

QUARTERLY GROUNDWATER MONITORING REPORT - MARCH 30, 1994 PACIFIC DRY DOCK YARD I OAKLAND, CALIFORNIA

Prepared for:

CROWLEY MARINE SERVICES, INC. 2401 Fourth Avenue
P.O. Box 2287
Seattle, Washington 98111

Prepared by:

VERSAR, INC. 5330 Primrose Drive, Suite 228 Fair Oaks, California 95628-3520

Versar Project No. 2722-017

July 29, 1994

PROJECT SUMMARY

On March 30, 1994, Versar, Inc. (Versar) conducted the fourth round of groundwater monitoring and sampling at the Pacific Dry Dock Yard I located at 1441 Embarcadero in Oakland, California.

Quarterly groundwater monitoring is being conducted from the five monitoring wells as part of the site investigation activities. Each sampling event includes: 1) measurement of groundwater levels; 2) collection and analysis of groundwater samples for total petroleum hydrocarbons as gasoline, total petroleum hydrocarbons as diesel, benzene, toluene, ethylbenzene, xylenes, total dissolved solids, and salinity; 3) calculation of the hydraulic gradient; and 4) generation of a report summarizing the results of the sampling event. Mr. Philip Walsack, Geohydrologist prepared this report under the guidance of Mr. Lawrence Kleinecke, Senior Geohydrologist.

The following conclusions summarize the findings of Versar's investigation:

- On March 30, 1994, the calculated groundwater gradient was 0.030 feet/foot to the southeast. The data used to calculate this gradient were collected during low tide.
- Total petroleum hydrocarbons as diesel, benzene, toluene, ethylbenzene, and xylenes were detected in groundwater monitoring well MW1.
- Toluene concentrations were identified in all five groundwater monitoring wells.
- The analysis of filtered duplicate sample from monitoring well MW1 identified a decrease in contaminant concentrations from the unfiltered sample.

Prepared by:

Philip K. Walsack Geohydrologist

ann

Approved for Release:

Michael D. Holley, P.E.

Engineering Program Manager

//ames R. Frantes

Vice President, Pacific Region

i

TABLE OF CONTENTS

		<u>Page</u>
	PROJECT SUMMARY	i
1.0	INTRODUCTION 1.1 Site Geology and Geohydrology 1.2 Site History 1.3 Quarterly Monitoring Program	1 2
2.0	SAMPLING ACTIVITIES	
3.0	LABORATORY ANALYTICAL RESULTS	7
4.0	FUTURE ACTIVITIES	8
5.0	REFERENCES	9

LIST OF FIGURES

<u>Figure</u>	
1	Site Location
2	Site Layout
3	Calculated Groundwater Gradient, March 30, 1994
4	Laboratory Analytical Results for Groundwater Samples Collected on March 30, 1994
	LIST OF TABLES
<u>Table</u>	
1	Monitoring Well Groundwater Levels
2	Laboratory Analytical Results for Groundwater
3	Laboratory Analytical Results for TPH-D in Filtered Duplicate Samples from Monitoring Wells MW1 and MW3
4	Historical Trend of Chemical Data for Groundwater
	LIST OF APPENDICES
<u>Appendix</u>	<u>C</u>
A	Groundwater Monitoring and Sampling Procedures
В	Monitoring Well Purge Table Sheets
С	Laboratory Analytical Reports and Chain-of-Custody Records for Groundwater Samples Collected March 30, 1994, Fourth Quarterly Groundwater Sampling

1.0 INTRODUCTION

Versar, Inc. (Versar) has been retained by Crowley Marine Services, Inc. (Crowley) to conduct environmental investigations, including a program of quarterly groundwater monitoring at Pacific Dry Dock Yard I (PDDI), located at 1441 Embarcadero in Oakland, California. This quarterly groundwater monitoring report describes the procedures and findings of the fourth round of quarterly monitoring and groundwater sampling conducted on March 30, 1994. This investigation is being conducted in accordance with the policies of the San Francisco Bay Regional Water Quality Control Board and the Alameda County Health Care Services Agency.

The site occupies approximately two acres and is bounded by the Embarcadero to the north, the Oakland Inner Harbor to the south, an undeveloped lot to the east, and a boat repair yard to the west.

Currently, a machine shop with covered storage occupies the south-central section, and a sheet metal bulkhead abuts the southern edge of the site. Four aboveground diesel storage tanks occupy the southwest corner of the site. Other structures, including an office building, a machine shed, an aboveground waste oil tank, assorted sheds, and storage buildings were demolished recently and removed. Figures 1 and 2 show the site location and site layout, respectively.

1.1 Site Geology and Geohydrology

The site is located in the Coast Ranges geomorphic province between the Hayward Fault (to the east) and the San Andreas Fault (to the west). The underlying bedrock consists of Mesozoic volcanic and metavolcanic rocks found throughout the Coast Ranges. Overlying the bedrock are Quaternary marine and non-marine alluvial sediments consisting of clays and silts.

The site is nearly level at an elevation ranging from five to ten feet above lower low tide datum (National Geodetic Vertical Datum of 1929). Versar's investigation has characterized the shallow soils beneath the site as sand, silt, and clay fill material extending from the surface to the bay muds. The fill material contains wood and brick fragments. The bay muds consist of silty clays, clays with shell fragments, and thin layers of sands or gravels. These layers are often saturated with groundwater.

During the March 30, 1994 sampling event, groundwater was measured during low tide and was measured between 4.51 and 9.81 feet below ground surface (bgs). Calculations indicate a groundwater gradient of 0.013 feet per foot (ft/ft) to the southeast. The impact of tidal fluctuations on gradient calculations has not been determined. Figure 3 shows the groundwater contours and flow direction calculated from the fourth quarterly sampling round.

1.2 Site History

Since 1935, PDDI has been used as a dry dock facility. In the past, during the repair and refurbishing of seagoing vessels, Crowley used products containing regulated materials and generated various regulated and non-regulated wastes. These products and waste materials include waste sand-blasting materials, oil-based paints, solvents, acids, caustics, waste oils, and motor fuels.

During December 1989 and January 1990, Versar conducted a site assessment of PDDI. The findings of the site assessment (Versar, 1990) included the identification of an underground storage tank (UST) reported to contain unleaded gasoline. The UST was reportedly out of service.

In September 1991, Versar supervised the removal of the UST (Versar, 1991). Soil and groundwater samples collected from the excavation following the removal were found to contain total petroleum hydrocarbons as gasoline (TPH-G); total petroleum hydrocarbons as diesel (TPH-D); total oil and grease (TOG); benzene, toluene, ethylbenzene, and xylenes (BTEX); and organic lead.

During October 1991 and January 1992, Versar collected a series of soil and groundwater samples from PDDI (Versar, May 1992). The results of this investigation identified four areas of soil containing identifiable concentrations of TPH-G, TPH-D, TOG, and/or BTEX.

On June 23 and 24, 1993, five 2-inch diameter groundwater monitoring wells were installed to a depth of 13 to 14 feet bgs at PDDI (Versar, November 7, 1993). During drilling activities, soil samples collected from boreholes MW1, MW2, and MW4 were submitted for laboratory analysis and identified concentrations of TPH-D, BTEX, and TOG. Analysis of soil samples collected from borehole MW3 identified concentrations of TPH-D and toluene. The sample collected from borehole MW5 contained only toluene.

Metals were detected in two soil samples (MW1-5.5 and MW3-5.5). Metals detected included arsenic, barium, beryllium, chromium, cobalt, copper, lead, mercury, nickel, vanadium, and zinc. However, none of the metals detected exceeded their respective total threshold limit concentration (TTLC) as described in the California Code of Regulations, Title 22 nor did they exceed ten times the soluble threshold limit concentration (STLC).

On June 25, 1993, each monitoring well was developed by removing a minimum of five well volumes of groundwater, or until dry. On July 1, 1993, each of the wells were purged and sampled. This sampling event was the first quarter of a one year long quarterly monitoring and sampling program. The samples were analyzed for TPH-D, TPH-G, TOG, and BTEX. Additionally, the groundwater sample collected from MW3 was analyzed for semivolatile organic compounds and volatile organic compounds.

The second round of quarterly groundwater monitoring and sampling at PDDI was conducted on October 14, 1993. The samples were analyzed for TPH-D, TPH-G, BTEX, TDS, and salinity. On December 8, 1993, a peristaltic pump and groundwater sampling filter were used to collect duplicate samples from monitoring wells MW1 and MW3. The analytical results of filtered groundwater samples collected from monitoring wells MW1 and MW3 indicated up to a tenfold decrease in the concentration of TPH-D when compared to

unfiltered samples. These results indicate that some of the TPH-D contamination was likely due to the adsorption of TPH-D to soil particles. Additional sampling of groundwater was conducted to confirm the presence of TPH-D in monitoring wells MW1 and MW3.

The third round of quarterly monitoring and sampling at PDDI was performed on January 17 and 18, 1994. The groundwater samples were analyzed for TPH-D, TPH-G, BTEX, TDS, and salinity. Petroleum hydrocarbon constituents were detected in monitoring wells MW1 and MW3. The analytical results of filtered groundwater samples collected from monitoring wells MW1 and MW3 were comparable to the unfiltered groundwater samples.

1.3 Quarterly Monitoring Program

The primary purpose of this program is to maintain regularly scheduled groundwater monitoring at the PDDI site. The general objectives of this third quarterly sampling event were to:

- Measure groundwater levels in monitoring wells MW1, MW2, MW3, MW4, and MW5 and determine the local hydraulic gradient;
- Purge and collect groundwater samples from monitoring wells MW1, MW2, MW3, MW4, and MW5;
- Collect filtered duplicate groundwater samples from monitoring wells MW1 and MW3;
- Submit the groundwater samples to a certified laboratory for analysis for TPH-G, TPH-D, BTEX, and salinity; and
- · Prepare this fourth quarterly groundwater monitoring report.

2.0 SAMPLING ACTIVITIES

The fourth round of quarterly groundwater monitoring and sampling at PDDI was conducted on March 30, 1994. The investigation included measurement of the groundwater levels in the five monitoring wells and collection of groundwater samples from the five monitoring wells.

2.1 Groundwater Monitoring and Sampling

On March 30, 1994, before any groundwater sampling was conducted, the depth to groundwater was measured in each monitoring well. Groundwater was present at depths of 4.87 feet bgs, 4.51 feet bgs, 9.81 feet bgs, 4.91 feet bgs, and 6.35 feet bgs in monitoring wells MW1, MW2, MW3, MW4, and MW5, respectively. These depths were converted to elevations using previous survey data and were used to calculate the hydraulic gradient. The gradient on March 30, 1994, was 0.030 ft/ft in a southeasterly direction, as shown on Figure 3. The groundwater level data for the previous sampling events are listed in Table 1.

After the measurement of groundwater levels, the monitoring wells were purged following Versar's standard procedures outlined in Appendix A using a peristaltic pump instead of a bailer. Data collected during purging included: 1) the initial depth to groundwater; 2) pH; 3) temperature; 4) conductivity; and 5) observations of sheen, odor, free product, and turbidity. Details of the purging were recorded and are included as Appendix B.

Groundwater samples were collected from each monitoring well using a peristaltic pump. The samples for TPH-G and BTEX were placed in precleaned, 40-milliliter glass vials preserved with hydrochloric acid. Groundwater samples to be analyzed for TPH-D were placed in precleaned, 1-liter glass amber containers; and samples analyzed for salinity were placed in 1-liter plastic containers. Sampling containers were labeled with the date collected and a unique sample identification and stored at approximately 4° C in an insulated cooler. All monitoring well groundwater samples were submitted for analysis to Trace Analysis Laboratory, Inc., a California state-certified laboratory (Certification No. 1199). The samples were prepared following Environmental Protection Agency (EPA) protocols and were

accompanied by Versar's chain-of-custody record. The results of the laboratory analysis are presented in Section 3.0, Laboratory Analytical Results.

In past sampling rounds, the analytical results appeared to be influenced by high turbidity. To test this phenomenon, filtered duplicate groundwater samples were collected from monitoring wells MW1 and MW3 during the past three rounds of sampling including this round of sampling. The duplicate filtered samples were collected using a peristaltic pump and a 0.45 micron acrylic co-polymer membrane filter. Groundwater samples collected using the filter had a lower turbidity than initial samples collected with a disposable bailer, although the difference was minor during this round of sampling.

Except for the use of the groundwater sampling filter, all monitoring wells were purged and sampled following Versar's standard procedures outlined in Appendix A.

3.0 LABORATORY ANALYTICAL RESULTS

During the March 30, 1994 sampling event, five groundwater samples were collected for laboratory analysis for TPH-G, TPH-D, BTEX, and salinity. TPH-G and TPH-D was analyzed following the California Department of Health Services Method. BTEX was analyzed following the modified EPA Method 8020, and salinity was analyzed following EPA Method 120.1. Groundwater samples analytical results are summarized in Figure 4. A copy of the laboratory analytical reports and chain-of-custody records from the sampling event are included as Appendix C.

Trace Analysis Laboratory reported that the groundwater samples collected on March 30, 1994, from monitoring wells MW1, MW2, MW3, MW4, and MW5 did not contain TPH-G at or above the method reporting limits. The groundwater sample collected from MW1 contained benzene, toluene, ethylbenzene, and xylene concentrations of 2.5 micrograms per liter (µg/L), 1.7 µg/L, 0.56 µg/L, and 1.9 µg/L, respectively. Groundwater samples from MW2, MW3, and MW5 contained toluene at 1.1 μ g/L, 0.90 μ g/L, and 0.87 μ g/L, respectively. Concentrations of both toluene and xylenes were detected at 1.5 µg/L in the groundwater sample from monitoring well MW4. The groundwater sample from MW1 contained 110 µg/L of TPH-D. The four remaining groundwater samples did not contain TPH-D at or above method reporting limit. Groundwater samples collected from MW1 and MW3 contained TPH-D concentrations of 110 µg/L and not detected, respectively. Groundwater samples collected from MW1 and MW3 as filtered duplicate samples contained no detected TPH-D concentrations in either sample. Analysis of groundwater samples collected from MW1 through MW5 reported concentrations of salinity ranging between $0.10 \mu g/L$ and $21 \mu g/L$.

Laboratory analytical results for groundwater samples from March 30, 1994, are summarized in Table 2. Laboratory analytical results for TPH-D in the filtered duplicate samples from MW1 and MW3 are summarized in Table 3. The historical trend of chemical data are summarized in Table 4.

4.0 FUTURE ACTIVITIES

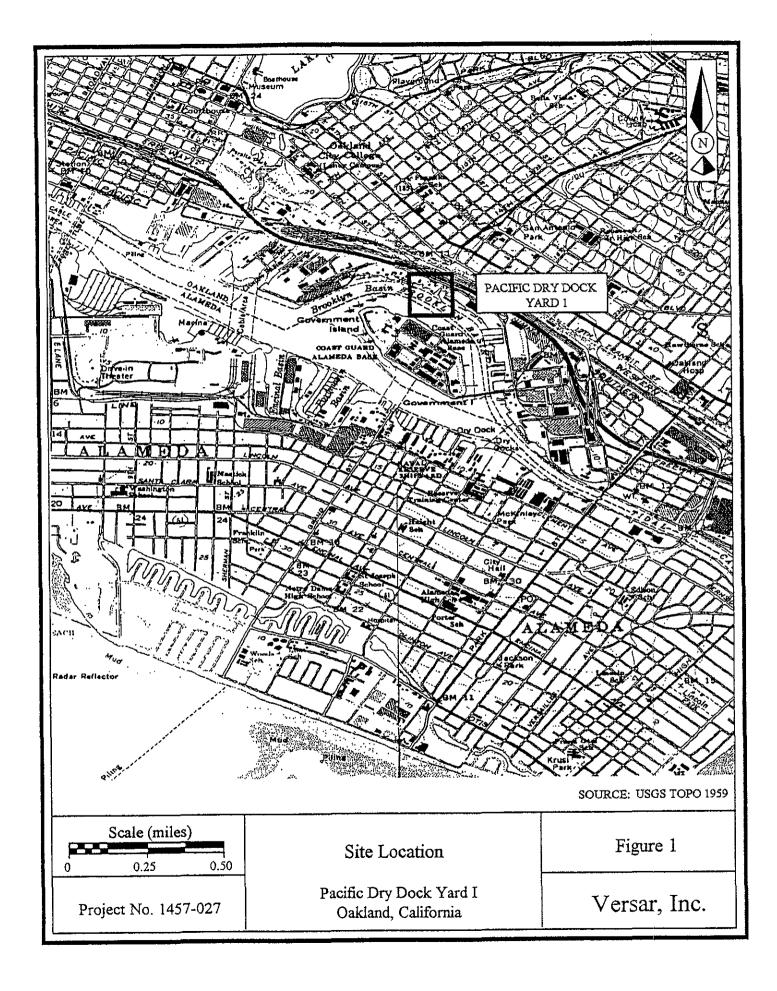
This is the fourth sampling event of the quarterly sampling activities for the five monitoring wells MW1, MW2, MW3, MW4, and MW5 at the PDDI site. Because petroleum hydrocarbon contamination has been identified in groundwater samples collected during the first four quarters of sampling, additional quarterly groundwater monitoring will be conducted. Sample analysis will continue for TPH-D, TPH-G, and BTEX, however, filtered duplicate samples will no longer be collected. The next quarterly sampling event is scheduled for July 1994.

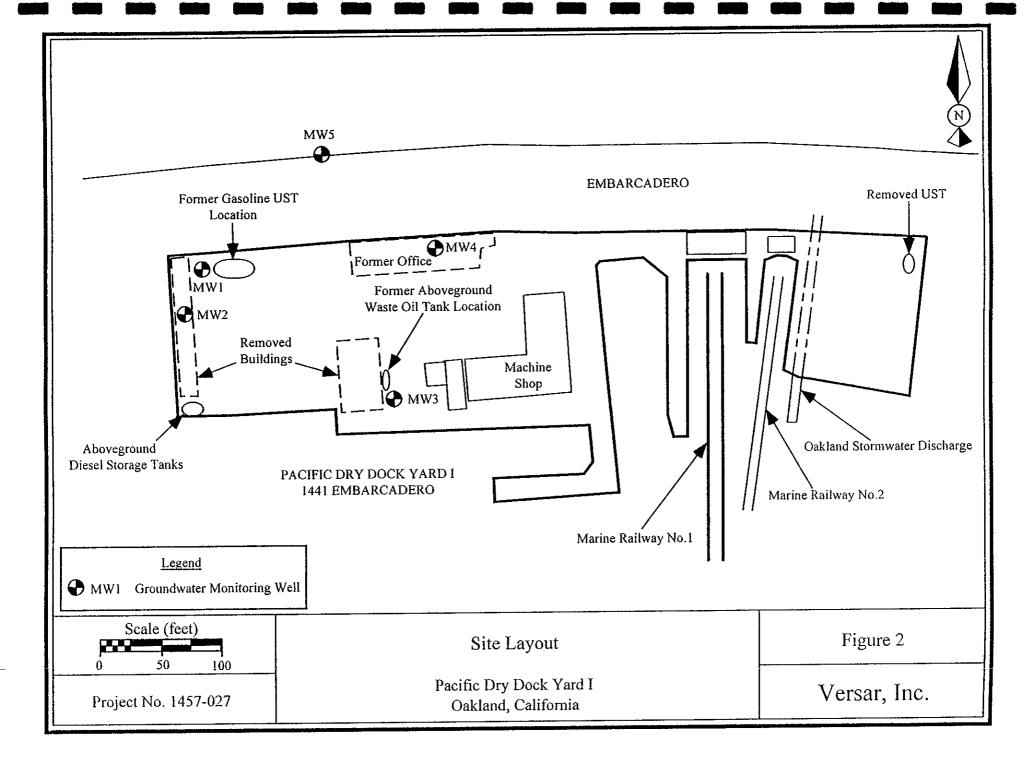
5.0 REFERENCES

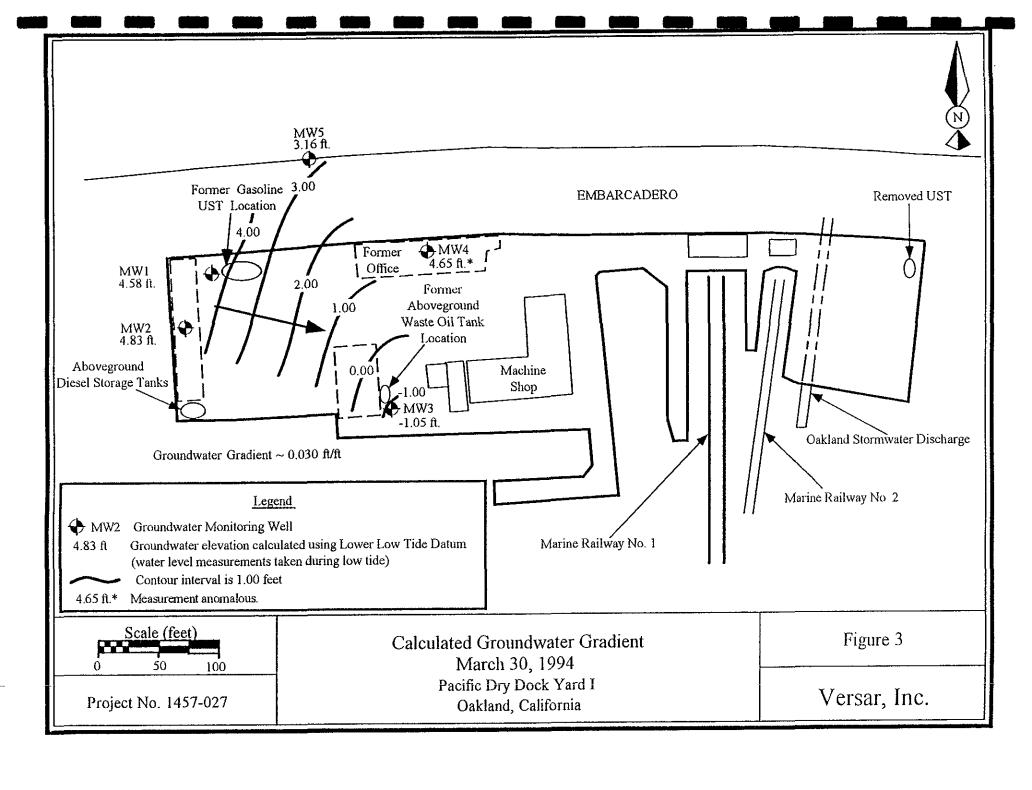
Versar, Inc. Fair Oaks, California. 1990, Site Assessment Report for the Pacific Dry Dock and Repair Yards I and II, Oakland, California.

Versar, Inc. Fair Oaks, California. October 1991, Tank Removal, Pacific Dry Dock and Repair Yard I, Western Section, Oakland, California.

Versar, Inc. Fair Oaks, California. March 1992, Phase II Site Investigation Work Plan, Pacific Dry Dock and Repair Yard I, Western Section, Oakland, California.


Versar, Inc. Fair Oaks, California. May 1992, Preliminary Investigation and Evaluation Report (PIER), Pacific Dry Dock and Repair Yard I, Western Section, Oakland, California.


Versar, Inc. Fair Oaks, California. September 1992, Addendum to Phase II Site Investigation Work Plan, Pacific Dry Dock and Repair Yard I, Oakland, California.


Versar, Inc. Fair Oaks, California. November 7, 1993, Well Installation, Pacific Dry Dock and Repair Yard I, Western Section, Oakland, California.

Versar, Inc. Fair Oaks, California. Quarterly Groundwater Monitoring Report - April 18, 1994, Pacific Dry Dock Yard I, Oakland, California.

Versar, Inc. Fair Oaks, California. Quarterly Groundwater Monitoring Report - June 10, 1994, Pacific Dry Dock Yard I, Oakland, California.

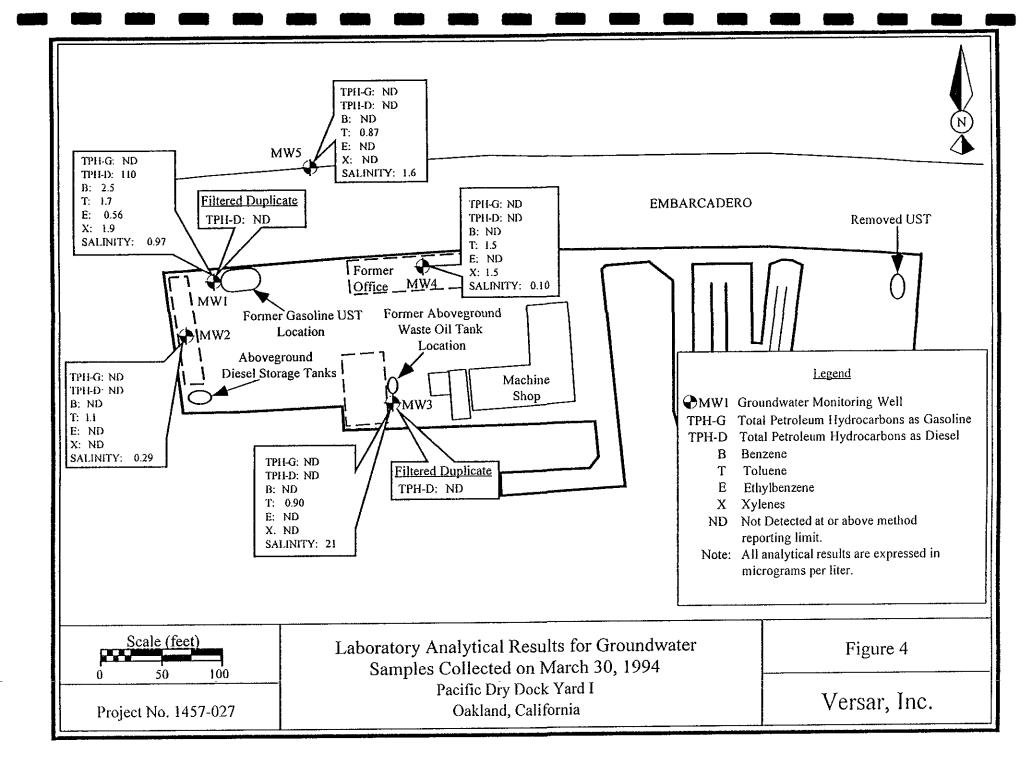


TABLE 1 QUARTERLY GROUNDWATER MONITORING REPORT MONITORING WELL GROUNDWATER LEVELS

March 30, 1994

	MW1	MW2	MW3	MW4	MW5	Hydraulic Gradient (feet/foot)
Reference Casing Elevation (feet)	9.45	9.34	8.76	9.55	9.51	
October 14, 1993						
Depth to Groundwater (High Tide)	6.54	5.74	3.98	6.45	6.92	
Groundwater Elevation	2.91	3.60	4.78	3.10	2.59	0.013 ft/ft to the north
December 8, 1993						
Depth to Groundwater (Low Tide)	6.28	4.55	6.50	6.02	6.71	
Groundwater Elevation	3.17	4.79	2.26	3.53	2.80	0.016 ft/ft to the east
January 17, 1994						
Depth to Groundwater (High Tide)	4.93	4.90	6.60	6.05	6.60	
Groundwater Elevation	4.52	4.44	2.16	3.50	2.91	0.013 ft/ft to the southeast
March 30, 1994						
Depth to Groundwater (Low Tide)	4.87	4.51	9.81	4.91	6.35	
Groundwater Elevation	4.58	4.83	-1.05	4.65	3.16	0.030 ft/ft to the southeast

¹ Depth-to-groundwater measurements were taken during high tide and are expressed in feet below top of casing. ² Depth-to-groundwater measurements were taken during low tide and are expressed in feet below top of casing.

TABLE 2

QUARTERLY GROUNDWATER MONITORING REPORT LABORATORY ANALYTICAL RESULTS FOR GROUNDWATER

March 30, 1994

Groundwater Monitoring Well	Sample Date	TPH-G (μg/L)	TPH-D (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	TDS (µg/L)	Salinity (μg/L)
MW1	10/14/93	NDI	63	ND	ND	ND	ND	8,800,000	8.7
	12/8/93	NA ²	57	NA	NA	NA	NA	NA	NA
	1/18/94	ND	60	1.0	1.4	ND	1.5	1,200,000	1.0
	3/30/94	ND	110	2.5	1.7	0.56	1.9	NA	0.97
MW2	10/14/93	ND	ND	ND	ND	ND	ND	12,000,000	11.0
	1/18/94	ND	ND	ND	ND	ND	ND	570,000	0.46
	3/30/94	ND	ND	ND	1.1	ND	ND	NA	0.29
MW3	10/14/93	ND	840	ND	ND	ND	ND	31,000,000	29.0
.,,,,,,	12/8/93	NA	89	NA	NA	NA	NA	NA	NA
	1/18/94	ND	64	ND	ND	ND	ND	28,000,000	27
	3/30/94	ND	ND	ND	0.90	ND	ND	NA	21
MW4	10/14/93	ND	ND	ND	ND	ND	ND	3,600,000	43.4
*****	1/18/94	ND	ND	ND	ND	ND	ND	3,100,000	2.6
	3/30/94	ND	ND	ND	1.5	ND	1.5	NA	0.10
MW5	10/14/93	ND	ND	ND	ND	ND	ND	2,000,000	2.0
-	1/18/94	ND	ND	ND	ND	ND	ND	2,200,000	2.1
	3/30/94	ND	ND	ND	0.87	ND	ND	NA	1.6

 $^{^{1}}$ ND = Not Detected at or above method reporting limits. 2 NA = Not Analyzed

TABLE 3

QUARTERLY GROUNDWATER MONITORING REPORT LABORATORY ANALYTICAL RESULTS FOR TPH-D IN FILTERED DUPLICATE SAMPLES FROM MONITORING WELLS MW1 AND MW3

March 30, 1994

Groundwater Monitoring Well	Sample Date	Total Petroleum Hydrocarbons as Diesel (μg/L)
MWI	10/14/93	63
	1/18/94	60
	3/30/94	110
MWI	12/8/93	57
(Filtered Duplicate)	1/18/94	150
(1 marca - aprilame)	3/30/94	ND_1
MW3	10/14/93	840
	1/18/94	64
	3/30/94	ND
MW3	12/8/93	89
(Filtered Duplicate)	1/18/94	91
(* ***********************************	3/30/94	ND

¹ND = Not Detected at or above method reporting limits.

TABLE 4 QUARTERLY GROUNDWATER SAMPLING AND ANALYSIS PROGRAM HISTORICAL TREND OF CHEMICAL DATA FOR GROUNDWATER

Groundwater Monitoring Well	Sample Date	TPH-G (µg/L)	ΤΡΗ-D (μg/L)	Total Oil and Grease (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	TDS (μg/L)	Salinity (µg/L)
MWI	7/1/93	NDi	ND	ND	ND	ND	ND	ND	NA ²	NA
1V1 YY 1	1014/93	ND	63	NA	ND	ND	ND	ND	8,800,000	87
	12/8/93	NA.	57	NA	NA	NA	NA	NA	NA	NA
	1/18/94	ND	60	NA	NA	1.0	1.4	15	1,200,000	0.1
	3/30/94	ND	110	NA	2.5	1.7	0.56	1.9	NA	0.97
MW2	7/1/93	ND	ND	ND	ND	ND	ND	ND	NA	NA
	10/14/93	ND	ND	NA	ND	ND	ND	ND	12,000,000	11
	12/8/93	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1/18/94	ND	ND	NA	ND	ND	ND	ND	570,000	0.46
	3/30/94	ND	ND	ND	ND	2.2	ND	ND	NA	0.29
MW3	7/1/93	ND	ND	ND	ND	ND	ND	ND	NA	NA
	10/14/93	ND	840	NA	ND	ND	ND	ND	31,000,000	29
	12/8/93	NA	89	NA	NA	NA	NA	NA	NA	NA
	1/18/94	ND	64	NA	ND	ND	ND	ND	28,000,000	27
	3/30/94	ND	ND	NA	ND	0.90	ND	ND	NA	21
MW4	7/1/93	ND	ND	ND	ND	ND	ND	ND	NA	NA
	10/14/93	ND	ND	NA	ND	ND	ND	ND	3,600,000	3.4
	12/8/93	NA	89	NA	NA	NA	NA	NA	NA	NA
	1/18/94	ND	ND	NA	ND	ND	ND	ND	3,100,000	2.6
	3/30/94	ND	ND	NA	ND	1.5	ND	1.5	NA	0.1
MW5	7/1/93	ND	ND	ND	ND	ND	ND	ND	NA	NA
::-	10/14/93	ND	ND	NA	ND	ND	ND	ND	2,000,000	2.0
	12/8/93	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1/18/94	ND	ND	NA	ND	ND	ND	ND	2,200,000	2.1
	3/30/94	ND	ND	ND	ND	0.87	ND	ND	NA	16

¹ ND = Not Detected at or above method reporting limits.
² NA = Not Analyzed

APPENDIX A

Groundwater Monitoring and Sampling Procedures

1.0 SAMPLING AND DECONTAMINATION PROCEDURES

The decontamination procedures for non-dedicated field equipment and well development/purging equipment are given below. These procedures are followed during all field activities.

- 1. Non-dedicated well development, purging, and sampling equipment is carefully pre-cleaned prior to each use, as follows:
 - a. Carefully brush off any loose foreign debris with a soft bristle brush.
 - b. Rinse the equipment thoroughly in clean water.
 - c. Wash the equipment in a non-phosphate detergent bath.
 - d. Rinse thoroughly in clean water.
 - e. Rinse with pesticide-grade hexane (if deemed necessary).
 - f. Rinse thoroughly with deionized water.
 - g. Air dry in a dust-free environment.
 - h. Store in sterile plastic bags or other suitable cover until use.
- 2. Clean disposable gloves are worn by all field personnel when handling decontaminated equipment.

2.0 COLLECTION OF SAMPLES

2.1 Groundwater Sampling

Groundwater samples were collected for laboratory analysis using the procedures given below.

1. Open the well and measure the organic vapor concentration with a flame ionization detector (FID) or photoionization dectector (PID).

- 2. Measure the water levels (if any) in the well using a decontaminated measuring device. All measurements must be made to the nearest 0.01 foot, and measured relative to the top of the casing. Record the depth of the water in the field notebook.
- 3. Inspect the disposal bailer to ensure that the bottom valve assembly is working correctly.
- 4. Begin purging the well by inserting a bailer into the PVC monitoring well casing and carefully lower it into the well. Take care to avoid agitating and aerating the fluid column in the well.
- 5. Slowly withdraw the bailer and transfer the water samples to a sampling containers.
- 6. Measure the temperature, pH, conductivity, and turbidity. Record these and all subsequent measurements in the field notebook.
- 7. Continue purging the well (a minimum of three well volumes) until the temperature, pH, conductivity, and turbidity have stabilized, or the well is dry.
- 8. When the water has recovered to 80 percent of the original level, carefully lower a new disposable bailer into the well and recover groundwater samples.
- 9. Fill the appropriate sample containers by releasing water from the bailer via the bottom emptying device with a minimum of agitation. The most volatile parameters are collected first, proceeding to the least volatile parameters.
- 10. Place the purge water in a DOT-approved 55-gallon drums.

3.0 ANALYSIS OF SAMPLES

Samples are submitted to a California state-certified laboratory for analysis.

4.0 SAMPLE HANDLING

4.1 Sample Containers, Preservation, and Holding Times

All samples are collected, placed in containers, preserved, and analyzed within the time constraints with applicable local, provincial, and federal procedures. All sample containers are precleaned in accordance with prescribed EPA methods. A non-adhesive tape is placed

around all sample container lids to prevent leaks and to prevent unauthorized tampering with individual samples following collection and prior to the time of analysis.

4.2 Sample Tracking and Management

All samples are tracked using a standard chain-of-custody form. The chain of custody record includes the following information:

- 1. Sample number
- 2. Signature of collector
- 3. Date and time of collection
- 4. Sample collection location
- 5. Sample type
- 6. Signature of persons involved in the chain-of-possession
- 7. Inclusive dates of possession
- 8. Analytical parameters
- 9. Pertinent field observations

The custody record is completed using waterproof ink. Corrections are made by drawing a line through, initialing the error, and then entering the correct information.

Custody of the samples begins at the time of sample collection and are maintained by the sampling team supervisor until samples are relinquished for shipment to the laboratory, or until samples are hand-delivered to the designated laboratory sample custodian. Partial sample sets being accumulated for hand-delivery to the laboratory are stored in coolers with chain-of-custody records affixed.

Each sample shipment is accompanied by a chain-of-custody record identifying its contents. The original record accompanies the shipment and the copy is retained by the sampling team leader. The original (the top copy) is enclosed in a plastic zip-lock bag and secured to the inside of the cooler lid with tape.

APPENDIX B

Monitoring Well Purge Table Sheets

Project Number:	1457-027		Site Name: Pacif	ic Dry Dock Yard			
Well Number: N	⁄/W1		Date(s) Purged: 3/30/94				
OVA - Ambient:	0 parts-per-million	n	Purge Method: Peristaltic pump				
OVA - Vault: 0	parts-per-million		Purge Rate: 0.2 gallon/minutes				
OVA - Casing:	22 parts-per-million	1	Date & Time Sampled: 3/30/94 - 1602				
Water Level - In	itial: 4.87 feet (0	930)	Purged & Sampled By: P. Cox				
Water Level - Fi	nal: 7.98 feet (151	3)	Sampling Method	l: Peristaltic pump			
Well Depth: 14.	39 feet		Free Product: No	one			
Well Diameter:	2 inch		Sheen: None		,		
Well Casing Vol	ume: 1.5 gallons		Odor: Moderate	to mild petroleum	odor		
Time	Cumulative Purge Water Removed (gallons)	Temperature (Degrees Fahrenheit)	pΉ	Conductivity (µm/cm)	Turbidity		
1121	0.0	69.3	7.13	>20,000	Low		
1123	0.5	65.8	7.09	13,700	Low		
1126	1.0	64.4	7.15	4,260	Low		
1128	1.5	64.1	7.13	4,290	Low		
1131	2.0	64.4	7.08	5,760	Low		
1136	2.5	64.5	7.08	5,760	Low		
1138	3.0	64.1	7.07	4,490	Moderate		
1140	3.5	64.2	7.03	6,970	Moderate		
1142	4.0	65.1	7.00	12,400	Moderate		
1145	4.5	65.6	7.04	19,400	Moderate		
1602	Sample	63.3	7.87	2,260	Low		

Duplicate sample collected using groundwater sample filter. Initial water level measurements were taken during low tide. Field Notes:

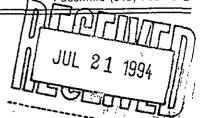
Project Number:	1457-027		Site Name: Pacific Dry Dock Yard I					
Well Number: N	/IW2		Date(s) Purged: 3/30/94					
OVA - Ambient:	0 parts-per-millio	n	Purge Method: P	eristaltic pump				
OVA - Vault: 0	parts-per-million		Purge Rate: 0.2	gallon/minute				
OVA - Casing:	0 parts-per-million		Date & Time San	Date & Time Sampled: 3/30/94 - 1625				
Water Level - In	itial: 4.51 feet (0	940)	Purged & Sampled By: P. Cox					
Water Level - Fl	nal: 5.80 feet (151	5)	Sampling Method	: Peristaltic pump				
Well Depth: 1	4.20 feet		Free Product: No	one				
Well Diameter:	2 inch		Sheen: None					
Well Casing Vol	ume: 1.5 gallons		Odor: Moderate	to Low sulfur odor				
Time	Cumulative Purge Water Removed (gallons)	Temperature (Degrees Fahrenheit)	pН	Conductivity (µm/cm)	Turbidity			
1200	0.0	69.1	8.25	2,320	Low			
1202	0.5	66.4	7.56	1,080	Low			
1205	1.0	65.5	7.20	725	Low			
1207	1.5	64.9	6.94	751	Low			
1210	2.0	65.4	6.93	804	Low			
1212	2.5	64.6	6.99	819	Low			
1215	3.0	65.3	6.94	889	Low			
1217	3.5	65.4	6.99	1,110	Low			
1220	4.0	65.4	6.92	1,060	Low			
1222	4.5	65.4	6.90	1,140	Low			
1625	Sample	63.3	8.15	1,150	Low			

Field Notes: Initial water level measurements were taken during low tide.

Project Number:	1457-027		Site Name: Pacif	ic Dry Dock Yard	_ 		
Well Number: N			Date(s) Purged: 3/30/94				
	0 parts-per-millio	n	Purge Method: Peristaltic pump				
	parts-per-million		Purge Rate: 0.2 gallon/minute				
	0 parts-per-million		Date & Time Sampled: 3/30/94 - 1637				
	itial: 9.81 feet (0	042)	Purged & Sampled By: P. Cox				
	nal: 5.87 feet (151			l: Peristaltic pump			
		0)	Free Product: No	· · · · · · · · · · · · · · · · · · ·			
Well Depth: 15 Well Diameter:			Sheen: None	ле			
			Odor: None				
	ume: 0.8 gallon			· · · · · · · · · · · · · · · · · · ·			
Time	Cumulative Purge Water Removed (gallons)	Temperature (Degrees Fahrenheit)	pН	Conductivity (µm/cm)	Turbidity		
1242	0.0	67.1	6.87	>20,000	Moderate		
1244	0.5	65.4	6.94	>20,000	Low		
1247	1.0	63.5	7.05	>20,000	Low		
1249	1.5	62.8	6.99	>20,000	Low		
1252	2.0	62.8	6.99	>20,000	Low		
1254	2.5	62.4	6.99	>20,000	Low		
1257	3.0	62.6	7.00	>20,000	Low		
1637	Sample	60.7	7.71	>20,000	Low		

Field Notes: Orange algae in pump water. Duplicate sample collected using groundwater sampling filter. Initial water level measurements were taken at low tide.

Water Level - Initial: 4.91 feet (0938) Purged & Sampled By: P. Cox	Purge Method: Peristaltic pump	43374							
OVA - Vault: 0 parts-per-million Purge Rate: 0.2 gallon/minute OVA - Casing: 0 parts-per-million Date & Time Sampled: 3/30/94 - Water Level - Initial: 4.91 feet (0938) Purged & Sampled By: P. Cox Water Level - Final: 9.35 feet (1510) Sampling Method: Peristaltic pum Well Depth: 13.25 feet Free Product: None Well Casing Volume: 1.3 gallons Odor: None Time Cumulative Purge Water Removed (gallons) Temperature (Degrees Fahrenheit) pH Conductivity (µm/cm) 1043 0.0 65.4 7.27 2,500 1045 0.5 64.7 7.15 2,410 1047 1.0 63.9 7.03 2,290 1050 1.5 63.6 7.00 2,340 1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	Number N	VIW4		Date(s) Purged:	3/30/94				
OVA - Casing: 0 parts-per-million Date & Time Sampled: 3/30/94 - Water Level - Initial: 4.91 feet (0938) Purged & Sampled By: P. Cox Water Level - Final: 9.35 feet (1510) Sampling Method: Peristaltic pum Well Depth: 13.25 feet Free Product: None Well Casing Volume: 1.3 gallons Other: None Time Cumulative Purge Water Removed (gallons) Temperature (Degrees) Fahrenheit) pH Conductivity (μm/cm) 1043 0.0 65.4 7.27 2,500 1045 0.5 64.7 7.15 2,410 1047 1.0 63.9 7.03 2,290 1050 1.5 63.6 7.00 2,340 1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	Date & Time Sampled: 3/30/94 - 1547	: 0 parts-per-million	n	Purge Method:	Purge Method: Peristaltic pump				
Water Level - Initial: 4.91 feet (0938) Purged & Sampled By: P. Cox Water Level - Final: 9.35 feet (1510) Sampling Method: Peristaltic pum Well Depth: 13.25 feet Free Product: None Well Casing Volume: 1.3 gallons Ottor: None Time Cumulative Purge Water Removed (gallons) Temperature (Degrees) Fahrenheit) pH Conductivity (μm/cm) 1043 0.0 65.4 7.27 2,500 1045 0.5 64.7 7.15 2,410 1047 1.0 63.9 7.03 2,290 1050 1.5 63.6 7.00 2,340 1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	Purged & Sampled By: P. Cox	parts-per-million		Purge Rate: 0.	2 gallon/minute				
Water Level - Final: 9.35 feet (1510) Sampling Method: Peristaltic pum Well Depth: 13.25 feet Free Product: None Well Diameter: 2 inch Sheen: None Well Casing Volume: 1.3 gallons Odor: None Time Cumulative Purge Water Removed (gallons) Temperature (Degrees Fahrenheit) pH Conductivity (μm/cm) 1043 0.0 65.4 7.27 2,500 1045 0.5 64.7 7.15 2,410 1047 1.0 63.9 7.03 2,290 1050 1.5 63.6 7.00 2,340 1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	Cumulative Purge Water Removed (gallons)	0 parts-per-million		Date & Time Sa	ampled: 3/30/94 - 15	47			
Well Depth: 13.25 feet Free Product: None Well Diameter: 2 inch Sheen: None Well Casing Volume: 1.3 gallons Odor: None Time Cumulative Purge Water Removed (gallons) Temperature (Degrees Fahrenheit) pH Conductivity (μm/cm) 1043 0.0 65.4 7.27 2,500 1045 0.5 64.7 7.15 2,410 1047 1.0 63.9 7.03 2,290 1050 1.5 63.6 7.00 2,340 1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	Sheen: None	uitial: 4.91 feet (0	938)	Purged & Samp	led By: P. Cox				
Well Diameter: 2 inch Sheen: None Well Casing Volume: 1.3 gallons Odor: None Time Cumulative Purge Water Removed (gallons) Temperature (Degrees Fahrenheit) pH Conductivity (μm/cm) 1043 0.0 65.4 7.27 2,500 1045 0.5 64.7 7.15 2,410 1047 1.0 63.9 7.03 2,290 1050 1.5 63.6 7.00 2,340 1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	Sheen: None Cursulative Purge Water Removed (gallons) Temperature (Degrees Fahrenheit) pH Conductivity (μm/cm) Turbidity 0.0 65.4 7.27 2,500 Low 1.0 63.9 7.15 2,410 Low 1.5 63.6 7.00 2,340 Low 2.0 63.8 7.07 2,340 Low 2.5 63.4 7.10 2,350 Low 3.0 63.3 7.11 2,400 Low 3.5 63.3 7.11 2,440 Low 4.0 63.4 7.11 2,510 Low	nal: 9.35 feet (151	0)	Sampling Metho	d: Peristaltic pump				
Well Casing Volume: 1.3 gallons Odor: None Time Cumulative Purge Water Removed (gallons) Temperature (Degrees Fahrenheit) pH Conductivity (μm/cm) 1043 0.0 65.4 7.27 2,500 1045 0.5 64.7 7.15 2,410 1047 1.0 63.9 7.03 2,290 1050 1.5 63.6 7.00 2,340 1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	Cumulative Purge Water Removed (gallons) Temperature (Degrees Fahrenheit) pH Conductivity (μm/cm) Turbidity 0.0 65.4 7.27 2,500 Low 0.5 64.7 7.15 2,410 Low 1.0 63.9 7.03 2,290 Low 1.5 63.6 7.00 2,340 Low 2.0 63.8 7.07 2,340 Low 2.5 63.4 7.10 2,350 Low 3.0 63.3 7.11 2,400 Low 3.5 63.3 7.11 2,440 Low 4.0 63.4 7.11 2,510 Low	3.25 feet		Free Product: N	None				
Time Cumulative Purge Water Removed (gallons) 1043	Cumulative Purge Water Removed (gallons) Temperature (Degrees Fahrenheit) pH Conductivity (μm/cm) Turbidity 0.0 65.4 7.27 2,500 Low 0.5 64.7 7.15 2,410 Low 1.0 63.9 7.03 2,290 Low 1.5 63.6 7.00 2,340 Low 2.0 63.8 7.07 2,340 Low 2.5 63.4 7.10 2,350 Low 3.0 63.3 7.11 2,400 Low 3.5 63.3 7.11 2,440 Low 4.0 63.4 7.11 2,510 Low	2 inch		Sheen: None					
Purge Water Removed (gallons) (Degrees Fahrenheit) (μm/cm) 1043 0.0 65.4 7.27 2,500 1045 0.5 64.7 7.15 2,410 1047 1.0 63.9 7.03 2,290 1050 1.5 63.6 7.00 2,340 1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	Purge Water Removed (gallons) (Degrees Fahrenheit) (μm/cm) 0.0 65.4 7.27 2,500 Low 0.5 64.7 7.15 2,410 Low 1.0 63.9 7.03 2,290 Low 1.5 63.6 7.00 2,340 Low 2.0 63.8 7.07 2,340 Low 2.5 63.4 7.10 2,350 Low 3.0 63.3 7.11 2,400 Low 3.5 63.3 7.11 2,440 Low 4.0 63.4 7.11 2,510 Low	iume: 1.3 gallons		Odor: None					
1045 0.5 64.7 7.15 2,410 1047 1.0 63.9 7.03 2,290 1050 1.5 63.6 7.00 2,340 1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	0.5 64.7 7.15 2,410 Low 1.0 63.9 7.03 2,290 Low 1.5 63.6 7.00 2,340 Low 2.0 63.8 7.07 2,340 Low 2.5 63.4 7.10 2,350 Low 3.0 63.3 7.11 2,400 Low 3.5 63.3 7.11 2,440 Low 4.0 63.4 7.11 2,510 Low	Purge Water Removed	(Degrees	рН		Turbidity			
1047 1.0 63.9 7.03 2,290 1050 1.5 63.6 7.00 2,340 1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	1.0 63.9 7.03 2,290 Low 1.5 63.6 7.00 2,340 Low 2.0 63.8 7.07 2,340 Low 2.5 63.4 7.10 2,350 Low 3.0 63.3 7.11 2,400 Low 3.5 63.3 7.11 2,440 Low 4.0 63.4 7.11 2,510 Low	0.0	65.4	7.27	2,500	Low			
1050 1.5 63.6 7.00 2,340 1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	1.5 63.6 7.00 2,340 Low 2.0 63.8 7.07 2,340 Low 2.5 63.4 7.10 2,350 Low 3.0 63.3 7.11 2,400 Low 3.5 63.3 7.11 2,440 Low 4.0 63.4 7.11 2,510 Low	0.5	64.7	7.15	2,410	Low			
1052 2.0 63.8 7.07 2,340 1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	2.0 63.8 7.07 2,340 Low 2.5 63.4 7.10 2,350 Low 3.0 63.3 7.11 2,400 Low 3.5 63.3 7.11 2,440 Low 4.0 63.4 7.11 2,510 Low	1.0	63.9	7.03	2,290	Low			
1054 2.5 63.4 7.10 2,350 1057 3.0 63.3 7.11 2,400	2.5 63.4 7.10 2,350 Low 3.0 63.3 7.11 2,400 Low 3.5 63.3 7.11 2,440 Low 4.0 63.4 7.11 2,510 Low	1.5	63.6	7.00	2,340	Low			
1057 3.0 63.3 7.11 2,400	3.0 63.3 7.11 2,400 Low 3.5 63.3 7.11 2,440 Low 4.0 63.4 7.11 2,510 Low	2.0	63.8	7.07	2,340	Low			
	3.5 63.3 7.11 2,440 Low 4.0 63.4 7.11 2,510 Low	2.5	63.4	7.10	2,350	Low			
1059 3.5 63.3 7.11 2,440	4.0 63.4 7.11 2,510 Low	3.0	63.3	7.11	2,400	Low			
		3.5	63.3	7.11	2,440	Low			
1102 4.0 63.4 7.11 2,510	Sample 65.5 7.67 2,570 Low	4.0	63.4	7.11	2,510	Low			
1545 Sample 65.5 7.67 2,570		Sample	65.5	7.67	2,570	Low			
		·	parts-per-million 0 parts-	parts-per-million 0 parts-per-million initial: 4.91 feet (0938) inal: 9.35 feet (1510) 3.25 feet 2 inch furne: 1.3 gallons Cumulative Purge Water Removed (gallons) 0.0 65.4 0.5 64.7 1.0 63.9 1.5 63.6 2.0 63.8 2.5 63.4 3.0 63.3 3.5 63.3 4.0 63.4	Purpose Purp	Purge Rate: 0.2 gallon/minute			


OVA - Vault: 0 parts OVA - Casing: 0 parts Water Level - Initial: Water Level - Final: Well Depth: 13.90 for Well Diameter: 2 incompleted Well Casing Volume: Time	-per-million es-per-million 6.35 feet (0 6.37 feet (150 eet	Temperature (Degrees	Purge Rate: 0 Date & Time Sa Purged & Samp	Peristaltic pump 2 gallon/minute ampled: 3/30/94 - 15 led By: P. Cox od: Peristaltic pump	30
Well Casing Volume: Time C Pt 0954	per-million 6.35 feet (0 6.37 feet (150 eet ch 1.2 gallons cumulative arge Water	Temperature (Degrees	Purge Rate: 0.2 Date & Time Sa Purged & Samp Sampling Metho Free Product: N Sheen: None Odor: None	2 gallon/minute ampled: 3/30/94 - 15 led By: P. Cox od: Peristaltic pump None	30
OVA - Casing: 0 part Water Level - Initial: Water Level - Final: Well Depth: 13.90 for Well Diameter: 2 incompleted Well Casing Volume: Time Opposed O954	6.35 feet (0 6.37 feet (150 eet ch 1.2 gallons cumulative urge Water	Temperature (Degrees	Date & Time Sa Purged & Samp Sampling Metho Free Product: N Sheen: None Odor: None	ampled: 3/30/94 - 15 led By: P. Cox od: Peristaltic pump None	30
Water Level - Initial: Water Level - Final: Well Depth: 13.90 for Well Diameter: 2 incomes Well Casing Volume: Time Control Put 1954	6.35 feet (0 6.37 feet (150 eet ch 1.2 gallons cumulative urge Water	Temperature (Degrees	Purged & Samp Sampling Metho Free Product: N Sheen: None Odor: None	led By: P. Cox od: Peristaltic pump None	30
Water Level - Final: Well Depth: 13.90 for Well Diameter: 2 income: Well Casing Volume: Time Control Put	6.37 feet (150 eet ch 1.2 gallons cumulative urge Water	Temperature (Degrees	Sampling Methor Free Product: None Odor: None	od: Peristaltic pump	
Well Depth: 13.90 for Well Diameter: 2 income: Well Casing Volume: Time Control Public	ch 1.2 gallons cumulative urge Water	Temperature (Degrees	Free Product: None Odor: None	None	
Well Diameter: 2 inc Well Casing Volume: Time C Pu	1.2 gallons fumulative arge Water	(Degrees	Sheen: None Odor: None		
Well Casing Volume: Time C Pt 0954	1.2 gallons fumulative urge Water	(Degrees	Odor: None	Conductivity	
Time C Pr	umulative irge Water	(Degrees		Conductivity	
0954	ırge Water	(Degrees	pН	Conductivity	
	(gallons)	Fahrenheit)		(μm/cm)	Turbidity
0927	0.0	66.8	6.95	5,100	Moderate
	0.3	65.5	6.88	3,900	Low-mod
0959	1.0	64.9	6.86	3,940	Low-mod
1000	1.5	64.2	6.82	3,960	Low
1008	2.0	63.2	6.81	3,940	Low
1011	2.5	63.8	673	3,970	Low
1013	3.0	64.1	6.73	4,020	Low
1015	3.5	69.1	6.75	4,020	Low
1018	4.0	64.0	6.75	4,040	Low
1530	Sample	66.8	7.65	4,440	Low

APPENDIX C

Laboratory Analytical Results and Chain-of-Custody Records for Groundwater Samples Collected During March 30, 1994 Fourth Quarterly Groundwater Sampling

Telephone (510) 783-6960 Facsimile (510) 783-1512

July 14, 1994

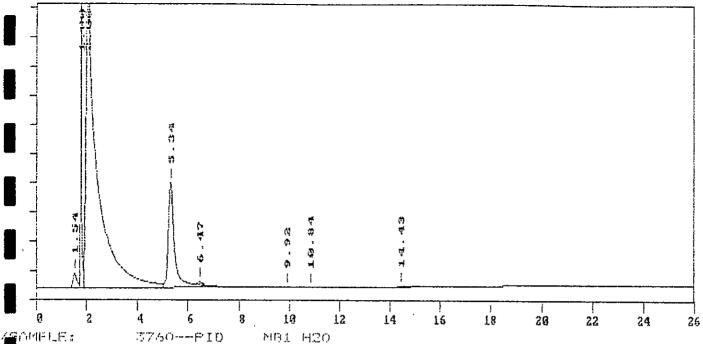
Mr. Lawrence Kleinecke Versar, Inc. 5330 Primrose Drive, Suite 228 Fair Oaks, California 95628

Dear Mr. Kleinecke:

Trace Analysis Laboratory received seven water samples on March 30, 1994 for your Project No. 1457-027, Crowley PDD1 (our custody log number 4254). Five of these samples were analyzed for benzene, toluene, ethylbenzene, and xylene, among other tests. All five of the samples had positive results. Three of the samples were positive for toluene only. One was positive for toluene and xylenes only.

We reviewed these results for errors, with special attention to whether the toluene could have been due to laboratory contamination. Our review indicates that the calibration, quality control samples, and calculations are in order. To evaluate whether the toluene could have been due to laboratory contamination, we reviewed our method blanks and samples from other clients that were analyzed in the same batch. I have attached chromatograms for MB1 (Method Blank 1), MB2, and LW (Lab Water) that immediately preceded the analysis of your samples. These blanks are all nondetectable for toluene. I also have attached a chromatogram for sample 4257, MW-4. This sample was analyzed immediately following samples for your project. Sample 4257, MW-4 is nondetectable for toluene. Based on this data, it does not appear likely that the toluene was introduced during the analysis. Sample 4257, MW-4 was stored in the same refrigerator as the samples from your project, so the sample storage does not seem like a source of the contamination.

If you should have any questions or require additional information, please call me.


Sincerely yours,

Louis W. Dupuis

Quality Assurance/Quality Control Manager

Enclosures

₹ 25.0 min. Low Y=-10.0 High Y=300.0 my Span=310.0

CASAMPLE: O'DE INJ: NATTE:

AL PRATIUM:

23

WEIGHT: 1. Apr 5, 1994 Oa: 10:50

AS/PEB CONV:

1600

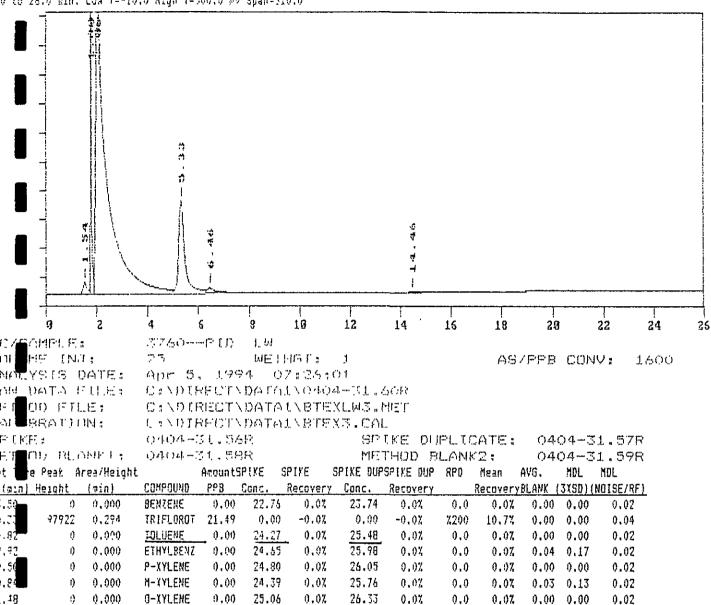
GE DATA FILE: OD FILE:

C:\DIRECT\DATA1\O404-31.58R C:\DIRECT\DATAL\BTEXHS, HET C:\DIRECT\DATAI\BTEXE,CAL

ethod Blackla Hamila L Method Blank2: Manual

Rep Time	I 'mak	Area/Height	र्म त्यापरावार्तन	AVA. MB		AMOUNT
<u>(in)</u>	Area	<u> </u>	labeti.	AMOUNT	Peak Name	LESS MB
17.544	163759	0,189	0.7891	0,0000		0.7891
_ 1.80a	077202	Q,Q44	4.0368	0.0000		4,2358
; "(NZ)"?	9780770	0,575	47,1786	Q , 0000		47,1286
-,337	2002203	0.715	25,6550	0,0000	TRIFLOROTOLU	25,6550
6.455	50869	0.238	0 845 t	0.0000		0,2451
ରୁ, ହାର	10666	0.270	0.0780	0.0000	ETHYLBENZENE	0.0730
1 , 245	1.1471	0.243	(0.0604) 0.0000	M-XYLENE	0.0604
14.432	16139	0.541	0.0778	0,0000		0.0778

OGATE RECOVERY: 103,4476 %

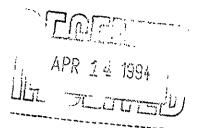

le=6:\D[RECT\DATA1\0404-31.59R Date printed=04-07-1994 Time= 11:32:27 #2ne=M22 H20 .0 📆 25.0 min. Low Y=-10.0 High Y=300.0 av Span=310.0 22 26 19 12 14 16 18 28 24 882 H20 3750--P(D ECASAMELE: 20 JHE INJ: AS/PPB CONV: 1600 25 WEIGHT: 1, Apr 5, 1794 04:49:25 NALYSIS DATE: C:NDIRECTNDATAINO404-31.59R AND DATA FILE: CINDIRECTIDATAINTEXMA.MET HEROD FILE: : MOTTARES C:\DIRECT\DATA!\BTEXS.CAL Method Blank2: Manual dethod (Hankli (0404-31,50)民 THUMA Permit Area/Height Amount AVE, MB t :in∈ 医医原 AMCHINT Peak Name Artea_ <u>(min)</u> ni,m), 0.7461 0,0000 0.195 1,541 工写再段本集 4,2500 0.0000 0.043 1.300 382964 47,2904 $A_{\rm ind}$,C59 7814784 0.577

LEGG MU 0.7461 4.2500 47,2924 0,0000 FRIFLOROTOLU 27.9175 3.77.7 1920530 0.272 23.9175 1.1190 0,0000 1.1184 第四次をする。 $O_{a} \cup O_{a}$ 4.461 0.0578 U2005 0.0578 0.0000 Q...591, 4,465

M. XMLENES= -3.019072E-02 95,44139 % BURROGATE RECOVERY:

OGATE RECUVERY:

- 85 ab4167 %


org Toliene recovery: 104% RPD: 4.9% STD MOLS MB=ND

19 12405 $Z_{n} \in \Gamma$ O. SOL 234,1366.7 DIMOTOR DEPT OF COLUMN DISCOVER. 艺生,其态色等 7756 -1 = NO 1 45:40 O_{\bullet} A A0.0715 $O_{\pi}OOOO$ 0.0715 10.1401 20、活工作 0-1213 1.65590.0570 ETHALBENAENE 0 0 8 8 8 × NO 15534 0 , 35,4 0.0270 O,ÇÓÇQ 0.0770 - Xit FMES# ~3.018072E~02 电

SEPRIORATE RECOVERY: 97.44485 %

STO MOL

April 8, 1994

Mr. Lawrence Kleinecke Versar, Inc. 5330 Primrose Drive, Suite 228 Fair Oaks, California 95628

Dear Mr. Kleinecke:

Trace Analysis Laboratory received seven water samples on March 31, 1994 for your Project No. 1457-027, Crowley PDD1 (our custody log number 4254).

These samples were analyzed for Total Petroleum Hydrocarbons as Diesel and Gasoline, Benzene, Toluene, Ethylbenzene, Xylenes, and Salinity. Our analytical report and the completed chain of custody form are enclosed for your review.

Trace Analysis Laboratory is certified under the California Environmental Laboratory Accreditation Program. Our certification number is 1199.

If you should have any questions or require additional information, please call me.

Sincerely yours,

Scott T. Ferriman Project Specialist

Enclosures

T

LOG NUMBER: 4254

DATE SAMPLED: 03/30/94
DATE RECEIVED: 03/30/94

DATE EXTRACTED: 04/01/94
DATE ANALYZED: 04/06/94

DATE REPORTED: 04/08/94

CUSTOMER:

Versar, Inc.

REQUESTER:

Lawrence Kleinecke

PROJECT:

No. 1457-027, Crowley PDD1

l		Sample Type: Water										
		MW	-1	M₩ Filter	-l Duplicate							
Method and <u>Constituent</u> :	<u>Units</u>	Concen- tration	Reporting Limit	Concen- tration	Reporting Limit	Concen- tration	Reporting Limit					
DHS Method:												
Total Petroleum Hydro- carbons as Diesel	ug/1	110	50	ND	50	ND	50					
					I-3 Duplicate	MW-4						
Method and <u>Constituent</u> :	<u>Units</u>	Concen- tration	Reporting Limit	Concen- tration		Concen- tration	Reporting Limit					
DHS Method:												
Total Petroleum Hydro- carbons as Diesel	ug/l	ND	50	ND	50	ND	50					
			V-5		od Blank							
Method and <u>Constituent</u> :	<u>Units</u>	Concen- <u>tration</u>	Reporting <u>Limit</u>	Concen- <u>tration</u>	Reporting <u>Limit</u>							
DHS Method:												
Total Petroleum Hydro- carbons as Diesel	ug/l	ND	50	ND	50							

QC Summary:

% Recovery: 103

% RPD:

12

Concentrations reported as ND were not detected at or above the reporting limit.

Trace Analysis Laboratory, Inc.

LOG NUMBER: 4254 03/30/94 03/31/94 DATE SAMPLED: DATE RECEIVED: 04/05/94

DATE ANALYZED: 04/08/94 DATE REPORTED:

PAGE:

Two

1	Sample Type: Water										
_		M	W-1	M	W-2	MW-3					
Method and <u>Constituent</u> :	<u>Units</u>	Concen- tration	Reporting Limit	Concen- tration	Reporting <u>Limit</u>	Concen- tration	Reporting <u>Limit</u>				
■ DHS Method:											
Total Petroleum Hydro- carbons as Gasoline	ug/l	ND	50	ND	50	ND	50				
Modified EPA Method 8020	for:										
Benzene	ug/1	2.5	0.50	ND	0.50	ND	0.50				
Toluene	ug/l	1.7	0.50	1.1	0.50	0.90	0.50				
Ethylbenzene	ug/l	0.56	0.50	ND	0.50	ND	0.50				
Xylenes	ug/l	1.9	1.5	DM	1.5	ND	1.5				
		М	W-4	М	W-5	_Method_Blank					
Method and Constituent:	<u>Units</u>	Concen- tration	Reporting <u>Limit</u>	Concen- tration	Reporting Limit	Concen- tration	Reporting Limit				
_ DHS Method:											
Total Petroleum Hydro- carbons as Gasoline	ug/l	ND	50	ND	50	ND	50				
Modified EPA Method 8020	for:										
Benzene	ug/l	ND	0.50	ND	0.50	ND	0.50				
Toluene	ug/l	1.5	0.50	0.87	0.50	ND	0.50				
Ethylbenzene	ug/l	ND	0.50	ND	0.50	ND .	0.50				
Xylenes	ug/l	1.5	1.5	ND	1.5	ND	1.5				

QC Summary:

% Recovery:
% RPD: 104

4.9

Concentrations reported as ND were not detected at or above the reporting limit.

Trace Analysis Laboratory, Inc.

LOG NUMBER: 4254

DATE SAMPLED: 03/30/94

DATE RECEIVED: 03/31/94

DATE ANALYZED: 03/31/94

DATE REPORTED: 04/08/94

PAGE: Three

 	<u>Sample</u>	Type:	Water	····			
MW	-1	M	W-2	MW-3			
Concen- tration	Reporting Limit	Concen- tration	Reporting <u>Limit</u>	Concen- tration	Reporting <u>Limit</u>		
0.97	0.010	0.29	0.010	21	0.010		
Mw	-4	M	W-5				
Concen- tration	Reporting <u>Limit</u>	Concen- tration	Reporting Limit				
0.10	0.010	1.6	0.010				

Method and Constituent:

Salinity

Method and Constituent:

Salinity

% RPD:

EPA Method 120.1

EPA Method 120.1

QC Summary:

1.1

Louis W. DuPuis

Quality Assurance/Quality Control Manager

4254

CHAIN OF CUSTODY RECORD

PROJECT NO.	PROJECT NAME													иете	RS		INDUSTRIAL HYGIENE SAMPLE	Y
1457-027			_	4	rov	vlay		/	\&\	\leftarrow			7	_	7	7		1
SAMPLERS: (Signatu	re)					Philip M. Cox		Son Con L		6		/,	/,	/,	/,	//	REMARKS	
FIELD SAMPLE NUMBER	1	ΛΤΕ	TIME	COMP.	GRAB	STATION LOCATION	\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5/1		* .		_	_	_	\angle			
MW-1	3/30	194	1602		Χ	MW-1	4	X	X	X							-	
MW-IF			1602		X	<u> </u>	1	X										
Miv-2			1625		χ	Min-2	4	Х	X	X		•		,				
MW-3			1637		X	MW3	4	X	X	X								
MW-3F			1137		χ	V	1	X	<u> </u>									
MW-4			1547		Χ	MW-4	4	X	X	X							•	
MW.5	A		/53v		χ	MW:-5	4	X	X	X								
	_						_	<u> </u>		<u> </u>								
	-						-	-						-				
	\vdash						1	 						-				
	ļ			_										-				
Relinquished by: 151			3/3/		 		Rei	inqui	shed b	iy: (Si	gnature	·,		Da	te / T	ime Rec	eived by: (Signature)	
(Printed)	lex					(Printed)	(Pri	nted)				-				(Prir	ited)	
Relinquished by: (S.				Dat	e / Ti	me Received for Laboratory by: (Signature)	36	,	/ Tir	- 1	Rema	rks						
(Printed)					, -	(Printed) Li Zean Vordian												

Distribution: Original Plus One Accompanies Shipment (white and yellow); Copy to Coordinator Field Files (pink). Plu, water, 72, 2 vots each, Green, 5-Day