HEALTH CARE SERVICES

AGENCY

February 8,1999 StID # 1989

REMEDIAL ACTION COMPLETION CERTIFICATION

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION (LOP) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

PAMCO c/o Mr. Ansel Kinney 369 Broadway San Francisco, CA 94133 Jay-N Trucking c/o Mr. E. Spokes Jr. Esq. 909 14th St., P.O. Box 331 Modesto, CA 95353

Crown Cork & Seal C/o Ms. Nancy Casale Esq. 1333 N. California Blvd. Suite 450 Walnut Creek, CA 94596 Violet Geisler Trust 225 W. Manville St. Compton, CA 90220

RE: PAMCO Property, 5601 San Leandro St., Oakland CA 94621

Dear Ladies and Gentlemen:

This letter confirms the completion of site investigation and remedial action for the seven (7) underground tanks; two 1000 gallon gasoline, two 5000 gallon diesel, one 12,000 gallon enamel, one 5000 gallon naptha and one 3000 gallon methyl ethyl ketone. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground tank is greatly appreciated.

Based upon the available information and with provision that the information provided to this agency was accurate and representative of site conditions, no further action related to the underground tank releases is required.

This notice is issued pursuant to a regulation contained in Title 23, Division 3, Chapter 16, Section 2721 (e) of the California Code of Regulations.

Please contact Barney Chan at (510) 567-6765 if you have any questions regarding this matter.

Sincerely,

Mee Ling Tung

Director, Environmental Health

c.YB. Chan, Hazardous Materials Division-files

Chuck Headlee, RWQCB

Mr. Dave Deaner, SWRCB Cleanup Fund

Mr. Leroy Griffin, City of Oakland OES, 505 14th St., 7th Floor, Oakland CA 94612

RACC5601SanLeandro

ALAMEDA COUNTY

HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

February 8,1999 StID # 1989

Mr. Ansel Kinney

PAMCO c/o

369 Broadway

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION (LOP)

Jay-N Trucking CAlameda, CA 94502-6577 Mr. E. Spokes Jr(510) 550 6700

909 14th St., P.OFAX 1560 333-9335

Modesto, CA 95353

Crown Cork & Seal C/o Ms. Nancy Casale Esq. 1333 N. California Blvd. Suite 450 Walnut Creek, CA 94596

San Francisco, CA 94133

Violet Geisler Trust 225 W. Manville St. Compton, CA 90220

RE: Fuel Leak Site Case Closure, 5601 San Leandro St., Oakland CA, 94621

Dear Ladies and Gentlemen:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with the Health and Safety Code, Chapter 6.75 (Article 4, Section 25299.37 h). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Health Services, Local Oversight Program (LOP) is required to use this case closure letter. We are also enclosing the case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site.

Site Investigation and Cleanup Summary:

Please be advised that the following conditions exist at the site:

- 210,000 parts per billion (ppb) Total Petroleum Hydrocarbons (TPH) as gasoline, 22 ppb benzene, 82,000 toluene, 30 ppb perchloroethylene, 26 ppb trichloroethylene, 22 ppb cisdichloroethylene (DCE) and 7.6 ppb trans-DCE remain in groundwater at the site.
- 740 parts per million (ppm) Total Petroleum Hydrocarbons (TPH) as gasoline and 0.012,340,0.035,0.37 ppm benzene, toluene, ethyl benzene and xylenes, respectively, remain in soil at the site.

In addition, one monitoring well, MW-102, remains at the site due to the inability to find and properly close it. Caution should be taken if any subsurface work in its vicinity is done.

This site should be included in the City of Oakland Permit Tracking System.

Please contact me at (510) 567-6765 if you have any questions.

PAMCO Property Transmittal Letter 5601 San Leandro St., Oakland CA 94621 StID # 1989 February 8, 1999 Page 2.

Sincerely,

Barney M. Chan

Hazardous Materials Specialist

enclosures: Case Closure Letter, Case Closure Summary

c: VB. Chan, files (letter only)

Mr. L. Griffin, City of Oakland OES, 505 14th St., 7th Floor, Oakland CA 94612

TrLt5601SanLeandro

CASE CLOSURE SUMMARY Leaking Underground Fuel Storage Tank Program

I. AGENCY INFORMATION

Date: December 19, 1997

Agency name:

Alameda County-HazMat Address: 1131 Harbor Bay Parkway

Rm 250, Alameda CA 94502

City/State/Zip: Alameda

Phone:

(510) 567-6700

Responsible staff person:Barney Chan

Title:

Hazardous Materials Spec.

CASE INFORMATION II.

Site facility name: PAMCO Property

Site facility address: 5601 San Leandro St., Oakland CA 94621

RB LUSTIS Case No: N/A

Local Case No./LOP Case No.: 1989

ULR filing date: Not filed

SWEEPS No: N/A

<u>Re</u> :	sponsible Parties:	Addresses:	Phone Numbers:
1.	PAMCO c/o Mr. Ansel Kinney	369 Broadway San Francisco, CA 94133	(415) 421-9099
2.	Jay-N Trucking c/o Mr. E. Spokes Jr. Esq.	909 14th St., P.O. Box 331 Modesto, CA 95353	. (209) 579-1369
3.	Crown Cork & Seal c/o Nancy Casalle Esq.	1333 N. California Blvd., Walnut Creek, CA 94596	Suite 450 (510) 935-0700
4.	Violet Geisler Trust	225 W. Manville St. Compton, CA 90220	

Tank No:	<u>size in</u> gal.:	Contents:	<pre>Closed in-place or removed?:</pre>	Date:
1	5,000	diesel	Removed Removed Removed Removed Removed Removed Removed	10/21/92
2	5,000	diesel		10/21/92
3	1,000	gasoline		10/21/92
4	1,000	gasoline		10/21/92
5	12,000	enamel		10/21/92
6	5,000	toluene (naptha)		10/22/92
7	3,000	MEK		10/22/92

Page 1 of 5

III RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and type of release: holes noted in the 1000 gasoline tank from the eastern set of tanks

Site characterization complete? Yes

Date approved by oversight agency:

Monitoring Wells installed? Yes Number: 5

Proper screened interval? Yes, approximately 5-depth of well, except MW2 which is screened from 15-28' bgs

Highest GW depth: 2.02' Lowest depth: 6.08'

Flow direction: generally southwesterly, however has varied from north to southwest

Most sensitive current use: commercial/industrial

Are drinking water wells affected? No Aquifer name: NA

Is surface water affected? No Nearest affected SW name: NA

Off-site beneficial use impacts (addresses/locations): NA

Report(s) on file? **Yes** Where is report(s)? Alameda County
1131 Harbor Bay Parkway,
Room 250, Alameda CA 94502-6577

Treatment and Disposal of Affected Material:

<u>Material</u>	Amount (include units)	Action (Treatment of Disposal w/destination)	<u>Date</u>
Tanks & Piping	2-1,000 gallon 2-5,000 gallon 1-12,000 gallon	Disposed by Erickson Richmond, CA	10/21/92
	1-5,000 gallon 1-3,000 gallon	11 12 11	10/22/92
Soil	Approx. 800 cy	Aerated and reused @ 98th Ave. Overpass Project by Ca	3/20/96 al Trans

Ground/Rainwater ~5-10,000 gallon Reused onsite 12/14/92

Western Group of Petroleum Tanks, Jay-N Trucking tanks

Maximum Documented Contaminant Concentrations - - Before and After Cleanup

Contaminant	soil <u>Before¹</u>	(ppm) After ²	Water (ppb) Before ³ After ⁴
TPH (gasoline)	*23,000	33	*13,000 140
TPH (Diesel)		ND	ND
Benzene	ND	0.004	670 22
Toluene	ND	0.028	870 ND
Ethylbenzene	ND	0.035	1,700 ND
Xylenes	161	0.090	32,000 ND
Others: VOCs			PCE-30, TCE-26
			c-1,2DCE-22, t-1,2DCE-7.6

Comments (Depth of Remediation, etc.):

- * TPH as kerosene
- 1 Soil samples 10692PS-1, taken by ACEH on 10/6/92
- 2 Overexcavation samples taken on 11/30/92
- 3 Grab groundwater sample (10792BJ) taken by ACEH on 10/7/92
- 4 Groundwater sampling results for MW-1 from May 12, 1997, 13th QMR

Eastern Group of Tanks, Crown Cork & Seal (Continental Can)

Maximum Documented Contaminant Concentrations - - Before and After Cleanup

Contaminant	Soil Before ^l	(ppm) After ³	Soil (Before ²	ppm) After ⁴	Wate Before ⁵	
	12k en	amel	MEK ta	nk	12K	MEK
TPH (gasoline)	ND	ND	1700	ND	620	51,000
TPH (Diesel)	ND	ND			ND	
Benzene	ND	ND	ND	ND	ND	160
Toluene	0.064	0.015	360	0.018	140	28,000
Ethylbenzene	ND	ND	10	ND		250
Xylenes	ND	ND	51	ND		37
Others: VOCs	Acetone				710	
•	MEK		36	3100	4300	250,000

Comments (Depth of Remediation, etc.):

- 1 Soil samples 12K-W-10'6" and 12K-E-10'6" (10/23/92)
- 2 Soil sample #6-1K-3K-9' (10/23/92)
- 3 Soil sample 003, E Wall, after overexcavation (4/19/93)
- 4 Soil sample 005,8 Wall, after overexcavation (4/19/93)
- 5 Grab groundwater sample from 12K pit, #1-12k-H20 (10/23/92)
- 6 Grab groundwater sample from former enamel, MEK & gas tanks, sple AQI (4/19/93)

Page 3 of 5

Eastern Group of Tanks, Crown Cork & Seal (Cont'd)

Maximum Documented Contaminant Concentrations Before and After Cleanup							
Contaminant	80iļ	(ppm)	Soil	(ppm)	Wate		
	<u>Before^l</u>	After ²	<u>Before³</u>	After4	<u>Before⁵</u>	After ⁶	
	1k gase	oline	5k naj	otha			
TPH (gasoline)	11,000	740	220	ND	51,000	210,000*	
TPH (Diesel)			160	ND	•	NĎ	
Benzene	38	0.012	ND	ND	160	13	
Toluene	3500	340	ND	ND	28,000	82,000	
Ethylbenzene	94	0.021	2.4	ND	37	NĎ	
Xylenes	490	0.37	1.8	ND	250	ND	

Others: VOCs Acetone

MEK

chlorinated VOCs

250,000 c-1,2-DCE(22) t-1,2-DCE(7.6)

PCE(30),TCE(26),VC(2.4)

Comments (Depth of Remediation, etc.):

- 1 Soil sample, #3West Side@9', 3/22/93
- 2 Soil sample 005, S. Wall, 4/19/93 after overexcavation
- 3 Soil sample 5k-NE-11' and 5k-NW-11' (10/23/92)
 4 Soil sample, Pit A, #1 NW Corner@9', 3/22/93 after overexcavation
- 5 Grab groundwater sample, sple AQI, from overexcavation pit of 12k, MEK and 1K gasoline USTs (4/19/93)
- 6 Groundwater monitoring results from 13th QMR, 5/12/97
- * Chromatogram is inconsistent with gasoline standard (due to high toluene)

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? Undetermined

Does corrective action protect public health for current land use? YES

Site management requirements: This site should be entered into the City of Oakland's permit tracking system. An appropriate health and safety plan must be implaced prior to subsurface work on the site.

Should corrective action be reviewed if land use changes? Yes

Monitoring wells Decommisioned: No

Number Decommisioned: 0

Number Retained: 5

List enforcement actions taken: Pre-enforcement hearing; November 22, 1995

List enforcement actions rescinded: above

٧.	LOCAL	ACENCY	REPRESENTATIVE	מידיגרו
v •	LUCAL	AGENCI	REFREGENTATIVE	DMIN

Name: Barney M. Chan

Title: Hazardous Materials Specialist

Lainer as the Signature:

Date: /2/29/97

Reviewed by

Name: Tom Peacock

Title: Manager

Drym Jeacoch Date: 17-27-97

Title: Hazardous Materials Specialist

Date: 10/22/97

ESIZ Sup

Name: Madhulla Logan
Signature: Madhulla Logan

VI. RWQCB NOTIFICATION

Date Submitted to RB: 1/2/90 RB Response: Concur

RWQCB Staff Name: Tritle: AWRCE Stephen Hill EST

ADDITIONAL COMMENTS, DATA, ETC. VII.

see site summary

Brief Site History

PAMCO- 5601 San Leandro St., Oakland CA 94621, StID # 1989

From 1929-1935 Former site of Continental Can Company and warehouse. The site was operated as Continental Can through approximately 1968, when the site was sold and operated as a warehouse. In the 1980's the site was used by Jay-N Trucking Company. Plate 2 is a site plan and provides a general map of the site and adjoining properties.

In October 1992 the first set of fuel tanks; 2-5k diesel and a 1k UL gasoline tank between these two were removed. These tanks were installed and operated by Jay N Trucking. The 1K gas tank was initially brought to the surface "accidently" from the tank pit without a permit but later was removed and disposed as an emergency on October 8, 1992. On October 6, 1992, soil and grab water samples were taken by Mssrs. P. Smith and B. Oliva of ACDEH and were run by the County Environmental lab. See exhibit 1 for Mr. B. Oliva's account of ACEH's response to this incident. Sidewall and floor soil samples, as well as three soil samples from the stockpile, were taken for chemical analysis. Exhibit 2 is Mr. P. Smith's map of site and sample locations. The sidewall sample detected up to 23,000 ppm kerosene and 161 ppm xylene. grab groundwater sample from this pit, run by TAL of Hayward, exhibited 13 mg/l kerosene and 670,870,1700 and 32,000 ppb BTEX, respectively. Exhibits 3 and 4 give the analytical results from ACEH environmental lab and Trace Analysis Lab (TAL).

On 10/21/92 the two 5K diesel tanks were removed in conjunction with initiating the removal of the other four USTs on the eastern portion of the site. Based on the initial contamination detected in the samples taken by ACEH, no soil samples were taken immediately after the diesel tank removals. Rather, the fuel tank pit was overexcavated and five sidewall soils samples taken at the soil/water interface on 11/25/92 by SEMCO. Exhibit 5 is a ACEH inspection report and map of sample locations, followed by copies of the analytical results. The results of these samples for the analysis of TPHg, d and BTEX indicated that the overexcavation was successful. Permission was granted to backfill this pit. The ground/rain water which filled the tankpit was transferred to a holding tank. A sample from this water exhibited ND for diesel, 56 ppb TPHg and 12 ppb benzene. Although not authorized by any agency, the water was discharged onto the west side of the property. See Exhibit 6 for copy of these analytical results. All stockpiled soils were taken to a site at 750 98th Ave. in Oakland which was also owned by the same property owner, PAMCO.

Site Summary for 5601 San Leandro St. StID # 1989 PAMCO Page2.

The eastern set of tanks consisted of a 12k enamel, 3K methyl ethyl ketone (MEK), 1K gasoline and a 5K naptha tank (more likely Their removals were initiated on 10/21/92. samples were taken from the ends of the naptha tank and the enamel tanks. The 3K MEK tank was located immediately adjacent to an existing building and extended beneath a concrete stairwell, therefore, the tank was required to be removed in two The required soil sample was taken through a hole made through the west end of the MEK tank and smelled of solvent; (#5-3k-W-10'). The gasoline UST laid end to end east of the MEK tank, also along side the existing building. The one soil sample taken beneath the west (fill) end of the gas tank smelled of gas. One soil sample was taken by hand augering a sample beneath the This sample (#6-1k-3k-9') smelled of gasoline, although it was physically located beneath the east end of the Analytical results of the sample indicated a MEK tank. significant gasoline release from the gas tank (1700 ppm TPHg) that had migrated beneath the MEK tank and the 12K enamel tank. MEK was detected at 36 ppm in the soil sample beneath the MEK tank (#5-3k-W-10') as well as in a grab GW sample from beneath the 12K enamel tank (#1-12k-H20). TPHd/g was detected in the northwest soil sample beneath the naptha tank (5k-NW-11'). Figure 1 for a map of sample locations followed by copies of their analytical results. Based on these results, overexcavation was performed on 3/22/93, 4/2/93 and 4/19/93.

Due to a dispute with the contractor, no formal tank closure report was ever provided to our office. Therefore, we were not provided; sample location maps, manifests documenting the disposal of underground tanks, an accounting for the removal of all excavated soils, a narrative of field activities and a tabulation of analytical data from pre- and post-excavation samples. This narrative is compiled using the raw analytical data, field notes and hand drawn maps.

Overexcavation of all four eastern tanks occurred on 3/22/93, 4/2/93 and 4/19/93. Analytical results indicate successful overexcavation around the naptha tank and all other areas with the exception of along the southern wall, adjacent to the MEK and gasoline tanks where TPHg at 740 ppm, 0.012, 340, 0.021 and 0.37 ppm, BTEX respectively and 3100 ppm MEK was exhibited in soil sample #5. Figure 2 represents overexcavation and sampling which occurred on 3/22/93 followed a copy of these analytical results. Figure 3 represents the overexcavation and sampling which occurred on 4/19/93. Note these samples were taken at a depth 11-11.5'bgs, below the initial soil sample depth of 9'bgs.

Site Summary for 5601 San Leandro St. StID # 1989
PAMCO
Page 3.

Meanwhile, additional potential responsible parties (PRPs) were identified. These individuals are Jay-N Trucking, who installed the fuel tanks on the west side of the property. Mr. Jim Naia, president of Jay-N, was represented by his attorney, Mr. Ernest Spokes, Jr.. On behalf of Jay-N Trucking, RUST Environmental performed both Phase I and Phase II investigations near these former fuel tanks to show that the chlorinated solvents detected at this site did not come from these tanks.

Another PRP is Continental Can, who installed and used the eastern tanks in their operations prior to selling the site to Mr. Ronald Hothem, president of PAMCO, in 1992. Continental Can which was bought out by Crown Cork and Seal is represented by their attorney, Ms. Nancy Casale. Crown Cork and Seal retained PES Environmental Inc. (PES) as their consultant. After evaluating the site history, PES performed both a Tier 1 and Tier 2 a human health risk assessment (HHRA) to evaluate the risk from residual soil and groundwater contamination.

July 7&8, 1993, three monitoring wells were installed in locations presumedly downgradient relative to the three tank locations (naptha, (MEK, gasoline & enamel) and fuel tanks). A southwesterly groundwater gradient was assumed at that time. This gradient is contrary to the initial calculated gradient, however, a south-southwest gradient has been shown to exist using elevation readings from PES temporary wells plus readings from the two additional onsite wells. See figure 4 for the locations of these wells followed by analytical data from these wells.

The parameters analyzed in each well was based upon the contents of the former tanks adjacent to each well. Therefore, MW3 was the only well monitored for VOAs due to its location relative to the former MEK and enamel tanks.

These following observations were made from the above investigations:

- 1. A significant toluene release was detected from the "naptha" tank. This tank likely contained toluene during its usage, not naptha. The soil sample from MW-2 at 19' bgs exhibited 650 ppm toluene. Both soil and groundwater are impacted.
- 2. Chlorinated HVOCs have also impacted the site. Significant concentrations of vinyl chloride, cis and trans- DCE, TCE and PCE have been detected in groundwater. The source of these HVOCs has not been determined.

Site Summary for 5601 San Leandro St. StID # 1989
PAMCO
Page 4.

County's September 17, 1993 letter requested further investigation to define the limits of contaminants identified.

The difference in DTW in MW2 vs MW1 and MW3 may be accountable to the lack of a fine-gravel aquifer in the area of MW2. Note MW2 was also screened differently than the other wells based upon first encountered groundwater being detected deeper. The steep gradient (0.4%) of the first quarter monitoring event may not be representative of site.

The third monitoring event indicated a **southerly** gradient, contrary to prior readings. The high toluene contamination being detected in MW2 may be preventing the detection of the HVOC contaminants.

A January 31, 1994 supplemental work plan to determine the limits of contamination was submitted to our office by BSK & Associates. The wp included four well points to determine extent of groundwater contamination and three additional monitoring wells. Two well points and one well were proposed on the adjacent property, 5401 San Leandro St. owned by Mr. Charles Campanella.

Considerable discussion came from Mr. Campanella, his attorney and his consultant, Geomatrix. Their opinion was that offsite investigation was not necessary. Ultimately, the conditions of Mr. Campanella's access agreement was not agreeable to Mr. Hothem, the property owner, as well as the County. Therefore, Mr. Hothem decided to perform the part of the additional investigation which was on his property only.

September 22, 1994- the supplemental onsite investigation occurred under the direction of BSK & Associates. This investigation indicated that the toluene contamination in groundwater associated with the "naptha" tank extended further north. No sources of HVOCs were detected in soil. This time groundwater gradient appeared to migrate laterally outward from MW3. See Figure 5 for the location of these borings followed by their analytical data.

In August 24, 27 and September 23, 1995 additional groundwater sample points were advanced to complete onsite groundwater characterization. Other areas on the west and south sides of the property identified oil and grease in the grab groundwater samples in samples SP-G and SP-D, respectively. No other areas besides the USTs were found to be of significant concern. See Figure 6 for the location of these borings followed by their analytical data.

Site Summary for 5601 San Leandro St. StID # 1989
PAMCO
Page 5.

In June of 1995, PES, on behalf of Crown Cork and Seal (Continental Can), performed additional site characterization. Eight temporary wells, TW-1 through TW-8, were installed in addition to sampling the existing five wells. Groundwater gradient taken over a several week period indicated a southerly directional flow. The temporary wells were installed along the property boundaries and along the southern border of the existing building. Of particular interest are TW-3, TW-4 and TW-5 along the border of Mr. Campanella's property. These temporary wells detected elevated levels of TPHg, benzene and toluene in groundwater southwest of the naptha tank, the assumed source. DCE, TCE and vinyl chloride were detected not only in the area of the former tanks but at points beyond indicating a potential sitewide or regional problem. It was PES' opinion, like BSK's, that offsite investigation was needed and our office concurred.

November 22, 1995 a pre-enforcement hearing was held at the County office to identifying responsible parties and facilitate offsite access to complete site investigation. A second hearing was reset for December 12, 1995 to allow additional information to be presented.

January 22, 1996- RUST Environmental, on behalf of Jay-N Trucking, prepared a Phase I report analyzing all prior results. The conclusion of their report was that the release of TPH from the Jay-N tanks indicates a decreasing trend. They further stated that there did not appear to be any evidence of a source for the HVOCs from the tanks they operated, therefore, Jay-N should be released as a PRP for these chemicals. Their responsibility for the TPH release should also end since they recommended no further work. The County did not make a decision on this matter at this time, rather, we waited for result of the offsite investigation.

April 3, 1996- offsite investigation on the Campenella property, 5401 San Leandro St., was performed by advancing four borings, TW-C1 through TW-C4. Consultants for Mr. Campanella argued that only grab groundwater samples need be taken for chemical analysis. Our office relented to this request. TPHg and HVOCs were ND in all grab groundwater samples. Low levels of BTX were detected in borings TW-C2 and TW-C4. It, therefore, appears that chlorinated solvent and TPH groundwater contamination has not significantly impacted the Campanella site. See Plate 3 for the locations of the temporary wells followed by the analytical data for both onsite and offsite temporary wells.

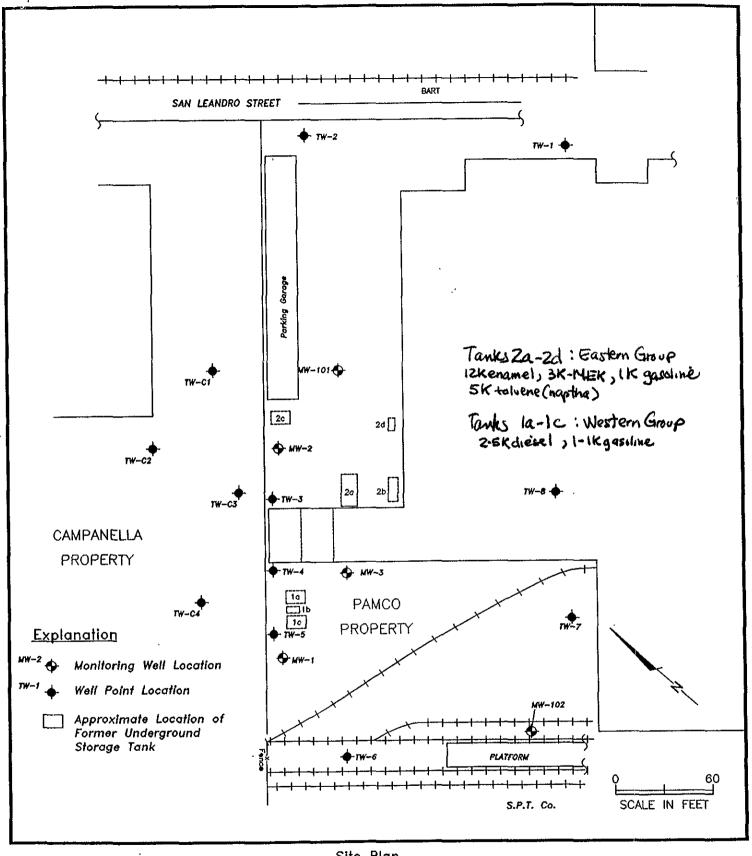
Site Summary for 5601 San Leandro St. StID # 1989
PAMCO
Page 6.

On March 20, 1996 the stockpiled soils, approximately 800 cubic yards at the 98th Ave. site, was sampled and tested for chemical analysis. One four-point composite was taken from each 100 cubic yard pile. The composite samples were analyzed for TPHG, BTEX, VOCs via Method 8240 and TPHd. With the exception of an unknown hydrocarbon in the diesel range in concentrations from 2-56 ppm, no other analytes were detected. These results were discussed with the RWQCB. The property owner arranged to have this soil reused as fill to buildup the 98th Ave. overpass currently being constructed. This use was approved by the Water Board and the soils were reused as fill.

Rust Environmental, on behalf of Jay-N Trucking, continued to attempt to have the fuel USTs considered separately from the other USTs. In November 1996, Rust conducted a shallow boring survey. After interviewing a former employee and doing a site survey, shallow borings were advanced in areas where surface drainage could occur. Four boring were advanced. Three soil samples from each boring were analyzed for chlorinated solvents. Only SB-1-2 @ 1.5-2' depth detected any HVOCs. 1,1-DCA @ 11ppb was detected in this sample. It appears that the area of the Jay-N tanks and any area associated with steam cleaning is not the source of the chlorinated solvents detected at this site. See figure 7 for the location of these borings followed by their analytical results.

Table 1 provides a summary of the cumulative groundwater sampling at this site.

Versar, representing the current property owner proposed a pump and treat remediation sytem and cleanup goals of MCLs. PES, representing Continental Can on the other hand, proposed a baseline Human Health Risk Assessment, HHRA. An October 30, 1996 HHRA was prepared by PES for American National Can to evaluate the residual TPH and HVOC contamination. Upon review and comment by Madhulla Logan, staff risk assessor, an August 18, 1997 revised RBCA Tier 2 HRA was prepared.


Site specific data for depth to groundwater, capillary and vadose zone thickness, foundation crack factor and target risk for a commercial setting were used. In addition, the most recent groundwater monitoring data was used to estimate contaminant concentrations.

The risk assessment evaluated the most probable exposure pathways, groundwater volatilization to indoor air for onsite commercial workers. Based upon the above modifications, the site passes the Tier 2 HHRA SSTLs. See Table 2 for a summary of the RBCA analysis results.

Site Summary for 5601 San Leandro St. StID # 1989 PAMCO Page 7.

Site closure is recommended based upon:

- * adequate source removal of the tanks and affected soils, nearly 800 cy of soil was excavated;
- * adequate site characterization which indicates a limited extent of both soil and groundwater contamination present both onsite and offsite;
- * the shallow groundwater in this industrial area in Oakland is not considered a source for drinking water. No drinking water or domestic wells are located within 1/2 mile radius of this site; and
- * No significant risk to human health is anticipated based upon current site use and a RBCA Tier 2 evaluation.

Site Plan
Revised Tier 2 Health Risk Assessment
Pacific American Management Company Facility
5601 San Leandro Street
Oakland, California

2

125.0502.001

0200118_..DWG

JOB NUMBER DRAWING NUMBER

REVIEWED BY

8/97

DATE

MANAGOOD MATERIAND DIVIBION

MEMORANDUM

Exhibit 1.

DATE: October 6, 1992

TO: files

FROM: Brian P. Oliva

SUBJ: illegal tank pull at 5555 San Leandro Blvd, Oakland

I responded to a call at 1:30 pm from Sergeant Alan Whitman from the Oakland Police Department in order to assist Paul Smith from this office for the purpose of taking legal samples and other evidence to the Alameda County Environmental Health Lab. Mr. Smith and I sampled the water in the area of an illegally removed diesel UST in the approximate location of the interface. The water appeared to have 'free-product" floating on top of it and had a strong odor. Two other samples were also taken of the sand/backfill material. The two remaining samples were taken in 40 ml VOA containers and were placed in an ice chest. All samples were taken to the Alameda Division of Hazardous Materials at 80 Swan Way, Oakland, CA by four O'Clock on utilizing "chain of custody" procedures. The UST were Quarantined by myself and a quarantine seal/self adhering stamp was attached to one of the removed tanks with an photograph of myself and Sergeant Whitman placing the stamp on the subject illegally removed UST. The quarantine directed that the 6 tanks not be moved prior to contacting our office.

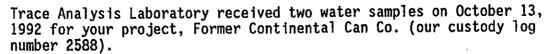
Bun P. Olin

Brian P. Oliva

	้ง	238-3030-	locations by P.S.		ap
5	601. Som l	Lemotro St. tel (on Co.	5888 'S-	m Lemetro St	
0898		Sam Leondro	1560 Blvd		10 - 44
		gas ?		2 (0.	_ = will
. E	o)	open ca orgo	Former (untraento (ompany		~ ~
	<u> </u>	enamel .			
\	Renewed	Samplis 1-4 (ellected		- June 2 Sec. 20
	of Fillend	2 L/Cu a Kin			a com the to the control of the cont
	2 voas (40	ml) (othertial.			
	98th 700 Pacific Amo	Block East	ride		
	- 013	۸	UST removal	and the second s	
	816	Timps ,) or list	u (74603)		e management of the second state of the second
	Ta	V Tricang	(c 5601 V US	Son Lemotro	

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY 92 CO. 10 DEPARTMENTE OF ENVIRONMENTAL HEALTH ENVIRONMENTAL HEALTH LABORATORY

ANALYTICAL REQUEST


	Laboratory No. 92-087
Sample Identification 5 soil samples	from Former Continental Can Company, 5555 San Lea
	i Sur Company, 5555 San Lea
Date Collected: 10/6/92	Collected by: Paul Smith
Date Received: 10/7/92	Received by: Darcy Wong
Analyses Requested Btex , Kerosene	barcy wong
	K-(4-25 mm) D-(25-29)
Background Information Illegal tank	removal D-(25-29)
ANALYT	TICAL RESULTS
Parameter	
	Observation or Result Side and Section Stockerite
Sample Identification	10692DC-1
. LaB#	92-087-1
Kerosene, 8 (artract) GC-PiD	2.3 1.2 0.5 15 0701
Benzene,ppm	1.5 7 11.5
Toluene,ppm	1 4 .4 .4 .4 .4
Ethylbenzene,ppm	1.4 \4.4 \4.4
Xylene(p&O),ppm	161
	161 87 29 19 81
*ppm =mg/kg	1
	Soil Stillwater 994
Conclusions: 10692DC-1 4 5	
Conclusions: 10692PS-1,-4,-5,-6,-7 cont	ain kerosene and xylenes.
Data Analysis	
Date Analyses Completed: 10/9/92 .	Chemist: Darcy Wong .
Approved: DW	
Distribution: <u>Paul Smith</u> ,Brian Olivia,Τ	Shirasawa, R. Shadid
20.4. 11	
BC/cdb 7/85	•
• •	•

Grab GW Sample taken by ACEH

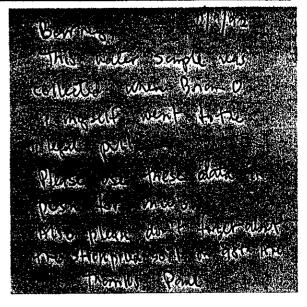
October 27, 1992

Mr. Paul Smith Alameda County Hazardous Materials Division 80 Swan Way, Room 200 Oakland, California 94621

Dear Mr. Smith:

These samples were analyzed according to your chain of custody. Our analytical report and the completed chain of custody form are enclosed for your review.

Trace Analysis Laboratory is certified under the California Environmental Laboratory Accreditation Program. Our certification number is 1199.


If you should have any questions or require additional information, please call me.

Sincerely yours,

Vennifek Pekol

Project Specialist

Enclosures

Trace Analysis Laboratory, Inc.

3423 Investment Boulevard, #8 • Hayward, California 94545

Exhibit 4

Telephone (510) 783-6960 Facsimile (510) 783-1512

TAL

LOG NUMBER: DATE SAMPLED:

2588 10/07/92

DATE RECEIVED: DATE EXTRACTED:

10/13/92

DATE ANALYZED:

10/14/92 10/21/92

DATE REPORTED:

10/21/92

CUSTOMER:

Alameda County District Attorney's Office

REQUESTER:

Paul Smith of Alameda County Hazardous Materials Division

PROJECT:

Former Continental Can Co.

			Sample	Type:	Water
Method and Constituent:	<u>Units</u>	Concen-	/ <u>92BJ</u> Reporting <u>Limit</u>		d Blank Reporting Limit
DHS Method: Total Petroleum Hydro- carbons as Kerosene	ug/1	13,000	50	ND	50
OC Summary:		13-19	,		

OC Summary:

108

% Recovery:
% RPD:

8.3

Concentrations reported as ND were not detected at or above the reporting limit.

This sample contains, compounds eluting earlier and later than the kerosene standard.

Exhibit 4

Trace Analysis Laboratory, Inc.

LOG NUMBER: 2588
DATE SAMPLED: 10/06/92
DATE RECEIVED: 10/13/92
DATE ANALYZED: 10/16/92
DATE REPORTED: 10/27/92
PAGE: Two

Sample Type: Water

						_
Method and Constituent:	Units	1069 Concen- tration	2PS Reporting Limit	Metho Concen- tration	d Blank Reporting Limit	
Modified EPA Method 8020	for:				1	
Benzene	ug/T	670	580	ND	0.50	
Toluene	ug/l	870	630	ND	• •	
Ethylbenzene	ug/1	1,700	790	ND	0.50 0.50	
Xylenes	ug/1	32,000	2,200	ND	U.5U	•
	-,	. , = - +	-,0	מא	1.5	

OC Summary:

% Recovery: 81 % RPD: 7.4

Concentrations reported as ND were not detected at or above the reporting limit.

This sample was analyzed 3 days beyond the 7-day holding time for this analysis.

Louis W. DuPuis

Quality Assurance/Quality Control Manager

Sples # 1-5 =	Exhibit 5
#1-63-N-C	ALAMEDA COUNTY, DEPARTMENT OF ENVIRONMENTAL HEALTH 80 Swan Way, #200 Oakland, CA 94621 (415) 271-4320
3 6 5 "-S.	Hazardous Materials Division Inspection Form
5 6' J - W Site ID#	Site Name Phones - overexcavation Jay-N USTS 1,25 92
Site Address	5601 Son Learder St EPA ID#
City	OLL Zip 94 62 Phone
MAX Amt. Stored > 5001t Hazardous Waste genera	ted per month?
The marked Items repres	ent violations of the Calif. Administration Code (CAC) or the Health & Safety Code (HS&C)
i.A GENERATOR (Title 22) 1. Waste ID 2. EPA ID 3. > 90 days 4. tabel dates 5. Blennial	Someo (M. Tenbracet al) Sommenis: Withers the (ateral overex cavature of diesel/ Someonis: Withers the (ateral overex cavature of diesel/ Scoon overex cavature o
	65 (5) 60497 60404 60497 6
11. Iredment 12. On-site Disp. (H.S.&C.) 13. Ex Haz. Waste 14. Communications 15. Alsie Space 16. Local Authority 17. Maintenance 18. Training	20189.5 06570 07121 07120 0
19. Prepared 20. Name that 21. Copies 22. Emg. Coord, Tmg.	67141 at 6' the gray day has no apparent 67141 67144 07144 07144
23. Condition 24. Compatibility 25. Maintenance 26. Irapection 27. Buffer Zone 28. Tank Inspection 29. Containment 30. Safe Storage 31. Freeboard	the entri N wall will be excavated. The Stockpute and from this pit will be excluded The Stockpute and from this pit will be excluded 57259 67265 67265 Gapping SO Cy yds & Can be transferred To the entries of the composition city I for the
I.B TRANSPORTER (Title 22) 32, Applic,/Insurance33, Comp. Cert./CHP Insp34, Containers	Offer Stocharles on Stanger of Maptha tanks
35, Vehicles 36, EPA ID #s 37, Correct 38, HW Delivery 39, Records	2 tubes from la temponteil to le lun for OSSAI OSSAI (2) GOLDER FROM UN MEK to be (4 Cense into 1)
40. Name/ Covers 41. Recyclables	€ be run for TPHg & 8240. 2 includes B140)
Rev 6/88	
Contact:	Inspector: BChan
Signature:	Signature:

CERTIFICATE ANALYSIS

LABORATORY NO.: 55823

CLIENT: SEMCO

CLIENT JOB NO.: PAMCO

DATE RECEIVED: 11/30/92

DATE REPORTED: 12/08/92

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB #	Sample Joentification	Concentration (mg/kg) Diodol Rango
1	#1-6/3"-N-C	ND<10
2	#2-6'4"-N-E	ND<10
3	#3-6/5"-E	ND<10
4	#4-6/5"-S	
5	#5-6/5"-W	ND<10
6	#6-COMP-W	ND<10
7	#7-COMP-E	12
Ė	#8-COMP-N	ND<10 ND<10

mg/kg - parts per million (ppm)

. Minimum Detection Limit for Diesel in Soil: 10mg/kg

QAQC Summary:

Daily Standard run at 200mg/L: %DIFF Diesel = <15 MS/MSD Average Recovery = 105%: Duplicate RPD = 0 %

1555 Burke, Unit L • San Francisco, California 94124 • [415] 647 2081 / fax (415) 821-7123

ANALYSIS CERTIFICATE OF

LABORATORY NO.: 55823

CLIENT: SEMCO CLIENT JOB NO.: PAMCO DATE RECEIVED: 11/30/92

DATE REPORTED: 12/08/92.

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 5030 and 8015

LAB #	Sample Identification	Concentration (mg/kg) Gasoline Range
****	# # # # # # # # # # # # # # # # # # #	An any that the date that then have here also
ı	#1-6'3"-N-C	ND<1
2	#2-6 4 4 N-N-E	ND<1
3	#3-6'5"-B	ND<1
4	#4-615"-S	ND<1 .
5	#5-615"-W	33
6	#6-COMP-W	2
7	#7-COMP-E	ND<1
8	#8-COMP-N	ND<1

mg/kg - parts per million (ppm)

Method Detection Limit for Gasoline in Soil: 1 mg/kg

QAQC Summary:

Daily Standard run at 2mg/L: %Diff Gasoline = <15 MS/MSD Recovery = 95%: Duplicate RPD = 5.3%

1555 Burke, Unit 1 - San Francisco, California 94124 - (415) 647-2081 / (ax (415) 821 7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55823

CLIENT: SEMCO

CLIENT JOB NO.: PAMCO

DATE RECEIVED: 11/30/92 DATE REPORTED: 12/08/92

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

	' \		Concentr	ation(mg/	kg)
LAB			•	Ethyl	
#	Sample Identification	Benzene	Toluene	Benzene	Xylenes
	the data have some than from how from the four them have been dark then then then the four the four the first the fi				
1	#1-6'3"-N-C	0.004	ND<.003	ѝр<.003	ND<.003
2	#2-6'4"-N-E	ND<.003	ND<.003	ND<.003	ND<.003
3	#3+6'5"-E	ND<.003	ND<.003	ND<.003	ND<.003
4	#4-6'5"-S	0.003	ND<.003	ND<.003	0.007
5	#5-6'5"~W	ND<.003	0,028	0.035	0.090
6	#6-COMP-W	0.033	0.023	0.018	0.260
7	#7-COMP-E	ND<.003	ND<.003.	ND<.003	ND<.003
7	#8-COMP-N	ND<.003	ND<.003	ND<.003	ND<.003

mg/kg - parts per million (ppm)

Method Detection Limit in Soil: 0.003 mg/kg

QAQC Summary:

Daily Standard run at 20ug/L: %Diff 8020 = <15 MS/MSD Average Recovery = 93%: Duplicate RPD = 2.0%

A Marketon	Section 1 Consultant Name Office Location Fax No. (415) 5 Project Manager (415) 6 Phone (415) 6 Send Coolers to Project No. / P.O. N	datec,	latec, CA 94402				Same Day 72 Hrs Mar 24 Hrs 5 Day 415/22 48 Hrs Sampler M. TAMBRUN! Regulatory Agency PLAURESH							T LAB NO. HOR ANALYTICAL, INC. rtinez San Francisco 29-1512 415/647-2081 Co (BAPACY) Sample Information				
L	Project No. / P.O. I	10. 2					An	alys	is F	leques	t				s	oction	121	Sample sind mader 4//
Exhabit S	Section II	ALAir	0 1	Level D	٠					Subject to						Cont	ainers	Bioremediation
Ex	Sample Sample Sample Street	Water Water	TPH - G	TPH - LOW	TPH - G	BTXE	8010	8240	Metals	*				Date	Time	Quantity	Pres.	Contamination
				<u> </u>	-			+-	+-					1/29	2306	1	<u> </u>	
	1#1-63°-N-C	15-	$\frac{1}{\sqrt{2}}$					+-	1						311	1	ļ	
	2#2-6'4"-N-E	5	Ż	<u> </u>	-	文		1	1					1	315		1	
	3 7 3 - 6 5	15	X			过						1		4	32	<u> </u>		
	**A-65-3	5	X			X					1_	1-1			324	1	 	Congosta in 1478 (Spices)
	6 #6 - CMP - N	6	X			X					_ _				340 402		 	Confosts in LAS (some
	7#7-COMP-E	5	X			14						+			192		 	Conposte in Lax, Check so
	848 -Cour - N	5	X			N. C.			<u> </u>			- - 			+12	-	 	CONTRACTOR OF THE PROPERTY OF
	9				$oldsymbol{oldsymbol{oldsymbol{oldsymbol{eta}}}$	1		-								+		
	10				1									+	-	1		
i	11		1	-	-		-+	-	-+	_	-	-	-+	1	_	1		
	Relinquished by	uco J			<u></u>		77 T	12	18	3/2	Or	eived ganize eived	tion					Pieses mittel Samples Stored in los
	Relinquished by										Or	ganiza	tion	,				VOA's without Headspace
	Organization Relinquished by		_ 				0/4		18	36	Rec (i	wived iniz	by ation	LCX Si	KKA P	dio	ezeañ E	1 ===)=

AROMALAB, INC.

Environmental Laboratory (1094)

Exhibit 6

6 DAYS TURNAROUND

December 11, 1992

Chromatab File No.: 1292113

Represents Water also argen

BER & ASSOCIATES

Attn: Alex Eskandari

RE: One water sample for Gasoline and STEX analysis

Project Name: PACIFIC AMERICAN MANAGEMENT, Pleasanton Project Number: 192296.3

Date Sampled: Dec. 10, 1992 Date Analysed: Dec. 10, 1992

Date Submitted: Dec. 10, 1992

RESULTS:

Sample I.D.	Gasoline (ug/L)	Bankana (ug/L)	Toluena (ug/L)	Ethyl Benzena (ug/L)	Total Xylensa (40/L)
#1 WEST EXCAVATION	56	12	N.D.	N.D.	N.D.
NETHOD OF YNYTHEIR DRIEGIION TINID DID SPIKE SECOVERY SPIKE SECOVERY	N.D. 1024 50 5030/8015	N.D. 823 864 0.5 602	N.D. 1012 1118 0.5 602	N.D. 787 847 0.5 602	N.D. 802 852 1.5

Chromalab, Inc.,

Eric Costs Analytical Chemist

Erio Tam

Rrig Tam Laboratory Director

Q#

03

P.305/05

Exh. 6

HROMALAB, INC.

Environmental Laboratory (1094)

& DAYS TURNAROUND

December 11, 1992

ChromaLab File No.: 1292113

BETATOORSE & MRE

Attn: Alex Eskandari

One water sample for Diesel analysis REL

Project Name: FACIFIC AMERICAN MANAGEMENT, Pleasanton

Project Number: 192295.3

Data Extracted: Dec. 10, 1992 Data Extracted: Dec. 11, 1992

Dato Submitted: Dec. 10, 1992 Date Analyzed: Dec. 11, 1992

RESULTS

Sample I.D.

Diesal (ug/L)

#2 WEST EXCAVATION

N.D.

BLANK SPIKE RECOVERY

N.D. 864

DUP SPIKE RECOVERY DETECTION LINIT

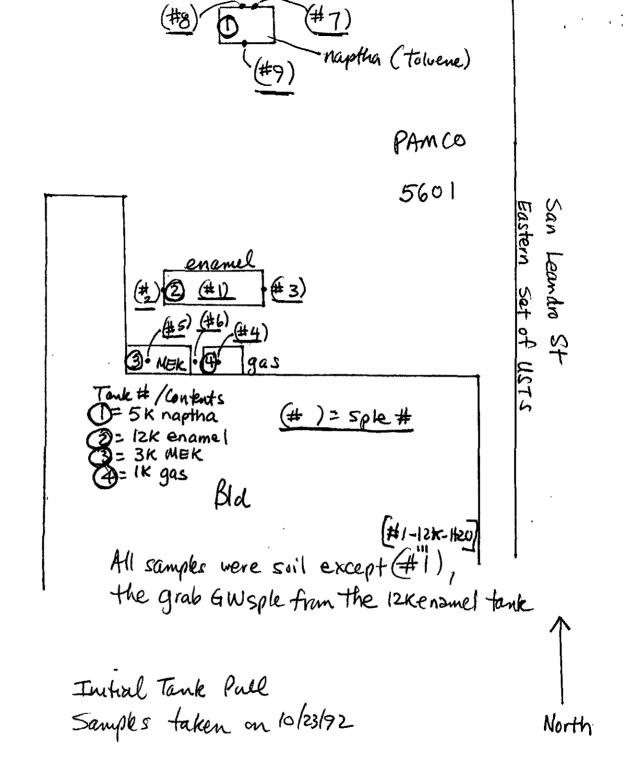
\$50

50

HETHOD OF AKALYSIS

3510/8015

Chromalab, Inc.


Yiu Tan

Eric Tam

Analytical Chamist

Laboratory Director

QQ

JayN

USTS

Fig. 1

handdrawn by B.C.

Send Contare to	CALLA 672 90	134 EK 133	K	IPE	e_	o, CA				s	ams 24 48	Circle Day ira ira	2ne) 7	2 H	ra	418	ERIOR ANALYTICAL, INC Martinez San Francisco 5/229-1512 415/547-2081
Send Coolers to Project No. / P.O. N	io. <u>Co</u>	ntir	to [nent] {	San Can-	Met 560-	i eo I Sa	an	Lean	dro	St Re	unple	N		SEMC	0 - //	County (BMAN/CHM)
Section II			•			An	alys	is I	Reque	st			<i>A</i> 222				
	Boll AmAir Water	4 D	Low Level D						2							tainers	Sample information Sampling Remarks Bioremediation
identification	Matrix	TPH - G	TPH - Lo	n He⊤	BTXE	8010	8240	Metals	# tuo	EPA 624			Date	Time	Quantity	Pros.	Contamination
	W	Ϋ́								×			424	246	8	 	EXAMEL
#2-12k-W-106	5	×				 	X							300	1		ENAMEC
#3-12k-E-16'6" #4-1k-9'6"	<u>5</u>						X						<u> </u>	310	1		TENHALE
#5-3K-W-10	3	 			<u> </u>								1	326			GAS
#6-1K-3K-0-	5	 				-	X.					-	<u> </u>	420	1		MEK
47-SK-NE-11	2			\triangle	ul-							-	1-	435	1		MEK
48-5K-NW-11	3		 		\Rightarrow		-				: -		 	5/9		<u> </u>	MAYTHA -
#9-5K-5-11	六十				\Rightarrow	 				\vdash		-	[_ 	520	, ,		NAPIHA
0					4	╁─				-		+	 	627			herthe.
1						+			<u> </u>	-			 	╀┈┤	•		
Ž		7			_	1					+			╂╼╌╁			
delinquished by fff() Organization	4	F			ale/7	ime G2	9	1000	Re Im C	Poeiv	ed b		DVÇ	016)	Rus o-IJ	2	Please initial

1555 Hurke, Unit 1 • San Francisco, California 94124 • [415] 647-2081 / fax (415) 821 7123

CERTIFICATE OF ANALYSIS

LABORATORY NO. 55691-2

CLIENT: SEMCO

DATE SAMPLED : 10/22/92

DATE ANALYZED: 10/29/92

DATE RECEIVED: 10/23/92

DATE REPORTED: 10/30/92

PROJECT NO. CONTINENTAL CAN-

5601 S.L.

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Mass Spectrometry

SAMPLE: 12K-W-10 6"

	Compound	MDL	ug/kg ^z	Compound	MDL	ug/kg
.	Chloromethane	50	ND	Cis-1,3-Dichloropropene		
:	Bromomethane	50	מא	Trichloroethene	15	ND
	Vinyl Chloride	50	ND	Dibromochloromethane	15.	ND :
:	Chloroethane	50	ND	DIBLOMOCHTOLOMSCUSUS	15	ND .
	Methylene Chloride	50	מא	1,1,2-Wrichloroethane	15	ND ·
, ,	Acetone	50		Benzene	5	ND
	Carbon Disulfide	15	ND	Trans-1,3-Dichloropropene.	15	ND:
. '	Trichlorofluoromethane		ND	2-Chloroethyl vinyl ether	15	ND .
	1,1-Dichloroethene	15	ND	Bromaform	15:	ND
	* A * Taraction of the same of	15	ND	4-Methyl-2-Pentanone	50	ND
	1,1-Dichloroethane	15	ND	2-Hexanone	5.0	ND
	trans-1,2-Dichloroethene	-	ND	Tetrachloroethene	15	ND
	Chloroform	15	ND	1,1,2,2-Tetrachlorosthans	15	ND
	1,2-Dichloroethane	5	ND	Toluene	15	
	2-Butanone	100	ND	Chlorobenzene		
	1,1,1-Trichloroethane	15	ND	Ethylbenzene	15	ND 16
٠	Carbon Tetrachloride	15	ND	Styrene	15	ND a
•	Vinyl Acetate	50	ND		15	ИD
•	Bromodichloromethane	15		Total Xylenes	15	ND
**	1,2-Dichloropropane		ND	1,3-Dichlorobenzene	15	ND
, ,,	cis-1,2-Dichloroethene	15	ND	1,4-Dichlorobenzene	15	ND ·
		15	ND	1,2-Dichlorobenzene	15	ND

ng/kg = parts per billion (ppb)
ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMIT
QC DATA:

Surrogate Recoveries	,	QC LIMITS
1,2-DCA-d4	106%	8011 70-121 % 81-117 % 74-121 %

comments:

Richard Srna, Ph.D.

Laboratory Director

1555 Burke, Unit L • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

CLIENT: SEMCO

DATE REPORTED: 12/08/92

JOB NO. PAMCO . .

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Mass Spectrometry

SAMPLE: #8-COMP-N

Compound	ug/kg	Compound · ,	ug/kg
	ND<50	Cis-1,3-Dichloropropene	ND<15
Chloromethane	-	Trichloroethene	ND<15
Bromomethane	ND<50		
Vinyl Chloride	ND<50	Dibromochloromethane	ND<15
Chloroethane	ND<50	1,1,2-Trichloroethane	ND<15
Methylene Chloride	ND<50	Benzene	ND<5
Acetone	ND<50	Trans-1,3-Dichloropropene	ND<15
Carbon disulfide	ND<15	2-Chloroethyl vinyl ether	ND<15
Trichlorofluoromethane	ND<15	Bromoform	ND<15
1,1-Dichloroethene	ND<15	4-Methyl-2-Pentanone	ND<50
1,1-Dichlorocthane	ND<15	3-Нохапопо	ND<50
1,2=Dichloroethene (trans)	NDc15	Tetrachloroethene	ND<15
Chloroform	ND<15	1,1,2,2-Tetrachloroethane	ND<15
1,2-Dichloroethane	ND<5	Toluene	ND<15
2-Butanone (MEK)	ND<100	Chlorobenzene	ND<15
1,1,1-rilchloroethane	おわべてな	athytbenzene	MDとTO
Carbon Tetrachloride	ND<15	Styrene	ND<15
Vinyl Adetate	ND<50	Total Xylenes	ND<15
Bromodichloromethane	ND<15	1,3-Dichlorobenzene	ND<15
1,2-Dichloropropane	ND<15	1,4-Dichlorobenzene	ND<15
1,2-Dichloroethene (cis)	ND<15	1,2-Dichlorobenzene	ND<15
		• •	

ug/kg = part per billion (ppb) QC DATA:

Surrogate	Recoveries	QC	Tiwics
_	•	water	soil
1,2-DCA-d4	96*	76-114	70-121
Toluene-d8	101%	88-110	81-117
Bromofluorobenzene	105%	86-115	74-121

comments:

Richard Srna, Ph.D.

Laboratory Director

1555 Burke, Unit 1 * San Francisco, California 94124 - (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO. 55691-1

CLIENT: SEMCO

DATE SAMPLED : 10/22/92

DATE ANALYZED: 10/29/92

DATE RECEIVED: 10/23/92

DATE REPORTED: 10/30/92

PROJECT NO. CONTINENTAL CAN-

5601 S.L.

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Mass Spectrometry

SAMPLE: #1-12K-H20

compound	MDL	ug/L	Compound	MDL	ug/L
	10	ממ	Cis-1,3-Dichloropropens	3	ND
Chloromethane	10	ND	Trichloroethene	3	ND "
Bromomethane		HD	blb. omotileremethens	Š	ND
Vinyi chioride	10		1,1,2-Trichloroethane	š	ND
Chloroethane	10	ND OIG	T T T T T T T T T T T T T T T T T T T	•	ND.
Methylene Chloride	10	ND 7/V	Benzene	14i	ND
Acetone	10	410	Trans-1,3-Dichloropropene	-3 -5	ND
Carbon Disulfide	3	ND	2-Chloroethyl vinyl ether	3	
Trichlorofluoromethane	3	ND	Bromoform	3 _	ND.
1,1-Dichloroethene	3	ND	4-Methyl-2-Pentanone	1.0	ND
1,1-Dichloroethane	3	ИD	2-Hexanone	10	ND)
trans-1,2-Dichloroethene	3	ND	Tetrachloroethene	3	ND
Chloroform	3	ND	1,1,2,2-Tetrachloroethane	3	ND->
1,2-Dichloroethane	1	ND	Toluene	3	(140)
2-Butanone	20	THE STATE OF	Chlorobenzene	3	ND
1,1,1-Trichloroethane	3	NDY 301	Ethylbenzene	3	ND
Carbon Tetrachloride	3	ND	Styrene	3	ND;
	10	ND	Total Xylenes	3	ND.
Vinyl Acetate	2	ND	1,3-Dichloropensene	3	ND
Bromodichloromethane	ა ი	ND	1,4-Dichlorobenzene	3	ND
1,2-Dichloropropane	3		1,2-Dichlorobenzene	3	ND
cis-1,2-Dichloroethene	3	ND	T'S-Dignitor opensatie	•	

ug/L = parts por billion (ppb)

ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMIT

89%

96%

97%

OC DATA:

Surrogate Recoveries

1,2-DCA-d4........

Toluene-d8.....

Bromofluorobenzene.....

QC LIMITS

water

76-114 %

88-110 %

86-115 %

comments:

Richard Srna, Ph.D.

Laboratory Director

1555 Burke, Unit 1 = San Francisco, California 94124 . (415) 647-7081 / fax (415) 821-7173

CERTIFICATE ANALYSIS

LABORATORY NO.: 55691

CLIENT: SEMCO

CLIENT JOB NO.: CONTINENTAL CAN 5601 S.L.

DATE RECEIVED: 10/23/92

DATE REPORTED: 10/30/92

ANALYSIS FOR TOTAL PERTROLEUM HYDROCARBONS by Modified EPA EW 046 Method 0015

LAB

Sample Identification

Concentration (ug/L) Gasoline Range

1-121 1120

ug/L - parts per billion (ppb)

Minimum Detection Limit for Gasoline in Water: 50 ug/L

QAQC Summary:

Daily Standard run at 2mg/L: %DIFF Gasoline = <15 % MS/MSD Average Recovery = 98 %: Duplicate RPD = 2

1555 Burke, Unit I - San Francisco, California 94124 - (415) 647-2081 / fax (415) 871-7123

CERTIFICATE

LABORATORY NO.: 55691

CLIENT: SEMCO

CLIENT JOB NO .: CONTINENTAL CAN 5601 S.L.

DATE RECEIVED: 10/23/92

DATE REPORTED: 10/30/92

Concentration (ug/L)

Diesel Range

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Nethod 8015

LAB

Sample Identification

1-1214 1120

- parts per billion (ppb)

Minimum Detection Limit for Diesel in Water 500g/L

QAQC Summary:

Daily Standard run at 200mg/L: *DIFF Diesel = <15% MS/MSD Average Recovery = 96%: Duplicate RPD = 3%

1555 Burke, Unit 1 • San Francisco, California 94124 = (415) 647-2081 7 fax (415) 821-7123

CERTIFICATE OF

ANALYSIS

LABORATORY NO.: 55691

CLIENT: SEMCO

GLIENT JOB NO.: CONTINENTAL CAN 5601 S.L.

DATE RECEIVED: 10/23/92 DATE RESORTED: 10/30/92

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 5030 and 8015

LAB #	Sample Identification	Concentration (mg/kg)
2 3 4	#2~12K~W~10'6" #3-12K~E-10'6" #4-1K-9'6"	ND<1 ND<1
6 7 8 9	#6-1K-3K-9/ #7-5K-NE-11/ #8-5K-NW-11/ #9-5K-S-11/	ND<1 220

* Does not match typical gasoline pattern. mg/kg - parts per million (ppm)

Method Detection Limit for Gasoline in Soil: 1 mg/kg

QAQC Summary:

Daily Standard run at 2mg/L: %Diff Gasoline = <15 MS/MSD Recovery = 81%: Duplicate RPD = 2

Richard Srna, Ph.D.

Laboratory Manager

1555 Burke, Unit 1 • San Francisco, California 94124 • (415) 647-2081 / fax (415) 871-7173

CERTIFICATE

LABORATORY NO. 55691-3

CLIENT: SEMCO

DATE SAMPLED : 10/22/92

DATE ANALYZED: 10/29/92

DATE RECEIVED: 10/23/92

DATE REPORTED: 10/30/92

PROJECT NO. CONTINENTAL CAN-

5601 S.L.

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Mass Spectrometry

SAMPLE: #3-12K-E-10'6"

Compound	MDL	ug/kg	Compound	MDL	ug/kg
Chloromethane	50	ND	Cis-1,3-Dichloropropene		
Bromomethane	50	ND	Trichloroethene	15	מא.
Vinyl Chloride	50	ND	Dibromochloromethane	15	ND
Chloroethane	50	ND	1,1,2-Trichloroethane	15	ND,
Nethylene Chloride	50	ND	Benzene	25	ND:
Acetone	50	ND	Trans-1,3-Dichloropropene	5_	ND.
Carbon Disulfide	1.5	ND	2-Chloroathyl vinyl ather	15	ND
Trichlorofluoromethane	15	ND	Bromoform Viny1 acner		ND .
1,1-Dichloroethene	15	ND	4-Methyl-2-Pentanone	15	ND:
1,1-Dichloroethane	15	ND	2-Hexanone	50	ND
trans-1,2-Dichloroethene	15	ND	Tetrachloroethene	50	ND
Chloroform	15	ND	1,1,2,2-Tetrachloroethane	15	ND
1,2-Dichloroethane	5	ND	Toluene	15	ND 3/
2-Butanone	100	ND	Chlorobenzene	15	ND
1,1,1-Trichloroethane	15	ND	Ethylbenzene	15	ND
Carbon Tetrachloride	15	ND	Styrene	15	ND
Vinyl Acetate	50	ND	Total Xylenes	15	ND
Bromodichloromethane	15	ND	1,3-Dichlorobenzene	15	ND
1,2-Dichloropropane	15	ND	1,4-Dichlorobenzene	15	ND
cis-1,2-Dichloroethene	15	ND	1,2-Dichlorobenzene	15	ИD
· ·			- / a_madittot.obsUSSU6	15	ND:

ug/kg = parts per billion (ppb)

ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMIT

OC DATA:

Surrogate Recoveries QC LIMITS 1,2-DCA-d4.....

998 Toluene-d8..... 105% Bromofluorobenzene.....

81-117 % 95%

comments:

Richard Srna, Ph.D.

Boil'

1555 Bunke, Unit 1 = San Francisco, California 94124 = (415):647-7081 / fex (415):821-7123

CERTIFICATE

LABORATORY NO. 55691-6

CLIENT: SEMCO

DATE SAMPLED : 10/22/92 DATE ANALYZED: 10/29/92 DATE RECEIVED: 10/23/92

DATE REPORTED: 10/30/92 PROJECT NO. CONTINENTAL CAN-

5601 S.L.

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Macc Spootromotry

SAMPLE:

Ocinic curd	MDL	પ્લય/પ્રયુ	日かいからはい日	MBL	uy/ky
Chloromethane	20000	מא כ	Cis-1,3-Dichloropropene		
Bromomethane	20000		Trichloroethene	6000	מא
Vinyl Chloride	20000		Dibromochloromethane	6000	ND
Chloroethane	20000		1,1,2-Trichlorosthane	6000	ND .
Methylene Chloride	20001		Bennene	6000	ND
Acetone	20000		Trans-1,3-Dichleropropene	3000	Nn
Carbon Disulfide	6000	ND	2-Chloroethyl vinyl ether	6000	ND.
Trichlorofluoromethane	6000	שא	Bromoform	6000	ND
1,1-Dichloroethene	6000	ND	4-Methy1-2-Pentanone	6000	ND
1,1-Dichloroethane	6000	ND	2-Hexanone	20000	
trans-1,2-Dichloroethene	6000	ND	Tetrachloroethene	20000	
Chloroform	6000	ND	1 1 2 Summaria Language	6000	ND
1,2-Dichloroethane	2000	ND	1,1,2,2-Tetrachloroethane Toluene		ND
.2-Butanone	40000	ND	Chlorobenzene	WIND THE PERSON NAMED IN	ELLINE D
1,1,1-Trichloroethane	6000	ND	Ethylbenzene	6000	ND
Carbon Tetrachloride	6000	ND	Styrene	6000	14
Vinyl Acetate	20000	•	Total Xylenes	5000	ND
Bromodichloromethane	6000	ND	1 3 NASTRULE	6000	
1,3=Dichloropropano	6000	ND	1,3-Dichlorobenzene	6000	ND
cis-1,2-Dichloroethene	6000	ND	· · · · · · · · · · · · · · · · · · ·	6000	ND
	***	1111	1,2-Dichlorobenzene	6000	ND

ug/kg = parts per billion (ppb)
ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMI QC DATA:

Surrogate Recoveries		QC LIMITS
1,2-DCA-d4 Toluene-d8 Bromofluorobenzene	3 A A B	soil 70-121 & 81-117 & 74-121 &

comments:

Richard Srna, Ph.D.

1555 Burke, Unit I . San Francisco, California 94124. . (415) 647-2081 // fax (415) 821-7123

GERTTFIGATE OF ANALYSTS

LABORATORY NO.: 55691

CLIENT: SEMCO

CLIENT JOB NO.: CONTINENTAL CAN 5601 S.L.

3

DATE RECEIVED: 10/23/92 DATE REPORTED: 10/30/92

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

LAB	Consentration (mg/kg) Ethyl			
# Sample Identification	Benzene Toluene Benzene Xylenes			
4 #4-1K-9'6" 7 #7-5K-NE-11' 8 #8-5K-NW-11' 9 #9-5K-8-11'	ND<.15 2.5 2.9 28 ND<.003 0.028 ND<.003 ND<.003 ND<.30 ND<.30 2.4 1.8 ND<.003 0.030 ND<.003 ND<.003			

wg/kg - parts per million (ppm)

Method Detection Limit in Soil: 0.003 mg/kg

QAQC Summary:

Daily Standard run at 20ug/L: *Diff 8020 = <15% MS/MSD Average Recovery = 84%: Duplicate RPD = 2%

Richard Srna, Ph.D.

Laboratory Manager

1555 Burke, Unit 1 • San Francisco, California 94124 • [415] 647 2081 / Tax (415) 821-7123

CERTIFICATE OF

LABORATORY NO.: 55691

CLIENT: SEMCO

CLIENT JOB NO.: CONTINENTAL CAN 5601 S.I

DATE RECEIVED: 10/23/92 DATE REPORTED: 10/30/92

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB	Sample Identification	Concentration (mg/kg)	
2 3 7 8 9	#2-12K-W-10'6" #3-12K-E-10'6" #7-5K-NE-11' #8-5K-NW-11' #9-5K-S-11'	ND<10	18E

* Does not match typical Diesel pattern. mg/kg - parts per million (ppm)

Minimum Detection Limit for Diesel in Soil: 10mg/kg

QAQC Summary:

Daily Standard run at 200mg/L: %DIFF Diesel = <15% MS/MSD Average Recovery = 104%: Duplicate RPD =

TO 4212544 SUPERIOR LAB

JANK REMOVAC REJULTS

Superior Precision Analytical, Inc.

1555 Burke, Unit I = San Francisco, California 94174 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO. 55691-5

CLIENT: SEMCO

DATE SAMPLED: 10/22/92

DATE ANALYZED: 11/02/92

- DATE RECEIVED: 10/23/92

DATE REPORTED: 11/03/92 ··

PROJECT NO. CONTINENTAL CAN-

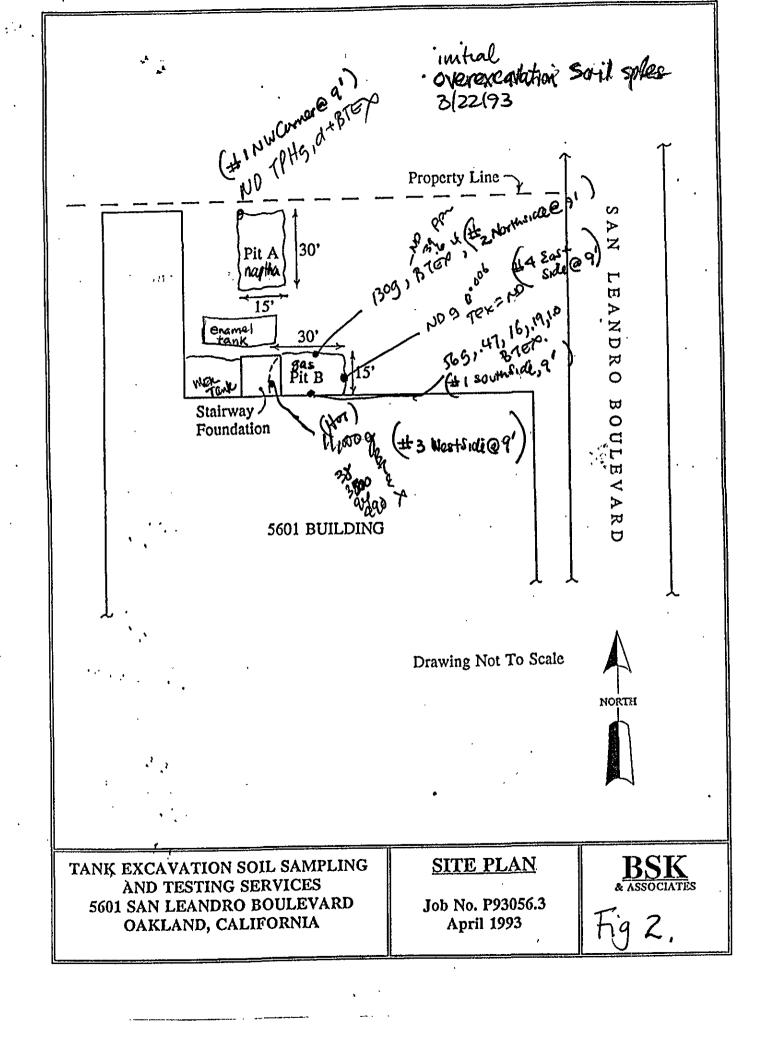
5601 S.L.

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Mass Spectrometry

SAMPLE: #5-3K-W-10!

٠	Compound	MDL	ug/kg	Compound	MDL	ug/kg
				Alle state dely described unto many supplier.		
	Chloromethane	2000	ND	Cis-1,3-Dichloropropene	600	ND
	Bromomethane	2000	ND	Trichloroethene	600	ND
	Vinyl Chloride	2000	ND	Dibromochloromethane	600	ND
	Chloroethane	2000	ND	1,1,2-Trichloroethane	600	ND
	Methylene Chloride	2000	ND	Benzene	200	ND
	Acetone	2000	ND	Trans-1,3-Dichloropropene	600	ND
	Carbon Disulfide	600	ND:	2-Chloroethyl vinyl ether	600	ND
	Trichlorofluoromethane	600	ND	Bromoform	600	ND
Į	1,1-Dichloroethene	600	ND	4-Methyl-2-Pentanone	2000	ND
	1,1-Dichloroethane	600	ИD	2-Hexanone	2000	ND
	trans-1,2-Dichloroethene	600	ND	Tetrachloroethene	600	ND
٠	Chloroform	600	ND	1,1,2,2-Tetrachloroethane	600	ND
	1,2-Dichloroethane	200	ND	Toluene	600	14000
	2-Butanone	4000	(36000)	Chlorobenzena	600	ND
	1,1,1-Trichloroethane	600	ND	Ethylbenzens	600	ND
	Carbon Tetrachloride	600	ND	Styrene	600	מא
	Vinyl Acetate	2000	ND	Total Xylenes	600	ND
	Bromodichloromethane	600	ND	1,3-Dichlorobenzene	600	ND
	1,2-Dichloropropane	600	ИD	1,4-Dichlorobenzene	600	ND
	cis-1,2-Dichloroethene	600	ND	1,2-Dichlorobenzene	600	ND
:	•					

ug/kg = parts per billion (ppb)


ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMIT

QC DATA:

comments:

Richard Srna, Ph.D.

Dun A-Nwoman Laboratory Director

Environmental Services

BSK-Pleasanton

Pamco

Date Sampled : 03/22/93

Time Sampled : 0915

Date Received : 03/24/93 Date of Analysis : 03/29/93

Report Issue Date: 03/30/93

Case Number

: Ch930776

Lab ID Number

: 0776-1

Sample Type: SOLID

Project Number

: P93056.3

Sample Description: Pit A, #1 NW Corner @ 9'

Analyses for Total Petroleum Hydrocarbons as Diesel [TPH(D)] by Method DHS GC/FID

Results Reported in Milligrams per Kilogram (mg/kg)

Analyte	Results	DLR
TPH(D)	ND	1.0

Sample DLR = DLR x DLR Multiplier,

DLR Multiplier = 1

DLR: Detection Limit for the Purposes of Reporting.
 Exceptional sample conditions or matrix interferences may result in higher detection limits.

ND: None Detected

- * This sample contains lower molecular weight hydrocarbons.
- ** This sample contains higher molecular weight hydrocarbons.
- ***-This sample contains both higher and lower molecular weight hydrocarbons.

Cynthia Pigman, QA/QC Supervisor

Jeffrey Creager, Organics Manager

BSK-Pleasanton Pamco

Date Sampled : 03/22/93

Time Sampled

: 0915 Date Received 1 : 03/24/93 Date of Analysis: 03/26/93

Report Issue Date: 03/30/93

Case Number : Ch930776 Lab ID Number

Sample Type: SOLID

: 0776-1 Project Number

: P93056.3

Sample Description: Pit A, #1 NW Corner @ 9'

1

Analyses for BTEX by EPA Method 8020 and TPH (G) by EPA Method 8015

Results Reported in Milligrams per Kilogram (mg/kg)

Compound	Results	DLR
Benzene Toluene Ethylbenzene Total Xylene Isomers Total Petroleum Hydrocarbons (G)	ND ND ND ND ND	0.005 0.005 0.005 0.005

Sample DLR = DLR x DLR Multiplier,

DLR Multiplier = 1

DLR: Detection Limit for the Purposes of Reporting. Exceptional sample conditions or matrix interferences

may result in higher detection limits.

ND: None Detected

Cynthia Pigman, QA/QC Supervisor 106 BTPS.t

Creager, Organics Manager

BSK-Pleasanton Pamco

Date Sampled : 03/22/93

Time Sampled : 0930

Date Received : 03/24/93 Date of Analysis : 03/26/93

Report Issue Date: 03/30/93

Case Number : Ch930776
Lab ID Number : 0776-2

Sample Type: SOLID

Project Number : P93056.3

Sample Description: Pit B, #1 South Side @ 9'

Analyses for BTEX by EPA Method 8020 and TPH (G) by EPA Method 8015

Results Reported in Milligrams per Kilogram (mg/kg)

Compound	Results	DLR
Benzene Toluene Ethylbenzene Total Xylene Isomers Total Petroleum Hydrocarbons (G)	0.47 16 0.19 1.0 56	0.005 0.005 0.005 0.005

Sample DLR = DLR x DLR Multiplier,

DLR Multiplier = 25

DLR: Detection Limit for the Purposes of Reporting.

Exceptional sample conditions or matrix interferences
may result in higher detection limits.

ND: None Detected

Cynthia Pigman, QA/QC Supervisor

Jeffrey Creager, Organics Managor

BSK-Pleasanton Pamco

Date Sampled : 03/22/93

Time Sampled : 0940

Date Received : 03/24/93 Date of Analysis : 03/26/93

Report Issue Date: 03/30/93

Case Number

: Ch930776

Lab ID Number

: 0776-3

Project Number

: P93056.3

Sample Type: SOLID

Sample Description: Pit B, #2 North Side @ 9'

Analyses for BTEX by EPA Method 8020 and TPH (G) by EPA Method 8015

Results Reported in Milligrams per Kilogram (mg/kg)

Compound	Results	DLR
Benzene Toluene Ethylbenzene Total Xylene Isomers Total Petroleum Hydrocarbons (G)	ND 39 0.6 4.0 130	0.005 0.005 0.005 0.005

Sample DLR = DLR x DLR Multiplier,

DLR Multiplier = 100

DLR: Detection Limit for the Purposes of Reporting. Exceptional sample conditions or matrix interferences may result in higher detection limits. ND: None Detected

6 BTPS.t

BSK-Pleasanton

Pamco

Date Sampled : 03/22/93

Time Sampled : 0950

Date Received : 03/24/93

Date of Analysis : 03/26/93 Report Issue Date: 03/30/93

Case Number Lab ID Number

: Ch930776

: 0776-4

Sample Type: SOLID

Project Number

: P93056.3

Sample Description: Pit B, #3 West Side @ 9'

Analyses for BTEX by EPA Method 8020 and TPH (G) by EPA Method 8015

Results Reported in Milligrams per Kilogram (mg/kg)

Compound	Results	DLR
Benzene Toluene Ethylbenzene Total Xylene Isomers Total Petroleum Hydrocarbons (G)	38 3500 94 490 11000	0.005 0.005 0.005 0.005

Sample DLR = DLR x DLR Multiplier,

DLR Multiplier = 500

DLR: Detection Limit for the Purposes of Reporting. Exceptional sample conditions or matrix interferences may result in higher detection limits.

ND: None Detected

nthia Pigman, QA/QC Supervisor BTPS.t

Creager, Organics Manager

BSK-Pleasanton Pamco

Date Sampled : 03/22/93

Time Sampled : 1030

Date Received : 03/24/93

Date of Analysis: 03/26/93 Report Issue Date: 03/30/93

Case Number

: Ch930776

: 0776-5

Sample Type: SOLID.

Lab ID Number Project Number

: P93056.3

Sample Description: Pit B, #4 East Side @ 9'

Analyses for BTEX by EPA Method 8020 and TPH (G) by EPA Method 8015

Results Reported in Milligrams per Kilogram (mg/kg)

Compound	Results	DLR
Benzene Toluene Ethylbenzene Total Xylene Isomers Total Petroleum Hydrocarbons (G)	0.006 ND ND ND ND	0.005 0.005 0.005 0.005

Sample DLR = DLR x DLR Multiplier,

DLR Multiplier = 1

DLR: Detection Limit for the Purposes of Reporting.

Exceptional sample conditions or matrix interferences
may result in higher detection limits.

ND: None Detected

thia Pigman, QA/QC Supervisor

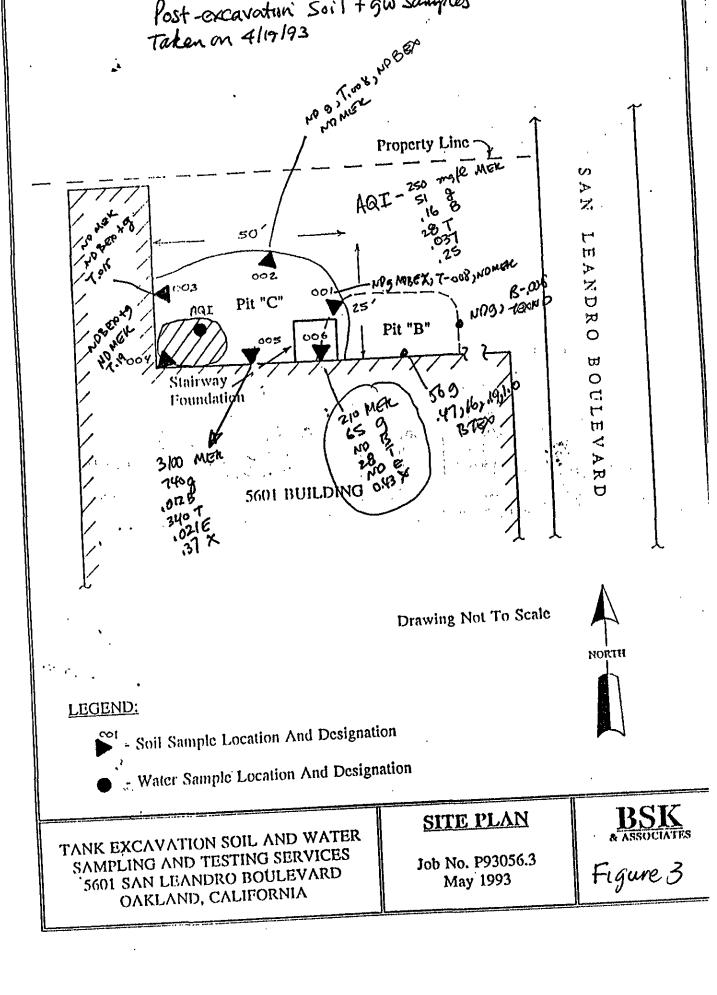
Jeffrey Creager, Organics Manager

shone (209) 485-8310 • Fax (209) 485-7477

1414 Stanislaus Street Fresno, California 93706 elephone (209) 485-8310 • Fax (209) 485-7427

Chemical Laboratories

& Associates


Type: AQ-Aqueous SL-Sludge SO-Soil PE-Petroleum OT-Other

Seals: P-Present A-Absent B-Broken

DISTRIBUTION: WHITE, CANARY - LABORATORY PINK - ORIGINATOR

Samples are discarded 14 days after results are reported unless other arrangements are made.

Hazardous samples will be returned to client or disposed of at client expense.

Tank Excavation Soil and Water Sampling and Testing Services Continental Can Tanks
5601 San Leandro Boulevard Oakland, California

BSK Job No. P93056.3 May 24, 1993 Page 2

TABLE 1: SOIL RESULTS

(Results in ppm - parts per million)

		(ONSTI	TUENT	S	
SAMPLE LOCATION	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES	TPH as GASOLINE	МЕК
001, W. Wall	CIN	0.008	ND	ND	ND	ND
002, N. Wall	ND	0.008	ND	ND	ND	ND
003, E. Wall	ND	0.015	ND	ND	ND	ND
004, SW Corner	ND	0.19	ND	ND	ND	ND
005, S. Wall	0.012	340	0.021	. 5.4 0.37 % % [a	740	22.3100 M
006, S. Wail	ND	28	ÑD	0.43	65	210

ND - None Detected

TABLE 2: WATER RESULTS (Results in ppb - parts per billion)

			CONST	ITUENTS		
SAMPLE LOCATION	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES	TPH as GASOLINE	MEK
(Action Level)	(1)	(100)	(680)	(1750)	(NA)	(30)
AQI	160	28,000	37	250	51,000	250,000

Action Levels are those of the California Department of Health Services Drinking Water Standards, 1991, and the California Health Services Drinking Water Action Levels, 1992)

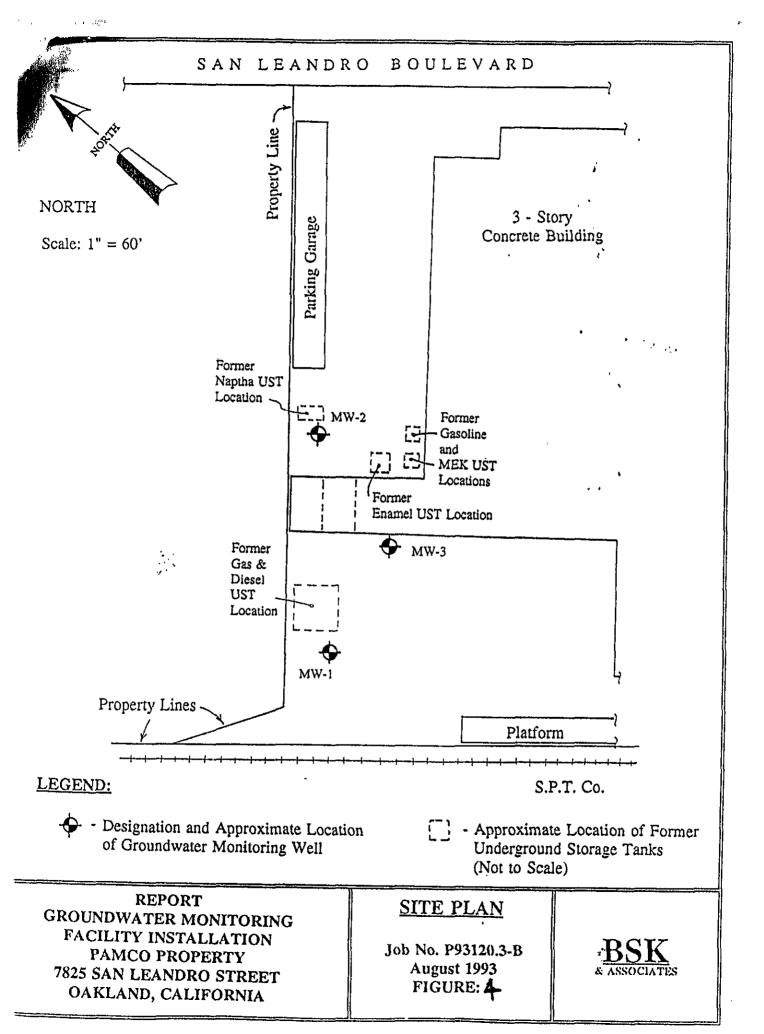
The Chemical Test Data Sheets are included with this letter, as are the Chain-Of-Custody document and Site Plan.

BSK Log Number	1048
-	

ANALYSIS REQUEST/CHAIN OF CUSTODY RECORD

			¥°	١.
1	0	n	n	7
ı	v	v	v	

Client Nar	ne				Project of	- 80 4												•	
	PACIFIC	CAME	EUCAN GROUP		Project	P93	056.	3	1,25	Use On	. L			Ana	lysis rec	uired			•
Address	11210	RIARI	30 LANE #300		Phone #	462	4000		in th	ri s	\ &	8	Ι,		/ ·			$\int_{-\infty}^{\infty}$	
City, State	PLEAS	SANTA	ON CA 94566	Report,	attention ALEX ESK	ANDA	n i	-	1		4							/ ×	
Date	Time	Туре	Sampled by			Number	Lab	Sample	.			\ !\!	/ ,	Ι,	/ .			1/ 2	092
sampled	sampled	(See ke		ample descripti	on	of containers	Sample											<u> 7/2</u>	<i>j-</i> /5
4/KI	0920	€0	COV W WALL	11.5	(FROM BLCKET)	1.	1	70	X	/ x	/×	7		/ 	\leftarrow		<u> </u>	Rema	ings
4/1	E9728	Sc	 	*	(AROM BLEKET)	1	2	1 1	×	×	×		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-	 	-		
4/19	0935	50	003/EWALL			1	3		×	×	X					_			
4/19	0945	\$	004/SE CO			1	1		X	×	×	,		 	 	\vdash	-		
4/19	loco	So		Le11.		+	1/2		×	×	×				-			•	
4/19	1010	So	CG/S WALL			1	6	D	X	×	×					_	·		···
	<u> </u>		3			† • •	-	-		 ^	_					_			
4/19	1045	AQ	POND IN EX	CAVATIC	N AQI	2	7	P	×	ኦ	×						HANDSA	upted 11	STO CLIEN
	· · · · ·									ļ									
 					NOTICE: No samples		T	without a	an auti	norized	signatu	ıre in t	his sec	tion.					
these pro	eby requesting ocedures are g arge for this se	generally (formal Chain-of-Custody Proconsistent with those outline	ocedures for the discussion of	ne above samples. I unde E.P.A. SW 846 and that t	rstand that here is no	the: mer	se proced	wes an	a deveta	illy consi	istentwi ere is a	th those charge	e outlin	ed in U.	S. EPA	e above sampl Contract Laborder or \$5.00 a	ratory Programs	ram State.
			. Бу	Authorized	Signature		1					E	y:			Autho	orized Signatur	9	
<u> </u>		Signatu	<u>-</u>	 ,	Print Name				/			Compar	ny	,			۱ ·	Date	Time
Relinquishe	d by	CERT		1 6D K	EECH .	· · · · · · · · · · · · · · · · · · ·		35	K/F	LEAS	SANT	ON					4/	20	0800
Received by	<u>y</u> J.	<u>U.</u>	Ver	7.1	1. VB4			381	<u> </u>				<u></u>				4/2	0/3	1600
Relinquishe	d by												_				/ -		-
Received by	y						. :												
Relinquished	d by					<u> </u>													<u> </u>
Received by	<u> </u>						r į												=


Chemical Laboratories

1414 Stanislaus Street Fresno, California 93706

KEY: Type: AQ-Aqueous SL-Sludge SO-Soil PE-Petroleum OT-Other Seals: P-Present A-Absent B-Broken

DISTRIBUTION: WHITE, CANARY - LABORATORY PINK - ORIGINATOR

Samples are discarded 14 days after results are reported unless other arrangements are made. Hazarringe earnolog will be returned to client or disposed of at allest assessed

TABLE 2A - WATER RESULTS

BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES Results in Parts Per Billion (ppb)

		CONSTI	TUENTS	
Sample Location (Action Level)	Benzene (1) ₁	Toluene (100) ₂	Ethylbenzene (680)	Xylenes
MW-1	79	ND	ND	0.7
MW-2	380	500,000	17	0.7
MW-3	16	ND	ND	69 ND

ND - None Detected

- California Department Of Health Services Drinking Water Standard, Revised 10/23/91

- California DOHS Action Level, 7/1/92

TABLE 2B - WATER RESULTS

TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE AND DIESEL, TOTAL LEAD, AND VOLATILE ORGANIC COMPOUNDS

Results in Parts Per Billion (ppb)

	Talah sa Jawa sa Sa Marana Talah sa Jawa sa Sa Marana	To a second	ONSTI	ruents
Sample Location (Action Level)	TPH Gasoline (NA)	TPH Diesel (NA)	Total Lead (50)	Volatile Organics (Determined by Compound)
MW-1	1,100	ND	ND	, , , , , , , , , , , , , , , , , , ,
MW-2	720,000	150	~-	
MW-3	450	ND		Vinyl Chloride(0.5) - 5.0 1,1-Dichloroethene(6) - 2.3 Trans 1,2-Dichloroethene(10) - 52 Cis 1,2 Dichoroethene(6) - 89 Benzene(1) - 24 Trichloroethene(5) - 150 Tetrachloroethene(5) - 72

ND - None Detected

- Not Tested

- California Department of Health Services Drinking Water Standards, Revised 10/23/91.

- EPA Drinking Water Standard, Revised 7/1/92

Samples were submitted to the laboratory with Chain-Of-Custody documentation and procedures.

The results of the chemical analyses of soil and groundwater are summarized in the following two tables: Table 1 - Soil Results, and Table 2 - Water Results. Soil results are reported in Parts Per Million-PPM (mg/kg); water results are reported in Parts Per Billion-PPB (ug/l).

TABLE 1A - SOIL RESULTS

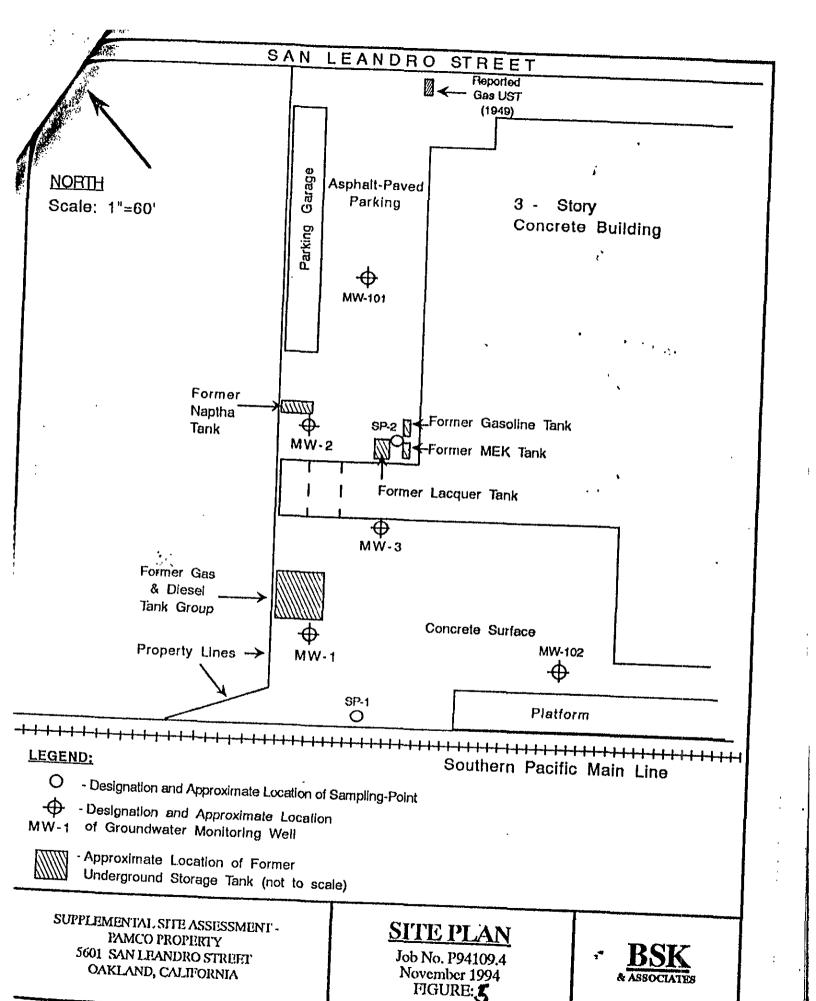
BENZENE, TOLUENE, ETHYLBENZENE AND XYLENES Results in Parts Per Million (ppm)

		CONSTI	TUENTS	
Sample Location	Benzene	Toluene	Ethylbenzene	I The Committee of the
MW-1 at 11'	ND	ND	ND	ND
MW-2 at 19'	ND	650	ND	ND
MW-3 at 6'	ND	ND	ND	ND
MW-3 at 10'	ND	ND	ND	ND

ND - None Detected

TABLE 1B - SOIL RESULTS

TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE AND DIESEL, TOTAL LEAD, AND VOLATILE ORGANIC COMPOUNDS


Results in Parts Per Million (ppm)

		/almost al	1 toluene	u <i>)</i>
		/ co	NSTITUE	NIS
Sample Location	TPH Gasoline	TPH Diesel	Total Lead	Volatile Organics
MW-1 at 11'	ND /	ND	5.4	
MW-2 at 19'	680	4.8		
. MW-3 at 6'	ND	ND		Acetone - 0.022
MW-3 at 10'	ND	ND		ND

ND - None Detected

-- - Not Tested

TABLE 1 - SOIL RESULTS

BTEX, TPH 25 GAS and DIESEL, VOLATILE ORGANICS AND VOLATILE HALOCARBONS

SAMPLE LOCATION:	Benzene		2002-07-2005-08-08-08-08-08-08-08-08-08-08-08-08-08-			UENTS			
. SP-1 @ 3.5'		1	Ethylbenzene	Xylenes	TPH-Gas	TPH-Diesel	Oil & Grease	EPA 601/602	EDA ONIC
SP-1 @ 9'	0.17	0.76	0.10	0.46	26*	12	520	a	S. rit W 0015
			<u> </u>						-
MW-101-@ 10'	ND .	ND	ND .	ND	ND	NTO .		ND	ND
MW-102 @ 8'	ND	ND	ND	ND	ND	ND	ND		ND

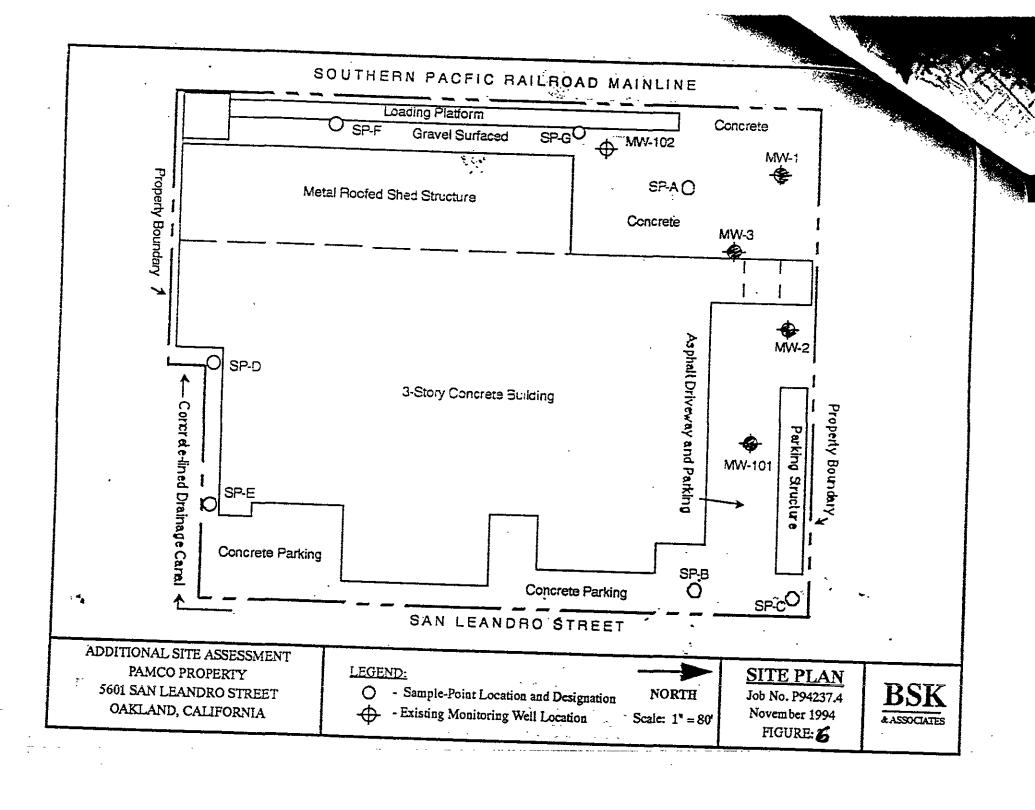
Chromatography is inconsistent with the Gasoline Standard, see Appendix A, Figure A-1

TABLE 2 - WATER RESULTS

BTEX, TOTAL PETROLEUM HYDROCARBONS, VOLATILE ORGANICS AND VOLATILE HALOCARBONS

SAMPLE DATE: 9/22/94					CON	STITU	ENTS		
SAMPLE LOCATION	Benzene (1)	Toluene (100 ₁)	Ethylbenzene (680)	Xylenes (1750)	TPH-Gas (NA)	TPH-Diesel (100 ₂)		EPA 602 (Compound	EPA 801:
SP-1	ND	0.8	1.3	1.6	190			Specific)	Specific)
SP-2	0.7	ND	ND		180	ND	1,2-Dichloroethane - 1.7(0.5)	ND	ND
MW-101			ND	ND	ND	ND	cis-1,2-Dichloroethene - 2.3(6)	ND	
	29	25,000	40	170	3200	110		——————————————————————————————————————	ND
MW-102	ND	ND	ND	ND			1,2-Dichloroethane - 0.6(0.5)		ND
- None Detecte				TAD	ND	ND	Chioromethane - 0.6(NA)		ND

Not Tested


NA -None Available

Primary Drinking Water Standard, California Department of Health Services, 10/23/91 *_ 1 -

Action Level, CaDHS, 7/1/92

EPA Suggested No Adverse Response Level (SNARL), 1980 2 -

TABLE 1A - SOIL RESULTS

ORGANIC COMPOUNDS (mg/kg)

				.≟.œo	NSTLT	UENTS			
SAMPLE LOCATION	Benzene:	Toluéne	Ethylbenzene	Xylenes		On the Section Control of the Contro	Oil & Grease	EPA 601	EPA 8015(M)
SP-A @ 6'		-	***		-	••		ND	ND
SP-B @ 13'	ND	ND	ND	ND	ND	**			
SP-C @ 9.5'	ND	ND	ND	ND	ND	••		ND	
SP-D @ 12.5'	ND	ND	ND	ND	ND	ND	. ND	ND	_
SP-E @ 10°			_				-	· ND	ND
SP-F @ 3*	ND	ND	ND	ND	ND	ND	ND	ND	ND
SP-G @ 3.5°	ND	ND	ND	ND	ND	ND	ND	ND	ND

(M) - Suite of non-routine compounds specific to the Site.

-- - Not Tested

TABLE 1B- SOIL RESULTS

INORGANICS (mg/kg)

		CONS	TITUE	NTS-	
SAMPLE LOCATION: (Action Ervel.)	Cadmium (100)	Chromum (2500)	Lead	Nickel (2000)	Zinc. (5000)
SP-D @ 12.5'	ND	62 -	14	78	45

1 - Total Threshold Limit Concentration (TTLC) for classification as hazardous waste, California.

TABLE 2A - WATER RESULTS

ORGANIC COMPOUNDS (µg/l)

								The second secon	ndo Journal of State of the Sta	
					# C 0	N. S. E. (Action I	PT-U-E evel* - PPE	NTS PETT		
SAMPLE LOCATION	Benzene	Toluene	Ethylbenzene (680)	Xylenes (1750)	TPH- Gas. (NA)	TPH- Diesel (100 ₅)	Oil & Grease (NA)	EPA 601 (Compound Specific)	EPA 8015 (Compound Specific)	EPA 8015M (Compound Specific)
SP-A	-		-	-	-	-	-	cis-1,2-Dichloroethene - 6.7(6.0) vinyl chloride - 14(0.5)		ND
SP-B	ND	ND	ND	ND	ND		_			<u></u>
SP-C	ND	ND	ND	ND	ND			ND		
SP-D	ND	ND	ND	ND	ND	ND	110.000	ND		<u>-</u>
SP-E								ND	ND	
<u> </u>	 	ND	ND	ND	ND	ND	ND	ND		ND
SP-F SP-G	ND ND	ND	ND	ND	ND	ND	3,000	ND		ND

None Detected ND -

Not Tested

None Available NA -

Primary Drinking Water Standard, California Department of Health Services, 10/23/91 Action Level, CaDHS, 7/1/92 EPA Suggested No Adverse Response Level (SNARL), 1980 Suite of non-routine compounds specific to the Site

2 -

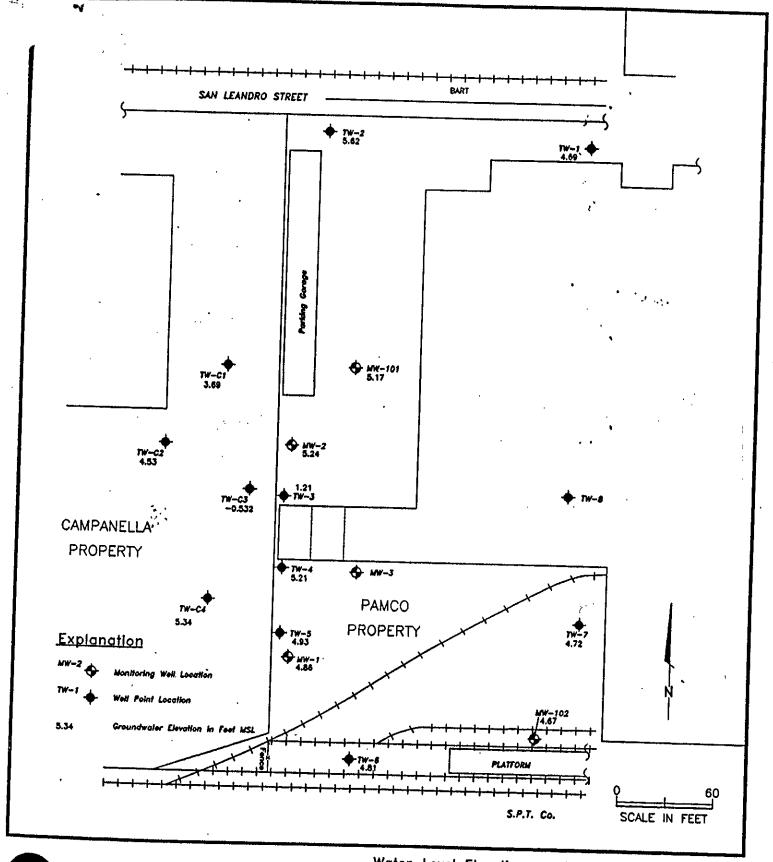

(M) -

TABLE 1B- WATER RESULTS

INORGANICS (µg/l)

		CONS	TITUE	N'TSI	
SAMPLE LOCATION:	Cadminin	Chromium (50)	Lead. (50)	Nickel (NA)	Zinc (5000 ₂)
SP-D	ND	200	ND	100	100

1 - California Department of Health Primary Drinking Water Standard 2 - California Department of Health Secondary Drinking Water Standard

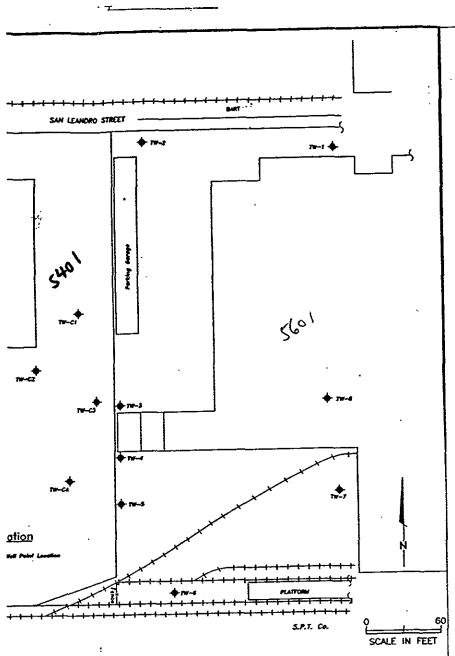
52

PES Environmental, Inc. Engineering & Environmental Services Water-Level Elevations - April 26, 1996 Off-site Groundwater Evaluation 5401 San Leandro Street Oakland, California

3

125.0502.001

JOB NUMBER


020010Z9.DWG

DRAWING NUMBER

REVIEWED BY

6/96

DATE

	Results 5	n mg/L	_				Re	sulfa in u	o/L				_		
	TPH-G	TPH-D	Senzene	Toluene	Eltryl Benzene	M & P- xylene	0-xylene	1,1-DCE	1.1-DCA	cia- 1,2-DCE	trans- 1,2-DCE	1,2-0CA	TCE	PCE	Vinyi Civiori
TW-1	S,	-											_		
4/3/96	<0.05	NA	<0.50	<0.50	<0.50	<0.50	<0.50	18.0	2.84	2.32	0.735	<0.50	4.63	71.1	<0.
TW-2	1								<u>'</u>						•
4/3/96	<0.05	NA	<0.05	<0.50	<0.50	<0.50	<0.50	0.535	<0.50	<0.50	<0.50	<0.50	3.49	<0.50	<0.
7₩-3				<u> </u>											
	-587	NA.	12.6	3.50	<0.50	.637	.626	2.67	<0.50	1,640	117	8.04	484	1.06	70
4/3/96						-									
TW-4						1 .0.55	1 0.00	<0.50	<0.50	34.6	2.37	1.17	2 49	<0.50	2.3
4/3/96	3.01	NA.	14.7	1.21	1.73	<0.50	2.67	₹0.50	(0,50	- 34.6	2.31			(0.50	1
TW-5															
4/3/96	<0.05	NA.	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.
		<u> </u>			<u> </u>			-							
TW-6		NA.	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	3.33	1.51	<0.50	44.7	105	<0
4/3/96	<0.05	1 100	10.50	1 10-20	1 (0.00	1	1		<u> </u>		·	^			
TW-7					·		1 -2 -2	10.50	<0.50	<0.50	<0.50	₹0.50	<0.50	<0.50	T <0
4/3/96	<0.05	NA.	<0.50	<0.50	<0.50	₹0.50	<0.50	<0.50	1 (0.50	1 (0.50	1 (0.50	10.50	1 (0.50	140.55	1
TW-8								T	1 -0.50	T -0.50	i <0.50	<0.50	₹0.50	₹0.50	7 <0
4/3/96	<0.05	NA.	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1 (0.50	1 (0.30	1.0.30	10.50	1 ~~
TW-C1													_		
4/3/96(BP)	<0.05	I NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		
4/3/96(0F) 4/3/96	<0.05			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0 <0
4/3/80	1	1	1							•					
TW-C2	. <u></u>			1		7 4 4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	~ 0
4/3/96(BP)					1	0.628		<0.50	<0.50		<0.50	-	<0.50		
4/3/96	<0.05	NA NA	<0.50	1.2	<0.50	1 0.020	10.50	(0.50	1 40.00	1	1	٠			
TW-C3								_					,		
4/3/96(80)	<0.05	NA NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50			<0.50	<0.50	<0.5		
4/3/96	<0.05	N/A	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.5	0 <0.5	0 <0
TW-C4													_		
	<0.05	i NA	2.29	1.22	<0.50	0.668	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.5		
4/3/96(8P) 4/3/96	<0.05	1		<0.50	-				<0.50	<0.50	<0.50	<0.50	<0.5	0 <0.5	0 <0

Note:

NA = Not Analyzed

<0.05 = concentration less than detection limit.

1,1-DCE = 1,1-Dichloroethene

1,1-DCA = 1,1-Dichloroethane

cis-1,2-DCE = cis-1,2-Dichloroethene

trans-1,2-DCE = trans-1,2-Dichloroethene

1,2-DCA - 1,2-Dichloroethane

TCE = Trichloroethene

PCE = Tetrachloroethene

PC = Sample triken before Standard Protocol Proto

BP = Sample taken before Standard Protocol Presample Purging Event

fm8240 results

	Results	In made	- 1/				<u> </u>						^	_	_	
	100		-			·		sulls in A	19/L			B2-	52	·B2	. A	C
	TPH-G	TPHD	Benzene	Toluene	Ethyi Benzene	M & P- xylene	0-xylen	1,1-DCE	1,1~DCA	ois- 1,2-DCE	trans— 1,2—DCE	1,2-DCA	TCE	PCE	Vinyl Chloride	
17V21								6	5	6	10	0.5	5	5	.5	On seas
6/13/95	<0.05	<0.05	<0.05	<0.50	<0.50	<0.50	<0.50	8.68	5 22	(2)[5]	<0.50		5 23	- シ 	<1.00	80,743 (<0.50
TW-2				_							····	minima de	iiii inkaalali	ામાં તેના મુક્	<u> </u>	(0.50
6/13/95	<0.05	<0.05	<0.05	<0.50	<0.50	<0.50	<0.50	0,678	<0.50	<0.50	<0.50	<0.50	4.06	-0 F0		
TW-3		H4 T 3	ATT. 10				<u></u>				10.00	70.00	litint sales	20.50	<1.00	<0.50
6/13/95			(00)	17,000	<5.00	192	16.7	2.66	<0.50	15(4)	174411		HI FOR	HEVER	107	<0.50
TW4			?			_						, ,,,,,,	8118181818	niminanik		70,50
6/13/95	1111113129	2.2	76	25 (4	233	145	87.5	0.528	<0.50	likurcaran	HINGH WEEK	Historie pre	Budie	Propries	DDDDP-SDREADS	
TW-5							and the same	Hittories control		22/53	iiliiiliooialiilii			MIDAN	264	<0.50
6/13/95	<0.05	051441	0 877	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	10.50					
TW-6						- 10.00	10.00	10.00	10.50	VO.50	<0.50	<0.50	<0.50	<0.50	<1.00	<0.50
8/13/95	<0.05	071241	08721	<0.50	<0.50	<0.50	10 FO T								•	,
TW-7		<u> </u>	anarean sections	12,20	70.50	CO.SO [<0.50	<0.50	<0.50	<0.50	E CONTRACTOR IN	0.608	3 8	219	<1.00	<0.50
3/13/95	<0.05	0.07441	<0.50	<0.50	<0.50	<0.50	<0.50	40.50	10.70			•				
ſW-8	` .				10.00	10.00	20,50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.00	<0.50
3/13/95	<0.05	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-0 FO I			·		
₩ ~ 1		-			··		10.00	10.00	10.00	20.50	<0.50	<0.50	<0.50	<0.50	<1.00	<0.50
/13/95	0/44/	01.113.11	11.574	<0.50	<0.50	<0.50	- A - A - I									
4W-2				10.00	70.00	<u> </u>	<0.50	<0.50	<0.50	32.5	15.2			3 (0.696	<0.50
		averani.	HHATVARIUM	eresseren in	12222244 4432432 51							• •				
		र् <u>वधक्तताः। श</u>		63.77.7.	ili Kalda		21.6	<0.50	<0.50	2.1	<0.50	<0.50	01584壁。	<0.50		21076
(W-3	Elegebrases ico	ecctorposagaga we	***********											<u></u>	annamma e	manana.
	0.168			<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	363	สาอเร	<0.50	5.53	(0.50 f	(5,08)	40.50]
(W~101	***************************************		3								annuncus		ilmitanii	-0.00 p	XX MAJA	<0.50
/13/95	142	NA B	4,45	K-ALI	251	20.8	9.92	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	(O E O	-4 65 T	
W-102												10,00	VO.50	0.50	<1.00	<0.50
13/95	NA	NA -	<0.50 <	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	40 FO	****			
		-			<u></u>				10.00	\0.50	20.50	<0.50	<0.50	0.50	<1.00	<0.50

Assumptions:

- 1) Sig(T) release MW-2 prob tank ze or piping 2) higher (3) m Tw-4, source ?, also ci MW2
- DCE = 1.1-Dichloroethene
 DCA = 1.1-Dichloroethene
 DCA = 1.1-Dichloroethene
 3) gradient is southerly
 1.2-DCE = cis-1.2-Dichloroethene
 3-1.2-DCE = trans-1.2-Dichloroethene
 4) Several Sources of PCE Tw-1, Two-3,
 1= Dibromochloromethane
 1= Concentration below laboratories reporting limit 5) VC Significant in Tw-3.

= Trichloroethene = Tetrachloroethene

DCA = 1.1-Dichloroethene DCA = 1.1-Dichloroethene

= Not Analyzed

3;

petroleum lighter than diesel with unknown extractables pattern unknown extractables pattern

)5 = concentration less than detection limit.

Groundwater Analytical Results — June 1995 5601 San Leandro Street Oakland, California

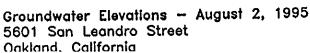


Table 3. Groundwater Analytical Results
PAMCO Site Groundwater Investigation
5601 San Leandro Street, Oakland, California

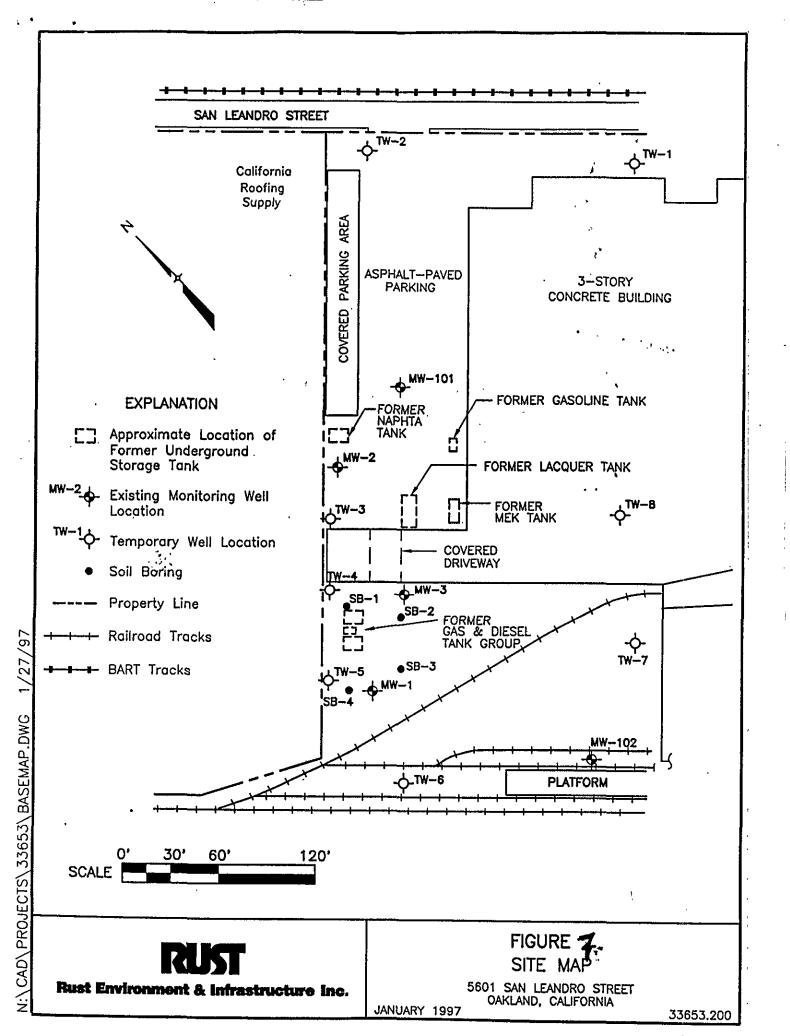

			s in mg/L					· Re	suits in mic	ograms per	liter (ug/l)				
Sample	Date	TPH	TPH	ĺ		Ethyl	Total		cis	trans				Vinyi	
Name	Sampled	as gas	as diesel	Benzene	Toluene	benzene	Xylenes	1;1-DCE	1,2-DCE	1,2-DCE	1,2-DCA	TCE	PCE	Chloride	Other
TW-1	6/13/95	<0.05	<0.05	<0.50	<0.50	<0.50	<0.50	8.68	4.15	<0.50	0.551	3.23	59.1	<1.00	1,1-DCA: 5.22
TW-2	6/13/95	< 0.05	<0.05	<0.50	<0.50	<0.50	<0.50	0.678	<0.50	<0.50	<0.50	4.06	<0.50	<1.00	
TW-3	6/13/95	20.8	0.751*	90.1	17,600	<5	35.9	2.66	514	71.1	<0.50	741	4.1	107	
TW-4	6/13/95	3.39	5.12+	765	23.4	233	212.3	0.528	47.6	4.91	4.31	4.96	0.557	2.44	
TW-5	6/13/95	<0.05	0.114+	0.877	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.00	
TW-6	6/13/95	<0.05	0.112+	<0.50	< 0.50	<0.50	<0.50	<0.50	7.13	1.76	808.0	31.8	83.9	<1.00	
TW-7	6/13/95	< 0.05	0.071+	< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.00	
TW-8	6/13/95	<0.05	<0.05	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<1.00	
MW-1	6/13/95	0.287	0.113*	1.49	<0.50	<0.50	<0.50	<0.50	42.8	15.2	<0.50	61.6	51.4	0.896	
MW-2	6/12/95	182	0.450*	54.9	123,000	27.8	100.4	<0.50	1.46	<0.50	<0.50	0.584	< 0.50	1.29	DCMB: 2.04
MW-3	6/12/95	0.165	0.136*	8.85	<0.50	<0.50	< 0.50	<5	36.3	11	<5	5.53	<5	D(5.08)	
MW-101	6/13/95	1.42	NA	4.45	8.11	2.51	30.72	0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<1.00	
MW-102	6/1 2/ 95	NA	NA	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.00	
Notes:	NA = not and <0.50 = con mg/L = milligram TPH = total p 1,1-DCE = 1, 1,1-DCA = 1,	centration les rams per liter etroleum hyd 1-Dichloroett	frocarbons nene	ted reporting	limit		trans-1,2-D0 1,2-DCA = DBCM = Di TCE = Trick PCE = Tetri	= cis-1,2-D CE = trans-1 1,2-Dichloro bromochloro nloroethene achloroethen Cancentration	,2-Dichloroe ethane methane	thene			extracta	um lighter than able pattern own extractable	diesel with unknow

TABLE 1 VOCs DETECTED IN SHALLOW SOIL SAMPLES 5601 SAN LEANDRO STREET OAKLAND, CALIFORNIA

Sample ID	Date Collected	Sample depth (Feet bgs)	EPA 8010 (μg/Kg)
SB-1-2	11/12/96	1.5-2.0	11 1,1-Dichloroethane
\$B-1-4	11/12/96	3.5-4.0	ND.
SB-1-6	11/12/96	5.5-6.0	ND
SB-2-2	11/12/96	1.5-2.0	: ND
SB-2-4	11/12/96	3.5-4.0	ND
SB-2-6	11/12/96	5.5-6.0	, ND
SB-3-2.5	11/12/96	2.0-2.5	ND
SB-3-4 ''	11/12/96	3.5-4.0	ND
SB-3-6	11/12/96	5.5-6.0	ND
SB-4-2	11/12/96	1.5-2.0	. ND
SB-4-4	1 1/12/96	3.5-4.0	ND [*]
SB-4-6	11/12/96	5.5-6.0	ND

January, 1997

Results presented in Parts Per Billion (µg/liter) (continued)

			CO	YSTITUE	NTS			
Sample Location (Action Level)	Benzene (1) ₁	Toluene (100) ₂	Ethylbenzene (680) ₁	Xylenes (1750) ₁	TPH-gas (NA)	TPH-diesel (100) ₃	Total Lead (50) ₄	Volatile Halocarbons & Organic Compounds (CS)
First Quarterly Mon	itoring - Octo	oer 1993						
MW-1	20	1.9	ND	2	940*	89**	ND	t-1,2-DCE - 86(10) c-1,2-DCE - 480(6) TCE - 590(5) PCE - 330(5)
MW-2	190	370,000	31	120	680,000*	550**		
MW-3	2.2	2.1	ND	0.4	140*	89**		t-1,2-DCE - 27(10) c-1,2-DCE -63(6) TCE - 110(5) PCE - 38(5)
Initial Well Sampling	- July 1993							
MW-1	79	ND	ND	0.7	1,100*	ND ·	ND	
MW-2	380	500,000	17	69	720,000*	150**		
MW-3	16	ND	ND	ND	450* *	ND		1,1-DCE - 2.3(6) t-1,2-DCE - 52(10) c-1,2-DCE -89(6) TCE - 150(5) PCE - 72(5) VC - 5.0(0.5)

Results presented in Parts Per Billion (μ g/liter) (continued)

n de Caracteria. La reconstanció de Caracteria			.coi	NSTITUE	NTS			
Sample Location (Action Level)	Benzene (1) ₁	Toluene (100) ₂	Ethylbenzene (680) ₁	Xylenes (1750) ₁	TPH-gas (NA)	TPH-diesel (100) ₃	Total Lead (50) ₄	Volatile Halocarbons & Organic Compounds (CS)
Fourth Quarterl	y Monitoring -	July & Septe	mber 1994		a garage			
MW-1	4.1	ND	ND	0.5	710*	ND	ND	1,2-DCA - 0.6(0.5) 1,1-DCE - 2.0(6) t-1,2-DCE - 41(10) c-1,2-DCE -76(6) TCE - 130(5) PCE - 94(5) VC - 4.3(0.5)
MW-2	75	150,000	20	83	220,000*	ND	-	
MW-3	ND	930	ND	0.8	1,000*	ND		t-1,2-DCE - 22(10) c-1,2-DCE -64(6) TCE - 59(5) PCE - 15(5) Toluene - 830(100)
MW-101	29	25,000	40	170	3,200	110	4	1,2-DCA - 0.6(0.5)
MW-102	ND	ND	ND	ND	ND	ND		Chloromethane-0.6(NA)

Results presented in Parts Per Billion (μ g/liter) (continued)

			Ç01	VSTITUE	NTS:			
Sample Location (Action Level)	Benzene (1) ₁	Toluene (100) ₂	Ethylbenzene (680) ₁	Xylenes (1750) ₁	TPH-gas (NA)	TPH-diesel (100) ₃	Total Lead (50) ₄	Volatile Halocarbons & Organic Compounds (CS)
Sixth Quarterly Mo	onitoring - Ju	ne 1995						
MW-1	6.9	ND	ND ·	ND	210	ND		t-1,2-DCE - 22(10) c-1,2-DCE - 42(6) TCE - 61(5) PCE - 56(5) VC - 1.4(0.5)
MW-2	ND	130,000	ND	ND	280,000	230		c-1,2-DCE - 5.2(6) TCE - 1.2(5) PCE - 1.6(5) VC - 4.3(0.5)
MW-3	13	ND	ND	ND	120	ND	- -	t-1,2-DCE - 10(10) c-1,2,DCE - 33(6) TCE - 5(5)
MW-101	21	510	13	46	2,900			ND
MW-102				_	<u></u>			Toluene - 4.9(100)

Results presented in Parts Per Billion (μ g/liter) (continued)

en proposition			con	ISTITUE	NTS	E agricultural de la companya de la		Sec. 1 american
Sample Location (Action Level)	Benzene (1) ₁	Toluene (100) ₂	Ethylbenzene (680),	Xylenes (1750) ₁	TPH-gas (NA)	TPH-diesel (100) ₃	Total Lead (50) ₄	Volatile Halocarbons & Organic Compounds (CS)
MW-2	, ND	68,000	ND	ND	150,000	ND		c-1,2 - DCE - 3.6(6) TCE - 1.1(5) PCE - 0.7(5) VC - 8.0(0.5)
MW-3	7.8	23	· ND	ND	- 50	ND		t-1,2-DCE - 4.4(10) c-1,2 - DCE - 276(6) TCE - 1.7(5) VC - 2.8(0.5)
MW-101	3.1	3.9	1.7	3.9	570	ND		ND
MW-102	ND	ND	ND	ND	**			ND
Eighth Quarterly Mo	onitoring - Dec	ember 1995						
MW-1	1.4	ND	ND	ND	160	620 -		t-1,2-DCE - 19(10) c-1,2-DCE - 41(6) TCE - 62(5) PCE - 55(5)
MW-2	ND	140,000	ND	ND	260,000	ND		Toluene - 160,000(100) Benzene - 63(1) Ethylbenzene - 131(680) Xylenes - 550(1750)
MW-3	2.4	ND	ND	ND	80	390	-	t-1,2-DCE - 13(10) c-1,2 - DCE - 66(6) TCE - 6.9(5)

Results presented in Parts Per Billion (µg/liter)

				STITUE	N/T Sec			
Sample Location (Action Level)	Benzene (1) ₁	Toluene (100) ₂	Ethylbenzene (680) ₁	Xylenes (1750) ₁	TPH-gas (NA)	TPH-diesel (100) ₃	Total Lead (50)4	Volatile Halocarbons & Organic Compounds (CS)
Twelfth Quarterly Mor	iltoring - Janu:	агу 1997						
MW-1	2.1	ND	. ND	ND	170	ND		t-1,2-DCE - 3.8 (10) PCE - 33 (5) TCE - 25 (5)
MW-2	ND	130,000	ND	ND	600,000*	ND		Chloroform - 64 (100) ₄
МŲ-3	7.0	3.1	ND	ND	150	ND		t-1,2 DCE - 2.6 (10) TCE - 1.7 (5) VC - 5.1 (0.5)
MW-101	2.8	5.2	1.4	1.4	510			ND
MW-102								ND
MW-101EB								ND
Eleventh Quarterly Mo	nitoring - Octo	ber 1996			National Artist National Artist			
MW-1	0.88	ND	ND	ND	180	870 ⁵	••	t-1,2-DCE - 3.6 (10) c-1,2-DCE - 12 (6) TCE - 37 (5) PCE - 35 (5)
MW-2	ND	98,000	ND	570	230,000	360 ⁶	••	VC - 2.3 (0.5)
MW-3	2.9	ND	ND	ND.	180	580 ⁵		c-1,2-DCE - 30 (6) VC - 6.2 (0.5)
MW-101	17	17	2.6	7.8	2,300			ND

Notes:

ND	None Detected
NA	Not Available
CS	Compound Specific
	Not Tested
()	California Maximum Contaminant Level
1	California Department of Health Services Primary Drinking Water Standard, Revised 10/23/91
2	California DOHS Action Level, 7/1/92
3	EPA 1980 Suggested No Adverse Response Level (SNARL)
4	EPA Drinking Water Standard, Revised 7/1/92
5	Hydrocarbon reported is in the late diesel range and does not match a pattern characteristic the laboratory diesel standard (Chromalab, Inc.)
6	Compounds reported are in the diesel range. They do not have a pattern characteristic the laboratory diesel standard (Chromalab, Inc.)
7	Equipment blank
*	Chromatography of this sample is described as inconsistent with the gasoline standard
**	Chromatography of this sample is described as inconsistent with the diesel standard (BSK Analytical Labs)
D	Compound was quantitated on a diluted sample.

RBCA Info

TABLE 2 VOCs IN GROUNDWATER IN EXCESS OF MCLs Pacific American Management Company Facility 5601 San Leandro Street Oakland, California

Well				VOLA	TILE ORGAN	IC COMPOUND	S		
Number	Benzene	Toluene	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	TCE	Vinyl Chloride
MW-1	3.48	<150	<0.5	<6	29	<10	36	36	<0.5
MW-2	<1	130,000°	<0.5	<6	<6	<10	<5	<5	<0.5
MW-3	7.5	<150	<0.5	<6	276 ^b	<10	< 5	<5	5.4
MW-101	3.6	<150	<0.5	<6	<6	<10	<5	<5	<0.5
TW-1	<1	<150	<0.5	18.0	<6	<10	71.1	<5	<0.5
TW-3	12.6	<150	8.04	<6	<6	117	<5	484	<0.5
TW-4	14.7	<150	1.17	<6	34.6	2.37	<5	< 5	2.34
TW-6	<1	<150	<0.5	<6	<6	<10	105	46.7	<0.5
TW-C4	2.29	<150	<0.5	<6	<6	<10	<5	<5	<0.5

Notes:

Concentrations presented in micrograms per liter.

Values in bold are maximum concentrations detected and were used in Tier 1 and 2 RBCA analysis. Groundwater analytical results for wells MW-1, MW-2, MW-3, and MW-101 from the June 1996 and January 1997 quarterly groundwater monitoring events conducted by Versar (Versar, 1996b, 1997).

Groundwater analytical results for temporary wells TW-1 through TW-6 and TW-C4 from the April 1996 supplemental groundwater evaluation conducted by PES (PES, 1996).

MCLs = State of California Maximum Contaminant Levels

1,2-DCA = 1,2-dichloroethane

1,1-DCE = 1,1-dichloroethylene

cis-1,2-DCE = cis-1,2-dichloroethylene

trans-1,2-DCE = trans-1,2-dichloroethylene

PCE = tetrachloroethylene

TCE = trichloroethylene

<150 = not detected at concentrations greater than the MCL

ŗ

a = Toluene concentration from samples collected in January 1997.

b = cis-1,2-DCE concentration from samples collected in March 1996

TABLE 2 MAXIMUM VOC CONCENTRATIONS AND APPLICABLE RBSLs AND SSTLs Pacific American Management Company 5601 San Leandro Street Oakland, California

Well						IC COMPOUND			
Number	Benzene	Toluene	1,2-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	PCE	TCE	Vinyl Chloride
MW-1									
MW-2		130,000		•					
MW-3					276		,		5.4
MW-101									
TW-1				18.0					
тw-з			8.04			117		484	
TW-4	14.7							م ۱۷ در	2.34
TW-6					·		105		
TW-C4								_	
RBSL	21.5	85,000	69	66	2,000	19,000	320	140	0.52
SSTL		330,000						3,900	23

Notes:

Concentrations presented in micrograms per liter.

VOCs = Volatile organic compounds

MCLs = State of California Maximum Contaminant Levels

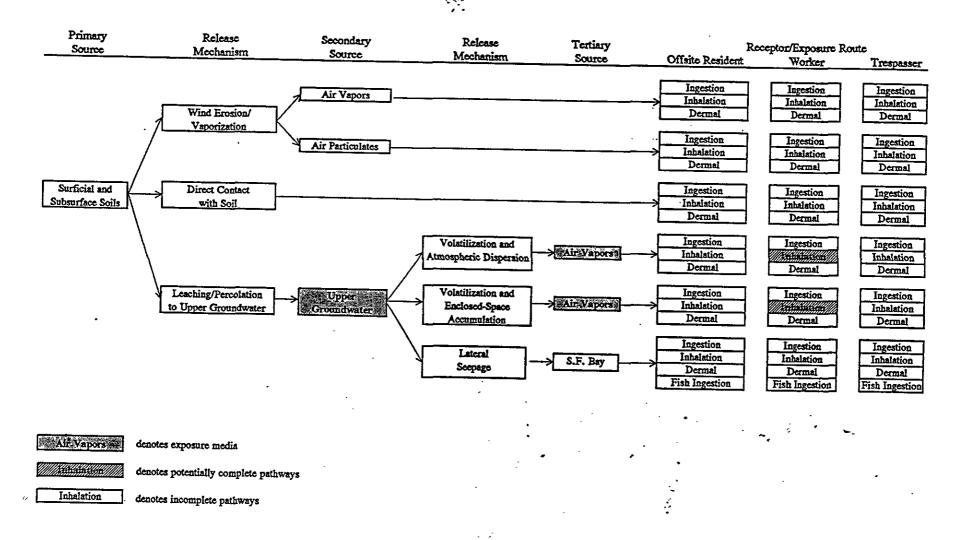
1,2-DCA = 1,2-dichloroethane

1,1-DCE = 1,1-dichloroethylene

cis-1,2-DCE = cis-1,2-dichloroethylene

trans-1,2-DCE = trans-1,2-dichloroethylene

PCE = tetrachloroethylene


TCE = trichloroethylene

RBSL = Applicable Risk-Based Screening Level

SSTL = Applicable Site-Specific Target Level

8/18/97

PLATE 3 SITE CONCEPTUAL MODEL FOR PRESENT CONDITIONS Pacific American Management Company Facility 5601 San Leandro Street Oakland, California

Site Name: PAMCO Site Location: 5601 San Leandro St

Job Identification: 125,0502,001

Date Completed: 3/28/97

Completed By: ksf

NOTE: values which differ from Tier 1 default values are shown in hald halfe

<u> </u> _	DEF.	AMETERS		NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined.									
Exposure Parameter			Residential		Commerc	ial/Industrial				-			
ATC	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrain	_ Surface Parameter	an State Marin and the s		Commerc	ial/industria		
ATn	Averaging time for carcinogens (yr)	70	31				- Farameter		Residential	Chronic	Construct		
BW	Averaging time for non-carcinogens (yr)	30	. 6	16	25	37 5 1 3 6		Exposure duration (yr)	30	25	1		
	Body Weight (kg)	70	15	35	70	2.5	A	Contaminated soft area (cm*2)	2.2E+08		1.0 E+ 0		
≅ 0 .	Exposure Duration (yr)	30	. 6 -	- 15			W `	Length of affected soil perallel to wind (cm)	4 55402		1.0E+0		
F	Exposure Frequency (days/yr)	350		· , 10	25	dr. 1	W.gw	Length of affected soil parallel to groundwater (c	1.5E+03		7.05+0		
F.Derm	Exposure Frequency for dermal exposure				250	<u>250</u>	· Uair	Ambient air velocity in mixing zone (cm/s)					
Rgw	Ingestion Rate of Water (I/day)	350			250 .		delta	Air mixing zone height (cm)	2.3E+02				
₹\$	Inspection State of Cold (Licitary)	2			٠. ١٠		Les	Committee of surface (CR)	2.0E+02				
Radi	Ingestion Rate of Soil (mg/day)	100	200		50	100		Definition of surficial soils (cm)	1.0E+02				
	Adjusted soil ing. rate (mg-yr/kg-d)	1.1E+02			9.4€+01	100	Pe	Particulate areal emission rate (g/cm^2/s)	2.2E-10				
Ra,in	Inhalation rate indoor (m*3/day)	15				_		•					
Ra.out	Inhalation rate outdoor (m^3/dav)	20			20			er Definition (Units)	Value				
SA .	Skin surface area (dermal) (cm²2)	5.8E+03	-		20	10	delta.gw	Groundwater mixing zone depth (cm)	1000	_			
Aadj	Adjusted dermal area (cm^2-yr/kg)			2.05+03	5.8E+03	5.8E+03	1	Groundwater infiltration rate (cm/yr)					
4	Soil to Skin adherence factor	2.1E+03	•		1.7E+03		Ugw	Groundwater Darcy velocity (cm/yr)					
WFs		1					Ugw.tr	CHOURTHARDS DESCY VEIOCRY (CINAYS)	1.8E+01				
	Age adjustment on soil ingestion	FALSE			FALSE	•		. Groundwater Transport velocity (cm/yr)	7.6E+02				
WFd	Age adjustment on skin surface area	FALSE			FALSE		Ks	Saturated Hydraulic Conductivity(cm/s)	3.0∈-04				
3X	Use EPA tox data for air (or PEL based)	TRUE			· ALDE		grad	Groundwater Gradiery (cm/cm)	2.0E-03				
WMCL?	Use MCL as exposure limit in groundwater?	FALSE					Sw	Width of groundwater source zone form					
	,						Sd	Depth of groundwater source zone (cm)					
							8C	Biodegradation Capacity (mg/L)					
						•	BIO?	Is Bioattenuation Considered					
							phieff	Effective Country to the Country of	FALSE				
		4					•	Effective Porosity in Water-Bearing Unit	2.5E-02				
	esed Persons to	Residential			Commont	Windustrial	foc.set	Fraction organic carbon in water-bearing unit					
	osure Pathways				Chronic	Constreta							
roundwater i					~ · · · · · · · · · · · · · · · · · · ·		Soil he	Definition (Units)	Value				
W.I	Groundwater Ingestion	FALSE			FALSE			Capillary zone thickness (cm)	3.0E+01	-			
W.y	Volatilization to Outdoor Air	FALSE			TRUE		hv	Vadose zone thickness (cm)	9.1E+01				
W.b	Vapor intrusion to Buildings	FALSE					rho	Soil density (g/cm/3)	1.7				
oll Pathways					TRUE		foc	Fraction of organic carbon in vadose zone	0.01				
. v	Volatiles from Subsurface Soits	FALSE					phi	Soil porosity in vadose zone	0.38				
S.v	Volatiles and Particulate Inhalation				FALSE		Low	Depth to groundwater (cm)					
	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	Ls	Depth to top of affected soil (cm)	<u>1.2E+02</u>				
	Landing to County of the Contact	FALSE			FALSE	FALSE	Lsubs	This was of off and a	1.0E+02				
	Leaching to Groundwater from all Soits	FALSE			FALSE			Thickness of affected subsurface soils (cm)	2.0E+02				
.b	Intrusion to Buildings - Subsurface Soils	FALSE			FALSE		рH	Soli/groundwater pH	6.5				
									capillary	Vadose	foundation		
							phi.w	Volumetric water content	0.342	0.12			
							phia	Volumetric air content	0.038		0.12		
							-		0.035	0.26	0.26		
		~					Building	Definition (Units)	Residential	Commercial			
	ptor Distance	Reside	eotial		Cam	-	ь	Building volume/area ratio (cm)	2.0E+02	3.0E+02			
d Location o	n- or off-site	Distance	On-Site	_	Commercial		ER	Building air exchange rate (s4.1)	1.4E-04	2.3E-04			
		-12411104			Distance	On-Site	Lork	Foundation crack thickness (cm)	1.5E+01	₹.35-04			
w	Groundwater receptor (cm)	9 70, 44	P44.0-				etz	Foundation crack fraction					
	Inhalation receptor (cm)	3.7E+04	FALSE		3.7E+04	FALSE			<u>0.005</u>				
	manager receiver (cm)		FALSE			FALSE							
trix of						,	Dispersive T	renenari .					
	•												
rget Risks		individual	Cumulative					Definition (Units)	Residential	Commercial			
_		-					Groundwater						
æb '	Target Risk (class A&B carcinogens)	1.0E-05					ax	Longitudinal dispersion coefficient (cm)					
с '	Target Risk (class C carcinogens)	1.0E-05					æy .	Transverse dispersion coefficient (cm)	•				
ā.	Target Hazard Quotient					•	#Z	Vertical dispersion coefficient (cm)					
	Galculation Option (1, 2, or 3)	1.0E+00				•	Vapor		,	- -			
	vencuizoni Opton (1, 2, or 3)	3						Transport formula and the second					
<u> </u>	RBCA Tier	2					dcy	Transverse dispersion coefficient (cm)					
							- ticz	Vertical dispersion coefficient (cm)					

Site Name: PAMCO	Completed E	By: ksf		ego versage have a trade for	and in additional		Tier 2 Worksheet 9,3				
Site Location: 5601 San Leandro St.	Date Completed: 3/28/1997								1 OF 1		
GROUNDWATER SS	Targe	sk (Class A & B t Risk (Class C Hazard Quotien	1.0E-5	☐ MCL exposure limit? Ca					iculation Option: 3		
:	Representative		SS	L Results For Con				: "			
CONSTITUENTS OF CONCERN	Concentration		Groundwater Ingestion		Groundwater Volatiliza X to Indoor Air		ion Groundwater Volatii X to Outdoor Air		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
CAS No. Name	(mg/L)	Kesicential: (on-site)	(on-site)	(of-site)	Kesidenual; (on-site)	Commercial - (on-site)	Residential (on-site)	Commercial:	. SSTL (mg/L	Exceeded?	Required CRF Only if "yes" lef
108-88-3 Toluene	1.3E+2	NA	NA	NA *	NA ·	3.3E+2	NA ·	>Soi	3.3E+2	1 7	<1
79-01-6 Trichloroethene	4.8E-1	NA	NA	NA	NA	3,9E+0	NA	9.1E+2	3.9E+0	 	
75-01-4 Vinyl chloride	5.4E-3	NA ·	NA	NA	NA	2.3E-2	NA NA	8.5E+0	2.3E-2	 	<1

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: v 1.0

Serial: G-335-UGX-966