

20 August 1999 Project No. 1132.04

Mr. Leroy Griffin City of Oakland Fire Services Agency Hazardous Materials Management Program 505 – 14th Street, 5th Floor Oakland, CA 94612

Subject:

460 Grand Avenue, Oakland, California Former Gulf Service Station #0006 Alameda County Case Number 3615

Dear Mr. Griffin:

As we discussed earlier this week, the enclosed information is submitted to your agency for review and action. The 460 Grand Avenue site was a Gulf Service Station, and underground storage tanks (USTs) were removed from the site in 1990 and 1994. Treadwell & Rollo, Inc., applied the Oakland RBCA Tier 2 site screening (Attachment 1) consistent with the Urban Land Redevelopment (ULR) Program to support the conclusion that no institutional controls for future residential land use are required at this site. Alameda County-HazMat issued a Case Closure Summary on November 19, 1996 (Attachment 2), and a Remedial Action Completion Certification on December 3, 1998 (Attachment 3). The Case Closure Summary includes a property use restriction, as follows:

Residential site development would be acceptable, provided that either 1) the development should include a 15' setback distance from Grand Ave., or 2) soil will be excavated within the 15' setback zone, soil samples collected under the purview of this Agency, and laboratory analysis indicates the samples are either non-detect or within acceptable concentrations (as per additional calculations and another revised Risk Evaluation).

Treadwell & Rollo, Inc., used the Oakland RBCA Tier 2 spreadsheet provided through the ULR Program to screen the site using the currently accepted risk based approach. Tier 2 uses site data to establish site-specific target levels (SSTLs) for chemical compounds (the site soil type is "clayey silts"; borings logs are included in the Case Closure Summary). The completed Oakland RBCA Eligibility Checklist (included in Attachment 1) demonstrates that the site is eligible for the Oakland RBCA process. The Oakland RBCA Cover Sheet (Attachment 1) presents the site-specific information, and is consistent with Case Closure Summary. A partial printout of the Oakland RBSLs (risk-based screening levels) table (Attachment 1) shows the results of the Tier 2 analysis for benzene with residential land use, as follows:

Medium	Inhalation of Outdoor Air Vapors	Inhalation of Indoor Air Vapors
Subsurface soil	160 milligrams/kilogram (mg/kg)	3.3 mg/kg
Groundwater	> solubility	6.6 milligrams/Liter (mg/L)

Included in Attachment 1, Table 1 (Summary of Benzene Data) presents a summary of the benzene concentrations in soil used in the risk assessment included in the 19 November 1996 Case Closure Summary as well as a statistical analysis of that data. The 1996 risk assessment used the maximum detected value of benzene in soil and was based on a "forward calculation" to estimate risk due to exposure at that maximum concentration. The current Oakland RBCA process is based on a "backward calculation", resulting in an SSTL. The SSTL is then compared to the site data. The relevant results of the statistical analysis of the same 1996 site data and the results of the Oakland RBCA Tier 2 for residential use are as follows:

Sample mean

1.1 mg/kg

Upper confidence limit (UCL)

2.3 mg/kg

SSTL

3.3 mg/kg (lowest applicable RBSL)

The Oakland ULR Program guidance document states that if "the existing concentration of . . . chemicals of concern at your site is lower than the Tier 2 SSTL . . ., you may immediately petition the lead regulatory agency for site closure". The setback included in the 1996 Case Closure Summary (an institutional control) is <u>not</u> required based on the results of the RBCA Tier 2 analysis—the UCL is less than the SSTL for residential land use. Therefore, it is <u>requested</u> that the Case Closure Summary be amended to allow unrestricted residential land use.

We appreciate your prompt attention to this request. Redevelopment plans are currently underway to return this vacant lot to productive use as new residential units for the City of Oakland. Please call me if you have any questions.

Sincerely yours,

TREADWELL & ROLLO, INC.

Margaret K. (Peggy) Peischl, P.E.

Senior Engineer

H:\...\Falaschi\460 Grand\Griffin 8-20.doc

Included to complete this document:

Attachment 1 Oakland RBCA Documentation

Attachment 2 Remedial Action Completion Certificate, 3 December 1998

Attachment 3 Case Closure Summary, 19 November 1996

TABLE 4

ANALYTICAL DATA FOR SOIL SAMPLE T4-1

WASTE OIL TANK EXCAVATION

460 Grand Avenue Oakland, California

<u>Constituent</u>	Sample T4-1 Concentration (mg/kg)
TVPH as Gasoline	400
TEPH as Diesel	7,100
Oil & Grease	24,000
Tetrachloroethylene	1.0
1,1,1-Trichloroethane	0.25
Benzene	1.2
Toluene	10
Total Xylenes	35
Ethyl Benzene	5.2
Cadmium	0.8
Chromium	12
Lead	40
Nickel	22
Zinc	41

Notes:

mg/kg = milligram per kilogram
TVPH = total volatile petroleum hydrocarbons
TEPH = total extractable petroleum hydrocarbons

ATTACHMENT 1

Oakland RBCA Documentation

Oakland RBCA Eligibility Checklist

The Oakland Tier 1 RBSLs and Tier 2 SSTLs are intended to address human health and environmental concerns at the majority of small to medium-sized sites in Oakland where commonly-found contaminants are present. Large and/or complicated sites—especially those with continuing releases, special ecological concerns or unusual subsurface conditions—will likely require a Tier 3 analysis. The following checklist is designed to assist you in determining your site's eligibility for the Oakland RBCA levels.

CRITERIA	YES	NO
Source:		110
Is there a continuing, primary source of a chemical of concern, such as a leaking		
container, tank or pipe? (This does not include secondary/residual sources.)		\boxtimes
Is there any mobile or potentially-mobile free product?		d
Are there more than five chemicals of concern at the site, each of which is at a		
concentration greater than the lowest applicable Oakland RBCA level?		\boxtimes
Pathways:		
Are there any preferential vapor migration pathways—such as gravel channels or		
utility corridors—that are potential conduits for the migration, on-site or off-site,		
of a volatilized chemical of concern?		\boxtimes
Is there a chemical of concern at the site within 20 feet of a surface water body?	而	
If groundwater ingestion is not an exposure pathway of concern, does		
groundwater at the site both (a) exist at depths less than 10 feet and (b) contain		
volatile chemicals of concern? (If groundwater ingestion is an exposure pathway		
of concern, this criterion may be disregarded because the Oakland RBCA levels		
will be protective for all potential groundwater-related exposure scenarios.)		\boxtimes
Are there any existing on-site or off-site structures intended for future use that are		
adjacent to a volatile chemical of concern and possess at least one of the		
following?		
(a) A slab-on-grade foundation that is less than 15 cm (6 inches) thick (i.e., that		
does not meet Uniform Building Code standards)		
(b) An enclosed, below-grade space (e.g., a basement) that has floors or walls less		
than 15 cm (6 inches) thick		
(c) A crawl space that is not ventilated		\boxtimes
Receptors:		
Are there any immediate health risks to humans associated with contamination at		
the site (i.e., explosive levels of a chemical or vapor concentrations that could		
cause acute health effects)?		\boxtimes
Are there any complete pathways to nearby ecological receptors, such as		
endangered species, wildlife refuge areas, wetlands or other protected areas?		\boxtimes

If you answer "no" to all questions, your site is eligible for the Oakland RBCA levels. If you answer "yes" to any of the questions, your site is *not* eligible for the Oakland RBCA levels.

Oakland RBCA Cover Sheet

Project Proponent: Falaschi Brothers

Site Address: 460 Grand Avenue, Oakland, CA 94610 Alameda County Parcel Number(s): 10-779-15-1

Chemicals of Concern								
(1) Benzene	(4)	(7)						
(2) (8)								
(3)	(6)	(9)						
	Exposure Pathwa	ys of Concern						
Surficial Soil Groundwater								
☐ Ingestion/dermal contact/inhalation ☐ Ingestion of grounds								
Subsurface Soil	Inhalation of indoor air vapors							
	groundwater impacted by leachate	☐Inhalation of outdoor air vapors						
	indoor air vapors	Water Used for Recreation						
	outdoor air vapors	☐Ingestion/dermal contact						
	Land Use S	cenario						
\triangleright	Residential	Commercial/Industrial						
-								
	Method of A	Analysis						
Tier 1	MACINO OF F	11417000						
Tier 2 (specify soi	1 type: Merritt sands ss	andy silts ⊠clayey silts)						
Tier 3 Model(s) er		Other(s) (specify:						
Tier 5 Woder(s) er	ipioyed:Oakiand i&C21	Collor(s) (specify.						
	A	DCA I smale						
	Application of R	BCA Levels						
As evidence that no fu		1/ \ 0						
As target cleanup leve	ls for removal or treatment of chem	ical(s) of concern						
		nt for residential use included in Case Closure						
Summary, Alameda Cour	nty HazMat, 11/19/96)							
	Containment	Measures						
Cap (specify material:)	Vapor barrier (specify material:)						
Other(s) (specify:)							
Exposure pathways that	will be affected:							
	Institutional	Controls						
Permit tracking	Deed restriction Dee	d Notice Water well restriction						
Access control	Other(s) (specify:							
<u> </u>	3 / 3 2							
	Public Noti	fication						
Specify all actions to be t								

Date submitted: 20 August 1999

Submitted by: Margaret K. (Peggy) Peischl, P.E.; Treadwell & Rollo, Inc.

Oakland RBSLs

Medium	Exposure Pathway	Land Use	Type of Risk	Acenaph- thene	Acenaph- thylene	Acetone	Anthra- cene	Arsenic	Barium	Benz(a)- anthracene	Benzene	Benzo(a) pyrene						
			Carcinogenic				_	2.6E+00		1.7E+00	1.9E+01	1.7E-01						
Surficial Soil	Ingestion/	Residential	Hazard	2.3E+03	2.3E+03	3.7E+03	1.2E+04	1.8E+01	5.0E+03		6.3E+01 -							
[mg/kg]	Dermal/ Inhalation	Commercial/	Carcinogenic					9.5E+00		4.3E+00	4.9E+01	4.3E-01						
	minaladon	Industrial	Hazard	1.1E+04	1.1E+04	1.8E+04	5.6E+04	1.5E+02	7.1E+04		3.0E+02							
			Carcinogenic							SAT	1.6E+02	SAT						
	Inhalation of	Residential	Hazard	SAT	SAT	1.2E+05	SAT				6.5E+02							
	Outdoor Air Vapors	Commercial/	Carcinogenic							SAT	6.2E+02	SAT						
	vapo.o	Industrial	Hazard	SAT	SAT	SAT	SAT				SAT							
			Carcinogenic							SAT	3.3E+00	SAT						
Subsurface Soil	Inhalation of	Residential	Hazard	SAT	SAT	1.2E+04	SAT				1.1E+01							
[mg/kg]	Indoor Air Vapors	Commercial/	Carcinogenic							SAT	5.2E+01	SAT						
	Vapors	Industrial	Hazard	SAT	SAT	SAT	SAT				3.2E+02							
	Innotion of		Carcinogenic					4.4E+00	1.3E+02	1.4E+01	4.5E-03	1.2E+0						
	Ingestion of Groundwater		Hazard	4.0E+02	2.7E+02	1.5E+00	SAT	4.4E+00	1.3E+02		4.5E-03	1.2E+0						
	Impacted by	d by Commercial/	Carcinogenic					4.4E+00	1.3E+02	5.8E+01	4.5E-03	1.2E+0						
	Leachate		Hazard	SAT	SAT	9.7E+00	SAT	4.4E+00	1.3E+02		4.5E-03	1.2E+0						
		Carcinogenic					5.0E-02	1.0E+00	5.6E-04	1.0E-03	2.0E-04							
	Ingestion of	Residential	Hazard	9.4E-01	9.4E-01	1.6E+00	>Sol	5.0E-02	1.0E+00		1.0E-03	2.0E-04						
	Groundwater								Carcinogenic				<u> </u>	5.0E-02	1.0E+00	2.4E-03	1.0E-03	2.0E-04
		Industrial	Hazard	>Sol	>Sol	1.0E+01	>Sol	5.0E-02	1.0E+00		1.0E-03	2.0E-04						
	-	Danistantial	Carcinogenic							>Sol	6.6E+00	>Sol						
Groundwater	Inhalation of	Residential	Hazard	>Sol	>Sol	4.0E+04	>Sol				2.2E+01							
[mg/l]	Indoor Air Vapors	Commercial/	Carcinogenic							>Sol	1.0E+02	>Sol						
Inhalation o		Industrial	Hazard	>\$ol	>Sol_	>Sol_	>Sol				6.3E+02							
		Posidontial	Carcinogenic							>Sol	>Sol_	>Sol						
	Inhalation of Outdoor Air		Hazard	>Sol	>Sol	9.5E+05	>Sol		<u> </u>		>Sol	<u> </u>						
	Vapors	Commercial/	Carcinogenic							>Sol	>Sol	>Sol						
		Industrial	Hazard	>Sol	>Sol	>Sol	>Sol				>Sol	1						
Water for	Ingestion/	Residential	Carcinogenic				<u> </u>	2.0E-02		1.6E-04	6.3E-02	1.1E-0						
Recreation [mg/l]	Dermal	, (esiderida)	Hazard	1.1E+00	1.7E+00	· 4.2E+01	>Sol	1.2E-01	2.8E+01		1.8E-01							

*Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical >SOL = RBSL exceeds solubility of chemical in water

Summary of Benzene Data

460 Grand Avenue, Oakland, California

Benzene (mg/kg)

Sample	Depth (feet, bgs	x	\mathbf{x}^{2}		
WO-8	4.5	0.0005	0.00000025		
/ WO-9	5.5	0.077	0.005929		
/IX-18	4	0.18	0.0324		
/IX-15	5	1.2	1.44		
/IX-13	5.5	0.41	0.1681		
/IX-11	5	0.6	0.36		
C-3	5	0.008	0.000064		
C-2	5	13	169		
C-1*	5	0.0025	0.00000625		
IX-20*	5	0.0025	0.00000625		
WO-10*	5	0.0025	0.00000625		
WO-11*	4.5	0.0025	0.00000625		
WO-7*	5	0.0025	0.00000625		
WO-5*	5	0.0025	0.00000625		
Sum of Values	Sx	15.4905			
Sum of Values Square	$c ext{Sx}^2$	171.01			
Number of Samples	n	14			
Sample Mean	X	1.1			
Variance	s^2	11.836			
Sample St. Dev.	s	3.440			
Standard Error of San	nt s*	0.919			
Degrees of Freedom	n-1	13			
t. ₂₀ for n-1 degrees of freedom	t. ₂₀	1.35			
Confidence Interval	CI	2.3	Upper CI		
(two-tailed with proba	ability = 0.20 or	-0.1	Lower CI		
one-tailed with probability = 0.10)					

^{*}Assume value of 1/2 the Reporting Limit (0.005 mg/kg) for NDs Statistical Analysis per:

Test Methods for Evaluating Solid Waste, SW-84 **6**, Third Edition, Vol. 2, USEPA, November 1986

ATTACHMENT 2

Remedial Action Completion Certificate , 3 December 1998

AGENCY DAVID J. KEARS, Agency Director

P.R.B. DEO 1 1 98

REMEDIAL ACTION COMPLETION CERTIFICATE

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION (LOP) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

StID 3615 former Gulf Service Station #0006, 460 Grand Ave., Oakland, CA, 94610 (3-10,000, 2-250 gallons tanks removed)

December 3, 1998

Phillip R. Briggs, Project Manager Site Assessment & Remediation Chevron Products Co. 6001 Bollinger Canyon Rd. Bldg. L, Rm. 1110 PO Box 6004 San Ramon, CA 94583-0904

Dear Mr. Briggs:

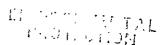
This letter confirms the completion of site investigation and remedial action for the underground storage tank formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, no further action related to the underground tank release is required.

This notice is issued pursuant to a regulation contained in Title 23, Section 2721(e) of the California Code of Regulations.

Please contact our office if you have any questions regarding this matter.

Sincerely,


Mee Ling Tung, Director

Chuck Headlee, RWQCB Dave Deaner, SWRCB Leroy Griffin, OFD

ATTACHMENT 3

Case Closure Summary 19 November 1996

01-0611

CASE CLOSURE SUMMARY

Leaking Underground Fuel Storage Tank Program 31 PH 3: 08

Date: 11/19/96

AGENCY INFORMATION

Agency name: Alameda County-HazMat Address: 1131 Harbor Bay Pky

City/State/Zip: Alameda CA 94502 Phone: (510) 567-6700

Responsible staff person: Jennifer Eberle Title: Hazardous Materials Spec.

II. CASE INFORMATION

Site facility name: Former Gulf Service Station #0006 Site facility address: 460 Grand Ave., Oakland CA 94610

RB LUSTIS Case No: N/A Local Case No./LOP Case No.: 3615

ULR filing date: 12/4/90 SWEEPS No: N/A

Responsible Parties: Addresses: Phone Numbers:

Phil Briggs, Chevron Products Co., PO Box 5004, San Ramon CA 94583-0804 (510-842-9136)

Falaschi Brothers, c/o Jack Gibson, The Legal Solutions Group, 1629-5th Ave., San Rafael CA 94901 (415-460-0100 ext.13)

Tank	<u>Size in</u>	Contents:	Closed in-place	Date:
No:	<u>gal.:</u>		or removed?:	- 11.11
1	10,000	gasoline	removed	11/29/90
2	10,000	gasoline	removed	11/29/90
3	10,000	gasoline	removed	11/29/90
4	250	waste oil	removed	11/29/90
5	250	waste oil	removed	01/05/94

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and type of release: apparent piping leak

Site characterization complete? YES

Monitoring Wells installed? YES Number: four

Proper screened interval? YES

Highest GW depth below ground surface (DTW): 2.31'bgs on 3/22/95 in C-3

Lowest GW depth: 7.31'bgs on 9/20/95 in C-4

Flow direction: consistently south, towards Lake Merritt

Most sensitive current use at present: vacant lot

Are drinking water wells affected? NO Aquifer name: n/a
Is surface water affected? Probably not, since the downgradient well C-4 has been ND
Nearest SW name: Lake Merritt is approx 550' south of the site
Report(s) on file at Alameda County, 1131 Harbor Bay Pky, Alameda CA 94502

Treatment and Disposal of Affected Material:

Material (inc	Amount lude units)	Action (Treatment of Disposal w/destination)	<u>Date</u>
Tank	four USTs	disposed to Erickson, #89891087 and #8989110	8, 11/29 & 30/90
Tank's Contents and Rinsate	10,235 gal	disposed to Refineries Services, #89804855, #89802491, and #89804851	11/27 & 28/90
Soil	approx 350 y approx 450 y	<u>*</u>	Jan 1994 Jan 1994
Groundwater	10,000 gal	disposed to Chevron's Richmond refinery	1/26/93

Maximum Documented Contaminant Concentrations - - Before and After Cleanup

Contaminant	Soil (p	Water	(ppb)	
	<u>Before</u>	<u>After</u>	<u>Before</u>	After
TPH (Gas)	1,700 a	2,300 ⁱ	2,300°	80 g
TPH (Diesel)	7,100 b	200°	170 ^f	NA g
Benzene	1.2 b	13 ⁱ	53 °	0.93 ^g
Toluene	10 b	80 ⁱ	160 °	ND 8
Ethylbenzene	47 ª	83 ⁱ	36 °	ND g
Xylene	260°	440 ⁱ	160 °	ND g
Oil & Grease	24,000 b	ND_c	ND^{f}	ND h
PCE	1.0 b	0.074 ^đ	ND^{f}	ND^h
1,1,1-TCA	0.25 b	0.042 d	ND^{f}	ND h
1,2-DCB	ND b	0.048 ^d	ND^{f}	ND h
1,2-DCA	ND b	0.028^{d}	ND^{f}	3.5 h
Cd	0.8 ^b	10.8 d	ND ^f	ND^h
Cr	12 b	58 ^d	ND^{f}	190 ^h
Pb	40 ^b	12 ^d	ND^{f}	70 ^h
Ni	22 в	74 ^d	ND ^f	360 h
Zn	41 ^b	83 ^d	70 ^f	380 h
MTBE				8.7

Page 2 of 7

- ^a from piping samples collected 12/4/90
- ^b from waste oil tank excavation, collected 11/29/90
- ^c from final excavation samples which were in the long term vadose zone (0-5.5'bgs), as used for the risk evaluation, collected Jan 1-21, 1994
- d from final excavation samples (HVOCs in WX-3 and WO-9, and metals in H-S and WX-3), collected Jan 1-21, 1994
- from grab water sample from open fuel tank excavation, collected 11/29/90
- from grab water sample from open waste oil tank excavation, collected 12/4/92
- ⁸ from last round of MW sampling, collected 12/12/95
- h from MW sampling conducted on 12/16/92
- i from soil sampling in borehole for well C-2, 12/14/92

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? Undetermined

Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? Undetermined

Does corrective action protect public health for current land use? see comments in section V. regarding the risk evaluation

Site management requirements: Commercial site development is acceptable with the site in its present condition. Residential site development is acceptable, providing that either 1) the development includes a 15' setback distance from Grand Ave., or 2) soil is excavated within the 15' setback zone, soil samples are collected under the purview of this Agency, and laboratory analysis indicates the samples are either non-detect or within acceptable concentrations (as per additional calculations and possibly another revised Risk Evaluation).

Should corrective action be reviewed if land use changes? YES; see comments above Monitoring wells Decommisioned: Not yet

Number Decommissioned: O Number Retained: 4

List enforcement actions taken: Pre-Enforcement Review Panel 7/27/93, Legal Request for Submittal of a Technical Report signed by Steven Ritchie of the RWQCB and dated 9/27/93 List enforcement actions rescinded: none

V. ADDITIONAL COMMENTS, DATA, ETC.

The property was reportedly first developed in the late 1940s, and operated as a service station by a series of parties. The property was reportedly purchased by Gulf Oil Co. in 1961, when the existing USTs were replaced with three new 10,000-gallon gasoline USTs. Gulf Oil Co. reportedly operated the service station from 1961 through 1978. The Falschi brothers reportedly purchased the property in August 1978, and reportedly removed the fuel dispensers and emptied the USTs. The station had reportedly not been used since 1978.

On 11/29/90, four USTs were removed, under purview of Gil Wistar of Alameda County. There were three 10,000-gallon fuel USTs and one 250-gallon waste oil UST. According to Mr. Wistar's notes, Fuel Tank #1 had deep pitting and no apparent holes, while Fuel Tank #2 had deep pitting and at least 2 small holes. Fuel Tank #3 appeared to be in better condition, while Waste Oil Tank #4 had numerous small holes. There were two tank excavations: one for the fuel USTs and one for the waste oil UST. Seven soil samples were collected and one grab water sample was collected (from the fuel tank pit). Four piping samples were collected on 12/4/90. See Figure 1 and 2, and Tables 1 through 4.

Results from the six fuel tank soil samples were unremarkable: ND TPHg and ND benzene except for one hit of 0.019 mg/kg benzene; maximum lead result was 3.8 mg/kg. The water sample contained 2,300 ug/L TPHg, ND TPHd, and 53 ug/L benzene. The maximum concentrations from the piping samples included 1,700 mg/kg TPHg and 0.0066 mg/kg benzene. The waste oil tank soil sample contained 400 mg/kg TPHg, 7,100 mg/kg TPHd, 24,000 mg/kg O&G, 1.2 mg/kg benzene, 1.0 mg/kg PCE, and 0.25 mg/kg 1,1,1-TCA. The stockpiled soils were apparently not sampled.

On 12/4/92, the stockpiled soils were sampled, groundwater was pumped out of the excavations, the pit water from the waste oil tank excavation was sampled, and pit water from the fuel tank excavation was resampled. Results from the fuel tank stockpiled soils indicated ND TPHg and ND BTEX. Results from the waste oil tank stockpiled soils indicated ND TPHg, ND BTEX, 8400 mg/kg O&G, ND HVOCs, 190 mg/kg TPHd, ND Cd, 23 mg/kg Cr, 88 mg/kg Pb, 30 mg/kg Ni, and 340 mg/kg Zinc. Results from the fuel tank pit water sample indicated ND TPHg, ND BTEX and ND Pb. Results from the waste oil tank pit water sample indicated ND TPHg, ND BTEX, 170 ug/L TPHd, ND HVOCs, ND Cd, ND Cr, ND Pb, ND Ni, and 0.07 mg/L Zn. See Table 5 and Figure 2A.

Three monitoring wells were installed on 12/14/92 and 12/15/92. Soils were sampled in the boreholes. See Figure 5, 5A, 5B, 5C for locations and boring logs, and Table 6 for results. The downgradient boring (C2) near the pump island had significant soil concentrations.

On 3/19/93, the former waste oil tank pit, located at the northeast edge of the property, was overexcavated and resampled. Four sidewall samples were collected at 6'bgs. There was water in the excavation. Results indicated up to 21,000 mg/kg O&G, 730 mg/kg TPHg, 3,200 mg/kg TPHd, 2.1 mg/kg benzene, 0.320 mg/kg 1,1,1-TCA, 0.610 mg/kg PCE, and 0.065 mg/kg 1,2-DCB in sample WE. The results were not tabulated. See Figure 4.

On 12/28/93, the service station was demolished. This allowed better access to the former waste oil tank pit in the northeastern edge of the property, for the purpose of removing residual soil contamination. On 1/3/94, another UST was discovered below the former service station. It appeared to be a 250-gallon waste oil UST. Soil samples (WX series) were collected from the overexcavation of the former waste oil tank pit in the northeastern edge of the property. In addition, an oil/water separator was removed; soil samples (SM series) were collected. Two hydraulic hoists were removed; soil samples HS and HN were collected. Sample results in these locations were unremarkable, with the exception of sample WX-3 from the northern edge of the property (1,300 mg/kg TPHd and 970 mg/kg TOG at 3'bgs); see Figure 6 & 7, Tables 7 & 8.

On 1/5/94, the pump islands were excavated. There was a strong gasoline odor. Several samples (IX series) were collected in the pump island excavation. The newly-discovered 250-gallon waste oil UST was removed. There were 2 large corrosion holes on the top; the bottom and sides appeared intact. Approximately 150 gallons of waste oil were pumped out on 1/4/94. Four soil samples were initially collected from the newly-discovered 250-gallon waste oil UST excavation (WO series). See Table 7 and Figure 6.

On 1/20/94 and 1/21/94, further overexcavation ensued in the areas of the former islands and the newly discovered waste oil UST/hydraulic hoists. The data is compiled in Tables 7 and 8. See Figures 5, 6, and 7 also.

During these activities, approximately 350 yd3 of soil were removed from the waste oil tank excavation and disposed at Forward Landfill. Approximately 450 yd3 of soil were removed from the pump island excavation and disposed at Redwood Landfill. This makes a total of approximately 800 yd3 of soil removed from this site.

The final sampling locations are depicted in Figure 7, with the exception of sample WO-7, which was overexcavated. The residual benzene concentrations left in place are samples WO-8, WO-9, IX-7, IX-11, IX-12, IX-13, IX-14, IX-15, IX-16, IX-17, IX-18, IX-19, IX-21, and IX-22.

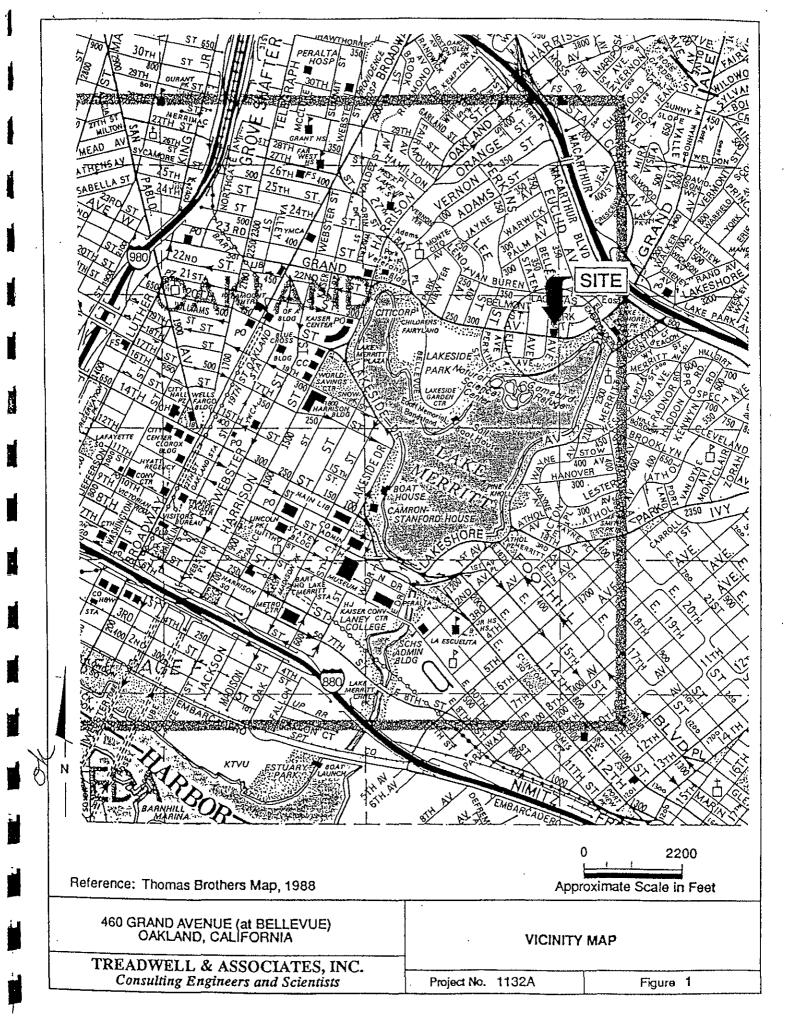
Further subsurface investigation was conducted offsite and downgradient in Grand Avenue in May 1995. A fourth monitoring well (C4) was installed; two additional borings were attempted but not completed, due to the presence of utilities. See Figure 9 for the boring log of C4.

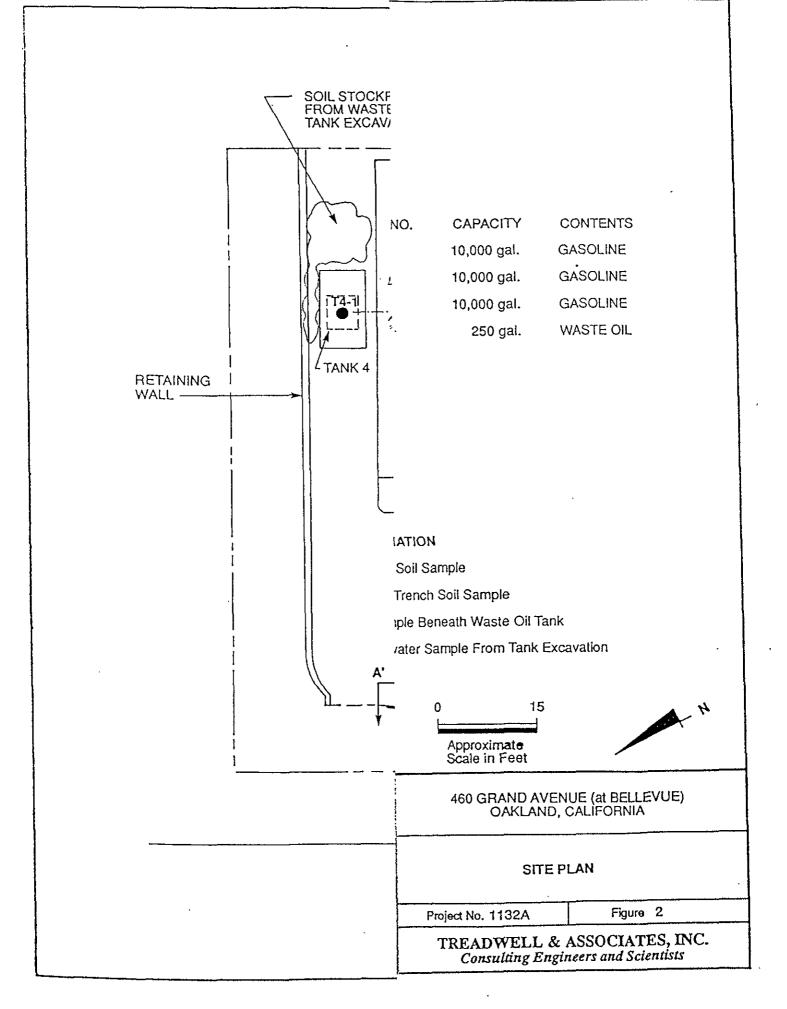
Groundwater was sampled and monitored for 8 events between 12/16/92 and 12/12/95 in the first three wells, and for 3 events between 6/5/95 and 12/12/95 in the downgradient well (C4). See Table 9. Results indicated low to ND concentrations of benzene and TPHg. Groundwater flow direction was consistently south, towards Lake Merritt. See Figure 8.

An ASTM RBCA Tier 2 risk evaluation was prepared by Chevron Research and Technology Company (CRTC), dated 5/20/96. They evaluated indoor inhalation for a residential scenario, for both soil and groundwater conditions. The risk evaluation was amended to address the concerns of the soil sampling selection and correct the solutions to the equations. The soil samples selected contained benzene at a depth of 0 to 5.5'bgs, the expected long term vadose zone. These samples included WO-8, WO-9, IX-11, IX-13, IX-15, and IX-18. Two scenarios were evaluated: conservative and plausible. The conservative scenario used the maximum site benzene concentration in groundwater and the average of the six benzene impacted soil samples, not including ND samples. The plausible scenario used the 12/12/95 (final) benzene concentration in groundwater (well C2), and the average benzene concentration of the 14 soil samples taken in the 0-5.5'bgs interval, including ND samples.

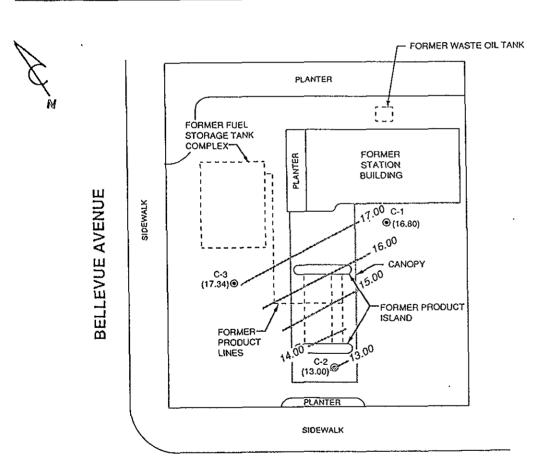
Results of the amended risk evaluation indicated a risk value of 4.05×10^{-5} for the conservative scenario, and a risk value of 1.7×10^{-5} for the plausible scenario. These risk values are combined values for soil and groundwater. These are acceptable risk values for commercial/industrial development of the site.

The risk assessment was revised again, since the soil sampling results from the three monitoring wells (C1 to C3) were not included in calculating the benzene concentrations. The revised results were transmitted to the County via fax from CRTC dated 1/10/97. The benzene concentrations were calculated using the arithmetic average. After some debate, it was decided that this was the best method for small UST sites such as this; the geometric average is used on large Superfund sites. It was also decided to use the calculated risk for the *plausible scenario*, and not the conservative scenario. The risk was calculated to be 8.85 x 10⁻⁵. Since this number approaches 1 x 10⁻⁴, the risk was considered acceptable for a commercial/industrial scenario.


Residential site development would be acceptable, providing that either 1) the development should include a 15' setback distance from Grand Ave., or 2) soil will be excavated within the 15' setback zone, soil samples are collected under the purview of this Agency, and laboratory analysis indicates the samples are either non-detect or within acceptable concentrations (as per additional calculations and another revised Risk Evaluation).


No further investigations are recommended since this site appears to meet the SF Bay RWQCB's definition of a low risk groundwater case. To summarize, the reasons that this case should be closed are as follows:

- * The sources have been removed (five USTs, 10,000 gallons of water from the excavation, and approximately 800 cubic yards of contaminated soil);
- * The site has been adequately characterized;
- The groundwater downgradient well (C4) has been ND for BTEX and TPHg;
- * Although there is a sensitive environmental receptor in the site vicinity (Lake Merritt lies approximately 600 feet from the site), this distance is a significant and unlikely distance for a hydrocarbon plume to travel;
- * There is no significant risk to human health, based on the tier 2 risk evaluation. The risk is acceptable for commercial/industrial development of the site. Residential site development would be acceptable, providing that either 1) the development should include a 15' setback distance from Grand Ave., or 2) soil will be excavated within the 15' setback zone, soil samples are collected under the purview of this Agency, and laboratory analysis indicates the samples are either non-detect or within acceptable concentrations (as per additional calculations and another revised Risk Evaluation).


VI. LOCAL AGENCY REPRESENTATIVE DATA

Name: Jennifer Eberle Signature	Title: Hazardous Materials Specialist Date: 1-20-9-7
Reviewed by	
Name: Madhulla Logan	Title: Hazardous Materials Specialist
Signature: Washully	Date: $4 - 1 - 97$
Name: Tom Peacock Signature:	Title: Manager of LOP Date: 4 -/-9 7
VII. RWQCB NOTIFICATION	
Date Submitted to RWQCB:	-2-9 7RWQCB Response: Affronced
RWQCB Staff Name: Kevin Grav	ves Title: Associate Water Resources Control Engineer
Date:	Page 7 of 7 4/21/97

Figure 3

LEGEND

C-1

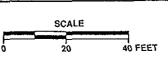
GROUNDWATER MONITORING WELL LOCAL
AND DESIGNATION

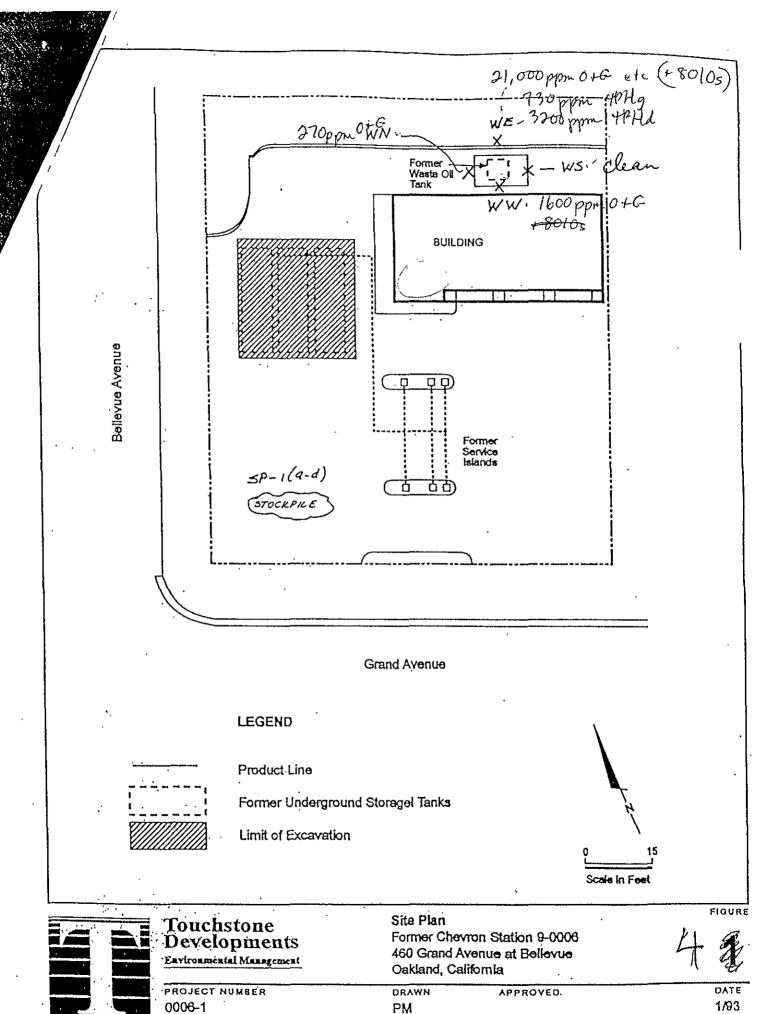
(16.80) GROUNDWATER ELEVATION IN FEET - MS

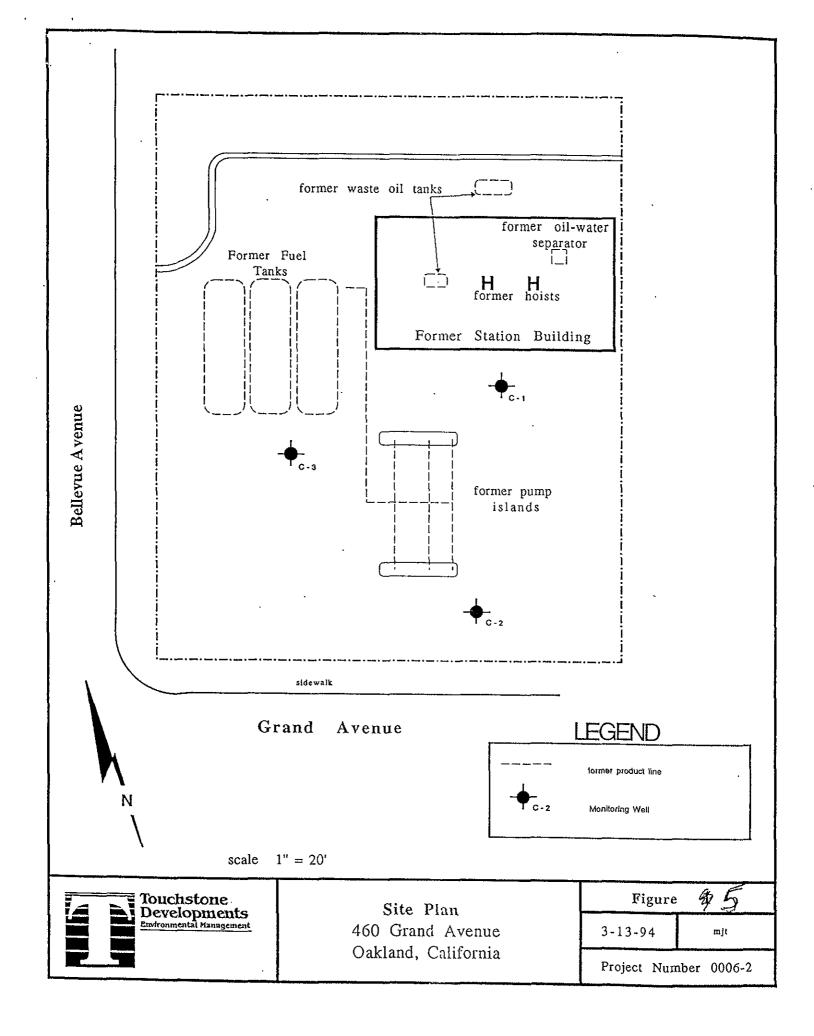
GROUNDWATER ELEVATION CONTOUR IN

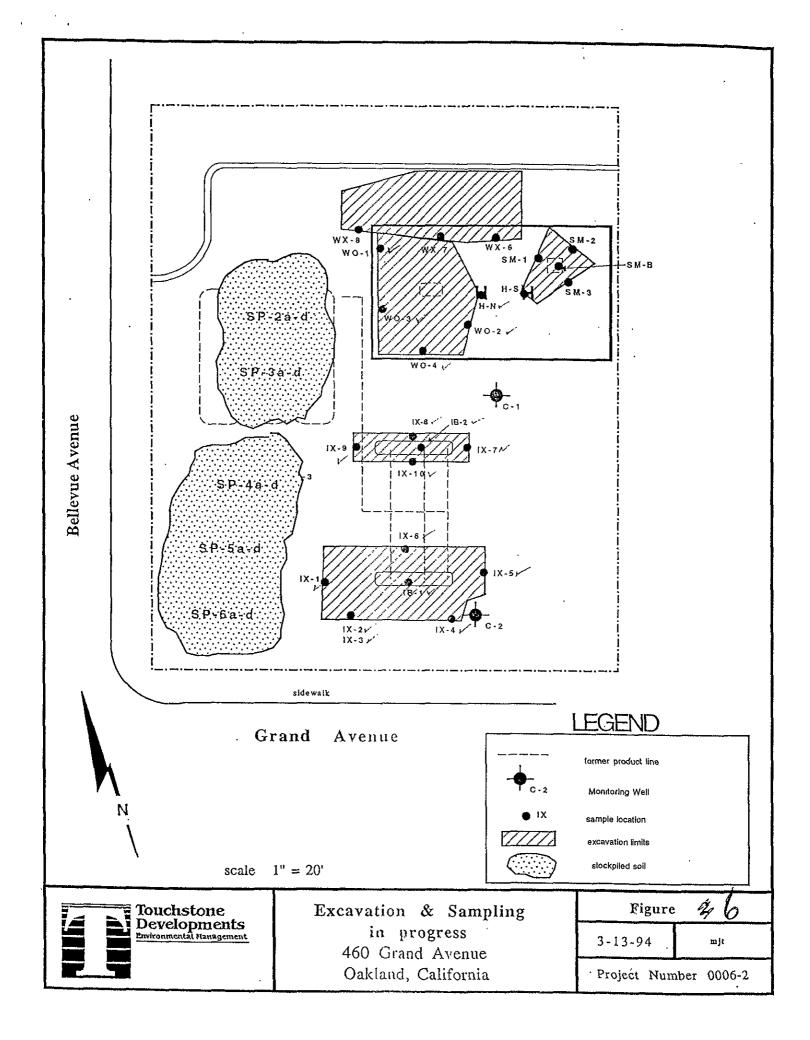
12-16-92

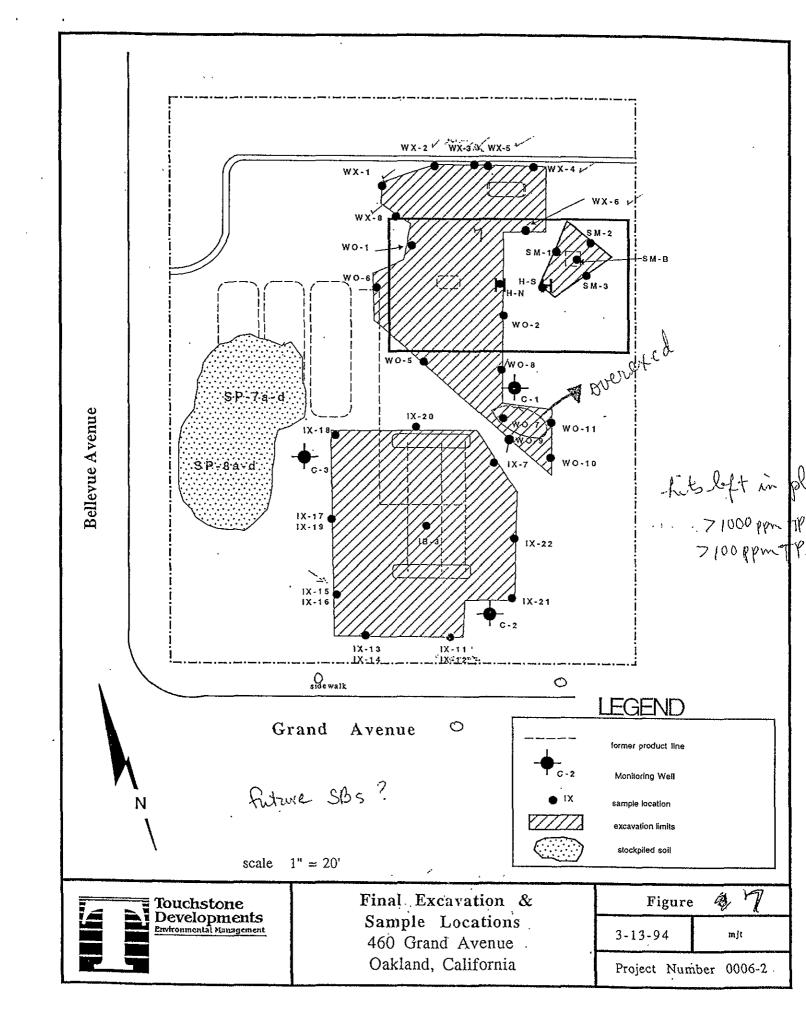
MAPTAK




APPROXIMATE DIRECTION OF GROUNDWATER FLOW


GRAND AVENUE


FORMER GULF SERVICE STATION 0006
460 Grand Avenue at Bellevue Avenue
Oakland, California
GROUNDWATER ELEVATION CONTOUR MAP


PACIFIC ENVIRONMENTAL GROUP, INC.

EXPLANATION Groundwater monitoring well **BELLEVUE AVENUE** Groundwater elevation in feet 99.99 referenced to Mean Sea Level (MSL) Groundwater elevation contour, dashed where inferred. 17.86 Former Underground Storage Tanks C-3 GRAND AVENUE Planter Planter Former 15.32 Dispenser Approximate groundwater flow direction at a Islands Former gradient of 0.08 Ft./Ft. Former Waste Station Oil Tank Building 16.98 Approximate Property Boundary C-4 11.56 30 Scale in Feet POTENTIOMETRIC MAP Gettler - Ryan Inc. Former Gulf Service Station No. 0006 460 Grand Avenue 6747 Sierra Ct., Suite J Dublin, CA 94568 (510) 551-7555 Oakland, California

JOB NUMBER 5208.80 REVIEWED BY

DATE

December 12, 1995

REVISED DATE

LOCATION MAP	1	PACIFIC ENDADOMETERS	
BELLEVUE 1	. 1	PACIFIC ENVIRONMENTAL GROUP, INC. WELL NO. C-1 , PAGE 1 OF 1	
	ING ELEVATION	PROJECT NO. 325-31.01 LOGGED BY: DEM DRILLER: BAYLANDS DRILLING METHOD: HSA SAMPLING METHOD: CAL MOD CASING TYPE: Sch 40 PVC SLOT SIZE: 0.020" GRAVEL PACK: 2/12 SAND CLIENT: CHEVRON DATE DRILLED: 12/14/92 LOCATION: 460 GRAND AVE., OAH HOLE DIAMETER: 8" HOLE DEPTH: 20' WELL DIAMETER: 2" WELL DEPTH: 15' CASING STICKUP: -0.37'	Κ
	MOISTURE CONTENT PID PENETRATION		
	Dp 142 pus Dp 1.0 22 Wt/ Sat ND 18 Dry/ Dp ND 30	FILL Asphalt. 2 H. CLAYEY SILT: medium to light brown (5Y 4/3); low plasticity; blue gray mottling to 2 cm; micaceous; trafine to medium sand; no product odor.	iff;

· LOCATION MAP	1	PACIFIC ENVIR	ONMENTAL GROUP INC. WELL NO. C-2			
RELIEVUE C-2 NORTHING EASTI	NG ELEVATI	PAGE 1 OF 1 PROJECT NO. 325-31.01 LOGGED BY: DEM DRILLER: BAYLANDS DRILLING METHOD: HSA SAMPLING METHOD: CAL MOD CASING TYPE: Sch 40 PVC CASING TYPE: Sch 40 PVC CASING TYPE: Sch 40 PVC CLIENT: CHEVRON DATE DRILLED: 12/14/92 LOCATION: 460 GRAND AVE., C HOLE DIAMETER: 8" HOLE DEPTH: 16-1/2" WELL DIAMETER: 2"				
	MOISTURE CONTENT PID PENETRATION	DEPTH (FEET) RECOVERY SAMPLE INTERVAL GRAPHIC SOIL TYPE	LITHOLOGY / REMARKS			
SAND SAND CEMENT SAND SAND SAND SAND SAND SAND SAND SAND	Dry 1.4 1. Dry 13 1. Mst/ Wt 11.8 1. Dry ND 2.	8	SANDY SILT (2.5Y5/3); low plasticity; 15-25% fine sand; stiff; faint product odor. CLAY: (10YR5/4); low plasticity; orange brown mottling; blue gray mottling; stiff; no product odor. CLAYEY SAND (2.5Y5/3); 30-40% fines; micaceous; sandier and wet at 15-1/2 to 16'; medium dense; no product odor.			

PROJECT NO. 325-31.01 CLIENT: CHEVRON DATE DRILLED: 12/15/92 LOCATION: 460 GRAND AVE., OAK HOLE DIAMETER: 7-1/4" HOLE DEPTH: 15' WELL DEPTH: 15' GRAVEL PACK: 2/12 SAND CASING STICKUP: -0.34' WELL COMPLETION WELL COMPLETION DP 320 40 6 CL Representation CLIENT: CHEVRON DATE DRILLED: 12/15/92 LOCATION: 460 GRAND AVE., OAK HOLE DEPTH: 15' WELL DEPTH: 15' CASING STICKUP: -0.34' LITHOLOGY / REMARKS PAGE 1 OF 1 PROJECT NO. 325-31.01 CLIENT: CHEVRON DATE DRILLED: 12/15/92 LOCATION: 460 GRAND AVE., OAK HOLE DEPTH: 15' CASING STICKUP: -0.34' LITHOLOGY / REMARKS PAGE 1 OF 1 PROJECT NO. 325-31.01 CLIENT: CHEVRON DATE DRILLED: 12/15/92 LOCATION: 460 GRAND AVE., OAK HOLE DEPTH: 15' CASING STICKUP: -0.34' LITHOLOGY / REMARKS CLAYEY SAND: (5GY 4/1); 15-25% fines; fine sand; dense; faint to moderate product odor. CLAY: (5G 5/1); low plasticity; micaceous; medium bromottling; silty; hard; no to faint product odor. Well DEPTH: 15' CASING STICKUP: -0.34' CLAYEY SAND: (5GY 4/1); 15-25% fines; fine sand; dense; faint to moderate product odor. CLAY: (5G 5/1); low plasticity; micaceous; medium bromottling; silty; hard; no to faint product odor. Well DEPTH: 15' CASING STICKUP: -0.34' CLAY: (5G 5/1); low plasticity; micaceous; medium bromottling; silty; hard; no to faint product odor. Well DEPTH: 15' CASING STICKUP: -0.34' CLAY: (5G 5/1); low plasticity; micaceous; medium bromottling; silty; hard; no to faint product odor. Well DEPTH: 15' CASING STICKUP: -0.34' CLAY: (5G 5/1); low plasticity; micaceous; medium bromottling; silty; hard; no to faint product odor. Well DEPTH: 15' CASING STICKUP: -0.34' Well DEPTH: 15' CASIN	•	LOCATION	V MAP				DAG	ICIO	T-11	// 0.0	A DELLA MARIE DE LA CONTRACTOR DE LA CON
DRILLER: BAYLANDS DRILLING METHOD: HSA SAMPLING METHOD: CAL MOD CASING TYPE: Sch 40 PVC SLOT SIZE: 0.020° GRAVEL PACK: 2/12 SAND WELL COMPLETION WELL COMPLETION Dp 320 40- B 320 40-	/	EVU									PAGE 1 OF 1
Dp 320 40 6 CL CLAY: (5G 5/1); low plasticity; micaceous; medium bromothing; silty; hard; no to faint product odor. Dp 0.6 19 10 Sat ND Dry/Dp ND 16 14 CLAY: (5G 4/2); silty; blue green mottling; trace clays and; medium brown; 30-40% fines; fine to medium sand; medium dense; no product odor. CL CLAY: (5G 5/1); low plasticity; micaceous; medium bromothing; silty; hard; no to faint product odor. @8-1/2: (2.5Y 4/2); silty; blue green mottling; trace clays and; stiff; no product odor. CLAYEY SAND: medium brown; 30-40% fines; fine to medium sand; medium dense; no product odor. CLAY: (5Y 4/2); silty; low plasticity; micaceous; 10-20% blue green mottling; silf; no product odor. BOTTOM OF BORING AT 15'	,·*	CARMO		TING	ELEV		LOGO DRIL DRIL SAMI CASI SLOT GRA	GED LER: LING PLIN NG 1 SIZ VEL	BY: BAY MET G ME TYPE E: 0.	DEM LAND THOD ETHOI : Sch	DATE DRILLED: 12/15/92 DS LOCATION: 460 GRAND AVE., OAK HOLE DIAMETER: 7-1/4" HOLE DEPTH: 15' WELL DIAMETER: 2" WELL DEPTH: 15'
Dp 320 40 6		COMPLETIO	NC	MOISTURE	PID	PENETRATION (BLOWS/FT)	DEPTH (FEET)	RECOVERY SAMPLE INTERVAL	GRAPHIC	SOIL TYPE	LITHOLOGY / REMARKS
mottling; silty; hard; no to faint product odor. Sat ND Dp ND 16 14 Dp ND 16 14 Dp ND 16 18 Dp ND 16 18 Dp ND ND ND ND ND ND ND		CEMEN					_			FILL SC	CLAYEY SAND: (5GY 4/1); 15-25% fines; fine sand:
Sat Dry/Dp NiD 16 14 12 CL CLAY: (5Y 4/2); silty; low plasticity; micaceous; 10-20% blue green mottling; stiff; no product odor. BOTTOM OF BORING AT 15' 20 24 26 28 30 32 34 34 34 34 34 34 34 34 34 34 34 34 34			Y	Z Dp	320	40.	4			CL	CLAY: (5G 5/1); low plasticity; micaceous; medium brown mottling; silty; hard; no to faint product odor.
Dp ND 16 14 CL CLAY: (5Y 4/2); silty; low plasticity; micaceous; 10-20% blue green mottling; stiff; no product odor. BOTTOM OF BORING AT 15' 22 24 26 28 30 32 34		SAND				19	-			sc	1-2 cm nodules fine gray sand; stiff; no product odor
16 10-20% blue green mottling; stiff; no product odor. 18 20 24 26 28 30 32 34 34 34 36 32 34 34 36 32 34 34 36 32 34 34 36 32 34 34 36 32 34 34 34 36 32 34 34 34 34 34 34 34 34 34 34 34 34 34				Dry/		10	-				medium sand; medium dense; no product odor.
20 BOTTOM OF BORING AT 15' 22 24 26 28 30 32 32 34 34 34 34 34 34 34 34 34 34 34 34 34	į	 		Dp	ND	16	16		22	CL	CLAY: (5Y 4/2); silty; low plasticity; micaceous; 10-20% blue green mottling; stiff; no product odor.
24 — 26 — 28 — 30 — 32 — 34 — 34 — 34 — 34 — 34 — 34 — 34							4				BOTTOM OF BORING AT 15'
26 							+				•
28		-			-		+				
32		- 	-				+		ļ		
	l	- -	-\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\				30				
	Ì	-	-	.]			32	+			
							+				
		- 					+				
40 + 1	F	- 					十				·
	-	 -	-				42				E ~ FC
T. J. 44+++			<u> </u>				44				rig JU

/

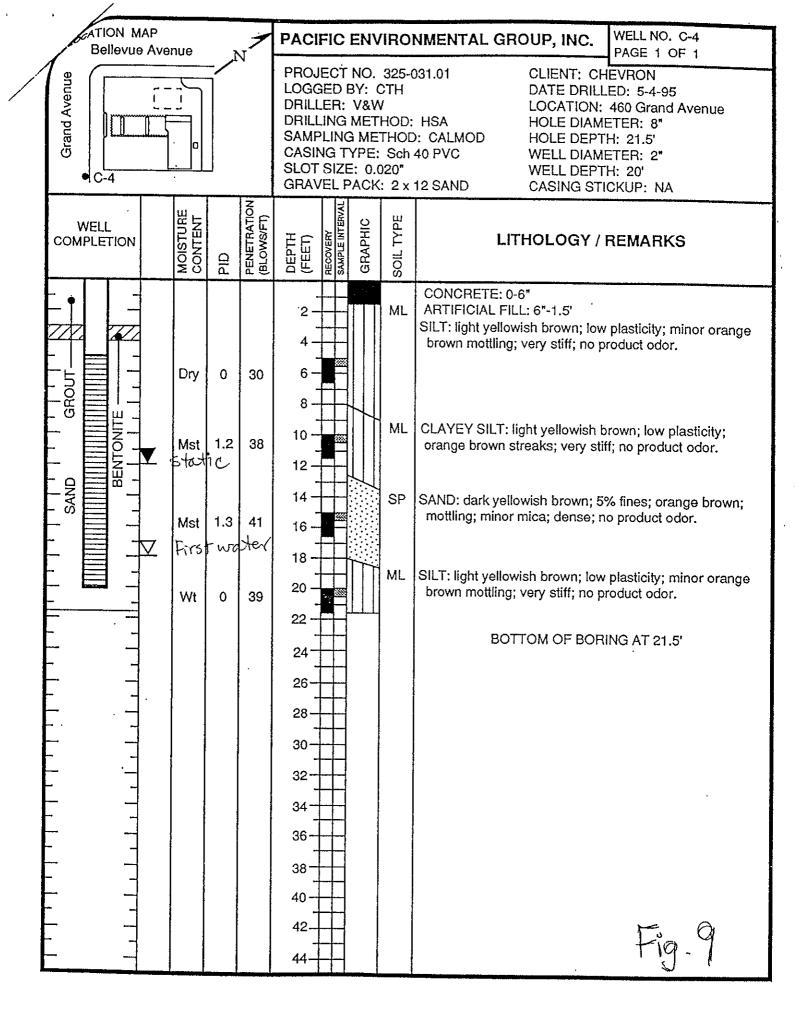


TABLE 1
SIDEWALL SOIL SAMPLE ANALYTICAL DATA

11-29-90

FUEL TANK EXCAVATION

460 Grand Avenue Oakland, California

	שנידונו ר	/ /				
Sample No.	TVPH as CGasoline (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Total Xylenes (mg/kg)	Ethyl Benzene (mg/kg)	Lead (mg/kg)
T1-1	ND	ND	0.10	ND	ND	NT
T1-2	ND	ND	0.097	ND	ND	3.8
T2-1	ND	ND	0.14	ND	ND	NT
T2-2	ND	0.019	0.065	ND	ND	ND
T3-1	ND	ND	0.220	ND	ND	NT
T3-2	ND	ND	0.063	ND	ND	3.4
Detection Limit	1.0	0.005	0.005	0.005	0.005	2.5

Notes:

TVPH = total volatile petroleum hydrocarbons mg/kg = milligram per kilogram ND = not detected at or above reporting limit NT = not tested

TABLE 2

ANALYTICAL DATA FOR WATER SAMPLE W-1

11-29-90

FUEL TANK EXCAVATION

460 Grand Avenue Oakland, California

Sample No.	TVPH as Gasoline (mg/l)	TEPH as Diesel (mg/l)	Benzene (mg/l)	Toluene (mg/l)	Total Xylenes (mg/l)	Ethyl Benzene (mg/l)
W-1	2.3 = 2,300ppl	ND	0.053 = 53ppb	0.160	0.160	0,036

Notes:

TVPH = total volatile petroleum hydrocarbons

TEPH = total extractable petroleum hydrocarbons

mg/l = milligrams per liter

ND = not detected at or above reporting limit

TABLE 3

PIPELINE TRENCH SOIL SAMPLE ANALYTICAL DATA

460 Grand Avenue Oakland, California

Sample	TVPH as Gasoline (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Total Xylenes (mg/kg)	Ethyl Benzene (mg/kg)
P-1	1,700	ND .	8.7	260	47
P-2	90	ND	1.7	4.7	0.89
P-3	ND	0.0066	0.18	0,033	0.0053
P-4	ИD	ND	0.036	0.0055	ND

Notes:

TVPH = total volatile petroleum hydrocarbons mg/kg = milligram per kilogram ND = not detected at or above reporting limit

Fuel Tank Sto Sample ID #	ckpile Samples S-1 S-2 S	S-3 S-4	S-5	S-6	S-7	S-8	
Laboratory TPH-Gas No Benzene Toluene Ethylbenzene	12/4/92superiort detected at NDND	or above t	the det	ection	limit	(ND)	
Fuel Tank Exc Sample ID # F	avation Water	Sample					
Sample Date Laboratory TPH-Gas Benzene	12/4/92 V Superior V ND V						
Toluene Ethylbenzene Xylenes Total Lead	ND ND ND		····				-
Waste Oil Ta Sample ID #	nk Excavation W-1(Soil) 57 000	and Stockp	M.L	mples 1(Wate:	r)	12-	⁽
Sample Date Laboratory TPH-Gas Benzene Toluene Ethylbenzene Xylenes TPH-Diesel Oil&Grease Nickel Cadmium Chromium Lead Zinc 8010	12/4/92: Superior ND / ND / ND /		Sup ND ND ND ND ND ND ND ND ND ND ND ND ND	4/92 perior 170 ppm		į	

Jable 2

Summary of Soil Analytical Results Total Petroleum Hydrocarbons (TPH as Gasoline and BTEX Compounds)

Former Gulf Service Station 0006 460 Grand Avenue Oakland, California

Boring Number	Sample Date	Sample Depth (feet)	TPH as Gasoline (ppm)	Benzene (ppm)	Toluene (ppm)	Ethylbenzene (ppm)	Xylenes (ppm)
C-1	12/14/92	5 - 6-1/2 8-1/2 - 10	8.6* ND	ND ND	ND ND	0.024 ND	0.012 ND
C-2	12/14/92	5 - 6-1/2 8-1/2 - 10	2,300 ND	13 ND	80 0.006	. 83 ND	440 0.017
C-3	12/15/92	5 - 6-1/2 8-1/2 - 10	0.6 ND	0.008 ND	ND ND	0.012 ND	ND ND
EB-1	12/15/92	6-1/2 - 7	3.3	0.094	0.30	0.16	0.73
Detection	Limits:	, *	0.3	0.005	0.005	0.005	0.005

TPH = Total petroleum hydrocarbons

ppm = Parts per million

ND = Not detected

^{*} A typical chromatograph pattern; see certified analytical reports.

- Table A: Analytical Summary for Over-excavation Samples (in ppm)

Waste Oil Tank Excavation Sampling Results

ı		THE EXCUPATION				1 = 3 1 =	V. J	TOUR	TOG	8010	8270	Metals	}
	Sample ID	Depth (FT)	TPH-gas_	Benzene	Toluene	Ethyl Benzene	Xylenes	TPH-D				MCLAIS	4
	WX-1 1	6	ND	ND /'	פא	ND	ND 1	2 -	ND /	ND V	, ND /		1
	WX-2 ~	5.5	ND /	ND ,	ND	D	, מא	NO /	- סא	DND /	ND /	<u> </u>	1
	WX-3	3 🗸	30	ND ,	ND	DM	0.95	1300	سستر970 تې	<u> </u>	• -		1
1//	WX-4	6	ND /	ND -	ND	ND	סא	470	ON	ND V	DO		1
	WX-5 2/	6 🗸	ND /	ND Z	סא	ND	ND 1	24	ND /-	םא בא	ND /	•	ļ
1-3-97	WX-6	6 🗸	סא /	ND -	ND	סא	NO	. 3	ND	ND -	ND -		1
1-2	WX-7	6 🗸	ND /	י מא	ND	ND	ND	14 -	אם ר	ND .	ND ~		1
ā	WX-8	6	NO	ND -	ND	ND I	ND 1	2	ND 🖍	ND /	NO am	<u> </u>	Į
, 1-5-)	WO-1	6 /	סא /	ND /	ND	ND	0.008	עס /	ND /	ע פא	ND 🗸		\mathcal{L}
	WO-2	6	ND	ND /	ND	ND	ى 0.011	No	ND /	אס ויי	ON	• • •	15
. li	WO-3	6.5	170	ND /	ND	0,35	0.34 000	e \$ 4400 /	120 -	ש סא	ND /		1
. 0	WO-4	6.5	27	. ND -	0.007	0,064	ن 0.18 ن	130	210	D M	ND -	* •)
ST	.W05 W	5	NO	ND	ND	סא	0.005	ND /	ND 🖊	NA	NA .	NA NA	2°
[]	₩0-6 L	5	5'	ND /	ND	ND	ى 0.011	17'	ND -	NA	NA NA	NA NA	1 2
	W0-7	5	16*	ND /	0.008	ND	`0.066 Q _Q	n.e. 51.	ND /	NA	NA NA	NA NA	,
1-20	WO-8 #	4.5	10*	0.005	0.007	0.007	0.031	200	ND -	NA	NA	NA	
آخ آخ	WO-9	5.5	49 /	0.077	0.71	0.99	6.43	10	ND /	• /	ND -	NA	1
1 4.)	WO-10	5	18	ND /	ND	0.084	0.38	90 /	ND /	ND /	NO /	NA .	Į.
1-21 51	WO-11	4.5	ND ON	ND	ND	ND	0.006 ι	2 /	ND -	ND /	ND	NA NA	
<u> </u>								•					

Pump Island Excavation Sampling Results

	Sample ID	Donth (ET)	TPH-gas	Benzene	Toluene	Ethyl Benzene	Xylenes
: 		Depth (FT)	ND ND	ND -	ND	ND	ND
	18-1	9 🗸	ND -	ND /	ND	מא	NO
12	18-2	7 v	, AD	DO _	ND	ND	ND
1-21,	18-3	9	ND -			0.4	2.5
1	IX-1 .	8,5	18	0.97	2.2	15	66
	IX-2	8.5	1900		11	1.9	8.7
7 41	1X-3	3 ~	390 /	1.3	5.8		
/ " \L	1X-4	87 V	84	0.89	3.2	2.6	16
ᄔ	IX-5	8 / 1	4 /	0.73	0.62	0.12	0.52
W L	IX-6	7 🗸	ND /	ND /	ND	ND	0.008
W	IX-7	7 🗸	ND /	0.015	0.013	0.017	0.068
W [IX-8	6' 🔑	1 🗸	0.023	0.21	0,056	0.38
- ∴ :√F	IX-9	7 🗸	1	0.005	0.064	0,032	0.21
<u></u>	IX-10	7.5 6.5	ND /	ND -	ND	ND	ND
<u> </u>	IX-11	5	3	V 0.6 /	0.24	0.097	0,5
/ T	~ IX-12 ~	9	2600	V 12 /	120	46	240
/ [IX-13,	5.5	21	V 0.41 /	0.077	0.19	0.13
	IX-14	10	7 ~	V 1	0.92	0.2	0.78
-94	IX-15 L	5	9 ,	1.2	1.2	0,13	0.68
} -	IX-16	9.5	780	V 3.7 /	31	20	100
·	!X-17	6	7 -	0.25	1.2	0.32	1.9
	IX-18	4	15	J 0.18 /	0.49	0.52	3.1
	IX-19	8.5	ND /	0.11	0.01	0.055	0.029
·	IX-20	5	ND	ND /	0,006	ND	0.008
	IX-21	6	900	1.7	35	16	110
1-21 1	IX-22	6	14	0.26	0.94	0.17	1.5

highest hits:

1,300 TPHd WX-3 3'bs

970 TOG WX-3

2,600 TPHg 1X-12 9'bs

12 benzene 1X-12 "

^{* =} see certified analytical reports H17-S

NA = analysis not requested

ND = not detected

TPH-gas = Total petroleum hydrocarbons calculated as gasoline TPH-D = Total petroleum hydrocarbons calculated as diesel

TOG = Total oil and grease

和語: Analytical Summary for Hoist & Sump Excavation Samples (in ppm)

Hoist Sampling Results

1200	Sample ID	Depth (FT)	TPH-gas	Benzene	Toluene	Ethyl Benzene	Xylenes	TPH-D	TOG	8010	8270	Metals
1-2-77	N-K	7 /	ND	ND	ND	ND	ND	ND ·	ND	ND -	ND	•
`	H-S	8	ND	ND	ND	ND	ND	ND	ND	ND -	ZZ	• •

Oil-Water Separator Sampling Results

. [Sample ID	Depth (FT)	TPH-gas	Benzene	Toluene	Ethyl Benzene	Xylenes	TPH-D	TOG	8010	8270	Metals
1-3-94	SM-B	. 7	NO	ND	ND	ND	ND	ND -	ND /	ND -	ND	
, , , ,	SM-1	5 /	1	ND -	ND	ND	0.012	10 -	ND -	اب ٠٠	NO -	•
[SM-2	5	NO /	NO ,	ND	מא	ND	3 .	NO	NO 64	ND /	
[SM-3 /	5	NO	ND	ND	ND	ND	5	. ND .	ND 4	_ DN _	•

Vhits left in place

Table S. Analytical Summary for Stockpile Samples (in ppm)

Stockpile Sampling Results

1,004,01	Sample ID	TPH-gas	Benzene	Toluene	Ethyl Benzene	Xylenes	TPH-D	TOG	8010	8270	Metals
waste oils	** SP-2a-d	47.	ND /	0.093	0.26	1.9	1200	2500	• /	ND _	7
	5P-3a-0	33.	NO	0.065	0.54	0.17	220	100 -	/	ND /	ŗ -
1-5-947	SP-4a-d /	150	NO	3	3	20	NA NA	NA	NA	NA	ND
(1-3-7/7/	SP-5a-d	1300 🖊	0.8	30	21	120	NA NA	NA	NA	NA	NA
	SP-6a-d	2600	1.8	86	40	230	NA NA	NA	NA	NA	NA
11-20 11	\$P-7a-d	130*	מא /	2.2	2.9	20	NA NA	NA	NA	NA	NA
b (' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	SP-8a-d	180*	ND	1.4	3.5	27	NA	NA	, NA	NA	NA.
Pisland											

Aerated Stockpile Sampling Results

	Sample ID	TPH-gas	Benzene	Toluene	Ethyl Benzene	Xylenes
-195	5P-4a-d	33	ND /	0.096	0,086	1
う	SP-5a-d	88	0.006	0.19	0.19	2.4
(ASP-6a-d	36	ND /	0.11	0,067	0.72
218	ASP-7a-d	53	ND .	0,059	0.23	1.8
769	ASP-8a-d	14	0.29	0.89	0.27	1.3

*= see certified analytical reports
NA = analysis not requested
ND = not detected
TPH-gas = Total petroleum hydrocarbons calculated as gasoline
TPH-D = Total of roleum hydrocarbons calculated as diesef
TOG = Total oil and grease

Table 1. Water Level Data and Groundwater Analytical Results - Former Gulf Service Station 0006, 460 Grand Avenue, Oakland, California

Well ID/ TOC (ft)	Date	DTW (ft)	GWE (msl)	Product Thickness* (ft)	TPH(G) <	В	τ	E	x	MTBE>
						-				
C-1/	12/16/92 ^{2,3,4,3}	5.68	16.80	0	<50	<0.5	<0.3	<0.3	<0.4	
22.48¹	6/22/94	5.55	16.93	0	<50	<0.5	<0.5	<0.5	<0.4	_
	9/26/94	6.07	16.41	ő	<50	<0.5	<0.5	<0.5	· <0.5	
	12/12/94	5.28	17.20	o	<50	2.9	3.8		<0.5	
	3/22/95	2.86	19.62	0	<50	<0.5	<0.5	<0.5 <0.5	<0.5	_
	6/5/95	4.86	17.62	0	<50	<0.5	<0.5			
	9/20/95	5.82	16.66	. 0	<50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	
	12/12/95	5.50	16.98	0	<50	< 0.50				- 0.7
	בל ובנו ובנ	520		<i>y</i> 0	<30	<0.50	< 0.50	<0.50	< 0.50	8.7
C-2/	12/16/922.3.6,7	7.49	13.00	0	640	- 63	83	37	90	
20,491	6/22/94	5.48	15.01	0	200	2.8	4.5	1.5	15	
	9/26/94	6.02	14.47	0	<50	1.1	1.1	< 0.5	0.5	
	12/12/94	5.17	15.32	. 0	77	(2.8	4.6	3.4	15	
	3/22/95	2.60	17.89	0	590	< 0.5	< 0.5	38	130	-
	6/5/95	5.29	15.20	0	<50	< 0.5	< 0.5	1.9	4.9	_
	9/20/95	5.59	14.90	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/12/95	5.17	15.32	0	80	0.93	< 0.50	< 0.50	< 0.50	5.1
C-3/	12/16/922.3,5,6	5.17	17.34	0	<50	< 0.4	< 0.3	<0.3	< 0.4	
22.511	6/22/94	5.10	17.41	0	140	5.6	3	4.2	4.4	_
	9/26/94	5.66	16.85	0	51	4.2	4.2	0.7	1.5	
	12/12/94	4.60	17.91	0	<50	2.6	3.6	1.1	4.2	
	3/22/95	2.31	20.20	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	6/5/95	4.61	17.90	0	<50	0.6	< 0.5	< 0.5	< 0.5	
	9/20/95	5.09	17.42	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/12/95	4.65	ل / _ 17.86	. 0	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.91
C-4/										
18.449	6/5/95	7.24	11.20	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	9/20/95	7.31	11.13	0	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/12/95	6.88	11.56	0	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.60
rip Blank										
TB-LB	6/22/94				<50	< 0.5	<0.5	< 0.5	< 0.5	
	9/26/94				<50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/12/94				<50	< 0.5	< 0.5	< 0.5	< 0.5	
	3/22/95				<50	< 0.5	< 0.5	< 0.5	< 0.5	
	6/5/95	·			<50	< 0.5	< 0.5	< 0.5	< 0.5	
	9/20/95			~~~	<50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/12/95				<50	<0.50	< 0.50	< 0.50	< 0.50	< 0.60

Water Level Data and Groundwater Analytical Results - Former Gulf Service Station 0006, 460 Grand Avenue, Oakland, California (continued)

EXPLANATION:

DTW = Depth to water

TOC = Top of casing elevation

GWE = Groundwater elevation

TPH(G) = Total Purgeable Petroleum Hydrocarbons as Gasoline

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

MTBE = Methyl-teritary-butyl ether

ppb = Parts per billion

- Not analyzed/not applicable

ANALYTICAL METHODS:

TPH(G) = EPA Method 8015/5030

BTEX = EPA Method 8020

MTBE = EPA Method 8020

NOTES:

Water level elevation data and laboratory analytic results prior to March 22, 1995 were compiled from Quarterly Monitoring Reports prepared for Chevron by Sierra Environmental Services.

NOTES: (continued)

- Product thickness was measured with an MMC flexi-dip interface probe on and after June 22, 1994.
- 1_ TOC elevation is actually top of box elevation.

TPH(D) was also analyzed but not detected at detection limits of 50 ppb.

Motor oil was also analyzed but not detected at detection limits of 200 ppb.

Cadmium, chromium, lead, nickel and zinc were also analyzed but not detected at

- detection limits of 0.005, 0.01, 0.05, 0.02, and 0.01 ppm, respectively.

 Analysis by EPA method 8010 for Halogenated Volatile Organic Compounds (HVOCs)
- was also performed. HVOCs were not detected at detection limits of 0.2 to 4.0 ppb.

 6 Cadmium, chromium, lead, nickel and zinc were also analyzed. Chromium, Nickel and zinc were detected at 0.05, 0.08 and 0.08 ppm, respectively. Other metals not detected.

Analysis by EPA method 8010 for HVOCs was also performed. 1,2-Dichloroethane was detected at 3.5 ppb. Other HVOCs were not detected at detection limits of 0.2 to 4.0 ppb.

- Cadmium, chromium, lead, nickel and zinc were also analyzed. Chromium, lead, nickel and zinc were detected at 0.19, 0.07, 0.36 and 0.38 ppm, respectively. Cadmium was not detected at detection limits of 0.005 ppm.
- TOC for well C-4 was surveyed June 9, 1995 by Mission Engineers of Santa Clara, California.

5208.TQM