

TO: Alameda County Health Care Services Agency
Division of Hazardous Materials
Department of Environmental Health
80 Swan Way, Room 350
Oakland, CA 94621

DATE: August 10, 1993

ATTN: Mr. Scott O. Seery

JOB NUMBER: 6-93-5077

SUBJECT: Old Graystone Fueling Area, Santa Rita Correctional Facility, Dublin,

California

WE ARE TRANSMITTING THE FOLLOWING:

• One copy of the workplan for soil stockpile sampling at the subject site; June 27

- One copy of an addendum to the workplan for soil stockpile sampling at the subject site; and, July 19
- One original report presenting the results of soil stockpile sampling at the subject site to date. Aug 9

These documents have been forwarded to your attention pursuant to the request of Mr. Peter Kinney of the Alameda County General Services Agency (GSA).

DIST: LB

FILE

Bart S. Miller

ORIGINATOR

Senior Staff Geologist

ENVIRONMENTAL SCIENCE & ENGINEERING, INC.

June 28, 1993

Project No. 6-93-5077

Mr. Scott O. Seery Senior Hazardous Materials Specialist Alameda County Health Care Services Agency 80 Swan, Room 350 Oakland, California 94621

SUBJECT: Old Graystone Fueling Area, Santa Rita Correctional Facility, Dublin, Alameda County, California

Dear Mr. Seery,

Environmental Science & Engineering, Inc. (ESE) presents the following workplan on behalf of the Alameda County General Services Agency (GSA). The workplan is for sampling stockpiled soil impacted with gasoline that is being remediated. The GSA has reported to ESE that impacted soil has and is being aerated at the site in accordance with Bay Area Air Quality Management District (BAAQMD) regulations. This site work will provide the data required to determine whether aeration has been effective in remediating the soil of gasoline constituents or whether more aeration is required.

Background

In February, 1993, ESE directed the excavation of approximately 6,500 cubic yards of soil from the former vehicle fueling facility in the Old Graystone area of the Santa Rita Correctional Facility (ESE Corrective Action Report - April 27, 1993). ESE estimated that approximately 5,000 cubic yards of this soil was impacted with gasoline and stockpiled on site. Based on visual and olfactory observations made during excavation and removal of this soil, approximately 1,500 cubic yards of non-impacted soil was stockpiled separately.

During April, 1993, ESE measured, mapped, and sampled the stockpiled soil at the subject site for the purpose of characterization (ESE Letter Report - June 7, 1993). A total of 100 soil samples were collected by ESE from stockpiles having a cumulative estimated volume of approximately 4,235 cubic yards and analyzed for Total Petroleum Hydrocarbons as Gasoline (TPH-G) and Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX). Reported analytical results indicated an average TPH-G concentration of 209 parts per million (ppm) with associated detectable concentrations of BTEX constituents. ESE recommended that the GSA perform controlled aeration of the impacted soil following guidelines indicated in BAAQMD Regulation 8, Rule 40.

Mr. Seery June 28, 1993 Page 2

GSA directed the spreading of approximately 1,350 cubic yards of stockpiled soil at the site. The soil is spread over an area of approximately 115 feet by 320 feet by an approximate depth of one foot. The soil was initially spread on June 15, 1993. To determine whether gasoline constituents have been effectively aerated and remediation of the soil can be considered complete, verification sampling must be completed. ESE presents the following workplan consisting of verification sampling and analyses. The following tasks are proposed:

Task 1 - Verification Soil Sampling

Soil sampling will be conducted in accordance with BAAQMD regulations (Regulation 8 Rule 40, Aeration of Contaminated Soil) which require one discrete soil sample be analyzed per 50 cubic yards of soil. Since 1,350 cubic yards of soil are stockpiled at the property, ESE will collect a total of 27 verification samples. Upon diagramatically dividing the stockpile into a total of 92 square sectors (20 foot by 20 foot by 1 foot) and numbering each sector, ESE selected the 27 sample sectors using a random number generating computer program. One stockpile sample will be collected within each sector.

Prior to work start, all onsite personnel will attend a brief health and safety tailgate meeting. The purpose of the meeting is to summarize the health and safety plan and describe the potential hazards and mitigation measures. It is assumed that work will be performed in a level D personal protective gear, however, if necessary respirators will be worn. A photoionization detector (PID) will be used to periodically measure the total concentration of volatile organic compounds (VOCs) in the breathing zone of the workers and act as a preliminary screening tool during soil sampling.

Soil stockpile sample locations will be marked on the pile using stakes or other temporary marking methods as shown on Figure 1 - Soil Stockpile Sample Locations. Each location will delineate 50 cubic yards of soil.

One soil sample will be collected at each location at a depth of approximately six inches below the stockpile surface. Sampling will be performed by digging to the specified depth at each location within the stockpile with a clean stainless steel trowel and inserting a pre-cleaned, six-inch brass liner into the soil. Shredded plastic, concrete fragments, and other inert debris will not be included in the sample. Upon retrieval, the sample will be immediately capped with teflon-lined plastic caps, sealed with duct tape, labeled and documented on a chain of custody form. The sample will then be placed under ice in a cooler. Upon completion of the sampling, the samples will be transported under chain of custody documentation to Mc Campbell Analytical, a California certified laboratory. All sample locations will be noted in field notes prepared at the site. All sampling equipment will be cleaned between use using soap and water with a clean water rinse.

Mr. Seery April 28, 1993 Page 3

Task 2 - Sample Analyses

Each of the 27 samples collected will be analyzed for the following:

- TPH-G using EPA Method 5030/8015 (modified per CA LUFT), and
- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) using EPA Method 5030/8020.

Task 3 - Report Preparation

Upon receipt of the laboratory analytical results for the stockpile samples, ESE will evaluate the data and prepare a brief report of the work. This report will describe sampling methodology and locations and present the analytical results in tabular form. Based on findings, ESE will present recommendations regarding continued soil treatment or onsite/offsite disposal.

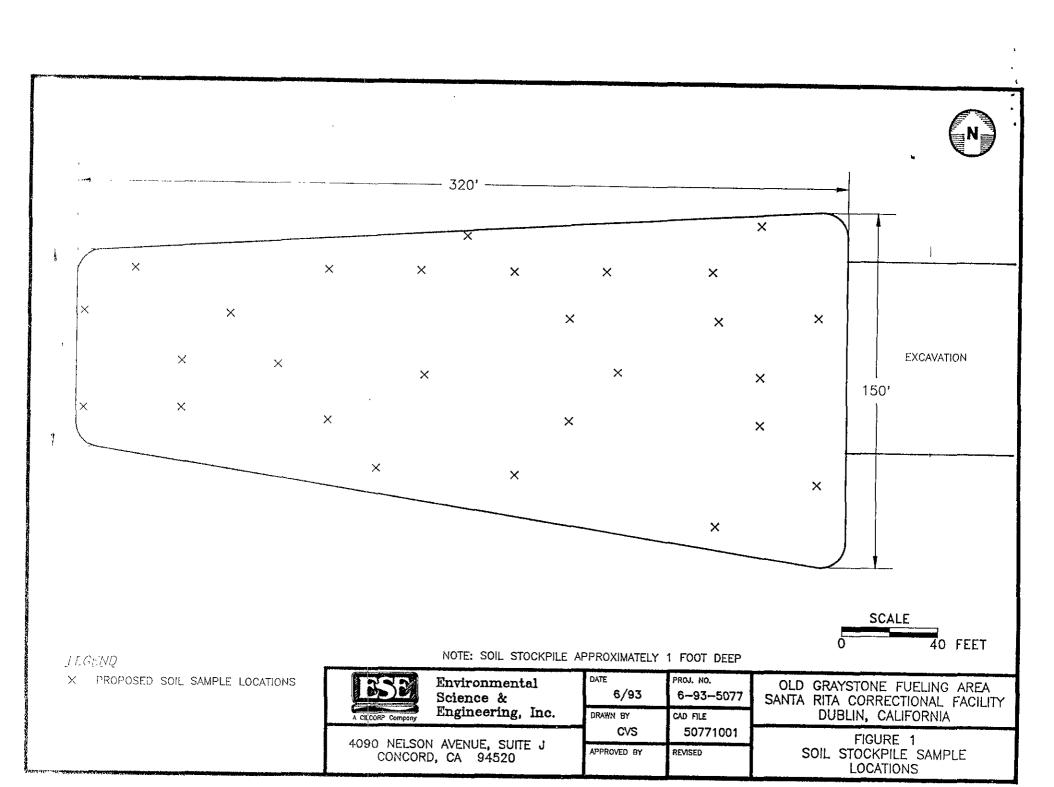
The work is described herein is scheduled for July 1, 1993. Please contact Bart Miller or Pat Galvin at (510) 685-4053 with any questions or comments regarding this work.

Sincerely,

ENVIRONMENTAL SCIENCE & ENGINEERING, INC.

Bart S. Miller

Senior Staff Geologist


F:\Projects\5077\062893.wkp

Attachment - Figure 1

Susan S. Wickham, RG 3851

Swals Wishle

Senior Geologist

July 19, 1993

Mr. Scott O. Seery
Senior Hazardous Materials Specialist
Alameda County Health Care Services Agency
80 Swan Way, Room 350
Oakland, California 94621

SUBJECT: ADDENDUM TO WORKPLAN FOR STOCKPILED SOIL REMEDIATION

AND SAMPLING

OLD GRAYSTONE FUELING AREA

SANTA RITA CORRECTIONAL FACILITY

DUBLIN, CALIFORNIA ESE PROJECT #6-93-5077

Dear Mr. Seery:

Environmental Science & Engineering, Inc. (ESE) presents the following addendum to a workplan prepared by ESE on June 28, 1993 for the Alameda County General Services Agency (GSA). The workplan prepared by ESE proposed three tasks which included:

- Verification sampling of gasoline-impacted soil stockpiled at the subject site;
- Analytical testing of stockpile soil samples; and,
- Preparation of a report for the Alameda County Health Care Services Agency (HCSA) documenting the results of analytical testing of the verification samples.

This addendum to the workplan documents the analytical findings of preliminary stockpile soil samples collected by ESE at the subject site and introduces the additional task of soil tilling to facilitate the effective aeration of the impacted soil.

BACKGROUND

PREVIOUS WORK

In February, 1993, ESE directed the excavation of approximately 6,500 cubic yards of soil from the former vehicle fueling facility in the Old Graystone area of the Santa Rita Correctional Facility (ESE Corrective Action Report - April 27, 1993). ESE estimated that approximately 5,000 cubic yards of this soil was impacted with gasoline and stockpiled on site. Based on visual and olfactory observations made during excavation and removal of this soil, approximately 1,500 cubic yards of soil were presumed to be non-impacted and was stockpiled at separate locations.

Mr. Seery July 19, 1993 Page 2

. *

During April, 1993, ESE measured, mapped, and sampled the stockpiled soil at the subject site for the purpose of characterization and re-estimated the volume of impacted soil to be 4,235 cubic yards (ESE Letter Report - June 7, 1993). A total of 100 soil samples were collected by ESE from the stockpiles of impacted soil and analyzed for total petroleum hydrocarbons as gasoline (TPH-g) and benzene, toluene, ethylbenzene, and total xylenes (BTEX). The 1,500 cubic yards of stockpiled soil presumed to be non-impacted were not sampled and analyzed for verification.

Reported analytical results indicated an average TPH-g concentration of 209 milligrams per kilogram (mg/kg) with associated detectable concentrations of BTEX constituents. Detectable concentrations of TPH-g greater than 1 mg/kg were reported in soil samples representing 1,350 cubic yards of the stockpiled soil. ESE recommended that the GSA perform controlled aeration of the 1,350 cubic yards of soil following guidelines set forth by the Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 40. The GSA has advised ESE that the remaining 2,885 cubic yards of soil has been spread on the ground surface at another location on the property.

The GSA directed the spreading of the 1,350 cubic yards of impacted soil at the site. The soil is spread over an area of approximately 115 feet by 320 feet by an approximate depth of one foot. The soil was initially spread on June 15, 1993.

CURRENT ACTIVITY

PRELIMINARY SOIL SAMPLE RESULTS

To determine whether gasoline constituents had been effectively aerated and remediation of the soil could be considered complete, ESE performed preliminary verification sampling of the stockpile on July 1, 1993. A total of 27 soil samples were collected by ESE and submitted to McCampbell Analytical, Inc. (a State-certified laboratory) for TPH-g and BTEX analysis using analytical methods EPA 8015 (modified per CA LUFT) and EPA 8020, respectively. Soil samples were collected at the locations shown on Figure 1- Soil Stockpile Sample Locations.

A total of 18 of the 27 soil samples were reported to contain detectable concentrations of TPH-g and BTEX (Attachment 1 - Analytical Results and Chain of Custody Documentation). Stockpile soil sample TPH-g analytical results are shown in Figure 2 - Soil Sample Analytical Results.

Mr. Seery July 19, 1993 Page 3

. .

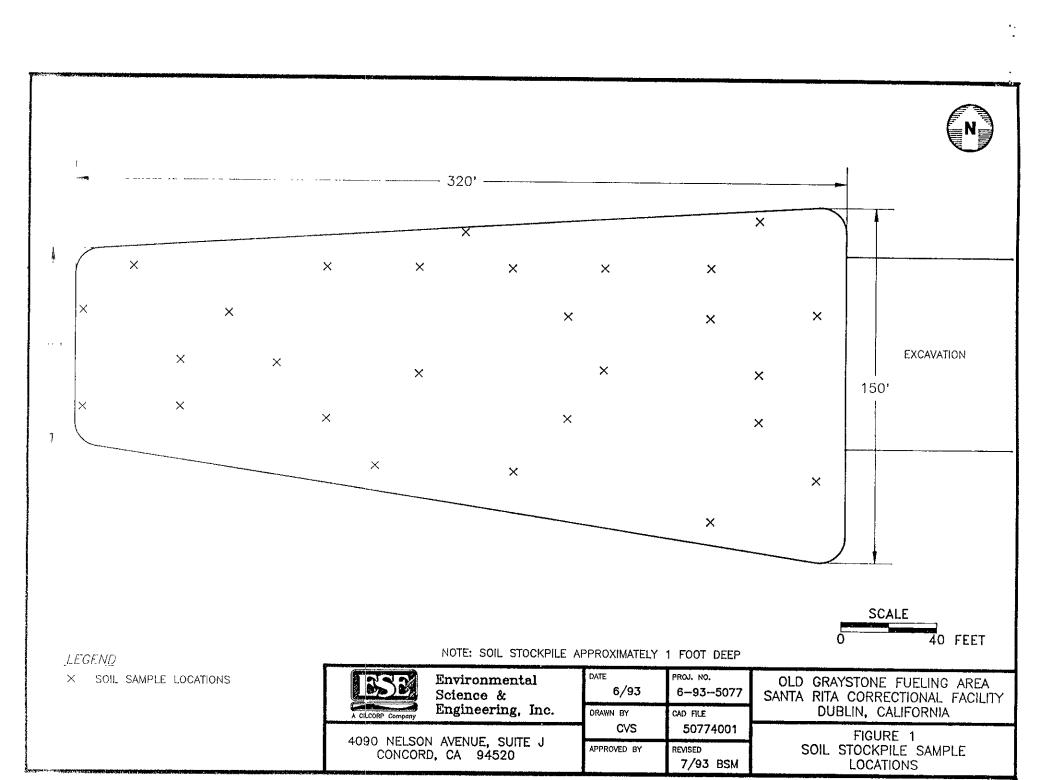
TILLING OF STOCKPILED SOIL

Based on the analytical findings for soil samples collected from the stockpile at the subject site, ESE recommended to the GSA that the additional task of tilling the stockpiled soil be performed to facilitate the aeration of the volatile gasoline constituents. Upon receipt of approval from the GSA, ESE proceeded to till the stockpiled soil on both July 9 and July 16, 1993.

ESE will collect verification soil samples from the stockpile locations where preliminary sampling indicated TPH-g concentrations in excess of 1.5 milligrams per kilogram (mg/kg). A total of 14 soil samples were reported to have a TPH-g concentration greater than 1.5 mg/kg (Figure 2). It is ESE's understanding that the GSA will backfill and compact the upper approximate six feet of the site excavation using the aerated soil having an average TPH-g concentration of less than 1 mg/kg.

Soil sample collection is scheduled for July 21, 1993. Please contact Bart Miller or Patrick Galvin at (510) 685-4053 with any questions regarding this work.

Sincerely,


ENVIRONMENTAL SCIENCE & ENGINEERING, INC.

Bart S. Miller

Senior Staff Geologist

Patrick E. Galvin Senior Engineer

Figures Attachment FIGURES

ATTACHMENT 1

Analytical Results and Chain of Custody Documentation

Environment	al Science & Eng.		roject ID:		Santa Rita	Date Sam	pled: 07/01/	/93
4090 Nelson	Avenue, Suite J	Corr. Fa	c, Dublin, C.	A		Date Rece	eived: 07/01	/93
Concord, CA	. 94520	Client C	ontact: Bart	Miller		Date Extra	acted: 07/02	2/93
		Client P.	.O:			Date Anal	lyzed: 07/04	-07/06/93
EPA methods 50	Gasoline Rang	e (C6-C1: 8020 or 602	2) Volatile H ; California RW	ydrocarbon QCB (SF Bay	s as Gasoli Region) meth	ne*, with B'	TEX* 30)	
Lab ID	Client ID	Matrix	TPH(g) ⁺	Benzene	Toluene	Ethylben- zene	Xylenes	% Rec. Surrogate
31124	SP-1	S	1.6,b	ND	0.008	ND	0.038	94
31125	SP-2	S	2.1,b	ND	ND	ND	0.021	98
31126	SP-3	S	2.1,b	ND	0.006	ND	0.029	103
31127	SP-4	S	1.4,b	ND	0.007	0.007	0.036	104
31128	SP-5	S	5.6,b	ND	ND	0.005	0.029	103
31129	SP-6	S	ND	ND	ND	ND	ND	107
31130	SP-7	S	ND	ND	ND	ND	0.008	107
31131	SP-8	S	2.1,b,d	ND	ND	ND	0,006	108
31132	SP-9	S	1.0,5	ND	ND	ND	0.010	106
31133	SP-10	S	ND	ND	ND	ND	ND	108
31134	SP-11	S	1.1,d	ND	ND	ND	ND	102
31135	SP-12	S	46,d	ND	0.11	0.080	0.51	100
31136	SP-13	S	1.8,d	ND	ND	ND	ND	96
31137	SP-14	S	31,d	ND	0.073	0.084	0.17	99
	imit unless other-	W	50 ug/L	0.5	0.5	0.5	0.5	
	; ND means Not etected	S	1.0 mg/kg	0.005	0.005	0.005	0.005	

^{*}water samples are reported in ug/L, soil samples in mg/kg, and all TCLP extracts in mg/L

[#] cluttered chromatogram; sample peak co-elutes with surrogate peak

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds are significant; no recognizable pattern; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible phase is present.

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

Environment	al Science & Eng.		Project ID:		Santa Rita	Date Sam	pled: 07/01/	/93
4090 Nelson	Avenue, Suite J	Corr. Fa	ic, Dublin, C	A		Date Rece	eived: 07/01	/93
Concord, CA	94520	Client C	ontact: Bart	Miller		Date Extr	acted: 07/02	2/93
		Client P	.O:			Date Ana	lyzed: 07/04	-07/06/93
EPA methods 5	Gasoline Rang 030, modified 8015, and		•	•		-		
Lab ID	Client ID	Matrix	TPH(g) ⁺	Benzene		Ethylben- zene	Xylenes	% Rec. Surrogate
31138	SP-15	S	ND	ND	ND	ND	ND	103
31139	SP-16	s	ND	ND	ND	ND	ND	108
31140	SP-17	s	1.3,d	ND	ND	ND	0.008	107
31141	SP-18	s	76,b,d	ND< 0.05	0.094	0.11	0.79	94
31142	SP-19	S	ND	ND	ND	ND	ND	106
31143	SP-20	S	ND	ND	ND	ND	ND	108
31144	SP-21	S	ND	ND	ND	ND	ND	120
31145	SP-22	S	61,b,d	ND	0.18	ND	ND	99
31146	SP-23	S	210,b,d	ND< 0.1	1.3	1.7	18	122#
31147	SP-24	S	67,b,d	ND	0.17	0.10	0.44	95
31148	SP-25	S	ND	ND	ND	ND	0.009	107
31149	SP-26	S	5.6,d	ND	0.010	0.011	0.006	101
31150	SP-27	S	22,b,d	ND	0,056	0.025	0.011	96
	mit unless other-	W	50 ug/L	0.5	0.5	0.5	0.5	
	ND means Not etected	S	1.0 mg/kg	0.005	0.005	0.005	0.005	

^{*}water samples are reported in ug/L, soil samples in mg/kg, and all TCLP extracts in mg/L

[#]cluttered chromatogram; sample peak co-elutes with surrogate peak

[†] The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds are significant; no recognizable pattern; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible phase is present.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 07/02-07/04/93 Matrix: Soil

	Concent	ration	(mg/kg)		% Reco	very	
Analyte	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas)	0.000	1.474	1.619	2.03	73	80	9.4
Benzene Toluene	0.000	0.162	0.168	0.2	81	84	3.6
	0.000	0.160	0.168	0.2	80	84	4.9
Ethyl Benzene	0.000	0.156	0.164	0.2	78	82	5.0
Xylenes	0.000	0.458	0.484	0.6	76	81	5.5
TPH (diesel)	60	401	408	300	113	116	1.8
TRPH (oil & grease)	0.0	21.1	20.7	20.8	101	100	1.9

' % Rec. = (MS - Sample) / amount spiked x 100

RPD = (MS - MSD) / (MS + MSD) $\times 2 \times 100$

·, - · · · ·

QC REPORT FOR HYDROCARBON ANALYSES

Date: 07/05/93

Matrix: Soil

	Concent	ration	(mg/kg)		% Reco	very	
Analyte	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas) Benzene	0.000	1.700 0.188	1.694 0.188	2.03	84 94	83 94	0.3
Toluene	0.000	0.190	0.100	0.2	94 95	94 95	0.0
Ethyl Benzene	0.000	0.186	0.184	0.2	93	92	1.1
Xylenes	0.000	0.550	0.542	0.6	92	90	1.5
TPH (diesel)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TRPH (oil & grease)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100

AESS # 11

IE Jucy	1,1993	PAGE	OF	3			Chai	IN OF CUSTO	DY KE	CO	RD			Environmental
OJECT NA	ME_ JAA	A RITA	CORR. FAC.		ANAI	JYSE	s To	BE PERFOR	MED	\neg	MATR	XIX		Science &
	SS <u>DUB</u>											N	c 🖺	Engineering, Inc.
	•••			3/5	-						M A	Ŭ	N l	1
OJECT NO	6-9	3-5077		8015	9020						A T R I X	l B	A Su	(415) 685-4053 te)
'MPLED BY	2711	(BART Muc	_							I X	- 1	N - Con	noind, CA 94520 Fav. G15 (as 1.55)
.B NAME_	Mica			1 2	EX EX		,] 1	l l			O F	E R	REMARKS
AMPLE #	DATE	TIME	LOCATION	TOM	3		1	31124	l		MATR	XIX	s (CONTAINER, SIZE, ETC.)
-1	7/01/93	710	AER. STKP.	\times	X			31125			5016	_ /	7	" diam. brass sleeve
5.1 2	,	7.5	II.	X	X					П	и	ı		11
₹^.}	ti .	7:21	r.	X	X			21176	!-		(1	1		н :
1 H	e e	7.58	t)	X	X			31127			e)	1		11
71 5	u	7.38	fr .	X	X			31128	ļ		и	1		
5/2.6	f;	7.40	el	X	\times		· 		<u>:</u>		ŧį	1		
5/2- ?	tt	7:44	lf.	X	\times	ا :ــــــــــــــــــــــــــــــــــــ	1	31120	\ }		f)	1		"
51-8	11	7:57	а	X	\times			31130	1		l)	1		
5/-9	<i>i</i> !	8.05	11	\times	X		 	31131	1_		t _I	1		ti .
512-10	и	8.10	н	X	X				إ		и	1		(1
5/ · 11	£1	8.20	(1	X	\times		1	31132	ا نسا		rı .	1		и
5P-12	/ · · · · · · · · · · · · · · · · · · ·	8.25	11	X	\times			31133			11	1		t t
RELINQUIS	HED BY:	(signa	ature) R	ECE:	VED	BY	; {s	ignature	aate			12	то	TAL NUMBER OF CONTAINERS
2:->/		<u> </u>		<u>c7</u>	7-	<u> </u>	:	<u> </u>	7-1-9	14	.70	REP RESUL	ORT	SPECIAL SHIPMENT: REQUIREMENTS
} .							1; 	31134	Ļ	+-			LER, ESE	•
,		· · · · · · · · · · · · · · · · · · ·					- 'i'		<u>.</u>	1	- 1		NNEY,GSA	2014 //01/25
1,	<u></u>							31135	<u></u>	1			,	SAMPLE RECEIPT
HSTRUCTI	оиз то	LABORA	TORY (han	dlir	ıg,	ana	lyse	s, storage	, etc	.)		ا مالا می	A madesta.	CHAIN OF CUSTODY SEALS
in nat TA	T. Refe	to GSI	A for invo	icing	, 5to	oklige			PHENCH				1 1	REC'D GOOD CONDIN/COLD
					Ç	0 0 b	COND	TION_	PPROP				- , ,	CONFORMS TO RECORD
						- (-		- OCCUPAT	فأكبنانه	THE P	2			

HESE 17 CHAIN OF CUSTODY RECORD ATE 16/11/1993 PAGE 2 OF 3 Environmental ROJECT NAME SANTA RITA COLP FAC. ANALYSES TO BE PERFORMED MATRIX Science & NUMBER OF ADDRESS PUBLIA CA Engineering, Inc. MATRIX (415) 685-4053 4090 Nelson Avenue ROJECT NO. 6-43-5077 Suite J Concord, CA 94520 Fax (415) 685-3323 SAMPLED BY BARTNILLE 21126 MCCHAROLL AB NAME REMARKS (CONTAINER, SIZE, ETC.) TIME LOCATION :SAMPLE # DATE 31137 MATRIX 5/2.13 7/01/13 RER. STKP. Z" diam. brass sleeve 8 35 501L 31138 52-14 8 40 31.15 8.45 31139 3/2 16 8 50 71 31141 -17-17 8.55 # 7'05 21-18 211/11 +1 1 38-19 9.15 31112 9.20 51-20 11 21112 940 51-21 11 24444 31-22 916 9 55 31145 51-23 31-24 10.00 RELINQUIAHED BY: (signature) RECEIVED BY: (signature) date time TOTAL NUMBER OF CONTAINERS 12 7-1-93 10:10 REPORT SPECIAL SHIPMENT RESULTS TO: REQUIREMENTS RADT NILLER, ESE 31146 Cold Transport PETER KINNEY, GSA 31147 SAMPLE RECEIPT INSTRUCTIONS TO LABORATORY (handling, analyses, storage; etc.): CHAIN OF CUSTODY SEALS Mormal TAT. Refer to GSA for invoic SETO storage, etc. PHONOMATIVE. Who IV & B ! States of the REC'D GOOD CONDIN/COLD CONFORMS TO RECORD

AESE13

ATE Jul	11, 1993	PAGE	3_OF	3		С	HAIN	OF	CU	STO:	DY F	REC	ORD						<u></u>	
POJECT N	į.				ANAI	LYSES	TO	BE	PER	FOR	MED		MATE	RIX		-	33	-	Environmental Science &	·
ADDRI	ESSOUB	LIN CA	Marketon (1989)	{ })								MA		N C	25	a i li Phair		Engineering, In	
ROJECT NO	- A	13 - 507	7 BARTANILL	(80,5)	(8020							ı	M A T R I X		NUMBER		4090 Nelson Ave Suite J Concord, CA 94		(415) 685-40; Fax (415) 685-53	
AB NAME_ SAMPLE #	1,2000	TIME	7 BART MILL LOCATION	TO4-6	BTEX								MATE		O E	8	(CONTA	REI INER	MARKS , SIZE, ETC.)	
5.1-25	7/01/93	10 10	AER. STKP.	X	X		_	-	1				501		j	-	2" 1:		1 / .	
517-26	il	10 20	ıı	X	X		_		1				"	-	<u>, , , , , , , , , , , , , , , , , , , </u>	-	2 010	<u>~ //</u>	brass sleeve	
31-27	()	1030	()	X	X			\ <u> </u>					"		1					
									3	3114	1 18		<u> </u>							
									3	114	9		-							
				<u> </u>			- -'	-	3	115	0		ļ							
k				 				-	-				ļ <u>.</u>							·
,				-			-	-	 	-								•		-
		***************************************		1			1	1		 										
RELINQUIS	HED BY:	(sign	ature) R	ECE:	IVE	BY:	_(si	gna	tur	e)			time	3 1	177		TOTAL N	JMBEI	R OF CONTAINE	RS
2 2					<i>/_</i>	<u>: //-</u>	`				<i>f-f-</i>	99	15-10	REST	EPO	RT S T	SPECI REQUI	AL S REMI	SHIPMENT ENTS	
3.								· · · · · · · · · · · · · · · · · · ·						Part PETER	Mu	LER É			insport	
, f ₁ ,				·····														SAN	MPLE RECEIPT	
			TORY (han							age,	et	c.);	eAzi III	<u> </u>	Mante a	CHAIN	OF	CUSTODY SEALS	3
Normal 7	TAT. Re	eter to	GSA for	invo	oic J	F/B/2	CARC	eti M	Ć ,	P	REX	RVA	JIVE		# D	* e-ccue2	RECIE	GOO	DD CONDTN/COLI) -
						900 (X - 147) SH	/	-			PPRO		ATE.				CONFO	RMS	TO RECORD	

August 9, 1993

Mr. Scott O. Seery Senior Hazardous Materials Specialist Alameda County Health Care Services Agency 80 Swan Way, Room 350 Oakland, CA 94621

SUBJECT: REPORT OF STOCKPILED SOIL CONFIRMATION SAMPLING

OLD GRAYSTONE FUELING AREA

SANTA RITA CORRECTIONAL FACILITY

DUBLIN, CALIFORNIA ESE PROJECT #6-93-5077

Dear Mr. Seery:

Environmental Science & Engineering, Inc. (ESE) presents the following results for the confirmation sampling of stockpiled soil impacted with gasoline located at the subject property. ESE has been contracted by the Alameda County General Services Agency (GSA) to perform this characterization of stockpiled soil. To date, the gasoline-impacted soil has been subject to remediation by aeration in accordance with Bay Area Air Quality Management District (BAAQMD) guidelines. The objectives of the soil sampling of the stockpiled soil was to assess the concentrations of petroleum hydrocarbons in the soil following approximately one month of uncontrolled aeration and to identify stockpiled soil having no detectable concentrations of petroleum hydrocarbons for use as excavation backfill.

BACKGROUND

PREVIOUS WORK

In February, 1993, ESE directed the excavation of approximately 6,500 cubic yards of soil from the former vehicle fueling facility at the Old Graystone Area of the Santa Rita Correctional Facility (ESE Corrective Action Report - April 27, 1993). ESE estimated that approximately 5,000 cubic yards of this soil were impacted with gasoline and 1,500 cubic yards were not impacted. Impacted and nonimpacted soil were stockpiled on site at separate locations.

Mr. Seery August 9, 1993 Page 2

During April, 1993, ESE measured, mapped, and sampled the stockpiled soil at the subject site for the purpose of characterization (ESE Letter Report - June 7, 1993). A total of 100 soil samples were collected by ESE from stockpiles having a cumulative estimated volume of approximately 4,235 cubic yards and analyzed for total petroleum hydrocarbons as gasoline (TPH-g) and benzene, toluene, ethylbenzene, and total xylenes (BTEX). Reported analytical results indicated an average TPH-g concentration of 209 parts per million (ppm) with associated detectable concentrations of BTEX constituents. ESE recommended that the GSA perform controlled aeration of the impacted soil following guidelines indicated in BAAQMD Regulation 8, Rule 40.

GSA directed the spreading of approximately 1,350 cubic yards of stockpiled soil at the site. The soil is spread over an area of approximately 115 feet by 320 feet by an approximate depth of one foot. The soil was initially spread on June 15, 1993.

CURRENT ACTIVITIES

SOIL SAMPLE RESULTS

To determine whether gasoline constituents had been effectively aerated and remediation of the soil could be considered complete, ESE performed preliminary verification sampling of the stockpile on July 1, 1993. A workplan proposing this fieldwork and detailing ESE stockpile soil sampling techniques was submitted to the Alameda County Health Care Services Agency (HCSA) on June 28, 1993. A total of 27 soil samples were collected by ESE and submitted to McCampbell Analytical, Inc. (a State-certified laboratory) for TPH-g and BTEX analysis using analytical methods EPA 8015 (modified per CA LUFT) and EPA 8020, respectively. Soil samples were collected at the locations shown on Figure 1 - Soil Stockpile Sample Locations (July 1, 1993). Analytical results for TPH-g in the stockpile soil samples collected are shown on Figure 2 - Soil Sample TPH-G Analytical Results (July 1, 1993). Copies of analytical reports and chain-of-custody documentation are provided in Attachment A. Of the 27 samples collected, 20 samples were reported to contain detectable concentrations of TPH-g and/or BTEX.

To expedite the aeration process, ESE recommended that the stockpiled soil be tilled on a weekly basis for a one month period. An addendum was prepared by ESE to the workplan described above and submitted to the HCSA on July 19, 1993. The stockpiled soil was then tilled on July 9 and July 16, 1993 using a Kubota tractor equipped with a rototiller. Inspection of the stockpile on July 21, 1993 by ESE indicated that the effective penetration of the rototiller into the stockpile was approximately six to eight inches. On July 26, 1993, the soil stockpile was tilled to the bottom (i.e. approximately 10-14 inches) using a bulldozer equipped with scarifiers and, subsequently, was tilled by ESE on July 27 using the Kubota tractor with rototiller described above.

Mr. Seery August 9, 1993 Page 3

Under GSA supervision, a total of 14 stockpile soil samples were collected by ESE on July 28, 1993 at locations where the previous July 1 stockpile soil samples were reported to contain TPH-g concentrations greater than 1.5 ppm as shown in Figure 3 - Soil Stockpile Sample Locations (July 28, 1993). Analytical results for TPH-g in the 14 stockpile soil samples collected are shown on Figure 4 - Soil Sample TPH-G Analytical Results (July 28, 1993). Copies of analytical reports and chain-of-custody documentation are provided in Attachment A. Of the 14 samples collected, 7 samples were reported to contain detectable concentrations of TPH-g and/or BTEX.

MANAGEMENT OF STOCKPILED SOIL

It is ESE's understanding that the GSA will backfill and compact the upper six feet of the excavation located at the site using the stockpiled soil reported to contain no detectable concentrations of TPH-g and/or BTEX. The GSA will proceed to separate the "clean" stockpiled soil from that containing detectable concentrations of gasoline constituents according to the limits defined on Figure 5 - Proposed Backfill Material. All stockpiled soil reported to contain detectable concentrations of petroleum hydrocarbons will continue to be tilled and aerated for an approximate period of one month. At that time soil samples will be collected from the remaining stockpile and analyzed for TPH-g and BTEX to ensure that aeration can be considered complete. Backfilling activities will commence upon receipt of the written approval of the HCSA.

00000

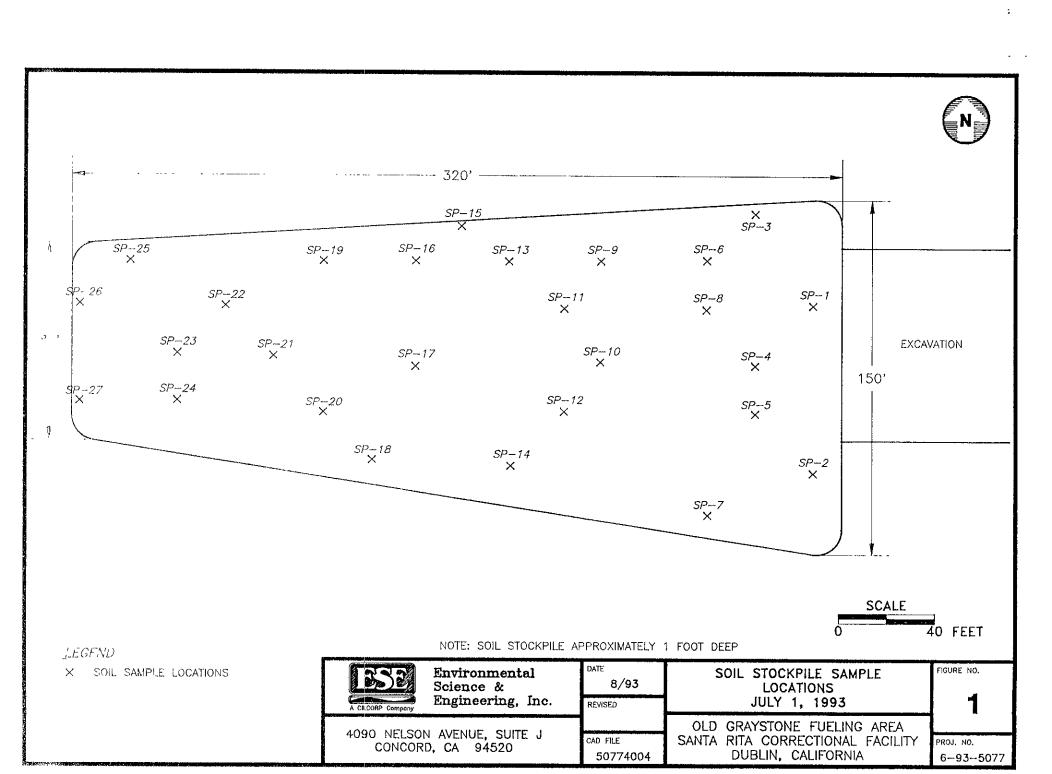
Our professional services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by other geologists and engineers practicing in this field. No other warranty, express or implied, is made as to the professional advice in this report. If you have any comments or questions regarding the contents of this report, please contact Bart Miller at (510) 685-4053.

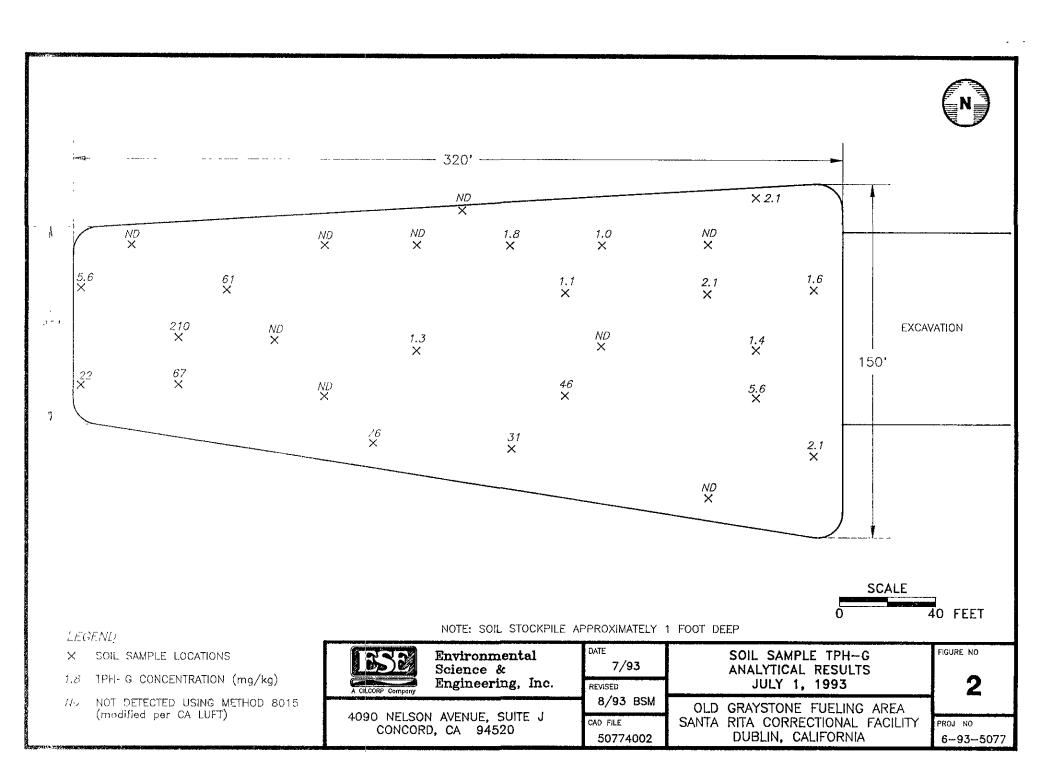
Sincerely,

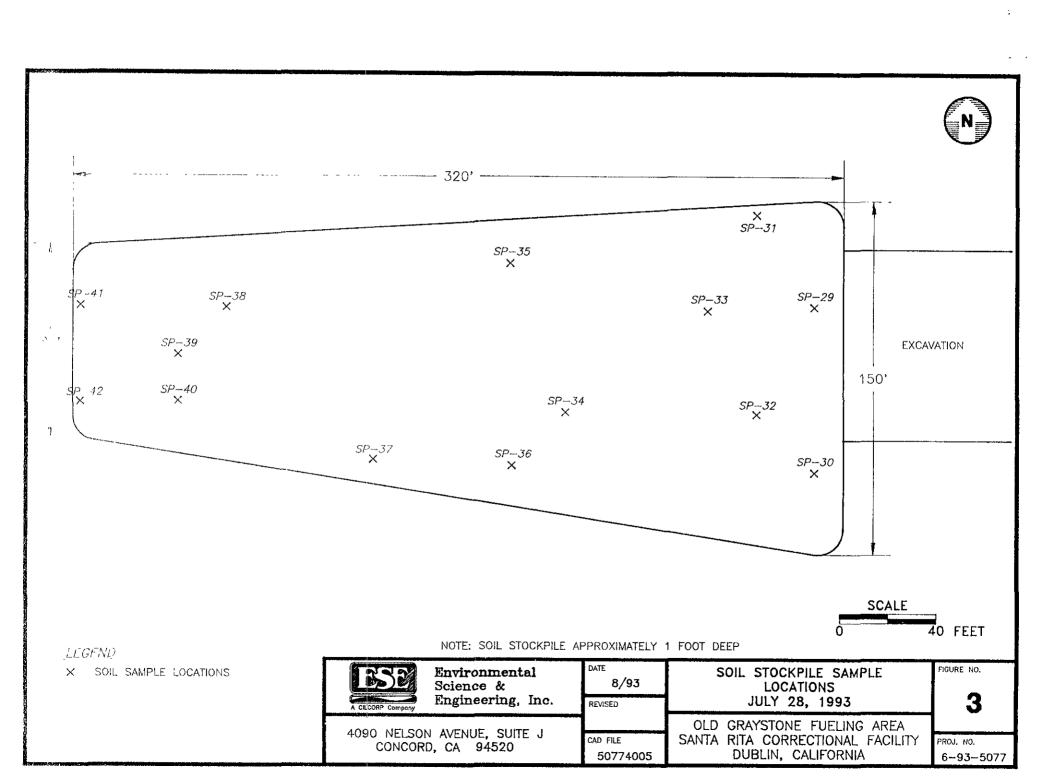
ENVIRONMENTAL SCIENCE & ENGINEERING, INC.

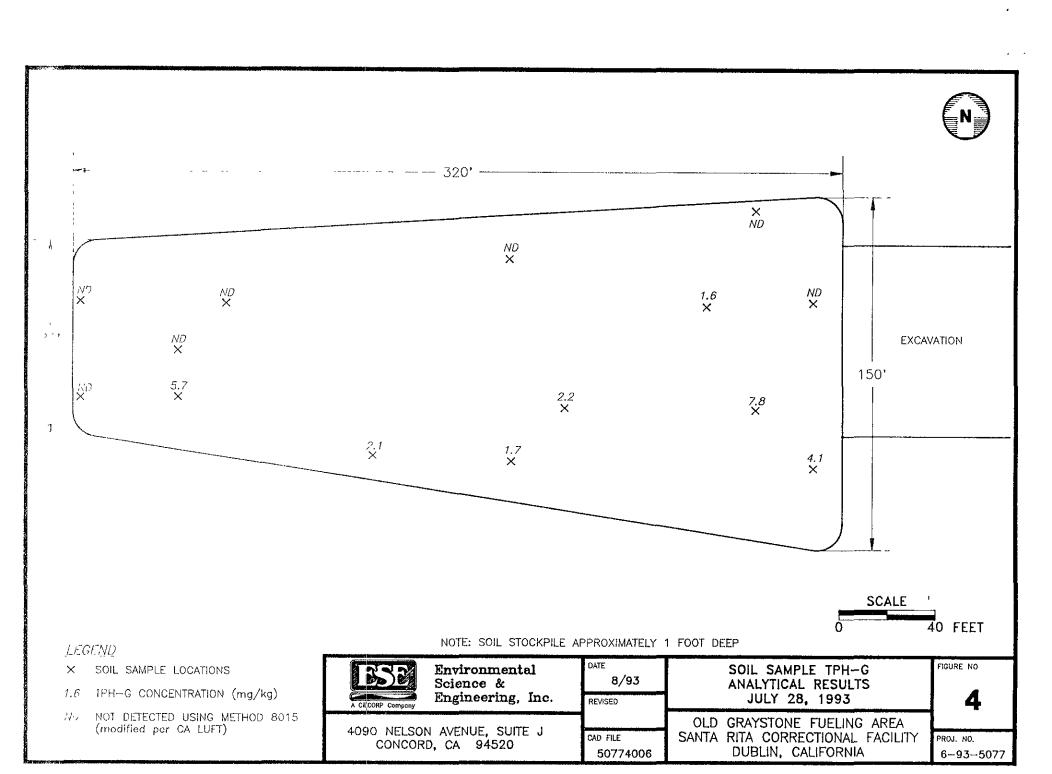
Bart S. Miller

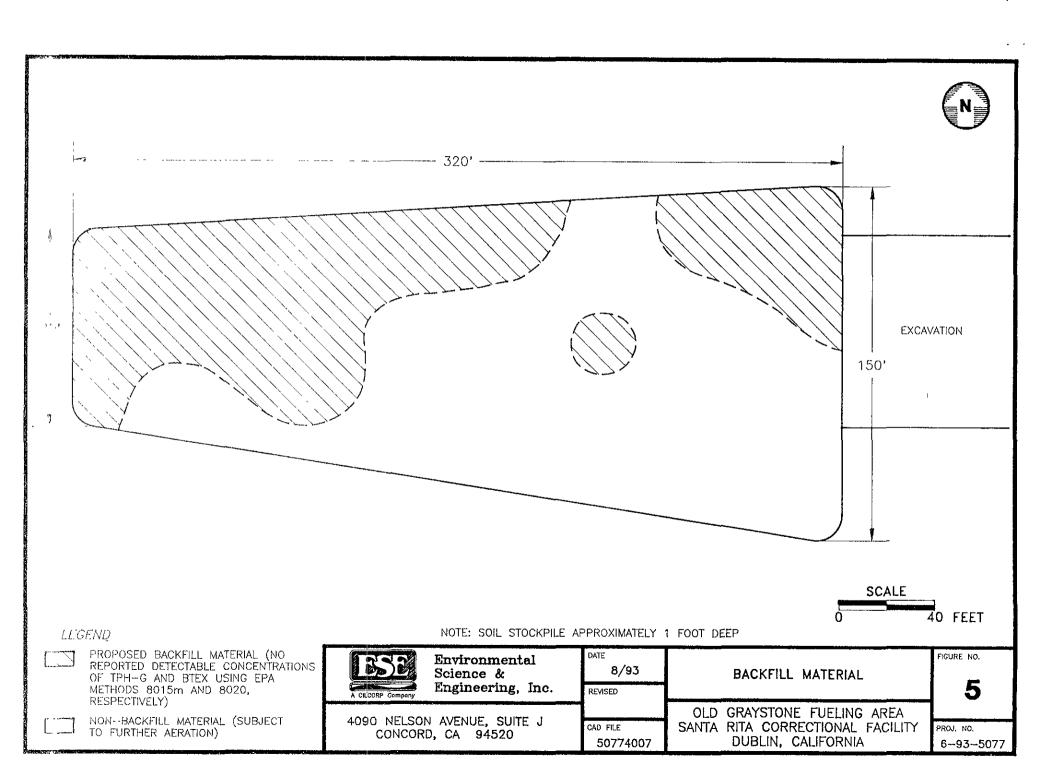
Senior Staff Geologist


Patrick E. Galvin


Middle & Food for


Senior Engineer


Figures Attachment


F:\5077\080993.rpt

ATTACHMENT A ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Environment	al Science & Eng.		roject ID:		Santa Rita	Date Sam	pled: 07/01/	/93
4090 Nelson A	Avenue, Suite J	Corr. Fa	c, Dublin, C.	A		Date Rece	eived: 07/01	/93
Concord, CA	94520	Client C	ontact: Bart	Miller		Date Extr	acted: 07/02	2/93
		Client P.	.O:			Date Ana	lyzed: 07/04	-07/06/93
EPA methods 50	Gasoline Rang 30, modified 8015, and							
Lab ID	Client ID	Matrix	TPH(g) ⁺	Benzene	Toluene	Ethylben- zene	Xylenes	% Rec. Surrogate
31124	SP-1	s	1.6,b	ND	800.0	ND	0.038	94
31125	SP-2	S	2.1,b	ND	ND	ND	0.021	98
31126	SP-3	S	2.1,b	ND	0.006	ND	0.029	103
31127	SP-4	S	1.4,b	ND	0.007	0.007	0.036	104
31128	SP-5	S	5.6,b	ND	ND _	0.005	0.029	103
31129	SP-6	S	ND	ND	ND	ND	ND	107
31130	SP-7	S	ND	ND	ND	ND	0.008	107
31131	SP-8	S	2.1,b,d	ND	ND	ND	0.006	108
31132	SP-9	S	1.0,b	ND	ND	ND	0.010	106
31133	SP-10	S	ND	ND	ND	ND	ND	108
31134	SP-11	S	1.1,d	ND	ND	ND	ND	102
31135	SP-12	S	46,đ	ND	0.11	0.080	0.51	100
31136	SP-13	S	1.8,d	ND	ND	ND	ND	96
31137	SP-14	S	31,d	ND	0 073	0.084	0.17	99
	mit unless other-	W	50 ug/L	0.5	0.5	0.5	0.5	
	ND means Not tected	S	1.0 mg/kg	0.005	0 005	0.005	0.005	7

^{*}water samples are reported in ug/L, soil samples in mg/kg, and all TCLP extracts in mg/L

[‡] cluttered chromatogram; sample peak co-elutes with surrogate peak

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant (aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds are significant; no recognizable pattern; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible phase is present.

		•						
Environmen	tal Science & Eng.		Project ID:		Santa Rita	Date Sam	pled: 07/01.	/93
4090 Nelson	Avenue, Suite J	Corr. Fa	ac, Dublin, C	Α		Date Rec	eived: 07/01	./93
Concord, Ca	A 94520	Client C	Contact: Bart	Miller		Date Extr	acted: 07/0	2/93
		Client P	.O:		_	Date Ana	lyzed: 07/04	-07/06/93
EPA methods	Gasoline Rang		•	•		•		
Lab ID	Client ID	Matrix	TPH(g) ⁺	Benzene	Toluene	Ethylben- zene	Xylenes	% Rec. Surrogate
31138	SP-15	s	ND	ND	ND	ND	ND	103
31139	SP-16	s	ND	ND	ND	ND	ND	108
31140	SP-17	S	1.3,d	ND	ND	ND	800,0	107
31141	SP-18	S	76,b,d	ND< 0.05	0.094	0.11	0.79	94
31142	SP-19	S	ND	ND	ND	ND	ND	106
31143	SP-20	S	ND	ND	ND	ND	ND	108
31144	SP-21	S	ND	ND	ND	ND	ND	120
31145	SP-22	s	61,b,d	ND	0.18	ND	ND	99
31146	SP-23	S	210,b,d	ND< 0.1	1.3	1.7	18	122#
31147	SP-24	S	67,b,d	ND	0.17	0.10	0.44	95
31148	SP-25	S	ND	ND	ND	ND	0.009	107
31149	SP-26	S	5.6,d	ND	0.010	0.011	0.006	101
31150	SP-27	S	22,b,d	ND	0.056	0.025	0.011	96
								[
	imit unless other-	W	50 ug/L	0.5	0.5	0.5	0.5	
	; ND means Not etected	S	1.0 mg/kg	0.005	0 005	0 005	0 005	4
	i	1		1	1			

^{*}water samples are reported in ug/L, soil samples in mg/kg, and all TCLP extracts in mg/L

⁴ cluttered chromatogram; sample peak co-elutes with surrogate peak

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant (aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds are significant; no recognizable pattern: e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible phase is present

QC REPORT FOR HYDROCARBON ANALYSES

Date: 07/02-07/04/93 Matrix: Soil

0.000 0.000	MS 1.474 0.162	MSD 1.619	Amount Spiked	MS	MSD	RPD
0.000		1.619	2 03	~~		
	0 162		2.03	73	80	9.4
		0.168	0.2	81	84	3.6
0.000	0.160	0.168	0.2	80	84	4.9
			0.2	78	82	5.0
0.000	0.458	0.484	0.6	76	81	5.5
60	401	408	300	113	116	1.8
0.0	21.1	20.7	20.8	101	100	1.9
	0.000 0.000 60	0.000 0.156 0.000 0.458 60 401	0.000 0.156 0.164 0.000 0.458 0.484 60 401 408	0.000 0.156 0.164 0.2 0.000 0.458 0.484 0.6 60 401 408 300	0.000 0.156 0.164 0.2 78 0.000 0.458 0.484 0.6 76	0.000 0.156 0.164 0.2 78 82 0.000 0.458 0.484 0.6 76 81 60 401 408 300 113 116

' % Rec. = (MS - Sample) / amount spiked x 100

RPD = (MS \sim MSD) / (MS + MSD) x 2 x 100

QC REPORT FOR HYDROCARBON ANALYSES

Date: 07/05/93

Matrix: Soil

Non-Took o	Concent	ration	(mg/kg)		% Reco	very	
Analyte	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas)	0.000	1.700	1.694	2.03	84	83	0.3
Benzene	0.000	0.188	0.188	0.2	94	94	0.0
Toluene	0.000	0.190	0.190	0.2	95	95	0.0
Ethyl Benzene	0.000	0.186	0.184	0.2	93	92	1.1
Xylenes	0.000	0.550	0.542	0.6	92	90	1.5
TPH (diesel)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TRPH (oil & grease)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

RPD = (MS \sim MSD) / (MS + MSD) x 2 x 100

AE55 # 11

				_			CH	\mathbf{ATN}	OF CUS	TODY	REC	ORD								
<u> </u>	<u>, 1973 .</u>	PAGE	OF_	3													TO E	nvironmen	tal	
ECT NAM	1E_ 34/45	77 1717	CORR. CAR	<u> </u>	AN	ALYS	SES '	TO	BE PERF	ORMED)	MATE	XIX					cience &	CCTT	
ADDRES	SS <u>pya</u>	ed, CA			_								1	i C			Mari di	ngineering	, Inc.	
					18 -	0						M A	j	NON CONTRACT		f 4 1, 1,		(415) 68		
TOT NO.	6-9	3-5077			8	8020						A T R I X	j	MEAL	Suit) Nelson Acent e J Rond, CA 94520				
". LED BY_	8,11		RAPIT NICE	، المرب								X	i	N			· ——	Lascos		
HAME	Mica	Mr. s.C.	······································	.	1	Ψ×		 !	1 1 1	,	, ,			FR			REMA	RKS		
blE #	DATE	TIME	LOCATIO	ИС	12/	10	1.	1	3111	24	1	MATE	XIX	S	(CONTAIN	ER,	SIZE, ET	C.)	
r	7/01/93	710	AER STKA.		X ×	<u> </u>			3112	5	1	50,10		1	Z	" dian.	brass	sleeve		
2	,	75)	$\times \mid \times$	<		_		}		u		1			11			
}	11	7.21	"	<u> </u>	<u> </u>		}	•	21176	!	\top	(1		1			<i>n</i> .			
/	11	7:28	11		$\times \mid_{\times}$]_, ;		3112	7	ĺ	ti		1`			11			
2	1,	7 39	11		\times \times				3112	ρ		n		1		•	11			
C)		7 40	11	<u> </u>	$\langle \ \times$							11		1			н			
7	tr	7.44	1/		$\langle \times \rangle$		1) 1:		31120			0		(4			
· · ·	L)	7 57	1'		$\times \mid_{\times}$		_ ;		31130			1)		1			11			
7		8:05	11		$\times \mid_{\times}$		Ľ		31131			1/		ı			li			
· <u>U</u>	U	8 10	t r	>	$\leq \mid_{\times}$					_	}	a					ų			
1	11	8.20	()	>	<u> </u>		1		21131	7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ti		1			ti .			
2	n .	8 25	11		< ×		<u> </u>	1	31133			11		1			1	1		
TINOUISE	eyb by:	(signa	ature)			ED B	3Y:	{s1	gnature) aa		time		2_	TO'	TAL NUM	BER	OF CONTA	INER	S
		AN AMERICAN CONTRACTOR OF THE PERSON OF THE		من کس	7		//-			_ /-/	. اربو-	15:10	RE	POF	T	SPECIA	L SH	IPMENT:		
· · · · · · · · · · · · · · · · · · ·									31134	l	;+				K ESE			J		
						·· ·	 -				<u> </u>				EY,GSA		old i	Transport		
****					<u>-</u>	·····			31135	1	1				27,027	<u> </u>	03345			
י דעוטון קיי	אפ יייט	T.A GOG K.T	rory (ha	n 41	ina		2 7 2 2 2		atoro	~~~	+					 		LE RECEI		
			H for in							-			non 10	8 5	Red (Sec			USTODY SI		
· 11	NETEL		101 171	v Urci	7,		0 CO			PHÉS ADDE	ichar XOPR		l	l.				CONDTN/	COLD	2
*			**************************************		/		2-004 2-001	بستحث	rocciut.	Olah.	:	DQ. ✓				CONFOR	MS T	O RECORD		L_

AESS 17 CHAIN OF CUSTODY RECORD , 1943 PAGE 2 OF 3 Environmental TOT NAME SANTA RITH CORR FIC. ANALYSES TO BE PERFORMED MATRIX Science & ADDRESS PUBLING CA NUMBER OF Engineering, Inc. MATRIX (415) 685-4053 4090 Nelson Avenue JECT NO. 6-43-5077 Stilte I Concord, CA 94520 Fax (415) 655-5323 MIPLED BY FILL Michiller.L 24420 NAME REMARKS (CONTAINER, SIZE, ETC.) LOCATION SIMPLE # DATE TIME MATRIX 31137 Z" diam. brass sleeve 7/01/13 8 35 ACR STKP 501L 31138 . 14 8 40 15 31139 8 45 8 30 16__ 31140 855 .7.05 211/11 7 5 31142 920 20 21112 940 11 24444 9:16 -2Z 31145 9.55 23 -24 10.00 LINQUISHED BY: (signature) RECEIVED BY: (signature) date time TOTAL NUMBER OF CONTAINERS 12 7-1-93 10:10 REPORT SPECIAL SHIPMENT RESULTS TO: REQUIREMENTS RAPT NILLER EX 31146 Cold Transport PETER KINNEY, GOA 31147 SAMPLE RECEIPT STRUCTIONS TO LABORATORY (handling, analyses, storage; etc.): CHAIN OF CUSTODY SEALS 1 TAT Refer to GSA for invoic stoll'storage, etc. who I U & w | State deficie REC'D GOOD CONDIN/COLD PHEDICINATIVE CONFORMS TO RECORD

HESE13 CHAIN OF CUSTODY RECORD E 20.4 1 1993 PAGE 3 OF 3 **Environmental** JICT NAME SANTA RITA CORR I'ME ANALYSES TO BE PERFORMED MATRIX Science & ADDRESS WBLIN CA Engineering, Inc. NUMBER CONTAINERS MATRIX (415) 685-4053 4090 Nelson Avenue JECT NO. 6-93-5077 Suite J Concord, CA 94520 "PLED BY BAPT MILLER fax (= 15) px = -5323 OF * NAME . / A CO PARLE REMARKS (CONTAINER, SIZE, ETC.) AMPLE # DATE TIME LOCATION MATRIX 7/01/93 10 10 AER STKP. SOIL 10 20 1230 31148 31149 31150 RECEIVED BY: (signature) NQUISHED BY: (signature) date time 3 172 TOTAL NUMBER OF CONTAINERS 7-1-93 15:10 REPORT SPECIAL SHIPMENT RESULTS TO: REQUIREMENTS PART MILLER ESE Cold Transport PETER KINEY, GOA SAMPLE RECEIPT USTRUCTIONS TO LABORATORY (handling, analyses, storage, etc.): CHAIN OF CUSTODY SEALS WEC'D GOOD CONDIN/COLD TAT. Refer to GSA for invere JOETStorage etc. PRESSERVATIVE CONFORMS TO RECORD

Environment	al Science & Eng.			6-93-5077;	Alameda	Date Sample	d: 07/28/91	3
4090 Nelson	Avenue, Suite J	County G	SA			Date Receiv	ed: 07/28/93	3
Concord, CA	94520	Client Co	ntact: Bart N	Miller		Date Extract	ted: 07/30/9	3
		Client P.0	D: Alameda (County 6-93	-5036	Date Analyz	ed: 08/01-0	08/03/93
EPA methods 5	Gasoline Ran							
Lab ID	Client ID	Matrix	TPH(g) ⁺	Benzene	Toluene	Ethylben- zene	Xylenes	% Rec. Surrogate
31492	SP-29	s	ND	ND	ND	ND	ND	92
31493	SP-30	S	4.1,d	ND	0.015	0.008	0.038	89
31494	SP-31	s	ND	ND	ND	ND	ND	94
31495	SP-32	S	7.8,b	ND	0.007	0.007	0.031	90
31496	SP-33	S	1.6,g	ND	ND	ND	ND	90
31497	SP-34	S	2.2,b	ND	ND	ND	ND	91
31498	SP-35	S	ND	ND	ND	ND	ND	91
31499	SP-36	S	1.7,d	ND	0.006	0,006	0.024	89
31500	SP-37	S	2.1,b	ND	ND	ND	ND	90
31501	SP-38	s	ND	ND	ND	ND	ND	95
31502	SP-39	S	ND	ND	ND	ND	ND	90
31503	SP-40	S	5.7,b	ND	ND	ND	ND	90
31504 SP-41 S ND ND ND ND ND 96								
31505	SP-42	s	ND	ND	ND	ND	ND	88
Detection L	imit unless other-	W	50 ug/L	0.5	0.5	0.5	0.5	

^{*}water samples are reported in ug/L, soil samples in mg/kg, and all TCLP extracts in mg/L

1.0 mg/kg

S

0.005

0.005

0.005

0.005

wise stated; ND means Not Detected

[#] cluttered chromatogram; sample peak co-elutes with surrogate peak

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant (aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds are significant; no recognizable pattern; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible phase is present.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 08/01-02/93

Matrix: Soil

	Concent	ration	(mg/kg)		% Reco		
Analyte	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas) Benzene	0.000	2.244 0.156	1.987 0.154	2.03	111 78	98 77	12.1
Toluene	0.000	0.164	0.164	0.2	82	82	0.0
Ethyl Benzene	0.000	0.158	0.160	0.2	79	80	1.3
Xylenes	0.000	0.494	0.496	0.6	82 	83	0.4
TPH (diesel)	0	346	347	300	115	116	0.3
TRPH (oil & grease)	0.0	21.4	21.6	20.8	103	104	0.9

% Rec. = (MS - Sample) / amount spiked x 100

RPD = $(MS - MSD) / (MS + MSD) \times 2 \times 100$

'ATE JULY 2	e 1993	PAGE	I OF	2		CH	AIN	OF	CUS	STOI	Y RE	ECO	RD				nvironmental	
ROJECT NAME ALAMEDA COUNTY GSA					ANALYSES TO BE PERFORM						MED MATRIX					Science &		
ADDRESS OLD GRAYSTONE FUELING AREA SANTA RITA CORRECTIONAL FACILITY PUBLICLY, CALIFORNIA PROJECT NO. 6-93-5077 SAMPLED BY ALL BART MILLER				E	BTEX)							ı	M A T R I	N COM N N N N N N N N N N N N N N N N N N N	4090 Suit	Nelson Avenue	(415) 685-4053	
LAB NAME				8015m	8020 (-			MATRI	O E		REM CONTAINER,	ARKS SIZE, ETC.)	
5P-Z9	7/28/93	7:15	Stackpile	X	\times								5014	1		2" dianet	ed brass	
5P-30	11	7:25	"	X	X								//	1	<u> </u>	sleeves		
5P-31	<i>II</i>	7:40	n n	X	X		-						0	1/		31492	31498	
5F-33	"	7:50	"	X	X		-						4	!	7	31493	31499	
5P-35	11	7:56 8:00	η	X	X								"	17	1	31494	31500	
5P-36 5P-31	1/	8:10	"	X	X			-	-				"	1	1	31495	31501	
sr 38	"	8.30	//	X	X								11	1		31496	31502	
50 40	11	8.38	ti	×	X			-	 	-			*1	1/	+	31497	31503	
RELINQUI	я д ер ву	4	ature) R		11	BY:	(si	gna	tur	e)			ime	12	TO	TAL NUMBER	OF CONTAINERS	
13.5/				1 /	<u>v. 1</u> (7-29	5	10:52 R	REPO	ORT IS TO:	SPECIAL S REQUIREME	HIPMENT NTS	
3.					·····							1		PART No ESE	uel	Cold To	1	
4.														TER K		5.11 4		
5.															Co GSA	SAM	PLE RECEIPT	
INSTRUCTIONS TO LABORATORY (han					ng,	analy	yses	, s	tor	age	, et	c.)) :				CUSTODY SEALS	
Normal T.A.T.																D CONDTN/COLD		
· · · · · · · · · · · · · · · · · · ·			·····									,			·	CONFORMS	TO RECORD	

AME / COCCO DACE 2 OF	7	CHA	IN OF	CUS	TODY	REC	ORD	[Position
ROJECT NAME ALAMEDA COUNTY GSA		YSES T	O BE I	PERF	ORME		MATR	IX		Environmental Science &
ADDRESS OLD GRAYSTOLE FUELIGATE SANTA RITA CORRECTIONAL FALIN PROJECT NO. 6-93-5077 SAMPLED BY JULIE	(TPH4)						M A T R I X	N C O M T A A R N	Suite	Engineering, Inc. Nelson Avenue (415) 695-4053
SAMPLE # DATE TIME LOCATIO	6 65						MATR	FR	((REMARKS CONTAINER, SIZE, ETC.)
51:41 7/28/93 8.50 Stockple	XX		2 4	F04			FOIL	_ /		2" dimeter bress
5F-42 " 8 55 "	\times \times	i i	3 1	1504	ŀ	, i	,,	1		slocus
			31	505	5	ļ 			<u> </u>	
						- 	 			
						+	-			
							-			
							 	_		
						_	 			
RELINQUISHED BY: (signature)	RECEIVE	BY:	(signa	ture	• 1		time	2	TO	TAL NUMBER OF CONTAINERS
2.) me len					7-28	10.52	REPO	RT S TO:	SPECIAL SHIPMENT REQUIREMENTS
3.								Jan No		COLD TRANSPORT
14.								PETER KI.	INEY	5:11 to flower 6
5.								GLAMEDA		SAMPLE RECEIPT
INSTRUCTIONS TO LABORATORY (ha	indling,	analy	ses, s	tora	age,	etc.	.):			CHAIN OF CUSTODY SEALS
Normal TAT										REC'D GOOD CONDIN/COLD
I sower ILII							.,	·		CONFORMS TO RECORD