

MPDS-UN5366-02 June 29, 1994

Unocal Corporation 2000 Crow Canyon Place, Suite 400 P.O. Box 5155 San Ramon, California 94583

Attention: Mr. Edward C. Ralston

RE: Quarterly Data Report

Unocal Service Station #5366 7375 Amador Valley Boulevard Dublin, California

Dear Mr. Ralston:

This data report presents the results of the most recent quarter of monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

RECENT FIELD ACTIVITIES

The Unocal monitoring wells that were monitored and sampled during this quarter are indicated in Table 1. Prior to sampling, the Unocal wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations for the Unocal wells are summarized in Table 1. The ground water flow direction at the Unocal site during the most recent quarter is shown on the attached Figure 1.

A joint monitoring and sampling event was conducted with the consultants for the nearby former Shell, BP, and Arco service station sites on May 17, 1994. The monitoring data collected for the former Shell and BP service stations are summarized in Tables 2 and 3, respectively. In spite of our many attempts, we were not able to collect the monitoring data of the Arco service station wells. The ground water flow direction in the vicinity of these sites during the most recent quarter is also shown on the attached Figure 1.

Ground water samples were collected from the Unocal wells on May 17, 1994. Prior to sampling, the Unocal wells were each purged of 8 gallons of water. Samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory. MPDS Services, Inc. transported the purged ground water to the Unocal Refinery located in Rodeo, California, for treatment and discharge to San Pablo Bay under NPDES permit.

MPDS-UN5366-02 June 29, 1994 Page 2

ANALYTICAL RESULTS

The ground water samples collected from the Unocal wells were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples collected from the Unocal wells to date are summarized in Tables 4 and 5. The concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline, TPH as diesel, and benzene detected in the ground water samples collected from the Unocal wells this quarter are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation for the Unocal wells are attached to this report.

DISTRIBUTION

A copy of this report should be sent to Alameda County Health Care Services Agency.

<u>LIMITATIONS</u>

Environmental changes, either naturally-occurring or artificially-induced, may cause changes in ground water levels and flow paths, thereby changing the extent and concentration of any contaminants.

If you have any questions regarding this report, please do not hesitate to call at (510) 602-5120.

Sincerely,

MPDS Services, Inc.

Sarkis A. Karkarian

Staff Engineer

Joel G. Greger, C.E.G. Senior Engineering Geologist

1~1.17 Jan

License No. EG 1633 Exp. Date 8/31/96

/dlh

Attachments: Tables 1 through 5

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation

cc: Mr. Thomas Berkins, Kaprealian Engineering, Inc.

JOEL & GRECER
NO. EG 16:33
CENTIFIED
ENGINEERING
GEOLOGIST

OF COMME

TABLE 1
SUMMARY OF MONITORING DATA
UNOCAL MONITORING WELLS

	Ground Water Elevation	Depth to Water	Product Thickness		Water Purged	Total Well Depth
Well #	(feet)	(feet)◆	(feet)	Sheen	(gallons)	(feet)◆
			,			,
	(Mo	nitored and	Sampled on	May 17,	1994)	
MW1	326.81	9.26	0	No	8	19.50
MW2*	327.47	9.31	0		0	19.26
MW3 *	327.49	9.49	0		0	18.94
MW4 *	326.80	9.63	0		0	19.44
MW5	326.72	9.24	0	No	8	20.00
	(Monit	ored and Sa	mpled on Fe	bruary :	11, 1994)	
MW1	326.35	9.72	0	No	7	19.46
MW2	326.93	9.85	0	$N \circ$	6.5	19.23
MW3	326.97	10.01	0	No	6.5	18.90
MW4	326.33	10.10	0	No	6.5	19.40
MW5	325.88	10.08	0	No	7	19.96
	(Monit	ored and Sa	mpled on No	vember :	11, 1993)	
MW1	325.90	10.17	0	No	7	
MW2*	326.27	10.51	0		0	
MW3 *	326.34	10.64	0		0	
MW4 *	325.95	10.48	0		0	
	(Moni	itored and S	ampled on A	ugust 1:	2, 1993)	
MW1	326.16	9.91	0	No	6.5	
MW2*	326.67	10.11	0		0	
MW3 *	326.64	10.34	0		0	
MW4 *	326.11	10.32	0		0	
-						

TABLE 1 (Continued)

SUMMARY OF MONITORING DATA UNOCAL MONITORING WELLS

Well #	Well Casing Elevation (feet)**
MWl	336.07
MW2	336.78
MW3	336.98
MW4	336.43
MW5	335.96

- The depth to water level and total well depth measurements were taken from the top of the well casings.
- * Monitored only.
- ** The elevations of the top of the well covers and well casings have been surveyed relative to Mean Sea Level (MSL), per the County of Alameda Benchmark, standard brass disk in the westerly center island of Amador Valley Boulevard at Village Parkway, 15 feet from the nose and 0.8 feet from the northerly curb, stamped "VL PK AM VY, 1977" (elevation = 337.40 MSL).
- -- Sheen determination was not performed.

Note: Monitoring data prior to February 11, 1994, were provided by Kaprealian Engineering, Inc.

TABLE 2

SUMMARY OF MONITORING DATA
Shell Service Station Wells
(Provided by Pacific Environmental Group, Inc.)

Well #	Ground Water Elevation (feet)	Depth to Water (feet)	Well Casing Elevation (feet)*
	(Monitored on 1	May 17, 1994)	
MW1	326.87	7.96	334.83
MW2	326.67	10.29	336.96
MW3	327.01	9.92	336.93
MW4	326.84	10.30	337.14
MW5	326.84	8.12	334.96
MW6	326.84	8.58	335.42
MW7	327.17	6.06	333.23
MW8	327.59	8.21	335.80
MW9	326.51	8.06	334.57
MW11	326.59	7.61	334.20
MW12	325.73	6.80	332.53
MW13	327.02	8.62	335.64
RW1	N/A	9.29	N/A

^{*} Relative to Mean Sea Level (MSL).

N/A = Not Applicable.

TABLE 3

SUMMARY OF MONITORING DATA BP Service Station Wells (Provided by Alisto Engineering Group)

Well #	Ground Water Elevation (feet)	Depth to Water (feet)	Well Casing Elevation (feet)*
	(Monitored on	May 17, 1994)	
MW1	327.00	8.17	335.17
MW2	326.87	7.71	334.58
MW3	326.79	8.34	335.13
AW4	326.87	6.54	333.41
AW5	326.65	8.16	334.81
AW6	327.22	7.68	334.90

^{*} Relative to Mean Sea Level (MSL).

TABLE 4
SUMMARY OF LABORATORY ANALYSES
UNOCAL MONITORING WELLS
WATER

<u>Date</u>	Well #	TPH as <u>Gasoline</u>	<u>Benzene</u>	Toluene	Ethyl- benzene	Xylenes
5/17/94	MW1	1,000	41	ND	49	32
	MW2	SAMPLED ANNU	JALLY			
	MW3	SAMPLED ANNU				
	MW4	SAMPLED ANNU				
	MW5	20,000	4,300	ND	2,300	130
2/11/94	MW1	970	40	3.2	2.8	15
	MW2	ND	ND	ND	ND	ND
	MW3	ND	ND	ND	ND	ND
	MW4	ND	ND	ND	ND	ND
	MW5	18,000	2,400	140	920	3,100
11/11/93	MW1	350	19	2.5	2.7	3.4
8/12/93	MWl	1,000	46	ND	29	6.3
5/10/93	IWM	1,600	39	0.40	25	3.3
2/10/93	MW1	3,000	230	ND	340	200
	MW2	ND	ND	ND	ND	ND
	KMM3	ND	ND	ND	ND	ND
	MW4	ND	ND	ND	ND	ND
11/10/92	MW1	1,100	49	ND	71	21
8/12/92	MW1	1,700	51	ND	93	21
5/22/92	MW1	2,500	120	ND	230	37
3, 22, 32	MM5	ND	ND	ND	ND	ND
2/25/92	MW1	3,900	500	ND	450	400
11/13/91	MWl	860	40	ND	11	2.5
8/12/91	MW1	1,100	68	2.6	210	9.3

TABLE 4 (Continued)

SUMMARY OF LABORATORY ANALYSES UNOCAL MONITORING WELLS WATER

<u>Date</u>	Well #	TPH as <u>Gasoline</u>	Benzene	Toluene	Ethyl- benzene	Xylenes
5/15/91	MW1	2,100	220	ND	360	27
2/14/91	MW1	1,900	150	2.9	340	43
11/14/90	MW1	2,000	110	0.52	410	16
8/15/90	MW1	2,200	160	ND	570	45
5/18/90	MW1	2,000	140	1.8	460	19
	MW2	ND	ND	ND	ND	ND
	EWM	ND	ND	ND	ND	ND
	MW4	ND	ND	ND	ND	ND
2/06/90	MW1	2,700	170	ND	350	29
	MW2	ND	ND	ND	ND	ND
	MW3	ND	ND	ND	ND	ND
	MW4	ND	ND	ND	ND	ND
10/20/89	MW1	ND	ND	ND	ND	ND
	MW2	ND	ND	ND	ND	ND
	EWM	ND	ND	ND	0.38	ND
	MW4	ND	ND	ND	ND	ND
7/27/89	MWl	1,900	130	6.3	ND	68
	MW2	ND	ND	ND	ND	ND
	EWM3	ND	ND	ND	ND	ND
	MW4	ИD	0.34	ND	ND	ND
5/22/89	MW3	ND	ND	ND	ND	ND
4/28/89	MW1	1,000	97	0.8	170	24
	MW2	ND	ND	ND	ND	ND
	EWM3	880	9.6	9.7	19	12.7
	MW4	ND	0.3	ND	ND	ND

TABLE 4 (Continued)

SUMMARY OF LABORATORY ANALYSES UNOCAL MONITORING WELLS WATER

<u>Date</u>	Well #	TPH as <u>Gasoline</u>	<u>Benzene</u>	Toluene	Ethyl- benzene	Xylenes
1/26/89	MW1	1,900	240	1.8	81	30
	MW2	ND	ND	ND	ND	ND
	MW3	ND	ND	ND	ND	ND
	MW4	ND	0.67	ND	ND	ND
10/28/88	MW1	5,200	150	ND	250	12
, ,	MW2	ND	ND	ND	ND	ND
	MW3		ND	ND	ND	ND
	MW4	ND	ND	ND	ND	ND
7/25/88	MW1	6,100	170	2.1	94	94
•	MW2	ND	ND	ND	ND	ND
	MW3		ND	ND	ND	ND
	MW4	ND	ND	ND	ND	ND
4/29/88	MW1	10,000	960	17	870	1,500
	MW2	170	2.7	0.6	ND	13
	MW3	ND	ND	ND	ND	ND
	MW4	ND	ND	ND	ND	ND

ND = Non-detectable.

Results are in micrograms per liter $(\mu g/L)$, unless otherwise indicated.

Note: Laboratory analyses data prior to February 11, 1994, were provided by Kaprealian Engineering, Inc.

⁻⁻ Indicates that analysis was not performed.

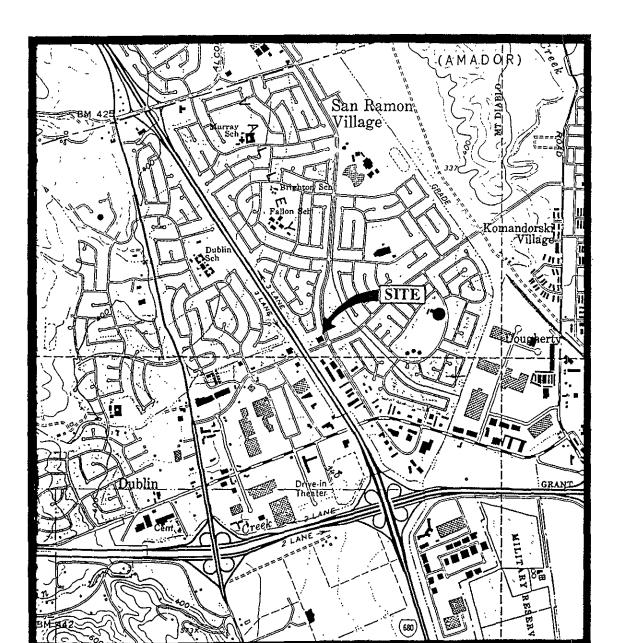
TABLE 5
SUMMARY OF LABORATORY ANALYSES
UNOCAL MONITORING WELLS
WATER

5/17/94 MW5 2,500* 2/11/94 MW3 ND ND 5/10/93 MW1 730*	ıts
MW5 2,300* 5/10/93 MW1 730* 2/10/93 MW3 200 ND	
2/10/93 MW3 200 ND	
5/18/90 MW3 ND ND ND	
• ,	
2/06/90 MW3 ND ND ND	
10/20/89 MW3 ND 2.5 ND	
7/27/89 MW3 ND 1.6 ND	
5/22/89 MW3	
4/28/89 MW3 72 ND ND	
1/26/89 MW3 ND ND	
10/28/88 MW3 ND ND	
7/25/88 MW3 ND ND	
4/29/88 MW3 ND ND	

TABLE 5 (Continued)

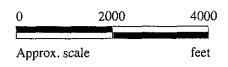
SUMMARY OF LABORATORY ANALYSES UNOCAL MONITORING WELLS WATER

* Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.

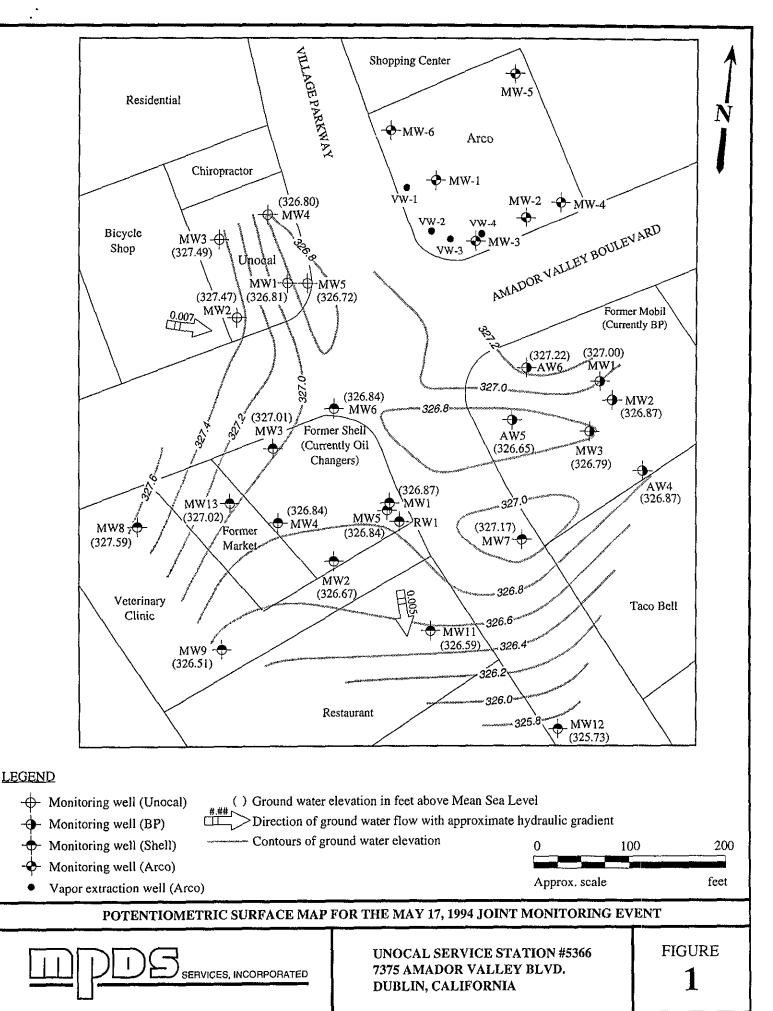

ND = Non-detectable.

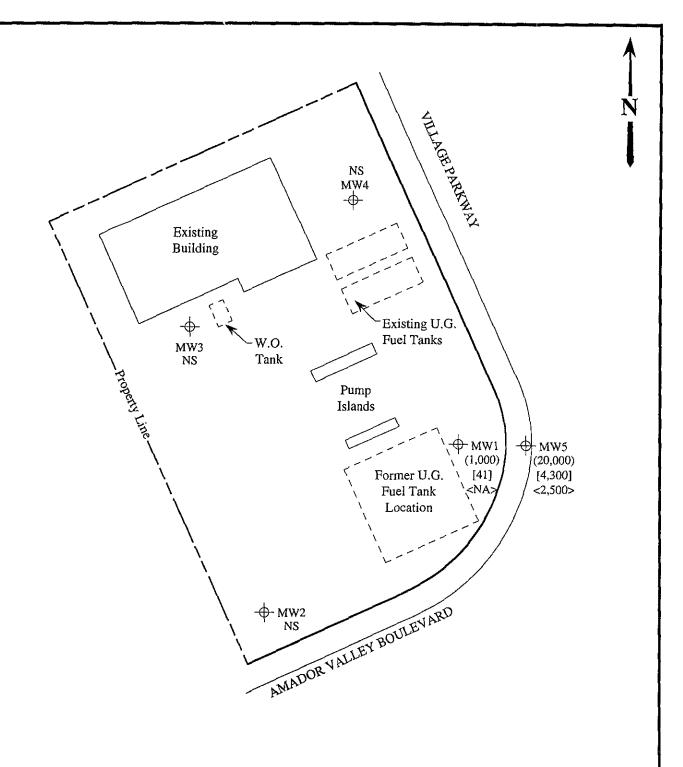
-- Indicates analysis was not performed.

mg/L = milligrams per liter.

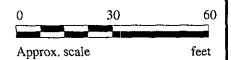

Results are in micrograms per liter ($\mu g/L$), unless otherwise indicated.

Note: Laboratory analyses data prior to February 11, 1994, were provided by Kaprealian Engineering, Inc.


∧ N I


Base modified from 7.5 minute U.S.G.S. Dublin Quadrangle (photorevised 1980)

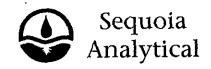
UNOCAL SERVICE STATION #5366 7375 AMADOR VALLEY BLVD. DUBLIN, CALIFORNIA LOCATION MAP



LEGEND

- → Monitoring well
- () Concentration of TPH as gasoline in μg/L
- [] Concentration of benzene in μ g/L
- < > Concentration of TPH as diesel in µg/L

ND = Non-detectable, NS = Not sampled, NA = Not analyzed


PETROLEUM HYDROCARBON CONCENTRATIONS IN GROUND WATER ON MAY 17, 1994

UNOCAL SERVICE STATION #5366 7375 AMADOR VALLEY BLVD. DUBLIN, CALIFORNIA

FIGURE

2

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

rang manggarang banggarang manggarang menggarang menggarang menggarang menggarang menggarang menggarang mengga

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedessian Same and the second section of

Client Project ID: Sample Matrix:

Unocal #5366, 7375 Amador Valley Rd., Water

Dublin

Sampled: Received: May 17, 1994 May 17, 1994

Analysis Method: First Sample #:

EPA 5030/8015/8020 405-0818

Reported:

Jun 1, 1994

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 405-0818 MW1	Sample I.D. 405-0819 MW5
Purgeable Hydrocarbons	50	1,000	20,000
Benzene	0.5	41	4,300
Toluene	0.5	N.D.	N.D.
Ethyl Benzene	0.5	49	2,300
Total Xylenes	0.5	32	130
Chromatogram Pat	ttern:	Gasoline	Gasoline

Quality Control Data

Report Limit Multiplication Factor:	5.0	100
Date Analyzed:	5/27/94	5/28/94
Instrument Identification:	HP-4	HP-2
Surrogate Recovery, %: (QC Limits = 70-130%)	114	106

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

oject Manager

nger internalisi kalipinta pertanenangan telah Kebertanyakan dalamper dia Parte.

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedessian Client Project ID: Sample Matrix:

r Pagit kapit kapit Magik Bapik kapi kapi kapit kapit magik t Unocal #5366, 7375 Amador Valley Rd., Water

EPA 3510/3520/8015

Dublin

ร์เทียดตั้งที่เป็นเป็น เหตุ เมติดสุดตั้งเหตุ เกี่ยดเกียดตั้งเลย เลย เกียดตั้งเลย เดียดตั้งเลย เดียดตั้งเลยเหตุ

May 17, 1994 Sampled: Received: May 17, 1994

Analysis Method: First Sample #:

Reported:

Jun 1, 1994

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

405-0819

Analyte	Reporting Limit μg/L	Sample I.D. 405-0819 MW5*	
Extractable Hydrocarbons	50	2500	
Chromatogram Pa	ttern:	Diesel and Unidentified Hydrocarbons < C16	

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Extracted:

5/23/94

Date Analyzed:

Project Manager

5/27/94

Instrument Identification:

HP-3B

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Please Note:

*This sample appears to contain Diesel and non-Diesel mixtures.

"Unidentified Hydrocarbons < C16" are probably Gasoline.

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedessian Client Project ID:

Unocal #5366, 7375 Amador Valley Rd., Dublin

Matrix: Liquid

QC Sample Group: 4050818-19

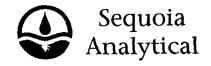
Reported:

QUALITY CONTROL DATA REPORT

valida (p. protection) protection of the control of

Benzene	Toluene	Ethyl	Xylenes	Diesel	
		Benzene			
				EPA	
EPA 8020	EPA 8020	EPA 8020	EPA 8020	8015 Mod.	
J. Fontecha	J. Fontecha	J. Fontecha	J. Fontecha	K. Wimer	<u> </u>
4050722	4050722	4050722	4050722	BLK052394	
5/28/94	5/28/94	5/28/94	5/28/94	5/23/94	
5/28/94	5/28/94	5/28/94	5/28/94	5/26/94	
HP-2	HP-2	HP-2	HP-2	HP-3B	
20 μg/L	20 μg/L	20 μg/L	60 μg/L	300 μg/L	
90	100	105	105	95	
85	100	105	105	99	
5.7	0.0	0.0	0.0	3.8	
	EPA 8020 J. Fontecha 4050722 5/28/94 5/28/94 HP-2 20 μg/L 90	EPA 8020 EPA 8020 J. Fontecha J. Fontecha 4050722 4050722 5/28/94 5/28/94 5/28/94 5/28/94 HP-2 HP-2 20 μg/L 20 μg/L 90 100	EPA 8020 EPA 8020 EPA 8020 J. Fontecha J. Fontecha 4050722 4050722 4050722 5/28/94 5/28/94 5/28/94 5/28/94 5/28/94 5/28/94 HP-2 HP-2 HP-2 20 μg/L 90 100 105	EPA 8020 EPA 8020 EPA 8020 EPA 8020 EPA 8020 J. Fontecha J. Fontecha J. Fontecha J. Fontecha J. Fontecha 4050722 4050722 4050722 4050722 5/28/94 5/28/94 5/28/94 5/28/94 5/28/94 5/28/94 5/28/94 5/28/94 HP-2 HP-2 HP-2 HP-2 20 μg/L 20 μg/L 60 μg/L 90 100 105 105 85 100 105 105	EPA 8020 EPA 8020 EPA 8020 EPA 8020 EPA 8020 EPA 8020 8015 Mod. K. Wimer 4050722 4050722 4050722 4050722 BLK052394 5/28/94 5/28/94 5/28/94 5/28/94 5/28/94 5/28/94 5/28/94 5/28/94 5/26/94 HP-2 HP-2 HP-2 HP-3B 20 μg/L 20 μg/L 20 μg/L 300 μg/L 85 100 105 105 99

LCS Batch#:	1LCS052894	1LCS052894	1LCS052894	1LCS052894	BLK052394		
Date Prepared: Date Analyzed:	5/28/94 5/28/94	5/28/94 5/28/94	5/28/94 5/28/94	5/28/94 5/28/94	5/23/94 5/26/94		
Instrument I.D.#: LCS % Recovery:	HP-2 108	HP-2 104	HP-2 105	HP-2 105	HP-3B 95		
% Recovery Control Limits:	71-133	72-128	72-130	71-120	28-122	 	


E

SEQUOIA ANALYTICAL, #1271

Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 400 Concord, CA 94520

Client Project ID:

Unocal #5366, 7375 Amador Valley Rd., Dublin

Matrix:

Liquid

Attention: Avo Avedessian

QC Sample Group: 4050818-19

Reported:

Jun 3, 1994

QUALITY CONTROL DATA REPORT

					
ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	J. Fontecha	J. Fontecha	J. Fontecha	J. Fontecha	
MS/MSD					
Batch#:	4050894	4050894	4050894	4050894	
Date Prepared:	5/28/94	5/28/94	5/28/94	5/28/94	
Date Analyzed:	5/28/94	5/28/94	5/28/94	5/28/94	
nstrument I.D.#:	HP-4	HP-4	HP-4	HP-4	
Conc. Spiked:	20 μg/L	$20\mu\mathrm{g/L}$	$20\mu\mathrm{g/L}$	60 μg/L	
Matrix Spike					
% Recovery:	77	90	94	94	
Matrix Spike					
Duplicate %					
Recovery:	77	85	89	89	
Relative %					
Difference:	0.0	5.7	5,5	5.5	

LCS Batch#:	2LCS052794	2LCS052794	2LCS052794	2LCS052794
Date Prepared:	5/27/94	5/27/94	5/27/94	5/27/94
Date Analyzed:	5/27/94	5/27/94	5/27/94	5/27/94
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4
LCS %				
Recovery:	88	93	95	96
% Recovery Control Limits:	71-133	72-128	72-130	71-120
Control Ellinico.	71-100	12-120	72-100	71-120

Please Note:

SEQUOIA ANALYTICAL, #1271

Alan B. Kemp Project Manager The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix

interference, the LCS recovery is to be used to validate the batch.

M P D S Services, Inc.

2401 Stanwell Drive, Suite 400, Concord, CA 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

CHAIN OF CUSTODY

SAMPLER RAY MARANGOSIAN			S/S # 5366 CITY: AUBLIN					ANALYSES REQUESTED							TURN AROUND TIME	
WITNESSING AGENCY				ADDRESS: 7375 AMANOR VALLEY WATER GRAB COMP NO. OF CONT. SAMPLING LOCATION				-GAS	TPH-DIESEL	(0)	0	<u>.</u>				REGULAR
SAMPLE ID NO.	DATE	TIMÉ	WATER	GRAB	сомр	NO. OF CONT.	SAMPLING LOCATION	тРН ВТЕ	TPH.	T0G	8010					REMARKS
MWI	5-1794	9:50	×	X		2	well	X								4050818 AE
mws	ţx	10:25	7	7		3	well	ኦ	Х							4050818 A E
			<u> </u>	•								117				
									 -							
												-				
						· · · · · · · · · · · · · · · · · · ·	,									
					1. HAVE ALL SAMPLES RECEIVED FOR ANALYSIS BEEN STORED ON ICE?											
SIGNATURE	Slost	Yun -))	4:20	ン、情	SIGNATURE	uteral	2. WILL SA	AMPLES RE	MAIN REFF	GERATED	IES UNTIL AND	NLYZED?			
(SIGNATURE)				• •		SIGNATURE		3. DID AN	Y SAMPLE	S RECEIVED	FOR ANAL	YSIS HAV	HEAD SP	ACE?		
(SIGNATURE)				•		SIGNATURE)		4. WERE S	AMPLES IN	APPROPR	IATE CONT.		D PROPERI	Y PACKA	GED?	
(SIGNATURE)					ľ	SIGNATURE)		SIGNATU	IRE:				LE:		DA	TE: