ENVIRONMENT & INFRASTRUCTURE

12 METRO PARK ROAD ALBANY, NEW YORK 12205 (518) 458-1313

Fax: (518) 458-2472

FAX TRANSMISSION COVER SHEET

Date:

March 3, 1995

To:

Barney Chan

Fax:

Re:

Post-Excavation Sample Results

Sender:

Edward W. Alusow

Here are draft summary tables and draft sample location maps for the post-excavation analytical results from the recent work performed at the former ANC Oakland facility. We are preparing a report for submittal to DTSC.

YOU SHOULD RECEIVE 17 PAGE(S), INCLUDING THIS COVER SHEET. IF YOU DO NOT RECEIVE ALL THE PAGES, PLEASE CALL 518-437-8373.

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 1- 1

Solder Dross Storage Area Semi-Volatile Organic Compounds (EPA Method 8270)

Sample ID		SDSA-								
Compound	RL	2/24/01	2/24/02	2/24/03	2/24/04	2/24/05	2/24/06	2/24/07	2/24/08	2/24/09
N-Nitrosodimethylamine	330	ND								
Phenol	330	ND								
Aniline	330	ND								
bis(2-Chloroethyl)Bther	330	ND								
2-Chlorophenol	330	ND								
1,3-Dichlorobenzene	330	ND	ND	ND .	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	330	ND								
Benzyl Alcohol	330	ND								
2-Methylphenol	330	ND								
1,2-Dichlorobenzene	330	ND								
2,2'-oxybis(1-Chloropropane)	330	ND								
4-Methylphenol	330	DN	ND							
N-Nitroso-di-n-propylamine	330	ND								
Hexachloroethane	330	ND	ND	'ND	ND	ND	ND	ND	ND	ND
Nitrobenzene	330	ND								
Isophorone	330	ND								
2,4-Dimethylphenol	330	ND								
2-Nitrophenol	330	ND .	ND							
Benzoic Acid	1700	ND								
bis(2-Chloroethoxy)methane	330	ND								
2,4-Dichlorophenol	330	ND								
1,2,4-Trichlorobenzene	330	ND								
Naphthalene	330	ND								
4-Chloroaniline	330	ND								
Hexachlorobutadiene	330	ND								
4-Chloro-3-Methylphenol	330	ND								
2-Methylnaphthalene	330	ND								
Hexachlorocyclopentadiene	330	ND								
2.4,6-Trichlorophenol	330	ND								
2.4.5-Trichlorophenol	1700	ND.	ND	ND	ND	ND	ND	ND	ND (ND
2-Chloronaphthalene	330	ND								
2-Nitroaniline	1700	ND								
Dimethylphthalate	330	ND								
2,6-Dinitrotoluene	330	ND								
Acenaphthylene	330	ND								
3-Nitroaniline	1700	ND								
Аселарителе	330	ND								
2,4-Dinitrophenol	1700	ND								
4-Nitrophenol	1700	ND								
Dibenzofuran	330	ND								
2,4-Dinitrotoluene	330	ND								

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 1- 1

Solder Dross Storage Area Semi-Volatile Organic Compounds (EPA Method 8270)

Sample ID		SDSA-	SDSA-	SDSA-						
Compound	RL	2/24/01	2/24/02	2/24/03	2/24/04	2/24/05	2/24/06	2/24/07	2/24/08	2/24/09
Diethylphthalate	330	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
4-Chlorophenyl-phenylether	330	ND	ND	ND						
Pluorene	330	ND	ND	ND						
4-Nitroaniline	1700	ND	ND	ND						
4,6-Dinitro-2-methylphenol	1700	ND	ND	ND ND						
N-Nitrosodiphenylamine	330	ND	ND	ND						
Azobenzene	330	ND	ND							
4-Bromophenyl-phenylether	330	ND	ND	ND ND						
Hexachlorobenzene	330	ND	ND	ND	ND	ND	ND	ND ND	ND	
Pentachlorophenol	1700	ND	· ND	ND	ND	ND	ND	ND	ND	ND ND
Phonanthrone	330	ND	ND	ND ND						
Anthracene	330	ND	ND ND	ND ND						
Di-n-butylphthalate	330	ND	ND	ND ND						
Fluoranthene	330	ND	ND	ND ND						
Benzidine	330	ND	ND ND	ND ND						
Pyrene	330	ND	ND ND	ND						
Butylbenzylphthalate	330	ND	ND	ND	ND	ND	ND	ND.	ND	ND ND
bis(2-Bthylhexyl)phthalate	330	ND	ND	370	ND	470	ND	ND ND	ND	ND ND
3,3'-Dichlorobenzidine	670	ND	ND							
Benzo(a)anthracene	330	ND	ND	ND						
Chrysene	330	ND	ND	ND						
Di-n-octylphthalate	330	ND	ND	ND ND						
Benzo(b)fluoranthene	330	ND	ND							
Benzo(k)fluoranthene	330	ND	i i	ND						
Benzo(a)pyrene	330	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND
Inderlo(1,2,3-cd)pyrene	330	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene	330	ND	ND	ND	ND	ND	i i	1	ND	ND
Benzo(g,h,i)perylene	330	ND	ND	ND	ND .	ND	ND ND	ND	ND	ND
	220 [1472	140	1417	TAD .	אואי	ND	ND	ND	ND

All results expressed in ug/Kg.

DUP: Duplicate Sample

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 1-2

Solder Dross Storage Area Semi-Volatile Organic Compounds (EPA Method 8270)

Sample II	וכ	SDSA-	SDSA-	SDSA-	SDSA-	SDSA-	1	SDSA-10
Compound	RL	2/24/10	2/24/11	2/24/11D	2/24/12E	2/24/13E	RL	(DUP.)
N-Nitrosodimethylamine	330	ND	ND	ND	DN	ND	250	ND
Phenol	330	ND	ND	ND	ND	ND	250	ND
Aniline	330	ND	ND	ND	ND	ND	250	ND
bis(2-Chloroethyl)Ether	330	ND	ND	ND	ND	ND	250	ND
2-Chlorophenol	330	ND	ND	ND	ND	ND	250	ND
1,3-Dichlorobenzene	330	ND	ND	ND	ND	ND	250	ND
1.4-Dichlorobenzene	330	ND	ND	ND	ND	ND	250	ND
Benzyl Alcohol	330	ND	ND	ND	NĎ	ND	250	מא
2-Methylphenol	330	ND	ND	ND	ND	ND	250	ND
1,2-Dichlerobenzene	330	ND	ND	ND	ND	ND	250	ND I
2.2'-oxybis(1-Chloropropane)	330	ND	ND	ND	ND	ND	250	ND
4-Methylphenol	330	ND	ND	ND	ND	ND	250	ND
N-Nitroso-di-n-propylamine	330	ND	ND	ND	ND	ND	250	ND
Hexachlorosthane	330	ND	ND	ND	ND	ND	250	ND
Nitrobenzane	330	ND	ND	ND	ND	ND	250	ND
Isophorone	330	ND	ND	ND	ND	ND	250	ND
2,4-Dimethylphenol	330	ND	ND	ND	ND .	ND	250	ND
2-Nitrophenol	330	ND	ND	ND	ND	ND	250	ND
Benzoie Acid	1700	ND	ND	ND	ND	ND	500	ND
bis(2-Chloroethoxy)methane	330	ND	ND	ND	ND	ND	250	ND
2,4-Dichlorophenol	330	ND ·	ND	ND	ND	ND	250	ND
1,2,4-Trichlorobenzene	330	ND	ND	ND	ND	ND	250	ND
Naphthalene	330	ND	ND	ND	ND	ND	250	· ND
4-Chloroaniline	1700	ND	ND	ND	ND	ND	500	ND
Hexachlorobutadiene	330	ND .	ND	ND	ND	ND	250	ND
4-Chloro-3-Methylphenol	330	ND	ND	ND	ND	ND	250	ND
2-Methylnaphthalene	330	ND	ND	ND	ND	ND	250	ND
Hexachlorocyclopentadiene	1700	ND	ND	ND	ND	ND	500	ND
2,4,6-Trichlorophenol	330	ND	ND	ND	ND	ND	250	ND
2,4,5-Trichlorophenol	1700	ND	ND	ND	ND	ND	500	ND
2-Chloronaphthalene	330	ND	ND	ND	ND	ND	250	ND
2-Nitroaniline	1700	ND	ND	ND	ND	ND	500	ND
Dimethylphthalate	330	ND	ND	ND	ND	ND	250	ND
2,6-Dinitrotoluene	330	ND	ND	ND	ND	ND	250	ND
Acenaphthylene	330	ND	ND	ND	ND	ND	250	ND ND
3-Nitroaniline	1700	ND	ND	ND	ND	ND	500	ND
Acenaphthene	330	ND	ND	ND	ND	ND	250	ND ND
2,4-Dinitrophenol	1700	ND	ND	ND	ND ND	ND	500	ND ND
1-Nitrophenol	1700	ND	ND	ND	ND ND	ND	500	ND ND
Dibenzofuran	330	ND	ND	ND	ND	ND	250	ND
2,4-Dinitrotoluene	330	ND	ND	ND	ND	ND	250	ND ND

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 1- 2

Solder Dross Storage Area Semi-Volatile Organic Compounds (EPA Method 8270)

Sample II)	SDSA-	SDSA-	SDSA-	SDSA-	SDSA-		SDSA-10
Compound	RL	2/24/10	2/24/11	2/24/11D	2/24/12E	2/24/13E	RL	(DUP.)
Dicthylphthalate	330	ND	ND	. ND	ND	ND	250	ND
4-Chlorophenyl-phenylether	330	ND	ND	ND	ND	ND	250	ND
Fluorene	330	ND	ND	ND	ND	ND	250	ND
4-Nitroaniline	1700	ND	ND	ND	ND	ND	500	ND
4.6-Dinitro-2-methylphenol	1700	ND	ND	-ND	ND	ND	500	ND
N-Nitrosodiphenylamine	330	ND	ND	ND	ND	ND	250	ND
Azobenzene	330	ND	ND	ND	ND	ND	250	ND
4-Bromophenyl-phenylether	330	ND	ND	ND	ND	ND	250	ND
Hexachlorobenzene	330	ND	ND	ND	ND	ND	250	ND
Pentachlorophenol	1700	ND	ND	ND	ND	ND	500	ND
Phenanthrene	330	ND	ND	ND	ND	ND	250	ND
Anthracene	330	ND	ND 1	ND	ND	ND	250	ND
Di-n-butylphthalate	1700	ND	ND	ND	ND	ND	500	ND
Fluoranthene	330	ND	ND	ND	ND	ND	250	ND
Benzidine	330	ND	ND	ND	ND	ND	250	ND
Pyrene	330	ND	ND	ND	ND	ND	250	ND
Butylbenzylphthalate	330	ND	ND	ND	ND	ND	250	ND
bis(2-Ethylhexyt)phthalate	1700	ND	3900	4000	ND	ND	500	ND
3,3'-Dichlorobenzidine	1700	ND	ND	ND	ND	ND	500	ND
Benzo(a)anthracene	330	ND	ND	ND	ND	ND	250	ND
Chrysene	330	ND	ND	ND.	ND	ND	250	ND
Di-n-octylphthalate	330	ND	ND	ND	ND	ND	250	ND
Benzo(b)fluoranthene	330	ND	ND	ND '	ND	ND	250	ND
Benzo(k)fluoranthens	330	ND	ND	ND	ND	ND	250	ND
Benzo(a)pyrene	330	ND	ND	ND	ND	ND	250	ND ND
Indono(1,2,3-cd)pyrene	330	ND	ND	ND	ND	ND	250	ND
Dibenz(a,h)anthracene	330	ND	ND	ND	ND	ND	250	ND
Benzo(g,h,i)perylene	330	ND	ND	ND	ND	ND	250	ND

All results expressed in ug/Kg.

DUP: Duplicate Sample.

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 2-1

Drum Storage Area Semi-Volatile Organic Compounds (EPA Method 8270)

Sample l		DSA-								
Compound	RL	2/26/01	2/25/02	2/25/03	2/25/04	2/25/05	2/25/06	2/25/07	2/25/08	2/25/09
N-Nitrosodimethylamine	330	ND								
Phenol	330	ND	ND	I ND	ND	ND	ND	ND	ND	ND
Aniline	330	ND								
bia(2-Chloroethyl)Ether	330	ND								
2-Chlorophenol	330	ND								
1,3-Dichlorobenzene	330	ND								
1.4-Dichlorobenzene	330	ND	סמ							
Benzyl Alcohol	330	ND	ND	ND	NĐ	ND	ND	ND	ND	ND
2-Methylphenol	330	ND								
1,2-Dichlorobenzene	330	ND								
2,2'-oxybis(1-Chloropropane)	330	ND								
4-Methylphenol	330	ND								
N-Nitroso-di-n-propylamina	330	ND								
Hexachloroethane	330	ND								
Nitrobenzene	330	ND								
Isophorone	330	ND								
2.4-Dimethylphenol	330	ND								
2-Nitrophenol	330	ND	ND .	ND	ND	ND	ND	ND .	ND	ND
Benzoic Acid	1700	ND								
bis(2-Chlomethoxy)methane	330	ND								
2,4-Dichlorophenol	330	ND								
1,2,4-Trichlorobenzene	330	ND								
Naphthalene	330	ND								
4-Chloroaniline	330	ND								
Hexachlorobutadiene	330	ND								
4-Chloro-3-Methylphenol	330	ND								
2-Methylnaphthalene	330	ND								
Hexachlorocyclopentadiene	330	ND								
2,4.5-Trichlorophenol	330	ND	ND I	ND						
4,5-Trichlorophenol	1700	ND	ND ND	ND						
2-Chloronaphthalene	330	ND								
-Nitroaniline	1700	ND								
Difflethylphthalate	330	ND								
1,6-Dinitrotoluene	330	ND								
Acenaphthylene	330	ND	מא כנא							
l-Nitroaniline	1700	ND								
Acchaphthene	330	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
4-Dinitrophonol	1700	ND								
-Nitrophenol	1700	ND	ND ND	ND						
Dibenzofuran	330	ND	ND ND							
4-Dinitrotoluene	330	ND	ND ND							

Former Oakland, California Facility
Closure of RCRA Storage Units
Summary of Laboratory Analytical Data

Table 2-1

Drum Storage Area
Semi-Volatile Organic Compounds (EPA Method 8270)

Sample II)	DSA-	DSA-							
Compound	RL	2/26/01	2/25/02	2/25/03	2/25/04	2/25/05	2/25/06	2/25/07	2/25/08	2/25/09
Diethylphthalate	330	ND	ND							
4-Chlorophenyl-phenylether	330	ND	ND							
Fluorene	330	ND	מא	ND						
4-Nitroaniline	1700	ND	ND	ND	ND .	ND	ND	ND	ND	ND
4.6-Dinitro-2-methylphenol	1700	ND	ND ND							
N-Nitrosodiphenylamine	330	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND
Azobenzene	330	ND	ND ND	ND ND						
4-B.omophenyl-phenylether	330	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND
Hexachlorobenzene	330	ND .	ND	ND	ND	ND	ND.	ND	ND	ND ND
Pen achlorophenol	1700	ND	ND I	ND ND						
Phonanthrono	330	ND	ND ·	ND	ND	ND	ND	ND ND	ND	ND ND
Anthracene	330	ND	ND ND							
Di-n-butylphthalate	330	ND	ND ND	ND ND						
Phioranthone	330	ND	ND							
Benzidine	330	ND	ND							
Pyréne	330	ND	ND							
Bufylbenzylphthalate	330	ND	ND ND	ND						
bis(2-Ethylhexyl)phthalate	330	ND	ND I	ND						
3.3' Dichlerobenzidine	670	ND	ND							
Berizo(a)anthracene	330	ND	ND ND	ND ND						
Chrysene	330	ND	ND							
Di-n-octylphthalate	330	ND	ND							
Benzo(b)fluoranthene	330	ND	ND ND							
Benzo(k)fluoranthene	330	ND	ND ND	ND ND						
Велго(в)ругеле	330	ND	ND ND							
Indeno(1,2,3-cd)pyrene	330	ND	ND ND	ND ND						
Dibenz(a,h)anthracens	330	מא	ND	ND	ND	ND	ND	ND	ND ND	ND ND
Benzo(g,h,i)perylene	330	ND	ND ND							

All results expressed in ug/Kg.

DUP: Duplicate Sample.

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 2-2

Drum Storage Area Semi-Volatile Organic Compounds (EPA Method 8270)

Sample ID		DSA-	DSA-	DSA-	DSA-	DSA-	DSA-	DSA-	DSA-	1 704
Compound	RL	2/26/10	2/26/11	2/26/12	2/26/13		2/26/14B	2/26/15	2/26/16	DSA-
N-Nitrosodimethylamine	330	ND	ND	ND	ND	ND	ND	ND	ND	2/26/17 ND
Phenol	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aniline	330	l ND	ND	ND	ND	ND	ND	ND	ND	
bis(2-Chlorocthyl)Ether	330	ND	ND	ND	ND	ND I	ND	ND	ND	ND ND
2-Chlorophenol	330	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1.3-Dichlorobenzene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
1,4-Dichlorobenzene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzyl Alcohol	330	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
2-Methylphenol	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichlorobenzene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
2,2 -oxybis(1-Chloropropane)	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	330	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
N-Nitroso-di-n-propylamine	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	330	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Nitrobenzene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	330	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND
2.4-Dimethylphenol	330	ND	ND	ND !	ND	ND	ND	ND	ND	ND ND
2-Nitrophenol	330	ND	מא	ND	ND	ND	ND	ND	ND	ND
Benzoic Acid	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
bis(2-Chloroethoxy)methane	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.4-Dichlorophenol	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	330	ND (ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-Methylphenol	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4.6-Trichlorophenol	330	ND	ND	ND ·	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	330	_ ND	ND	ND	ND	ND	ND	ND	ND	ND

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 2-2

Drum Storage Area Semi-Volatile Organic Compounds (EPA Method 8270)

Sample ID		DSA-	DSA-	DSA-	DSA-	DSA-	DSA-	DSA-	DSA-	DOA
Compound	RL	2/26/10	2/26/11	2/26/12	2/26/13		2/26/14B	2/26/15	2/26/16	DSA- 2/26/17
Diethylphthalate	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl-phenylether	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	1700	ND	ND	ND	ND	ND .	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Azobenzene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl-phenylether	330	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Hexachlorobenzene	330	ND	ND	ND	ND	ND	ND	ND .	ND	ND
Pentachlorophenol	1700	ND.	ND	ND	ND	ND	ND	ND	ND	ND
Phonanthrene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	330	ND	ND	ND	ND	ND	ND	ND .	ND ND	ND ND
Di-n-butylphthalate	330	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Fluoranthene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzidine	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene .	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butylbenzylphthalate	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	330	ND	ND	ND	ND	ND	ND	ND	ND	ND I
3.3'-Dichlorobenzidine	670	ND	ND	ND	ND [ND	ND	ND	ND	ND
Benzo(a)anthracene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octylphthelatc	330	' מא	מא	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Вепzо(а)рутеле	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenz(a,h)anthracene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND I
Benzo(g,h,i)perylene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND

All results expressed in ug/Kg.

DUP: Duplicate Sample.

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 2-3

Drum Storage Area

Semi-Volatile Organic Compounds (EPA Method 8270)

Sample)	D	DSA-	DSA-	DSA-	DSA-	DSA-	DSA-	DSA-	DSA-	DSA-
Compound	RL	2/26/18	2/26/19	2/26/20	2/26/21	2/26/22	2/26/23	2/26/24	2/26/25	
N-Nitrosodimethylamine	330	ND	ND	ND	ND	ND	ND	ND	ND	2/26/26 ND
Phenol	330	ND	ND	ND	ND	ND	ND	ND	ND	3
Aniline	330	ND.	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Chloroethyl)Bther	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	330	ND	ND .	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	330	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Benzyl Alcohol	330	ND	ND	ND	ND	ND	ND	ND	ND ND	. ND
2-Methylphenol	330	ND	ND	ND	ND	ND	ND	ND		ND
1,2-Dichlorobenzene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2'-oxybis(1-Chloropropane)	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	330	. ND	ND	ND	ND	ND			ND	ND
N-Nuroso-di-n-propylamine	330	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND
Hexachloroethane	330	ND	ND ND	ND	ND	ND	ND	, ND	ND	ND
Nitrobenzene	330	ND	ND	ND	ND	ND ND		ND	ND	ND
Isophorone	330	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND
2,4-Dimethylphenol	330	ND	ND	ND	ND		ND	ND	ND	ND
2-Nitrophenol	330	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND
Benzoie Acid	1700	ND	ND ND	ND		ND	ND	ND	ND	ND
bis(2-Chlorocthoxy)methane	330	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	330	ND	ND		ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	330	ND ND		ND ND	ND	ND	ND	ND	ND	ND
Vaphthalene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
-Chloroaniline	330		ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
-Chloro-3-Methylphenol	330	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
lexachlorocyclopentadiene	330	ND	ND	ND	ND	ND	ND	ND]	ND	ND
2,4,6-Trichlorophonol	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4,5-Trichlorophenol	1 1	ND	ND	ND	ND	ND	ND	ND	ND	ND
-Chloronaphthalone	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND
-Cinoronaphunaiene -Nitroaniline	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
.6-Dinitrotoluene	330	ND	ND	ND	ND	ND	ND	ND	ND .	ND
Accnaphthylene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
-Nitroaniline	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND
cenaphthene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
,4-Dinitrophenol	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND
-Nitrophenol	1700	ND	ND	ND	ND	ND	ND	ND	ND	ND
ibenzofuran	330	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Dinitrotoluene	330	ND	ND	ND	ND	ND	ND	ND	ND	ND

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 2-3

Drum Storage Area Semi-Volatile Organic Compounds (EPA Method 8270)

Sample ID	,	DSA-								
Compound	RL	2/26/18	2/26/19	2/26/20	2/26/21	2/26/22	2/26/23	2/26/24	2/26/25	2/26/26
Diethylphthalate	330	ND								
4-Chlorophenyl-phenylether	330	ND								
Fluorene	330	ND								
4-Nitroaniline	1700	ND								
4,6-Dinitro-2-methylphenol	1700	ND								
N-Nitrosodiphenylamine	330	ND								
Azobenzene	330	ND								
4-Bramophenyl-phenylether	330	ND								
Hexachlorobenzene	330	ND								
Pentachlorophenol	1700	ND								
Phenanthrene	330	ND								
Anthracene	330	ND	· ND	ND	ND	ND	ND	ND	ND ND	ND
Di-n-butylphthalate	330	ND	ND]	ND						
Pluoranthene	330	ND								
Benzidine	330	ND								
Pyrene	330	ND								
Butylbenzylphthalate	330	ND	ND	ND	ND	ND	ŅD	ND	ND	ND
bis(2-Ethylhexyl)phthalate	330	ND								
3,3'-Dichlorobenzidine	670	ND								
Benzo(a)anthracene	330	ND								
Chrysene	330	ND								
Di-n-octylphthalate	330	ND								
Benzo(b)fluoranthene	330	ND								
Benzo(k)fluoranthene	330	ND								
Benzo(a)pyrene	330	ND								
Indeno(1,2,3-ed)pyrene	330	ND								
Dibenz(a,h)anthracene	330	ND								
Benzo(g,h,i)perylene	330	ND								

All results expressed in ug/Kg.

DUP: Duplicate Sample.

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 2-4

Drum Storage Area - Duplicate Samples
Semi-Volatile Organic Compounds (EPA Method 8270)

Sample ID	1	DSA-1	DSA-7	DSA-18	DSA-23	7
Compound	RL	(DUP.)	(DUP.)	(DUP.)	(DUP.)	
N-Nitrosodimethylamine	250	ND	ND	ND	ND	1
Phenol	250	ND	ND	ND	ND	
Aniline	250	ND	ND	ND	ND	l
bis(2-Chloroethyl)Ether	250	ND	ND	ND	ND	ı
2-Chlorophenol	250	ND	ND	ND	ND	ı
1,3-Dichlorobenzene	250	ND	ND	ND	ND	l
1,4-Dichlorobenzene	250	ND	ND	ND	ND	l
Benzyl Alcohol	250	ND	ND	ND	ND	ĺ
2-Methylphenol	250	ND	ND	ND	ND	l
1,2-Dichlorobenzene	250	ND	ND	ND	ND	l
2,2'-oxybis(1-Chloropropane)	250	ND	ND	ND	ND	ı
4-Methylphenol	250	ND	ND	ND	ND	
N-Nitroso-di-n-propylamine	250	ND	ND ·	ND	ND	
Hexachloroethane.	250	ND	ND	ND	ND	
Nitrobenzene	250	ND	ND	ND	ND	
Isophorone	250	ND	ND	ND	ND	
2,4-Dimethylphenol	250	ND	ND	ND	ND	
2-Nitrophenol	250	ND	ND	ND	ND	1
Benzoic Acid	500	ND	ND	ND	ND	
bis(2-Chloroethoxy)methane	250	ND	ND	ND	ND	
2,4-Dichlorophenol	250	ND	ND	ND	ND	
1,2,4-Trichlorobenzene	250	ND	ND	ND	ND	
Naphthalene	250	ND	ND	ND	ND	
4-Chloroaniline	500	ND	ND	ND	ND	
Hexachlorobutadiene	250	ND	ND	ND	ND	
4-Chloro-3-Methylphenol	250	ND	ND	ND	ND	
2-Mothylnaphthalone	250	ND	ND	ND	ND	
Hoxachlorocyclopentadiene	500	ND	ND	ND	ND	
2,4,6-Trichlorophenol	250	ND	ND	ND	ND	
2,4,5-Trichlorophenol	500	ND	ND	ND	ND	
2-Chloronaphthalene	250	ND	ND	ND	ND	
2-Nitroaniline	500	ND	ND (ND	ND	
Dimethylphthalate	250	ND	ND	ND	ND	
2,6-Dinitrotoluene	250	ND	ND	ND	ND	
Acenaphthylene	250	ND	ND	ND	ND	
3-Nitroaniline	500	ND	ND	ND	ND	
Acenaphthenc	250	ND	ND	ND	ND	
2,4-Dinitrophenol	500	ND	ND	ND	ND	
4-Nitrophenol	500	ND	ND	ND	ND	
Dibenzofuran	250	ND	ND	ND	ND	
2,4-Dinitrotoluene	250	ND	ND	ND	ND	

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 2-4

Drum Storage Area - Duplicate Samples
Semi-Volatile Organic Compounds (EPA Method 8270)

Sample ID	1	DSA-1	DSA-7	DSA-18	DSA-23
Compound	RL	(DUP.)	(DUP.)	(DUP.)	(DUP.)
Diethylphthalate	250	ND	ND	ND	ND
4-Chlorophonyl-phenylether	250	ND	ND	ND	ND
Fluorene	250	ND	ND	ND	ND
4-Nitroaniline	500	ND .	ND	ND	ND
4,6-Dinitro-2-methylphenol	500	ND	ND	ND	ND
N-Nitrosodiphenylamine	250	ND	ND	ND	ND
Azobenzene	250	ND	ND	ND	ND
4-Bromophenyl-phenylether	250	ND	ND	ND	ND
Hexachlorobenzene	250	ND	ND	ND	ND
Pentachlorophenol	500	ND	ND	ND	ND
Phenanthrene	250	ND	ND	ND	ND
Anthracene	250	ND	ND	ND	ND
Di-n-butylphthalate	500	ND	ND	ND	ND
Fluoranthene	250	ND	ND	ND	ND
Benzidine ·	250	ND	ND	ND	ND
Pyrone	250	ND	ND	ND	ND
Butylbenzylphthalate	250	ND	ND	ND	ND
bis(2-Bthylhexyl)phthalate	500	ND	ND	ND	ND
3,3'-Dichlorobenzidine	500	ND	ND	ND	ND
Benzo(a)anthracene	250	ND	ND	ND	ND
Chrysene	250	ND	ND	ND	ND
Di-n-octylphthalate	250	ND	ND	ND	ND
Benzo(b)fluoranthene	250	ND-	ND	ND	ND
Benzo(k)fluoranthene	250	ND	ND	ND	ND
Benzo(a)pyrene	250	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	250	ND	ND	ND	ND
Dibenz(a,h)anthracene	250	ND	ND	ND	ND
Benzo(g,h,i)perylene	250	ND	ND	ND	ND

All results expressed in ug/Kg.

DUP: Duplicate Sample.

Former Oakland, California Facility Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 3-1
Solder Dross Sturage Area

Sample ID Analyte	2/24/01		SDSA-2/24/01 (DUP.)		SDSA- 2/24/02		8D\$A- 2/24/03		SDSA- 2/24/04		SDSA- 2/24/05	
Total Lead	4.0	8.1	5.0	9.3	5.0	11	5.0	18	5.0	8,5	5.0	ND
Organio Lead	0.50	ND	0.40	ND	0.40	ND	0.40	ND	0.40	ND	0.40	ND
Hexavalent Chromium	1,0	ND	0.50	ND	0.20	ND	1.0	ND	0.20	ND	0.50	ND
Total Zinc	2,0	38.4	0.50	84	0.50	48	0.50	51	0.50	34	0.50	45
TPH-Dicsel	10	ND			10	ND	10	ND	10	ND	10	ND
TPH-Mineral Spirits	0.5	ND			0.50	ND	0.50	ND	0.50	ND	0.50	
Benzens	0.005	ND			0.005	ND	0,005	ND	0.005	ND	0.005	ND ND
Toluene	0.005	ND			0.005	ND	0.005	ND	0.005	ND	0.005	
Bthylbenzene	0.005	ND			0.005	ND	0.005	ND	0.005			ND
Total Xylenes	0.005	ND			0.005	ND	0.005	ND	0.005	ND ND	0.005 0.005	ND ND

Sumple ID Analyte	8DSA- 2/24/06		SDSA- 2/24/07			SDSA- 2/24/08		SDSA- 2/24/09		SA- 1/10	SDSA-2/24/10 (DUP.)	
Total Lead	5.0	6.1	5,0	6.7	5.0	9,5	5.0	11	4.0	15.7	5.0	6.8
Organic Lead	0.40	ND	0.40	ND	0.40	ND	0.40	ND	0.50	ND	0.40	ND
Hexavalent Chromium	0.50	ND	0.50	ND	1.0	ND	1.0	ND	0.10	ND	2.0	ND
Total Zinc	0.50	42	0.50	38	0.50	39	0.50	93	2.0	112	0.50	82
TPH-Diesel	10	ND	10	ND	10	ND	10	ND	10	ND	1.0	ND
TPH-Mineral Spirite	0.50	ND	0.50	ND	0.50	ND	0.50	ND	0.5	ND	1.0	ND
Benzene	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
Toluene	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
Ethylbenzene	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
Total Xylence	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND.	0.005	ND

Sample ID Analyte	SDSA- 2/24/11		SDSA- 2/24/12a		5DSA- 2/24/12b		SDSA- 2/24/12c		SDSA- 2/24/12d		SDSA- 2/24/12e	
Total Lead	5.0	13				**				,	5.0	ND
Organic Lead	0.40	ND	-						l		0.40	ND
Hexavalent Chromium	2.0	ND	0.50	ND	0.50	ND	1.0	ND	0,50	ND	0.50	ND
Total Zinc	0.50	130								7.0	0.50	34
TPH-Diesel	10	ND									10	ND
TPH-Mineral Spirits	0.50	ND						4.4			0.5	ND
Benzene	0.005	ND									0.005	ND
Toluens	0.005	ND :									0.005	ND
Bthylbenzene	0.005	ND				[[0.005	
Total Xylenes	0.005	ND						••			0.005	ND ND

Sample ID Analyte		SA- 1/13n		SA- /13b		SA- /13c		8A- /13d	SDSA- 2/24/13e	
Total Lead	5.0	3.5	5.0	19	5.0	6.1	5.0	6.2	5.0	27
Organic Lead ·									0.40	ND
Hexavalent Chromium							l		1.0	ND
Total Zinc						. -			0.50	37
TPH-Diesel				~ -	l				10	ND
TPH-Mineral Spirits					l				0.5	ND
Benzene					l					
Toluens								~ -	0.005	ND
Ethylbenzene		- 1							0.005	ND
									0.005	ND
Total Xylenes		•-]							0.005	ND

NOTES: All results expressed in mg/kg (ppm).

--: The analysis was not performed.

DUP: Duplicate Sample.

Former Oakland, Celifornia Facility

Closure of RCRA Storage Units Summary of Laboratory Analytical Data

Table 4-1

Drum Storage Area

Sample ID Analyte	nalyte 2/26		DSA-2/26/01 (DUP.)		D8A- 2/25/02		D8A- 2/25/03		DSA- 2/25/04		DSA- 2/25/06		DSA- PB5A			A- 5B
Total Lead	4.0	5.3	5.0	ND	5.0	ND	5.0	ND	5.0	ND	5.0	70				
Organic Lead	0.50	ND	0.40	ND	0.40	ND	0.40	ND	0.40	ND	0.40	ND	0.40	ND	D.40	
Hexavelent Chromium	0.10	ND	0.50	ND	0.50	ND	0.50	ND	0.20	ND	0.50	ND	0.40			ND
Total Zinc	2.0	29.A	0.50	39	0.50	42	0.50	38	0.50	41	0.50	54	l ::			
TPH-Diesel	10	ND	1.0	ND	10	ND	10	ND	10	ND	10	ND	::		•-	••
TPH-Mineral Spirite	0.50	ND	1.0	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	l			
Benzene	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND		• •		
Toluenc	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005					••
Ethylbenzens	0.005	ND	0.005	ND	0.005	NTO	0.005	ND .	0.005	ND		ND		٠,		
Total Xylenes	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005		0.005	ND				
		- ,	2,003	- 17.0	1.0.403	3.444	1 0.003	, ALD	0.005	ND	0.005	ND	7.0	••		

Sample ID Analyte	DBA- PB5C		DSA- PBSD		DSA- 2/25/06		DSA- 2/25/07		D8A-2/25/07 (DUP.)		DSA- 2/25/08		DSA- 2/25/09	
Total Lead		• •				ND	4.0	50.8	5.0	ND	5.0	ND	5.0	ND
Organic Lead	0.40	ND	0.40	ND	0.40	ND	0.50	ND	0.40	ND	0.40	ND	0.40	
Hexavalent Chromium	••				0.50	ND	0.10	ND	1.0	ND	1.0	ND		ND
Total Zine	• •				0.50	38	2.0	71,3	0.50	35	0.50	32	1.0	ND
TPH-Diesel					10	ND	10	ND	1.0	5.6	10		0.50	35
TPH-Minoral Spirits					0.5	ND	0.50	ND	1.0	ND		ND	10	ND
Benzene					0.005	ND	0.005				0.50	ND	0,50	ND
Toluene					1			ND	0,005	ND	0.005	ND	0.005	ND
Bthylbengene					0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
•	•-				0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
Total Xylenss	•••				0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND

Sample ID Analyte		DSA- 2/25/10		DSA- 2/25/11		DSA- 2/25/12		DSA- 2/26/13		A- /14A	DSA- 2/25/14B		DSA- 2/25/140	
Total Lead	5.0	ND	5.0	5.0 100		ND	5.0	ND					5.0	ND
Organic Lasd	0.40	ND	0.40	ND	0,40	ND	0.40	ND	l				0.40	ND
Hexavalent Chromium	0.50	ND	0.50	ND	1.0	ND	0.50	ND	1		l		1.0	ND
Total Zinc	0.50	2700	0.50	140	0.50	41	0.50	34	١]			
TPH-Diesel	10	ND	10	ND	10	ND	10	ND	10	91	10	14	0,50	49
TPH-Mineral Spirits	0.50	ND	0.50	ND	0.5	ND	0.50	ND	0.5	48	I			••
Волеспа .	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0,5	ND	••	••
Toluene	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.003		0.005	ND		• •
Sthylbenzene	0.005	ND	0.005	ND	0.005	ND			1	ND	0.005	ND		
Total Xylenea	0.005						0.005	ND	0.005	ND	0.005	ND	••	
Old While	0.003	ND	0.005	_ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	~ -	• •

Sample II) Analyte		DSA- 2/26/15		DSA- 2/26/16		A -		A-	DSA-2/25/19		DSA-		DS	A-
			2/2	W16	2/2	V17	2/2	5/18	(D)	JP,)	2/24	719	2/29	7/20
Total Lead	5.0	ND	5.0	5.0 ND		5.6	4.0	4.0 9.2	5.0	ND	5.0	ND	5.0	ND
Organic Load	0.40	ND	0.40	ND	0.40	ND	0.50	ND	0.40	ND	0.40	ND	0.40	ND
Hexavalent Chromium	1.0	ND	1.0	ND	0.50	ND	0.10	ND	1.0	ND	1.0	ND	0.50	ND
Total Zine	0.50	46	0.50	29	0.50	46	2.0	40.7	0.50	48	0.50	49	0.50	68
TPH-Diesel	10	ND	10	ND	10	20	10	ND	1.0	2.4	10	ND	10	
TPH-Mineral Spirits	0.50	ND	0.50	ND	0.5	ND	0.5	ND.	1.0	ND	0.5	ND	D.5	ND
Benzene	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005			ND
Toluene	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND i		ND	0.005	ND
Bthylbenzene	0.005	ND	0.005	ND	0.005						0.005	ND	0.005	ND
•						ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND
Total Xylenes	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	7.00.0	ND	0.005	MD

Sample ID Analyte	2/25/21		DSA- 2/25/22			DSA- 2/25/23		/25/23 JP.)		3A. 5/24	DSA- 2/26/25			SA- 6/26
Total Lead	5.0	10	5.0	5.0 ND		4.0 7.7 5.0		ND	5.D	16	5.0	ND	5.0	ND
Organic Lead	0.40	ND	0.40	ND	0.50	ND	0.40	ND	0.40	ND	0.40	ND	0.40	ND
Hexavalent Chromium	0.50	ND	0.50	ND	0.10	ND	0.50	ND	0.50	מא	1.0	ND	1.0	ND
Total Zine	0.50	43	0.50	43	2.0	33.5	0.50	37	0,50	41	0.50	47	0.50	30
TPH-Dicaci	10	ND	10	ND	10	ND	1.0	ND	10	ND	10	ND		
TPH-Mineral Spirits	0.50	ND	0.50	ND	0.50	ND	1.0	ND	0.50	ND	0.50	ND	10	ND
Bénzéne	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005		0.50	ND
Toluens	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	סא		ND	0.005	ND
Bihylbensene	0.005	ND	0.005	ND	0.005	ND	0.005	ND			0.005	ND	0.005	ND
Total Xylenes	0.005	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND ND	0.005	ND ND	0.005	ND ND

NOTES: Ail results expressed in mg/kg (ppm).

--: The analysis was not performed.

DUP: Duplicate Sample.

DRAFT

