

October 9, 1996 Project Number 6142.2 PROTECTION AL 96 OCT 10 PM 3122

Ms. Eva Chu Hazardous Materials Specialist Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: September 1996 Quarterly Groundwater Monitoring Report, 6085 Scarlett Court, Dublin, California.

Dear Ms. Chu:

This report presents the September 1996 quarterly groundwater monitoring report for the 6085 Scarlett Court site, in Dublin, California. The quarterly monitoring was requested by the Alameda County Environmental Health Department (ACEHD) and is the initial groundwater monitoring to be performed onsite by EnviroNet Consulting (EnviroNet).

BACKGROUND

The following background section is based on information presented in <u>Results of Soil and Ground-Water Investigations and Remedial Activities</u>, 6085 Scarlett Court, <u>Dublin</u>, <u>California</u>, by Levine Fricke, of Pleasanton, California, dáted July 18, 1995.

The site was formerly owned by Aggregate Systems, Inc. and was used for rock, sand and concrete storage and distribution. An abandoned single story building remains onsite. Three 500 to 1,000 gallon underground storage tanks (USTs) and one dispenser island were located onsite. The three USTs were removed from the site in June 1990 by Clayton Environmental Consultants of Pleasanton, California, under the supervision of the ACDEH. During the UST removal numerous small holes were reported in the USTs and soil staining was observed in the excavation. Soil samples collected following the UST removals indicated up to 290 parts per million (ppm) of total petroleum hydrocarbons as gasoline (TPH-g) and up to 23 ppm of xylenes.

A single groundwater monitoring well (MW-1) was installed southwest of the UST excavation in November 1993 by $\rm H_2OGEOL$, Inc., of Livermore, California. Groundwater samples collected from MW-1 in April 1994 contained 91 ppm TPH-g and BTEX components (benzene, toluene, ethylbenzene, and xylenes) up to 23 ppm benzene.

PACIFIC NORTHWEST ENVIRONET GROUP, INC.

In 1994 Levine Fricke conducted a Phase II limited investigation onsite, which consisted of hand auger soil sampling and groundwater sampling. Following these investigations, Levine Fricke personnel supervised the excavation of approximately 1,000 cubic yards of petroleum impacted soil and approximately 400 cubic yards of clean overburden. During the excavation well MW-1 was removed. Replacement well MW-1R was drilled on January 30, 1995. The location of MW-1R was approved by the ACDEH.

WATER LEVEL MEASUREMENTS

On September 10, 1996 a measurement of the depth to groundwater was collected from monitoring well MW-1R. The groundwater elevation for MW-1R was calculated from this data and is presented in Table 1. The casing elevation and groundwater elevation are reported in feet relative to Mean Sea Level.

GROUNDWATER SAMPLING

Following the depth to groundwater measurement the groundwater was checked for the presence of floating petroleum hydrocarbons, or free product, using petroleum hydrocarbondetecting paste on a steel tape. No free product was observed. Before sampling, the well was purged of an excess of three well volumes of groundwater until the pH, temperature, and conductivity readings of the purged water had stabilized. The groundwater sample was collected using a disposable bailer and then transferred to an amber glass one-liter bottle and 40 milliliter VOA vials. The water sample was labeled, stored under refrigerated conditions, and transported to Sparger Technology, Inc. (Sparger) in Sacramento, California, under Chain-of-Custody documentation. Information collected in the field during the sampling was recorded on a Groundwater Sampling Form, a copy of which is enclosed.

LABORATORY ANALYSES

The groundwater sample was analyzed by Sparger for total petroleum hydrocarbons (TPH) as gasoline (g) and for benzene, toluene, ethylbenzene, and toluene (BTEX) using EPA Method 8015/8020 modified and for TPH as diesel (d) and TPH-motor oil (mo) using EPA Method 8015.

ANALYTICAL RESULTS

TPH-g was detected in the sample at 0.081 milligrams per liter (mg/L). Benzene was detected at 0.0012 mg/L; all of the other BTEX components were not detected (ND). TPH-g and TPH-mo were also ND. The analytical results are summarized in Table 2. Copies of the Sparger report and the Chain of Custody document are enclosed.

DISCUSSION

The groundwater flow direction and gradient cannot be determined with the groundwater elevation data from only one monitoring well. The July 18, 1995, Levine Fricke report indicates that the historic groundwater flow at the adjacent site to the south has been toward the south to southwest. Based on the groundwater flow direction at the nearby site, monitoring well MW-1R is generally down-gradient of the former UST location.

The analytical results indicate the detection of very low concentrations of TPH-g and benzene only.

CLOSURE

In December, 1996, EnviroNet will conduct an additional quarterly monitoring event to confirm the presence and degree of contamination to the site's groundwater. We trust this report provides the information you require. Please call (707) 546-9461 if you have any questions or comments.

Sincerely,

Robert L. Nelson

Registered Geologist No. 6270

Kohur J. Nelson

Robert L. Nelson
No. 6270

ROBERT CAUFORTS

OF CAUFORTS

Enclosures:

Plate 1:

Site Location Map

Plate 2:

Site Plan

September 26, 1996 Analytical Report by Sparger Technology, Inc.

Groundwater Sampling Form for Well MW-1R

DISTRIBUTION

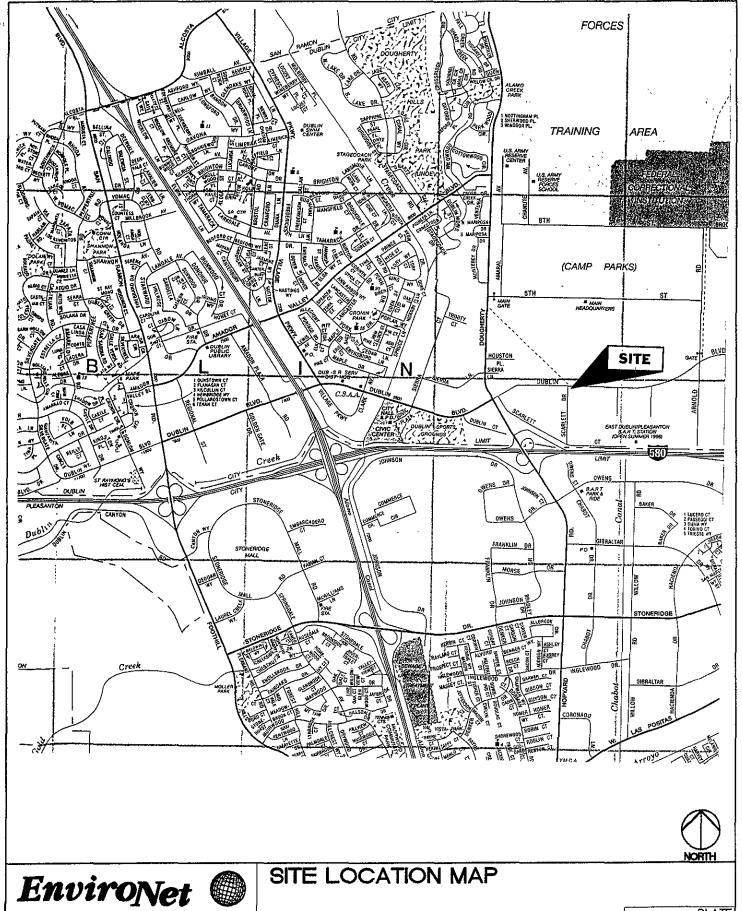
Project Number 6142.2

Mr. Burt Hamrol
President
CSI/Customer Service
General Contracting, Inc.
525 York Street
San Francisco, California 94110

415/661-5738

mobile 415/559.0882

Table 1: Water Level Measurements

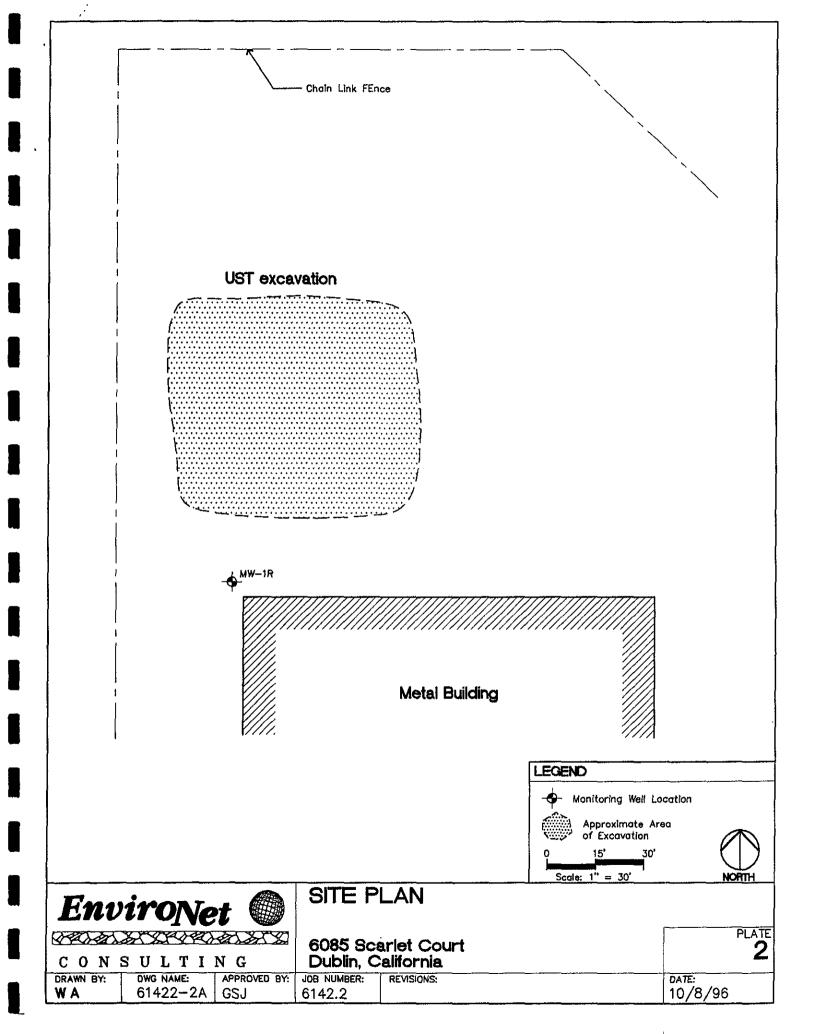

. Well Number	Date of Water Level Measurement	Top of Casing Elevation*	Depth to Water in Feet	Ground Water Elevation*
MW-1R	09/10/96	330.01	6.61	323.4

^{*} In feet above mean sea level.

Table 2: Groundwater Sampling Results

Well	Date	TPH-g	TPH-d	TPH-mo	В	Ţ	E	X
					mg/L			
MW-1R	09/10/96	0.081	ND	ND	0.0012	ND	ND	ND

ND = not detected.



CONSULTING

DRAWN BY: DWG NAME: APPROVED BY: 61422-1 WA GSJ

}	6085 Sca Dublin, C	arlet Court alifornia	PLATE 1
:	JOB NUMBER:	REVISIONS:	DATE:
	6142.2		10/8/96

ENVIRONET CONSULTING GROUNDWATER FIELD SAMPLING FORM

			PORMATION						
Project Number/Nar	ne: Co & 5 5 5 Can	Lett 61412.2	Well Number:	Mw-1c	e)				
Project Location:	OES Scorlett	Court Dublin	Well Depth from TOC: 19.3						
Date: 9 -1.	0-1996		Casing Diameter:	Z					
Start Time:	Finish Time): 	Product Thickness	in Inches: 🕖					
	LN)		Water Level from	roc: 6.37	Time:				
Sampled by: R_L	'N	····	Screened Interval:	In	itial Well Depth:				
	E05 Purge Time		Well Elevation (T	OC):					
	: Near Bottom [] !	Near Top Other:		nitor D Extraction	·				
Notes:			1	PVC St. Steel	Other:				
			THER						
Wind: Yes No Su Rain: Yes No Fog	: Yes/No	Yes(No		ero					
		OF WATER TO BE							
(19.3 · 6.4) TD · WL	$(\frac{2}{\text{Dia. inches}})^2 \times 0.0$	0408 =	gallons in one well	volume					
6.33 gailons in	3 well volumes		Z. Stotal gallon	s removed					
		FIELD MEA	SUREMENTS						
Time	рН	EC	Temp * F	Gallons	Appearance				
0805	7.35	1590	72.9	0	Clan				
	7.30	1515	69.5	ス	clear				
	7.20	1760	68.9	5	claudy				
	7.20	1790	66.7	61/2	Cloudy				
0835	7.30	1780	66,2	7/2	doud				
					8				
<i>".</i>									
									
									
Water Level After Pu	rging:		80% of Original W	ater Level:					
Water Level Before S			<u></u>						
APPEARANCE OF S		idy with	sugers	Tim	e: OE45				
Bailer: Yes/No	reportable	Туре:	VV	GPM:	· · · · · · · · · · · · · · · · · · ·				
Pump: Yes/No	·	Туре:		GPM:					
Dedicated: Yes/No		Туре		GPM:					
DECONTAMINATIO		· · · · · · · · · · · · · · · · · · ·	Double Rinse Dis	orable Bailera					
SAMPLE ANALYSIS									
SIGNATURE:	Foot	-L. Nolse	77						

September 26, 1996

Invoice #:

6971

Project #:

6142.2

Project Name: 6085 Scarlett Court

Mr. Robert Nelson **EnviroNet Consulting** 1070 Airport Blvd., Suite A Santa Rosa, CA 95403

Mr. Robert Nelson,

Enclosed is the report for one (1) water sample. The sample was received at Sparger Technology Analytical Lab on September 10, 1996.

The sample was received in three (3) VOA's and one (1) 1L amber bottle. The sample was transported and received under documented chain of custody and stored at four (4) degrees C until analysis was performed.

The report consists of the following sections:

- 1. Sample Description & Analysis Request
- **Quality Control Report** II.
- 111. Analysis Results

No problems were encountered with the analysis of your samples.

If you require additional information please give us a call at (916) 362-8947.

Sincerely,

R. L. James

Principal Chemist

Sample Description & Analysis Request

Laboratory ID			Sample ID	Analysis Description	Matrix
6971	001	Α	MW-1	BTEX/TPHgas	1 w
6971	002	Α	MVV-1	TPHdiesel/motor oil	W

II Quality Control

- A. <u>Project Specific QC</u>. No project specific QC (i.e., spikes and/or duplicates) was requested.
- B. <u>Method Blank Results</u>. A method blank is a laboratory-generated sample which assesses the degree to which laboratory operations and procedures cause false-positive analytical results for your sample.

No target parameters were detected in the method blank associated with your sample at the reporting limit levels noted on the data sheets in the Analytical Results section.

- C. <u>Laboratory Control Spike</u>. A Laboratory Control Spike (LCS) is a sample which is spiked with known analyte concentrations, and analyzed at approximately 10% of the sample load in order to establish method-specific control limits. The LCS results associated with your samples are on the attached Laboratory Control Spike and Laboratory Control Spike Duplicate Analysis Report.
- D. <u>Matrix Spike Results</u>. A Matrix Spike is a sample which is spiked with known analyte concentrations, and analyzed at approximately 10% of the sample load in order to establish method-specific control limits. The Matrix Spike results associated with your samples are on the attached Matrix Spike and Matrix Spike Duplicate Analysis Report.

Accuracy is measured by Percent Recovery as in:

% recovery = $(measured concentration) \times 100$ (actual concentration)

III Analysis Results

Results are on the attached data sheets.

EPA Method 8020/8015 Modified Analysis Report

Attention:

Mr. Robert Nelson

Environet Consulting

1070 Airport Blvd., Ste. A

Santa Rosa, CA 95403

Date Sampled:

pled: 3

Sep 10, 1996

Date Received:

Sep 10, 1996

Date Analyzed:

Sep 13, 1996

Invoice #:

6971

Project #:

6142.2

Project Name:

6085 Scarlett Court

Client ID:

MW-1

LAB ID:

6971-001A

Matrix:

Water

Dilution: 1:

1

Name	Amount	Detection Limit	Units
Benzene	1.2	0.5	ug/l
Toluene	ND	0.5	ug/l
Ethylbenzene	ND	0.5	ug/l
Xylenes	ND	0.5	ug/l
TPHgas	81	50	ug/l
Surrogate % Recovery of Tri	fluorotoluene = 87%		

ppb = parts per billion = ug/l = micrograms per liter ppm= parts per million = ug/ml = micrograms per milliliter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

C. Chapman, GC Manager

Sep 20, 1996

Date Reported

EPA Method 8020 Modified Matrix Spike (MS) & Matrix Spike Duplicate (MSD) **BTEX Analysis Report**

Attention:

Mr. Robert Nelson

Environet Consulting

1070 Airport Blvd., Ste. A

Santa Rosa, CA 95403

Project ID:

6142.2

MS/MSD (Batch)

Date Sampled:

Date Received:

Date Analyzed: Invoice #:

Sep 13, 1996 6971

Project Name:

6085 Scarlett Court

Sep 10, 1996

Sep 10, 1996

6964-020MS 6964-020MSD

Matrix:

Client ID:

Water

Dilution:

LAB ID:

	Spike	Sample	MS	MSD		MS %	MSD %	% RPD	QC	Limits
Name	Added	Conc.	Result	Result	Units	Recovery	Recovery	Recovery	RPD	%Rec
Benzene	30	ND	19	29	ug/l	63%	97%	42%	20	65-135
Toluene	30	ND	31	31	ug/l	103%	103%	0%	20	65-135
Ethylbenzene	30	ND	31	31	ug/l	103%	103%	0%	20	65-135
m,p-Xylenes	60	ND	64	64	ug/l	107%	107%	0%	20	65-135

Surrogate % Recovery of Trifluorotoluene =

89% MS

87% MSD

ppb = parts per billion = ug/l = micrograms per liter

ppm= parts per million = ug/ml = micrograms per milliliter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

Chapman GC Supervisor

Sep 20, 1996

Date Reported

EPA Method 8020 Modified Laboratory Control Spike (LCS) & Laboratory Control Spike Duplicate (LCSD) BTEX Analysis Report

Attention:

Mr. Robert Nelson

Environet Consulting

1070 Airport Blvd., Ste. A

Santa Rosa, CA 95403

Date Sampled:

Date Received:

Date Analyzed:

Sep 13, 1996 Invoice #:

6971

Project ID:

6142.2

Project Name:

6085 Scarlett Court

Sep 10, 1996

Sep 10, 1996

Client ID:

LCS/LCSD

LAB ID:

6971-LCS 6971-LCSD

Matrix:

Water

Dilution:

Spike	Sample	LCS	LCSD		LCS %	LCSD %	% RPD	QC	Limits
Added	Conc.	Result	Result	Units	Recovery	Recovery	Recovery	RPD	%Rec
30	ND	30	28	ug/l	100%	93%	7%	20	65-135
30	ND	31	28	ug/l	103%	93%	10%	20	65-135
30	ND	31	28	ug/i	103%	93%	10%	20	65-135
60	ND	64	56	ug/l	107%	93%	13%	20	65-135
over of	Trifluanatal			900/		000			
	30 30 30 30 60	Added Conc. 30 ND 30 ND 30 ND 60 ND	Added Conc. Result 30 ND 30 30 ND 31 30 ND 31	Added Conc. Result Result 30 ND 30 28 30 ND 31 28 30 ND 31 28 60 ND 64 56	Added Conc. Result Result Units 30 ND 30 28 ug/l 30 ND 31 28 ug/l 30 ND 31 28 ug/l 60 ND 64 56 ug/l	Added Conc. Result Result Units Recovery 30 ND 30 28 ug/l 100% 30 ND 31 28 ug/l 103% 30 ND 31 28 ug/l 103% 60 ND 64 56 ug/l 107%	Added Conc. Result Result Units Recovery Recovery 30 ND 30 28 ug/l 100% 93% 30 ND 31 28 ug/l 103% 93% 30 ND 31 28 ug/l 103% 93% 60 ND 64 56 ug/l 107% 93%	Added Conc. Result Result Units Recovery Recovery Recovery 30 ND 30 28 ug/l 100% 93% 7% 30 ND 31 28 ug/l 103% 93% 10% 30 ND 31 28 ug/l 103% 93% 10% 60 ND 64 56 ug/l 107% 93% 13%	Added Conc. Result Result Units Recovery Recovery Recovery RPD 30 ND 30 28 ug/l 100% 93% 7% 20 30 ND 31 28 ug/l 103% 93% 10% 20 30 ND 31 28 ug/l 103% 93% 10% 20 60 ND 64 56 ug/l 107% 93% 13% 20

ppb = parts per billion = ug/l = micrograms per liter

= parts per million = ug/ml = micrograms per milliliter

ND = Not Detected Compound(s) may be present at concentrations below the detection limit,

C. Chapman, GC Supervisor

Sep 20, 1996

Date Reported

EPA Method 8015

Modified Analysis Report

Mr. Robert Nelson Attention:

Environet Consulting

1070 Airport Blvd., Ste. A

Santa Rosa, CA 95403

Project #: 6142.2

Client ID: MW-1

Matrix: Water

Date Sampled: Date Received:

Date Analyzed:

Invoice #:

Sep 10, 1996 Sep 10, 1996

Sep 15, 1996

6971

Project Name:

LAB ID:

6085 Scarlett Court

6971-002A

Dilution: 1: 1

		Detection				
Name	Amount	Limit	Units			
TPHdiesel	ND	50	ug/l	_		
TPHmotor oil	ND	50	ug/l			

ppb = parts per billion = ug/l = micrograms per liter

ppm = parts per million = ug/ml = micrograms per millitter

NO = Not Detected. Compound(s) may be present at concentrations below the detection limit

R. L. James, Principal Chemist

Sep 20, 1996

Date Reported

EPA Method 8015 Modified Laboratory Control Spike (LCS) & Laboratory Control Spike Duplicate (LCSD) **TPHdiesel Analysis Report**

Attention:

Mr. Robert Nelson

Environet Consulting

1070 Airport Blvd., Ste. A

Santa Rosa, CA 95403

Date Sampled:

Sep 10, 1996

Date Received:

Sep 10, 1996

Date Analyzed:

Sep 15, 1996

Invoice #:

6971

Project #:

6142.2

Project Name:

6085 Scarlett Court

Client ID:

LCS/LCSD

LAB ID:

6971-LCS

6971-LCSD

Matrix:

Water

Dilution:

Name	Conc. Spike Added	Sample Result	LCS Result	LCSD Result	Units	LCS % Recovery	LCSD % Recovery	% RPD Recovery
TPHdiesel	200	ND	170	160	ug/l	85%	80%	6%

ppb = parts per billion = ug/l = micrograms per liter

ppm= parts per million ≈ ug/mi = micrograms per milliliter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

Sep 20, 1996

Date Reported

3070 Airport Boulevard Santa Ross, CA 95403 Phone (707) 548–9461 Fax (707) 544–6709

Chain-of-Custody Recorr Analytical Request

697

Environded Project Manager Robert L. Nolson	Condition of Sample: Bottles Intact? Yes / No Field Filtered? Yes / No	£
Mail Invoice To: EnviroNet	Sample Remainder Disposal: Return Sample Remainder to Client via:	
Project Name 6085 Scarlett Court	1 Request Leb to Dispose of All Sample Remainders XX COC Scale Present and Intact? Yes / No	
Project Miling Reference 6/422	Volatiles Free of Headspace? Yes / No Temperature Upon Receipts	
Bempled By (Frint) Robert 1. Nelson Data Sampled:	PRESERVATIVES - Value and Requested for the first of the	
Jessi & Bample Bescription Time Matrix Contain	7 5 8 B R E E E V R / R / 8 / 8 / 8 / R R R R R R R R R R	
1 MW-1		

Simpler's Signature State | No. | No

(Emconst

Additional Comments:
Detection Limits for Soil:
TPH Motor Oil, Oil & Grease, Total
Oil & Grease: 50 ppm