TRANSMITTAL

TO: Ms. Eva Chu ACHCSA 80 Swan Way, Room 200 Oakland, California 94621 DATE: January 31, 1994 PROJECT #: 6130.01 SUBJECT: Initial Subsurface

Investigation

Shamrock Ford

Report for HAZMAT ALCOUNT

FROM:

Barbara Sieminski Project Geologist GeoStrategies, Inc. 6747 Sierra Court, Suite G Dublin, California 94568

WE ARE SENDING YOU:

COPIES	DATED	DESCRIPTION
1	01/26/93	Initial Subsurface Investigation Report for Shamrock Ford, 7499 Dublin Boulevard, Dublin, California

THESE ARE TRANSMITTED as checked below:

[] For review and comment	[] Approved as submitted	[] Resubmit copies for approval
[X] As requested	[] Approved as noted	[] Submit copies for distribution
[] For approval	[] Return for corrections	[] Return corrected prints
[] For your files		

cc: Mr. Craig Caldwell, Shamrock Ford Job File, GSI

94 FEB -2 AMII: 37

GeoStrategies Inc.

INITIAL SUBSURFACE INVESTIGATION

Shamrock Ford 7499 Dublin Boulevard Dublin, California

613001-3

January 26, 1994

GeoStrategies Inc. CONTENTS

INTRODUCTION
General
Regional and Local Geology and Hydrogeology 2
PREVIOUS ENVIRONMENTAL WORK
FIELD WORK 5
Drilling
Soil Sampling and Description 6
Well Construction 7
Well Development
Well Monitoring and Sampling
Well Survey
LABORATORY ANALYSES
Soil Samples from Borings 9
Cookpile Campile 111111111111111111111111111111111111
distriction outliness that the same of the
CONTRACTOR
REFERENCES
Tables Table 1. Laboratory Analyses of Tank Pit Soil Samples Table 2. Laboratory Analyses of Tank Pit Water Samples Table 3. Groundwater Monitoring Data Table 4. Laboratory Analyses of Boring Soil Samples Table 5. Laboratory Analyses of Groundwater Samples
Plates Plate 1. Vicinity Map Plate 2. Site Plan Plate 3. Geologic Cross Section A-A' Plate 4. Potentiometric Map Plate 5. TPH-G/Benzene Concentration Map
Appendixes Appendix A: Well Construction Permit Appendix B: Exploratory Boring Logs Appendix C: Well Development Forms, Well Sampling Field Data Sheets, Analytical Report and Chain-of-Custody Form for Groundwater Samples Appendix D: Well Survey Report

INITIAL SUBSURFACE INVESTIGATION Shamrock Ford, 7499 Dublin Boulevard, Dublin, California

INTRODUCTION

At the request of Shamrock Ford, GeoStrategies Inc. (GSI) performed an initial subsurface investigation at the Shamrock Ford site, located at 7499 Dublin Boulevard in Dublin, California, and prepared this report of the investigation. This work was requested by Ms. Eva Chu of Alameda County Health Care Services Agency (ACHCSA) after groundwater samples collected from the tank pits during removal of one gasoline underground storage tank (UST) and one waste-oil UST indicated the presence of gasoline and waste-oil related hydrocarbons in groundwater beneath the subject site. The purpose of this work was to evaluate the presence and extent of hydrocarbon impacted soil and groundwater beneath the site.

The work for this investigation was performed as specified in the GSI Work Plan (GSI, October 27, 1993) approved by Ms. Eva Chu of ACHCSA in the letter dated November 15, 1993. The work performed included: drilling three onsite soil borings, collecting soil samples from the borings for description and possible laboratory analyses; installing three 2-inch diameter groundwater monitoring wells (A-1 through A-3) in the borings; submitting selected soil samples for laboratory analyses; developing wells A-1 through A-3; surveying wells A-1 through A-3; monitoring, purging and sampling groundwater from wells A-1 through A-3 and submitting groundwater samples for laboratory analyses; and preparing a report including field methods, results, and conclusions of the investigation.

Shamrock Ford Initial Subsurface Investigation 613001-3

January 26, 1994

Field work was performed to comply with current Regional Water Quality Control Board (RWQCB) and local agency guidelines.

SITE DESCRIPTION AND BACKGROUND

General

Shamrock Ford is an operating dealership facility located at the northern corner of the intersection of Dublin Boulevard and Amador Plaza Road in Dublin, California. The site location is shown on Plate 1, Vicinity map. The site is a relatively flat, asphalt- and concrete-covered lot at an elevation of approximately 335 feet above mean sea level.

One 1,000-gallon waste-oil UST (T1) and one 2,000-gallon gasoline UST (T2) were located in the southwestern portion of the site adjacent to the auto repair center. The approximate locations of the former tanks and other pertinent site features are shown on Plate 2, Site Plan.

Regional and Local Geology and Hydrogeology

Shamrock Ford site is located in the northwestern end of the Livermore Valley, within the Coast Ranges Geomorphic Province of Northern California. The Livermore Valley is approximately 13 miles long oriented in an east-west direction, approximately 4 miles wide, and is bounded by hills of the Diablo Range. In the vicinity of the subject site, the valley floor slopes gently to the south-southeast. Soil in the vicinity of the subject site is mapped as Holocene alluvium consisting of unconsolidated, moderately to poorly sorted silt and clay rich in organic material, interfingered with and graded into coarser grained stream deposits toward higher elevations (Helley and others, 1979). Holocene alluvium (estimated to be 10 to 50 feet thick) overlies Pleistocene alluvium, which consists of weakly consolidated, poorly sorted, irregularly interbedded clay, silt, sand and gravel, and in turn overlies older sedimentary deposits. The Calaveras Fault is approximately ½-mile west of the site.

The Livermore Valley groundwater basin is divided into subbasins on the basis of fault traces or other hydrogeologic discontinuities (California Department of Water Resources, 1974). The groundwater system in Livermore Valley is a multi-layered system with an unconfined aquifer

Shamrock Ford Initial Subsurface Investigation 613001-3 January 26, 1994

overlying a sequence of leaky or semi-confined aquifers. The subject site is located within the Dublin groundwater subbasin. The groundwater in this subbasin has been reported to be at depths ranging from 10 to 60 feet below ground (fbg) (Alameda County Flood Control and Water Conservation District [ACFCWCD], January 16, 1991).

The site is approximately ¼-mile north of Dublin Creek. The direction of groundwater flow in the vicinity of the site is inferred to be to the southeast, based on regional and local topography, and drainage patterns.

PREVIOUS ENVIRONMENTAL WORK

In June 1993, Gettler-Ryan Inc. (G-R) removed one 1000-gallon single-walled steel waste-oil UST (T1), and one 2000-gallon single-walled steel gasoline UST (T2) (GSI, 1993). Tank removal was observed by GSI personnel. Examination of the waste-oil UST (T1) indicated that this tank was pitted and rusted, and had holes up to 1-inch in diameter throughout the lower half of the tank. Examination of the gasoline UST (T2) indicated that this tank was in good condition with no visible through-going holes. The backfill material excavated from the tank pit above and around the tanks was predominantly coarse grained sand. The native soil consisted of silty clay to sandy silt to 8 fbg. Groundwater was encountered in the tank pits at the depth of approximately 7 fbg. Approximately 100 cubic yards of backfill soil were removed from the tank pit excavations, and after aeration were disposed at BFI Landfill in Livermore, California.

Two soil samples were collected from native soil from the side walls of each tank pit at depths of approximately 7 feet, just above the groundwater surface.

Laboratory analyses of both soil samples (S-7-T1-1 and S-7-T1-2) collected from the former waste-oil tank pit indicated nondetectable concentrations of total petroleum hydrocarbons calculated as gasoline (TPH-G), gasoline constituents benzene, ethylbenzene, toluene and total

Shamrock Ford Initial Subsurface Investigation 613001-3 January 26, 1994

xylenes (BTEX), total petroleum hydrocarbons calculated as diesel (TPH-D), total petroleum hydrocarbons calculated as motor oil (TPH-MO), oil and grease (O&G), and volatile organic compounds (VOCs). Concentrations of the metals: cadmium (Cd), chromium (Cr), lead (Pb), nickel (Ni) and zinc (Zn) were up to 1.5 parts per million (ppm), 51 ppm, 14 ppm, 37 ppm, and 86 ppm, respectively. Metals appear to be present in the soil in normal background concentrations (Lindsay, 1979; and Scott, 1991).

Laboratory analyses of soil samples collected from the former gasoline tank pit indicated nondetectable TPH-G and BTEX for the sample collected from the southern wall of the tank pit (S-7-T2-1), and 2.4 ppm TPH-G and up to 0.094 ppm BTEX for the sample collected from the northern wall (S-7-T2-2). Lead was detected at a concentration of 12 ppm in sample S-7-T2-1, which is within normal background concentrations (Lindsay, 1979; and Scott, 1991); and was nondetectable in sample S-7-T2-2. Laboratory analyses results for tank pit soil samples are presented in Table 1, Laboratory Analyses of Tank Pit Soil Samples.

Groundwater samples were collected from the tank pits after the tank pits were purged. Laboratory analytical results for the groundwater sample (W-7-T1) collected from the former waste-oil tank pit indicated 150 parts per billion (ppb) TPH-G; up to 11 ppb BTEX; 8,600 ppb TPH-MO; and 2,200 ppb O&G. Metals including Cd, Cr, Pb, Ni and Zn were detected at concentrations of 17 ppb, 460 ppb, 850 ppb, 1200 ppb, and 530 ppb, respectively. TPH-D concentration was reported as nondetectable, however, the reporting limit was increased to 100 ppb due to oil interference. VOC concentrations (35 compounds tested) were nondetectable (less than 2 ppb) except benzene (2.6 ppb), toluene (6.1 ppb), P,M-xylene (5.6 ppb), O-xylene (3.2 ppb), methylene chloride (4.4 ppb), and acetone (34 ppb).

Shamrock Ford Initial Subsurface Investigation 613001-3 January 26, 1994

Laboratory analytical results for the groundwater sample (W-7-T2) collected from the former gasoline tank pit indicated 3600 ppb TPH-G; up to 540 ppb BTEX; and 16 ppb of lead. Laboratory analyses results for water samples collected from the tank pits are presented in Table 2, Laboratory Analyses of Tank Pit Water Samples.

FIELD WORK

Drilling

Field work at the site was conducted in accordance with the GSI Field Methods and Procedures presented in the GSI Work Plan dated October 27, 1993, and the Site Safety Plan (GSI, December 7, 1993). Well construction permit was acquired from the Alameda County Flood Control and Water Conservation District (ACFCWCD) prior to drilling at the site. A copy of the well permit is included in Appendix A, Well Construction Permit.

On December 17, 1993, three soil borings (A-1 through A-3) were drilled using a Mobile Drill B-61 in the inferred downgradient vicinity of the former USTs, see Plate 2. A GSI geologist observed the drilling and described the soil samples collected from borings using the Unified Soil Classification System (ASTM D 2488-84) and Munsell Color Chart, and prepared a lithologic log for each boring. Borings A-1 through A-3 were drilled with 8 inch outer-diameter hollow-stem augers to an approximate depth of 16½ to 18 fbg, and converted to groundwater monitoring wells.

The earth materials encountered at the site during drilling consisted primarily of silty and sandy clay to clayey silt interbedded with clayey sand. Silty and sandy clay to clayey silt was encountered immediately beneath the ground surface in borings A-1 through A-3, and extended to the depth of approximately 9 to 9½ fbg. A unit consisting of sandy clay with clayey sand lenses was encountered beneath the silty and sandy clay

Shamrock Ford Initial Subsurface Investigation 613001-3 January 26, 1994

to clayey silt. Clayey sand lenses in this unit contained white subangular grains of evaporite minerals. Groundwater was encountered in the sandy clay with clayey sand lenses unit at the depths ranging from 9 to 9½ fbg and stabilized at depths of approximately 7 to 7½ fbg. A stratum of sandy clay which may act as a perching or confining layer was encountered in borings A-1 through A-3 beneath sandy clay with clayey sand lenses at depth of approximately 14½ to 15½ fbg and extended to the total depth of the borings (16½ to 18 fbg). The graphic interpretation of soil stratigraphy beneath the site is shown on Geologic Cross Section A-A' (Plate 3). The location of the cross section is shown on Plate 2. Exploratory boring logs and graphic well construction details are presented in Appendix B.

Drill cuttings generated during drilling were stored onsite, placed on and covered with visqueen. After drilling was completed on December 17, 1993, four soil samples were collected from the soil stockpile and submitted for compositing and analyses to the laboratory to determine the proper disposal action for the soil stockpile.

Soil Sampling and Description

Soil samples were collected at five-foot or less intervals from borings A-1 through A-3. The soil samples were collected using a modified California split-spoon sampler fitted with stainless steel sample tube liners. Soil samples retained for chemical analyses were sealed on both ends with aluminum foil and plastic end caps. Samples were labeled, entered onto a Chain-of-Custody form, and transported in a cooler with ice to the laboratory.

An Organic Vapor Monitor (OVM) photoionization detector was used to perform head-space analyses on soils from each sample interval, as a reconnaissance-level field test to evaluate the presence of hydrocarbons in the soil. OVM readings for soil samples collected from borings A-1

Shamrock Ford Initial Subsurface Investigation 613001-3 January 26, 1994

through A-3 indicated nondetectable concentrations of hydrocarbons. OVM readings are presented on each boring log (in PID column) in Appendix B.

Well Construction

Three groundwater monitoring wells (A-1 through A-3) were constructed in the borings. Groundwater monitoring wells were completed with 2-inch-diameter, Schedule 40, polyvinylchloride (PVC) casing. Well casings were set in wells A-1 through A-3 to depths of approximately 15 fbg. The screened casings consisted of 2-inch-diameter, 0.020 inch-wide machine-slotted PVC set from the total depths of the wells to approximate depth of 7 fbg. Blank PVC casing was set from the top of each screened casing to approximately ½ foot below the ground surface. The wells were secured with 2-inch expandable locking well caps. Each well was covered with highway rated Christie box cemented to grade.

Graphic well construction details are presented on the exploratory boring logs in Appendix B.

Well Development

The groundwater monitoring wells were hand-developed by a Gettler-Ryan Inc (G-R) field technician on December 22, 1993, to remove fine-grained sediments and allow better communication between the water-bearing zone and the groundwater monitoring well. Well Development Forms are included in Appendix C.

Well Monitoring and Sampling

On December 23, 1993, G-R field personnel obtained depth-to-water (DTW) measurements in groundwater monitoring wells A-1 through A-3, visually inspected groundwater from the wells for the presence of floating

Shamrock Ford Initial Subsurface Investigation 613001-3 January 26, 1994

product, and purged and collected groundwater samples from each well. Depth to groundwater and floating product observations are summarized in Table 3, Groundwater Monitoring Data. Well Sampling Field Data Sheets are attached in Appendix C.

Water level data collected on December 23, 1993, were reference to Mean Sea Level (MSL) datum and used to construct a potentiometric map shown on Plate 4. The gradient of the groundwater beneath the site is approximately 0.004 with the flow direction toward the northeast.

Floating product was not observed in any well on December 23, 1993.

Water generated during well development and purging for sampling was removed from the site and transported for recycling to Gibson Environmental in Redwood City, California, on January 17, 1994. Prior to disposal, development and purge water was stored in drums onsite.

Well Survey

On December 27, 1993, wells A-1 through A-3 were surveyed to a U.S. Coast and Geodetic Survey Datum by Virgil Chavez, a California Licenced Land Surveyor. The results of this well survey are included in Appendix D.

LABORATORY ANALYSES

Soil and groundwater samples collected during this investigation were preserved as required by the applicable analytical method and delivered, with Chain-of-Custody Records, to Western Environmental Science and Technology of Davis, California (WEST), a State-certified laboratory (Hazardous Waste Testing Laboratory Certification #1346).

Shamrock Ford Initial Subsurface Investigation 613001-3 January 26, 1994

Soil Samples from Borings

Selected soil samples collected from borings A-1 through A-3 were analyzed for TPH-G using Modified Environmental Protection Agency (EPA) Method 8015/Purge-and-Trap; BTEX using EPA Method 8020/Purge-and-Trap; TPH-D and TPH-MO using Modified EPA Method 8015/Extraction; 0&G using Standard Methods # 5520 E,F; VOCs using EPA Method 8240; and metals (Cd, Cr, Pb, Ni and Zn) using EPA Methods 7000/6010.

Laboratory analyses of soil samples collected from borings A-1 through A-3 reported nondetectable concentrations of TPH-G, BTEX, TPH-D, TPH-MO and VOCs. O&G concentrations were nondetectable in all samples submitted for laboratory analyses except for sample (A3-8.5) collected at a depth of 8.5 fbg in boring A-3, which indicated 77 ppm. However, according to the laboratory, this result does not represent mineral oil and grease, but is due to the presence of a white non-petroleum residue which the samples yielded during extraction. Concentrations of metals Cd, Cr, Ni and Zn were up to 1.9 ppm, 48 ppm, 51 ppm, and 61 ppm, respectively, and lead was nondetectable (less than 10 ppm). Metals appear to be present in the soil in normal background concentrations (Lindsay, 1979; and Scott, 1991). Soil chemical analytical data are summarized in Table 4, Laboratory Analyses of Boring Soil Samples. The soil chemical analytical reports and Chain-of-Custody Forms are presented in Appendix E.

Stockpile Samples

The stockpile samples were composited in the laboratory and analyzed for TPH-G using Modified EPA Method 8015; BTEX using EPA method 8020; Total Recoverable Petroleum Hydrocarbons using Method 418.1; VOCs using EPA Method 8240; and metals using EPA Methods 7000/6010/200.7.

Shamrock Ford Initial Subsurface Investigation 613001-3 January 26, 1994

Laboratory analyses of composite soil samples collected from the soil stockpile reported nondetectable concentrations of TPH-G, BTEX and VOCs. Concentrations of Total Recoverable Petroleum Hydrocarbons and metals were within acceptable limits for disposal. The soil stockpile will be removed from the site and transported to BFI Landfill in Livermore, California.

The soil stockpile chemical analytical data are summarized in Table 4, and the analytical reports and the Chain-of-Custody Form are presented in Appendix E.

Groundwater Samples

A groundwater samples collected from groundwater monitoring wells A-1 through A-3 on December 23, 1993, were analyzed for TPH-G using Modified EPA Method 8015; BTEX using EPA method 602; TPH-D and TPH-MO using Modified EPA Method 8015/Extraction; O&G using Standard Methods 5520 B,F; VOCs using EPA Method 624; and metals Cd, Cr, Pb, Ni and Zn using EPA Method 7000/6010/200.7.

Laboratory analytical results for the groundwater sample collected from wells A-1 through A-3 indicated nondetectable concentrations of TPH-G, BTEX, TPH-D, TPH-MO, O&G and VOCs. Metals Cd, Cr, and Ni were detected at concentrations exceeding Maximum Contaminant Levels (MCLs) of 10 ppb, 50 ppb and 100 ppb, respectively, in groundwater sample collected in well A-2. Concentration of metals in groundwater samples collected from wells A-1 and A-3 were below MCLs, except Cr which slightly exceeded MCL. Based on the upgradient location of well A-2 to former USTs, it appears that the concentrations of Cd, Cr and Ni detected in groundwater sample from well A-2 represent the natural, background level at this location. The presence of soluable evaporites in the soil beneath the site may contribute to the high levels of metals detected in well A-2.

Shamrock Ford Initial Subsurface Investigation 613001-3 January 26, 1994

The results of laboratory analyses of groundwater samples collected from groundwater monitoring wells A-1 through A-3 are summarized in Table 5, Laboratory Analyses of Groundwater Samples. Concentrations of TPH-G and benzene are also shown on Plate 5. The groundwater chemical analytical reports and Chain-of-Custody Forms are presented in Appendix C.

SUMMARY

The results of this investigation are presented below:

- Three exploratory borings were drilled on-site on December 17, 1993, and completed as groundwater monitoring wells A-1 through A-3.
- The lithology of the borings consisted primarily of silty and sandy clay to clayey silt interbedded with clayey sand to the total depth explored of 18 fbg. Groundwater was first encountered in the borings at depths ranging between 9 and 9½ and stabilized at depths 7 to 7½ fbg.
- The groundwater gradient of the first encountered water bearing zone beneath the site is interpreted to be approximately 0.004 (very flat) with the flow direction to the northeast.
- Based on the laboratory analytical results the soils in the western, southern and southeastern vicinity of the former waste-oil and gasoline USTs have not been impacted by hydrocarbons and metals.
- Groundwater in the western, southern and southeastern vicinity of the former waste-oil and gasoline USTs appears not to be impacted by waste-oil and gasoline related hydrocarbons. Concentrations of

Shamrock Ford Initial Subsurface Investigation 613001-3 January 26, 1994

metals in groundwater beneath the site appear to be within the natural background levels, although above MCLs.

If you have any questions or comments, please call us at (510) 551-8777.

ERED GEO

Sincerely,

GeoStrategies Inc.

Barbara Sieminski

Project Geologist

Gary Pischke

Senior Geologist

C.E.G. 1501

Shamrock Ford Initial Subsurface Investigation 613001-3 January 26, 1994

REFERENCES

Alameda County Flood Control and Water Conservation District, Zone 7. January 16, 1991. Fall 1990 Groundwater Level Report.

California Department of Water Resources, 1974. <u>Evaluation of Groundwater Resources Engineering: Livermore and Sunol Valleys</u>; Bulletin No. 118-2, Appendix A.

GSI, August, 1993. <u>Underground Tank Removal Report for Shamrock Ford, 7499 Dublin Boulevard, Dublin, California.</u> GSI Report 610001-01.

GSI, October 27, 1993. Work Plan for Initial Subsurface Investigation for Shamrock Ford, 7499 Dublin Boulevard, Dublin, California. GSI Report 613001-02.

GSI, December 7, 1993. <u>Site Safety Plan for Shamrock Ford, 7499</u> <u>Dublin Boulevard, Dublin, California</u>. GSI Job 8130.02

Helley E.J., K.R. Lajoie, W.E. Spangle, and M.L. Blair, 1979. <u>Flatland Deposits of the San Francisco Bay Region, California.</u> U.S. Geological Survey Professional Paper 943.

Lindsay, W.L., 1979. Chemical Equilibria in Soil. John Wiley and Sons.

Scott, C.M., December 1991. <u>Background Metal Concentrations in Soils in Northern Santa Clara County</u>, <u>California</u>. M.S. Thesis at the University of San Francisco Environmental Management Program.

TABLES

TABLE 1 LABORATORY ANALYSES OF TANK PIT SOIL SAMPLES Shamrock Ford Dublin, California

TANK PIT/ SAMPLE NO.	SAMPLE DATE	TPH-G (PPM)	BENZENE (PPM)	TOLUENE (PPM)	ETHYLBENZENE (PPM)	XYLENES (PPM)	TPH-D (PPM)	TPH-MO (PPM)	O&G (PPM)	VOCs (PPM)	METALS (PPM)
Waste-oil Tank Pit											
S-7-T1-1	23-Jun-93	< 0.50	<0.0050	< 0.0050	<0.0050	<0.0050	<10	<10	< 50	ND*	Cadmium - 1.5 Chromium - 49 Lead - 13 Nickel - 34 Zinc - 86
S-7-T1-2	23-Jun-93	< 0 50	<0.0050	<0.0050	<0.0050	<0.0050	<10	<10	< 50	ND*	Cadmium - 1.3 Chromium - 51 Lead - 14 Nickel - 37 Zinc - 56
Gasoline											
Tank Prt S-7-T2-1	23-Jun-93	<0.50	< 0 0050	< 0.0050	< 0.0050	< 0.0050	NA	NA	NA	NA	Lead - 12
S-7-T2-2	23-Jun-93	2.4	0.015	0 0060	0.030	0.094	NA	NA	NA	NA	Lead - <10

Total Petroleum Hydrocarbons calculated as Gasoline TPH G

Total Petroleum Hydrocarbons calculated as Diesel. TPH-D ==

Total Petroleum Hydrocarbons calculated as Motor Oil. TPH-MO =

Oil and Grease O&G =

Volatile Organic Compounds VOCs =

Parts per Million PPM = Not detected ND

35 compounds tested

Not analyzed NA

Notes: 1. All data shown as <x are reported as ND (none detected).

TABLE 2 LABORATORY ANALYSES OF TANK PIT WATER SAMPLES Shamrock Ford Dublin, California

TANK PIT/ SAMPLE NO.	SAMPLE DATE	TPH-G (PPB)	BENZENE (PPB)	TOLUENE (PPB)	ETHYLBENZENE (PPB)	XYLENES (PPB)	TPH-D (PPB)	TPH-MO (PPB)	O&G (PPB)	VOCs (PPB)	METALS (PPB)
Waste-oil Tank Pit W-7-11	29-Jun 93	150	3.4	6.5	2,2	11	<100*	8600	2200	ND** except: Methylene Chloride - 4.4; Acetone - 34; Benzene - 2.6, Toluene 6.1; P,M-Xylene - 5.6; O-Xylene - 3.2	Cadmium - 17 Chromium - 460 Lead - 850 Nickel - 1200 Zinc - 530
Gasoline Tank Pit W-7-T2	24-Jun 93	3600	67	40	170	540	NA	ΝA	NA	NA	Lead - 16

Current Regional Water Quality Control Board Maximum Contaminant Levels:
Benzene 1 0 ppb, Xylenes 1750 ppb, Ethylbenzene 680 ppb, Cadmium 10 ppb, Chromium 50 ppb, Lead 50 ppb, Nickel 100 ppb, Zinc 5,000 ppb.
Current Cal EPA Action Levels. Toluene 100 ppb

TPH-G = Total Petroleum Hydrocarbons calculated as Gasoline.

TPH-D = Total Petroleum Hydrocarbons calculated as Diesel.

TPH-MO = Total Petroleum Hydrocarbons calculated as Motor Oil.

O&G = Oil and Grease

VOCs = Volatile Organic Compounds

PPB = Parts per Billion
ND = Not detected
NA = Not analyzed

Reporting limit increased due to oil interference.

** = 35 compounds tested.

Notes: 1. All data shown as <x are reported as ND (none detected).

613001-03

TABLE 3 GROUNDWATER MONITORING DATA Shamrock Ford Dublin, California

Monitoring Date	Well Number	Depth to Water (ft)	Well Elevation (ft)	Static Water Elevation (ft)	Floating Product Thickness (ft)
23-Dec-93	A-1	6.27	332.88	326.61	0.00
23-Dec-93	A-2	7.43	334.16	326.73	0.00
23-Dec-93	A-3	7.50	334.18	326.68	0.00

Notes:

- 1. Static water elevations referenced to Mean Sea Level (MSL).
- 2. Well elevations and depth-to-water measured to top of casing.

TABLE 4 LABORATORY ANALYSES OF BORING SOIL SAMPLES

Shamrock Ford Dublin, California December 17, 1993

SAMPLE NO.	TPH-G (PPM)	BENZENE (PPM)	TOLUENE (PPM)	ETHYLBENZENE (PPM)	XYLENES (PPM)	TPH-D (PPM)	TPH-MO (PPM)	O&G (PPM)	VOCs (PPM)	Cd	MET Cr	ALS (PF	PM) Zn	Ni
A1-5 5	< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.0050	<10	<10	< 50	ND*	1.3	39	< 10	50	34
A1-7.5	< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.0050	<10	<10	< 50	ND*	1.5	48	< 10	61	40
A1-16	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<10	<10	< 50	ND*	1.3	43	< 10	52	33
A2-5.5	< 0 50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<10	<10	< 50	ND*	1.7	40	< 10	49	35
A2-8,5	< 0 50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<10	<10	< 50	ND*	1.6	48	< 10	57	35
A2-17 5	< 0.50	< 0 0050	< 0.0050	< 0.0050	< 0.0050	<10	<10	<50	ND*	1.7	41	< 10	52	36
A3-5.5	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<10	<10	< 50	ND*	1.9	41	< 10	51	51
A3-85	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<10	<10	77**	ND*	1.6	48	<10	58	38
A3-16	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<10	<10	< 50	ND*	1.8	48	< 10	56	42
Stockpile Sample S-1217-SPABCD	<0.50	< 0.0003	<0.0003	< 0.0003	< 0.0005	NA	NΑ	490***	ND*	1.6	45 [0.1]	8.0	44	54

ΓΡΗ-G ΤΡΗ-D ΤΡΗ-ΜΟ	==	Total Petroleum Hydrocarbons calculated as Gasoline. Total Petroleum Hydrocarbons calculated as Diesel. Total Petroleum Hydrocarbons calculated as Motor Oil.	A1-16.5	ldentificat	lan: Depth in feet
O&G	=	Oil and Grease	1		Well ID
VOCs		Volatile Organic Compounds.			
PPM	=	Parts per Million			
Cd	25	Cadmium	ND	#	Not detected
Cr	=	Chromium	*	=	38 compounds tested
Pb	==	Lead	* *	=	Sample extracts yielded a white non-petroleum residue.
Zn	=	Zinc	* * *	=	Total Recoverable Petroleum Hydrocarbons analyzed by EPA Method 418.1
Nŧ	=	Nickel	Ü	==	STLC Metals results

Notes: 1. All data shown as <x are reported as ND (none detected).

^{2.} Stockpile sample S-1217-SPABCD was analyzed also for: antimony (<3.2 ppm), arsenic (6.8 ppm, [0.16 ppm]), barium (130 ppm), beryllium (0.90 ppm), cobalt (11 ppm, [0.0068 ppm]), copper (26 ppm), mercury (<0.50 ppm, [<0.0050 ppm]), molybdenum (<0.80 ppm), selenium (<4.0), silver (0.90 ppm), thallium (<1.0) and vanadium (41ppm).

TABLE 5 LABORATORY ANALYSES OF GROUNDWATER SAMPLES Shamrock Ford Dublin, California

	SAMPLE	TPH-G	BENZENE	TOLUENE	ETHYLBENZE	XYLENES	TPH-D	ТРН-МО	O&G	VOCs	_		ETALS (
DATE F	POINT	(PPB)	(PPB)	(PPB)	-NE (PPB)	(PPB)	(PPB)	(PPB)	(PPB)	(PPB)	C	d Cr	Pb	Zn	Ni
23-Dec-93	A-1	< 50	< 0.30	< 0.30	< 0.30	< 0.50	< 50	< 100	<1000	ND*	5.2	54	4.0	42	41
23-Dec-93	A-2	< 50	< 0 30	< 0.30	< 0.30	< 0.50	< 50	< 100	< 1000	ND*	13	190	15	210	150
23-Dec 93	A-3	< 50	< 0.30	< 0.30	< 0.30	< 0.50	< 50	<100	<1000	ND*	5.5	51	3.5	39	32

Current Regional Water Quality Control Board Maximum Contaminant Levels:

Benzene 1.0 ppb, Xylenes 1750 ppb, Ethylbenzene 680 ppb, Cadmium 10 ppb, Chromium 50 ppb, Lead 50 ppb, Nickel 100 ppb, Zinc 5,000 ppb.

Current Cal EPA Action Levels: Toluene 100 ppb

TPH G = Total Petroleum Hydrocarbons calculated as Gasoline.

TPH-D = Total Petroleum Hydrocarbons calculated as Diesel.

TPH-MO = Total Petroleum Hydrocarbons calculated as Motor Oil.

O&G = Oil and Grease

VOCs = Volatile Organic Compounds.

PPB = Parts per Billion

Cd = Cadmium

Cr = Chromium

Pb = Lead

Zn = Zinc

Nı = Nickel

ND = Not detected

= 38 compounds tested

Notes: 1. All data shown as <x are reported as ND (none detected).

JOB NUMBER

7499 Dublin Boulevard Dublin, California

DATE 1/94

REVISED DATE

613001-3

REVIEWED BY

ILLUSTRATIONS

APPENDIX A

WELL CONSTRUCTION PERMIT

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRIC

Barbare Silmindi Dato 11/23/93

FOR APPLICANT TO COMPLETE

5997 PARKSIDE DRIVE & PLEASANTON, CALIFORNIA 94566

/Wyman Hong

1219

FOR OFFICE USE

(415) 484-26 .

GROUNDWATER PROTECTION ORDINANCE PERMIT APPLICATION

ATION OF PROJECT Shamvock Ford 7499 Dublin Boulevand Dublin, Codifornia	PERMIT NUMBER 93667 LOCATION NUMBER
ENT Shamrock Ford ress 7499 Dublin Blod Phone (510) 829-5211 y Dublin ZIP 94568	PERMIT CONDITIONS Circled Permit Requirements Apply
Description Barbara Signings Feo Strategies ress 6747 Sierra Court Phone 510 551-8777 y Dublin Zip 94568 E OF PROJECT I Construction General Sater Supply Contamination Solitoring Well Destruction POSED WATER SUPPLY WELL USE estic Industrial Other Icipal Irrigation LLING METHOD: Rotary Air Rotary Auger Hollow Stem Ie Other LLER'S LICENSE NO. 484 288 LPROJECTS Drill Hole Diameter 8 in. Maximum Casing Diameter 2 in. Depth 30 ft. Surface Seal Depth 7 ft. Number 3 TECHNICAL PROJECTS Number of Borings Maximum Hole Diameter In. Depth 1t. IMATED STARTING DATE 12 13 93 IMATED COMPLETION DATE 12 13 193	A. GENERAL 1. A permit application should be submitted so a arrive at the Zone 7 office five days prior proposed starting date. 2. Submit to Zone 7 within 60 days after comple of permitted work the original Department Water Resources Water Well Drillers Report equivalent for well projects, or drilling and location sketch for geotechnical projects. 3. Permit is void if project not begun within days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS 1. Minimum surface seal thickness is two inchescement grout placed by tremie. 2. Minimum seal depth is 50 feet for municipal industrial wells or 20 feet for domestic irrigation wells unless a lesser depth specially approved. Minimum seal depth monitoring wells is the maximum depth practic or 20 feet. C. GEOTECHNICAL. Backfill bore hole with compacted tings or heavy bentonite and upper two feet with pacted material. In areas of known or suspe contamination, tremied cement grout shall be use place of compacted cuttings. D. CATHODIC. Fill hole above anode zone with conceptaced by tremio. E. WELL DESTRUCTION. See attached.
ereby agree to comply with all requirements of this nit and Alameda County Ordinance No. 73-68.	Approved Warman Henry pato 24 Nov

APPENDIX B EXPLORATORY BORING LOGS

GS	N III I		ateg a Cour				ıblın, Ca. 95468	Ĺ	og of Borin.	g A-1			
PROJEC	T: Sh	amro	ck For	ď			·	LOCATION: 7499 Dublin Boulevard, Dublin, Ca.					
SSI PRO		10. :	6130.	01				SURFACE ELEVA	TION: 332.88 ft. I	MSL			
DATE S	TARTE	D: 12	2/17/9:	3				WL (ft. bgs): 9.5	DATE: 12/17/93	TIME: 12:00			
	STARTED: 12/17/93 FINISHED: 12/17/93							WL (ft. bgs): 7.0	DATE: 12/17/93	TIME: 12:30			
ORILLIN					ow St	em Au		TOTAL DEPTH:	16.5 Feet				
ORILLIN							<u> </u>	GEOLOGIST: B					
(eet	SAMPLE NUMBER	BLOWS/FT. *	PID (mpd) DIA	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		COLOGIC DESCRIPTI		WELL DIAGRAM			
			**********		11/11	PV	PAVEMENT SECT	TION – 3" baserock,	3" asphalt	TO THE PARTY OF TH			
	:					CL	SILTY CLAY (CL medium plasticity	.) - black (5Y 2.5/2) r; 95 % fines, 5% fine	, damp, stiff, grained sand.	2" blank PVC (schedule 40)			
5- A	1-5.5	22	0			CL	SANDY CLAY (C medium plasticity	L) – olive (5Y 4/4), r; 80% fines, 20% san	damp, very stiff,	2". b (sch			
]	1-7.5	34	0			1716	* (5Y 3/1), damp, sand; sand comp	TH SAND (ML) — ver hard, low plasticity; i orised mainly of suba holes; becoming moi:	70% fines, 30% ngular evaporite	nch			
0- A1	1–10.5	38	0			CL SC	- dark gray (5) saturated; 60% 1	TH CLAYEY SAND LE '3/1) mottled dark bi fines, 40% fine to co orised mainly of suba	rown (10YR 3/3), arse grained	2" slotted PVC (0.02 inch) → RESERVE (0.02 inch) → RITHINGERIAL RESERVE (0.02 inch) → R			
15-	4116	26	0			CL	medium plasticity	(L) - olive (5Y 4/4), y; 80% fines, 20% sar g at 16.5 feet. 12/17/	nd.				
0-							(* = converted blows/ft.)	to equivalent standa	ard penetration	-			
25										-			
0-						:							
35-				-						-			

G			rate(ra Cour				ublin, Ca. 95468	Log of Borin	g A-2
PRO	JECT: Si	hamro	ck Foi	ď				LOCATION: 7499 Dublin Boulevard	l, Dublin, Ca.
GSI I	PROJECT	NO.:	6130.	01				SURFACE ELEVATION: 334.16 ft.	MSL
DATE	STARTE	D: 12	2/17/9	3				WL (ft. bgs): 9 DATE: 12/17/93	TIME: 8:30
DATE	FINISHE	D:	12/17/9	33				WL (ft. bgs): 7.50 DATE: 12/17/93	TIME: 9:30
DRIL	LING MET	HOD:	8 in.	Holl	low S	tem Au	ger	TOTAL DEPTH: 18 Feet	
ORIL	LING COM	PANY	: Exp	lora	tion (GeoSei	rvices	GEOLOGIST: BS	
OEPTH feet	SAMPLE NUMBER	BLOWS/FT, *	PID (ppm)	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	EOLOGIC DESCRIPTION	WELL DIAGRAM
					11111	PV	PAVEMENT SEC	TION - 3" baserock, 3" asphalt	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1						CL	SILTY CLAY (CI medium plasticity	.) - black (5Y 2.5/2), damp, stiff, y; 95 % fines, 5% fine grained sand.	2" blank PVC (schedule 40)
5—	A2-5.5 A2-7	19	0			CL	SANDY CLAY (C low to medium pl	CL) - olive (5Y 4/4, damp, very stiff, asticity, 70% fines, 30% sand.	
7							¥		
٦	A2-8.5	29	0				Becoming moist;	increasing sand.	(0.02 inch)
10-	A2-15	31	0			cic cis	- olive gray (5) 50% fines, 50% (TH CLAYEY SAND LENSES (CL/SC) (4/2) with white motling, saturated; ine to coarse grained sand; sand of subangular evaporite grains.	Section PVC (0.02 mch) >> Section PVC (0.02
15-	A2-17.5	30	0			CL	stiff, low plastic Becoming damp.	CL) - olive gray (5Y 4/2), moist, very ity; 85% fines, 15% sand.	k ben- ≯
20- - -					The state of the s			g at 18 feet. 12/17/93 to equivalent standard penetration	
25— - - -									
30-									
35- JOB	NUMBER	613	30.01	_					Page 1 of

G			rate(ra Cour	_			ublin, Ca. 95468	Log of Boring A-3					
PRO-	JECT: S	hamro	ck Foi	rd		LOCATION: 7499 Dublin Boulevar	7499 Dublin Boulevard, Dublin, Ca.						
SI	PROJECT	NO. :	6130.	.01				SURFACE ELEVATION: 334.18 ft. MSL					
ATE	STARTE	D: 12	2/17/9	3				WL (ft. bgs): 9.5 DATE: 12/17/93 TIME: 10:30					
ATE	FINISHE	ED: 1	12/17/9	33				WL (ft. bgs): 7.50 DATE: 12/17/93	TIME: 11:45				
RIL	LING MET	HOD:	8 in.	Holi	low Si	em Au	ger	TOTAL DEPTH: 16.5 Feet					
RIL	LING COM	PANY	: Exp	olora	ition (GeoSei	rvices	GEOLOGIST: BS					
feet	SAMPLE NUMBER	BLOWS/FT. *	PID (ppm)	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	G	GEOLOGIC DESCRIPTION					
\Box				\Box		PV	PAVEMENT SEC	TION - 3" baserock, 3" asphalt	- TY				
5—						CL	medium plasticit	SILTY CLAY (CL) - black (5Y 2.5/2), damp, stiff, medium plasticity; 95 % fines, 5% fine sand. SANDY CLAY (CL) - olive gray (5Y 4/2), damp, very stiff, medium plasticity, 80% fines, 20% sand.					
1	A3-5.5 A3-8,5	25	0				Ţ		+ 2				
4	MJ-0,5	"	, ,				∇ Becoming moist:	Increasing rand	Inch]				
0-	A3-10	15	0			CL SC	▼ Becoming moist; SANDY CLAY WI - clive gray (5 50% fines, 50% consists mainly	2" slotted PVC (0.02 Incl					
1	A3-13.5	26	0				Decreasing san	Decreasing sand; becoming moist.					
5-	A3-16	28	0			CL	SANDY CLAY ((4/4) damp, very sand.	SANDY CLAY (CL) - very dark grayish brown (2.5Y 4/4) damp, very stiff, low plasticity; 80% fines, 20 % sand.					
1							Bottom of borin	g at 16.5 feet. 12/17/93					
0-							(* = converted blows/ft.)	to equivalent standard penetration					
5-	i												
)													

APPENDIX C

WELL DEVELOPMENT FORMS
WELL SAMPLING FIELD DATA SHEETS,
ANALYTICAL REPORT
AND CHAIN-OF-CUSTODY FORM
FOR GROUNDWATER SAMPLES

WELL DEVELOPMENT FORM

			Page	of_	<u> </u>
(to be filled out in office)				-======	
Client Shamrock Ford ss#_			Joh# 813	30.01	
Name Shamrock Ford	Location	7499 Dub	lin Blod	DIL	,
Well# A-	Screened	Interval	7'-15'	vun un	
Aquifer Material Clayer 5an	d	Installat	ion Dato	Der	oth <u>15</u> a 2
Drilling Method Hollow Stem	Auger	Borehole	Diamotor		13
Comments regarding well inst	Y	DOLUMOLE	Drameret_		
(to be filled out in the fie:					
Date 12-27-9)	Developmen	nt Method	Surse/	Bailer	
Total Depth 14.90 - Dep	oth to liqui	id 6.19	= WaterCo	lumn <u>8</u>	.71
oroduct thickness			.		
8,71 x G.17 Pater Column Diameter (i	_ x _ 10	, 	0408 = <u>_</u>	15.	a
urge Start 12:56	.n.) #1	1;48 			
	<u>-</u>		Rate		 JDm
allons Time C	larity Navad	Temp.	pH 7.28	Conduct	ivity
(1)	- jaul det	GC.3	7.2.8	2130	
3.0 <u>8.0</u> 13:04 13:11 14:40	Macc	Colo. 2 Colou3	7.23 5.24	1960	Dews
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jean	(ato. 4	7.20 7.72	7650	— — Dear-su
					 /
<u> </u>					
	10				
>tal gallons removed 1599 :pth to liquid 14.71 at	14:50	Developmen	t stop tir	ne	<u> </u>
. 1	.7.50	(time)		^	
or of water NCC		Water disc	harged to_	Win	
mments HWGUV fu	1100				

WELL DEVELOPMENT FORM

	Page / of S
(to be filled out in office)	
client Shamrock Ford ss#	Job#_8130.01
Name Shamrock Ford Location 7499 I	Jublin Blod, Dublin
Nell# A-2 Screened Interva	al 7'-15' Depth 151
Aquifer Material Clayey Gand Insta	allation Date
Drilling Method Hollow Stem Augu Borer	nole Diameter 3"
Comments regarding well installation:	
(to be filled out in the field) Name	
Date 12-22-93 Development Meth	nod David Barb
Fotal Depth 15' - Depth to liquid 7.3	= WaterColumn /(a)
Product thickness	
Vater Column Diameter (in.) #Vol	x <u>0-040</u> 8 = 13-0 - ga
Purge Start 13:18 Stop 1400	Rategpm
Gallons Time Clarity Temp. O 1370 Muddy 67-	pH Conductivity 7.47 7.43 7690
7.5 13.54 Mrdd 1070	7.43 1690
3.83 Mydr 605 7.8 13:37 Mydr 605	7117 (6990
13.93 Acut 605 14.0 13.09 Acut 605 14.0 13.09 Acut 605 14.3	7.20 - 6420
13:09 drang 64.4	2.19 <u>38.90</u>
Cotal gallons removed 17 Devel	obment stopetime
epth to liquid 14' at 1910 (time)	
	discharged to Now Drug
comments Waar drew down buy did	nct dewozi-

WELL DEVELOPMENT FORM

				Page	<u> </u>	3
•	(to be filled out in office)	=======================================	=======			
	client Shammack Ford ss#			Job# <u>813</u>	0.01	
	Name Shamrock Ford	Location_	7499 Dul	slin Blod.	Dubl	i'n
)	Vell#A-3					
	Aquifer Material Clayey Sav	<u>d</u>	Installa	tion Date	12/17	1/93
	orilling Method Hollow Stem	Auger	Borehole	Diameter_	8 ^d '	
)	Comments regarding well insta	√ llation:				
	(+ a b = £1] ad ant i = b = £1.2		####### #	Frank C	 Ting	
)	(to be filled out in the fiel Date 12-22-5)	•				
	Fotal Depth 1917 - Dep		nt Method_			725
	The state of the s	th to liqu	id 1.70	= WaterCo	lumn	
)	Product_thickness				~ ~	
	7.25 x 0117 Water Column ≈ Diameter (i	x	<u>У ж е</u> Vo1 — — — е	:040 8 = .	<u>/2,3</u>	g
	Purge Start 1405	🖭 Stop <u>jl</u>	pipe.	Rate	<u> </u>	dom
)	ر وی وید ست شد شدر <u>شند بین ب</u> ین بین می وی وی بین وی بید وی سد شد شو سد شو سد شا		<u></u>		,	
	0 14.00	larity Iou dy	Temp.	PH 7.20	Condu 7540	ctivity
,	1,3 3,3 14,13 A	14000 1 14000	67.3	7.22	7980 7820	
,	<u>59</u> 14:18 . A	and / Mydof	66.3 ·	7.10 7.04	71300 -6680	
	13.78	and it	do 3	7.66 #	1278	
	10.0 74334 Com	land for	(do. 3	7,05	6240	
		1	*			Can win
	Potal gallons removed 20	*	Developme	nt stop ti	me	
	epth to liquidat	1414/1	_(time)	110 200 <u>0</u> 01	.m <u></u>	· <u>u</u>
	odor of waterNa_		,	charged to	1. ^	- <u>-</u>
	comments Well drew	down 6	ut Vid	nct ch	warm	-
	recourse yer		//			

General and Environmental Contractors

MONITORING WELL OBSERVATION SUMMARY SHEET

COMPANY	Shamoock	Fird	JOB NO	. <u>21.38</u>	101
LOCATION	7499 Dus	In Bluck	, DATI	12-23	2-23
CITY	Publin C	14	TIM!		
WELL ID	TOTAL WELL DEPTH	DEPTH TO LIQUID	HYDROCARBON THICKNESS	MEASUREMENT POINT TOB or TOC	COMMENTS
A -1	14.90	6.27		TOC	
A-2	15,0	7.43			
H-3	14.7	7.50			,
-					
					
				· · · · · · · · · · · · · · · · · · ·	<u> </u>
					
	<u> </u>				
Comments:	<u> </u>		······································	· · · · · · · · · · · · · · · · · · ·	
Comments:	·				
					
Sampler:	FiCline		Assistant:		

General and Environmental Contractors

WELL SAMPLING FIELD DATA SHEET

					_
COMPANY	Shamrock	Ford	JOB #	8128	
LOCATION	Du 5/14	PSIUd		17-23-23	
CITY	Dustin	r CA	TIME		
Well ID.	4-1	Well Condi	ition Otal		
Well Diameter	_ ''	in. Hydrocarb	on Thickness		ft.
Total Depth	417 1510	ractor 3	" = 0.17 6" = 1 " = 0.38 8" = 2	60	.80
Depth to Liquid-	<u>C,27</u>	ft. (VF) 4	" = 0.66 10" = 4		
(# of casing volumes)		x(VF) <u>6.17</u>	= (Estimate Purge Volume) 1.4 7.4	gal.
Purging Equipment	<u> </u>	Bailer		<u> </u>	
Sampling Equipmen	nt	ailer			
Starting Time	1,28		_		
(Fotiment and town			Rate		gpm.
Purge Volume	gal. Purg	te /	gpm. = (Anticipate Purging Time) =	min.
Time	pН	Conductivity	Temperature	Volume	
935 8:00	1.25	7000	G1,3	1.6	
G=32 8;02		6 6 6			
	7.22	6200	66. C	7.2	-
8;04	7.22	<u>6200</u> 5420	<u>66.0</u>	3.2 4.8	
		6200 5420 7670		4.8	
	7.20			4.8	?uca
	7.26	7670 7570	65.8 65.9 66.0	4.8 6.0 2 7.0	}uca
9-54 8:04 9:10 4-38 10:10	7.26 7.26 726 415	7670 7570	65.8 65.9 66.0 Volum	4.8 6.0 2 7.0	}uca
9:04 9:10 9:10 9:10 10:10	7.20 7.26 7.26 726 415	7676 7570 If yes, time Weather Condit	65.8 65.9 66.0 Volum	4.8 6.0 2 7.0	?wci
24 8;04 25 8:10 25 10:10 Did well dewater? Sampling Time	7.20 7.26 7.26 415 10.10 chain	7676 7570 If yes, time Weather Condit	65.8 65.9 66.0 Volum	4.8 6.0 2 7.0	?wci
E;04 E;04 E;04 E;04 E;04 E;04 E;04 E;04	7.20 7.26 7.26 415 10.10 chain	7676 7570 If yes, time Weather Condit	65.8 65.9 66.0 Volum	4.8 6.0 2 7.0	?wci

General and Environmental Contractors

WELL SAMPLING FIELD DATA SHEET

LOCATION	Dublin	Blud	DATE /2	E128 3:23-53
CITY	Dublin		TIME _	
	·			
Well ID.	A-Z	Well Cond	ition 4	at
Well Diameter	2 '	in. Hydrocari	on Thickness	
Total Depth		Factor	2" = 0.17 $6" = 13" = 0.38$ $8" = 2$	2.60
Depth to Liquid-	7.43		4" = 0.66 10" = 4	
# of casing volumes)	x //3/	x(VF)	Purge Volume	d) 1.3 6.5 ga
Ourging Equipment		Bailer		
Sampling Equipmen	it	Bul.		
			يوه بدايها	
	06 11	-	الله عجميها الراب الما الراب الم	and the same of th
Estimated Purge Volume	Pure	Purging Flo	w Rate Anticipate Purging Time	gpm d) min
Estimated Purge Volume	Pure	ing te		18.
Estimated Purge Volume Time	gal. Purg	ing te	gpm. Anticipate -Purging Time	# **
Estimated Purge Volume Time 6:34	gal. Purg	Conductivity	Anticipate - Purging Time Temperature	Volume 113
Estimated Purge Volume Time 8:34 8:28	gal. Purg Filo PH	Conductivity 5750	Temperature	Volume
Estimated Purge Volume Time	Purg gal. / Purg Flo Rat 7.40 7.27	Conductivity 5750 5870	Temperature GC.C	Volume 113 2-6
Estimated Purge Volume Time 8:34 8:28 6.40	7.40 7.27 7.11	Conductivity 5750 5890 6056	Temperature GG.C GG.S	Volume 113 2-6 3.9
Estimated Purge Volume Time Si34 8:36 8:36 6:40 G.42 G.44 Did well dewater?	7.40 7.27 7.11 7.05 7.08	Conductivity 5750 5890 6056 6030 6030	Temperature (65.8) (65.8) Volum	Volume 113 2.6 3.9 512 6.5
Estimated Purge Volume Time 8:34 8:38 6:40 8.42 4:44	7.40 7.27 7.11 7.05 7.08	Conductivity 5750 5890 6056 6030 6030	Temperature (65.8) (65.8) Volum	Volume 113 2.6 3.9 512 6.5
Estimated Purge Volume Time Si34 8:36 8:36 8:40 6:42 G.44 Poid well dewater? ampling Time	7.40 7.27 7.11 7.05 7.08	Conductivity 5750 5890 6056 6030 6030 frager grant frag	Temperature (27.0) (35.8) (65.8) Volume	Volume 113 2.6 3.9 512 6.5
Estimated Purge Volume Time Si34 8:38 S.40 8.42 4.44	PH 7,40 7,27 7,17 7,05 7,08 No. 8,44 Rec Chain	Conductivity S750 5870 6056 6030 6030 Weather Conductivity	Temperature (A).O (G).O (G).S (S).8 (G).S Volume Stions es Used	Volume 113 2.6 3.9 512 6.5

General and Environmental Contractors

WELL SAMPLING FIELD DATA SHEET

	.)			
COMPANY	Shampa	k ford	JOB #_	8128
LOCATION		Blue	DATE	12-23-93
CITY	Densli	n CB	TIME	
Well ID.	A-3	Well Cone	lition	ay
Well Diameter	2 "	in Hydrocar	bon Thickness	ft.
Total Depth	14.7	ft. Volume Factor	2" = 0.17 6" = 3" = 0.38 8" = 2	1.50 12" = 5.80
Depth to Liquid-	7.50	ft (VF)	4" = 0.66 $10" = 4$	4.10
(# of casing volumes)	x 7.20	x(VF) <u>0.15</u>	= (Estimate Purge)1.2 G gal.
Purging Equipment		Bailer	(· Junic	,
Sampling Equipmen	at	Bailir		
- r		- Annual Same Same Same Same	پندي د د د د د د د د د د د د د د د د د د	The state of the s
StartingTime	2:05	Purging Flo	Rate	
(Estimated) Purge Volume	gal. /(Pu	rging low ate	gpm. = (Anticipate Purging Time	gpm.
Time	Ηq	Conductivity	•	
9:07	7.39	5900	(2).8	1.3
9:09	7.10	6110	963	2.G
9:11	7113	6730	66.5	3,9
9.13	7.10	G23C	G5.8	5,2
9:15	7.11	6250	(05.9	6.1
Did well dewater?	NC	_ If yes, time	Volum	ne
Sampling Time	9:15	Weather Cond		
Analysis Scc	chain			
Chain of Custody N	-			
COLOMENTS				
foreman F C/1	u-		ASSISTANT	

Tom Poulson Geostrategies Inc. 6747 Sierra Court, Suite J Dublin, CA 94568

Subject: Analytical Results for 4 Water Samples

Identified as: Project # 8130.01 (Shamrock Ford)

Received: 12/23/93

Dear Mr. Poulson:

Analysis of the sample(s) referenced above has been completed. This report is written to confirm results communicated on January 4, 1993 and describes procedures used to analyze the samples.

The sample(s) were received in:

40ml voa vials sealed with TFE-lined septae
1-L glass bottles sealed with TFE-lined caps

1-L polyethylene bottles sealed with polyethylene caps

Each sample was transported and received under documented chain of custody, assigned a consecutive log number and stored at 4 degrees Celsius until analysis commenced.

Sample(s) were analyzed using the following method(s):

"BTEX" (EPA Method 602/Purge-and-Trap)
"TPH as Gasoline" (Modified EPA Method 8015/Purge-and-Trap)
"TPH as Diesel, Motor Oil, Jet/Kerosene" (Mod. 8015/Extraction)
"Metals by Atomic Absorption/ICAP" (EPA Methods 7000/6010/200.7)
"Oil and Grease" (Standard Methods 5520 B,F)
"Volatile Organic Priority Pollutants" (EPA Method 624)

Please refer to the following table(s) for summarized analytical results and contact us at 916-757-4650 if you have questions regarding procedures or results. The chain-of-custody document is enclosed.

Western Britisher, A. C. C. C. C. C. C. C. C. GARDERO, Brandok C. My C. DA GRATICA GARDER ARDICA FINAL TECHNOLOGY.

Approved by:

Joel Kiff √ Senior Chemist

Total Oil and Grease (Standard Methods 5520 B,F)

From : Project # 8130.01 (Shamrock Ford)

Received: 12/23/93

Matrix : Water

--all concentrations are units of ug/l--

Sample	Date Sampled	Date Analyzed	RDL	(5520 B,F) Oil and Grease
A-1	12/23/93	12/30/93	(1000)	<1000
A-2	12/23/93	12/30/93	(1000)	<1000
A-3	12/23/93	12/30/93	(1000)	<1000

QC Batch: KW931203

Stewart Podolsky Senior Chemist

- 2 50 them of Sales . T. 1000 60 . LETTS ON ON HARASON . Make OZ BERTA . DIE TES BESS . FAX UN OST LASS

From : Project # 8130.01 (Shamrock Ford)

Sampled: 12/23/93

Dilution: 1:1 QC Batch: 2042d

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene	(.30)	<.30
Toluene	(.30)	<.30
Ethylbenzene	(.30)	<.30
Total Xylenes	(.50)	<.50
TPH as Gasoline	(50)	<50
Surrogate Recovery	Y	101 %

From : Project # 8130.01 (Shamrock Ford)

Sampled: 12/23/93

Dilution: 1:1 QC Batch: 2042d

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene	(.30)	<.30
Toluene	(.30)	<.30
Ethylbenzene	(.30)	<.30
Total Xylenes	(.50)	<.50
TPH as Gasoline	(50)	<50
Surrogate Recovery	7	101 %

Tilrhheleas (+ 45133 Coupts Read 308 (+ 015) - 14 45717 (+ 417 75) 45

From : Project # 8130.01 (Shamrock Ford)

Sampled: 12/23/93

Dilution: 1:1 QC Batch: 2042d

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene	(.30)	<.30
Toluene	(.30)	<.30
Ethylbenzene	(.30)	<.30
Total Xylenes	(.50)	<.50
TPH as Gasoline	(50)	<50
Surrogate Recovery	7	101 %

Sample: TB

From : Project # 8130.01 (Shamrock Ford)

Sampled : 12/21/93

Dilution: 1:1 QC Batch: 2042d

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene	(.30)	<.30
Toluene	(.30)	<.30
Ethylbenzene	(.30)	<.30
Total Xylenes	(.50)	<.50
TPH as Gasoline	(50)	<50
Surrogate Recovery	ļ	101 %

From : Project # 8130.01 (Shamrock Ford)

Sampled: 12/23/93

QC Batch : DW931216 Extracted: 12/28/93 Run Log: 8142E Dilution: 1:1

Matrix : Water

Parameter	(MDL) wa/r	Measured Value 49/L
TPH as Diesel TPH as Motor Oil	(50) (100)	<50 <100

쥩 EPA Mod 8015 Stewart Podolsky Senior Chemist

Date: 12-30-93 Time: 19:20:08 Column: 0.55mm ID: 15m DB1 (J&W Scientific)

8214-2

Sample: A-2

From : Project # 8130.01 (Shamrock Ford)

Sampled : 12/23/93

Extracted: 12/28/93 QC Batch: DW931216 Dilution: 1:1 Run Log: 8142E

Matrix : Water

Parameter	(MDL) ug/t	Measured Value ug/L		
TPH as Diesel TPH as Motor Oil	(50) (100)	<50 <100		

Date: 12-30-93 Time: 10:54:18 Column: 0.53mm, IC : 15m DB1 (J&W Scientific)

EPA Mod 8015

Stewar: Podols‱ių Senior Chemist

Ę

8-14-3

Sample: A-3

From : Project # 8130.01 (Shamrock Ford)

Sampled : 12/23/93

Extracted: 12/28/93 QC Batch: DW931216 Dilution: 1:1 Run Log: 8142E

Matrix : Water

Parameter	(MDL) ug/L	Measured Value ug/L		
TPH as Diesel TPH as Motor Oil	(50) (100)	<50 <100		

EPH Mod 8015

Date: 12-30~93 Time: 12:36:44

Column: 0.53mm ID | 15m DB1 (J8W Scientific)

Stewart PodolsHy Senior Chemist

10 mU

Prom : Project # 8130.01 (Shamrock Ford)
Sampled : 12/23/93

Received : 12/23/93

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L		
Cadmium	(4.0)	5.2		
Chromium	(5.0)	54		
Lead	(3.0)	4.0		
Zinc	(10)	42		
Nickel	(15)	41		

From : Project # 8130.01 (Shamrock Ford)

Sampled: 12/23/93 Received: 12/23/93

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L		
Cadmium	(4.0)	13		
Chromium	(5.0)	190		
Lead	(3.0)	15		
Zinc	(10)	210		
Nickel	(15)	150		

Joel Kiff
Senior Chenist

From : Project # 8130.01 (Shamrock Ford)

Sampled: 12/23/93 Received: 12/23/93

Matrix : Water

Parameter	(MRL) ug/l	Measured Value ug/L		
Cadmium	(4.0)	5.5		
Chromium	(5.0)	51		
Lead	(3.0)	3.5		
Zinc	(10)	39		
Nickel	(15)	32		

Joel Kiff Senior Chemist

J.

From : Project # 8130.01 (Shamrock Ford)

 Sampled: 12/23/93
 Received: 12/23/93

 Matrix: Water
 Analyzed: 12/28/93

624 - Volatile Organic Priority Pollutants

•		Measured
Parameter	(MRL) ug/L	Value wg/L Flag
Chloromethane	(10)	< 10
Bromomethane	(10)	< 10
cis-1,2-Dichloroethene	(5.0)	< 5.0
trans-1,2-Dichloroethene	(5.0)	< 5.0
Vinyl Chloride	(10)	< 10
Chloroethane	(10)	< 10
Methylene Chloride	(5.0)	< 5.0
Acetone	(100)	< 100
Carbon Disulfide	(5.0)	< 5.0
1,1-Dichloroethene	(5.0)	< 5.0
1,1-Dichloroethane	(5.0)	< 5.0
Chloroform	(5.0)	< 5.0
1,2-Dichloroethane	(5.0)	< 5.0
2-Butanone	(100)	< 100
1,1,1-Trichloroethane	(5.0)	< 5.0
Carbon Tetrachloride	(5.0)	< 5.0
Bromodichloromethane	(5.0)	< 5.0
1,2-Dichloropropane	(5.0)	< 5.0
cis-1,3-Dichloropropene	(5.0)	< 5.0
Trichloroethene	(5.0)	< 5.0
Dibromochloromethane	(5.0)	< 5.0
1,1,2-Trichloroethane	(5.0)	< 5.0
Benzene	(5.0)	< 5.0
trans-1,3-Dichloropropene	(5.0)	< 5.0
Bromoform	(5.0)	< 5.0
4-Methyl-2-Pentanone	(50)	< 50
1,3-Dichlorobenzene	(5.0)	< 5.0
1,2-Dichlorobenzene	(5.0)	< 5.0
1,4-Dichlorobenzene	(5.0)	. < 5.0
2-Hexanone	(50)	< 50
Tetrachloroethene	(5.0)	< 5.0
1,1,2,2-Tetrachloroethane	(5.0)	< 5.0
Toluene	(5.0)	< 5.0
Chlorobenzene	(5.0)	< 5.0
Ethylbenzene	(5.0)	< 5.0
Styrene	(5.0)	< 5.0
P,M-Xylene	(5.0)	< 5.0
O-Xylene	(5.0)	< 5.0

Joel Kiff Senior Chemist

From : Project # 8130.01 (Shamrock Ford)

Sampled: 12/23/93 Received: 12/23/93 Matrix: Water Analyzed: 12/28/93

624 - Volatile Organic Priority Pollutants

	-	Measured
Parameter	(MRL) ug/L	Value wg/L Flag
Chloromethane	(10)	< 10
Bromomethane	(10)	< 10
cis-1,2-Dichloroethene	(5.0)	< 5.0
trans-1,2-Dichloroethene	(5.0)	< 5.0
Vinyl Chloride	(10)	< 10
Chloroethane	(10)	< 10
Methylene Chloride	(5.0)	< 5.0
Acetone	(100)	< 100
Carbon Disulfide	(5.0)	< 5.0
1,1-Dichloroethene	(5.0)	< 5.0
1,1-Dichloroethane	(5.0)	< 5.0
Chloroform	(5.0)	< 5.0
1,2-Dichloroethane	(5.0)	< 5.0
2-Butanone	(100)	< 100
1,1,1-Trichloroethane	(5.0)	< 5.0
Carbon Tetrachloride	(5.0)	< 5.0
Bromodichloromethane	(5.0)	< 5.0
1,2-Dichloropropane	(5.0)	< 5.0
cis-1,3-Dichloropropene	(5.0)	< 5.0
Trichloroethene	(5.0)	< 5.0
Dibromochloromethane	(5.0)	< 5.0
1,1,2-Trichloroethane	(5.0)	< 5.0
Benzene	(5.0)	< 5.0
trans-1,3-Dichloropropene	(5.0)	< 5.0
Bromoform	(5.0)	< 5.0
4-Methyl-2-Pentanone	(50)	< 50
1,3-Dichlorobenzene	(5.0)	< 5.0
1,2-Dichlorobenzene	(5.0)	< 5.0
1,4-Dichlorobenzene	(5.0)	< 5.0
2-Hexanone	(50)	< 50
Tetrachloroethene	(5.0)	< 5.0
1,1,2,2-Tetrachloroethane	(5.0)	< 5.0
Toluene	(5.0)	< 5.0
Chlorobenzene	(5.0)	< 5.0
Ethylbenzene	(5.0)	< 5.0
Styrene	(5.0)	< 5.0
P,M-Xylene	(5.0)	< 5.0
O-Xylene	(5.0)	< 5.0

CHERT FOR THE STATE OF THE COOK OF 45199 CO. THE FORENCE OF PRICE OF PRICE OF THE GRAD AND AND

Joel Wiff Senior Chemist

From : Project # 8130.01 (Shamrock Ford)
Sampled : 12/23/93 Re Received : 12/23/93 Analyzed: 12/28/93 Matrix : Water

624 - Volatile Organic Priority Pollutants

		Measured
Parameter	(MRL) ug/L	Value wg/L Flag
Chloromethane	(10)	< 10
Bromomethane		< 10 < 10 < 5.0 < 5.0
cis-1,2-Dichloroethene	(10) (5.0)	< 5.0
trans-1,2-Dichloroethene	(5.0)	< 5.0
Vinyl Chloride	(10)	< 10
Chloroethane	(10)	< 10
Methylene Chloride	(5.0)	< 5.0
Acetone	(100)	< 100
Carbon Disulfide	(5.0)	< 5.0
1,1-Dichloroethene	(5.0)	< 5.0
1,1-Dichloroethane	(5.0)	< 5.0
Chloroform	(5.0)	< 5.0
1,2-Dichloroethane	(5.0)	< 5.0
2-Butanone	(100)	< 100
1,1,1-Trichloroethane	(5.0)	< 5.0
Carbon Tetrachloride	(5.0)	< 5.0
Bromodichloromethane	(5.0)	< 5.0
1,2-Dichloropropane cis-1,3-Dichloropropene	(5.0)	< 5.0
cis-1,3-Dichloropropene	(5.0)	< 5.0
Trichloroethene	(5.0)	< 5.0
Dibromochloromethane	(5.0)	< 5.0
1,1,2-Trichloroethane	(5.0)	< 5.0
Benzene	(5.0)	< 5.0
trans-1,3-Dichloropropene	(5.0)	< 5.0
Bromoform	(5.0)	< 5.0
4-Methyl-2-Pentanone	(50)	< 50
1,3-Dichlorobenzene	(5.0)	< 5.0
1,2-Dichlorobenzene	(5.0)	< 5.0
1,4-Dichlorobenzene	(5.0)	< 5.0
2-Hexanone	(50)	< 50
Tetrachloroethene	(5.0)	< 5.0
1,1,2,2-Tetrachloroethane		< 5.0
Toluene	(5.0)	< 5.0
Chlorobenzene	(5.0)	< 5.0
Ethylbenzene	(5.0)	< 5.0
Styrene	(5.0)	< 5.0
P,M-Xylene	(5.0)	< 5.0
O-Xylene	(5.0)	< 5.0

Sample: TB

From : Project # 8130.01 (Shamrock Ford) Sampled : 12/21/93 R Received : 12/23/93 Analyzed: 12/28/93 Matrix : Water

624 - Volatile Organic Priority Pollutants

Parameter	(MRL) ug/L	Measured Value wg/L Flag
Chloromethane	(10)	< 10
Bromomethane	(10)	< 10
cis-1,2-Dichloroethene	(5.0)	< 5.0
trans-1,2-Dichloroethene	(5.0)	< 5.0
Vinyl Chloride	(10)	< 10
Chloroethane	(10)	< 10
Methylene Chloride	(5.0)	< 5.0
Acetone	(100)	< 100
Carbon Disulfide	(5.0)	< 5.0
1,1-Dichloroethene	(5.0)	< 5.0
1,1-Dichloroethane	(5.0)	< 5.0
Chloroform	(5.0)	< 5.0
1,2-Dichloroethane	(5.0)	< 5.0
2-Butanone	(100)	< 100
1,1,1-Trichloroethane	(5.0)	< 5.0
Carbon Tetrachloride	(5.0)	< 5.0
Bromodichloromethane	(5.0)	< 5.0
1,2-Dichloropropane	(5.0)	< 5.0
cis-1,3-Dichloropropene	(5.0)	< 5.0
Trichloroethene	(5.0)	< 5.0
Dibromochloromethane	(5.0)	< 5.0
1,1,2-Trichloroethane	(5.0)	< 5.0
Benzene	(5.0)	< 5.0
trans-1,3-Dichloropropene	(5.0)	< 5.0
Bromoform	(5.0)	< 5.0
4-Methyl-2-Pentanone	(50)	< 50
1,3-Dichlorobenzene	(5.0)	< 5.0
1,2-Dichlorobenzene	(5.0)	< 5.0
1,4-Dichlorobenzene	(5.0)	< 5.0
2-Hexanone	(50)	< 50
Tetrachloroethene	(5.0)	< 5.0
1,1,2,2-Tetrachloroethane	(5.0)	< 5.0
Toluene	(5.0)	< 5.0
Chlorobenzene	(5.0)	< 5.0
Ethylbenzene	(5.0)	< 5.0
Styrene	(5.0)	< 5.0
P,M-Xylene	(5.0)	< 5.0
O-Xylene	(5.0)	< 5.0

EPA 624 System Monitoring Compound Recovery

Sample	SMC1 (TOL)#	SMC2 (BFB)#	SMC3 (DCE)#	OTHER	TOT OUT	
A-1	104	104	99		0	
A-2	103	102	98		0	
A-3	105	103	97		0	
TB	103	99	95		0	

				QC Limits
SMC1	(TOL)	=	Toluene-d8	(88-120)
SMC2	(BFB)	=	Bromofluorobenzene	(86-120)
SMC3	(DCE)	=	1,2-Dichloroethane-d4	(76-114)

- # Column to be used to flag recovery values
- * Values outside of QC limits
- D System Monitoring Compound diluted out

Joel Kiff Senior Chemist

Gettler - R	yan inc	EN	LA RONMENTAL DI	VISION	5275	Chain of Cus
COMPANY	Shamou	<u> </u>	Crd_		JOB	NO
JOB LOCATION _	7499 Di	1.6/10 /	3/00/			· ·
CITY	Dustin	<u> C15</u>		P	HONE NO	
AUTHORIZED	Em Pauls	-и	DATE _	12-23-93 P.	0. NO	8130 U
SAMPLE ID	NO OF CONTAINERS	SAMPLE MATRIX	DATE/TIME SAMPLED	ANALYSIS REQUIR	ED	SAMPLE CONDITI
A-1	13	L194101	12-23-23 1/0:10	THE Cow BT	LE TPH	Dice!
A-Z	i3	1	18:44	NICTORO,1, TO		_
H-3	13		1 9:15	by EPA 55		
TB	2	Ţ,		EPA 8240		
	-	···		Cd, Cr, PbN	2n 5	7000/6010/20
<u> </u>			To	Blank THE Cow B	IVS BPAS	3240
			//}/	ABIGUAL TIT-CELLS B	ije <u>pi</u> ni	
				<u> </u>		
_						
						<u> </u>
			****	,		
				~		<u></u>
				\mathcal{A}	6	
RELINQUISHED BY	2/	2-	N.JU RECE	EIVED BY:	7	- 12/23/
RELINQUISHED BY:		-23 fi3		EIVED BY	<i>#\\</i>	11,20
A A			1/23/GO RECE	EWED BI.	-	
RELINGUISHED BY:	M M	Vil	RECE	EIVED BY LAB!		
	·			J-i ff		WC5T
DESIGNATED LABO	BATORY: 1/2	exem f	3nyronmense S	CIONEDHS #		/3/8
REMARKS:					DE	CEIVED
	Nicrimal	74-1			h	y W.E.S.T.
	-			MID GELANS	- 	ate 15°C
WITH NO	ICE, PERche	nts reque	of, he sample	ALCO FLECTO	ct c. 1/2	drith ice
Vere not	To Be opened to a	to des	with the policy	MAN FILLIN	hitrort	that
PATE COMPLETED	16734	<u> </u>	FORE	MAN		1

APPENDIX D

WELL SURVEY REPORT

Virgil Chavez Land Surveying

1418 Lassen Street Vallejo, California 94591 707.553.2476

January 05, 1994 Project No. 1104-06

Barbara Sieminski GeoStrategies, Inc. 6747 Sierra Ct., Suite D Dublin, Ca. 94568

Subject: Monitoring Well Survey

7499 Dublin Blvd.

Dublin, Ca.

Dear Barbara:

This is to confirm that we have proceeded at your request to survey the new ground water monitoring wells located at the above referenced location. The survey was performed on December 27, 1993. My findings are shown in the table below, and are based on N.G.V.D. (National Geodetic Vertical Datum). I will forward the horizontal location data on the wells as soon as possible.

Monitoring Well No.	Rim Elevation	Top of Casing Elevation
A-1	333.33′	332.88′
A-2	334.44′	334.16′
A-3	334.44′	334.18′

Measurements taken at approximate north side of top of box, and top of casing.

No. 6323 Exp. (2-3)-94

Virgil D. Chavez, P.L.S./6323

AMADOR PLAZA ROAD

CALIFORNIA COORDINATE SYSTEM

SHEET		
7	07/	

		·	Y(HORTH)	
HONIZONTAL	CONTROL DATA	LATITUDE	442,0X)	
*****		LONGITUDE	XLEAST)	
TTME-			1,587,	TYRAN RECOVERED!
•		STATIONINAME, SET EY, YEAR	227)	IVEAN RECOVERED.
	•	DUIS - 680 A	CA. CO. 1910	17/7
		HOEN SHEET TOULDRANGE	E SHEET)	
	•	DUBLIN (25)	
;		ALAMEDA COSTA	OTHER COUNTY	!
AGENÇY	COP	COUNTY DOUNTY		
			TERRETE ALBANDIA	A B. 18
VERTICAL	CONTROL DATA	TO STATION ON MARK		GRID DISTANCE
ELEVATION IN FEET	PATUM	GRID HORTH	180 00,00,000	
	MATERIAL CONTRACTOR	TRUE HORTH		in Pest
331.597	N.G. V. D. 1929			
ONDER SECOND				
1974 NGS	1st ADJ-			
				<u> </u>
	_			- -
ASENCY ALA. C	CO. COF] [

DESCRIPTION, PLAT, REMARKS, ETG.

B.M. 'DUB-680'

A CHISTED T' PAINTED YELLOW ON TOP CENTER N'LY LONCRETE CURB ABOVE D.I. LOCATED 0.60 MICES E'LY ACONG DUBLING BLVD. FROM SAN RAMON ROAD; 121.5 FEET W'LY OF & I-680 MOMSURED ALONG THE N'LY CURB LINE OF DUBLIN BLVD. AND 43T N'LY CURB LINE OF DUBLIN BLVD. AND 43T FEET N'LY OF OLD & DUBLIN BLVD.

M -1

18

BLUE (RANG

F(道)近R ~ U.G. TAK

AMADOR PLAZA ROAD

FURMER

R.O. TAK

- PLIMEDI

DRAFT

PLANTER

DEPLAY STREES

SeoStrategree

FOOR

PARKING

DISPLAY SPACES

PIMITA

Suffed but the supple by Shamesk ford

APPENDIX E

ANALYTICAL REPORT
AND CHAIN-OF-CUSTODY FORMS
FOR SOIL SAMPLES

December 29, 1993 Sample Log 8186

Barbara Sieminski Geostrategies, Inc. 6747 Sierra Court, Suite J Dublin, CA 94568

Subject: Analytical Results for 10 Soil Samples

Identified as: Project # 6130.01 (Shamrock Ford)

Received: 12/20/93

Dear Ms. Sieminski:

Analysis of the sample(s) referenced above has been completed. This report is written to confirm results communicated on December 28, 1993 and describes procedures used to analyze the samples.

The sample(s) were received in:

Stainless steel sleeves with Al Foil and endcaps

Each sample was transported and received under documented chain of custody, assigned a consecutive log number and stored at 4 degrees Celsius until analysis commenced.

Sample(s) were analyzed using the following method(s):

"BTEX" (EPA Method 8020/Purge-and-Trap)
"TPH as Gasoline" (Modified EPA Method 8015/Purge-and-Trap)
"TPH as Diesel, Motor Oil, Jet/Kerosene" (Mod. 8015/Extraction)
"Metals by Atomic Absorption/ICAP" (EPA Methods 7000/6010/200.7)
"Oil and Grease" (Standard Methods # 5520 E,F)
"Total Recoverable Petroleum Hydrocarbons" (EPA 418.1)
"Volatile Organic Priority Pollutants" (EPA Method 8240)
"Metals" (EPA 6010,7000)

Please refer to the following table(s) for summarized analytical results and contact us at 916-757-4650 if you have questions regarding procedures or results. The chain-of-custody document is enclosed.

Approved by:

Joel Kiff

Sample: Al-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Dilution: 1:1 QC Batch: 6074F

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene	(.0050)	<.0050
Toluene	(.0050)	<.0050
Ethylbenzene	(.0050)	<.0050
Total Xylenes	(.0050)	<.0050
TPH as Gasoline	(.50)	<.50
Surrogate Recovery	7	100 %

Western Environment - Science & Technology - 45133 County Road 32B - Davis CA 95816 - 018 759 9590 - 449 018 7574880

Sample: A1-7.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Dilution: 1:1 QC Batch: 2041c

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene	(.0050)	<.0050
Toluene	(.0050)	<.0050
Ethylbenzene	(.0050)	<.0050
Total Xylenes	(.0050)	<.0050
TPH as Gasoline	(.50)	<.50
Surrogate Recovery	y	95 %

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Dilution: 1:1 QC Batch: 6074F

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene	(.0050)	<.0050
Toluene	(.0050)	<.0050
Ethylbenzene	(.0050)	<.0050
Total Xylenes	(.0050)	<.0050
TPH as Gasoline	(.50)	<.50
Surrogate Recovery	7	89 %

Sample: A2-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93

Dilution: 1:1 QC Batch: 6074F

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene	(.0050)	<.0050
Toluene	(.0050)	<.0050
Ethylbenzene	(.0050)	<.0050
Total Xylenes	(.0050)	<.0050
TPH as Gasoline	(.50)	<.50
Surrogate Recovery	7	101 %

Sample: A2-8.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93

Dilution: 1:1 QC Batch: 6074F

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.0050) (.0050) (.0050) (.0050) (.50)	<.0050 <.0050 <.0050 <.0050 <.50
Surrogate Recovery	4	101 %

Sample: A2-17.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Dilution: 1:1 QC Batch: 6075a

Parameter	(MRL) mg/kg	Measured Value ∍g/kg
Benzene	(.0050)	<.0050
Toluene	(.0050)	<.0050
Ethylbenzene	(.0050)	<.0050
Total Xylenes	(.0050)	<.0050
TPH as Gasoline	(.50)	<.50
Surrogate Recovery	У	104 %

Sample: A3-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93 Dilution : 1:1

Dilution: 1:1 QC Batch: 6075a

Parameter	(MRL) »g/kg	Measured Value ∍g/kg
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.0050) (.0050) (.0050) (.0050) (.50)	<.0050 <.0050 <.0050 <.0050 <.50
Surrogate Recovery	Y	100 %

Sample: A3-8.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Dilution: 1:1 QC Batch: 6075a

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.0050) (.0050) (.0050) (.0050) (.50)	<.0050 <.0050 <.0050 <.0050 <.50
Surrogate Recovery	7	103 %

Western Engineering School Communication of the Com

Sample: A3-16

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93

Dilution: 1:1 QC Batch: 6075a

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene	(.0050)	<.0050
Toluene	(.0050)	<.0050
Ethylbenzene	(.0050)	<.0050
Total Xylenes	(.0050)	<.0050
TPH as Gasoline	(.50)	<.50
Surrogate Recovery	7	103 %

Date finalyzed: 12-22-93 Column: 0.53mm ID X 30m DB5 (J&W Scientific)

Mitra Sarkhosh Senior Chemist

Sample: A1-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Extracted: 12/22/93 QC Batch : DS931208 Dilution : 1:1 Run Log : 8141D

Parameter	(MDL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(10) (10)	<10 <10

Sample: A1-7.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Extracted: 12/22/93 QC Batch: DS931208 Dilution: 1:1 Run Log: 8141D

Parameter	(MDL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(10) (10)	<10 <10

Sample: A1-16

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93

Extracted: 12/22/93
Dilution: 1:1 QC Batch : DS931208 Run Log : 8141D

Matrix : Soil

Parameter	(MDL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(10) (10)	<10 <10

Date: 12-23-93 Time: 05:09:04 Column: 0.53mm ID X 15m DB1 (J&W Scientific)

Western Environmental Science & Technology + 45133 County Road 328 + Depts OA 05616 + 016 TECHNOLOGY + 543 016 TECHNOLOGY

Stewart Popolsky Senior Chemist

Sample: A2-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Extracted: 12/22/93 QC Batch: DS931208 Dilution: 1:1 Run Log: 8141D

Matrix : Soil

Parameter	(MDL) mg/kg	Measured Value mg/kg
TPH as Diesel	(10)	<10
TPH as Motor Oil	(10)	<10

EPA Not 3015

Column: 0.53mm IB % 15m DB1 (J&W Scientific)

Date: 12-23-93 Time: 05:41:14

Sample: A2-8.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

QC Batch : DS931208 Extracted: 12/22/93 Dilution : 1:1 Run Log : 8141D

Matrix : Soil

Parameter	(MDL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(10) (10)	<10 <10

Date: 12-23-93 Time: 06:18:47 Column: 0.53mm; ID % 15m DB1 (J&W Scientific)

Senior Chemist

Sample: A2-17.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Extracted: 12/22/93 QC Batch: DS931208 Dilution: 1:1 Run Log: 8141D

Matrix : Soil

Parameter	(MDL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(10) (10)	<10 <10

Date: 12-23-93 Time: 86:45:59 Column: 0.53mm ID / 15m DB1 (J8W Scientific) Stewart Podolsky Senior Chemist

Sample: A3-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Extracted: 12/22/93 QC Batch : DS931208 Dilution: 1:1 Run Log: 8141D

Matrix : Soil

Parameter	(MDL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor O	(10) il (10)	<10 <10

Date: 12-23-93 Time: 07:18:37 Column: 0.53mm ID X 15m DB1 (J8W Screntific)

Sample: A3-8.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93

Extracted: 12/22/93 QC Batch: DS931208 Dilution: 1:1 Run Log: 8141D

Matrix : Soil

Parameter	(MDL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(10) (10)	<10 <10

Western Fourgoments: Solvers & Tennology - 45139 Collow Road 328 + Davis C4 95616 + 916 T53 9500 + FAX 916

Sample: A3-16

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Extracted: 12/22/93
Dilution: 1:1 QC Batch : DS931208 Run Log : 8141D

Matrix : Soil

Parameter	(MDL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(10) (10)	<10 <10

Date: 12-23-93 Time: 09:28:57 Column: 0.53mm ID % 15m DB1 (J8W Scientific)

Western Environments Salent & Tonnnology + 45193 Colony Boar 328 + Davis CA 95818 + Oth 753 0500 + Edy off 71 1100

Sample: A1-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93
Matrix: Soil Analyzed: 12/23/93

8240 - Volatile Organic Priority Pollutants

	-	Measured	
Parameter	(MRL) mg/kg	Value ≖g/kg	Flag
Chloromethane	(0.01)	<0.01	
Bromomethane	(0.01)	<0.01	
cis-1,2-Dichloroethene	(.005)	<.005	
trans-1,2-Dichloroethene	(.005)	<.005	
Vinyl Chloride	(0.01)	<0.01	
Chloroethane	(0.01)	<0.01	
Methylene Chloride	(.005)	<.005	
Acetone	(0.10)	<0.10	
Carbon Disulfide	(.005)	<.005	
1,1-Dichloroethene	(.005)	<.005	
1,1-Dichloroethane	(.005)	<.005	
Chloroform	(.005)	<.005	
1,2-Dichloroethane	(.005)	<.005	
2-Butanone	(0.10)	<0.10	
1,1,1-Trichloroethane	(.005)	<.005	
Carbon Tetrachloride	(.005)	<.005	
Bromodichloromethane	(.005)	<.005	
1,2-Dichloropropane	(.005)	<.005	
cis-1,3-Dichloropropene	(.005)	<.005	
Trichloroethene	(.005)	<.005	
Dibromochloromethane	(.005)	<.005	
1,1,2-Trichloroethane	(.005)	<.005	
Benzene	(.005)	<.005	
trans-1,3-Dichloropropene	(.005)	<.005	
Bromoform	(.005)	<.005	
4-Methyl-2-Pentanone	(0.05)	<0.05	
1,3-Dichlorobenzene	(.005)	<.005	
1,2-Dichlorobenzene	(.005)	<.005	
1,4-Dichlorobenzene	(.005)	<.005	
2-Hexanone	(0.05)	<0.05	
Tetrachloroethene	(.005)	<.005	
1,1,2,2-Tetrachloroethane	(.005)	<.005	
Toluene	(.005)	<.005	
Chlorobenzene	(.005)	<.005	
Ethylbenzene	(.005)	<.005	
Styrene	(.005)	<.005	
P,M-Xylene	(.005)	<.005	
O-Xylene	(.005)	<.005	

Sample: A1-7.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93 Matrix: Soil Analyzed: 12/23/93

8240 - Volatile Organic Priority Pollutants

8240 - Volatile Organic Priority Follucants Measured				
Parameter	(MRL) mg/kg	Value =g/kg	Flag	
Chloromethane	(0.01)	<0.01		
Bromomethane		<0.01		
cis-1,2-Dichloroethene	(0.01) (.005)	<.005		
trans-1,2-Dichloroethene	(.005)	<.005		
Vinyl Chloride	(0.01)	<0.01		
Chloroethane	(0.01)	<0.01		
Methylene Chloride	(.005)	<.005		
Acetone	(0.10)	<0.10		
Carbon Disulfide	(.005)	<.005		
1,1-Dichloroethene	(.005)	<.005		
1,1-Dichloroethane	(.005)	<.005		
Chloroform	(.005)	<.005		
1,2-Dichloroethane	(.005)	<.005		
2-Butanone	(0.10)	<0.10		
	(.005)	<.005		
	(.005)	<.005		
Bromodichloromethane	(.005)	<.005		
1,2-Dichloropropane	(.005)	<.005		
cis-1,3-Dichloropropene	(.005)	<.005		
Trichloroethene	(.005)	<.005		
Dibromochloromethane	(.005)	<.005		
1,1,2-Trichloroethane	(.005)	<.005		
Benzene	(.005)	<.005		
trans-1,3-Dichloropropene	(.005)	<.005		
Bromoform	(.005)	<.005		
4-Methyl-2-Pentanone	(0.05)	<0.05		
1,3-Dichlorobenzene	(.005)	<.005		
1,2-Dichlorobenzene	(.005)	<.005		
1,4-Dichlorobenzene	(.005)	<.005		
2-Hexanone	(0.05)	<0.05		
Tetrachloroethene	(.005)	<.005		
1,1,2,2-Tetrachloroethane	(.005)	<.005		
Toluene	(.005)	<.005		
Chlorobenzene	(.005)	<.005		
Ethylbenzene	(.005)	<.005		
Styrene	(.005)	<.005		
P,M-Xylene	(.005)	<.005		
O-Xylene	(.005)	<.005		

Jóel Kiff Benhor Chemist

Western Environments Live . . Tennomon . 35100 Co on Road 008 . Delic Co osete . Ott Too oset . The restricted

Sample: A1-16

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93
Matrix: Soil Analyzed: 12/23/93

8240 - Volatile Organic Priority Pollutants

Parameter	(MRL) mg/kg	Measured Value mg/kg	Flag
Chloromethane Bromomethane cis-1,2-Dichloroethene trans-1,2-Dichloroethene Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane	(MRL) *9/kg (0.01) (0.01) (.005) (.005) (0.01) (0.01) (.005) (0.10) (.005) (.005) (.005) (.005)		Flag
Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene	(.005) (.005) (0.10) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005)	<.005 <.005 <0.10 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	
Bromoform 4-Methyl-2-Pentanone 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene P,M-Xylene O-Xylene	(0.05) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005) (.005)	<0.05 <.005 <.005 <.005 <0.05 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	

Wastern Enuranment C

Sample: A2-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93 Matrix: Soil Analyzed: 12/23/93

8240 - Volatile Organic Priority Pollutants

J		Measured
Parameter	(MRL) mg/kg	Value ≈g/kg Flag
Chloromethane	(0.01)	<0.01
Bromomethane	(0.01)	<0.01
cis-1,2-Dichloroethene	(.005)	<.005
trans-1,2-Dichloroethene	(.005)	<.005
Vinyl Chloride	(0.01)	<0.01
Chloroethane	(0.01)	<0.01
Methylene Chloride	(.005)	<.005
Acetone	(0.10)	<0.10
Carbon Disulfide	(.005)	<.005
1,1-Dichloroethene	(.005)	<.005
1,1-Dichloroethane	(.005)	<.005
Chloroform	(.005)	<.005
1,2-Dichloroethane	(.005)	<.005
2-Butanone	(0.10)	<0.10
1,1,1-Trichloroethane	(.005)	<.005
Carbon Tetrachloride	(.005)	<.005
Bromodichloromethane	(.005)	<.005
1,2-Dichloropropane	(.005)	<.005
cis-1,3-Dichloropropene	(.005)	<.005
Trichloroethene	(.005)	<.005
Dibromochloromethane	(.005)	<.005
1,1,2-Trichloroethane	(.005)	<.005
Benzene	(.005)	<.005
trans-1,3-Dichloropropene	(.005)	<.005
Bromoform	(.005)	<.005
4-Methyl-2-Pentanone	(0.05)	<0.05
1,3-Dichlorobenzene	(.005)	<.005
1,2-Dichlorobenzene	(.005)	<.005
1,4-Dichlorobenzene	(.005)	<.005
2-Hexanone	(0.05)	<0.05
Tetrachloroethene	(.005)	<.005
1,1,2,2-Tetrachloroethane	(.005)	<.005
Toluene	(.005)	<.005
Chlorobenzene	(.005)	<.005
Ethylbenzene	(.005)	<.005
Styrene	(.005)	<.005
P,M-Xylene	(.005)	<.005
O-Xylene	(.005)	<.005

Sample: A2-8.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93 Matrix: Soil Analyzed: 12/23/93

8240 - Volatile Organic Priority Pollutants

52.5 • • • • • • • • • • • • • • • • • • •	•	Measured	
Parameter	(MRL) mg/kg	Value =g/kg	Flag
Chloromethane	(0.01)	<0.01	
Bromomethane	(0.01)	<0.01	
cis-1,2-Dichloroethene	(.005)	<.005	
trans-1,2-Dichloroethene	(.005)	<.005	
Vinyl Chloride	(0.01)	<0.01	
Chloroethane	(0.01)	<0.01	
Methylene Chloride	(.005)	<.005	
Acetone	(0.10)	<0.10	
Carbon Disulfide	(.005)	<.005	
1,1-Dichloroethene	(.005)	<.005	
1,1-Dichloroethane	(.005)	<.005	
Chloroform	(.005)	<.005	
1,2-Dichloroethane	(.005)	<.005	
2-Butanone	(0.10)	<0.10	
1,1,1-Trichloroethane	(.005)	<.005	
Carbon Tetrachloride	(.005)	<.005	
Bromodichloromethane	(.005)	<.005	
1,2-Dichloropropane	(.005)	<.005	
cis-1,3-Dichloropropene	(.005)	<.005	
Trichloroethene	(.005)	<.005	
Dibromochloromethane	(.005)	<.005	
1,1,2-Trichloroethane	(.005)	<.005	
Benzene	(.005)	<.005	
trans-1,3-Dichloropropene	(.005)	<.005	
Bromoform	(.005)	<.005	
4-Methyl-2-Pentanone	(0.05)	<0.05	
1,3-Dichlorobenzene	(.005)	<.005	
1,2-Dichlorobenzene	(.005)	<.005	
1,4-Dichlorobenzene	(.005)	<.005	
2-Hexanone	(0.05)	<0.05	
Tetrachloroethene	(.005)	<.005	
1,1,2,2-Tetrachloroethane	(.005)	<.005	
Toluene	(.005)	<.005	
Chlorobenzene	(.005)	<.005	
Ethylbenzene	(.005)	<.005	
Styrene	(.005)	<.005	
P,M-Xylene	(.005)	<.005	
O-Xylene	(.005)	<.005	

Sample: A2-17.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93
Matrix: Soil Analyzed: 12/23/93

8240 - Volatile Organic Priority Pollutants

52.0	_	Measured	
Parameter	(MRL) mg/kg	Value mg/kg	Flag
Chloromethane	(0.01)	<0.01	
Bromomethane	(0.01)	<0.01	
cis-1,2-Dichloroethene	(.005)	<.005	
trans-1,2-Dichloroethene	(.005)	<.005	
Vinyl Chloride	(0.01)	<0.01	
Chloroethane	(0.01)	<0.01	
Methylene Chloride	(.005)	<.005	
Acetone	(0.10)	<0.10	
Carbon Disulfide	(.005)	<.005	
1,1-Dichloroethene	(.005)	<.005	
1,1-Dichloroethane	(.005)	<.005	
Chloroform	(.005)	<.005	
1,2-Dichloroethane	(.005)	<.005	
2-Butanone	(0.10)	<0.10	
1,1,1-Trichloroethane	(.005)	<.005	
Carbon Tetrachloride	(.005)	<.005	
Bromodichloromethane	(.005)	<.005	
1,2-Dichloropropane	(.005)	<.005	
cis-1,3-Dichloropropene	(.005)	<.005	
Trichloroethene	(.005)	<.005	
Dibromochloromethane	(.005)	<.005	
1,1,2-Trichloroethane	(.005)	<.005	
Benzene	(.005)	<.005	
trans-1,3-Dichloropropene	(.005)	<.005	
Bromoform	(.005)	<.005	
4-Methyl-2-Pentanone	(0.05)	<0.05	
1,3-Dichlorobenzene	(.005)	<.005	
1,2-Dichlorobenzene	(.005)	<.005	
1,4-Dichlorobenzene	(.005)	. <.005	
2-Hexanone	(0.05)	<0.05	
Tetrachloroethene	(.005)	<.005	
1,1,2,2-Tetrachloroethane	(.005)	<.005	
Toluene	(.005)	<.005	
Chlorobenzene	(.005)	<.005	
Ethylbenzene	(.005)	<.005	
Styrene	(.005)	<.005	
P,M-Xylene	(.005)	<.005	
O-Xylene	(.005)	<.005	
*			

Sample: A3-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93
Matrix: Soil Received: 12/23/93

8240 - Volatile Organic Priority Pollutants

8240 - Volatile Organic Priority Politicants Measured			
Parameter	(MRL) mg/kg	Value mg/kg	Flag
Chloromethane	(0.01)	<0.01	
Bromomethane	(0.01)	<0.01	
cis-1,2-Dichloroethene	(.005)	<.005	
trans-1,2-Dichloroethene	(.005)	<.005	
Vinyl Chloride	(0.01)	<0.01	
Chloroethane	(0.01)	<0.01	
Methylene Chloride	(.005)	<.005	
Acetone	(0.10)	<0.10	
Carbon Disulfide	(.005)	<.005	
1,1-Dichloroethene	(.005)	<.005	
1,1-Dichloroethane	(.005)	<.005	
Chloroform	(.005)	<.005	
1,2-Dichloroethane	(.005)	<.005	
2-Butanone	(0.10)	<0.10	
1,1,1-Trichloroethane	(.005)	<.005	
Carbon Tetrachloride	(.005)	<.005	
Bromodichloromethane	(.005)	<.005	
1,2-Dichloropropane	(.005)	<.005	
cis-1,3-Dichloropropene	(.005)	<.005	
Trichloroethene	(.005)	<.005	
Dibromochloromethane	(.005)	<.005	
1,1,2-Trichloroethane	(.005)	<.005	
Benzene	(.005)	<.005	
trans-1,3-Dichloropropene	(.005)	<.005	
Bromoform	(.005)	<.005	
4-Methyl-2-Pentanone	(0.05)	<0.05	
1,3-Dichlorobenzene	(.005)	<.005	
1,2-Dichlorobenzene	(.005)	<.005	
1,4-Dichlorobenzene	(.005)	<.005	
2-Hexanone	(0.05)	<0.05	
Tetrachloroethene	(.005)	<.005	
1,1,2,2-Tetrachloroethane	(.005)	<.005	
Toluene	(.005)	<.005	
Chlorobenzene	(.005)	<.005	
Ethylbenzene	(.005)	<.005	
Styrene	(.005)	<.005	
P,M-Xylene	(.005)	<.005	
O-Xylene	(.005)	<.005	
,			

Sample: A3-8.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93
Matrix: Soil Analyzed: 12/23/93

8240 - Volatile Organic Priority Pollutants

	•	Measured	
Parameter	(MRL) mg/kg	Value *g/kg	Flag
Chloromethane	(0.01)	<0.01	
Bromomethane	(0.01)	<0.01	
cis-1,2-Dichloroethene	(.005)	<.005	
trans-1,2-Dichloroethene	(.005)	<.005	
Vinyl Chloride	(0.01)	<0.01	
Chloroethane	(0.01)	<0.01	
Methylene Chloride	(.005)	<.005	
Acetone	(0.10)	<0.10	
Carbon Disulfide	(.005)	<.005	
1,1-Dichloroethene	(.005)	<.005	
1,1-Dichloroethane	(.005)	<.005	
Chloroform	(.005)	<.005	
1,2-Dichloroethane	(.005)	<.005	
2-Butanone	(0.10)	<0.10	
1,1,1-Trichloroethane	(.005)	<.005	
Carbon Tetrachloride	(.005)	<.005	
Bromodichloromethane	(.005)	<.005	
1,2-Dichloropropane	(.005)	<.005	
cis-1,3-Dichloropropene	(.005)	<.005	
Trichloroethene	(.005)	<.005	
Dibromochloromethane	(.005)	<.005	
1,1,2-Trichloroethane	(.005)	<.005	
Benzene	(.005)	<.005	
trans-1,3-Dichloropropene	(.005)	<.005	
Bromoform	(.005)	<.005	
4-Methyl-2-Pentanone	_, (0.05)	<0.05	
1,3-Dichlorobenzene	(.005)	<.005	
1,2-Dichlorobenzene	(.005)	<.005	
1,4-Dichlorobenzene	(.005)	<.005	
2-Hexanone	(0.05)	<0.05	
Tetrachloroethene	(.005)	<.005	
1,1,2,2-Tetrachloroethane	(.005)	<.005	
Toluene	(.005)	<.005	
Chlorobenzene	(.005)	<.005	
Ethylbenzene	(.005)	<.005	
Styrene	(.005)	<.005	
P,M-Xylene	(.005)	<.005	
O-Xylene	(.005)	<.005	

Sample: A3-16

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93 Matrix: Soil Analyzed: 12/23/93

8240 - Volatile Organic Priority Pollutants

Parameter	(MRL) mg/kg	Measured Value mg/kg Flag
		<0.01
Chloromethane	(0.01)	<0.01 <0.01
Bromomethane	(0.01)	<.005
cis-1,2-Dichloroethene	(.005)	
trans-1,2-Dichloroethene	(.005)	<.005
Vinyl Chloride	(0.01)	<0.01
Chloroethane	(0.01)	<0.01
Methylene Chloride	(.005)	<.005
Acetone	(0.10)	<0.10
Carbon Disulfide	(.005)	<.005
1,1-Dichloroethene	(.005)	<.005
1,1-Dichloroethane	(.005)	<.005
Chloroform	(.005)	<.005
1,2-Dichloroethane	(.005)	<.005
2-Butanone	(0.10)	<0.10
1,1,1-Trichloroethane	(.005)	<.005
Carbon Tetrachloride	(.005)	<.005
Bromodichloromethane	(.005)	<.005
1,2-Dichloropropane	(.005)	<.005
cis-1,3-Dichloropropene	(.005)	<.005
Trichloroethene	(.005)	<.005
Dibromochloromethane	(.005)	<.005
1,1,2-Trichloroethane	(.005)	<.005
Benzene	(.005)	<.005
trans-1,3-Dichloropropene	(.005)	<.005
Bromoform	(.005)	<.005
4-Methyl-2-Pentanone	(0.05)	<0.05
1,3-Dichlorobenzene	(.005)	<.005
1,2-Dichlorobenzene	(.005)	<.005
1,4-Dichlorobenzene	(.005)	<.005
2-Hexanone	(0.05)	<0.05
Tetrachloroethene	(.005)	<.005
1,1,2,2-Tetrachloroethane	(.005)	<.005
Toluene	(.005)	<.005
Chlorobenzene	(.005)	<.005
Ethylbenzene	(.005)	<.005
Styrene	(.005)	<.005
P,M-Xylene	(.005)	<.005
O-Xylene	(.005)	<.005
o ny acirc	()	-

Total Oil and Grease (Standard Methods 5520 E,F)

From : Project # 6130.01 (Shamrock Ford)

Received: 12/20/93

Matrix : Soil

--all concentrations are units of mg/kg--

Sample	Date Sampled	Date Analyzed	RDL	(5520 E,F) Oil and Grease
A1-5.5	12/17/93	12/28/93	(50)	<50
Al-7.5	12/17/93	12/28/93	(50)	<50
A1-16	12/17/93	12/28/93	(50)	<50
A2-5.5	12/17/93	12/28/93	(50)	<50
A2-8.5	12/17/93	12/28/93	(50)	<50
A2-17.5	12/17/93	12/28/93	(50)	<50
A3-5.5	12/17/93	12/28/93	(50)	<50
A3-8.5	12/17/93	12/28/93	(50)	77 *
A3-16	12/17/93	12/28/93	(50)	<50

QC Batch: KS931203 QC Batch: KS931205

Stewart Podolsky Senior Chemist

^{*} Sample was extracted twice. Both extracts yielded a white non-petroleum residue.

Sample: A1-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93 Received: 12/20/93 Matrix: Soil

Parameter	(MRL) mg/kg	Measured Value *g/kg
Cadmium	(0.4)	1.3
Chromium	(0.7)	39
Lead	(10)	<10
Zinc	(1.0)	50
Nickel	(1.5)	34

Sample: Al-7.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg	
Cadmium	(0.4)	1.5	
Chromium	(0.7)	48	
Lead	(10)	<10	
Zinc	(1.0)	61	
Nickel	(1.5)	40	

Joel Kiff Senior Chemist

Western Environment a School & Tannaging. . JE199 Colon, Board 998 . Dayis CA 05818 . 018 759.0506 . EAX 618 757 . .

. /

Sample: A1-16

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93 Received : 12/20/93

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg	
Cadmium	(0.4)	1.3	
Chromium	(0.7)	43	
Lead	(10)	<10	
Zinc	(1.0)	52	
Nickel	(1.5)	33	

3.001 Kiff Senior Chemiet

Sample: A2-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93 Matrix: Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg
Cadmium	(0.4)	1.7
Chromium	(0.7)	40
Lead	(10)	<10
Zinc	(1.0)	49
Nickel	(1.5)	35

Sample: A2-8.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg
Cadmium	(0.4)	1.6
Chromium	(0.7)	48
Lead	(10)	<10
Zinc	(1.0)	57
Nickel	(1.5)	35

Sample: A2-17.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg	
Cadmium	(0.4)	1.7	
Chromium	(0.7)	41	
Lead	(10)	<10	
Zinc	(1.0)	52	
Nickel	(1.5)	36	

Sample: A3-5.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg
Cadmium	(0.4)	1.9
Chromium	(0.7)	41
Lead	(10)	<10
Zinc	(1.0)	51
Nickel	(1.5)	51

Sample: A3-8.5

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value *g/kg
Cadmium	(0.4)	1.6
Chromium	(0.7)	48
Lead	(10)	<10
Zinc	(1.0)	58
Nickel	(1.5)	38

Sample: A3-16

From : Project # 6130.01 (Shamrock Ford)
Sampled : 12/17/93

Received: 12/20/93 Matrix: Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg	
~			
Cadmium	(0.4)	1.8	
Chromium	(0.7)	48	
Lead	(10)	<10	
Zinc	(1.0)	56	
Nickel	(1.5)	42	

Total Recoverable Petroleum Hydrocarbons (EPA 418.1)

From : Project # 6130.01 (Shamrock Ford)

Received: 12/20/93

Matrix : Soil

--all concentrations are units of mg/kg--

	Date				(EPA 418.1)	
Sample	Sample	Extract	Analyzed	RDL	TRPH	
S-1217-SPABCD	12/17/93	12/22/93	12/29/93	(30)	490	

QC Batch: JS931202

Stewart Podolsky

Sample: S-1217-SPABCD

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93

Dilution: 1:1 QC Batch: 6075b

Parameter	(MRL) mg/kg	Measured Value =g/kg		
TPH as Gasoline	(.50)	<.50		
Surrogate Recovery		103 %		

Sample: S-1217-SPABCD

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Dilution: 1:1 QC Batch: 2041D

Matrix : TCLP Extract

Parameter	(MRL) ug/L	Measured Value wg/L		
_	()			
Benzene	(.30)	<.30		
Toluene	(.30)	<.30		
Ethylbenzene	(.30)	<.30		
Total Xylenes	(.50)	<.50		
Surrogate Recover	ту	97 %		

Date Analyzed: 12-23-93 Column: 0.53mm ID % 30m DB5 (J&W Scientific) Mitra Sarkhosh Senior Chemist

Sample: S-1217-SPABCD

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93 Received: 12/20/93
Matrix: Soil Analyzed: 12/23/93

8240 - Volatile Organic Priority Pollutants

8240 - Volatile Organic Priority Politicants Measured				
Parameter	(MRL) mg/kg	Value mg/kg	Flag	
Chloromethane	(0.01)	<0.01		
Bromomethane	(0.01)	<0.01		
cis-1,2-Dichloroethene	(.005)	<.005		
trans-1,2-Dichloroethene	(.005)	<.005		
Vinyl Chloride	(0.01)	<0.01		
Chloroethane	(0.01)	<0.01		
Methylene Chloride	(.005)	<.005		
Acetone	(0.10)	<0.10		
Carbon Disulfide	(.005)	<.005		
1,1-Dichloroethene	(.005)	<.005		
1,1-Dichloroethane	(.005)	<.005		
Chloroform	(.005)	<.005		
1,2-Dichloroethane	(.005)	<.005		
2-Butanone	(0.10)	<0.10		
1,1,1-Trichloroethane	(.005)	<.005		
Carbon Tetrachloride	(.005)	<.005		
Bromodichloromethane	(.005)	<.005		
1,2-Dichloropropane	(.005)	<.005		
cis-1,3-Dichloropropene	(.005)	<.005		
Trichloroethene	(.005)	<.005		
Dibromochloromethane	(.005)	<.005		
1,1,2-Trichloroethane	(.005)	<.005		
Benzene	(.005)	<.005		
trans-1,3-Dichloropropene	(.005)	<.005		
Bromoform	(.005)	<.005		
4-Methyl-2-Pentanone	(0.05)	<0.05		
1,3-Dichlorobenzene	(.005)	<.005		
1,2-Dichlorobenzene	(.005)	<.005		
1,4-Dichlorobenzene	(.005)	<.005		
2-Hexanone	(0.05)	<0.05		
Tetrachloroethene	(.005)	<.005		
1,1,2,2-Tetrachloroethane	(.005)	<.005		
Toluene	(.005)	<.005		
Chlorobenzene	(.005)	<.005		
Ethylbenzene	(.005)	<.005		
Styrene	(.005)	<.005		
P,M-Xylene	(.005)	<.005		
O-Xylene	(.005)	<.005		

Minestorn Environments & . . Transpoon . 18120 Court Baga 208 . Paule Of DEETE . DIE TED DECO . EAV OIL TET IDEO

Sample : S-1217-SP A->D

From : Project # 6130.01 (Shamrock Ford)

Sampled : 12/17/93

Matrix : Soil

Units: mg/kg Reported as: Wet Weight

Title 22 Metals

	EPA	<u>Date</u>			
Parameter	Method	Digested	Analyzed	MRL*	Conc.
Antimony	6010	12/22/93	12/28/93	(3.2)	<3.2
Arsenic	7060	12/22/93	12/30/93	(4.0)	6.8
Barium	6010	12/22/93	12/28/93	(0.20)	130
Beryllium	6010	12/22/93	12/28/93	(0.10)	0.90
Cadmium	6010	12/22/93	12/28/93	(0.40)	1.6
Chromium	6010	12/22/93	12/28/93	(0.70)	45
Cobalt	6010	12/22/93	12/28/93	(0.70)	11
Copper	6010	12/22/93	12/28/93	(0.60)	26
Lead	7421	12/22/93	12/29/93	(1.0)	8.0
Mercury	7471	12/28/93	12/28/93	(0.50)	<0.50
Molybdenum	6010	12/22/93	12/28/93	(0.80)	<0.80
Nickel	6010	12/22/93	12/28/93	(1.5)	44
Selenium	7740	12/22/93	12/30/93	(4.0)	<4.0
Silver	6010	12/22/93	12/28/93	(0.70)	0.90
Thallium	7841	12/22/93	12/29/93	(1.0)	<1.0
Vanadium	6010	12/22/93	12/28/93	(0.50)	41
Zinc	6010	12/22/93	12/28/93	(1.0)	54

^{*} MRL = Method Reporting Limit

Sample : S-1217-SP A->D

From : Project # 6130.01 (Shamrock Ford)

Sampled: 12/17/93

Matrix : Soil

Units : mg/L of WET Extract

STLC Metals

	EPA	<u>Date</u>			
Parameter	Method	Digested	Analyzed	MRL*	Conc.
Arsenic	7060	01/12/94	01/13/94	(0.020)	0.16
Beryllium	6010	01/12/94	01/19/94	(0.0020)	0.0068
Chromium	6010	01/12/94	01/19/94	(0.014)	0.10
Mercury	7471	01/12/94	01/12/94	(0.0050)	<0.0050

* MRL = Method Reporting Limit

EPA 8240 System Monitoring Compound Recovery

Sample	SMC1 (TOL)#	SMC2 (BFB)#	SMC3 (DCE)#	OTHER	TOT OUT	
A1-5.5	109	100	106		0	
A1-7.5	110	96	105		0	
A1-16	109	93	105		0	
A2-5.5	109	94	104		0	
A2-8.5	113	98	105		0	
A2-17.5	115	98	109		0	
A3-5.5	112	100	105		0	
A3-8.5	114	102	111		0	
A3-16	109	91	103		0	
S-1217-SPABCD	123	85	108		0	

	QC Limits
SMC1 (TOL) = Toluene-d8	(84-138)
SMC2 (BFB) = Bromofluorobenzene SMC3 (DCE) = 1,2-Dichloroethane-d4	(59-113) (70-121)

- # Column to be used to flag recovery values
- * Values outside of QC limits
- D System Monitoring Compound diluted out

Joel Kiff Senior Chemist

Mastern Environments Science & Technology . 15122 County Book 200 . Court Of GERTE - 215 750 0500 - 511

IOB LOCATION			·) Japan		
Dublin	. (PHONE NO	·
AUTHORIZED C	raig_lald	vell	DATE	P.O. NO	
SAMPLE ID	NO OF CONTAINERS	SAMPLE MATRIX	DATE/TIME SAMPLED	ANALYSIS REQUIRED	SAMPLE CONDITIE LAB ID
41-5.5		Soil	12/17/93	TPH- G (EPA 8015)	
41-7.5		-Soil	12/17/93	BTEX (EPA 8020)	
71-16		Soil	12/17/93	TPH-D and TPH as	
425.5		Soil	12/17/93	Motor Dil (8015/Extr.)	
A2-8.5		soil	12/17/93	(O&G (EPA 5520EF)	<u>.</u>
12-17.5		Soil	12/17/93	VOC (EPA 8240)	
13-5.5		Soil	12/17/93	Metals: Cd Cr Pb	
13-8.5		Soil	12/17/93	Ni, Zn (EPA 6010)	_ _
13-16		soil	12/17/93)	<u></u>
·	·			·	
-					
ELINQUISHED BY	Alem	And.	REG	OEIVED/BY:	הפאמו ()
ELINOUTS HED BY		> - 1	170月3 福	SEIVED BY:	150
All Selections	2 Mm	<u> </u>	1657		
ELINOUISHED BY:	- /		REC	CEIVED BY LAB:	1657 12/2
		-		200,1000	
_	RATORY: NES	en Enorga Technologa neused ti	ronmental S	писиюня #: <u>1346</u>	·
emarks: <u>2 w</u>	elk turno	neuma ti	me		
					
		·			
TE COMOLETES			F.0.F	REMAN	

Gettler - Ryan Inc	2083 C	Chain of Custoo
COMPANY_Shamvock Ford		6130.01
JOB LOCATION 7499 Dublin Blud.		
OITY_Dublin	PHONE NO	
AUTHORIZED_Craig_Caldwell.	DATE P.O. NO	
SAMPLE NO OF SAMPLE ID CONTAINERS MATRIX	DATE/TIME SAMPLED ANALYSIS REQUIRED	SAMPLE CONDITION LAB ID
5-1217-5PA) 1 Soil	12/17/93) VOC, using EPA 8240;	
/.~	12/17/93 TPH-6; TCLP BTEX;	
· · · · · · · · · · · · · · · · · · ·	12/17/97 TRPH Using EPA 4/81	
1.9	12/17/93) Metals (CAM17)	
RELINQUISHED BY:	RECEIVED BY:	12/role
Bostone Siemilista	the tall at at	1100
RELÍNOUSHED BY: 12/74/6	HECENIED BY:	
RELINDUSHED BY:	RECEIVED BY LAB:	12/2019=
·	Dilantrell	1055
DESIGNATED LABORATORY: Western Fra Si	cience & Techn DHS # 1346	
REMARKS: 2 week turnanound tin		,
DATE COMPLETED	FOREMAN	