ALAMEDA COUNTY

HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

December 26, 2000

STID 2422

Mr. David De Witt Tosco Marketing Company 2000 Crow canyon Place, Ste. 400 San Ramon, CA 94583 ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway Suite 250 Alameda, CA 94502-6577

(510) 567-6700 FAX (510) 337-9335

RE:

Unocal Service Station #6277, 15803 East 14th Street, San Leandro

Dear Mr. De Witt:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25299.37[h]) of the California Health and Safety Code. The State Water Resources Control Board (SWRCB) has required since March 1, 1997 that this agency use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at this site.

SITE INVESTIGATION AND CLEANUP SUMMARY

Please be advised that the following conditions exist at the site:

- Up to 510 micrograms per liter (ug/l) Total Petroleum Hydrocarbons as Gasoline (TPH-G), 72 ug/l Benzene, and 390 ug/l MtBE are present in groundwater beneath the site.
- Up to 1100 milligrams per kilogram (mg/kg) TPH-G, 8 mg/kg Benzene, and 1300 mg/kg Oil & Grease are present in soil at depths between 5 and 15' below grade.

If you have any questions, please contact the undersigned at (510) 567-6783.

Sincerely,

Scott/O. Seery, CHMM

Hazardous Materials Specialist

Enclosures:

- 1. Case Closure Letter
- 2. Case Closure Summary

cc: Ariu Levi, Chief, Environmental Protection

Matthew Coelho, 18616 Hwy 33 East, Dos Palos, CA 93620-9620 (w/attachment)

HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

December 26, 2000

STID 2422

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

REMEDIAL ACTION COMPLETION CERTIFICATION

Mr. David De Witt Tosco Marketing Company. 2000 Crow Canyon Place, Ste. 400 San Ramon, CA 94583

RE:

Unocal Service Station #6277, 15803 E. 14th Street, San Leandro

Dear Mr. De Witt:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tanks are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, no further action related to the underground tank release is required.

This notice is issued pursuant to a regulation contained in Section 2721(e) of Title 23 of the California Code of Regulations.

Please contact our office if you have any questions regarding this matter.

Sincerely,

Mee Ling Tung

Director, Environmental Health Services

Chuck Headlee, RWQCB

Whall Budos

Allan Patton, SWRCB (w/attachment)

Matthew Coelho, 18616 Hwy 33 East, Dos Palos, CA 93620-9620 (w/attachment)

SOS/files

505

574

EMPROTECTION

00 JUN 19 AM 9: 00

2000 Crow Canyon Place Suite 400 San Ramon, CA 94583

925.277.2305 fax: 925.277.2361

Environmental Compliance Department

June 15, 2000

Mr. Thomas Peacock
Manager - LOP
Alameda County - Environmental Health Services
1131 Harbor Bay Parkway, Suite 250
Alameda, CA 94502-6577

Re: No Further Action

Tosco/76 Products Service Station # 6277

15803 East 14th Street San Leandro, CA

Dear Mr. Peacock:

As requested in your June 12, 2000 letter, I certify that I have notified the fee title holder of the subject property of the proposed action by Alameda County. I have included a copy of the letter I sent to Matthew and Ellamae Coelho with regards to the proposed "No Further Action".

If you have any additional questions or concerns, please feel free to contact me at 925-277-2384.

Sincerely,

David B. De Witt

Environmental Project Manager

2000 Crow Canyon Place Sulte 400 San Ramon, CA 94583 925.277.2305 fax: 925.277.2361

Environmental Compliance Department

June 15, 2000

Matthew and Ellamae Coelho 18616 Hwy 33 Dos Palos, CA 93620-9620

Re:

No Further Action

Tosco/76 Products Service Station # 6277

15803 East 14th Street San Leandro, CA

Dear Matthew and Ellamae Coelho:

Alameda County Health Care Services – LOP has determined that Tosco Corporation has completed the necessary environmental work at this site and that a finding of "No Further Action" is being considered. I have attached a copy of this notification for your records. As required by the Health and Safety Code (Ch. 6.7 – section 25297.15), I am notifying you, as the fee title holder, of this proposed action.

If you have questions or concerns on this subject, please feel free to call me at 925-277-2384.

Sincerely,

David B. De Witt

Environmental Project Manager

ALAMEDA COUNTY

HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

June 12, 2000

STID 2422

Mr. David De Witt Tosco Marketing Company 2000 Crow Canyon Place, Ste. 400 San Ramon, CA 94583 ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

RE: Unocal Service Station #6277, 15803 E. 14th Street, San Leandro

INTENT TO MAKE A DETERMINATION THAT NO FURTHER ACTION IS REQUIRED

Dear Mr. De Witt:

This letter is to inform you that Alameda County Environmental Health Department, Local Oversight Program (LOP), intends to make a determination that no further action is required at the above site, as concurrence from the Regional Water Quality Control Board (RWQCB) has been received. Please notify this agency of any input and recommendations you may have on these proposed actions within 20 days of the date of this letter.

In accordance with section 25297.15 of Ch. 6.7 of the Health & Safety Code, you must provide certification to the local agency that <u>all</u> of the current record fee title owners have been informed of the proposed action. Please provide this certification to this office within 20 days of the date of this letter.

If you have any questions about these proposed actions, please contact Scott Seery at (510) 567-6783.

Sincerely,

Thomas Peacock Manager, LOP

cc: Chuck Headlee, RWQCB Scott Seery, ACDEH LOP

CASE CLOSURE SUMMARY 00 JUN -9 PM 4: 19 Leaking Underground Fuel Storage Tank Program

I. AGENCY INFORMATION

Agency name: Alameda County-EPD

Address: 1131 Harbor Bay Pkwy #250

City/State/Zip: Alameda, CA 94502 Responsible staff person: Scott Seery

Phone: (510) 567-6700 Title: Haz. Materials Spec.

II. CASE INFORMATION

Site facility name: Unocal Station #6277

Site facility address: 15803 E.14th Street, San Leandro 94578

RB LUSTIS Case No: N/A

Local Case No./LOP Case No.: 2422

URF filing date: 03/16/89 SWEEPS No: N/A

Responsible Parties:

Addresses:

Phone Numbers:

Tosco Marketing Co.

P.O. Box 5155

(925) 277-2384

Date: 04/29/98

Attn: David deWitt

San Ramon, CA 94583

Mathew & Ella Coelho

18616 Hwy 33 East

Dos Palos, CA 93620-9620

<u>Tank</u>	<u>Size in</u>	<u>Contents:</u>	<u>Closed in-place</u>	<u>Date:</u>
No:	gal.:		<u>or removed?:</u>	
1	10,000	gasoline	removed	03/13/89
2	10,000	11	11	11
3	550	waste oil	n	11

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and type of release: UNK (failed integrity test lead to UST removals)

Site characterization complete? YES

Date approved by oversight agency:

Monitoring Wells installed? YES Number: 7

Proper screened interval?

YES

Highest GW depth below ground surface: 5.85' Lowest depth: 11.34' (stabilized)

Flow direction: predominately NW - N

Most sensitive current use: commercial (adjoined by apts.)

Are drinking water wells affected? NO Aquifer name: San Leandro cone

Page 2 of 7

Leaking Underground Fuel Storage Tank Program

III. RELEASE AND SITE CHARACTERIZATION INFORMATION (Continued)

Is surface water affected? NO Nearest affected SW name: NA

Off-site beneficial use impacts (addresses/locations): NONE

Report(s) on file? YES Where is report filed? Alameda County

1131 Harbor Bay Pkwy Alameda CA 94502

Treatment and Disposal of Affected Material:

rioutistone and	Disposal of Afficetoa materi	41.	
<u>Material</u>	<u>Amount</u>	Action (Treatment	<u>Date</u>
	(include units)	or Disposal w/destination)	
Tank	(2 x 10K; 1x 550 gal)	Disposal - UNK (but presumed	3/89
	•	to have gone to Erickson, Richm	ond,
		CA)	·
Piping	Unk	as above	,
Free Product	NA		r
Soil	162 tons	Disposal – Casmalia LF	4/14/89
		Casmalia, CA	
	1000 yds ³	Disposal – Redwood LF	4/4/89 -
	•	Novato, CA	4/18/89
	218 tons	Disposal – Petroleum Waste	5/18/89
		Buttonwillow, CA	
	1060 yds³	Disposal - Mt. View dump	9/5/89
	•	Mt. View, CA	9/11/89
	2.4 tons	Disposal - GSX Services	11/1/89
		Buttonwillow, CA	
	673 tons	Disposal - GSX Services	4/13/90
		Buttonwillow, CA	4/16/90
		,	
Groundwater	19,400 gal	Disposal – H& H Ship Svc.	3/21/89 &
	-	So. S.F., CA	4/2/90 - 4/5/90

Maximum Documented Contaminant Concentrations - - Before and After Cleanup

Contaminant	Soil¹ (ppm)		Water ^{2,3} (ppb)		
	<u>Before</u>	<u>After</u>	Before	After	
TPH (Gas)	3500	1100	19,000	510	
TPH (Diesel)	ND	6.2	NA	NA	
Benzene	40	8	230	72	
Toluene	280	43	79	ND	
Xylene	600	230	1300	17	

Page 3 of 7

Leaking Underground Fuel Storage Tank Program

III. RELEASE AND SITE CHARACTERIZATION INFORMATION (Continued)

Maximum Documented Contaminant Concentrations - - Before and After Cleanup

Contaminant	Soil¹ (p	Soil ¹ (ppm)			Water ^{2,3} (ppb)	
	<u>Before</u>	After		Before	<u>After</u>	
Ethylbenzene MtBE Oil & Grease Heavy metals Other HVOC TO	100 NA 7700 NA CE 0.063	37 NA 1300 NA ND	TCE PCE	ND NA NA " 4.4 110	ND 390 NA " <i>ND</i> <i>950</i>	
			DCA	2.8	950 ND	

Note:

- 1) All "before" soil results compiled from initial sidewall samples collected during March 1989 fuel UST closures, except for O&G, TCE and TPH-D results. O&G and TCE results from the 5' sample collected during advancement of well/boring MW-2 in May 1989. TPH-D result derived from a sample collected from the base of the waste oil UST pit following tank removal. All "after" soil results from sidewall samples collected after the 1990 over-excavation of the general area of former well MW-2, except for O&G. O&G result from the 5' soil sample collected from well/boring MW-2A in 1991.
- 2) "Before" water results from sample collected from the fuel UST excavation during 1989 closures, except as otherwise indicated. All "after" water results reflect samples collected from well MW-1 in November 1996, except as otherwise indicated.
- 3) "Before" HVOC water results from initial sample collected from well MW-2 in June 1989. "After" water results from sample collected from well MW-3 in January 1996.

Comments (Depth of Remediation, etc.):

During March 1989 three (3) single wall steel USTs were removed from this site. Two 10,000 gasoline and one 550 gallon waste oil USTs were closed during this effort. The original USTs were replaced by double-wall tanks emplaced elsewhere at the site. Tank replacement appears to have been prompted by a series of failed integrity tests in the years and months preceding this effort.

Ground water was encountered in the fuel tank pit at a depth of ~11 feet BG. Consequently, sidewall samples, six in all, were initially collected from the excavation a foot above stabilized water level. A single soil sample was collected from the base of the shallower waste oil tank pit. In addition, soil samples were also collected from the product piping trenches.

Initial subjective evidence prompted the contractor to expand the fuel tank excavation laterally in two rounds, at which point additional sidewall samples were collected. This expanded excavation encroached on and engulfed the former waste oil UST location as well. Following the initial over-excavation effort, a reported ~5000 gallons of water was pumped from the excavation, and ~14,500 gallons during the second. A water sample was collected from ground water that collected in the expanded tank pit.

Page 4 of 7

Leaking Underground Fuel Storage Tank Program

Initial soil samples from the fuel UST pit revealed up to 3500 ppm TPH-G and 40 ppm benzene, among other detected fuel compounds. Over-excavation samples demonstrated a marked reduction in contaminant concentrations, with a TPH-G high of 100 ppm and benzene high of 3.1 ppm. Although the initial waste oil UST pit sample identified the presence of TOG (280 ppm), no 8240 compounds were identified above laboratory detection limits. The water sample, however, revealed up to 19,000 ug/l TPH-G and 230 ug/l benzene, among other detected fuel components.

Significant soil was removed from the enlarged UST excavation and stockpiled on-site during the 1989 (and subsequent 1990) activities. All soil was eventually disposed of at various California waste facilities between April 1989 and April 1990. (See: Section III. Release and Site Characterization Information)

IV. CLOSURE Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? Does corrective action protect public health for current land use? YES Site management requirements: NA Should corrective action be reviewed if land use changes? YES Monitoring wells Decommissioned: YES (1) Number Decommissioned: 1 Number Retained: 6 (pending case closure) List enforcement actions taken: NONE List enforcement actions rescinded: NONE V. LOCAL AGENCY REPRESENTATIVE DATA Title: Haz Mat Specialist Name: Scott Seery Signature: Date: 4-21-00 Reviewed by

Title: Supervising Haz Mat Specialist

4/20/00

Title: Haz Mat Specialist

4-71-00

Date:

Desol

Date:

Name: Tom Peacoc

Name: Eva Chu

Signature

Signature:

Page 5 of 7

Leaking Underground Fuel Storage Tank Program

VI. RWQCB NOTIFICATION

4-21-00 Date Submitted to RB:

RWQCB Staff Name: Chuck Headlee

RB Response: Concur Cluck Headlll Title: Eng. Assoc. Date: 4/28/00

VII. ADDITIONAL COMMENTS, DATA, ETC.

In preparation for the 1989 tank replacement project, exploratory borings were advanced in the area of the site chosen for the new USTs. Borings EB-1 and -2 were advanced up to 13.5' BG. Ground water was encountered between 11 and 12' BG. Soil samples collected at the 5 and 10' depths revealed some degree of impact by fuel compounds, most evident in the 10' samples, a depth consistent with that of ground water at the site.

Following UST closures, four (4) monitoring wells were installed at the site during May 1989. Total well depths ranged from 24.5 to 25' BG, with 19.5' well screens. Encountered sediments were primarily fine-grained to depths explored. Ground water stabilized between approximately 10 and 11' BG.

Elevated concentrations TOG (7700 ppm), benzene (13 ppm), as well as detectable concentrations of TCE (0.063 ppm) and other fuel components, were identified in the 5' soil sample collected from well boring MW-2.

Detectable fuel components were also identified in shallow soil samples collected from the other well borings. but were present at unremarkable concentrations.

Initial water samples identified detectable TPH-G in samples collected from each well; all BTEX components were "ND". However, detectable concentrations of PCE (110 ug/l), 1,2-DCA (2.8 ug/l), and TCE (4.4 ug/l) were noted in water sampled from MW-2.

As a consequence of soil contamination noted during advancement of well boring MW-2, this well was eventually destroyed and the area around it excavated in early 1990 to a depth of approximately 12' BG. Soil samples were collected from the sidewalls of the resultant excavation. Up to 1100 ppm TPH-G, 8 ppm benzene, and 210 ppm TOG, among other constituents, were identified in these samples, collected at the 10.5' depth. HVOC compounds were "ND".

Well MW-2 was eventually replaced by well MW-2A in a location 30' northwest of its original location. Up to 1300 ppm TOG was identified in the 5' sample collected during boring advancement.

Due to the regular occurrence of PCE, TCE and 1,2-DCA in sampled ground water, a review of records documenting historic site activities was performed in 1993. Reported site history indicates the site was first developed as a gas station from an empty lot in 1969. No likely on-site source of the HVOC impact was identified. The potential for an off-site HVOC source is further supported by the fact that the highest HVOC concentrations have been found in samples collected from wells MW-3 and -4, located on the upgradient side of the subject site, close to property margins. Hence, HVOCs detected in these wells are likely coming from a source (e.g., leaching sanitary sewer lines, etc.) upgradient of the site.

Page 6 of 7

Leaking Underground Fuel Storage Tank Program

VII. ADDITIONAL COMMENTS, DATA, ETC. (Continued)

Following several quarters of ground water and sampling, two additional wells (MW-5 and -6) were installed in the adjoining apartment complex to assess potential off-site impacts from the UST release at this site. Some impact, albeit minor, was identified.

Well sampling continued through November 1996. Groundwater flow has predominantly ranged from SW to N during the course of the investigation.

Water sampled from well MW-1 continued to show the highest concentrations of fuel hydrocarbons throughout the duration of this investigation. As well MW-1 is the most downgradient of the wells at the site, an off-site study was conducted in March 1997 to assess any impacts in the downgradient direction. Three Geoprobe boreholes (EB-3, -4, and -5) were advanced through E. 14th Street in a northerly transect from the site. No detectable target compounds were identified in either soil or ground water samples.

This case appears be a "Low Risk Groundwater Case", as described in the January 5, 1996 San Francisco Bay Regional Water Quality Control memorandum entitled "Regional Board Supplemental Instructions to State water Board December 8, 1995, Interim Guidance on Required Cleanup at Low-Risk Fuel Sites," as follows:

1) The leak has been stopped and ongoing sources, including free product, have been removed or remediated.

The subject tanks were removed in 1989. Free product has not been known to occur at the site.

2) The site has been adequately characterized.

A 6-well network of wells was installed, monitored, and sampled over the course of several years. Additional sampling points were installed downgradient of the site. These points have allowed an adequate confirmation of underlying geology, groundwater flow, and contaminant extent.

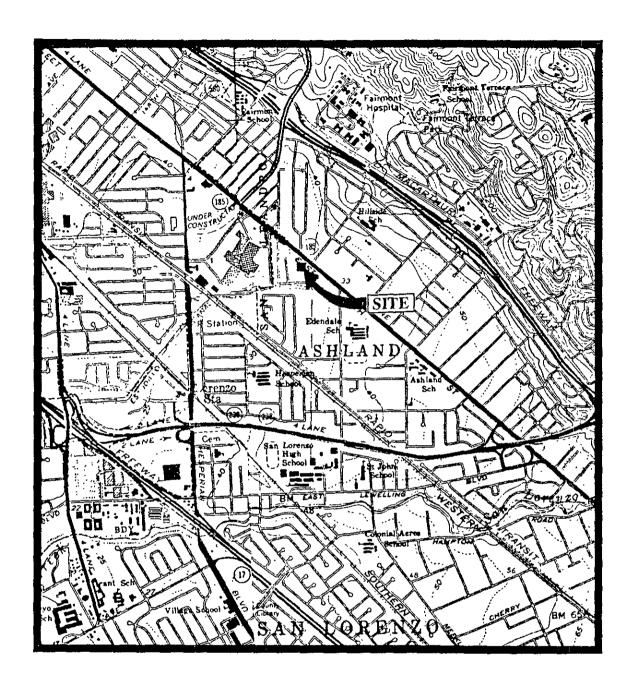
3) The dissolved hydrocarbon plume is not migrating.

The plume appears stable. Hydrocarbon concentrations have attenuated over time, and appear limited in extent.

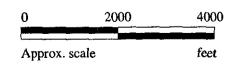
4) No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted.

There are no known municipal or residential water wells or surface water bodies within 750' downgradient of the subject site that would be impacted by shallow groundwater from this site.

Page 7 of 7

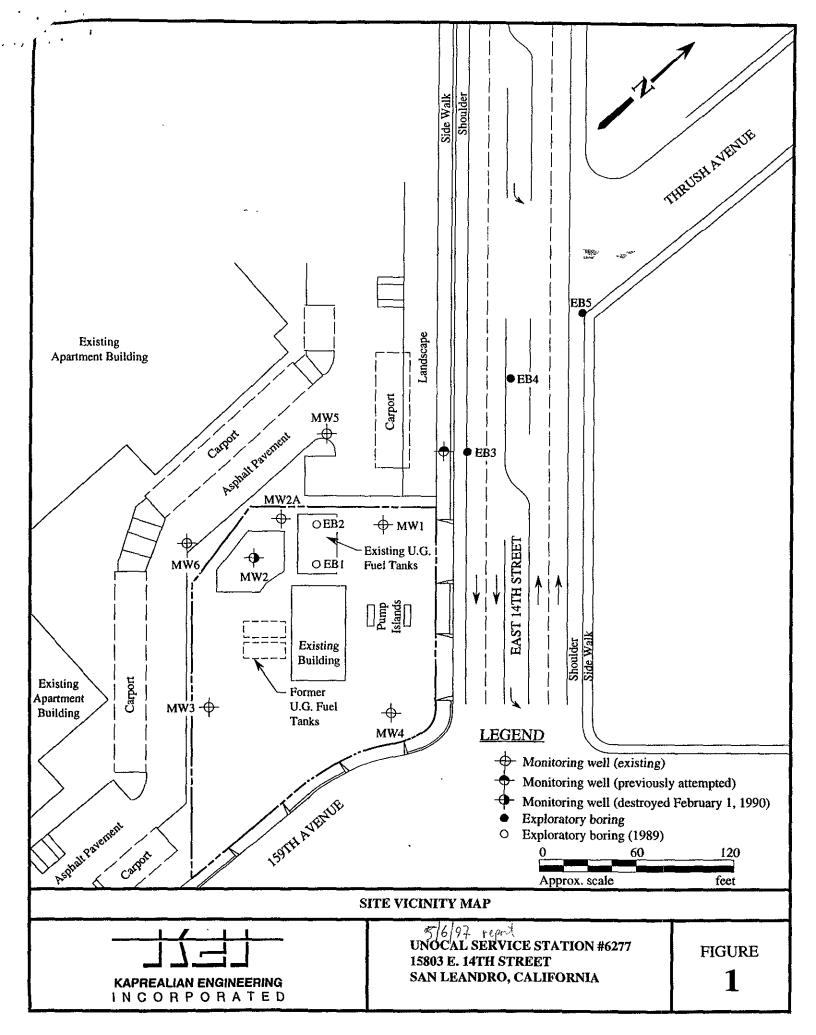

Leaking Underground Fuel Storage Tank Program

5) The site presents no significant risk to human health.

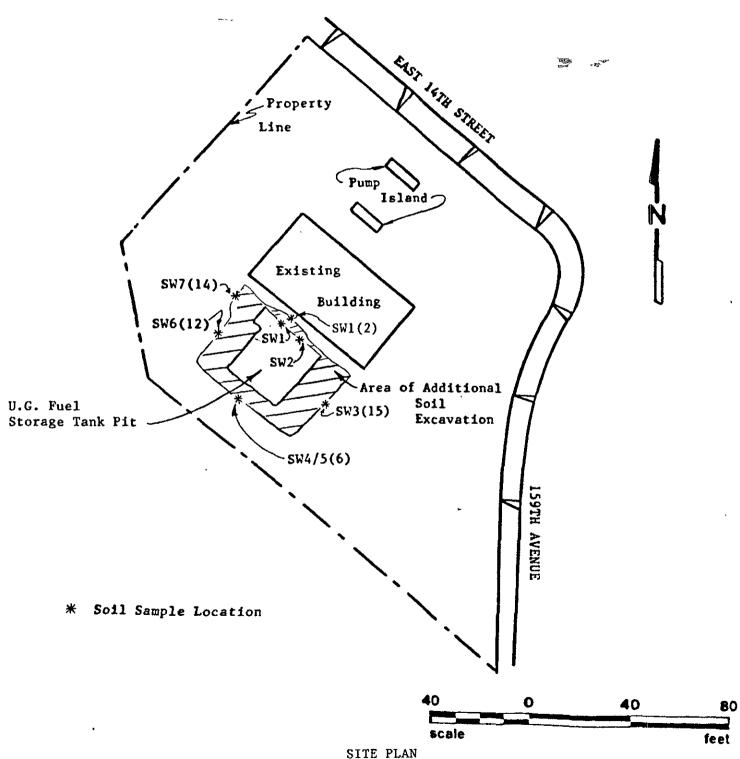

Comparison of ASTM E 1739-95 *Risk Based Screening Levels (RBSL)* with site-specific concentration and occurrence of risk-driving target compounds (e.g., benzene) in groundwater demonstrate that RBSL values are not exceeded for plausible exposure pathways at the 1E-05 risk level for a commercial/industrial site. Residual benzene soil concentrations (based on 1990 soil data) exceed RBSL values for the soil-vapor-intrusion-to-buildings exposure pathway at the 1E-04 risk level. However, default criteria used to calculate the published RBSLs use exceedingly conservative input parameters (e.g., sandy soil texture). Site-specific geology (clay) and asphalt cap are much less conducive to vertical vapor transport to potential receptor locations at the site.

6) The site presents no significant risk to the environment.

No environmental receptors are known or expected to be proximal to the site.


Base modified from 7.5 minute U.S.G.S. Hayward and San Leandro Quadrangles (both photorevised 1980)

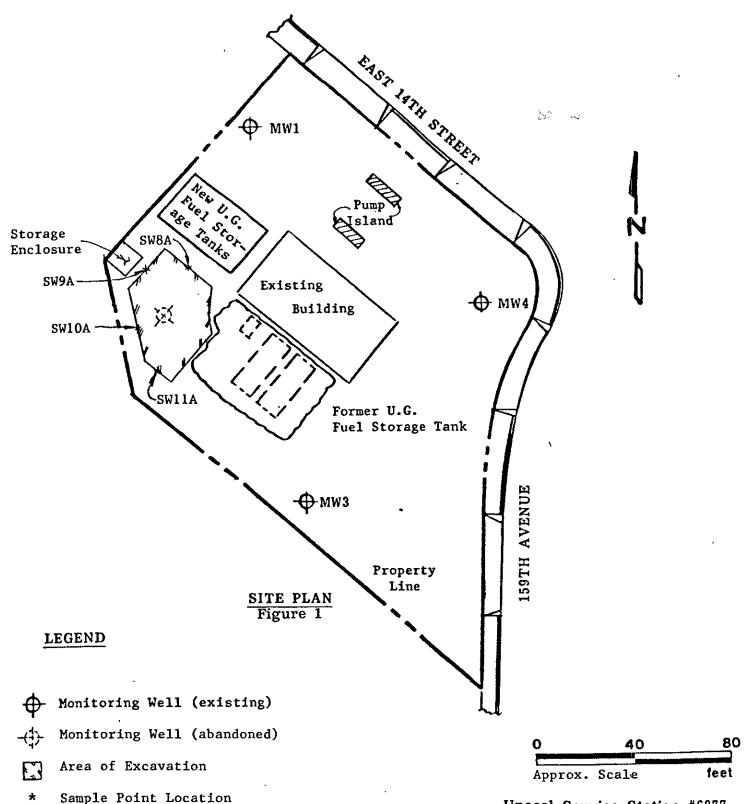
UNOCAL SERVICE STATION #6277 15803 E. 14TH STREET SAN LEANDRO, CALIFORNIA


LOCATION MAP

KAPREALIAN ENGINEERING, INC.

Consulting Engineers
P. O. BOX 813
BENICIA, CA 94510
(415) 676 - 9100 (707) 746 - 6915

SITE PLAN Figure 1


Unocal Service Station #6277 15803 East 14th Street San Leandro, California

KEI

KAPREALIAN ENGINEERING, INC.

Consulting Engineers

P.O. BOX 996 • BENICIA, CA 94510 (707) 746-6915 • (707) 746-6916 • FAX: (707) 746-5581

Unocal Service Station #6277 15803 East 14th Street San Leandro, California

Table /★
Summary of Laboratory Analyses
Water

Well#	Date	TPH as Gasoline	Benzene	Toluene	Eifhyl- Benzene	Xylenes	MTBE
MW1	11/25/96	510♦	72	ND	ND	17	390 🗸
	7/1/96	ND	ND	ND	ND	ND	230
	4/8/96	2,100	43	27	7.4	21	480
	1/10/96	220	35	ND	2.0	7.6	†
	7/14/95	410	77	ND	7.4	30	
	4/4/95	410♦	19	ND	ND	ND	
	1/5/95	780	30	ND	ND	9.1	
	10/6/94	970	19	ND	ND	13	,
	7/7/94	2,100 ♦ ♦	250	ND	57	200	
	4/4/94	1,100	15	ND	ND	7.4	
	1/6/94	260	21	ND	2.5	14	
	10/6/93	1,200♦	36	ND	ND	23	
	7/1/93	510	100	0.79	5.7	52	
	4/2/93	690	94	0.73	5.3	39	
	1/29/93	740 ♦ ♦	69	ND	3.8	43	
	10/20/92	720	110	1.4	18	110	
	7/20/92 4/23/92	630	100	2.8	6.3	52	
		530	100	7.9	4.6	60 73	
	1/13/92 9/10/91	450	240	4.6	8.6	73	
	6/10/91	280 310	38 1.5	3.1 ND	4.1 ND	22	
	3/15/91	110	21	ND	ND ND	0.31 8.4	
	12/14/90	450	150	6.8	0.28	6. 4 49	
	9/19/90	140	ND	ND	ND	3.5	
	6/25/90	310	10	0.89	0.37	2.1	
	3/29/90	320	12	1.6	0.31	3.5	
	12/12/89	340	100	13	3.4	3.5 44	
	9/13/89	550	32	17	3.4	52	
	6/6/89	590	ND	ND	ND	ND	
MW2A	11/25/96	86♦	0.82	ND	ND	ND	ND
	7/1/96	170	2.4	ND	0.65	2.0	ND
	4/8/96	ND	ND	ND	ND	ND	ND
	1/10/96	89	1.2	ND	ND	0.58	
	7/14/95	60	3.0	ND	1.3	2.4	
	4/4/95	67♦	1.0	ND	ND	ND	
	1/5/95	140 ♦	1.4	ND	ND	ND	
	10/6/94	71	6.4	ND	2.1	2.4	
	7/7/94	90	5.2	ND	1.5	2.2	****
	4/4/94	80	8.0	ND	1.4	1.5	
	1/6/94	110	2.6	ND	1.6	1.7	
	10/6/93	110+	12	ND	7.4	1.4	
	7/1/93	74♦	0.75	ND	ND	ND	
	4/2/93	120	7.2	ND	5.8	1.2	

TableSummary of Laboratory Analyses
Water

Well#	Date	TPH as Gasoline	Benzene	Toluene	Ethyl-		Simplified
Meiring	LANGE CONTRACTOR	E CASOINE TO	Denzene	roluene	Benzene	Xylenes	MTBE
MW2A (Cont)	10/20/92	96	2.8	ND	1.8	1.6	
·	7/20/92	99	8.6	ND	2.4	0.95	
	4/23/92	190	15	ND	15	2.0	
	1/13/92	160	11	2.0	10	5.9	
	9/10/91	180	8.7	0.93	15	13	
	6/10/91	54	1.2	ND	ND	0.69	
	3/15/91	160	2.5	ND	ND	51	
MW2	12/12/89	660	220	6.6	13	36	
	9/13/89	170	2.0	0.38	ND	9.5	
	6/6/89	77	ND	ND	ND	ND	
MW3	11/25/96	120♦	ND	ND	ND	ND	ND
	7/1/96	ND	ND	ND	ND	ND	ND
	4/8/96	ND	ND	ND	ND	ND	ND
	1/10/96	100♦	ND	ND	ND	ND	
	7/14/95	130♦	ND	ND	1.3	4.2	
	4/4/95	100 ♦	0.62	ND	ND	ND	
	1/5/95	140◆	ND	ND	ND	ND	
	10/6/94	93♦	ND	ND	ND	ND	
	7/7/94	190♦	ND	ND	ND	ND	
	4/4/94	170♦	ND	ND	ND	ND	
	1/6/94	140♦	ND	ND	ND	ND	
	10/6/93	140♦	ND	ND	ND	ND	
	7/1/93	120♦	ND	ND	ND	ND	***
	4/2/93	130♦	ND	ND	ND	ND	
	1/29/93	130♦	0.84	ND	ND	ND	
	10/20/92	180♦	ND	ND	ND	ND	
	7/20/92	120♦	ND	ND	ND	ND	
	4/23/92	150♦	1.6	ND	ND	ND	***
	1/13/92	120♦	ND	ND	ND	ND	
	9/10/91	170	ND	ND	ND	ND	
	6/10/91	160	0.65	ND	ND	ND	
	3/15/91	150	ND	ND	ND	0.45	
	12/14/90	150	ND	ND	ND	ND	
	9/19/90	74	0.74	ND	ND	ND	,
	6/25/90	190	1.5	0.68	ND	5.3	
	3/29/90	85	ND	ND	ND	ND	
	12/12/89	120	6.7	0.64	0.46	1.5	
	9/13/89	76	ND	ND	ND	ND	
	6/6/89	32	ND	ND	ND	ND	

Table /ASummary of Laboratory Analyses
Water

Well#	Date	TPH as Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylenes	MTBE
MW4	11/25/96	120+	ND	ND	ND	ND	NID
141 44 1	7/1/96	ND	ND ND	ND	ND .	ND ND	ND ND
	4/8/96	ND	ND	ND	ND ND	ND	ND ND
	1/10/96	100◆	ND	ND	ND	1.8	
	7/14/95	89♦	ND	ND	0.97	0.52	
	4/4/95	82◆	ND	ND	ND	ND	
	1/5/95	150◆	ND	ND	ND	ND	
	10/6/94	78♦	ND	ND	ND	ND	
	7/7/94	150♦	ND	ND	ND	ND	···=
	4/4/94	120	0.76	0.76	ND	0.98	
	1/6/94	100♦	ND	ND	ND	ND	
	10/6/93	130♦	ND	ND	ND	ND	
	7/1/93	91 ♦	ND	ND	ND	ND	
	4/2/93	110♦	ND	ND	ND	ND	
	1/29/93	130♦	0.95	ND	ND	ND	
	10/20/92	110♦	ND	ND	ND	ND	
	7/20/92	80♦	ND	ND	ND	ND	
	4/23/92	120♦	ND	ND	ND	ND	
	1/13/92	58♦	ND	ND	ND	ND	
	9/10/91	56	ND	ND	ND	ND	
	6/10/91	64	ND	ND	ND	ND	
	3/15/91	, 53	ND	ND	ND	ND	
	12/14/90	54	ND	ND	ND	ND	
	9/19/90	61	ND	ND	ND	ND	
	6/25/90	66	ND	ND	ND	ND	
	3/29/90	120	0.39	ND	ND	ND	
	12/12/89	97	4.6	ND	ND	ND	
	9/13/89	77	ND	ND	ND	ND	
	6/6/89	37	ND	ND	ND	ND	
MW5	11/25/96	120♦	ND	ND	ND	ND	ND
	7/1/96	ND	ND	ND	ND	ND	ND
	4/8/96	ND	ND	ND	ND	ND	ND
	1/10/96	50♦	ND	ND	ND	ND	***
	7/14/95	ND	ND	0.91	ND	1.1	
	4/4/95	ND	ND	ND	ND	ND	
	1/5/95	ND	ND	ND	ND	ND	
	10/6/94	ND	ND	ND	ND	ND	
	7/7/94	72♦	ND	ND	ND	ND	
	4/4/94	65♦	ND	ND	ND	ND	
	1/6/94	62◆	ND	ND	ND	ND	
	10/6/93	60♦	ND	ND	ND	ND	
	7/1/93	54♦	ND	ND	ND	ND	
	4/2/93	65♦	ND	ND	ND	ND	

Table 1ASummary of Laboratory Analyses
Water

Well#	Date	TPH as Gasoline	Benzene	Tøluëne	Ethyl- Benzenë	Xylenes	MTBE
MW6	11/25/96	120♦	ND	ND	ND	ND	ND
	7/1/96	ND	ND	ND	ND	ND	ND
	4/8/96	ND	ND	ND	ND	ND	ND
	1/10/96	53♦	ND	ND	ND	ND	
	7/14/95	ND	ND	ND	ND	ND .	
	4/4/95	ND	ND	ND	ND	ND	***
	1/5/95	ND	ND	ND	ND	ND	
	10/6/94	ND	ND	ND	ND	ND	
	7/7/94	ND	ND	ND	ND	ND	
	4/4/94	57♦	ND	ND	ND	ND	
	1/6/94	53♦	ND	ND	ND	ND	
	10/6/93	ND	ND	ND	ND	ND	
	7/1/93	ND	ND	ND	ND	ND	
	4/2/93	ND	ND	ND	ND	ND	

- † Sequoia Analytical Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of 40 μ g/L in the sample collected from this well.
- Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.
- ♦ Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.

MTBE = methyl tert butyl ether.

ND = Non-detectable.

Results are in micrograms per liter (µg/L), unless otherwise indicated.

- Note: The detection limit for results reported as ND by Sequoia Analytical Laboratory is equal to the stated detection limit times the dilution factor indicated on the laboratory analytical sheets.
 - Prior to August 1, 1995, the total purgeable petroleum hydrocarbon (TPH as gasoline) quantification range used by Sequoia Analytical Laboratory was C4 C12. Since August 1, 1995, the quantification range used by Sequoia Analytical Laboratory is C6 C12.
 - Laboratory analyses data prior to January 6, 1994, were provided by Kaprealian Engineering, Inc.

Table 18Summary of Laboratory Analyses
Water

			42.5		1.2-	Cis-1,2-	Total Oil
Well#	Date	TPH as Diesel	Tetra- chloroethene	Trichloro- ethene	Dichloro- ethane	dichloro- ethene	& Grease (mg/L)
MW1	4/04/94*	m-14	390	38	ND	17	
	4/2/93	ND					
	1/29/93	ND	300	ND	ND	ND	
	10/20/92	ND	230	22	ND	16	
	7/20/92	62♦	200	7.4	ND	ND	
MW2	4/2/93	ND					
	12/12/89	1,700	30	9.0	ND	ND	1.2
	9/13/89	ND	18	6.1	4.2	1.2	ND
	6/6/89	ND	110	4.4	2.8	ND	ND
MW2A	9/10/93	65					
	1/29/93	ND	140	10	ND	ND	-
	10/20/92	ND	64	11	ND	ND	
	7/20/92	ND	35	7.2	ND	4.8	ND
•	4/23/92	ND	17	5.6	ND	1.9	ND
	1/13/92**	ND	33	ND	ND	2.1	ND
	6/10/91	100	150	10	ND	ND	ND
	3/15/91	ND	67	8.2	ND	2.6	ND
MW3	1/10/96		950	ND	ND	ND	
	1/5/95		1,100	18	ND	6.2	
	1/6/94		960	ND	ND	ND	
	4/2/93	ND					
	1/29/93	ND	980	ND	ND	ND	
	10/20/92	ND	1,100	20	ND	ND	
	7/20/92	ND	1,400	25	ND	ND	
иw4	1/29/93	ND	950	ND	ND	ND	
	7/20/92	ND	440	11	ND	ND	
	4/2/93	ND					
	10/20/92	ND	360	17 '	ND	ND	
MW5	4/2/93	ND	190	ND	ND	ND	
MW6	4/2/93	ND	71	ND	ND	ND	

Table 18Summary of Laboratory Analyses Water

- * All EPA method 8240 constituents were non-detectable, except for concentrations of benzene at 29 μ g/L, ethylbenzene at 3.4 μ g/L, total xylenes at 19 μ g/L, and trans-1,2-dichloroethene at 2.4 μ g/L.
- ** 1,1,2-trichloroethane was detected at a concentration of 9.9 μg/L.
- Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear be diesel.

ND = Non-detectable.

-- Indicates analysis was not performed.

mg/L = milligrams per liter.

Results are in micrograms per liter (µg/L), unless otherwise indicated.

Note:

All EPA method 8010 constituents were non-detectable in all of the ground water samples, except as indicated.

Laboratory analyses data prior to January 6, 1994, were provided by Kaprealian Engineering, Inc.

TABLE 1 C

SUMMARY OF LABORATORY ANALYSES
SOIL

(Results in ppm) (Collected on March 6, 1989)

Sample <u>Number</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Xylenes	Ethylbenzene
EB1(5)	2.1	ND	0.11	ND	0.14
EB1(10)	200	2.3	7.7	5.7	33
EB2(5)	ND	ND	ND	13	ND
EB2(10)	620	2.2	20	ND	78

ND = Non-detected

KEI-P89-0301.R12 April 11, 1997

TABLE 1/.D

SUMMARY OF LABORATORY ANALYSES
SOIL

<u>Date</u>	Sample Number	TPH as <u>Gasoline</u>	Benzene	<u>Toluene</u>	Ethyl- benzene	Xylenes	MTBE
3/18/97	EB3 (5)	ND	ND	ND	ND	ND	ND
-,,	EB3 (10)	ND	ND	ND	ND	ND	ND
	EB3 (14.5)		ND	ND	ND	ND	ND
	EB4(4.5)	ND	ND	ND	ND	ND	ND
	EB4(10)	ND	ND	ND	ND	ND	ND
	EB4 (13)	ND	ND	ND	ND	ND	ND
	EB5(5)	ND	ND	ND	ND	ND	ND
	EB5 (10)	ND	ND	. ND	ND	ND	ND

NOTE: The soil samples were collected at the depths below grade indicated in the () of the respective sample number.

ND = Non-detectable.

Results are in milligrams per kilogram (mg/kg), unless otherwise indicated.

KEI-P89-0301.R12 April 11, 1997

.

TABLE 1 &

SUMMARY OF LABORATORY ANALYSES

WATER

<u>Date</u>	Sample <u>Number</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>benzene</u>	Xvlenes	MTBE
3/18/97	EB3	ND	ND	ND	ND	ND	ND
	EB4	ND	ND	ND	ND	ND	ND
	EB5	ND	ND	ND	ND	ND	ND

NOTE: Water samples were collected during drilling. The results of the analyses may not be representative of formation water, and should be used for comparative informational purposes only.

Results are in micrograms per liter (μ g/L), unless otherwise indicated.

TABLE 2

SUMMARY OF LABORATORY ANALYSES ** WATER

(Results in ppb)

(Samples collected on March 19, 1989)

Sample #	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Xylenes	<u>Ethylbenzene</u>
W-1	19,000	230	79	1,300	ND
Detection Limits	50	0.5	0.5	0.5	0.5

ND = Non-detectable

* sample collected from UST pit during 1989 closures

TABLE 3

SUMMARY OF LABORATORY ANALYSES SOIL

Kalley Kalley •3÷

(Collected on March 12, 1991)

Ethyl-Depth TPH as TPH as Sample (feet) Diesel Gasoline Benzene Toluene Xylenes benzene TOG Number 1,300 ND ND ND ND ND 5 4.8 MW2A(5)* 260 0.17 1.6 0.14 0.12 10 10 2.4 MW2A(10)* 0.036 ND 57 0.0080 ND ND MW2A(14.5)* 14.5 ND Detection 0.0050 30 0.0050 0.0050 0.0050 1.0 1.0 Limits

ND = Non-detectable.

Results in parts per million (ppm), unless otherwise indicated.

^{*} All EPA method 8010 constituents were non-detectable, except for 0.110 ppm of 1,2-dichlorobenzene, and 0.120 ppm of tetrachloroethene detected in sample MW2A(10).

TABLE 4
SUMMARY OF LABORATORY ANALYSES
SOIL

(Samples collected on April 3, 1990)

<u>Sample</u>	Depth (feet)	TPH as <u>Diesel</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Xylenes	Ethyl- <u>benzene</u>
sw8A*	10.5	62	260	1.4	8.0	40	7.0
SW9A*	10.5	ND	ND	0.017	0.041	0.033	0.0092
SW10A*	10.5	ND	140	0.085	0.12	5.0	1.4
SW11A**	10.5	280	1,100	8.0	43	230	37
Detection Limits	on	1.0	1.0	0.0050	0.0050	0.0050	0.0050

^{*} TOG and all EPA method 8010 constituents were non-detectable for these samples.

ND = Non-detectable.

Results in parts per million (ppm), unless otherwise indicated.

^{**} TOG showed 210 ppm, while all EPA method 8010 constituents were non-detectable.

TABLE 5
SUMMARY OF LABORATORY ANALYSES
SOIL

Sample	Depth	TPH as	D	~ 1		
<u>Number</u>	(feet)	<u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Xylenes</u>	<u>Ethylbenzene</u>
		(Col:	lected on	March 6,	1989)	The same of the sa
EB1(5)	5	2.1	ND	0.11	ND	0.14
EB1(10)	10	200	2.3	7.7	5.7	33
EB2(5)	5	ND	ND	ND	ND	ND
EB2(10)	10	620	2.2	20	13	78
		(Collected	on Marcl	13, 14	£ 17, 1989	9)
SW1	10	3,500	22	280	600	100
SW1(2)	10	100	1.3	6.6	16	2.9
SW2	10	390	40	4.3	71	10
SW3(15)	10	60	1.6	2.9	7.8	1.5
SW4/5(6)) 10	24	2.6	1.7	2.7	0.56
SW6(12)	10	150	3.1	6.2	5.6	3.6
SW7 (14)	* 10	ND	0.3	ND	ND	ND
P1	3	2.3	ND	0.15	ND	ND
P2	3	1.5	ND	0.31	ND	ND
P3	3	1.1	ND	0.1	ND	ND
P4	3	5.6	ND	0.15	0.39	ND
P5	3	6.8	0.15	0.58	0.55	0.12
P6	3.5	5.5	0.06	0.18	0.15	ND
WO1**	10	15	ND	ND	0.21	0.88
		(Col	lected on	May 24,	1989)	
MW1(5)	5	2.3	0.08	ND	0.62	ND
MW1(10)	10	290	1.0	11	48	8.8
MW2(5)**	** 5	230	13	1.7	3.2	1.5
MW2(10)+	H 10	31	1.2	1.0	5.5	1.1
MW3(5)	5	3.2	0.29	0.1	0.7	ND
MW3(10)	10	4.6	ND	ND	0.44	0.3
MW4 (5)	5	3.1	ND	0.11	ND	ND
MW4 (10)	10	ND	ND	ND	ND	ND

TABLE 5 (Continued)

SUMMARY OF LABORATORY ANALYSES SOIL

The same

- * TPH as diesel was 6.2 ppm; TOG was at 41 ppm; all 8240 constituents are non-detectable, except as noted above.
- ** TPH as diesel was non-detectable; TOG was at 280 ppm; all 8240 constituents are non-detectable, except as noted above.
- *** TPH as diesel was non-detectable, TOG was 7,700 ppm, and trichloroethene at 0.063 ppm.
- + TPH as diesel was non-detectable, TOG was 38 ppm, and trichloroethene at 0.065 ppm.

ND = Non-detectable.

Results in parts per million (ppm), unless otherwise indicated.

]	вог	RIN	G 1	: О G	
Project No KEI-P89-03			Bor		Casi	ing Di 2'	ameter	Logged By Doug Lee
Project Na San Leandr			Wel		d Ele N/A	evatio	on	Date Drilled 5/24/89
Boring No.	·	:	Dri Met	lling hod		Holld Auger	ow-stem	Drilling Company EGI
Penetra- tion blows/6"	G. W. level		oth (: ples		Stra graj USC	5		Description
10/15/17			5 10 15 20 25		СН		Clay, hi moist, 3/4" ab Clay, as Color ch grayish Silty cl plastic fine, f	gh plasticity, stiff, black, with gravel to ove 4'. above. ange at 12' to dark
								TOTAL DEPTH 24.5'

				вок	IN	G I	. O G	
Project No KEI-P89-03			Bor 9		Cas	ing Di	ameter	Logged By Doug Lee
Project Na San Leandr			Wel		d Ele N/A	evatio	on	Date Drilled 5/24/89
Boring No.				lling hod	I	Hollo Auger	ow-stem	Drilling Company EGI
Penetra- tion blows/6"	G. W. level		oth (stra gray USC			Description
22/24/28 9/11/26	<u></u>		5 10 15 20 25		CH CH		Sandy gr slightl Clay, hi moist, Color ch grayish Silty cl fine sa blocky, ly ceme Silty cl	avel with clay, hard, y moist, black. gh plasticity, stiff, black. ange below 12' to dark brown. ay, low plasticity, 10% and, hard, cemented, blocks are very strongented, wet, white. ay, high plasticity, yet, dark olive brown.
		F						TOTAL DEPTH 24.5'

Page 1 of 1

1				во	RII	NG LOG	
Project No KEI-P89-03			В	oring 9"	& Ca	sing Diameter 2"	Logged By W.W.
Project Nau 15803 E. 14			W	ell C	over 1	Elevation	Date Drilled 3/12/91
Boring No. MW2A				rilli: ethod		Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	G. W. level	Depti (feet Samp)	=)	gra		Desc	ription
11/9/8 7/9/13 5/8/15		0 5 		GC CH		Clayey gravel w 5" in diameter brown, traces Clayey gravel f above, yellowi Base Clay, trace sil lar gravel to very stiff, ve rootlets. Clay, high plas very stiff, ve	tith sand and gravel. The sand and cobbles to the sand and cobbles to the sand, dense, strong of dark grayish brown. The sand sand, as sharp brown below 4'. The of Fill the sand, trace angulated the sand, trace angulated the sand sand sand sand sand sand sand sand
5/7/8 5/7/						Clay, very mois light brownish Clay with silt, ed, stiff, trad	t, saturated, stiff, gray. very moist to saturatce caliche, trace and, light brownish

				BORI	NG LOG	
Project No.			В	oring & Ca	sing Diameter 2"	Logged By W.W.
Project Nam 15803 E. 14	n e Unoc	cal an L	We	ell Cover	Elevation	Date Drilled 3/12/91
Boring No. MW2A				rilling ethod	Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	G. W. level		t)	strati- graphy USCS	Des	cription
/8				CL/ CH	clay, with sil	t, as above.
0.45.46					saturated, st	ace fine-grained sand, iff, light yellowish t olive brown.
3/5/6		25				
			-			
		- - - - 30				
		_ _ 35 _				
						•
		- 40		4	TC	OTAL DEPTH: 25.5'

		:	воі	RIN	I G	LOG	
Project No KEI-P89-03		Bor 9		& Cas	ing D	iameter "	Logged By Doug Lee
Project Na San Leand		Wel	l Hea	ad El N/A	evati	on	Date Drilled 5/24/89
Boring No.		Dri. Metl	lling	3	Holl Auge	ow-stem r	Drilling Company EGI
Penetra- tion blows/6"	G. W. level	oth (: oples					Description
9/14/18	<u> </u>	5 10 15		CH	* 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°	Clay, hick moist, he moist, he color chargrayish	and and gravel: fill. The plasticity, stiff, plack. The plack of the place of the
		25 30		СН		Silty cla olive br	y, firm, wet, dark

BORING LOG Boring & Casing Diameter Logged By Project No. KEI-P89-0301 Doug Lee Date Drilled Well Head Elevation Project Name Unocal N/A 5/24/89 San Leandro, E. 14th Drilling Hollow-stem Drilling Company Boring No. Method Auger EGI MW4 G. W. Depth (ft) Strati-Penetration level Samples graphy Description USCS blows/6" A.C. Pavement Sand, gravel, silt: fill, with concrete blocks. Gravelly clay with silt, high plasticity, firm, moist, very 9/14/19 5 dark gray. Clay, high plasticity, stiff, CH moist, with weak cementation below 9', black. Color change at 9' to very dark 10/15/17 10 grayish brown. Color change at 11' to dark grayish brown. 15 Clay, as above. Silty clay with sand, low plas-CLticity, hard, wet, strong 25/25/26 cementation, blocky, white, 20 "hard pan". Sandy clay, sand - medium to CH fine, firm, wet, light olive brown. 12/14/18 25 Silty clay, 10% fine sand, firm, very moist, light olive brown, blocky, blocks moderately cemented. 30 TOTAL DEPTH 25'

]	BOR	IN	G I	. O G	
Project No KEI-J89-03			Bor:		Cas	ing Di	iameter	Logged By Doug Lee
Project Na E. 14th, S		Wel:		d Ele N/A	evatio	on	Date Drilled 3/6/89	
Boring No. EB-1	Boring No. EB-1			lling hod		Holld Auger	ow-stem	Drilling Company EGI
Penetra- tion blows/6"	G. W. level		pth (: nples		stra graj USC			Description
4/6/8 4/6/8 3/6/9			5 10 20 25		GC OH CH		gravel Clayey s brown, moist, Gravelly gray, s ticity Clay, so stiff, Clay, wi	& concrete pavement and base andy gravel, reddish very stiff to hard, gravel to 2" sandy clay, very dark tiff, moist, high plas- me silt and sand, black, moist, high plasticity th silt, grayish brown, ery moist
								TOTAL DEPTH 13.5'

Page 1 of 1

]	вог	RIN	G 1	L O G		
Project No KEI-).		Bor		Cas	ing Di	Logged By Doug Lee		
Project Na E. 14th, S			Wel.		d Ele N/A	evatio	on	Date Drill 3/6/89	led
Boring No. EB-2	•		Dri Met	lling hod	.	Hollo Auge	ow-stem	Dril*ing (Company
Penetra- tion blows/6"	G. W. level		pth (Stra graj USC			Description	
4/9/8 4/8/9			5 10 20 25		GC OH		gravel Clayey s brown, Gravelly very st ticity Clay, so stiff,	base andy gravel, very stiff, clay, very iff, moist, ome sand and moist, high	moist dark gray, high plas- silt, black, plasticity
		<u></u>						TOTAL DEPTH	10.5'

Page 1 of 1

			•	•		BORING LOG	
Project KEI-P89		.P6		 	ing Dia ing Dia	meter 1.375"	Logged By D.L.
			S/S #6277 San Leandro	Well	l Covei	r Elevation N/A	Date Drilled 3/18/97
Boring EB3	No.			Drill Met		GeoProbe	Drilling Company Gregg Drilling
Pene- tration blows/6"	G.W. level	O.V.M. (ppm)	(feet) Samples	Stratigr: USC		Desc	eription ***
						A.C. pavement over sand and g	ravel base.
No Data						Silty gravel with sand, very den (highly compacted roadbase).	se to hard, dry to slightly moist, brown
				ML E		Clayey silt, very stiff, moist, da mottled.	rk grayish brown and very dark brown,
		0.0	5	CL		Silty clay, trace sand, stiff, mois	st, black. y, with abundant caliche, grades to olive
				ML E		Clayey silt, stiff, moist, olive br	rown.
	Y 11	0.0	15-	CL ML		Clayey silt, stiff, moist, dark oli	k gray, with root holes and caliche. ive brown. DEPTH:15'

			<u></u>			BORING	G LOG	
Project		.P6	····		ring Dia sing Dia		1.375" N/A	Logged By D.L.
_			S/S #6277 San Leandro	We		r Elevation N/A		Date Drilled 3/18/97
Boring l	No.	<u> </u>			illing ethod	Geo	Probe	Drilling Company Gregg Drilling
Pene- tration blows/6"	G.W.	O.V.M. (ppm)	Depth (feet) Samples		graphy SCS			Description
No Data		No Data	5 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	ML		asphalt a Pocketed dark gray (Very pochete Silty clause) Silty clauses to	and debris (fill). I clay, silt and sayish brown. For recovery at 4. Filt, stiff, moist, d	ark grayish brown. ive gray to dark olive gray, with caliche low 10 feet.
		0.0	-15 20	ML		Clayey s	o silt estimated a	moist to very moist, olive brown, locally t 20-30% clay. OTAL DEPTH:14.5'

				•		BORING LOG	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Project No. KEI-P89-0301.P6					ring Dia		Logged By D.L.
Project Name Unocal S/S #6277 15803 East 14th Street, San Leandro						r Elevation N/A	Date Drilled 3/18/97
Boring No. EB5					illing ethod	GeoProbe	Drilling Company Gregg Drilling
Pene- tration blows/6"	G.W. level	level (ppm) (feet) Samples			graphy CS	Description	
		0.0				A.C. pavement over sand and gravel base.	
					,	Sandy silt, with gravel and debris, firm to stiff, very moist, black and very dark grayish brown (fill). (Poor recovery at 4.5 feet) Sandy silt, trace clay, sand is fine to medium-grained, stiff, moist, dark olive gray. Silty clay, stiff, moist, olive brown.	
				CL			
			10-	ML		Sandy silt, trace clay, sand i olive brown.	s very fine to fine-grained, stiff, moist,
			15			TOTA	AL DEPTH:11'