HELLER, EHRMAN, WHITE & MCAULIFFE

ATTORNEYS

A PARTNERSHIP INCLUDING PROFESSIONAL CORPORATIONS

525 UNIVERSITY AVENUE
PALO ALTO, CALIFORNIA 94301-1908
FACSIMILE (415) 324-0638
TELEPHONE (415) 328-7600

333 BUSH STREET: SAN FRANCISCO, CALIFORNIA 94104-2878

CABLE HELPOW: TELEX: 184-996: FACSIMILE (415): 772-6268

TELEPHONE (415): 772-6000

701 FIFTH AVENUE SEATTLE, WASHINGTON 98104-7098 FACSIMILE (206) 447-0849 TELEPHONE (206) 447-0900

555 SOUTH FLOWER STREET
LOS ANGELES, CALIFORNIA 90071-2306
FACSIMILE (213) 614-1868
TELEPHONE (213) 689-0200

August 14, 1989

1300 S.W. FIFTH AVENUE FORTLAND, OREGON 97201-5696 FACSIMILE (503) 241-0950 TELEPHONE (503) 227-7400

WRITER'S DIRECT DIAL NUMBER

772-6265

16341-0001

BY MESSENGER

Mr. Gil Wistar Hazardous Materials Specialist Division of Hazardous Materials Alameda County Health Agency 80 Swan Way, Room 200 Oakland, California 94621

Albany Bowl Properties

Dear Mr. Wistar:

I enclose a copy of a report, entitled "Abandoned Underground Storage Tanks, 500 San Pablo Avenue, Albany, California", which has been prepared by Aqua Terra Technologies, the consultant to Albany Bowl Properties. Albany Bowl Properties is the current owner of the property at 500 San Pablo Avenue.

The Aqua Terra report describes and analyzes certain sample analyses that were recently undertaken at your request. The samples were obtained from Cerrito Creek, as well as from two abandoned underground storage tanks located under the sidewalk at 500 San Pablo Avenue. As you are aware, Albany Bowl Properties did not know that these tanks remained under the property when it bought the land; Albany Bowl Properties only learned about these tanks last month, when the sampling program described in the enclosed report was undertaken at governmental request to investigate whether these two tanks could potentially be the source of a recently discovered release into Cerrito Creek.

The Aqua Terra report concludes that the two tanks at 500 San Pablo are not the source of the recently discovered release to Cerrito Creek. Aqua Terra's conclusion is amply supported by other recent events at the adjacent gas station property.

If you have any further questions or comments, please either call me at the above number or call Dr. Wane Schneiter at Aqua Terra (934-4884). Thank you in advance for your consideration.

Very truly yours,

Jon L. Benjamin

cc: Chief Mike Koepke, Chief, Albany Fire Department Lester Feldman, RWQCB

Ken Friedman, Albany Bowl Properties

August 14, 1989

Mr. Jon L. Benjamin Attorney at Law Heller, Ehrman, White & McAuliffe 333 Bush Street San Francisco, CA 94104

Subject: Abandoned Underground Storage Tanks

500 San Pablo Avenue

Albany, CA

Dear Mr. Benjamin:

This letter presents chemical data and its interpretation for samples collected from the subject tanks and from Cerrito Creek, and provides a proposal for managing the tanks.

Aqua Terra Technologies

BACKGROUND

Two tanks are located beneath approximately four feet of fill in the sidewalk fronting the building at 500 San Pablo Avenue. For identification purposes, the tanks have been designated as Tank 1 and Tank 2. Each tank has a nominal capacity of 550 gallons, with fill and vent piping located in the immediate vicinity. tanks have not been in active service for at least 10 years, and are believed to have been installed approximately 40 years ago. Records regarding the historical uses of the tanks are not available; however, early uses likely included fuel and waste oil storage associated with automobile dealerships and maintenance.

The capacity of the tanks was confirmed when material completely filling each tank was removed during mid-July into 21, 55 gallon drums (total capacity 1,155 gallons or 577 gallons each). The material removed from each tank was identifiable as water containing dilute amounts of petroleum based substances. Inasmuch as the tank bottoms and the minimum depth to local groundwater are both approximately eight feet below grade, the source of the water in the tanks cannot be attributable to groundwater. Apparently, the tanks were filled with water as a closure measure by their last user.

Until their discovery in July, the existence of the tanks was unknown to the current property owner. tanks were discovered during a reconnaissance of the area by local fire and health department personnel in association with a petroleum product occurrence in

Consulting Engineers & Scientists

2950 Buskirk Avenue Suite 120 Walnut Creek, CA 94596 415 934-4884

Cerrito Creek. Subsequent investigations have identified underground fuel storage tanks located on an adjacent neighboring property as the source of the release to the creek.

SAMPLE COLLECTION/RESULTS

Samples of the material contained in each of the underground tanks and a sample of the petroleum product occurring in the creek were collected by Aqua Terra personnel on July 12 as described in the sample collection records provided in Attachment A. The samples with chain of custody documentation were submitted in an iced cooler to a California Department of Health Services certified analytical laboratory for chemical analysis. Each sample was analyzed for 13 heavy metals according to EPA Method 6000 and 7000 series protocol and for volatile and semi-volatile organic chemicals according to EPA Methods 8240 and 8270. The chemical data are summarized in Table 1 of Attachment B along with the analytical laboratory data sheets and chain of custody document.

As summarized in Table 1, chemical analyses of the material contained in Tank 1 indicate that the tank was used to store a solvent. Semi-volatile hydrocarbon constituents characteristic of a petroleum lubricant or fuel were not detected in the sample. However, compounds which included 1,2-dichloroethane (DCA) and 2-butanone (MEK), and are commonly associated with solvents, were present in the sample, as were benzene (B), toluene (T), ethylbenzene (E), and xylene (X). All of the volatile compounds detected in the Tank 1 sample were present at generally equivalent concentrations, with no compound occurring at a level substantually higher than any other compound, again suggesting a solvent. The mixture of compounds detected in the sample are not suggestive of a fuel.

The analytical data resulting from the sample collected from Tank 2 shows concentrations of volatile and semi-volatile organics characteristic of aged gasoline. This observation is supported by the existence of ethylbenzene and xylene, coupled with the exclusion of benzene and toluene. In addition, naphthalene and 2-methylnaphthlene are both constituents of gasoline.

The detected concentration of lead in the Tank 2 sample indicates that the gasoline stored in the tank was leaded. The absence of other polynuclear aromatic hydrocarbons (PAH) in addition to the naphthalenes suggests that waste oil was not stored in the tank.

The sample of material collected from Cerrito Creek is significantly dissimilar to either of the samples collected from the tanks. The absence of detectable lead, the elevated concentrations of BTEX, and the presence of the naphthalenes in the creek sample, as illustrated in Table 1, provides a strong correlation with unleaded gasoline.

The results of the chemical analyses presented in Table 1 indicate that each of the three samples (Tank 1, Tank 2, Cerrito Creek) are representative of distinctly different materials. A correlation is not apparent between the data representing the contents of the tanks and the material sampled from the creek.

TANK CONTENTS DISPOSAL

The chemical data characterizing the contents of Tanks 1 and 2 indicate that the material must either be managed by a waste contractor or pretreated for disposal to the storm or sanitary sewers. Contingent upon acceptance by a waste contractor, the materials may be removed for approximately \$28.00 per drum, or a total of about \$600. Considering the potential difficulties associated with pretreating the material and obtaining permission for discharge to the sewer, the waste contractor represents the least costly and most expeditious option.

PROPOSED CLOSURE ACTION

With the discovery of the tanks, action is required to comply with the intent of applicable underground storage tank regulations (California Code of Regulations, Title 23, Subchapter 16). The regulations require that the tanks either be monitored according to an approved monitoring plan, or that they be closed to prevent their future use. Inasmuch as the tanks have not been in active service for a number of years, the appropriate alternative for complying with the regulatory intent is to close them. The closure requirement calls for either

removing the tanks by excavating them or closing them in-place by filling them with a solid set grout material. In-place closure is accompanied by cleaning the tanks of any residual material and capping all appurtenant piping. The regulations also contain a provision for temporary closure where a future use of the tanks is anticipated.

The conditions existing at the property on which the tanks are located are somewhat unique and do not fit easily into any of the closure options allowed by the regulations. It is my understanding that plans are currently underway to begin redevelopment of the property within the next 18 to 24 months. Redevelopment will include demolition of several of the structures currently occupying the property, including the building associated with the tanks. Consequently, considerable site work, including excavation and grading activities, will be implemented. Removing the tanks during these activities would eliminate several problems associated with removing the tanks under current conditions.

Removing the tanks now would require closing traffic lanes on San Pablo Avenue during excavation activities, blocking all sidewalk traffic for several days in the area of the tanks, limiting the boundaries of the excavation between San Pablo Avenue and the front of the building, placing the structural integrity of the building at risk from soils caving, and disrupting activities of businesses operating in the immediate vicinity. Alternatively, closing the tanks in-place by filling them with grout will create future problems during redevelopment activities since each tank will represent the equivalent of a 550 gallon boulder.

The solution to the problems generated by either excavating the tanks or closing them in-place is to implement temporary closure measures until the tanks can be removed during redevelopment. This option satisfies the intent of the regulations and provides substantial benefit to the public as well as to the property owners. Considering that the tanks have not been used in several years and considering the apparent sound integrity of the tanks as manifested by their being full of water until recent weeks when emptied, an environmental

risk is not expected from leaving the tanks in-place until redevelopment activities are initiated.

Specific activities to implement temporary closure of the tanks should include cleaning the tanks of all residual materials and fitting the fill pipe to each tank with a tight fitting, locking cap. The tanks should be monitored quarterly to confirm that liquid is not accumulating in them. When the tanks are removed during redevelopment, soil sampling should be conducted to verify the integrity of the tanks and/or to document the removal of any contaminated soils associated with the tanks.

The contents of this letter should be shared with the involved regulatory agencies prior to implementing the proposed closure action.

Please contact me if you have any questions regarding the matters discussed herein.

Sincerely,

Aqua Terra Technologies, Inc.

R. Wane Schneiter, Ph.D.

Civil Engineer No. 38735 (Expires 3/31/93)

Project Manager

RWS:lg

Attachments

ATTACHMENT A Sample Collection Records

ATT

ENVIRONMENTAL SAMPLE COLLECTION RECORD

Site Plan:	1
Date: 7-12-89 Time:	10:30 Job No: 9064
Sample ID: TK-1	Location: 500 San Pablo 0
Sampling Procedure:	albany, cA
Collected sample by low	vering a teflow bailer
	ict was poured into
40 ml. Van, liter amber, and	Iliter plastic for EPA 624, 6.
Water Level:/	pH:
Depth to bottom of well:	Salinity:
Well Purge Volume:	Turbidity:
Purge Water Fate:	Organic Vapor:
Sampling Equipment: Jeffor by	ailer, rubber gloves,
Equipment Cleaning Procedures:	W/A
Sampling Handling/Storage: Aau	ple was stored on
ice immediately after	sampling.
Sample Collected By: Michael I	DESCHENES
Signature: Michael Deschenes	Title: Staff Scientist

ENVIRONMENTAL SAMPLE COLLECTION RECORD

	1
Site Plan:	
Date: 7-12-89 Time: 11:15	Job No: 9064
	so San Pablo ave,
Sampling Procedure:	Albany, CA
Collected sample by lowering a	teflow lailer
The said a floated was fore	USIO INTO HOM
1 liter surber, and 1 liter plastic for EPA 6	24,625, and PP
Water Level: pH:	
Depth to bottom of well: Salinity:	
Well Purge Volume: Turbidity: _	
Purge Water Fate: Organic Vapo	or:
Sampling Equipment: Liften bailer, rubber	fores.
	0
Equipment Cleaning Procedures:	
Sampling Handling/Storage: Sample auras A	tred on
ice immediately after sampling	•
Sample Collected By: Michael DESCHENES	
Signature: Michael Deschenco Title: Si	aff Scientist

ATT

ENVIRONMENTAL SAMPLE COLLECTION RECORD

Site Plan:	
Date: 7-12-89 Time:	12:00 Job No: 9064
Sample ID: <u>CR-1</u> Sampling Procedure:	Location: 500 San Pablo ave.
Collected paryple from cres plastic brans tube cap. a poured into 40 ml. Vor, 1 liter ruber,	ek using a sterile Floating product was
Water Level:	pH:
Well Purge Volume: Purge Water Fate:	Turbidity:Organic Vapor:
Sampling Equipment: sterilo pla rubber gloveo	estic brass tube cap,
Equipment Cleaning Procedures:	U/A
Sampling Handling/Storage: Sampling Handling/Storage: January	ter sampling
Sample Collected By: Michael Deschenes	ESCHENES Title: Staff Scientist.

ATTACHMENT B
Chemical Data

Table 1. Albany Tanks

Chemical	Tank 1 (mg/L)	Concentrati Tank 2 (mg/Kg)	Creek
lead	<5	82	<5
mercury	<0.02	<0.5	0.1
silver	14	14	9.5
thallium	13	15	12
zinc	79	22	< 5
1,2-dichloroethane	1.6	<0.25	<0.25
2-butanone	2.9	<5	<5
benzene	6.4	<0.25	8,000
toluene	11	<0.25	
ethylbenzene	7.8	1,800	24,000
xylene	38	2,000	89,000
2,4-dimethylphenol	0.91	<100	<100
benzoic acid	2.6	<500	<500
bis(2-chloroethoxy) met	hane 0.64	<100	<100
naphthalene	<10	650	2,400
2-methylnaphthalene	<10	760	1,700
di-n-butylphthalate	0.3	<100	<100

Northwest Region

Concord, CA 94520

4080 Pike Lane

(415) 685-7852

07/25/89 JP

PAGE 1 OF 1

WORK ORD#:C907244

CLIENT: MICHAEL DECHENES

AQUA TERRA TECHNOLOGIES

2950 BUSKIRK AVENUE, SUITE 120

WALNUT CREEK, CA 94596

PROJECT#: SFB-0134-9

LOCATION: 500 SAN PABLO AVE.

ALBANY, CA

SAMPLED: 07/12/89 BY: M. DESCHENES

RECEIVED: 07/13/89 BY: M. HUTH

ANALYZED: 07/20/89 BY: L. CALLAN

PRIORITY POLLUTANT METALS
TEST RESULTS

(800) 544-3422 from inside California

(800) 423-7143 from outside California

MATRIX: OIL UNITS: mg/L

	1	MDL	ILAB # II.D.#		Ø1 TK-1	\ 	Ø2 7K−2	1	03 CR-1	1	 1	l
Antimony		25			(1	25	{ 8	25	⟨;	25	,	
Arsenic		12			€:	15	{ 1	2	<	12		
Beryllium		Ø . 5			⟨∅,	. 5	⟨∅.	5	⟨Ø	. 5		
Cadmium		1				(1		(1		(1		
Chromium		3				⟨3		(3		⟨3		
Copper		3				⟨3	•	(3		(3		
Lead		5				(5	8	32		(5		
Mercury		ø. ø2			⟨∅. ⟨	92	⟨∅.	5	0	. 1		
Nickel		0.3			(0.	. 3	⟨∅.	3		⟨3		
Selenium		25			⟨⟨	25	₹8	25	ζ;	25		
Silver		5			;	14	1	l 4	9	. 5		
Thallium		10			:	13	1	5		12		
Zinc		5			•	79	á	22		(5		

MDL = Method Detection Limit; compound below this level would not be detected.

METHOD: As by EPA 3020/7060; Cd by EPA 3020/7131; Se by EPA 3020/7740;

Hg by EPA 7470; Ag by EPA 3005/7760; T1 by EPA 3020/7840; Pb by EPA 3020/7421;

Others by EPA 3020/6010.

EMMA P. POPEK, Director

Northwest Region

Concord CA 94520

4080 Pike Lane

(415) 685-7852

LABORATORIES, INC.

(800) 544-3422 from inside California

(800) 423-7143 from outside California

Page 1 of 1

WORK ORD#: C907242

CLIENT: **BRAD BENNETT**

> AQUA TERRA TECHNOLOGIES 2950 BUSKIRK AVE. SUITE 120

WALNUT CREEK, CA 94596

PROJECT#: SFB-0134-7

LOCATION: 500 SAN PABLO AVE./ALBANY, CA

SAMPLED: 07/12/89

BY: M. DESCHENES

RECEIVED: 07/13/89

ANALYZED: 07/26/89

BY: P. KOWALSKI

MATRIX:

Water and Oil

UNITS:

07/27/89 Jp

ug/L (ppb) water/ ug/kg Soil

	I MDL	ISAMPLE :	#	01*	1	02**	1	Ø3**	1
PARAMETER	ì	II.D.	l	TK-1	1	TK-2	1	CR-1	1
Chloromethane	500		-	(500		(500		(500	
Bromomethane	500			(500		(500		(500	
Vinyl chloride	500			(500		(500		(500	
Chloroethane	500			(500		(500		(500	
Methylene chloride	250			(500		(500		(500	
Acetone	5000			(5000		(5000		(5000	
Carbon disulfide	250			(250		(250		(250	
1,1-Dichloroethene	250			(250		⟨25∅		(250	
1,1-Dichloroethane	250			(250		(250		(250	
trans-1,2-Dichloroethene	250			(250		(250		(250	
Chloroform	250			(250		(250		(250	
1,2-Dichloroethane	250			1600		(250		(250	
2-Butanone	5000			2900		(5000		(5000	
1,1,1-Trichloroethane	500			(500		⟨500		(500	
Carbon tetrachloride	500			(500		(500		(500	
Vinyl acetate	2500			(2500		(2500		(2500	
Bromodichloromethane	250			(250		(250		(250	
1,2-Dichloropropane	250			(250		(250		(250	
cis-1,3-Dichloropropene	250			(250		(250		(250	
Trichloroethene	250			(250		(250		(250	
Dibromochloromethane	250			⟨250		(250		⟨250	
1,1,2-Trichloroethane	250			(250		⟨250		(250	
Benzene	250			6400		(250		8000000	
trans-1,3-Dichloropropene	250			(250		(250		(250	
2-Chloroethylvinylether	500			(500		(500		(500	
Bromoform	250			(250		(250		(250	
4-Methyl-2-pentanone	2500			(2500		(2500		(2500	
2-Hexanone	2500			(2500		(2500		(2500	

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: MS 8240

Page 1 of 1 Continued

Northwest Region 4080 Pike Lane Concord CA 94520

(415) 685-7852 (800) 544-3422 from inside California (800) 423-7143 from outside California WORK ORD#:C907242

CLIENT: BRAD BENNETT PROJECT#: SFB-0134-7

LOCATION: 500 SAN PABLO AVE./ALBANY, CA

MATRIX: Water and Soil

UNITS: ug/L (ppb) water/ ug/kg soil

PARAMETER	1	MDL	ISAMPLE	#	1	01* TK-1	1	02** TK-2	I I	03** CR-1	
Tetrachloroethene	·	250	يبيد شفط خاليد ونيسة خفتاة اجيبية يسسد 1864 بيد	, <u></u>		 250\		 (250)		(250	
1, 1, 2, 2-Tetrachloroethane		250				(250		\250 (250		(250	
Toluene		250				11000		(250	3	9000000	
Chlorobenzene		250				(250		(250		(250	
Ethylbenzene		250				7800		1800000	ε	4000000	
Styrene		250				(250		(250		(250	
1,2-Dichlorobenzene		250				(250		(250		(250	
1,3-Dichlorobenzene		250				(250		(250		(250	
1,4-Dichlorobenzene		250				(250		(250		(250	
Xylene (total)		250				38000		2000000	8	9000000	
Trichlorofluoromethane		250				(250		(250		(250	

MDL = Method Detection Limit: compound below this level would not be detected. Results rounded to two significant figures.

METHOD: MS 8240 * Water Sample ** Soil Sample

EMMO D DODEK Laboratory Director

Northwest Region

4080 Pike Lane Concord. CA 94520 (415) 685-7852 (800) 544-3422 from i

(800) 544-3422 from inside California (800) 423-7143 from outside California

07/27/89 MH

Page 1 of 1

WORK ORD#:C907243

CLIENT:

BRAD BENNETT

AQUA TERRA TECHNOLOGIES

2950 BUSKIRK AVE. SUITE 120

WALNUT CREEK, CA 94596

PROJECT#: SFB-0134-8

LOCATION: 500 SAN PABLO AVE. /ALBANY, CA

SAMPLED: 07/12/89

BY: M. DESCHENES

RECEIVED: 07/13/89

ANALYZED: 07/18/89

BY: M. MAZZALI

MATRIX:

WATER * - OIL **

I-IM LIKTVE	MHIEK M.	. OTF **
UNITS:	ug/L * -	ug/Kg **

	I MDL	. ISAMPLE #	ŧ	Ø1 *	1	Ø2 **	l	Ø3 **	1 1	-
PARAMETER	1	II.D.	1	TK-1		TK-2	1	CR-1	1	_
Phenol	10			(10)		(100000		(100000		,
bis(2-Chloroethyl)ether	10			(10		(100000		(100000		
2-Chlorophenol	10			<10		(100000		(100000		
1,3-Dichlorobenzene	10			(10		(100000		(100000		
1,4-Dichlorobenzene	10			(10		(100000		(100000		
Benzyl alcohol	10			<10		(100000		(100000		
1,2-Dichlorobenzene	10			(10		(100000		(100000		
2-Methylphenol	10			(10		(100000		(100000		
bis-(2-Chloroisopropyl)ethe				(10		<100000		(100000		
4-Methylphenol	10			(10)		<100000		(100000		
N-Nitroso-di-n-propylamine	10			(10		(100000		(100000		
Hexachloroethane	10			(10		(100000		(100000		
Nitrobenzene	10			(10		<100000		(100000		
Isophorone	10			(10		(100000		(100000		
2-Nitrophenol	10			(10		<100000		(100000		
2,4-Dimethylphenol	10			910		(100000		<100000		
Benzoic acid	50			2600		(500000		(500000		
bis(2-Chloroethoxy)methane	10			640		<100000		(100000		
2,4-Dichlorophenol	10			(10		(100000		(100000		
1,2,4-Trichlorobenzene	10			(10)		(100000		(100000		
Naphthalene	10			(10		650000	ř.	2400000	4	
4-Chloroaniline	10			(10		<100000		(100000		
Hexachlorobutadiene	10			(10		<100000		(100000		
4-Chloro-3-methylphenol	10			(10		<100000		<100000		
2-Methylnaphthalene	10			(10		760000		1700000		
Hexachlorocyclopentadiene	10			(10		(100000		(100000		
2,4,6-Trichlorophenol	10			(10		(100000		(100000		
2,4,5-Trichlorophenol	10			(10		(100000		(100000		

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: EPA 8270

NOTE: Data pertaining to WATER will be indicated by *.

Date pertaining to OIL will be indicated by **.

Page 1 of 1 Continued

Northwest Region 4080 Pike Lane Concord, CA 94520

(415) 685-7852 (800) 544-3422 from inside California (800) 423-7143 from outside California

WORK ORD#:C907243

CLIENT: BRAD BENNETT
PROJECT#: SFB-0134-8

LOCATION: 500 SAN PABLO AVE./ALBANY, CA

MATRIX: WATER * - OIL **
UNITS: ug/L * - ug/Kg **

	I MDL	ISAMPLE # I	Ø1 *	1	Ø2 **	ī	03 **	ı
PARAMETER		II.D. I	TK-1	1	TK-2	1	CR-1	1
2-Chloronaphthalene	10		(10		(100000		(100000	
2-Nitroaniline	50		(50		<500000		(500000	
Dimethylphthalate	10		<10		<100000		(100000	
Acenaphthylene	10		(10)		(100000		(100000	
3-Nitroaniline	50		<50		<500000		(500000	
Acenaphthene	10		(10		(100000		(100000	
2,4-Dinitrophenol	50		(50		(500000		(500000	
4-Nitrophenol	50		<50		(500000		<500000	
Dibenzofuran	10		(10		(100000		(100000	
2,4-Dinitrotoluene	10		(10		(100000		(100000	
2,6-Dinitrotoluene	10		₹10		(100000		<100000	
Diethylphthalate	10		(10		(100000		(100000	
4-Chlorophenyl-phenylether	10		(10		(100000		(100000	
Fluorene	10		(10		(100000		<100000	
4-Nitroaniline	50		(50		(500000		(500000	
4,6-Dinitro-2-methylphenol	50		(50		(500000		(500000	
N-Nitrosodiphenylamine	10		(10		(100000		(100000	
4-Bromophenyl-phenylether	10		(10		(100000		(100000	
Hexachlorobenzene	10		(10		(100000		(100000	
Pentachlorophenol	50		(50		(500000		(500000	
Phenanthrene	10		<10		(100000		(100000	
Anthracene	10		(10		(100000		(100000	
Di-n-butylpththalate	10		300		(100000		(100000	
Fluoranthene	10		(10		(100000		(100000	
Pyrene	10		(10)		(100000		(100000	
Butylbenylphthalate	10		(10		<100000		(100000	
3,3-Dichlorobenzidine	10		(10		(100000		<100000	
Benzo(a)anthracene	10		(10		(100000		(100000	

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: EPA 8270

NOTE: Data pertaining to WATER will be indicated by *.
Data pertaining to OIL will be indicated by **.

Page 1 of 1 Continued

Northwest Region

4080 Pike Lane Concord CA 94520 (415) 685-7852 (800) 544-3422 from inside California (800) 423-7143 from outside California

WORK ORD#:C907243

CLIENT: **BRAD BENNETT** PROJECT#: SFB-0134-8

LOCATION: 500 SAN PABLO AVE. /ALBANY, CA

MATRIX:

WATER 8 - OIL 88 ug/L * - ug/Kg ** UNITS:

		MDL	ISAMPLE #	Ø1 *	ı	02 **	Ø3 **	1
PARAMETER	1		11.D. 1	TK-1	I	TK-2 1	CR-1	1
bis(2-Ethylhexyl)phthalate		10		 (10		(100000	(100000)
Chrysene		10		(10		<100000	<1000000	1
Di-n-octylphthalate		10		(10		<100000	(100000)
Benzo(b) fluoranthene		10		(10		(100000	(100000)
Benzo(k)fluoranthene		10		(10		(100000	(100000)
Benzidine		50		(50		(500000	(500000)
Benzo(a)pyrene		10		(10		(100000	(100000)
Indeno(1, 2, 3-cd) pyrene		10		(10		(100000	<100000)
Dibenz(a, h) anthracene		10		<10		<100000	<100000)
Benzo(g, h, i)perylene		10		(10		(100000	(100000)

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: EPA 8270

NOTE: Data pertaining to WATER will be indicated by *.

Data pertaining to OIL will be indicated by **.

2950 Buskirk Avenue, Suite 120 Walnut Creek, CA 94596 [415] 934-4884 FAX-934-0418

ATT

Aqua Terra Technologies Consulting Engineers & Scientists

Mike Deschenes 🦠 Staff Scientist 💢 🗼

insulting Engineers & Scientists	
methode into the Table 2008	

Collector: MichAEL DESC	MENES 1 Date Sampled: 7/12/89 Time:
recactou or saufurnia: 200 2	AN PABLO AVE, ALBANY CA 94716
Project Number: 9064	: KEN FREEDMAN Survey Number:
Sample Type: Waste air Ju	MATER SALVE
COLICATIVET TARE WIRE COURT IN U.S.	$\Delta (1)$
Contract Laboratory Record/Name	GTEL, CONCORD.
Sample ID	
TK-1 (6)	Field Information
TK-2 (6) A	VALYKE WASTE OIL ONLY
CR-1 (6) A	VALYZE WASTE O'LL ONLY
Analysis Requested: EPA (624, EPA 625, EPA PPM.
Portulta Mandad Du D	
Results Needed By: 2 WEEK-	JULY 20, 1989
Contact and results to be sent t	DESCHENES
	No Travel Blank to be Analyzed Separately: // Yes // No
Cuplicate Samples: 💢 Yes 💭	No Duplicates to be Analyzed Separately: // Yes // Yes
	No Cleaning Blank to be Analyzed Separately: Yes X
Background	'
Soil Sample: Yes	Background Soil Sample to be No Analyzed Separately: Yes X
Thain of Oustody:	
Michael Deschence	
Field Personnel	<u> 7-13-89</u>
2.	
	Date
Courier	
· Muchelle Weeth	A / Date
Courier Muth	July 13, 1989 1310
. Muchelle Weeth	A / Date

Adult Torra Technologies
Consulting Engineers & Sefentials