0845	5.10	***	5.70		5.47	~-	6.84		5.07		5.57	
- · 	1530	5.33	-0.23	5.91	-0.21	5.68	-0.21	7.16	-0.32	5.50	-0.43	13.50	-7.93

TABLE 5

CHANGE IN GROUND WATER ELEVATION AT MONITORING WELLS DURING INTERIM REMEDIATION AT MW-6 FORMER ALAMEDA SERVICE STATION A-578 DUBLIN, CALIFORNIA (continued)

		MW-1			MW-2		MW-3		MW-4		MW-5]	MW-6	
DATE	TIME	Depth	Change	Depth	Change	Depth	Change	Depth	Change	Depth	Change	Depth	Change	
9/25/92	0705	5.35	-0.25	5.98	-0.28	5.69	-0.22	7.14	-0.30	5.53	-0.46	5.79	-0.22	
	1005	5.42	-0.32	6.07	-0.37	5.76	-0.29	7.64	-0.80	5.66	-0.59	13.50	-7.93	
10/29/92	1030	5.95		6.77		6.46		8.00		6.34	-	6.65		
	1556	6.03	-0.08	6.64	0.13	6.47	-0.01	7.94	-0.06	6.21	0.13	13.16	-6.51	
11/20/92	0820	6.06		6.85		6.47		8.04		6.42		6.73		
	1325	6.22	-0.16	6.88	-0.03	6.67	-0.20	8.12	-0.08	6.48	-0.06	13.85	-7.12	
12/29/92	1150	4.89		5.52	_	5.08		6.59		5.04		5.22	_	
	1605	4.89	0.00	5.57	-0.05	5.08	0.00	6.71	-0.12	5.09	-0.05	12.25	-7.03	
12/30/92	0935	4.66	0.23	5.26	0.26	4.82	0.26	6.33	0.26	4.83	0.21	4.81	0.41	
	1420	4.72	0.17	5.31	0.21	4.92	0.16	6.54	0.05	4.93	0.11	13.90	-8.68	
3/24/93	0912	3.57		4.48		3.83	- Andrews	5.38	_	3.99		3.86	_	
	1340	3.64	-0.07	4.63	-0.15	3.97	-0.14	5.63	-0.25	4.13	-0.14	9.98	-6.12	
3/25/93	0918	3.53	0.04	4.46	0.02	3.77	0.06	5.35	0.03	3.97	0.02	3.79	0.07	
	1130	3.62	-0.05	4.53	-0.05	3.93	-0.10	5.60	-0.22	4.10	-0.11	10.36	-6.50	

TABLE 5

CHANGE IN GROUND WATER ELEVATION AT MONITORING WELLS DURING INTERIM REMEDIATION AT MW-6 FORMER ALAMEDA SERVICE STATION A-578 DUBLIN, CALIFORNIA (continued)

			MW-1		MW-2	MW-3 MW-4		MW-4	4 MW-5			MW-6	
DATE TIME		Depth	Change	Depth	Change	Depth	Change	Depth	Change	Depth	Change	Depth	Change
06-28-93	1120	3.79	_	4.67		4.02		5.52		4.11		3.95	
	1541	3.90	-0.11	4.82	-0.15	4.18	-0.16	5.77	-0.25	4.29	-0.18	8.05	-4.10
06-29-93	1032	3.77	0.02	4.59	0.08	3.99	0.03	5.50	0.02	4.04	0.07	3.87	0.08
	1347	3.85	-0.06	4.70	-0.03	4.14	-0.12	5.76	-0.24	4.19	-0.08	11.26	-7.31

*NOTE:

Changes in water elevation are measured from the initial depth to ground water on 10/17/91, 12/30/91, 3/26/92, 6/23/92, 9/24/92, 10/29/92, 11/20/92, 12/29/92, 3/24/93 and 6/28/93.

Ground water was pumped from MW-6 at approximately 0.96 gpm during June 1993.

APPENDIX I SAMPLING EVENT DATA SHEETS

0727TLS2.RPT 04.0122629.000

Page \angle of \angle

(F) PORMINDUNECT/ENTI

DIRECT READING AIR MONITORING LOG

	L ENGINEERING CORPOR				DATE: 6/16	194
ROJECT	NAME TARG	ET, Dus	BLIN		PROJECT NO.: <u>04.</u> 2	012262
Time	Location	Activity	Instrument	Substance/ Agent	Concentration	Initials
1003	mw-1	5AMPLN4	ovm	Voc	0/0 (3/13)	Mel
	MW - 3				0/0/	
	mw - 5				0/0	
1006	MW-2				14.6/0	
1007	mw - 4				0/0	
1008	mw-6	+	*	•	48.7/0	₩
· · · · · · · ·		4 1.		1/00	- (c)	12.1
	MW-1	SAMPLING	OVM	Voc	0 /0 (3/8)	M)
1827	MW-3				0 /0	
1828	mW-5	 			0/0	
	MW-2	 			0 /0	
	mw-4			1	 	+
1831	mw -6	*		<u> </u>	0/0 🖈	
				<u></u>		
						
						
						
	1					
	<u> </u>					
	0/				/	' F
	editions: CLEAR		peed: <u>7/2/9CE</u>			<u> </u>
mmenus:_	MW-2		IN Proh	ress L	uring	
SE	COND TO	UND OF	MONITO	ring		
		· · · · · · · · · · · · · · · · · ·	, <u>, , , , , , , , , , , , , , , , , , ,</u>	 -		:
	H&S Man		th and Safety Mana	ger and project file		

11-4	MGIATED

	HE	IF	1		/ · -		NDROBATA		Total parties	DATE: 6/16/94
PRO	NECT: 1476 67	. 1	2nE	سرياً	_ EV	ENT:	vujajeloje			10 10 17/15
NO.	WELL OR LOCATION		DATI			ME	MEASUREMENT	CC	3QC	COMMENTS
1	mW-1	6	16	94	10	14	4,93	51	VL	
2	MW-3	1	1		10	15	5.06		Ī.	
3	MW-5				10	17	5,15			
4	MW-Z				10	18.	5,59			
5	mw-4				10	19	6,58			
6	mw-6	+	+	+	10	20	4,93	4	7	
7										
8	mW-1	6	16	94	18	35	5.09	Si	NL	
9	mn/-3			1	18	36	5,25			
10	mW-5				18	39	5.49			
11	mw-2				18	40	19.62			Pursul IN Progress
12	mW-4				18	43	6.83			
13	mw-6	V	4	V	18	44	5,24	V	,	
14						,				
15						,				1
16.										
17										·
18					,					
19										
20										

CODES:

PRS True (fours)

PS - Preside (per

ALL SOLUTION (pun HOS)

TRP - Temperature (°C)

TRB - Turbidity (NTU) (Additional Code)

^{&#}x27;SWL - Static Water Level (Feet)

^{*}IWL - Instant Water Level; Non-Static (Feet)

OIL - Oil Level (Foot)
OWN DIA (Alley September 1)
UID - September 1)
E.O. E.O. September 2)

Page Zof Z

(I POILUDURETTAND

DIRECT READING AIR MONITORING LOG

	AL ENGINEERING CORPOR	<u></u>			DATE: 6/17	1/94
PROJECT	NAME TARK	ET, Dus	3LIN_		PROJECT NO.: 04, 0.	,
Time	Location	Activity	Instrument	Substance/ Agent	Concentration	Inițials
0822	MW-1	Sanlund	ovm	Voc	0/0 (3/8)	1/2
0823	mw - 3				0/0	
1824	mw - 3				0/0	
	mw - 2				59.1/0	
0826	mw - 4				0/0	
0827	mw-6	<u>+</u>	4	<u> </u>	0/0 +	→
1201		3.01	0.4	Vod	0/0 (3/8)	19.1
1307	MW-1	SAMPL NG	OUM	1000	0/0 (3/8)	_ww
1308	MW - 3				 	
1309				 		
1310	mw-2				0/0	
1311	7	-		—	0/0	\forall
	mw - 6		<u> </u>		0 / 0	
·· ·····						
						
			-			
				-		
ether Con	nditions: CLEAP	Wind St	need: Still	Wind Dira N	/A Temp.: 62	2F
		_	_	,		
	MW-Z	PurhiNA ND DE			UNILING	
٠, ١	-00V 100u	ND OF	_ MONI	TOILIN 9		
		C	AL and 5-f-4- ht-			•
	H&S Mana	copy to Heat ger Review	in and Saicty Mana	ger and project file Date		

	22.73	766
م. ب نه سه	HYDRODA	
20.00	(A 2 & 6 - 1) 2 5 5	

NO.	WELL OR	T					- 12 1/2 12 1/2 10 1/2 10 1/2 10 1/2 10 1/2 10 1/2 10 1/2 10 1/2 10 1/2 10 1/2 10 1/2 10 1/2 - 10 1	Apply to the second	
	LOCATION		ATI		TI HR	ME	MEASUREMENT	CODI	COMMENTS
1	mw-1	6	17	94	08	29	5.01	SWL	
2	MW-3		1		08	30	5,15		
3	MW - 5				08	3/	5,26		
4	mW-2				08	32	5,67		
5 ,	mw - 4				08	33	6.68		
6	mw-6	Ą	+	4	08	34	5,05	+	
7									
8	mw-1	6	17	94	13	16	5.08	SWL	
9	mw - 3				13		5.20	1	
10	MW-5				13	20	5.47		
11	mw-2				13	21	19.65		PHAGING IN PROGRESS
12	14W -4				/3	24	6.79		
13	MW -6	4	*	4	/3	25	5.17	4	
14						,			
15					_ ·	<u>'</u>			
16									
17									·
18									
19									e e e e e e e e e e e e e e e e e e e
20								go ja Sirija	

CODES:

HPS - (obs. (Pauce)
PSI: Pressure (pai)*
PH (b)
Constrainty (pm HOS)

TMP - Temperature (°C)

TRB - Turbidity (NTU) (Additional Code)

^{&#}x27;SWL - Static Water Level (Feet)

^{*}IWL - Instant Water Level; Non-Static (Fi

OIL - Oil Level (Foot)

(fill our completely)

McLaren		(1th core o		WELL	ORLO	cation \underline{h}	1W-2				
PROJECT TIANGE	7 DuBLIN E	VENT PAULE	terly SAM	PLER D.	NATI	DATE S	0/16/94				
Well/H	ydrologic statis	tics	Act	ton.	Time	Pump rat	e <u> WL</u>				
	Weil to	po mh	Start pur	p/Begin /	040						
<u> </u>	(MW.	EW, etc.)	740	1717L 11	845	11.33 Hr	7119.62				
		·	- 7		V. / / / / 2	1 m	1 - 70				
_	diame	4"		RESTART C	143	1.56 61	n 5.67				
SWL		45	<u>`</u>	ALLONS							
(if shove screen)	equality equality	65 gaint cas									
packer (7 /		1	Stop	/	333	1	19,65				
intake Lintake	_		(Final IWL		1400	1	6.48				
patier depth (circle one)		-TOP			nce ca	iculation					
- SWL 3.57	1 - 33% 1	ļ	165 gav	n. • 14.75 m			38.36 gais.				
		<u></u>	I	 10 908 at JW2		. 4	inge volume-				
(If it screen)	20			packer to 80P	volun		3 casings				
			100			tation (Airli	t onivi				
measured 2.6.34	20	T.D. (as built)	ga	At: t:		_gais:					
				packeeto SW	E.L.						
Equipment Used / Sar			2	Actual gallo	us brid	ed <u>//</u>	200				
ENTRIFULIAL											
DispositiBLE	BITILLYZ	USEDD To	Signifle,	hy							
				Well yield (see below)	⊕		-/				
l						7475	<u></u>				
,				COC #	D. —	Analysis	L ab				
				14/259-		The Chilt	MET				
Additional comments:		- 1		<u> </u>							
4363 112756R	(7) T.D 1	TOR TURLE	Calculation.								
10% RECEIVEY	: 12.96										
30% RECEIBLY		a il Tan	1 779] 							
, , , , , , , , , , , , , , , , , , ,	TEMP C(F)	1	1								
Gallons purged *	(circle one)	(us / cm)	PH	רוסופתטד (עדע)							
1. 1150	173.1	1600	7.32	7.22							
2 1156	73.5	1630	7,24	8.03							
1/30	73.5	1640	2.3/	11.37							
· 17-60	73.9	1610	7.30	6.82							
5.			_				•				
* Take measurement at	⊕ HY- Minima	MY - WL drop -		LY - Able to p	-		nimat recharge - nable to purge				
annountately each casing volume ourged.	W.L. drop		iring one sitting y pump rate or	volumes i	•		Aomuss.				
	7	cycling our		<u>.</u>	<u> </u>						

McLaren		(fi ži cu	completely)	WEI	T or fo	CATION M	W-3
PROJECT TARGET	Dublin E	VENT Que	rtarly saw				
Well / I	lydrologic statis	tics	Act	ton.	Ime	Pump rate	(low viek
	Wellt	MW MW	Start pur	np / Begin	1/22	1,75 GPM	
	(MW.	EW. etc.)			1135		7.44
		•			1149		778
_	- diama	· 4 "	<u></u>		1203	<u> </u>	7,93
SWL —		1 5			12/7	 	7.99
(if above screen)	equal	. 65 gaint ca	sing -				
		•	Stop		1218	1	7.99
packer 10 to			Samoled		1230		<u> </u>
bailer dectt (Circle one)	5	TOP	(Final IWL		1/238		6.29
SWL 5.06			.65 gal	tt • <i>14.94</i> t	<u> Purge cz</u>		40 gais.
(if in screen)		;		SWL to BOP			e voiume-
(= 1 = 2 = 2 = 1 = 1	20		1	Packer 10 80			casings
					•	iation (Airlift o	inty):
T.D. 19,69	20	T.D. (as built)	******		WE:		····
Equipment Used / Sar	mpling Method / D	escription of E	vent:	Actual ga	lions pura	ed 40	,
CENTRIFIGAL	Pum 1 USE	of to Pul	rhE,			- 11	
DIS POSABLE	BAILER 4.	SED to S.	ample.	Actual voi	umes pur		
				Well yield (see below	_	<u>HY</u>	
				coc	# _	7475	
				Sample	I.D	Anatysis	Lab
				14253	9-42 7	12/18/3(TB	MBT
Additionat comments:		0		14254	3-46 7	PH-6 (W/7) TEX (7020)	1
USED DESIGN	T.O. FOR	UnnhE (intentation.			<i></i>	<u></u>
			,]			
50'70 RECOVER	27:12,53						
80% RECOVER	y; 8.04 5	Brifle Tw	1 DIOIN, 12.34				
Gallons purged *	(circle one)	EC (us/cm)	PH	TURBIDI (UTU)	17		
1. /0	72.3	2150	7.35	6.41			
2 20	72,2	2160	7.25	2.0			
3. 30	72.0	2160	7.22	1.33			
4. 40	72,5	2180	7.29	1.04			,
5.			7, -		- - 		<u> </u>
* Take measurement at approximately each casing volume purged.	⊕ <u>HY-</u> Minima W.L. drop		able to purge 3 thing one sitting If pump rate or		purge 3 s by return next day.	ing unst	nsi rechtige - lie to purge wines.

57z

بد فلمانعامي سمساده بدار

MCLaren		(fill out	completely)	WEL	L OR LO	CATION <u>177</u>	W-4
PROJECT TIANGE	T Duislan E	VENT Guar	trizly SAN	PLER D	, bu; +7,	DATE C	116/94
Well/	lydrologic statis	tics	Act	tion.	Ilme	Pump rate	(low view
	Weilt	MW MAN	Start puri	p/Begin	1418	1/6Pm	
	(MW.	EW, etc.)			1429	1	19.14
		1.			1439		10.21
L		4"			1449	 	10.41
C110	C.Z.me	1			1454	 	10,53
(if above screen)	equair	. 165 gaint. car	ring			 	<u> </u>
,,,	A3900	•	Stop		1459	V	10.53
packer /2 h			Sampled		1505	*	19,20
batter cects (circle one	5		(Final IWL	.)	1518	1 2.	7.04
6,58		TOP	. 65 gar	n. •/3,42n	Purge ca	iculation gais x 2 = 3	<u>6 gais.</u>
(if in screen)		! !		SWL to 80P			e volume-
(20			packer to 801			casings
						iation (Alrilit)	oniy)
T.D. 79.80	2-0	T.D. (as puit)	ga	packes to S	WE	gais	
Equipment Used / Sa CENTILIFULIAL	mpting Method / [escription of En	rent:	Actual gal	ions purg		
DisposaBLE		•	•	Actual voi	umes pui	ged <u>4-</u>	<u> </u>
VIII	Miles us	20 10 217.	m ple,	Well yield		m	<u></u>
				COC	± 7	475	
				Sample	•	Analysis	Lab
				14/25/		FY-6 (Luft)	MBT
Additional comments:	T.D. For	funcie (nkente tron				
50% RECOVE	Ry: 13.29						
90% RECOVE	·	SAL CIE TI	1B10, 2, 1.23			<u> </u>	
Gallons purged *	TEMP °C /(F)	EC (us/cm)	PH	TURBIDI	TY		
1. /E	71.8	790	7.55	1.55	-	İ	
2 20	69.3	810	7,51	1.18			
30	69.4	740	7.63	0,93			
40	69.1	7.3c	7.70	2.27			
5.		, -					
* Take measurement at approximately each casing volume purped.	⊕ <u>HY-</u> Minimes W.1_ drop		uring one sitting by pump rate or		purge 3 s by return next day.	ing unsi	mai recharge ble to purge iumes.

iF

57=

. 15

Partie Land

(fill out completely)

McLaren				WEI	L OR LO	CATION 127	W-5
PROJECT TARKET	DuBLIN E	VENT QUART	ETLY SAN	pler ${\cal D}$	WATTS	_ DATE	16/94
Well/H	vdroionic statis	tics	Act	ion.	Ilme	Pump rate	(low viek
	Weilt	MW MW	Start purr	p / Begin	1258	1 6Pm.	
	(MW.	EW, etc.)			1308		7.21
					1318		7.40
<u> </u>	4 . }	4"			1328		7.44
	-d- diame			`	1338		7,59
(if above screen)	see equate	. 65 galdt. cas	ing				
(III and to ecision)		•	Stop		1339		7.59
packer 9			Sampled		1345	٠;	
bailer geoth (circle one)	5	ĺ	(Final IWL	.)	13521	.;. :	3.61
		-TOP		,	Purge cal		
SWL 5.15	Support of the suppor	! į	,65 car	R 14.85 H	- 10	gats x 3 = 4	O gats.
		; •		SWL to BOP	•	4 0000	o votume-
(if in screen)				sacker to 80		, ,	esngs
	20	8OP	: C.	Head out	ce caicui	ation (Airlift o	nty)
T.D. 79.40	20		ga	dt::		gais	
T.D		T.D. (as built)		packer to S	WELL	; ;, • •	
Equipment Used / Sar	npling Method / D	escription of Ev	era:	Actual ga	ions purge	ed <u>40</u>	
CENTRIFUGAL		•	•	Actual vol	umes pur	ged <u>4</u>	
DISPOSABLE BA	AILER USED	to samp	LE.			4	y
				Well yield	_		
				COC	*	7475	
				Samote	I.D	Anatysis	Lab
				142547		H-6 (LUFT)	MBT
Additional comments:		0		1		,	•
USED DESIGN	I T.D. For	R PURGE	CALCUlation	J 			
-				1			
50% RECOVER	112 60						
80 70 RECOUS	2y: 8.12	SAMPLE TU	assarty:1.56				
Gallons purged *	TEMP °C (°F) (circle one)	EC (us/cm)	PH	TURBIDI	77		
1. 10	74.6	1270	7.39	4.02			
2 ZO	71.1	1220	7.39	2,38	3		
30	70,4	1230	7.43	1.19			
40	71.0	1230	7.42	0.61			
5.			<u></u>				
Take measurement at approximately each casing volume purged.	⊕ <u>HY-</u> Minimas W.L. drop		sole to purge 3 uiting one sitting g pump rate or		purge 3 s by returni next day.	ng unat	isi recharge ile to purge umes.

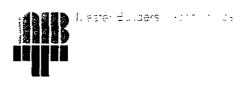
57s

(fill out compately)

WELL OR LOCATION MW-6 Quanterly SAMPLER D. PROJECT /11RHET DUBLIN EVENT WMT13 DATE 6/16/94 Ime Pump rate Well / Hydrotogic statistics Action (low viek Wed type Mh)
(MW. EW, etc.) 6Pm 1539 Start pump / Begin 1610 641 8.34 sai/It. casing 24550 (if above screen) Stop 8,33 6,70 5,79 Samoied (Final IWL) Purce calculation .65 galit. . 9.57t. = 6.25 gats x2-SWL to BOP or OUS ounds volumetif in screens DECKET TO BOP votume 3 casmos Head purge calculation (Alrift only): gaiat:... 16. gais... package SWE Equipment Used / Sampling Method / Description of Event: Actual gallons purged De Peristaltic Puml USED to Punge. Actual volumes purged DISFOSABLE BAILER USED to SAMPLE, Well yield \oplus GW 1995 SLIGHT PETTLOLEUM ODOIT. (see below) 7475 COC Lab Sample I.D. **Analysis** TPH-G (LUFT)
RTLY (9026) 41255-58 MBT Additional comments: USLY DESIGN T.D. For Punke Colculation. 50% RECOVERY: 9.71 7070 RECOVERY: 6.84 Smalle Turbioity! TEMP C/F) Gallons purged * EC TURBIDITY (circle one) (us / cm) (NTU) 7zo 6.25 453 75,6 3.05 23.1 12,50 710 18.75 6.22 700 25,00 5.18 .80 VLY - Minimal recharge HY- Minima MY - WL drop - able to purge 3 LY - Able to purpe 3 unable to Dunge volumes during one sitting volumes by returning STOCKHOLISTON GOCH W.L. drop 3 volumes. by reducing pump rate or later or next day.

eveling gume.

CERNING VOICING DURINGS.


APPENDIX II

ANALYTICAL DATA SHEETS AND CHAIN-OF-CUSTODY RECORDS

0727TLS2.RPT 04.0(22629.000

MBT Environmental Laboratories

3083 Gold Canal Drive Rancho Cordova CA 95670 Phone 916/852-6600 Fax 916/852-7292

Date: July 5, 1994

LP #: 9479

Bradley Wright McLaren/Hart Environmental Engineering 1135 Atlantic Avenue Alameda, CA 94501

Dear Mr. Wright:

Enclosed are the laboratory results for the six samples submitted to MBT Environmental Laboratories on June 18, 1994, for the project Target Dublin.

The analyses requested are:

EPA 8020 (BTEX) & TPH-G (6 - Water)

The report consists of the following sections:

- 1. Cover Page
- 2. Copy of Chain-of-Custody
- 3. Quality Control Report
- 4. Analytical Results

Unless otherwise instructed by you, samples will be disposed of two weeks from the date of this letter.

Thank you for choosing MBT Environmental Laboratories. We are looking forward to serving you in the future. Should you have any questions concerning this analytical report or the analytical methods employed, please do not hesitate to call.

Sincerely,

Shakoora Azimi

Laboratory Director, Principal Scientist

ANALYTICAL REPORT

LABORATORY PROJECT (LP) NUMBER 9479

TARGET DUBLIN

This report complies with the requirements under the following certification/approval:

CALIFORNIA:

CONNECTICUT:

Hazardous Waste, #1417

Waste Water, # 1417

Drinking Water, #1417

FLORIDA: Environmental Water,

Waste Water, #PH0799

#E87298

Hazardous Waste, #E-1167 Waste Water, #E-192 Drinking Water, #E-192

NEW

KANSAS:

HAMPSHIRE: Waste Water, #253193-A

NEW JERSEY: Waste Water, #44818

Hazardous Waste, #11241 NEW YORK:

Waste Water, #11241

CLP, #11241

OKLAHOMA:

Hazardous Waste, #9318

Waste Water, #9318

TENNESSEE:

Underground Storage Tank

UTAH:

Hazardous Waste, #E-165 Waste Water, #E-165

Drinking Water, #E-165

WASHINGTON:

Hazardous Waste, #C048

WISCONSIN:

Hazardous Waste, #999940920

Waste Water, #999940920

USACOE:

Hazardous Waste Waste Water

AFCEE

(CN9479)

Laboratories ...

Rancho Cordova CA 95670 Phone 916/852-6600

CHAIN OF CUSTODY RECORD

SEE SIDE 2 FOR COMPLETE INSTRUCTIONS

Telforloget		Fax 916/	852-7292	<u> </u>																
Ship To: <u>//7/3</u> 7								1),	BLIN		FOR LABORATORY USE ONLY						Co Analytic			
address: 31 6 6 60 Connet 1/2.				Project Number: Of B/22621, DED								Laboratory Project #: 9479						.	413.1 413.2 Lon 413.2 Sho	
Konstto Co	T) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					019	Storage Refrigerator ID: 4						.	418.1 Long 418.1 Sho						
Sampler Name				Cianatria	7					a in Field					- -					420.1 502.2 503E
Relinanished Ru	17 11 3 2 4 4		···········	Dyc/Tiny	14 1400				Received	By or Meth	od of Ship	mant/	Shipme	nt I.D		4/12 ^D	ate/Tu	me ,		503.1 524.2 601
Relinquished By:	att		• 1	Date/fim	7700				Received	By or Meth	od of Shir	ment/	Shipme	nt I.D.		1/2/ _D	94 ate/Tu	ne /	100	601 602 604 606
Relinquished By:		Supre	mt	Date/Time	 _				Received	By or Meth	od of Shir	ment/	Shipme	nt I.D.		2/8 D	94 ate/Tid	1/2	<u>60</u>	610 624 625
																				8010 8015
Sample Disposal (check one)		Level of Q	c 🛛	1 🔲	2 🔲 3 🔲 4		5 [<u> </u>	A 🔲	В			A		LYSE	S RE	Q U	JEST	ED	8015 Mod. 8020 8021
		(see Side	ሳ ኒ	6C 🔲	6D [] 6E [] 6	F []	7 [rite in - sis Metho			7,3						8040 8080
Laboratory Stan	DIRD	-			· · · · · · · · · · · · · · · · · · ·			"		rainty:	4714LIN		- -	(8:						8100 8150 8240
Other	 	<u> </u>			SAMPLE I		KIMI/	111	UN	1			ئ ا	1 -1		Ì				8270 8310
FOR LABORATORY USE ONLY	Sami	ole ID			Descri	ption	[_	Cont	tainer(s)	Matrix	Pres.		1	19					11	Acidity Alkalinity BTEX
Lab 1D	Nu	nber	Date	Time	Locator	Dep	oth	#	Туре	Туре	Type	TA	r 🏲	13.1					11	Chloride CLP (see S COD
		34-42	C/U/Gy		TREE BUIND	N.	4 4	7	V	11/20	Hil	4	X	X						Color Conductivit
" <u> </u>	1425		- -		MW-3	-		#		-	1	11	×	X		_ _	1	_	44	Corresivity Cyanide Flashpoint
	1412	47-50 51-50	-		mw-5	┨		╂╂		╂╌╂╌	╂┼┼	╂	+	K			-	 		Fluoride General Mi
		5-58		1759	MW-6	╅	十	H		1-1-		╁╅	父	\bigcirc	- -			 		Hex. Chron Ion Balanor Metals (wri
6 4 006					mw-2	14	,	+	V	1	+	┪	X	又		\dashv	1			metal Metals 601
7	ļ																			Metals PP* Metals Title TTLC
8	 					<u> </u>				<u> </u>		<u> </u>			_ _					STLC (see S Nitrate
9	 							\dashv		 	<u></u>	-	- -		- -		╀			Nitrite Odor
	<u> </u>				<u> </u>			┰┸				<u> </u>						ــــــــــــــــــــــــــــــــــــــ		Org. Lead Org. Mercu Percent Mo
Special Instructions/Comn	nents:								Containe B=Brass	r Types: Tube		Liter Lassett	Ambe e	т Т. 1	AT (Ana) = 24 hou	lytical T	urn A 2 = 4	round	Time)	Percent So Perchlorate
]	G=Glass O=Other	Jar	P=Pe V=V	olyeth ⁄oa Vi	ylene 1	3	= I weel = Other	¢	4 = 2	2 weeks	s	pH Phosphater Phosphorus
		EASE		Tunz			SAI	9_	t											Sulfate Sulfides
FOR LABORATORY USE			ion Upon	Receipt:	TEM G	∞ 0)		- `{	END D	OCUMEN oct Manag	TATION	AND	RESI	ILTS	TO (Che	ck one)	! ! ! ~1!	i ie=Ni	a	TCLP: VOA Semiye
Samples	LATER	K			. 7			7 :		ect Manag nt Name: _		. . .		<u> </u>	<u> </u>	- / -	<u>+</u>	16-4/	-	Metals Pestici TDS
					, n — — — — — — — — — — — — — — — — — —		ę,	7 :	2.4	nt rvame:		_							-	Total Hardn Total Solids
					*] ;	_ ₹ * :	ress:					 -					TPH/O TPH/G T\$8
				·					, ,	ne:				FAX						Turbidity Specify T

QUALITY CONTROL REPORT

METHOD BLANK

Method: Mod. EPA 8020 (BTEX) & TPH/G Date Analyzed: 06/23/94

ug/L (ppb) Units:

<u> Analyte</u>	Reporting <u>Limit</u>	Concentration
Benzene	0.50	BRL
Toluene	0.50	BRL
Ethylbenzene	0.50	BRL
1,2-Xylene	0.50	BRL
1,3-Xylene	0.50	BRL
1,4-Xylene	0.50	BRL
Total Petroleum Hydrocarbons - Gasoline	50	BRL
Surrogate	% Recovery	Acceptance Limits
a,a,a-Trifluorotoluene (PID)	78	63 - 134
a,a,a-Trifluorotoluene (FID)	92	63 - 134

QUALITY CONTROL REPORT

METHOD BLANK

Method: Mod. EPA 8020 (BTEX) & TPH/G Date Analyzed: 06/24/94

Units: ug/L (ppb)

Analyte	Reporting <u>Limit</u>	Concentrat <u>ion</u>
Benzene	0.50	BRL.
Toluene	0.50	BRL
Ethylbenzene	0.50	BRL
1,2-Xylene	0.50	BRL
1,3-Xylene	0.50	BRL
1,4-Xylene	0.50	BRL
Total Petroleum Hydrocarbons - Gasoline	50	BRI.
Surrogate	% Recovery	Acceptance Limits
a,a,a-Trifluorotoluene (PID)	83	63 - 134
a,a,a-Trifluorotoluene (FID)	100	63 - 134

QUALITY CONTROL REPORT

METHOD BLANK

Method: Mod. EPA 8020 (BTEX) & TPH/G Date Analyzed: 06/24/94

Units: ug/L (ppb)

Analyte	Reporting <u>Limit</u>	Concentration
Benzene	0.50	BRL
Toluene	0.50	BRL
Ethylbenzene	0.50	BRL
1,2-Xylene	0.50	BRL
1,3-Xylene	0.50	BRL
1,4-Xylene	0.50	BRL
Total Petroleum Hydrocarbons - Gasoline	50	BRL
Surrogate	% Recovery	Acceptance Limits
a,a,a-Trifluorotoluene (PID)	81	63 - 134
a,a,a-Trifluorotoluene (FID)	101	63 - 134

Laboratory Control Sample Total Petroleum Hydrocarbons/TPH-Gasoline

LP: 9479

Date of Analysis: 06/23/94

Spike Sample ID: LCSW - 86

Column: DB624

Spike ID Code: W-1-828

Instrument #: 6 _____

Surrogate ID Code: W-1-931

Matrix: Water Units: ug/L

	(a)	(b)	(c)	(d)	(e)	(f)	(g)	ACCEPT LIMIT	
COMPOUNDS	SAMPLE CONC.	SPIKE CONC.	SAMPLE + SPIKE CONC.	SPIKE REC. %	SAMPLE DUP. + SPIKE CONC.	SPIKE DUP. REC. %	RPD %	% REC.	RPD
Gasoline	0	100	98	98	NA	NA	NA	100 - 127	≤20

Spike Recovery =
$$d = ((c-a)/b) \times 100$$

Spike Duplicate Recovery = $f = ((e-a)/b) \times 100$
Relative Percent Difference = $g = (|c-e|)/((c+e) \times .5) \times 100$

	(h)	(i)	(j)	(k)	(1)	
SURROGATE COMPOUNDS	SUR. SPIKE CONC.	SAMPLE + SUR. SPIKE CONC.	SUR. REC. %	SAMPLE DUP. + SUR.SPIKE CONC.	SUR. DUP. RECOVERY %	ACCEPTANCE LIMITS % REC.
a,a,a-Trifluorotoluene	4.00	4.12	103	NA	NA	63 - 134

Surrogate % Recovery = $j = (i/h) \times 100$ Surrogate Dup % Recovery = $l = (k/h) \times 100$

Laboratory Control Sample Method 8020

LP: 9479

Spike Sample ID: LCSW - 86

Date Of Analysis: 06/23/94

Spike ID Code: W-1-905

Column: DBWax_

Surrogate ID Code: W-1-931

Instrument #: __6

Matrix: Water Units: ug/L

		(a)	(b)	(c)	(d)	(e)	(f)	(g)		
EPA METHOD	COMPOUNDS	SAMPLE CONC.	SPIKE CONC.	SAMPLE + SPIKE CONC.	SPIKE REC.%	SAMPLE DUP. + SPIKE CONC.	SPIKE DUP. REC. %	RPD%	ACCEPTA LIMITI % REC.	
602/8020	Chlorobenzene	0	4.00	3.88	97	NA	NA	NA	69 - 131	≤20
602/8020	Benzene	0	4.00	3.91	98	NA	NA	NA	72 - 134	≤20
602/8020	Ethyl Benzene	0	4.00	3.74	94	NA	NA	NA	72 - 128	≤20

Spike Recovery = d = ((c-a)/b) x 100 Spike Duplicate Recovery = f = ((e-a)/b) x 100 Relative Percent Difference = g = (|c-e|)/((c+e) x .5) x 100

			(h)	(i)	0	(k)	(1)	
EPA METHOD	SURROGATE COMPOUNDS	DET.	SUR. SPIKE CONC.	SAMPLE + SUR. SPIKE CONC.	SUR. REC.	SAMPLE DUP. + SUR.SPIKE CONC.	SUR DUP. RECOVERY %	ACCEPTANCE LIMITS % REC.
602/8020	a,a,a-Trifluorotoluene	PID	4.00	3.22	80	NA	NA	63 - 134

Surrogate % Recovery = $j = (i/h) \times 100$ Surrogate Dup % Recovery = $l = (k/h) \times 100$

ABBREVIATIONS USED IN THIS REPORT

BRL	Below Reporting Limit
MB	Method Blank
MS	Matrix Spike
MSD	Matrix Spike Duplicate
LCS	Laboratory Control Spike
LCSD	Laboratory Control Spike Duplicate
RPD	Relative Percent Difference
NS	Not Specified
NA	Not Applicable

COMMENTS

Test methods may include minor modifications of published EPA methods (e.g., reporting limits or parameter lists). Reporting limits are adjusted to reflect dilution of the sample when appropriate. Solids and waste are analyzed with no correction made for moisture content.

Analytical Method: Modified EPA 8020 (BTEX) and Total Petroleum Hydrocarbons Gasoline by LUFT Preparation Method: EPA 5030

Project Project

Name: Target Dublin Number: 040122629000

Sample Lab Project-

Description: Trip Blank ID Number: 9479-1

Sample Date

Number: 142539 Sampled: 06/16/94

Date Date

Received: 06/18/94 Analyzed: 06/23/94

Analyte	Concentration ug/L (ppb)	Reporting Limit ug/L (ppb)
Benzene	BRL	0.50
Toluene	BRL	0.50
Ethylbenzene	BRL	0.50
1,2-Xylene	BRL	0.50
1,3-Xylene	BRL	0.50
1.4-Xvlene	BRL	0.50
Total Petroleum Hydrocarbons - Gasoline	BRL	50

Surrogates	Percent Recovery	Acceptance Limits
a,a,a-Trifluorotoluene (PID)	91	63 - 134
a,a,a-Trifluorotoluene (FID)	97	63 - 134

Comments

The cover letter and enclosures are integral parts of this report.

Approved by: CM Date: 7/5/94

ental Master Builders Technologies

063

Page 1

Analytical Method: Modified EPA 8020 (BTEX) and Total Petroleum Hydrocarbons Gasoline by LUFT Preparation Method: EPA 5030

Project
Name: Target Dublin Project
Number:

Number: 040122629000

Sample

Description: MW-3

Lab Project-

ID Number: 9479-2

Sample Number:

142545

Date

06/16/94

Date

Date

Sampled:

Analyzed:

06/23/94

Received: 06/18/94

Reporting Concentration Limit Analyte ug/L (ppb) ug/L (ppb) BRL 0.50 Benzene 0.50 Toluene BRL 0.50 Ethylbenzene BRL 1,2-Xylene BRL 0.50 1,3-Xylene BRL 0.50 0.50 1,4-Xylene BRL Total Petroleum Hydrocarbons - Gasoline BRL 50

Surrogates	Percent Recovery	Acceptance Limits
a,a,a-Trifluorotoluene (PID)	88	63 - 134
a,a,a-Trifluorotoluene (FID)	108	63 - 134

Comments

063

The cover letter and enclosures are integral parts of this report.

Approved by: CM Date: 7/5/74

tai 📜

Page 1

Analytical Method: Modified EPA 8020 (BTEX) and Total Petroleum Hydrocarbons Gasoline by LUFT Preparation Method: EPA 5030

Project Name: Target Dublin

Project Number: 040122629000

Sample

Lab Project-

Description: MW-5

ID Number: 9479-3

Sample

Number:

Date

Sampled:

06/16/94

Date

142547

Received:

06/18/94

Date Analyzed:

06/23/94

Analyte	Concentration ug/L (ppb)	Reporting Limit ug/L (ppb)
Benzene	1.5	0.50
Toluene	BRL	0.50
Ethylbenzene	BRL	0.50
1,2-Xylene	BRL	0.50
1,3-Xylene	BRL	0.50
1,4-Xylene	BRL	0.50
Total Petroleum Hydrocarbons - Gasoline	BRL	50

Surrogates	Percent Recovery	Acceptance Limits
a,a,a-Trifluorotoluene (PID)	94	63 - 134
a,a,a-Trifluorotoluene (FID)	102	63 - 134

Comments

The cover letter and enclosures are integral parts of this report.

Approved by: _________

Date: <u>7/5/94</u>

Analytical Method: Modified EPA 8020 (BTEX) and Total Petroleum Hydrocarbons Gasoline by LUFT Preparation Method: EPA 5030

Project Project Name: Target Dublin Number: 040122629000 Sample Lab Project-Description: MW-4 ID Number: 9479-4 Sample Date Number: 141252 Sampled: 06/16/94 Date Date Received: 06/18/94 Analyzed: 06/25/94 Reporting Concentration Limit **Analyte** ug/L (ppb) ug/L (ppb) Benzene 5.0 BRL Toluene BRL 5.0 Ethylbenzene BRL 5.0 1,2-Xylene BRL 5.0 1,3-Xylene BRL 5.0 1,4-Xylene 5.0 BRL Total Petroleum Hydrocarbons - Gasoline 500 BRL Percent Acceptance Surrogates Recovery Limits

Comments

a,a,a-Trifluorotoluene (PID)

a,a,a-Trifluorotoluene (FID)

The cover letter and enclosures are integral parts of this report.

The sample was diluted 10 fold due to the presence of non-target analyte interferences.

83

114

63 - 134

63 - 134

Analytical Method: Modified EPA 8020 (BTEX) and Total Petroleum Hydrocarbons Gasoline by LUFT Preparation Method: EPA 5030

Project Project Name: **Target Dublin** Number: 040122629000 Sample Lab Project-Description: MW-6 ID Number: 9479-5 Sample Date Number: 141256 Sampled: 06/16/94 Date Date Received: 06/18/94 Analyzed: 06/23/94

Analyte	Concentration ug/L (ppb)	Reporting Limit ug/L (ppb)
Benzene	0.79	0.50
Toluene	BRL	0.50
Ethylbenzene	5.9	0.50
1,2-Xylene	BRL	0.50
1,3-Xylene	{a}{b} {b} 8.7	0.50
1,4-Xylene	{b} 8.7	0.50
Total Petroleum Hydrocarbons - Gasoline	120	50
Surrogates	Percent Recovery	Acceptance Limits
a,a,a-Trifluorotoluene (PID)	71	63 - 134

Comments

The cover letter and enclosures are integral parts of this report.

{a} Coelutes with 1,4-Xylene.

a,a,a-Trifluorotoluene (FID)

{b} The data was reported from a different analytical run on 06/23/94 for which the associated standard was within daily calibration criteria.

91

Non-target analytes are present on the chromatograph.

Approved by:	<u>CM</u>	_ Date:	7/5/94
--------------	-----------	---------	--------

63 - 134

Analytical Method: Modified EPA 8020 (BTEX) and Total Petroleum Hydrocarbons Gasoline by LUFT Preparation Method: EPA 5030

Project Project

Name: Target Dublin Number: 040122629000

Sample Lab Project-

Description: MW-2 ID Number: 9479-6

Sample Date

Number: 141259 Sampled: 06/17/94

Date Date

06/25/94 Received: 06/18/94 Analyzed:

Analyte	Concentration ug/L (ppb)	Reporting Limit ug/L (ppb)
Benzene Toluene Ethylbenzene 1,2-Xylene 1,3-Xylene 1,4-Xylene Total Petroleum Hydrocarbons - Gasoline	14 BRL 4.1 BRL {a} {b} {b} 4.9 95	0.50 0.50 0.50 0.50 0.50 0.50
Surrogates	Percent Recovery	Acceptance Limits
a,a,a-Trifluorotoluene (PID) a,a,a-Trifluorotoluene (FID)	99 117	63 - 134 63 - 134

Comments

063

The cover letter and enclosures are integral parts of this report.

- {a} Coelutes with 1,4-Xylene.
- {b} The data was reported from a different analytical run on 06/23/94 for which the associated standard was within daily calibration criteria.

Approved by: CM

Master Builders Technologies

Page 1