

August 30, 1991

PRO# 675.91

Ms. Marcelina Bell Contracting Officer U.S. Veteran's Administration Medical Center 4951 Arroyo Road Livermore, CA 94550

Dear Ms. Bell:

Attached is a cost estimate for the quarterly sampling and appropriate report for the monitoring wells at the Livermore Veteran's Administration Medical Center Fire Station. The estimate is for one (1) event. Regulatory agencies generally require a minimum of four (4) to complete a hydrologic cycle.

The estimate is based upon the assumption that the wells are positioned so that they conform to the Tri-Regional Board's "Staff Recommendations" document. If it becomes necessary to install an additional well or wells we will submit a report explaining the rational and include an estimate.

We are pleased to be of service to you. If you have any questions or wish to discuss the estimate, please call us at (800) 447-0171.

Sincerely,

Harold J. Slavik Jr.

Senior Geologist

HJS:clk

Enclosure

Vice President

21800 3 Collection

ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY DAVID J. KEARS, Agency Director

March 27, 1991

DEPARTMENT OF ENVIRONMENTAL HEALTH Hazardous Materials Program 80 Swan Way, Rm. 200 Oakland, CA 94621 (415)

Ms. Marcelina Bell U.S. Veterans Administration Medical Center 4951 Arroyo Rd. Livermore, CA 94550

Re: 599/900 V5990-473/599004011, groundwater assessment and soil treatment at USVA Medical Center, Livermore

Dear Ms. Bell:

Thank you for submitting the Augeas Corp. Source Removal Report dated February 14, 1991. This office has completed its review of the report, and concur with the approach presented for soil treatment. However, in order for the USVA to rause the excavated soil on-site following remediation, oil & grease and TPH-diesel levels in this soil must be reduced to 50 ppm and 10 ppm, respectively, or to the analytical method detection limit in each case, whichever is lower.

It is acceptable for the USVA to leave the small amount of contaminated soil beneath the fire station in place, as long as there is a monitoring well directly downgradient of this area to detect any groundwater degradation that might result from this soil. According to the Augeas report, MW-1 would appear to meet this requirement. However, should the direction of groundwater flow in this area change significantly, one or more additional monitoring wells may have to be installed.

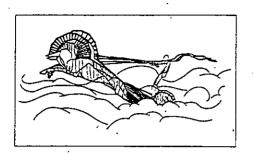
Please be sure that this office and the Regional Water Quality Control Board in Oakland are apprised in a timely manner of work performed at the site or work intended to be performed. If you have any questions about this letter, please contact the undersigned at 271-4320.

Sincerely,

Gil Wistar

Hazardous Materials Specialist

cc: Kent Murray, Augeas Corp. (2252 Fort Point Dr., Gold River, CA 95670)


Howard Hatayama, DOHS

Lester Feldman, San Francisco Bay RWQCB

Rafat Shahid, Asst. Agency Director, Environmental Health

files

Augeas Corporation

Source Removal Report VA Medical Center Livermore, California

SOURCE REMOVAL REPORT

Medical Center Livermore, California

for Department of Veterans Affairs January 20, 1991

> Prepared by Augeas Corporation 2252 Fort Point Drive Gold River, CA 95670 (916) 635-0839 FAX (916) 852-1411

I hereby certify that this Source Removal Report

for the

VA Medical Center was prepared under my direct supervision

Kent S. Murray, Ph.D., R.G. REA Project Manager Augeas Corporation

TABLE OF CONTENTS

		Page
1	Summary	1
2	Conclusions and Recommendations	5
3	Source Removal Assessment	7
4	Excavation Activities	8
	 4.1 Site Description 4.2 Geologic Setting 4.3 Groundwater Movement 4.4 Soil Contamination 4.5 Verification Sampling 4.6 Groundwater Extraction 4.7 Water Sample Collection 4.8 Proposed Biological Treatment Activities 	8 9 10 10 11 11 11
5	Analytical Results and Discussion	15
	5.1 Soil samples5.2 Water samples	15 18
6	Limitations	19
	List of Figures	
1	Location Map	
2	Site Vicinity Map	•
3	Site Plan	
4	Exploratory Boring Location Map	
5	Verification Sample Location Map - Excavation	
6	Proposed Sample Location - Treatment Cells	

List of Appendices

- 1 Field Lithologic Logs
- 2 Photographic Documentation of Treatment Cell Construction
- 3 Detailed Analytical Reports
- 4 Soil Particle Analysis

1 SUMMARY

Augeas Corporation was retained by the Department of Veterans Affairs to assess specific environmental concerns associated with the leakage of fuel oil from two 12,000 gallon underground storage tanks. The 12,000 gallon storage tanks were excavated and removed from the VA Medical Center located at 4951 Arroyo Road in Livermore, California between November 5 and 16, 1990 in accordance with Alameda County procedures for tank abandonment. According to the facility's records, the tanks were used to store No. 5 fuel oil. Although Department records indicate that the tanks have not been used since approximately 1965, leakage from the tanks has led to contamination of the subsurface soils and groundwater beneath the site. No inventory records were available for review to determine the approximate volume of material which has leaked.

The VA Medical Center consists of approximately 118 acres in Township 3 and 4 South, Range 2 East, located in the eastern part of Alameda County. The facility was originally built in 1923, and is currently owned by the United States Federal Government, Department of Veterans Affairs. Figure 1 is a location map of the facility, the Medical Center is approximately five miles south of the central business district of Livermore. Figure 2 is a topographic map of the site vicinity showing the relationship of the Medical Center to the foothills south and east of the facility and Arroyo Valle the major local drainage located one mile to the east. Figure 3 is a plot plan of the facility which shows the location of ancillary buildings, asphalt or concrete cover, and the location of former underground fuel storage tanks. A Tank Excavation Report and Proposed Corrective Action Plan was prepared by Augeas Corporation and forwarded to the Alameda County Health Care Services Agency in November, 1990.

Due to the nature and depth of the contamination, immediate source removal was recommended by Augeas Corporation and initiated by Semco, an excavation and licensed tank removal company under contract with the Department of Veterans Affairs. Following a brief assessment of the vertical and areal extent of contamination (Figure 4), approximately 4,000 yd³ of soil was excavated and stored on-site. The contaminated soil is to be treated on-site by biological means.

The zone of contaminated soil varied from 12 to 15 feet below the surface and extended to a maximum depth of 25 feet. The depth to groundwater varied during the excavation activities, but was initially encountered at a depth of 15 feet. To facilitate the excavation of contaminated soil below the water table, a temporary groundwater extraction well was installed and approximately 20,000 gallons of marginally contaminated water was removed.

Initial hydrocarbon concentrations in the soil following tank removal included 9,000 mg/Kg of oil and grease and 3,700 mg/Kg of diesel. The complex site geology, and clay-rich nature of the soil at a depth of 25 feet precluded the deeper migration of the fuel oil despite periodic lowering of the water table during dry years. The relatively high viscosity of the fuel also prevented the contamination from spreading away from the actual tank excavation area. In addition, the nature of the fuel i.e., the high molecular weight of the respective hydrocarbon compounds present, also prevented large-scale dissolution of the oil once it came into contact with the water table. The limited areal extent of contamination, caused by the adsorption tendency of the fuel, enabled the soil to be readily excavated and removed for eventual treatment. The immediate removal of contaminated soil and concurrent withdrawal of visible product floating on the groundwater surface is expected to lessen the potential impact on groundwater quality at the site.

Approximately 20 soil samples were collected from the walls and base of the excavation as verification that most contamination had been removed. Initial soil samples were submitted for chemical analysis on a rush basis to determine whether all contamination had been removed. Additional soil removal took place in several areas of the excavation following the initial round of sampling to ensure that as much of the contaminated soil as possible had been removed. However, due to the magnitude of the excavation and its proximity to the Medical Center's fire station, it was decided to leave in-place a thin zone of contamination which extended under the building (Figure 5). The locations of the soil samples collected to verify the removal of the contaminated soil are shown in Figure 5.

Groundwater extracted during the dewatering activities was contained and stored on-site. The initial concentration of free floating hydrocarbon constituents in the water (0.28 mg/L), declined to non-detectable levels (in the excavation) once the contaminated soil had been removed. Only minor aromatic constituents were detected in any of the water samples

collected either during dewatering activities or following source removal. The low aqueous solubility of the fuel oil coupled with a low percentage of aromatic compounds initially present fuel suggest that dissolution of the oil will not be an important factor affecting groundwater quality.

Although it is expected that the extraction of groundwater from the immediate vicinity of the excavation has eliminated the primary concern of groundwater contamination, Augeas Corporation has proposed a full site hydrogeologic monitoring study to ensure that groundwater quality will not continue to be degraded. To this end, three groundwater monitoring wells have been installed near the excavation to evaluate both initial conditions up-gradient of the former tanks, as well as down-gradient of the excavation. These wells were initially developed and sampled following the excavation backfill and compaction activities. These analytical results will be presented in a separate report which will summarize information on groundwater elevation and movement and will recommend additional work necessary to fully evaluate groundwater concerns at the VA Medical facility.

Specific work performed during this phase of investigation included:

- 1. Preparation of a Tank Removal Report and a Proposed Corrective Action Plan, and subsequent approval of the plan by the Alameda County Health Care Services Agency.
- 2. Drilling of 16 soil borings to determine the lateral and vertical extent of soil contamination.
- 3. Screening of collected soil samples in the borings both visually and with a photoionization detector (PID) to determine the vertical extent of contamination.
- 4. The excavation of over 4,000 yd³ of soil including the removal of approximately 2,000 yd³ of relatively clean soil to enable the excavation of the underlying contaminated soil.
- 5. Installation of a groundwater extraction sump and the collection of water samples.

- 6. The stockpiling on-site of 4,000 yd³ of contaminated soil.
- 7. The collection of 20 soil samples from the walls and floor of the excavation to verify that source removal had been completed.
- 8. Analysis of water samples for benzene, toluene, total xylenes and ethylbenzene (BTXE), which are minor constituents of diesel, and total petroleum hydrocarbon (TPH) products in the diesel range. Analysis of soil samples for BTXE, oil and grease and TPH-diesel.
- 9. The collection of soil samples from near the base of the excavation for a particle size analysis (ASTM Method 422).
- 10. Completion of a Bay Area Air Pollution Control District Application for the on-site aeration of soil.
- 11. Installation, development and sampling of three groundwater monitoring wells.
- 12. Preparation of this report.

The 12,000 gallons of groundwater extracted from the excavation during the dewatering process will be used during the back-filling process to facilitate compaction. Although this water initially contained low levels of dissolved ethyl benzene, this hydrocarbon constituent has been degraded by biodegradation to below detection levels. The use of this contained water during the back-filling process is a desirable alternative to the use of 12,000 gallons of freshwater, particularly at a time when water conservation in Alameda County is being stressed.

2 CONCLUSIONS AND RECOMMENDATIONS

Based on the work completed during this investigation, the following conclusions were developed:

- 1. An undetermined amount of No. 5 fuel oil has been allowed to seep down through the vadose zone soils from two 12,000 gallon underground fuel storage tanks. The tanks were excavated and removed in November, 1990. The tanks were quite deteriorated and showed obvious signs of leakage.
- 2. The downward leaching of the fuel oil leaked from the tanks has reached the water table at a depth of 15 feet, and has locally contaminated the groundwater beneath the site.
- 3. The chemical nature of the aliphatic hydrocarbon compounds present and the lower percentage of aromatic compounds found in the high viscosity fuel oil suggests that contamination of soil by adsorption was the dominant contamination process. Due to the low aqueous solubility of the fuel oil, dissolution is not considered to be an important factor. As a result, groundwater quality should not significantly be degraded.
- 4. Although the areal extent of the groundwater contamination is believed to be minor and limited to the areal extent of the soil contamination, it has not been completely defined. As a result, it is recommended that a more thorough hydrogeologic study be implemented to monitor groundwater quality.
- 5. Groundwater was removed during dewatering activities required to remove contaminated soil from below the water table. During groundwater extraction, fuel oil leaching from the walls of the excavation was visibly seen floating on the surface of the water. This water was removed, stored and treated in on-site holding tanks to below detectable levels for BTXE and TPH. The contained water was subsequently used in the backfilling and compaction process.

- 6. The source of the contamination has been eliminated and the majority of the contaminated soils removed.
- 7. Soil samples collected from the walls and the base of the excavation range from nondetectable levels to 6,500 mg/Kg of TPH-diesel in an isolated zone beneath the fire house. All contaminated soil has been removed except for a two-foot thick lens in the north wall of the excavation. This lens thins to the north and extends beneath the fire house. Based on geologic mapping of the excavation, Augeas Corporation concludes that this lens extends no further than 4 or 5 feet under the fire station.
- 8. Since the area of the excavation will be resurfaced with asphalt and/or concrete, the resurfacing will be from an impermeable barrier preventing the downward migration of meteoric water.

4 EXCAVATION ACTIVITIES

4.1 Site Description

Approximately 4,000 yd³ of soil was excavated from the southeast side of the VA Medical Facility's fire station during the months of November and December, 1990. The excavation was completed in an attempt to remove soil contaminated with No. 5 fuel oil as a result of leaking underground fuel storage tanks. The site of the excavation was formerly occupied by two 12,000 gallon fuel oil tanks. In addition, it is possible that product lines, leading to the underground tanks and extending westward across the site also leaked.

4.2 Geologic Setting

The subject property is on a moderate incline which slopes gently to the east toward Arroyo Del Valle Creek. Surface drainage on the property appears to be good and generally flows toward the creek. Most of the present day buildings have been constructed on cut slopes with substantial amounts of fill material used to form level building sites. The present drainage system includes the storm drains surrounding the property. Los Banos Creek lies approximately 5 miles east of the facility. The near surface soils are a sandy, gravelly loam formed from the weathering of the Tertiary marine sandstones, shales and minor conglomerates which comprise the hills to the south and east of the facility. These consolidated sedimentary units above the VA Medical Center have been mapped as the Cierbo Sandstone, a marine unit with a dip of 35 to 45 degrees to the northwest. Eastward across Arroyo Del Valle, the Livermore Formation, a nonmarine unit consisting of mostly conglomerates with some claystones and minor sandstones, unconformably overlies the Cierbo Sandstone.

The presence of marine units is significant, because seawater trapped in these units is generally of poorer quality. In addition, boron concentrations are noticeably higher than in the younger continental sediments.

The terraces underlying the VA Medical Center property are Quaternary alluvial formations. These deposits overlie the consolidated sedimentary units and are characterized as moderate to highly permeable on soil survey maps. The saturated thickness of the terrace deposits underlying the VA Medical Center sewage treatment facilities, located to the north of the tank excavation, varies between zero along the edges of the terrace to an average of about 12 feet at the center of the well field.

Fault lines in the area may significantly influence groundwater flow, especially flow from deeper zones to the surface. A projection of this fault line under the terrace deposits to the northeast places it in the vicinity of the facility's sewage disposal system, approximately 0.25 miles to the north of the tank excavation.

4.3 Groundwater Movement

Within the terrace deposits, groundwater flows from higher to lower terrace levels. Water levels in the observation wells at the tank excavation were used to provide a more detailed picture of flow patterns in the vicinity of the former underground tanks.

A major uncertainty in the groundwater regime is the influx of water from the sedimentary units below. A deep fault (as discussed above in the Geologic Setting) could allow water to move vertically upward into the overlying terrace deposits. In addition, the existence of pressure at a sufficient depth to force deeper water to the surface has been indicated by an old well at the Wente Winery about 2,000 feet southeast of the sewage system's well field, which flows 100 gpm at the surface under artesian conditions. Vertical continuity between upper and lower aquifers would also be of concern should dissolved aromatic constituents be found in the groundwater monitoring wells.

The water table at the site has fluctuated extensively from approximately 15 to 20 feet below the surface, but is primarily confined to a coarse sand and gravel zone located between these depths. A thick clay sequence underlies the sand and gravel zone and apparently serves as an impermeable barrier to the downward migration of groundwater in the immediate vicinity of the excavation.

4.4 Soil Contamination

Visual and physical observations as well as a PID organic vapor analyzer were used in the field to screen soil samples for hydrocarbon contamination during the excavation of the contaminated soil. Although the exploratory soil borings and the monitoring wells defined the overall extent of the area to be excavated, care was taken not to over-excavate. As a result, Augeas personnel worked closely with Semco to locate small plumes and zones of contamination as well as "clean" zones within the affected area.

Figure 4 represents the approximate areal extent of the fuel oil contamination defined by the soil borings. Within this area, contamination was encountered at depths ranging from 15 to 20 feet below the surface. The removal of this zone of contamination required the excavation of over 4,000 yd³ of soil. Several hundred cubic yards of clean soil was excavated and stockpiled separately from the contaminated soil. This material was reused as backfill. The remainder of the backfill material was derived from imported fill and native soil sources at the Medical Facility.

4.5 Verification Sampling

During the course of soil removal, Augeas personnel under the supervision of a California registered geologist collected soil samples from the walls and floor of the excavation. Samples were collected on a 15-foot interval by driving brass tubes into the wall or floor and collecting a semi-disturbed sample suitable for detecting aromatic volatile organic compounds. Once collected, each sample tube was sealed with plastic end caps, wrapped in duct tape, labeled and placed in a refrigerator until transported to a certified analytical laboratory under chain of custody.

The goal of the source removal program was to develop a cost-effective method for the removal of contamination without over-excavating. The confirmation samples were collected from the locations shown in Figure 5. The samples collected from the walls of the excavation were obtained directly from the contaminated zone at a depth of approximately 5 feet above the floor of the final excavation.

4.6 Groundwater Extraction

To facilitate the removal of contaminated soil below the fluctuating water table, Semco installed a temporary groundwater extraction sump to dewater the floor of the excavation. The well casing was constructed of a single 20-foot section of 18-inch diameter, Schedule 80 PVC pipe. Vertical slots were cut in the lower 10-feet of the casing and staggered to allow maximum flow. A 10-foot deep hole was opened in the floor of the excavation and the casing installed by backfilling the hole and placing pea-gravel around the base and sides of the slotted part of the casing. A submersible pump was used to lift the water to the top of the casing and a centrifugal pump was used to push the water approximately 50 feet upward from the floor of the excavation to two 10,000 gallon holding tanks located at the surface, adjacent to the excavation. The combined system was able to pump approximately 100 gallons per minute, but could only pump for 20 minutes before cavitating. Over a three week period however, approximately 20,000 gallons of water was removed from the excavation, lowering the water table about 7 feet.

The extraction of water facilitated the additional excavation of approximately 5 to 7 feet of soil. The lowering of the water table also enabled the floor of the excavation below the normal water table to be partially backfilled and compacted back to 90 to 95 percent of maximum density.

4.7 Water Sample Collection

Four water samples were collected during the excavation dewatering activities. Two of the samples were collected directly from the excavation. During the dewatering activities the samples were collected from the first 10,000 gallons of water extracted. All samples were collected using disposable polyurethane bailers. Two one-liter glass jars and two 40 ml VOA vials were filled for each water sample collected. Care was taken to ensure that no headspace was incorporated in the 40 ml vials. All samples were placed into separate chilled ice chests to avoid the potential for cross contamination. The samples were transported under chain-of-custody to a California certified analytical laboratory within 24 hours of collection.

4.8 Proposed Biological Treatment Activities

Treatment of contaminated soil will take place on-site by a combination of bioremediation and soil venting techniques. Since the volume of soil is quite large, approximately 4,000 yd³, and has a significant component of rock (coarse gravel and bedrock), conventional landfarming techniques would have limited success and thus would not be cost-effective. As a result, Augeas Corporation has proposed a form of soil bioremediation referred to as the Treatment Cell Concept (TCC). The TCC is preferable to conventional landfarming methods at sites characterized by limited space, restricted air emission standards, or other factors of either economic or logistical concern. The TCC does not require tilling, and occupies up to 70 percent less surface area than that required by landfarming, while treating the same amount of soil. The cell is fully enclosed, eliminating emissions of untreated vapors to the atmosphere, and can be operated effectively year round. A treatment "cell" is built by mounding the contaminated soil over a network of perforated PVC pipe. The piping allows fresh air to circulate through the mounded soil, providing the necessary aerobic conditions to keep the hydrocarbon-degrading bacteria functioning properly. The forced aeration of the soil, created by a pump/blower assembly also provides agitation to the soil particles which increases the oil/water interface surface area dramatically.

The hydrocarbon-degrading bacteria, and nutrients to support its growth are added to the soil at the time of cell construction. The fuel oil adsorbed onto the individual soil particles will be used as food and energy sources with the consequential end-products being carbon dioxide, water, cell mass and biological waste products. No adverse air quality emissions will/can occur.

A series of photographs provided in Appendix 2 displays the step by step process in the construction of the treatment cell. The cell that is shown in the photographs was constructed in Kern County which has adopted Bay Area air quality standards. The cell was constructed from soil contaminated with waste oil, grease and diesel fuel with total petroleum hydrocarbon concentration in excess of 55,000 ppm. Within a period of 12 months the average concentration in the soil had declined to below 100 ppm. Since the average concentration of petroleum products in the soil at the VA Medical Center is less

than 1,000 ppm fuel oil, it is expected that a target level of 100 ppm total petroleum hydrocarbon products can be achieved within six months.

Due to the volume of soil to be treated it is expected that two treatment cells will be constructed. Each cell will be surrounded by a berm of clean soil to prevent the migration of leachate away from the treatment area. The cells themselves will be constructed on 12 mills of polyurethane plastic to avoid contamination of native soils. Once construction is complete each cell will be completely enclosed in plastic to reduce emissions and to prevent rain from reaching the contaminated soil.

Background samples of the native soil will be obtained from the property prior to construction of the cells. The samples will be analyzed for total petroleum hydrocarbon products and will be compared to analytical results of soil samples obtained from the same area following the completion of the treatment program. This comparison will be used to verify that no contamination of the native soil has taken place as a result of the treatment program.

Augeas Corporation will monitor the soil treatment process on a regular basis to ensure that the treatment program is working effectively. We propose a bi-monthly sampling plan based on EPA-SW846 methodology (*Test Methods for Evaluating Solid Waste*). Each treatment cell will be roughly rectangular in shape, approximately 100 feet long by 60 feet wide. The sides of the cells will be constructed with a 60 degree slope to compensate for the angle of repose of the soil to be treated. Maximum height of each cell will be 10 feet.

For sampling purposes the surface of each cell will be divided into a grid with eight sample locations. Each location will be designated with an alphanumeric code to facilitate sample identification (Figure 6). Two soil samples will be collected within each sample location. The "a" sample (see Figure 6) will be collected from a depth of 6 inches below the surface of the cell while the "b" sample from each location will be collected from a depth of approximately 4 feet below the surface. A total of 16 soil samples will therefore be collected and analyzed from each cell on a bi-monthly basis. The analytical results of this sampling will enable Augeas Corporation to verify that the treatment process is functioning properly, or to correct deficiencies in the system as they arise. For example, if a particular part of the

cell is not degrading as quickly as the rest of the cell, the TCC design enables additional bacteria or nutrients to be added to that specific location as necessary.

During each round of sampling a small diameter borehole will be created using a rotary hammer and drill assembly to reach the appropriate sampling depth. Soil samples will be collected using a slide hammer and a stainless steel driven-tube sampler. Data on soil moisture, pH and nutrient levels will also be obtained while in the field. Soil samples will be placed into clean glass jars sealed with teflon-lined lids, and place in a chilled ice chest until transported to a California certified analytical laboratory. Each soil sample will be properly labeled and logged on a chain of custody form prior to transport. The samples will be analyzed for total petroleum hydrocarbon products. Specific hydrocarbon compound such as Pristane and Phytane will be used to monitor the degradational process.

5 ANALYTICAL RESULTS AND DISCUSSION

5.1 Soil Samples

Twenty-one soil samples were collected from the walls and floor of the excavation. Each sample was submitted to a certified analytical laboratory and was evaluated for total petroleum hydrocarbon (TPH) compounds, oil and grease, and BTXE (although aromatic hydrocarbons were not expected in this fuel oil, early soil samples collected from beneath the former tanks did indicate the presence of minor toluene, ethyl benzene and xylenes). The laboratory results are summarized and presented in Table 1. Complete analytical reports are located in Appendix 3.

The analytical results show that only the soil samples collected from the north wall of the excavation still contained significant levels of petroleum products including diesel fuel, oil and grease and minor aromatic compounds. As a result, the perimeter of the excavation now defines a clean zone around the former underground tanks on three of the four sides. Virtually all of the samples collected show non-detectable levels of TPH, oil and grease and BTXE. The soil contamination remaining in the north wall of the excavation is confined to a thin zone which projects beneath the existing fire station. The north wall of the excavation was extended to within 2 feet of the fire station in an attempt to remove as much contaminated soil as possible. Further excavation however would require removal of the existing structure. Based on the results of the excavation and mapping of the contaminated zone within the wall of the excavation, it is believed that the 2 foot layer of petroleum hydrocarbon contamination thins to the north and extends an additional 4 to 5 feet beneath the fire station. The contamination is restricted to a layer of sand and gravel at a depth of approximately 17 feet beneath the surface. Beneath the sand and gravel is a thick sequence of low-permeability clay that has prevented the downward migration of the fuel oil. A soil particle analysis of the clay unit shows this material to be a silty clay and of low transmissivity (Appendix 4). Since the contaminated zone is periodically located above the water table, it is subjected to oxidizing conditions conducive to the slow methodical breakdown of the long-chain hydrocarbon molecules characteristic of fuel oil by natural biodegradation. Since the surface area surrounding the former tanks will be covered with

either asphalt or concrete, the surface will be essentially impermeable to the downward migration of meteoric water. It is therefore expected that the small amount of contamination left in the soil will not represent a serious threat to either public health or adversely impact water quality. However, because a small percentage of the total contamination is being left in place, Augeas Corporation will initiate a groundwater monitoring program to evaluate the long term affects on groundwater quality.

Table 1 Analytical Results - Soil Samples

Constituents

Sample ID	Benzene ug/kg	Toluene ug/kg	Ethylbenzene ug/kg	Xylenes ug/kg	Diesel #2 mg/kg	Oil & Grease mg/kg
SE Corner	ND	ND	ND	ND	ND	ND
NE Comer	ND	ND	ND	4	ND	ND
CE Bottom	ND	ND	ND	ND	ND	ND
NW Bottom	ND	ND	ND	ND	ND	ND
West Wall	ND	ND	ND	ND	ND	ND
SW Corner	ND	ND	ND	ND	ND	ND
North Wall (R)	ND	ND	ND	ND	1,900	2,100
North Wall (C)	ND	ND	280	440	6,500	22,000
North Wall (W)	ND	ND	96	310	930	140
SE Wall	ND	ND	ND	6	ND	ND
NE Wali	ND	ND	ND	4	ND	ND
w Wall	ND	ND	ND	ND	ND	ND
West Wall (C)	ND	ND	ND	ND	ND	ND
SW Wall	ND	ND	ND	4	ND	ND
South Wall	ND	ND	ND	ND	ND	ND
East Bottom	ND	ND	ND	ND	ND	ND

ND = Not detected.

5.2 Water Samples

Two water samples were collected directly from the groundwater of the excavation during the construction dewatering activities. A summary of the analytical results is presented in Table 2. Detailed analytical reports can be found in Appendix 2. Both analyses however, indicate the low aqueous solubility of the fuel oil. Two additional water sample were collected from the two 10,000 gallon holding tanks used for the collection of groundwater during the dewatering activities. All four of these samples were analyzed for total petroleum hydrocarbon products as well as aromatic constituents. Virtually no dissolved aromatic constituents were found in any of the samples collected.

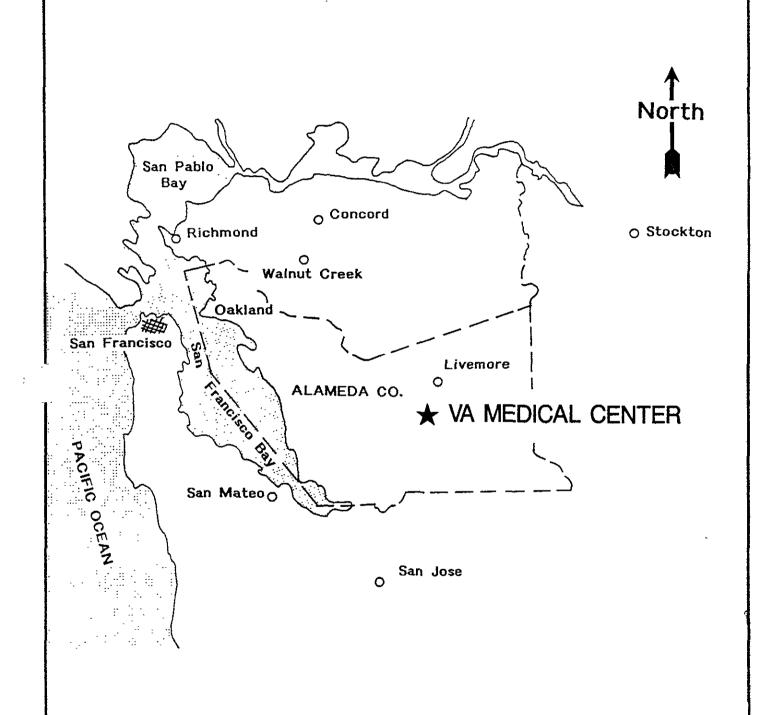
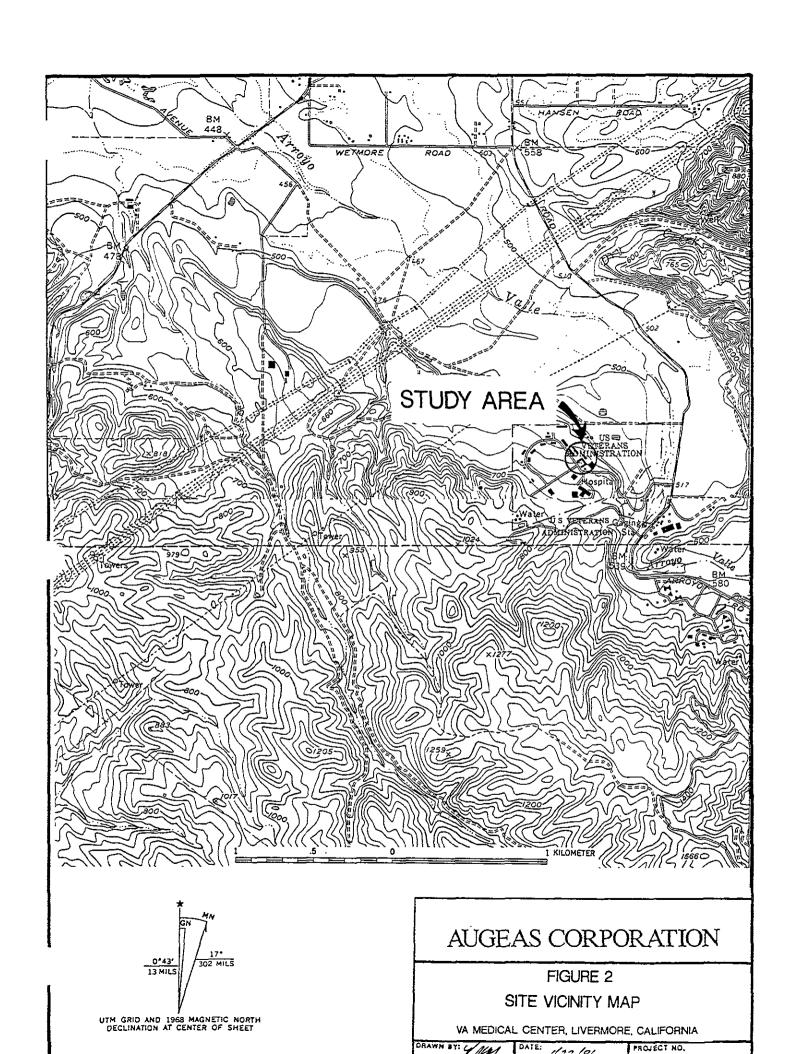
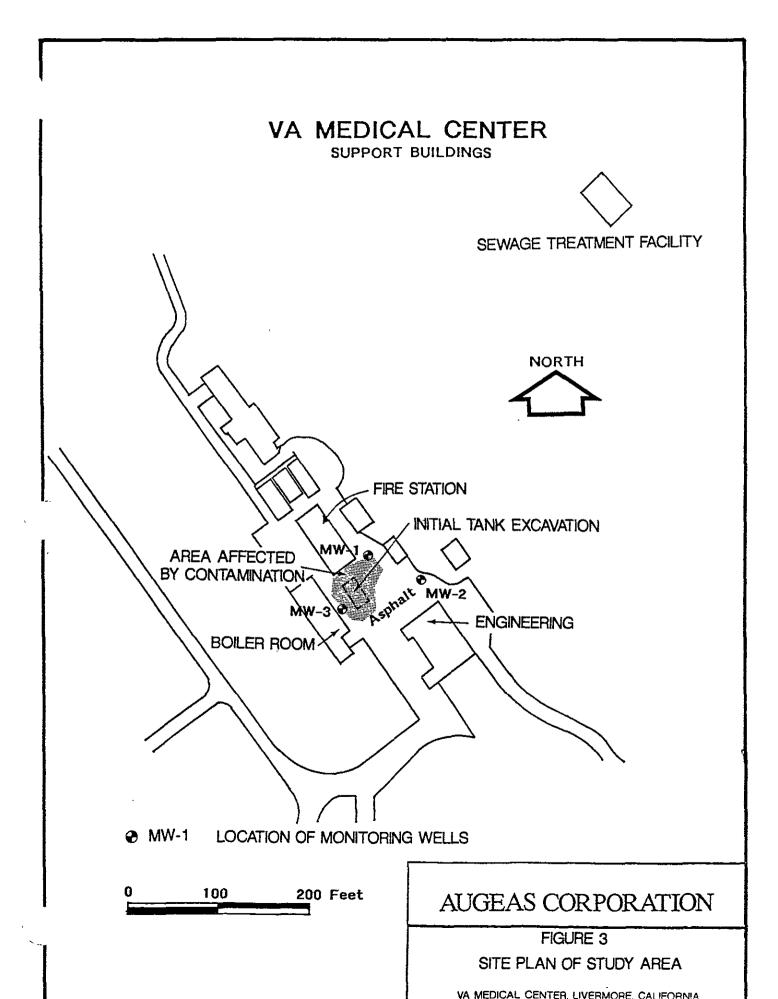

Since the leakage of fuel oil from the underground fuel tanks has reached the water table resulting in visible free floating product, a hydrogeologic study of the site will be proposed as a part of the site remedial plan. This study will include the installation of three groundwater monitoring wells, two of which will be located down-gradient of the excavation. These wells will be used to evaluate the need for further groundwater assessment or remediation. However, since most of the visible free-floating product has been removed during the excavation's dewatering activities, and the contributing source has been removed, it is believed that no further groundwater remediation will be required. Mayor of the sale

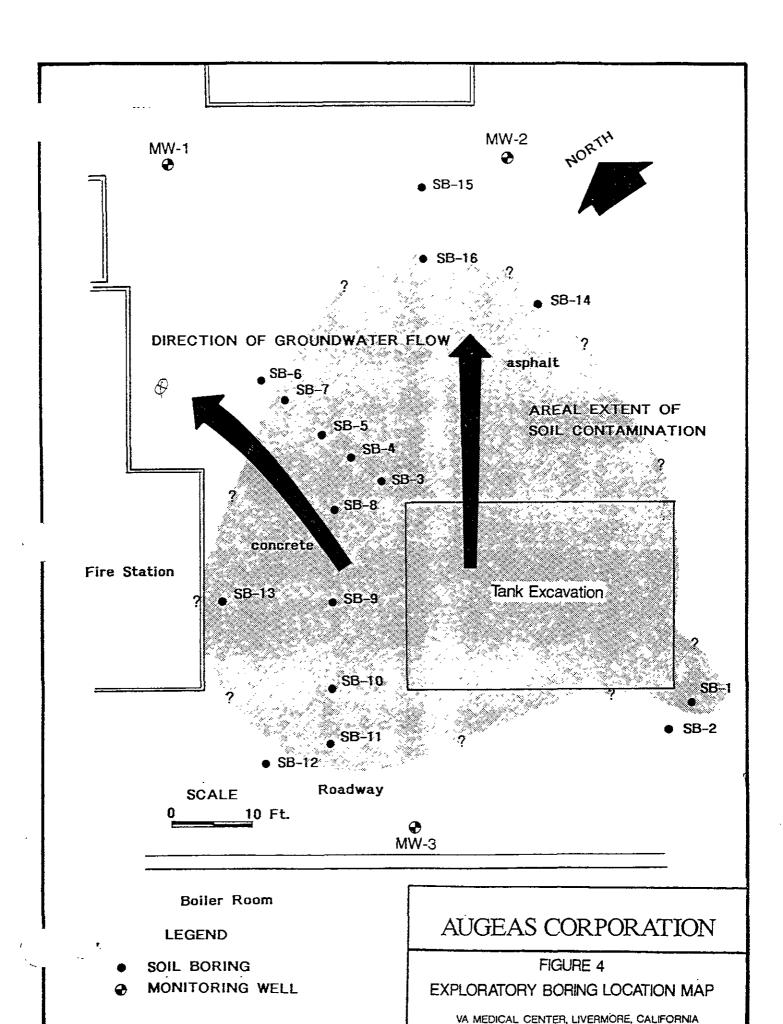
Table 2 Analytical Results -- Water Samples

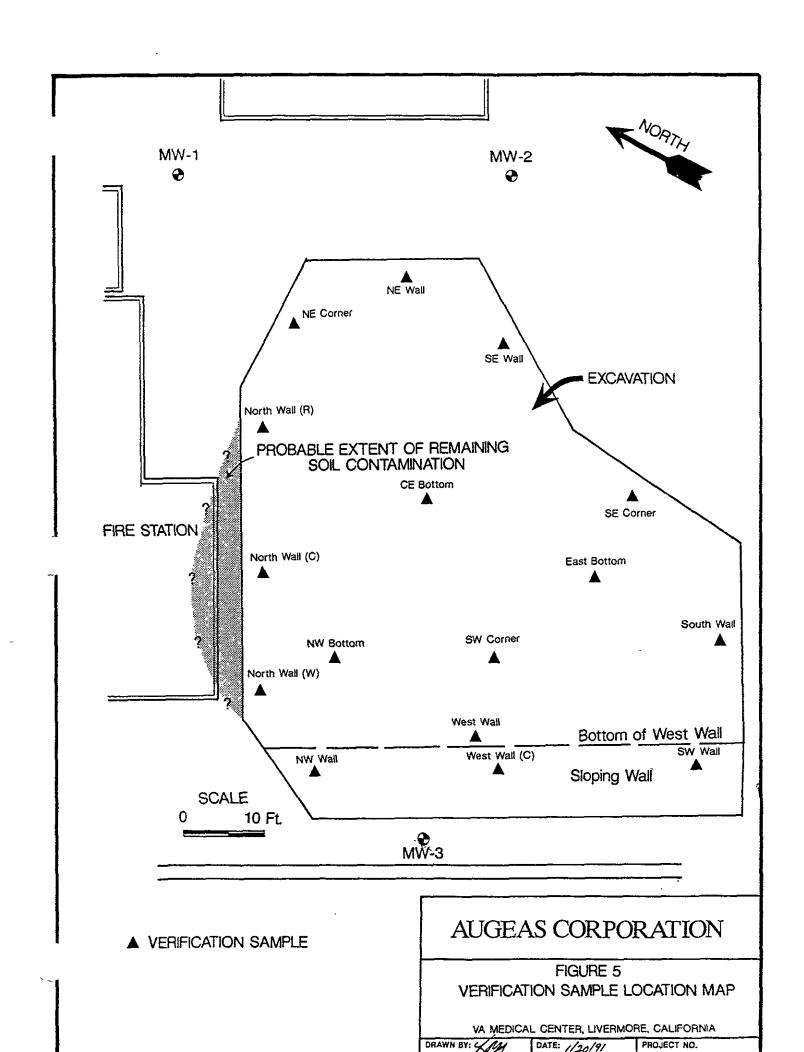
Sample ID	Benzene ug/L	Toluene ug/L	Ethylbenzene ug/L	Xylene ug/L	TPH-diesel mg/L
VA Exc.	ND	ND	ND	ND	0.3
Bottom	ND	ND	0.3	ND	0.28
L. Water	ND	ND	ND	ND	0.68
U. Water	ND	ND	ND	ND	0.27

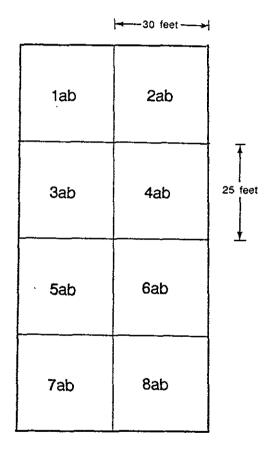
6 LIMITATIONS


This report was prepared in general accordance with the accepted standard practice and state of the art knowledge of the fields of environmental geology and groundwater hydrology. It should be recognized that definition and evaluation of environmental conditions is a difficult and inexact science. Judgements leading to conclusions and recommendations are generally made with an incomplete knowledge of the conditions present. More extensive excavation would have tended to reduce the inherent uncertainties associated with removal of contamination found during this study, but would have resulted in exponentially higher costs for remediation. It is our belief that the additional safeguards achieved by this additional excavation could not be justified.




AUGEAS CORPORATION


FIGURE 1 LOCATION MAP


VA MEDICAL CENTER, LIVERMORE, CALIFORNIA

SAMPLE DEPTHS

a = 6-inches b = 4-feet

DEPTHS MEASURED FROM UPPER SURFACE OF THE CELL

AUGEAS CORPORATION

FIGURE 6
PROPOSED VERIFICATION SAMPLE LOCATIONS
BIODEGRADATIONAL TCC

VA MEDICAL CENTER, LIVERMORE, CALIFORNIA

APPENDIX 1 FIELD LITHOLOGIC LOGS

	. Depti	ed <u>.</u> h <i>25</i>	1127				ted 11/24 Surface Elevation on Curumore	
		TA.	W		_		Drilled By Energy	
Remai	ks							
ΕF	DF		SAMPI	E		G L R O		
ELEUT	FEET	HAME	BLOWS BLOWS	RANGE DEPTH	RECVRY	APHHC G	SAMPLE DESCRIPTION	equipmen Installe
5		SS (1)		61			fette sod (5M) miner gravel, cleates subfounded to 1" mot. dianetic, Motiver frain (6YR 3/4) felte sod (5M) no grave, modernt yellowich brown (1012 3/4)	Co
טן	- - -	-SS (Z)	15/1	10-12 8/25	100	ŧ	interbeddiel thin done of very stepl class (CL) LOVE /4	Be
)5 ⁻		SS (3)	po	init, 15-10	id ∑ 33°	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cravel (CC) milk round cies, clasts sabroused to well rounded derived from streen bed. Cly according, 10123, and mars- silt cravely said (56) with rounded, gravel clast well rounded said to lovery graved, mount to saturalist conditions at 15	
20	-	s = [4	41/ <u>50</u>	21-22	2		clay (Cr) moderate brown (SPR 3/4) still, more!, graduals chapped. to blueish gray 58%,	
26	-					~ ~	- Ferminett hole @ 25°	2"

Project VA Hospital BORING MW-2 Sheet / of / · Job No. Date Started 11/29 Completed 11/29 __ Surface Elevation_ Iccation Luismore otal Depth 20 __ Drilled By Enclose Logged By Remarks PEET ELEET. SAMPLE BLOWS FT EQUIPMENT TYPE NUMBER SAMPLE DESCRIPTION INSTALLEL felis cia, (cc) moderate sella veh brow NOR 3/4, Mout, no of Ministage coller in work 2'4 toil color grout bentonit. 55 1 15/25 5-6 1000 0.02 Alox Frank (GC) w/min the, moderate pellow terms els, gin it diset introduct to well normalis. Me asker 55 (2) 25/52 10-11 60% 五角計 12次 V tdywalt (AL) Desse clay (CL) direct for morne. SP 2 /36/56 2٥ Hamiste folk at 20' tag- le form 20-21'3

Project VA Hospital BORING MW-3 Sheet / of / Jcb No. Pate Started 11/29 Completed 11/30 Surface Elevation_ otal Depth 25 Iccation Livermore Drilled By Enels Logged By___ Remarks THATE SAMPLE PPER THE HYPE NUMBER RECVRY ECULEMENT SAMPLE DESCRIPTION INSTALLED 2'4 pour Consite/ocerale fit Cly (CL) moderate yellow-ith biron 10 TR 5/4 M ocher, cla 2' of best bloch can 55 0 15/25/20 58 (2 10 Gravel ad clay (GC) closets subrown allumined origin, clay (CL) moderate yellowish brown, at ook . Cornel 1 Consists of meta. with programmet, mostly greinstone (3) 38/3 cravel at hand by minz clay (65) leavely mend more - w/n fluction with table 86/ 20-20 SP (4) 20 subrounded to senting, met noch prayer mostly greatene (6) Teminate boing at 25'

Total Logged	Depti i Bv	1 A	; [i]	VI			cati	11/20 Surface Elevation Drilled By Energy	
Remark	cs Dr	lui;	/to	Noc	eti	ore	els	it of bush it lish	
E F	D F		S	AMPI	Ε		G L	478	
FEET.	REER DEPTH	шчкн	NUMBER	BHOKS FT	141 (+	RHOPRY	URAPHHO .	SAMPLE DESCRIPTION	İNST
5 20 -			€) 5	1/50/3	15-16	80°C >= < 75°C 75°C 25°C 25°C 25°C 25°C 25°C 25°C 25°C 2	1010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eyes gravel (GC) closts subsouded splangular, culty 1/2 "in dramation standard programs. Agreem to be levised gravel when the plan of free and warmen to be appeared by (Greenich black 56 appears to be whathered greenstone. Latter fait when the coff 20.9"	at ()

Total De Logged B	1/1:	116	7		_ Io	cati	on Livermore Drilled By Mexel
Remarks_	·/						•
EF DI		SZ	AMPI			G L R O	
FEET H	ЕУРА	NUMBER	BLOWS T	HHUGHO	RECVRY	LOG GRAPHIO	
	보고 보다	(i) -	30,° R		- 20		Closey brand (ct) chorts subsampled afternated gravel, well industed layer mune ode at 14' slight things in color from predominants brain to bluesh girly and gravel gray green 5B/, but minist other clays gravel introduct.

Total	Starte Depti d By_	1 77	H			_ Lo	catio	on Civernosco Drilled By Cnester
Remar	ks							
ABTE PERE	PEEF		S	IPMA		1	되으	
e e V.T		TYPE	NUMMER	HER HE	TT C	発用しずなど	HOG GRAPHHO)
5		5f (O 3	21/37	15-16 140 3", 21-2 105	757.		Concrete surpose 4' thick like day (i) Moderate gettowish brown (10'42 1/4) m. story, me role Crewelly elay to chargey granel (60) Clasts: surposed, allowed in right flight so's at 15' showed suggistiont Containation Clastowination

Logge Reman		<u> </u>	20'			مذ	cati	ted 11/21 Surface Elevation on Lucimon	
	ad By_	4	1/2	1				Drilled By Mnexico	
Verier.		,						·	
EF	D F E E		S	AMPT.	1		G L R O	,	•
E FEET V.T	мымы Оымын	ныны	n H	PER F	RANGE	常田しいない	LOG GRAPHHO	SAMPLE DESCRIPTION	ECOTEVE
	H	ΉE	ZUMBER			7 7 7 7 7	Ĭ,		INSTALL
			Ŕ	SF	n E	Ÿ		,	·
	_							concrete surface	•
								(16 PR /4) no staming an oder	
							_	The state of the s	
							_		
6	-								•
	-							·	
							<u> -</u>	1	
	_						_	·	_
16	_						-	.]	_
ļ	_					ļ	0.	dagy travel, closts well rounded	
							000	allevid grave lang in size from 1/4"	
	_							+ 3" // /	
15		مک	1) 50	143 1		KK	80%	felly clay at 14 dark bown as a recell	· •
	[ا اد		<i>,</i> /-	70/	- 4	Wells.	eletaining - thous order, Augle consisted	d
	_	-					0	of clays gravel - oil orging for supe	,
	_						77	Classia, orangerein. Hore 55 5/ ct 17	
-	-						46	my derse and well induretil - che	
20						4	<u>`</u>	no oil	-
	-						!	Firmste fole of 20"	
	-							dy hole- no stady water, nor faturation	~
ŀ	-				.			for material	
	-							Y	
	-							· · ·	-
}	-						·		
ļ	-	1			- 1	•	1	i l	

te	ct <u>//</u> Starte	ed	11/			_ 0=	mple	BORING SP Sheet / Street / Surface Elevation	
	. Depti	_	20	/		متر	cati	on L'interior-C	
	F DF SAMPI E PE T N B I T T T P M O I						/	Drilled By Engree	
Remar	ks <u>/</u> /	hm!	<u>'</u>	fir.	110	1_1	Truj.	mating pained but might	
		/ ·							
E F	D F		S	AMPI.	E		G L		
FEET.	H H	Ŧ	N	BP	D R E A	R E	GRAPHIO	SAMPLE DESCRIPTION	EQUIPM
	Ĥ -	P	Ă	IW	TT C	RECVRY	H	}	INSTALI
		~	E	SF	ĦĔ	Ř	Ē	<u>;</u>	
			-``	 			1.	Concrete surface and	
Ī			 				-	Concrete surface and filts clay (moderate yellowish braun (10 / E /4) no stain; no ode - mention Where is find class tast and idla one (30 ad 2m)	
1							12	(10/E 5/4) no stany, mo od - whites	141
	_		!					Il lever this claves tand and sille store	1
1	_						-	(3ca) = 1	
J t	-						1.]
ţ	-								[
ŀ									
}	-						-	_	İ
-	-					! !	1.	. \	
10							- ·		
}	-								
ŀ	→						00	chap, Gravel (GC) day short, mount music gravel after 12.5' subsignation	
}	- .						٠, ٠	must gravel of 11.5 substanded	
}	-		ļ i				0 0	Mursin	
15	<u> </u>	sp	① <u>s</u>	O P	15	100 g	-	somble collected at 15-76 "contamental.	
-	_		-	+ -		-	E	′	ļ
1	-		\ 			į	\$	contamister comes right to the top of the clay	
1							\$	clayetine @ 16' dene, well industral	
1	_			 		. }	A.	plicesh gray 5B 8/1	
7.		لم مح	7. 2	150	20-2		20		
20	_	٠. (ľ ·	"	Ì		- Terminati hole @ 20'	
ſ	_								
Ī	_								Į
f	_								
t	-					ļ			
.	-		ا ا						
}	-	1		1				•	ļ

Project VA Hoseitel BORING SR-/ Sheet / of / Jcb No.___ Completed ///2/ ate Started ///2/ Surface Elevation_ Iocation Livermore Notal Depth 20 Drilled By Enefer Logged By //W/ Remarks UNAPHHO BOM PEET ELET. SAMPLE PANGE BLOWS FT EQUIPMENT RECVRY TYPE NUMBER SAMPLE DESCRIPTION INSTALLED Condete at surject 9 filty sool to lilly clay (5M to CL) Moderate yellowish brown (1045/4) Clayer Gravel (GC) subroance donts

co thereast of fruin allewer, yours of virtue

the free gravel a turnet up to anomin or

co the free gravel a turnet up to anomin or

co the - no oder in toppe. 13 V Well consolidated along brush que vo (58 %),)

V o (58 %),)

V o Mr water at the time of dilling 22/21 20 21 92 7 Jerminte Lake at 20 20

	d By Y/W			Drilled By Cherct	
ELEUT.		SAMPLE	G L R O		FOULP
₹. Ŧ	HHHH HHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHH	BPEPN CONTROL OF THE PROPERTY			INSTA
			76	Sity spart (5M) w/mmr ely, moderate sullewish brown (10 YR S/4), P10 Meshy O formed w/ sect and mina clay (05-60) brown, med to coarse send. Gravel seates to subamulan, allumi origin, clarts ne metalogonic pack prograts, proving pelinstone sample at 10-11 contained No orda P15 reach C. Contained No orda Claystere 16/2 "K" their (must-be a Claystere 16/2" their (must-be a c	ended

	Domi	ect	114	110	דום ר	1	Jo	b No	. BORING SR-8 Sheet /	of / ·
	ŀ	Start	•	٠.	/	<u> </u>			ted ///30 Surface Elevation	
		l Depti				7.00			on Everyna	
	T	ed By_	4	/ / 2 /					Drilled By Greater	
	Remai		/} /		_				-1	
	Kenzu	AS		al e			4.	11:1	. I shed - lutto- it to be should be appro-	9/hein
			<i>GF (L)</i>		AMPL					year.
	FEET V.	PERT					P	GRAPHIO		ECULEMENT
	v.T	ŢŤ	TYPE	Ü	F	EA	E	H H	SAMPLE DESCRIPTION	INSTALLED
		п	Ē	NUMBER	PER F S	RANGE DEPTH	発送しており	Ï		
		:		Ŕ	T	1	Ϋ́		coacret at surfar	
									Litty such w/ min clan (SM) moderate	-
		 -		}					yellowish drown (157 F 3/4)	-
										-
		_								-
	5					İ	•			
		_								1 -
•										
										-
į		_								· <u>-</u>
	lo		- <	7 2	2/47/	42 10-11				-
	•-				'	10-11			clean sugh wo odn PID ready o	-
							_			_
		_							Clayer Gravel you]
									Surger of the second	_
	15									_
	13								Contamation quant at 15/2'	
		_						MMM		
								3		
		_						3		
		_					,	3	·	
	20								Clayer she bedwich	
		-					,			
		-								
		-			-					
		-								
						`			•	_
· II		-								
1	1									

rotal	L Depti	<u> </u>	120	<u>) </u>			catio	ced ///24 Surface Elevation	
rodde	ed By_			1			_	Drilled By Engles	
Renai	XS						·		
E F	DF			AMPL			G L R O		·
HPIET	PEEH DEPHH	TYPE	NUMBER	BLOWS T	HHUMU	スゴロマなど	LOG GRAPHIO		EQUIF INSTAL
								concrete & surface approx 4" filly soul to setty clay	
5	_								
	_								
10									
İ	_ _ ,							Clayey arand you	
K	_							Contamination discovered et #2'	
							MWWWWW	Commen or towns - 7	
20							Www.	bedwele, that food at = 20%	de santa de la companya de la companya de la companya de la companya de la companya de la companya de la compa
								2	
								•	

Project_ te Star fotal Der logged By Remarks_	tæd_, th 2	11/20 20'	1	 _ c	mple cati	BORING_SR-10_Sheet/_ ted//24Surface Elevation onDrilled By (NUM ~	
EF DE	TYPE		B P E R F T	 RECVRY	GRAPHIC		EQUIEME
				Ž-	WWWWW	Corciet at surprise Selty soul to selty clay Clayery Crowd zone These bedwich Fliminate at 20'	

ıota	Starte L Depth ed By	≊d/, 1	1/2 20		 _ ca	mplei	BORING 5/7- // Sheet / Sted //25 Surface Elevation on / werware Drilled By County	of_/
##### ################################	нынен Онинн	нын	NDMMER	MPL BLOW F	 RECVRY	LOG GRAPHIC)	DQUIPMENT INSTALLED
20 20					· 🖳	0 0 10 10 0 mm P .	Chapty Gravel Chapty Gravel thin zene of containments Abole bedrock beginning at about 18 1/2	

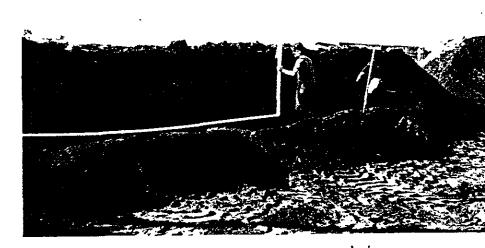
1	Starts Depth d By	ed	1//2	25_		_ _ ca	mplet	BORING 58-12 Sheet / ted 11/24 Surface Elevation on Lynumble Drilled By Merce	of_/
——————————————————————————————————————	DEPTH	TYPE	NUMBER	BLCW FT	E RANGE	RECVRY	LOG		EQUIPMENT
10								Clayery Gravel of coarse such mo costomination, no also no discolation - clear has Made Bedevole @ 17'	

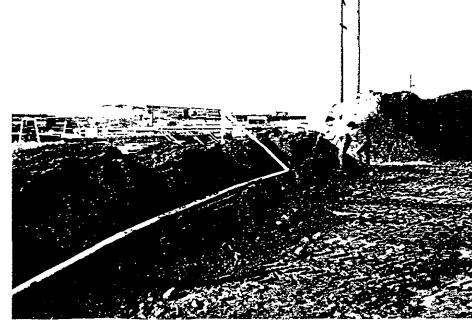
te rota Legg	ect	ed	11/: 2 K/	26 Vi		_ Co	mple cation	Drilled By Melco firster (axprox 2' anos from street	of
E F LEE V.T	DEPTH	HYPE		AMPL BLOWS FT	DEPTH TH	RECVRY	LOG GRAPHHO	SAMPLE DESCRIPTION	EQUIPMENT INSTALLEL
5 10 18 20								Clary bravel your contommation at 15' there bedwork at 15'	

rotal	Starta Depti d By_ ks	2/2	5.					on Carly Drilled By Chact	
E F E E E E E E E E E E E E E E E E E E	DEPTH	TYPE		MPL BLER FT	E RANGE	RECVRY	LOG GRAPHHO	SAMPLE DESCRIPTION	EQUIPMEN INSTALLE
5 10 20							o o o manama o o o	Cherry bravel zone Cherry bravel zone more contamination to 16' probaby sea edge of planne Abole bedrock at 17'/2'	

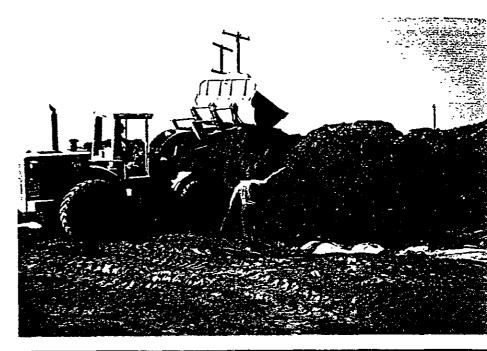
Projecte Sta	Start Deptl By_	ed //	20'		.1	_ a	cb No	Drilled By CALCO	of_/_
FLEV.	FERT DEPTH	TYAE		MPLI BLOW FIT		RECVRY	GRAPHIC	SAMPLE DESCRIPTION	EQUIPME
							1 1 1 1 1 1 1 1 1 0 10 00 0 0	Class gravel zone Moder hedrock Abole bedrock	

Proj	ect <u>/</u>	A	Has	arte	/	_ Jcb	No	BORING 5876 Sheet /	of /
æ	Start	.ed	<u> </u>	27	-	Com	ple	ted 11/27 Surface Flevation on Culturate	
	l Dept					. Icc	ati	on Livemore	
Remai	ed By_	$ \sim$ 4	(Drilled By Energy	
				·					· · · · · · · · · · · · · · · · · · ·
E F	DF		S	AMPL F	:	ľ	G L		
ELEV.	немен Оемен	Ţ	N	BP	DŖ	R	2 G		DOUTHENT
V.1	Ħ	TYPE	M	ig R	DEPTH THE	£ 1	LOG	SAMPLE DESCRIPTION	INSTALLED
		~	NUMBER	BHOK WE	ĦĔ	RECVRY			
			<u> </u>	-		-		Concrete at Ampoce filty touch	
	_					-	<u>.</u>	filty touch .	
	_					-	-	()	
							- -		
8							-		_
									_
"									-
	-								
10							١		
	_						,		
	_					0_	0	Chyy Growel Zome	_
						10	4 J	VV	
-	-				-	0 0	0	•	
15	-				=	0	0	mina contonuation found at 16!	
-	-					C	6	mine continuation hand at 16's must be right at the edge of the go	سر _
-	-				ļ	V V	-	flish bedrock	4
-	-					₹	7		-#
-	_					•	7	·	-
20	-					+	+		
	•								-
									-
	_								
	.								
_									
-									
					1	_	İ		1

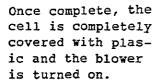

APPENDIX 2

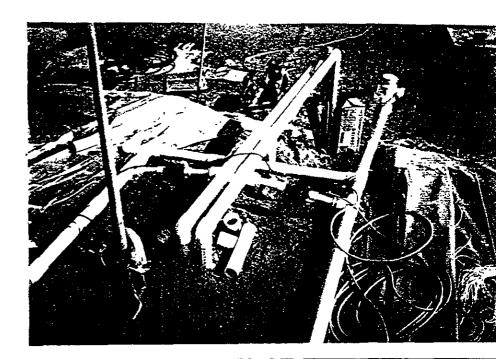

PHOTOGRAPHIC DOCUMENTATION OF TREATMENT CELL CONSTRUCTION

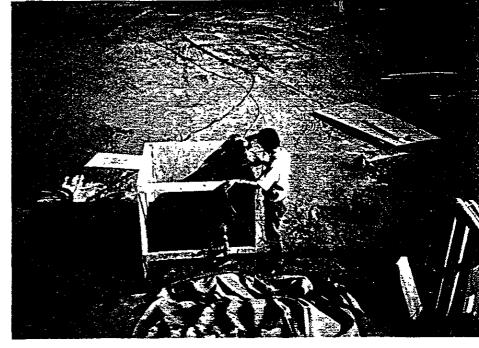
Initial Cell Development. Front-end
loader distributes
contaminated soil
while technician
washes soil with a
water-based slurry
mix containing bacterial cultures and
fertilizer

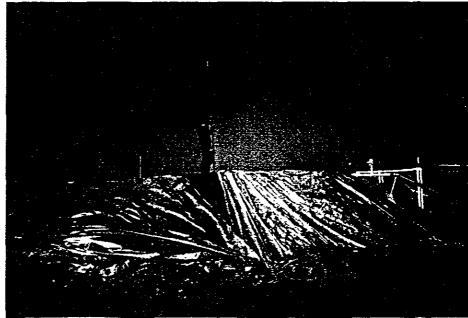

Loader places soil in stages. Vented pipe is laid horizontally near the base of the cell. A vertical "riser" connects two sections of horizontal pipe.

The cell is completed to a height of approximately eight feet. Soil is constantly kept moist during cell construction.


Risers are manifolded together and attached to main lines leading from pump/blower assembly. Electronic timers and switches are added to control the flow of air to each section of the cell.






A pump/blower assembly is attached to circulate fresh air through the cell

Samples from the cell are periodically collected and analyzed to evaluate the cells effectiveness in degrading the petroleum products present.

APPENDIX 3 DETAILED ANALYTICAL RESULTS

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 81978 CLIENT: AUGEAS CORP

DATE RECEIVED:11/26/90
DATE REPORTED:12/03/90

CLIENT JOB NO.: V.A.HOSPITAL

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

LAB			ation(ug/ Ethyl			
#	Sample Identification	Benzene	Toluene	Benzene	Xylenes	
1	Lower water level	ND<0.3	ND<0.3	ND<0.3	ND<0.3	
2	Upper water level	ND<0.3	ND<0.3	ND<0.3	ND<0.3	

ug/L - parts per million (ppm)

Method Detection Limit in Water: 0.3 ug/L

QAQC Summary:

Daily Standard run at 20ug/L: RPD = <15%

MS/MSD Average Recovery = 81%: Duplicate RPD = <7

Richard Srna, Ph.D.

Laboratory Manager

About yw.

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 81978

DATE RECEIVED: 11/26/90

CLIENT: AUGEAS CORP

DATE REPORTED: 12/03/90

CLIENT JOB NO.: V.A.HOSPITAL

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB #	Sample Identification	Concentration (mg/L) Diesel Range
1	Lower water level	0.68
2	Upper water level	0.27

mg/L - parts per million (ppm)

Method Detection Limit for Diesel in Water: 0.05 mg/L

QAQC Summary:

Daily Standard run at 200mg/L: RPD Gasoline = NA

RPD Diesel = 6

MS/MSD Average Recovery = 131%: Duplicate RPD = 0.3

Richard Srna, Ph.D.

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 **DOHS #220**

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 81978

DATE RECEIVED:11/26/90 DATE REPORTED:12/03/90

CLIENT: AUGEAS CORP

CLIENT JOB NO.: V.A.HOSPITAL

ANALYSIS FOR TOTAL OIL AND GREASE by Standard Method 5520F

LAB #	Sample Identification	Concentration(mg/L) Oil & Grease
1	Lower water level	62
2	Upper water level	ND<5

mg/L - parts per million (ppm)

Method Detection Limit for Oil and Grease in Water: 5mg/L

QAQC Summary: Duplicate RPD: 9

Richard Srna, Ph.D.

Chain of Custra, Record

Projec Projec Samp P.O. 1	t Name	19E 90) 7	A.Ho. Light ASO.	SPITAL CORP.						82 M	iper 25 = arti	lrn ine:	old z, C	Di A	r. 1 945	Bay		ratory	,			
Sample Number	Da		Time		ocation		Matrix	Number of Containers	Sample Preservation	TPH as Gasoline	втхе	TPH as Diesel	Oil & Grease	8010	8240							
	11/26	90	1450	LOWER	WATER	LEVEL	w	3			\bowtie	\geq	\geq					ļ <u> </u>				-
	11/26	90	1430	UPPER	WATER	LEVEL	w	3.			X	\times	\geq					. 				\dashv
		,							` ,									 	·	·		
								<u> </u>		<u></u>									·			-
•													ļ .	ļ	<u> </u>						<u></u>	
•										<u> </u>	ļ		<u> </u>	<u> </u>						, , , , , , , , , , , , , , , , , , , 		
•													ļ		<u> </u>							
								,			ļ									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1													· .		ļ		 			<u> </u>	,	
									<u>i</u>			<u> </u>	<u>.</u>									
									}		<u> </u>	`**.		,			<u> </u>					
					,								,	,	,		<u> </u>	<u> </u>				
Relinquished 1. 分かり 2. 3.			ire)	Date/Time	709 Rece 1. 2.	eived By (S	ignature)			/Time	···········		MARI			wal)	N.	T -	×.		
4.					4,	ZLJ	JEL.		11/2	26/9	1709						١٠	·		•		

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 **DOHS #220**

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82097

DATE RECEIVED: 12/12/90

CLIENT: AUGEAS CORP

DATE REPORTED: 12/19/90

CLIENT JOB NO.: VAHOSPITAL

ANALYSIS FOR TOTAL OIL AND GREASE by Standard Method 5520F

LAB #	Sample Identification	Concentration(mg/kg) Oil & Grease
	~	
1	MW-1.15'	ND<50
2	MW-1.20'	ND<50
3	MW-2.15'	ND<50
4	MW-3.15'	ND<50
5	SB-1.10	ND<50
9	SB-1-15	2800

mg/kg - parts per million (ppm)

Method Detection Limit for Oil and Grease in Soil: 50mg/Kg

QAQC Summary: Duplicate RPD: 5%

Richard Srna, Ph.D2

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512 DOHS #319

CERTIFICATE OF ANALYSIS DOHS #220

LABORATORY NO.: 82097 CLIENT: AUGEAS CORP DATE RECEIVED: 12/12/90 DATE REPORTED: 12/19/90

CLIENT JOB NO.: VAHOSPITAL

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

			Concentration(ug/kg) Ethyl				
LAB # 	Sample Identification	Benzene	Toluene	Benzene	Xylenes		
6 7 8	SB-A-10-11 SB-A-6-8 SB-B-10-11	ND<3 ND<3 ND<3	ND<3 ND<3 ND<3	ND<3 ND<3 ND<3	ND<3 ND<3 ND<3		

-ug/kg - parts per billion (ppb)

Method Detection Limit in Soil: 3 ug/Kg

QAQC Summary:

Daily Standard run at 20ug/L: RPD = (15%

MS/MSD Average Recovery =103%: Duplicate RPD = <9%

Richard Srna, Ph.D.

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82097

DATE RECEIVED: 12/12/90

CLIENT: AUGEAS CORP

DATE REPORTED: 12/19/90

CLIENT JOB NO .: VAHOSPITAL

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 5030 and 8015

LAB # 	Sample Identification	Concentration (mg/kg) Gasoline Range
6	SB-A-10-11	ND<1
7	SB-A-6-8	ND<1
8	SB-B-10-11	ND<1

mg/kg - parts per million (ppm)

Method Detection Limit for Gasoline in Soil: 1 mg/Kg

QAQC Summary:

Daily Standard run at 2mg/L: RPD Gasoline = <15% MS/MSD Average Recovery = 87%: Duplicate RPD = 8%

Richard Srna, Ph.D.

California Water Labs P.O. Box 4249 Modesto, CA 95352 (209) 527-4050 Ship samples to: 1430 Carpenter Lane Modesto, CA 95351

SAMPLE CHAIN OF CUSTODY RECORD

(please print)

				•		
ļ	(,	ţ		:	

Client	
Address	
Phone No.	
Proj. Mgr./Contact	

Pink - Field Copy
White and Yellow - To Laboratory with Samples
Yellow - Return to Client

samples to:	
Carpeqter Lane	
sto, CA 95351	Record/

PROJECT/SITE NA	ME: SPITAL -	UG	VER C	n, 06	 2£							· /.		ANA	LYSIS REQUESTED			
PROJECT/CONTRACT/PO NO.:								,	/5)	//	/h/	//	/,	///	,			
NAME OF SAMPLER: KENT MUREAL														// 6	REMARKS/SPECIAL INSTRUCTIONS CEASE FAX RESOLTS TO DR.K.			
LAB USE ONLY LAB I.D.	SAMPLE I.D.	1	TIME	COMP.	GRAB	NUMBER OF CON- TAINERS	1		\$\/\	γ * /	\angle		\angle	BILL ;	B 916 852-1411 TO: AUGERS CURP. 890, RODDEN ED KOALT CH			
	MW-1, 15	12/	\$				X			}				OA.	KOALT CA			
	MW.1 20	·					X											
	MW- 2.15	1 1	-		,		X											
	MW-3.15	1					X											
	JB-1.10						X			ļ			,					
	5B-1,15	V					X											
	SB-A 10-	<i>y</i> _			1_			X	X	<u> </u>	<u> </u>			į 				
	.5B-A (-	,						X	X									
	SB-B 10	11						X	X									
AELINOUIS	HED DV (CICNI)		DATE	ETTIM		1	DEC	- E1V	ED BV	(810	NI)			DATECTIME	PROSIVED FOR LABORATORY			
Ant Mun 12/11/90 Co						oth.	othernay Marlin 12/11/2					13	DATEITIME TO NO	BY (SIGN) DATE/TIME				
Jont / Muny 12/11/90 Co							()	•					RECEIVED:					
							<u>, </u>					2.00	SCOLD AND INTACT OTHER PRESERVATIVE CIYES CHAN					
						KI	~_	LF	日				12	112/90 1130	TURN AROUND TIME:			
SHIP! C	TED X TUPS	[]OT	HER:			·····		;	SHIPI		ار	ER NO			☐24-Hr ☐2-Day D5-Day J-Day			

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82185 CLIENT: AUGEAS CORP DATE RECEIVED: 12/28/90 DATE REPORTED: 12/28/90

CLIENT JOB NO.: VA HOSPITAL

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB #	Sample Identification	Concentration (mg/Kg) Diesel Range
_	S.E.Corner #1	ND<10
2	N.E.Corner #2	ND<10
3	C.E.Bottom #3	ND<10
4	N.W.Bottom #4	ND<10
5	West Wall #5	ND<10
6	S.W.Corner #6	ND<10

mg/kg - parts per million (ppm)

Method Detection Limit for Gasoline and Diesel in Soil: 10 mg/Kg QAQC Summary:

Daily Standard run at 200mg/L: RPD Gasoline =NA RPD Diesel = 8
MS/MSD Average Recovery =128 %: Duplicate RPD =3

Richard Srna, Fl..D.

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82185

DATE RECEIVED: 12/28/90
DATE REPORTED: 01/03/91

CLIENT: AUGEAS CORP

CLIENT JOB NO.: VA HOSPITAL

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by EPA METHOD 418.1

LAB #	Sample Identification	Concentration (mg/Kg) Oil & Grease				
1	S.E.Corner #1	ND<20				
2	N.E.Corner #2	ND<20				
3	C.E.Bottom #3	ND<20				
4	N.W.Bottom #4	ND<20				
5	West Wall #5	ND<20				
6	S.W.Corner #6	ND<20				

mg/Kg - parts per million (ppm)

Method Detection Limit for Oil and Grease in Soil: 20mg/Kg

QAQC Summary: Duplicate RPD: 0

Richard Srna, Ph.D.

Laboratory DIrector

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82185

DATE RECEIVED:12/28/90

ND < 3

ND < 3

CLIENT: AUGEAS CORP

DATE REPORTED:12/28/90

CLIENT JOB NO.: VA HOSPITAL

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

Concentration(ug/Kg) Ethyl LAB Toluene Benzene Xylenes Benzene Sample Identification ND<3 $ND \le 3$ ND < 3ND < 3S.E.Corner #1 1 ND < 3ND < 3ND < 3N.E.Corner #2 2 ND<3 ND < 3ND < 3C.E.Bottom #3 ND < 33 ND < 3N.W.Bottom #4 ND < 3ND < 3ND < 34 ND<3 ND < 3ND<3 ND < 3West Wall #5

ND < 3

ug/kg - parts per billion (ppb)

S.W.Corner #6

Method Detection Limit in Soil: 3 ug/Kg 5

QAQC Summary:

Daily Standard run at 20ug/L: RPD = <15%

MS/MSD Average Recovery =114 %: Duplicate RPD =<3

Richard Sinu, Ph.D.

ND<3

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82197

DATE RECEIVED:01/02/91 DATE REPORTED:12/29/90

CLIENT: AUGEAS CORP

CLIENT JOB NO.: VA HOSPITAL

ANALYSIS FOR TOTAL OIL AND GREASE by Standard Method 5520F

LAB # 	Sample Identification	Concentration(mg/Kg) Oil & Grease
1 2 3 4 5 6 7	S,E,WALL N,E,WALL North Wall Right North Wall Center North West Wall West Wall Center South West Wall	2300 4000 2500 13000 820 3500 2000

mg/kg - parts per million (ppm)

Method Detection Limit for Oil and Grease in Soil: 50mg/Kg

QAQC Summary: Duplicate RPD: 17

Richard Srna, Ph.D.

Laboratury Directo

SEMC

JAMES C. BATEMAN PETROLEUM SERVICES, INC.

431 W. Hatch Rd. Modesto, Celli 95351 General & Engineering Contractors (600) 533-9293 FAX (209) 524-0503 88185

SEMCO

JAMES C. BATEMAN PETROLEUM SERVICES, INC.

1741 Leslie St. San Mateo, Calif 94402 General & Engineering Contractors (415) 572-8033 FAX (415) 572-9734

CHAIN OF CUSTODY RECORD

					051 155	Va waka	<u> </u>					 7		,	, , , ,	····
PROJECT					1751 ARRO	i					, /			h		/
V.A. HOSPITAL LIVERMORE, CA.								Š		1	7	/ /	Ι,		1 / /	•
SAMPLERS (signature) :								Ana,		ΰ/			/.	¥]/		
THULL GOB								` �		72	/11/	LU				REMARKS
Station Number	Date		сошр.		Station	Location	Con- tainers	/5	7							
	12/28	1015		X	SIE, COT	2NER#1	1	X	X	X		V				
		1037	_	X	NiE, Ca	1	X	X	X		X					
		1025		X	C.E. BOTT	1	X	X	X		X	, marrie =>		Anticological and desired reprint	AS	
		1045	 	X	N.W.	1	X	X	X		X	٠,	JQ2-	initiali es Sicred in	nice	
	 	1055		攵	WEST WA	十十二	1	X	V	X		ÍΖ			L	IG:II s. s.
ļ				分				X	K	\Diamond						
		1110	<u> </u>		S.WICOR	JER # 6				\triangle		\triangle		0,1	without 1	neadspace. N.D
<u></u>														om?	nents:	
			1													
				1												9 - 1
			1										L_			
Relinquis Company of	hed by July or Agen JEA	(signa	iture		1フ1フセ	Recolved by (sign Company or Agency	 7		jpqui Ala pany	4 7	≥/,	レフチ	jure) H	: Da	te / Time	Received by (signature): Company or Agency:
Relinquished by(signature); Date / Fime Received by (sign					ature):	Relinquished by:			Date / Time		te / Time	Received by (signature):				
Company or Agency: Company or Agency:						' ‡	Company or Agency: Company or Agenc						Company or Agency:			
Relinquished by(signature): Date / Time				Received for Labo	oratory by:	1	e / 128 1:41		R	lemari	cs/Sl	nippi	ng Informat	ion		

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82197

DATE RECEIVED: 01/02/91

CLIENT: AUGEAS CORP

DATE REPORTED: 12/29/90

CLIENT JOB NO.: VA HOSPITAL

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB # 	Sample Identification	Concentration (mg/Kg) Diesel Range
1 2 3 4 5 6 7	S,E,WALL N,E,WALL North Wall Right North Wall Center North West Wall West Wall Center South West Wall	1300 1500 1900 6500 930 490 770

Method Detection Limit for Gasoline and Diesel in Soil: 10 mg/Kg QAQC Summary:

Daily Standard run at 200mg/L: RPD Gasoline = NA

RPD Diesel = 2

MS/MSD Average Recovery =128 %: Duplicate RPD =3

Richard Srna. Ph.D.

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82197

DATE RECEIVED:01/02/91

CLIENT: AUGEAS CORP

DATE REPORTED:01/02/91

96

150 .

ND<150 ND<150

ND<30

71

310

370

ND<150

CLIENT JOB NO.: VA HOSPITAL

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

Concentration(ug/Kg) Ethyl LAB Xylenes Toluene Benzene Benzene Sample Identification _____ 2100 810 420 ND<150 S, E, WALL ND<150 ND<150 ND<150 ND<150 N, E, WALL ND<150 ND<150 ND<150 ND<150 North Wall Right 440 ND<150 ND<150 280 North Wall Center

ND<30

ND<150

ND<15

ug/kg - parts per billion (ppb)

North West Wall

West Wall Center

South West Wall

Method Detection Limit in Soil: 3 ug/Kg

QAQC Summary:

Daily Standard run at 20ug/L: RPD = <15% MS/MSD Average Recovery =106%: Duplicate RPD = <8

Richard Srna, Ph.D.

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82197

CLIENT: AUGEAS CORP

CLIENT JOB NO.: VA HOSPITAL

DATE RECEIVED: 01/02/91

DATE REPORTED: 01/02/91

ANALYSIS FOR PETROLEUM HYDROCARBONS, TOTAL RECOVERABLE by Method 418.1

LAB # 	Sample Identification	Concentration (mg/Kg) Oil & Grease
	C. E. WALL	
•	S,E,WALL	1300
2	N,E,WALL	1500
3	North Wall Right	2100
7	North Wall Center	22000
5	North West Wall	140
€	West Wall Center	2500
7	South West Wall	71

mg/kg - parts per million (ppm)

Method Detection Limit for Oil and Grease in Scil: 20mg/Kg

QAQC Summary: Duplicate RPD : 21

Richard Srna, Ph.D.

Laboratory Director

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82197

DATE RECEIVED:01/02/91

CLIENT: AUGEAS CORP

DATE REPORTED:12/29/90

CLIENT JOB NO.: VA HOSPITAL

ANALYSIS FOR TOTAL OIL AND GREASE by Standard Method 5520F

LAB #	Sample Identification	Concentration(mg/kg) Oil & Grease
4	S,E,WALL	2300
1	•	4000
2	N,E,WALL	2500
3	North Wall Right	13000
1	North Wall Center	820
5	North West Wall	3500
6	West Wall Center	2000
7	South West Wall	2000

mg/kg - parts per million (ppm)

Method Detection Limit for Oil and Grease in Soil: 50mg/Hg

QAQC Summary: Duplicate RPD: 17

JA

Number

. BATEMAN PETRÒLEUM SERVICES, INC.

431 W. Hatch Rd. ModesIo Calil. 95351 General & Engineering Contractors (800) 533-9293 FAX (209) 524-0503

SEMCO JAMES C. BATEMAN PERROLEUM SERVICES

1741 Lesije Bt. San Maleo, Calif. 94402 General & Engineering Contractors (415) 572-8039 FAX (415) 572-9734

CHAIN OF CUSTODY RECORD

82197 PROJECT NAME: V.A. HOSPITAL 4951 ARROYD ROAD, LIVERMORE SAMPLERS (signature): Number REMARKS DON LIGHT of Station Con-Date Time of que Station Location tainers 12/31 11630 ABOUT FLOOR BOTTOM S.E. WALL 32" E, WALL 1846 NORTH WALL RIGHT(3) DP.LI NORTH WALL CENTERION NORTH WEST WALL みり" WEST WALL CENTERIO 34" WEST WALL Relinquished by(signature): Date / Time Received by (signature): Date / Time Received by Isignature? Relinquished by(signature): Company or Agency: 12/29 Company or Agency: 1824 Company or Agency: Company of Agency: 1990 AUBIFAL Received by (signature): Received by (signature): Relinquished by: Relinquished by(signature): Date / Fime Company or Agency: Company or Agency: Company or Agency: Company or Agency: Remarks/Shipping Information Received for Laboratory by: Date / Time Relinquished by (signature): Date / Time 1/2 0837 SAME DAY Turn Hrowned 2/1/91 Company or Agency: AUSTAS

825 ARNOLD, STE. 114 . MARTINEZ, CALIFORNIA 94553 . (415) 229-1512

DOHS #319 **DOHS #220**

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82208

CLIENT: SEMCO

CLIENT JOB NO.: VA HOSPITAL

DATE RECEIVED: 01/03/91

DATE REPORTED: 01/04/91

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-845 Methods 5030 and 8020

i.AB #	Sample Identification	_	Concentry Toluene	Ethyl Benzana	
1	Bottom of pit	ND<0.3	ND<0.3	0.3	ND(0.3

ug/L - parts per billion (ppb)

Method Datection Limit in Water: 0.3 ug/L

QAQC Summary:

Daily Standard run at 20ug/L: RPD = <15% MS/MSD Average Recovery = 107%; Duplicate RPD = 1

01/07/1991 09:45 FROM SEMCO SAN NATEO CA. 010. TO 10092471958

F. 02

SUPERIOR ANALYTICAL LABORATORIES, INC.

825 ARNOLD, STE. 114 . MARTINEZ, CALIFORNIA 94553 - (415) 229-1512

DOHS #318 DOHS #226

CERTIFICATE OF ANALYSIS

LABORATORY NO.; 82206

CLIENT: SEMCO

CLIENT JOB NO.: YA HOSPITAL

DATE RECEIVED: 01/03/91

DATE REPORTED: 01/04/81

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-848 Method 8015

LAB	Sample Identification	Concentration (mg/l) Diesel Range
1	Bottom of pit	0.28

mp/L - parts per million (ppm)

Method Detection Limit for Diesel in Water: 0.05 mg/L QAQC Summary:

Daily Standard run at 200mg/L: RPD Gasoline = 0 RPD Dissel = MS/MSD Average Recovery = 111%: Duplicate RPD = 3

SEMCO JAMES C. BATEMAN PETROLEUM SERVICES, INC.

JAMES C. BATEMAN PETRUEPH SERVICES, INC.

1741 Lestie St. San leo, Calif. 94402 General & Engineer Contractors (415) 57230 FAX (415) 53734

431 W. Hatch Ro. Modesto, Cant 95351 General & Engineering Contractors (500) 533-9293 FAX (205) \$24-05C3

CHAIN ACTICION DECODO

						CHAII	I OFZIST	ODY	REC	ORD						
	T HAME	491	5 	ARY JER	SPITAL LOYO ROA! LIGHT) A.	Nuer	And Jr.	2 0 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /	1	/				Ð	MARKS
tation umber	Date	Time	ig g	Grab		Location	[:- tairs	Æ	7							
	1991	0190	 -	Ž	BOTTEM	of PIT	1	X	X					2-LITE	<u> </u>	V.o.A. 5
														* 24 4	our (RUSH)
1																
Relingui Do A Company	shed by or Age	y(sign guil ney:	atur	e):	Date / Time 1/3 (550)	Received by (sign Company or Agency EXPRESS	pto		inqui pany			l Lure)	: Da	te / Time	}	by (signature): or Agency:
Relinqui Company	ished b	y(sign		·e}:	Date / Time		natui):	1	kana Luduj		y:		Da	te / Time	Į.	by (signature): or Agency:
Relinqu Company			atur	re):	Date / Time	Received for Lab (signature)	oraty by	Dat	ie /	Time	Remari	ks/Sh	ippi	ng Informat	ion	

AUGERS CORP

2698471958 64

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82230

CLIENT: AUGEAS CORP

CLIENT JOB NO.: VA HOSPITAL

DATE RECEIVED: 01/07/91

DATE REPORTED: 01/14/91

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB # 	Sample Identification	Diesel Range
1	VA EXCAVATION	0.3

ug/L - parts per billion (ppb)

Method Detection Limit for Diesel in Water: 0.05 mg/L

_ QAQC Summary:

Daily Standard run at 200mg/L: RPD Diesel = 14

MS/MSD Average Recovery = 110%: Duplicate RPD = 2

Richard Srna, Ph.D.

Laboratory Manager

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82230 CLIENT: AUGEAS CORP

82230 DATE RECEIVED: 01/07/91
CORP DATE REPORTED: 01/14/91

CLIENT JOB NO .: VA HOSPITAL

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

LAB #	Sample Identification	Benzene		Ethyl Benzene	Xylenes
1	VA EXCAVATION	ND<0.3	ND<0.3	ND<0.3	ND<0.3

_ug/L - parts per billion (ppb)

Method Detection Limit in Water: 0.3 ug/L

QAQC Summary:

Daily Standard run at 20ug/L: RPD = <15%
MS/MSD Average Recovery = 117%: Duplicate RPD = <12%

Richard Srna, Ph.D.

Laboratory Manager

			A	luge	as Coi	morat	ion C	hain c	٠ŧ (~	امسد مم	A a 1	-:- D		. 173		(2)	` \ ^					
Section I. ation	i For Lat	orato	ry Ć	1050 1244	1275	Mart	HEAL	(Give	ILa.	Co, and Ary Name)	Anaiy	SIS K	eque	st Fo	rm	£5.	< <u>5</u> C	<u>)</u>		 		
oject Name/Identific Project Man Alternate Co	ation: ager : ntact: olers: ency:	V# Xe Joe No	E E Semo	los mo	AT THE		Liu	<u>eru</u> 7	as a	Ang		Aug		Torn	orati	(\(\frac{1}{2} \)	(Oakdale 209/8	odden Ro , CA 953 348-1122 9/847-19	361		
raedila Time (S	CICCI O	iie). v			n.H.Ai		48 H		72 Hou	rs (5 Da	<u> </u>	Aug	cas (
		*****			instriction (pri	iarysis:	xeques	L Section				T T			S				ormation			
mple Identification	A=Air S=Soil W=H ₂ 0			G						Subject to Sub- contracting						Conta Q u a n	P r e s		Remarks			
	Matrix	TPH	TPH	TPH	BTXE	O&G	8010	8240	Metals	Others			•	Date	Time	i t	r v					
14 Excavation	W		\times		X									6/1/91	1430	<u>y</u>						
					<u> </u>																	
					7		se inii	cil.			<u></u>			-								
			$/\!\!\!/$		Į.	Sar	noles Si	pre 1 i	ı ice		0,		-							····		
			/_			Apj	ropric Koles I	.ວ ເດກ	ainers.			JA.										
	<u> </u>		/				110.00 F	-11+ 1	<u>adqsba</u>	9												
		\longrightarrow			i	Co	nra@a	3:														
																						
	/							و معدور معودات وي						j								
		9											······									
nquished by: Organization:	ugeo	\(\frac{7}{2}\)			1-7-		ate/Ti	ne: 151	10	Receive				4		· · · · · · · · · · · · · · · · · · ·	S		e Initial			
nquished by: RAB Some Drganization: Spress - I-1					1-7-	D	ate/Ti			Receive	Received by: Organization:								Samples Stored In Ice: Samples Preserved: VOA's w/out Headspace: Comments:			
inquished by: Organization:						D	ate/Tir	ne:		Receive	d by:_					~						

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82244

DATE RECEIVED: 01/09/91

CLIENT: SEMCO

DATE REPORTED: 01/16/91

CLIENT JOB NO.: VA HOSPITAL

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB #	Sample Identification	Concentration (mg/Kg) Diesel Range
1	S.E.WALL	ND<10
2	N.E, WALL	NDC10
3	N.W.WALL	ND<10
4	W.WALL, CENTER	ND<10
5	S.W.WALL	ND<10
6	South WALL	ND<10
7	EAST BOTTOM	NDC10-

Method Detection Limit for Diesel in Soil: 10 mg/Kg

QAQC Summary:

Daily Standard run at 200mg/L: RPD Diesel = 13 MS/MSD Average Recovery = 102%: Duplicate RPD = 3

825 ARNOLD, STE. 114 . MARTINEZ, CALIFORNIA 94553 . (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82244

CLIENT: SEMCO

CLIENT JOB NO.: VA HOSPITAL

DATE RECEIVED: 01/09/91

DATE REPORTED: 01/16/91

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

LAB			Concentra		Kg)
#	Sample Identification	Benzene	Toluene	Ethyl Benzene	Xylenes
1	S.E, WALL	ND<3	ND<3	ND<3	6
2	N.E,WALL	ND < 3	ND(3	ND<3	4
3	N.W, WALL	ND<3	ND<3	ND<3	ND < 3
4	W.WALL, CENTER	ND<3	ND<3	ND<3	NDC3
5	S.W, WALL	ND<3	ND<3	ND < 3	4
6	South WALL	ND<3	ND<3	ND<3	ND<3
7	EAST BOTTOM	ND<3	ND<3	ND<3	ND<3

ug/kg - parts per billion (ppb)

Method Detection Limit in Soil: 3 ug/Kg

QAQC Summary:

Daily Standard run at 20ug/L: RPD = <15%

MS/MSD Average Recovery = 102%: Duplicate RPD = 66

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82244

CLIENT: SEMCO

CLIENT JOB NO.: VA HOSPITAL

DATE RECEIVED:01/09/91

DATE REPORTED:01/16/91

ANALYSIS FOR PETROLEUM HYDROCARBONS by Method 9071/418.1

l.AB #	Sample Identification	Concentration(mg/Kg) Petroleum Hydrocarbons
1	S.E,WALL	ND<20
2	N.E,WALL	ND<20
3	N.W,WALL	ND<20
4	W.WALL, CENTER	ND<50
5	8.W,WALL	ND<20
6	South WALL	ND<20
7	EAST BOTTOM	ND<20

g/kg - parts per million (ppm)

Method Detection Limit for Petroleum Hydrocarbons in Soil: 20 mg/Kg

QAQC Summary:

MS/MSD Average Recovery = 101%: Duplicate RPD = 2

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 82244

DATE RECEIVED:01/09/91

CLIENT: SEMCO

DATE REPORTED:01/16/91

CLIENT JOB NO.: VA HOSPITAL

ANALYSIS FOR TOTAL OIL AND GREASE by Standard Method 5520F

LAB #	Sample Identification	Concentration(mg/Kg) Oil & Grease
#	Sample Identification	OTT & CITEASE
1	S.E, WALL	ND<50
2	N.E.WALL	ND<50
3	N.W.WALL	ND<50
4	W.WALL, CENTER	ND<50
5	S.W.WALL	ND<50
6	South WALL	ND<50
7	EAST BOTTOM	ND<50

j/kg - parts per million (ppm)

Method Detection Limit for Oil and Grease in Soil: 50mg/Kg

QAQC Summary: Duplicate RPD: 7

SEMCA

JAMES C. BATEMAN PETROLEUM SERVICES, INC.

431 W, Hatch Pd. Modesto, Calif, 95251 General & Engineering Contractors (800) 533-9293 FAX (209) 524-0500

SEMCO

JAMES C. BATEMAN PETROLEUM SERVICES, INC.

1741 Leske St. San Matec, Calif. 9402 General & Engineering Contractors (415) 572-9003 FAX 1415) 572-9734

CHAIN OF CUSTODY RECORD

PROJECT	PROJECT NAME: V. A. HOSPITAL LIVERNOSE 4951 ARPRYD ROAD EA,										//			//	//	//	/			
SAMPLEI	SAMPLERS (signature): PDW LIGHT							P. Ansly						//	//		ŖE	Mark\$		
Station Number	Date	Time	Comp.	Grab	Station i	Station Location				5/1	7,5			_				,		
	विषा	081E		X	SIE, WA	ll.	1	X	X	X	Δ	_	.		34		VE.	Floor	Bollo	m
		OFF	L	X	N.E.WA		[X	$\langle X \rangle$	\Diamond	X				30" 51"			-	,	
		1003	1	X	NIW, WA		1	\nearrow	\Diamond		X				34"					
	-	017		X	WIWALL		1	\Diamond	\Diamond	\Diamond	$\langle \rangle$				<u>30°</u> 31″					
		1034	┪~~	X	S.W. WA		1	K>	\Diamond		4		-		33'	l		-		
<u></u>	1_1	194	-1	K	South W		\ <u>'</u>	$\langle \rangle$	\bigcirc	怜	$\overline{\Diamond}$				35	<u> </u>	······································	D. 1	<u>-</u>	
	Aile	170	1	1	EAST BOT	101.1	1	NORMAL TURNS				NARO	rund							
	 		+	-				-	-	1					FAX	VF-S	ult	STO	; - ,	
 	-		+-	-						1					916	, 85	2141	ATT	N; KEY	11
1 ' 1	Company or Agency				Received by (sign want company or Agency (accordance)	more	1			by(s gen c y		ture)	: Da	Date / Time Received by (signature Company or Agency:				ignature		
Relinquished by(signature): Date / Time Received by (signature): Company or Agency:							1	•	ished or A	by: igencj	r:		Da	te /	1	leceive Company		ilgnature ency:	}: 	
Relinquished by(signature): Date / Time Received for Laborator or Agency: (signature)					oratory by	: Da	te /	Time		Remar	ks/Si	nippi	ing Inf	ormati	on		اللامنجيد	-		

APPENDIX 4

SOIL PARTICLE ANALYSIS (ASTM Method 422)

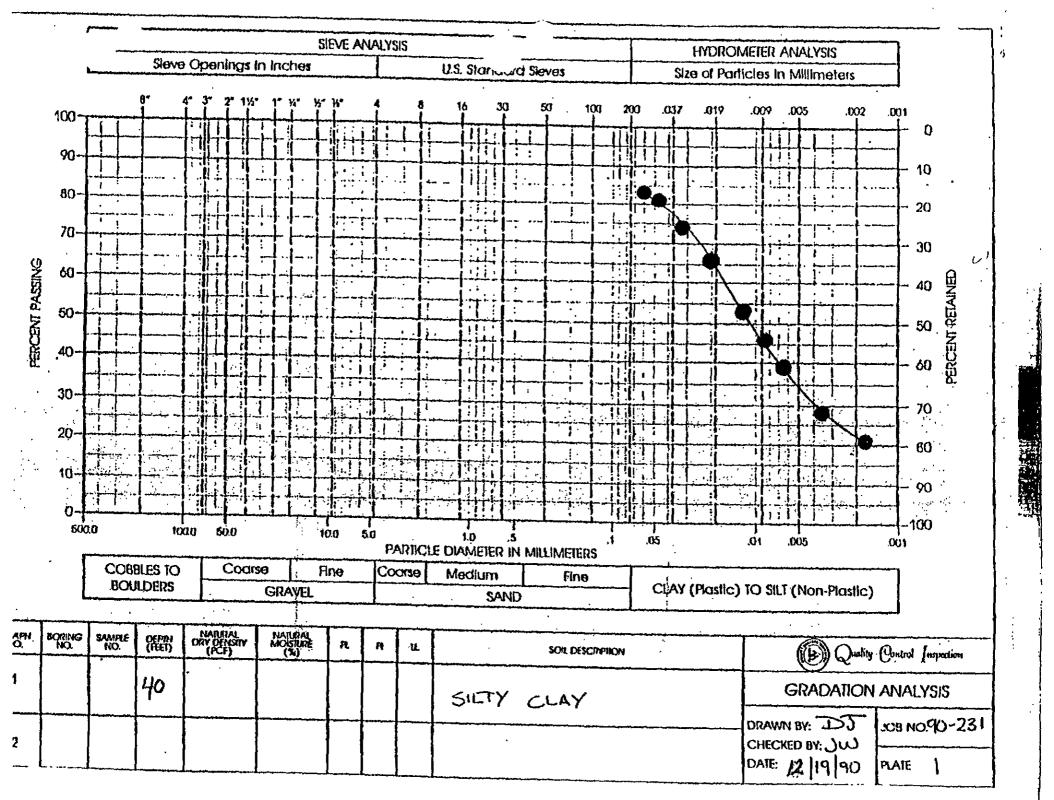


Table 1.

Sample No.	Sample Description	Specific Gravity
#1	Silty Clay	2.65

Table 2.

Hydrometer analysis

Sample #1			
Particle Diame	— / ter (咖)		Percentage Finer By Weight
0.0580		•	83.0
0.0427			80.9
0.0309	٠.	•	74.7
0.0203	•		65.4
0.0121			53.9
0.0088			45.6
0.0063		•	39.4
0.0032	·		29.0
0.0014			20.7

Table 3.

Sample No. 1

Sieve				Retained & Sieve Cumulative	Passing %
#	16	0.1	0.1	0.2	99.8
] #	30	0.2	0,3	0.2 0.4	99.6
#	50	0.5	0.8	1.0	99.0
	100	1.3	2.1	1.7	97.3
1#	200	3.2	5.3	4.9 6.6	93.2