

8/7/94

REPORT OF SOIL AND GROUND WATER INVESTIGATION

Windsor Square Auto Repair UST Site 1900 Lewelling Boulevard San Leandro, California

CWEC: 20507-001-02

Prepared for:

Mr. Johnny Lin P.O. Box 4154 San Leandro, CA 94579

Prepared by:

Century West Engineering Corporation 7950 Dublin Blvd., Suite 203 Dublin, California 94568

August 17, 1994

August 17, 1994

Alameda County UST Local Oversight Program 80 Swan Way, Suite 200 Oakland, CA 94621

Attention: Mr. Scott Seery

Subject: Report of Soil and Ground Water Investigation

Windsor Square Auto Repair UST Site

1900 Lewelling Blvd. San Leandro, California CWEC 20507-001-02

Alameda County Site ID 3583

Ladies and Gentlemen:

This report, submitted on behalf of Mr. Johnny Lin, describes and documents the recent soil and ground water investigation conducted at the subject site in San Leandro, California. This investigation, which included the drilling and sampling of six soil borings, and the conversion of five of the borings to ground water monitoring wells, was conducted in accordance with the March 30, 1994 workplan approved by Mr. Scott Seery of your office.

Results of this investigation indicate that past excavation and over-excavation adjacent to the former gasoline and waste oil underground storage tanks (USTs) has adequately remediated hydrocarbon-laden soils beneath the project site. In addition, laboratory results indicate that ground water quality has not been significantly impacted downgradient from either the former gasoline USTs or the former waste oil UST. Based on these results, Century West Engineering recommends quarterly ground water monitoring of all five monitoring wells at the site for one year, after which closure options for the site can be assessed.

UST Local Oversight Program Alameda County Health Agency August 17, 1994 Page 2

We appreciate the opportunity to present this report for your review. Please contact us if you have questions or require additional information.

Very truly yours,

Robert Bogar Geologist

RB/JEG/:cc Enclosures

c Johnny Lin

James E. Gribi Registered Geologist California No. 5843

TABLE OF CONTENTS

1.0	INTRODUCTION
	1.1 Site Background 1
	1.2 Scope of Work 1
	1.3 Limitations
	1.4 Regulatory Approval
2.0	DESCRIPTION OF FIELD ACTIVITIES
	2.1 Location of Well and Soil Borings
	2.2 Drilling and Sampling of Soil Borings
	2.3 Installation of Monitoring Wells
	2.4 Well Development and Sampling
	2.5 Determination of Ground Water Flow Gradient
	Table 1 Well Elevation Data
	2.6 Laboratory Analysis of Soil and Ground Water Samples
3.0	DECLITE OF INTECTION
3.0	RESULTS OF INVESTIGATION
	Table 2 Summary of Analytical Results
4.0	CONCLUSIONS
5.0	RECOMMENDATIONS 6
	FIGURE 1 SITE VICINITY MAP
	FIGURE 2 SITE PLAN/GRADIENT MAP
	FIGURE 3 WELL CONSTRUCTION DIAGRAM
	TIGURE 5 WELL CONSTRUCTION DIAGRAM
	APPENDIX A DRILLING PERMIT
	APPENDIX B BORING LOGS
	APPENDIX C SURVEYOR'S REPORT
	APPENDIX D LABORATORY REPORTS AND CHAIN-OF-CUSTODY
	RECORDS

1.0 INTRODUCTION

Century West Engineering Corporation was contracted by Mr. Johnny Lin to conduct a soil and ground water investigation at the project site located at 1900 Lewelling Boulevard, in San Leandro, California (see Figure 1 and Figure 2). This report describes the investigative methods and summarizes the results of the investigation.

1.1 Site Background

The project site was formerly occupied by a gasoline service station for many years prior to Mr. Johnny Lin's purchase of the property in 1985. According to Mr. Lin, as a condition of the sale and during escrow, four gasoline underground storage tanks (USTs) were removed from a common excavation in December 1985. Some soil samples taken from the excavation cavity contained elevated levels of gasoline constituents. Surface features at the site indicate that the UST cavity was overexcavated, backfilled, and resurfaced with asphalt. It was Mr. Lin's understanding that following these activities, the San Leandro Fire Department granted closure for this case.

Before purchasing the subject property, Mr. Lin was not informed about the existence of a 200-gallon waste oil UST behind the project site building. After discovering this UST, Mr. Lin contracted VCI of California to remove the UST. This waste oil UST was removed by VCI in October 1990. One soil sample taken below the tank contained significant levels of gasoline, motor oil, chlorinated solvents, and semi-volatile organic compounds.

On January 24, 1991, the waste oil UST cavity was re-excavated and overexcavated by VCI of California. Soil samples collected from the excavation cavity revealed hydrocarbon concentrations which were below regulatory action levels for soil. After completing the overexcavation activities, the excavation cavity was backfilled with clean imported fill material. The excavated soils, which showed high levels of volatile and semi-volatile hydrocarbons, was mixed with nutrients and placed in a bioremediation pad at the project site. Periodic sampling of the bioremediating soils documented a 93% reduction in semi-volatile

constituents and 100% reduction in volatile constituents over a three-year period. Bioremediated soils, which are currently acceptable for Class III landfill disposal, are still present at the project site.

The overexcavation and bioremediation activities summarized above are described and documented in Report of Waste Oil UST Soil Excavation and Remediation (Century West Engineering, March 30, 1994). This report also contained a workplan proposing the installation of five ground water monitoring wells at the site. The implementation of this workplan, with subsequent conditions imposed by Alameda County UST Local Oversight Program, is described and documented herein.

1.2 Scope of Work

In accordance with the approved workplan, Century West Engineering conducted the following tasks:

- Task 1 Drilled and sampled six soil borings.
- Task 2 Installed ground water monitoring wells in five of the six soil borings.
- Task 3 Developed, sampled, and surveyed the five ground water monitoring wells.
- Task 4 Conducted laboratory analysis of soil and water samples.
- Task 5 Prepared summary report of findings.

These tasks were conducted in accordance with guidelines contained in *Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites*, (August 10, 1990) and *LUFT Field Manual*, (October 18, 1989).

1.3 Limitations

The services provided under this contract as described in this report include professional opinions and judgments based on data collected. These services have been provided according to generally accepted environmental protocol. The opinions and conclusions contained in this report are typically based on information obtained from:

- Observations and measurements made by our field staff.
- Contacts and discussions with regulatory agencies and others.
- 3. Review of available hydrogeologic data.

1.4 Regulatory Approval

Alameda County UST Local Oversight Program granted written approval of the workplan on April 11, 1994, with the condition that at least 24 hours elapse between well development and sampling, and that on additional boring be advanced in the area of the former piping/dispensers.

A monitoring well installation permit (Drilling Permit no. 94391) was obtained from Alameda County Zone 7 Water Agency (see Appendix A).

On Saturday, June 25, 1994, Subtronic Corporation conducted an underground survey of the project site area and identified no impeding underground utilities in the proposed well and boring locations. Underground Services Alert (USA) was notified on June 23, 1994.

Prior to beginning field activities, a Site Safety Plan was issued to the drilling crew and a tailgate safety meeting was conducted.

2.0 DESCRIPTION OF FIELD ACTIVITIES

Soil boring and well installation activities were conducted by Exploration Geoservices, Inc. on Monday, June 27, 1994.

2.1 Location of Well and Soil Borings

In order to meet the project goals, the five wells were sited as follows (see Figure 2 for well locations): (1) MW-1 was located on the expected upgradient (easterly) side of the site; (2) MW-2 was sited approximately five feet in the expected downgradient (southwest) direction from the former waste oil UST; (3) MW-3 was located within the former gasoline UST excavation; (4) MW-4 and MW-5 were sited in the expected downgradient direction from the former gasoline USTs. Shallow boring IB-1 was placed slightly downgradient from the former fuel island and inside the fuel line trench.

2.2 Drilling and Sampling of Soil Borings

All soil boring and well installation activities were conducted using hollow-stem auger equipment. The five monitoring well borings (MW-1 through MW-5) were drilled to total depths of approximately 20 feet below grade, and the investigative boring (IB-1) was drilled to a total depth of approximately five feet below grade. All borings were logged and field screened by a qualified Century West Engineering geologist using sight and smell. Soil cuttings were placed in 55-gallon drums pending laboratory results. Boring logs are contained in Appendix B.

Representative soil samples from each well boring were taken at approximate depths of six and 11 feet below grade (ground water was encountered in the borings at approximately seven feet below grade). The shallow investigative boring was sampled at approximately five feet below grade. Undisturbed soils were sampled in advance of the auger as follows: (1) A two-inch inside diameter Californiastyle split spoon sampler was driven undisturbed soil ahead of the drill bit; (2) sampler was raised quickly to the surface and the brass liners exposed; (3) The brass liner containing the most undisturbed soil was quickly sealed with aluminum foil and plastic end caps, labeled, and wrapped tightly with tape; and (4) The sealed soil sample was immediately placed in a cooler with crushed ice for transport to the analytical laboratory under formal chain-of-custody.

All sampling equipment was thoroughly cleaned and decontaminated between each sample collection by triple rinsing first with water, then with dilute trisodium phosphate solution, and finally with distilled water. All downhole drilling equipment, including auger and drill bit, was steam cleaned before and after drilling each boring. Steam cleaning rinseate was contained onsite in sealed drums pending laboratory results.

2.3 Installation of Monitoring Wells

The wells were constructed using two-inch diameter Schedule 40 threaded PVC casing according to the following specifications: (1) 0.020-inch slotted well casing was placed from approximately 19 feet to 4 feet in depth (screen depths were adjusted in the field in order to place screen approximately five feet

above and ten feet below the water table); (2) Filter sand was placed around the casing to a depth of approximately 3 feet below grade; (3) A bentonite seal was placed around the casing from 3 feet to 2 feet in depth; and (4) A grout seal consisting of a cement/sand slurry (bentonite less than 5 percent) was placed in the remaining annulus. The top of each well was enclosed in a traffic rated locking box set in concrete slightly above grade (see Figure 3 for well construction diagram).

2.4 Well Development and Sampling

The five ground water monitoring wells were developed on July 1, 1994 using a two-inch submersible 12-volt DC electric purge pump. Well development consisted of continuously purging approximately four well volumes of water from each well. Before developing each well, the purge pump was thoroughly decontaminated by triple rinsing as described previously in this report.

Purging and sampling of the five wells was conducted on July 5, 1994 using two-inch disposable PVC bailers. Prior to sampling, a single bail of water was taken to check for free product in the well. Well purging consisted of bailing approximately three well volumes from each well, while periodically monitoring for hydrocarbon presence, pH, specific conductance, temperature

and visible clarity. After these parameters had stabilized, ground water was sampled directly from the bailer in the following manner: (1) Two oneliter amber jars (when necessary) and four 40-ml glass VOC vials were completely filled with a minimum of agitation; (2) After making sure that no air bubbles were present, each container was tightly sealed with a teflon-lined septum; and (3) Each container was labeled and placed in cold storage for transport to the analytical laboratory under formal chain-of-custody. All purged ground water was stored onsite in sealed drums pending analytical results of the ground water samples. All sampling equipment was thoroughly cleaned and decontaminated between each sample collection by triple rinsing as described above.

2.5 Determination of Ground Water Flow Gradient

After unlocking the well caps and allowing ground water to stabilize in each of the wells, water depths were measured to the nearest 0.01 feet using a Solonist electronic probe. Mean sea level elevations of the top of the well casings were surveyed by Raymond F. Greenwood, a licensed California surveyor. The surveyor's report is contained in Appendix C. Well elevations and calculated ground water elevations are shown in Table 1. Ground water flow gradient is shown graphically on Figure 2.

		ble 1 ATION DATA uto Repair UST :	Site
Well Number	Elevation of Top of Casing ¹	Depth to Water ² (ft)	Water Table Elevation ¹
MW-1	14.20	6.95	7.25
MW-2	13.70	6.44	7.26
MW-3	12,41	5.11	7.30
MW-4	12,56	5 . 57	6.99
MW-5	11.76	5.08	6.68

- 1 Elevation in feet above mean sea level.
- 2 Depth to ground water from top of casing.

2.6 Laboratory Analysis of Soil and Ground Water Samples

A total of ten soil samples and five ground water samples were analyzed by Superior Precision Analytical, Inc., as follows:

- One soil and one ground water sample from the upgradient well (MW-1) were analyzed for Total Petroleum Hydrocarbons as Gasoline (TPH-G), Volatile Organic Compounds (VOCs), and Semi-Volatile Organic Compounds (SVOCs). The soil sample from MW-1 was also analyzed for Total Petroleum Hydrocarbons as Diesel and Motor Oil (TPH-D/MO).
- Two soil samples and one water sample from the waste oil UST well (MW-2) were analyzed for TPH-G, VOCs, and SVOCs. In addition, one of the soil samples and the one water sample from MW-2 were analyzed for TPH-D/MO.
- Two soil samples and one water sample each from MW-3, MW-4, and MW-5 for were analyzed for TPH-G and Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX). In addition, one of the soil samples and the one water sample from MW-5 were analyzed for TPH-D/MO, and one soil sample from MW-5 was analyzed for Total Lead (PB).
- One soil sample from the dispenser soil boring (IB-1) was analyzed for TPH-G, TPH-D/MO, BTEX, and PB.

3.0 RESULTS OF INVESTIGATION

3.1 General Subsurface Conditions

Native soils encountered in borings during drilling generally consisted of grey fine sands and silts, with some clays and clayey silts. Backfill material encountered in boring MW-3 appeared to extend to approximately 12 feet below ground surface and consisted of medium grained sand with no hydrocarbon odors or discoloration.

Moderated hydrocarbon odors were noted in soils from MW-2 and MW-5 below five feet in depth,

and moderate to strong hydrocarbon odors were noted in IB-1 at five feet in depth. Slight hydrocarbon odors were noted in native soils below 12 feet in depth in MW-3, and slight hydrocarbon odors were noted from four to seven feet in depth in MW-4 soils.

Ground water was encountered in the five monitoring wells at approximately seven feet below grade. Ground water flow beneath the project site is to the southwest, with apparent mounding of the ground water table within the backfilled excavation pit (possibly due to greater ground water recharge in the UST excavation backfill sands). No hydrocarbon odors or sheens were noted in any water samples from the five wells.

3.2 Results of Laboratory Analyses

Soil and ground water analytical results are summarized in Table 2. Laboratory data reports and chain-of-custody records for all analyses are contained in Appendix D.

Table 2 SUMMARY OF SOIL AND GROUND WATER ANALYTICAL RESULTS Windsor Square Auto Repair UST Site

Sample	Sample					Concentra	tion (ppm)						
ΙĎ	Depth	TPH+G	TPH-D	трн-мо	В	T	F	Χ	VOCS	SVOCS2	PB		
Soil San	Soil Samples												
MW-1.1	6.0 ft	$ND(1)^{3}$	ND(10)	ND(10)	ND(0.005)	ND(0.015)	ND(0.015)	ND(0.015)	ND(0.015)	0.340*	₿5		
MW-2.1	6.0 ft	ND(1)	ND(10)	ND(10)	ND(0.005)	ND(0.015)	ND(0.015)	ND(0.015)	ND(0.015)	ND(0.300)			
MW-2.2	11.0 ft	ND(1)			ND(0.005)	ND(0.015)	ND(0.015)	ND(0.015)	ND(0.015)	ND(0.300)			
MW-3.1	7.0 ft	ND(1)			0.008	ND(0.005)	ND(0.005)	ND(0.005)	_ -				
MW-3.2	13.0 ft	3.0			0.72	0.029	0.048	0.61		~-			
MW-4.1	6.0 ft	ND(1)	~-		ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)					
MW-4.2	11.0 ft	ND(1)			ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	~ -				
MW-5.1	6.0 ft	ND(1)	ND(10)	ND(10)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)			ND(5)		
MW-5.2	11.0 ft	ND(1)			ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)					
IB-1.1	6.0 ft	6.0	ND(10)	ND(10)	1.9	0.021	0.34	0.087	<u></u>				
Groun	d Water S	Samples				<u></u>	· · · · · · · · · · · · · · · · · · ·						
MW-1		ND(0.05)			ND(.001)	ND(.003)	ND(.003)	ND(.003)	ND(.003)	ND(.010)			
MW-2		ND(0.05)	ND(0.05)	ND(0.5)	ND(.001)	ND(.003)	ND(.003)	ND(.003)	0.600	ND(.010)			
MW-3		5,0			0.015	0.0079	0.08	0.23					
MW-4		ND(0.05)			0.0009	ND(.0005)	ND(.0005)	ND(.0005)					
MW-5		ND(0.05)	ND(0.05)	ND(0.5)	0.0011	ND(.0005)	ND(.0005)	ND(.0005)					

Notes:

- Volatile organic compounds. Includes analysis for approximately 40 individual compounds. The detection limits vary for some compounds; however, the detection limit listed below is the most prevalent for this method.

 Semi-volatile organic compounds. Includes analysis for approximately 70 individual compounds. The detection limits are the same for all compounds.
- 3 -
- Not detected above the value expressed in the parentheses.

 0.340 ppm as di-n-butylphthlate (detection level = 0.300 ppm); no other semi-volatile organic compounds were detected in the sample.
- Not analyzed.
- 0.600 ppm as methyl-t-butylether; no other volatile organic compounds were detected in the sample.

4.0 CONCLUSIONS

Although hydrocarbon odors and staining were noted in all borings except MW-1, soil analytical results indicate that no significant levels of hydrocarbons are present in soils beneath the site. All soil samples contained nondetectable levels of TPH except MW-3.2 and IB-1.1, which contained 3.0 ppm and 6.0 ppm of TPH-G, respectively. These levels are well below the 100-ppm regulatory cleanup level. Thus, it appears that while residual hydrocarbon odors and staining may be present in subsurface soils, all significant hydrocarbon constituents have either been remediated by excavation or by natural attenuation.

The only significant hydrocarbons encountered in ground water samples were: (1) 5.0 ppm of TPH-G in MW-3; and (2) 0.600 of methyl-t-butylether in MW-2. However, the low or nondetectable levels of hydrocarbons in MW-5, which is located in native soils downgradient from MW-3, indicate that the dissolved gasoline plume is very small in lateral extent, and does not extent significantly beyond the backfilled gasoline UST excavation.

The low level of methyl-t-butylether in MW-2 ground water is unusual because: (1) This compound has not ever been detected in any soil samples associated with the waste oil UST; and (2) This compound is not normally associated with waste oils or solvents (it is generally used as a gasoline additive or as a laboratory solvent).

5.0 RECOMMENDATIONS

Based on the conclusions outlined above, Century West Engineering recommends quarterly ground water monitoring of all five monitoring wells at the site for one year, after which closure options for the site can be assessed. Www. of tensence

	MONITORING WELL SPECIFICATIONS (ft)											
WELL	Α	В	C	D	E	F						
MW-1	3.0	1.0	4.0	5.01	14.62	20.01						
MW-2	3.0	1.0	4.0	3.97	14.74	18.72						
мw-з	1.5	1.0	2.5	2.98	14.31	17.67						
MW-4	2.0	1.0	3.0	3.03	14.26	17.67						
MW-5	2.0	1.0	3.0	2.95	14.38	17.71						

DESIGN BY		CHECKED	BY	FIGURE 3	APPROVED	CENTURY
SURVEY BY		SCALE	NO SCALE	WELL CONSTRUCTION DIAGRAM	DATE	West engineering
DRAWN BY	JEG	DWG. NO.		CWEC: 20507-001-02		CORPORATION

SURVEXING EQUIPMENT CO. 8442

APPENDIX A DRILLING PERMIT

SIGNATURE

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 462-3914

31992

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE .	FOR OFFICE USE
OCATION OF PROJECT 1900 LEWELLING BIVD. SAN LEANDRO CA:	PERMIT NUMBER 94391 LOCATION NUMBER
CLIENT Name Mr. JOHNNY TSU LIN Address P O Box 4154 Phone (510) 352-5422 City SAN Lecindro Zip 94576 APPLICANT Name JAMES E. GRIB1 Century WEST ENGINEERING Address 7950 Dublin Riv # 203 Phone (510) 551-7774 City Dublin CA Zip 94568 TYPE OF PROJECT INSTALL 5 Monttoring Well'S Well Construction Geotechnical Investigation Cathodic Protection General Water Supply Contamination X Monitoring Well Destruction PROPOSED WATER SUPPLY WELL USE Domestic Industrial Other Monitoring Municipal Irrigation DRILLING METHOD: Mud Rotary Air Rotary Auger X Cable Other DRILLER'S LICENSE NO. 484 288 WELL PROJECTS Drill Hole Diameter 9 in. Maximum Casing Diameter 2.7 in. Depth 20 ft. Surface Seal Depth 45 ft. Number 5	PERMIT CONDITIONS Circled Permit Requirements Apply A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well Projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS 1. Minimum surface seal thickness is two inches of cement grout placed by tremie. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings. D. CATHODIC. Fill hole above anode zone with concrete placed by tremie. E. WELL DESTRUCTION. See attached.
SEOTECHNICAL PROJECTS Number of Borings Hole Diarneter in. Depth ft. ESTIMATED STARTING DATE ESTIMATED COMPLETION DATE I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	Approved Wyman Hong Date 5 Jul 9

Date 6-22-94

APPENDIX B

BORING LOGS

WELL	BORING	G LOG	MW-1			Cent	ury W	est Engineering
Site Loc	ation: 1900 i	ewelling Bl	vd.			Boring ID: MW-1		
Boring L	ocation: Upg	gradient wel	!			Elevation:		
Purpose	: Subsurface	Investigatio	on		Logged By: Bob Bogar			
Date: 06	/27/94					Blank Casing:	<u> </u>	rom: 0.0 To: 4.64
Consulti	ng Firm: Cei	ntury West I	ngineering			Perforations:	F	rom: 5.01 To: 19.63
Project I	Number: 205	07-001-02				Filter Sand:	F	rom: 19.6 To: 4.0
Drilling (Contractor: E	xploration (Geoservices		· <u>···</u> ·	Bentonite:	F	rom: 4.0 To: 3.0
Drilling !	Method: Holl	ow Stem Au	iger			Grout:	F	rom: 3.0 To: 0.5
Depth	Sample Interval	Sample ID	Blow Counts	Profile		Soil Description		Remarks
	intervas	10	Codins		0 - 0.5	ft Asphalt		
01	 .				0.5 - 4.0	ft Medium brown, silty, gra	velly	
02	ļ					ft Medium brown, silty, gra SAND; some clayey, clas cm in gravels, soft; no hydrocarbon odor or discoloration.	sts to 2	
<u>03</u>]		'	'	ĺ	hydrocarbon oder or discoloration.		
04	<u> </u>							
05								
<u>06</u>	\	MW-1.1	2 2 3		10 100	tt - Links to monthism many of		
<u>07</u>	1	,	3	∇	4.0 - 10.0	ft Light to medium grey, si SAND; moist to saturated hydrocarbon odor or	d; no	
<u>08</u>					İ	discoloration.		
09					<u> </u>			
10					[
١.,	т	BANAL 1 O	3					
11) т	MW-1.2	3 3 5		10.0 - 20.	0 ft Medium grey SILT; wet t saturated; no hydrocarbo odor or discoloration.	to no	
<u>12</u> 13	[,				[odor or discoloration.	7	
13 14								1
15								ļ
 '~	<u> </u>							
<u>16</u>					Approxim	ate Ground Water Depth - 7.0 feet er Depth - 20 feet		
<u>17</u>					i iliai Aug	51 Dopus - 20 1001		
<u>18</u>								
<u>19</u>								
20	1				1			

~

WELL	BORING	G LOG	MW-2	<u> </u>		Century	West Engineering
Site Loc	ation: 1900 l	ewelling Bl	vd.		Boring ID: MW-2		
Boring L	ocation: Adj	acent to wa	ste oil tank		Elevation:		
Purpose	: Subsurface	Investigation	on		Logged By: Bob Bogar		
Date: 06	/27/94				Blank Casing:	From: 0.0 To: 3.92	
Consulti	ng Firm: Cei	ntury West I	ngineering		Perforations:	From: 3.94 To: 18.68	
Project I	Number: 205	07-001-02				Filter Sand:	From: 19.0 To: 3.5
Drilling (Contractor: E	xploration (Geoservices			Bentonite:	From: 3.5 To: 2.5
Drilling !	Method: Holl	ow Stem Au	iger			Grout:	From: 2.5 To: 0.5
Depth	Sample Interval	Sample ID	Blow Counts	Profile	1	Soil Description	Remarks
01 02 03	•				0 - 0.5 · 0.5 - 4.0		
<u>04</u> 05							
06 07 08 09	T _L	MW-2.1	6 10 9	∇	4.0 - 10.0	ft Light to dark brown, silty, fine SAND; moist to saturated; slight to moderate hydrocarbo	
11 12 13 14	Т Т	MW-2.2	336		10.0 - 20.	Oft Light to dark grey, clayey, silty fine SAND; saturated, soft, color change to dark grey at approx. 15 feet; no hydrocarbon odor.	<i>/</i> ,
15 16 17 18 19					Approxima Final Auge	ate Ground Water Depth - 7.0 feet or Depth - 19 feet	

E

WELL	BORING	G LOG	MW-3			Century \	West Engineering		
Site Loc	ation: 1900 L	ewelling Bi	vd			Boring ID; MW-3			
Boring L	ocation: Cer	nter of Exca	vation			Elevation:			
Purpose	: Subsurface	Investigation	on			Logged By: Bob Bogar			
Date: 06	3/27/94					Blank Casing:	From: 0.0 To: 2.99		
Consulti	ng Firm: Cei	ntury West [ngineering			Perforations:	From: 2.98 To: 17.29		
Project	Number: 205	07-001-02			Filter Sand:	From: 17.6 To: 2.5			
Drilling (Contractor: E	xploration (Geoservices			Bentonite:	From: 2.5 To: 2.0		
Drilling I	Method: Holl	ow Stem Au	ıger		r	Grout:	From: 2.0 To: 0.5		
Depth	Sample Interval	Sample ID	Blow Counts	Profile		Soil Description	Remarks		
01 02 03 04 05 06 07 08 09	т	MW-3.1	2,39		0 - 0.5 0.5 - 12.0				
11 12 13 14 15	Τ	MW-3.2	567		12.0 - 18. Ground W Final Auge	Oft Medium to dark grey, SILT; soft, saturated; slightly greenish discoloration, slightly odder.			

I

WELL	BORING	G LOG	MW-4			Century West Engineering			
Site Loc	ation: 1900 L	ewelling Bl	vd		Boring ID: MW-4				
Boring L	ocation: Nex	t to landsca	aped area		Elevation:				
Purpose: Subsurface Investigation							d By: Bob Bogar		
Date: 06	/27/94				Blank	Casing:	F	rom: 0.0 To: 3.03	
Consulti	ng Firm: Cer	ntury West I	Engineering		Perfora	ations:	F	rom: 3.03 To: 17.29	
Project N	lumber: 205	07-001-02			Filter S	Sand:	F	rom: 17.7 To: 2.5	
Drilling (Contractor: E	xploration (Geoservices			Bentor	nite:	F	rom: 2.5 To: 2.0
Drilling 1	Method: Holl	ow Stem Au	iger			Grout:		F	rom: 2.0 To: 0.5
Depth	Sample Interval	Sample ID	Blow Counts	Profile		Soil Des	cription		Remarks
					0 - 0.5	ft	Asphalt		
<u>01</u>	۵				0.5 - 3.5	ft	Light brown, sandy SILT; cobbles to 2cms; no		
<u>02</u>				;			hydrocarbon odor or discoloration.		
03 04					3.5 - 7.0	ft		t to	
05				i	0.0 7.0	•	Dark grey to dark green silfine SAND; slight hydrocarl	OOT?	
<u>06</u>	T	MW-4.1	3 6 7				The description		
<u>07</u>		1		 	7.0 - 18.0	ft	Dark grey, SILT to fine SAN wet to saturated; no	ID;	<u> </u>
<u>08</u>							hydrocarbon odor.		
<u>09</u> 10				;	1				
11	Т	MW-4.2	668	,					
12	Τ		8						
<u>13</u>									
14									
_15									
<u>16</u>					Ground W	Water Depth - Not measured ger Depth - 18 feet			
<u>17</u>					Filiai Auge	sı Deptri	- 10 leaf		
<u>18</u>									

WELL	WELL BORING LOG MW-5 Century West Engineering										
Site Loc	ation: 1900 l	ewelling Bl	vd.		Boring ID: MW-5						
Boring L	ocation: Dov	vngradient '	Well		Elevation:						
Purpose	Subsurface	Investigation	on		Logged By: Bob Bogar						
Date: 06	/27/94				Blank Casing:	From: 0.0 To: 2.95					
Consulti	ng Firm: Cei	ntury West I	ngineering		Perforations:	From: 2.95 To: 17.33					
Project i	Number: 205	07-001-02				Filter Sand:	From: 17.7 To: 2.5				
Drilling (Contractor: E	xploration (Geoservices			Bentonite:	From: 2.5_To: 2.0				
Drilling I	Method: Holl	ow Stem Au	iger			Grout:	From: 2.0 To: 0.5				
Depth	Sample Interval	Sample ID	Blow Counts	Profile		Soil Description	Remarks				
			. 		0 - 0.51	it Asphalt					
01 02					0.5 - 3.5	ft Light brown silty fine SAND; moist,soft; no hydrocarbon odor or discoloration.					
03 04					3.5 - 5.0						
05					ļ	moderate hydrocardon odor.	»				
06 07 08	Τ	MW-5.1	8 6 6		5.0 - 18.0	ft Dark grey to dark green, SIL saturated; moderate hydio	F;				
09				[
10											
11 12 13 14	Т Т	MW-5.2	5 5 6								
15											
<u>16</u> <u>17</u>					Ground W Final Auge	ater Depth - Not measured r Depth - 18 feet					
<u>18</u>											

BORII	VG LOG	<i>IB-1</i>			Centu	гу W	est Engineering	
Site Loc	ation: 1900 L	ewelling Bl	vd.		Boring ID: IB-1		<u> </u>	
Boring L	ocation: Nex	d to fuel dis	penser islar	nd	Elevation:			
Purpose:	Subsurface	Investigation	on		Logged By: Bob Bogar			
Date: 06	/27/94				Blank Casing:	F	rom: To:	
Consulti	ng Firm: Cei	ntury West I	Engineering		Perforations:	Fi	rom: To:	
Project N	lumber: 205	07-001-02			Filter Sand:	Filter Sand: From: To:		
Drilling (Contractor: E	xploration (Geoservices		Bentonite:	Bentonite: From: To:		
Drilling N	Method: Holl	ow Stem Au	iger		Grout:	F	rom: To:	
Depth	Sample Interval	Sample ID	Blow Counts	Profile	Soil Description		Remarks	
01 02 03 04 05		10 1			0 - 0.5 ft 0.5 - 3.0 ft Light to medium brown, comedium grained SAND; no hydrocarbon odor or discoloration. 3.0 - 5.0 ft Dark grey to green fine SA to SIL1; moist, soft mode to strong hydrocarbon odor.		Note: Sample attempted at three feet; however, no material was recovered in sampling tubes.	
<u>06</u> 07	Т Т	IB-1	6 6 7		Final Auger Depth - 5 feet			

APPENDIX C SURVEYOR'S REPORT

RAYMOND T. GREENWOOD, INC.

A California Corporation CIVIL ENGINEERING & LAND SURVEYING 19131 Redwood Road, Suite A * Castro Valley, CA 94546 Tel 510\581-2772 Fax 510\581-6913

July 8, 1994

Century West Engineering 7950 Dublin Boulevard, Suite 203 94568 Dublin, Ca.

Attn: Bob Bogar

Subject: Monitoring Wells at 1900 Lewelling Blvd., San Leandro

CWEC No. 20507-001-02

Dear Mr. Bogar:

We have completed the rim elevation measurements for the five monitoring wells located on the subject property in accordance with your request. The results are as follows:

WELL NUMBER	RIM ELEVATION
MW-1	14.20
MM-2	13.70
MW-3	12.41
MW-4	12.56
MW-5	11.76

The above elevation measurements were taken at the top of the well casings at the north side of each well and are based upon mean sea level datum per an official City of San Leandro benchmark.

I hope that the above provides you with the required information. Please call me should you have any questions.

Yery truly yours,

Douglas J. Rodgers

APPENDIX D

LABORATORY DATA REPORTS AND CHAIN OF CUSTODY RECORDS

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 06-July-1994

ANALYSIS FOR GASOLINE RANGE HYDROCARBONS - by EPA SW-846 Methods 5030/8015M.

Chronology	Laboratory	Number	58343			
Identification	Sampled	Received	Extracted	Analyzed	Run #	Lab #
MW-1.1 MW-2.1 MW-2.2	06/27/94	06/28/94 06/28/94 06/28/94	07/01/94 07/01/94 07/01/94	07/01/94 07/01/94 07/01/94		1 2 3

Page 1 of 3

CENTURY WEST ENGINEERING

-- Surrogate % Recoveries --

Trifluorotoluene (SS): 93

Attn: JIM GRIBI

Project 20507-001-02 Reported 06-July-1994

ANALYSIS FOR GASOLINE RANGE HYDROCARBONS - by EPA SW-846 Methods 5030/8015M.

Laboratory Number	Sample Identification			Matrix		
58343- 1 58343- 2	MW-1.1 MW-2.1			Soil Soil		
58343- 3	MW-2.2			Soil		
Laboratory Number:	RESULT 58343- 1	S OF ANAL' 58343- 2				
Gasoline_Range:	ND<1	ND<1	ND<1			
Concentration:	mg/kg	mg/kg	mg/kg			
	_					

100

100

Page 2 of 3

Superior Precision Analytical, Inc.

A member of ESSCON Environmental Support Service Consortium

ANALYSIS FOR GASOLINE RANGE HYDROCARBONS - by EPA SW-846 Methods 5030/8015M. Quality Assurance and Control Data - Soil

Laboratory Number 58343

Compound	Method Blank (mg/kg)	RL (mg/kg)	Spike Recovery (%)	Limits (%)	RPD (%)	
Gasoline_Range:	ND<1	1	103/107	55-139	4%	

Definitions:

ND = Not Detected

RPD = Relative Percent Difference

RL = Reporting Limit

mg/kg = Parts per million (ppm)

QC File No. 58343

Account Manager

Page 3 of 3

Certified Laboratories

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 06-July-1994

ANALYSIS FOR GASOLINE, BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES by EPA SW-846 Methods 5030/8015M/8020.

			Laboratory	Number	58343
Chronology Identification	Sampled Received	Extracted	Analyzed	Run #	Lab #
MW-3.1	06/27/94 06/28/94	07/05/94	07/05/94		4
MW-3.2	06/27/94 06/28/94	07/02/94	07/02/94		5
MW-4.1	06/27/94 06/28/94	07/05/94	07/05/94		6
MW-4.2	06/27/94 06/28/94	07/02/94	07/02/94		7
MW-5.1	06/27/94 06/28/94	07/05/94	07/05/94		8
MW-5.2	06/27/94 06/28/94	07/02/94	07/02/94		9
IB-1.1	06/27/94 06/28/94	07/02/94	07/02/94		11

Page 1 of 3

Superior Precision Analytical, Inc.

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 06-July-1994

ANALYSIS FOR GASOLINE, BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES

Laboratory Number	Sample Id	lentifica	tion	Ma	trix
58343- 4	MW-3.1				oil
58343- 5	MW-3.2			Sc	oil
58343- 6	MW-4.1			Sc	oil
58343- 7	MW-4.2	•		Sc	oil
58343- 8	MW-5.1			So	oil
58343- 9	MW-5.2			Sc	oil
58343-11	IB-1.1			So	oil
		of ANAL			
Laboratory Number:	58343- 4 5	58343- 5	58343- 6	58343- 7	58343- 8
	ND <1	3	ND<1	ND<1	ND<1
Gasoline_Range:	ND<1	_	ND<.005	ND<.005	ND<.005
Benzene:	0.008	0.72	ND<.005	ND<.005	ND<.005
Toluene:	ND<.005	0.029	C00.70M	MD~.003	110 (.005

Gasoline_Range: Benzene: Toluene: Ethyl Benzene: Total Xylenes:	ND<1 0.008 ND<.005 ND<.005 ND<.005	3 0.72 0.029 0.048 0.61	ND<1 ND<.005 ND<.005 ND<.005 ND<.005	ND<1 ND<.005 ND<.005 ND<.005 ND<.005	ND<1 ND<.005 ND<.005 ND<.005 ND<.005
Concentration:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Surrogate % Recover Trifluorotoluene (SS):		129	100	116	103

Laboratory	Number:	58343-	9	58343-11
Danora cor y	HOMBOT.	00010	_	

Gasoline_Range: Benzene: Toluene: Ethyl Benzene: Total Xylenes:	ND<1 ND<.005 ND<.005 ND<.005 ND<.005	6 1.9 0.021 0.34 0.087
Concentration:	mg/kg	mg/kg

-- Surrogate % Recoveries -- Trifluorotoluene (SS): 102 75

Page 2 of 3

Certified Laboratories

Superior Precision Analytical, Inc.

A member of ESSCON Environmental Support Service Consortium

ANALYSIS FOR GASOLINE, BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES

Quality Assurance and Control Data - Soil

Laboratory Number 58343

Compound	Method Blank (mg/kg)	RL (mg/kg)	Spike Recovery (%)	Limits (%)	RPD (%)	
Gasoline Range:	ND<1	1	77/85	55-139	10%	
Benzene:	ND<.005	.005	85/90	67-141	6%	
Toluene:	ND<.005	.005	80/88	67-141	10%	
Ethyl Benzene:	ND<.005	.005	80/85	67-141	6%	
Total Xylenes:	ND<.005	.005	85/95	67-141	11%	

Definitions:

ND = Not Detected

RPD = Relative Percent Difference

RL = Reporting Limit

mg/kg = Parts per million (ppm)

QC File No. 58343

Serior Chemist Account Manager

Page 3 of 3

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 05-July-1994

Total Petroleum Hydrocarbons by Modified Method 8015

Chronology				Laboratory	Number	58343
Identification	a a manairrad Fa		Extracted	Analyzed	Run #	Lab #
MW-1.1 MW-2.1 MW-2.2 MW-5.1 IB-1.1	06/27/94 06/27/94 06/27/94	06/28/94 06/28/94 06/28/94 06/28/94 06/28/94	06/28/94 06/28/94 06/28/94 06/28/94 06/28/94	06/30/94 06/30/94 06/30/94 06/30/94 06/30/94		1 2 3 8 11

Page 1 of 3

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 05-July-1994

Total Petroleum Hydrocarbons by Modified Method 8015

Laboratory Number	Sample]	Identificat	ion	<u></u>	atrix
58343- 1 58343- 2 58343- 3 58343- 8 58343-11	MW-1.1 MW-2.1 MW-2.2 MW-5.1 IB-1.1			So So So	oil oil oil oil oil
Laboratory Number:	RESUL 58343- 1	TS OF ANAL 58343- 2	YSIS 58343- 3	58343- 8	58343-11
Diesel Range: Motor Oil Range:	ND<10 ND<10	ND<10 ND<10	ND<10 ND<10	ND<10 ND<10	ND<10 ND<10
Concentration:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg

Page 2 of 3

Superior Precision Analytical, Inc.

A member of ESSCON Environmental Support Service Consortium

Total Petroleum Hydrocarbons by Modified Method 8015 Quality Assurance and Control Data - Soil Laboratory Number 58343

Compound	Method Blank (mg/kg)	RL (mg/kg)	Spike Recovery (%)	Limits (%)	RPD (%)	
Diesel Range: Motor Oil Range:	ND<10 ND<10	10 10	116/107	50-150	8%	

Definitions:

ND = Not Detected RPD = Relative Percent Difference RL = Reporting Limit mg/kg = Parts per million (ppm) QC File No. 58343

Senjor/Chemist
Account Manager

Page 3 of 3

CENTURY WEST ENGINEERING Attn: JIM GRIBI

Project 20507-001-02 Reported 06-July-1994

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by GAS CHROMATOGRAPHY - MASS SPECTROMETRY

Chronology				Laboratory	Number	58343	
Identification	Sampled	Received	Extracted	Analyzed	Run #	Lab #	
MW-1.1	06/27/94	06/28/94	06/29/94	06/29/94		1	
MW-2.1	06/27/94	06/28/94	06/29/94	06/29/94		2	
MW-2.2	06/27/94	06/28/94	06/29/94	06/29/94		3	

Page 1 of 5

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 06-July-1994

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS

Laboratory Number	Sample I	dentificati	Matrix	
58343- 1	MW-1.1			Soil
58343- 2	MW-2.1			Soil
58343- 3	MW-2.2			Soil
		S OF ANALYS		
Laboratory Number: 5	8343- 1	58343- 2	58343- 3	
				·
Chloromethane:	ND<50	ND<50	ND<50	
Bromomethane:	ND<50	ND<50	ND<50	
Vinyl Chloride:	ND<50	ND<50	ND<50	
Chloroethane:	ND<50	ND<50	ND<50	
Methylene Chloride:	ND<50	ND<50	ND<50	
Acetone:	ND<100	ND<100	ND<100	
Carbon Disulfide:	ND<15	ND<15	ND<15	
Trichlorofluoromethane	:ND<15	ND<15	ND<15	
1,1-Dichloroethene:	ND<15	ND<15	ND<15	
1,1-Dichloroethane:	ND<15	ND<15	ND<15	
t-1,2-Dichloroethene:	ND<15	ND<15	ND<15	
Chloroform:	ND<15	ND<15	ND<15	
1,2-Dichloroethane:	ND<5	ND<5	ND<5	
2-Butanone:	ND<100	ND<100	ND<100	
1,1,1-Trichloroethane:	ND<15	ND<15	ND<15	
Carbon tetrachloride:	ND<15	ND<15	ND<15	
Vinyl Acetate:	ND<50	ND<50	ND<50	
Bromodichloromethane:	ND<15	ND<15	ND<15	•
1,2-Dichloropropane:	ND<15	ND<15	ND<15	
c-1,2-Dichloroethene:	ND<15	ND<15	ND<15	
c-1,3-Dichloropropene:	ND<15	ND<15	ND<15	
Trichloroethene:	ND<15	ND<15	ND<15	
Dibromochloromethane:	ND<15	ND<15	ND<15	
1,1,2-Trichloroethane:	ND<15	ND<15	ND<15	
Benzene:	ND<5	ND<5	ND<5	
t-1,3-Dichloropropene:	ND<15	ND<15	ND<15	
Bromoform:	ND<15	ND<15	ND<15	
4-Methyl-2-Pentanone:	ND<50	ND<50	ND<50	
2-Hexanone:	ND<50	ND<50	ND<50	
Concentration:	ug/kg	ug/kg	ug/kg	

Page 2 of 5

Certified Laboratories

A member of ESSCON Environmental Support Service Consortium

103

CENTURY WEST ENGINEERING Attn: JIM GRIBI

Bromofluorobenzene:

Project 20507-001-02 Reported 06-July-1994

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS

Laboratory Number	boratory Number Sample Identification			
58343- 1	MW-1.1			Soil
58343- 2	MW-2.1			Soil
58343- 3	MW-2.2			Soil
	RESUL	rs of anal	YSI S	
Laboratory Number:	58343- 1	58343- 2	58343- 3	
Tetrachloroethene:	ND<15	ND<15	ND<15	
1,1,2,2-Tetracl-ethan	e:ND<15	ND<15	ND<15	
Toluene:	ND<15	ND<15	ND<15	
Chlorobenzene:	ND<15	ND<15	ND<15	
Ethyl Benzene:	ND<15	ND<15	ND<15	
Styrene:	ND<15	ND<15	ND<15	
Xylenes:	ND<15	ND<15	ND<15	
1,3-Dichlorobenzene:	ND<15	ND<15	ND<15	
1,4-Dichlorobenzene:	ND<15	ND<15	ND<15	
1,2-Dichlorobenzene:	ND<15	ND<15	ND<15	
Concentration:	ug/kg	ug/kg	ug/kg	
Surrogate % Recover				
1,2-Dichloroethane-d4	95	100	96	
Toluene-d8:	104	102	101	

100

101

Page 3 of 5

A member of ESSCON Environmental Support Service Consortium

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS Quality Assurance and Control Data - Soil Laboratory Number 58343

Compound	Method Blank (ug/kg)	RL (ug/kg)	Spike Recovery (%)	Limits (%)	RPD (%)
Chloromethane:	ND<50	50			
Bromomethane:	ND<50	50			
Vinyl Chloride:	ND<50	50			
Chloroethane:	ND<50	50			
Methylene Chloride:	ND<50	50			
Acetone:	ND<100	100			
Carbon Disulfide:	ND<15	15			
Trichlorofluoromethane:	ND<15	15			
1,1-Dichloroethene:	ND<15	15	104/106	77-133	2%
1,1-Dichloroethane:	ND<15	15			
t-1,2-Dichloroethene:	ND<15	15			
Chloroform:	ND<15	15			
1,2-Dichloroethane:	ND<5	5			
2-Butanone:	ND<100	100			
1,1,1-Trichloroethane:	ND<15	15			
Carbon tetrachloride:	ND<15	15			
Vinyl Acetate:	ND<50	50			
Bromodichloromethane:	ND<15	15			
1,2-Dichloropropane:	ND<15	15			
c-1,2-Dichloroethene:	ND<15	15			
c-1,3-Dichloropropene:	ND<15	15			
Trichloroethene:	ND<15	15	92/93	69-111	1%
Dibromochloromethane:	ND<15	15			
1,1,2-Trichloroethane:	ND<15	15			• •
Benzene:	ND<5	5	101/104	78-119	3%
t-1,3-Dichloropropene:	ND<15	15			
Bromoform:	ND<15	15			•
4-Methyl-2-Pentanone:	ND<50	50			
2-Hexanone:	ND<50	50			

Page 4 of 5

A member of ESSCON Environmental Support Service Consortium

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS Quality Assurance and Control Data - Soil Laboratory Number 58343

Compound	Method Blank (ug/kg)	RL (ug/kg)	Spike Recovery (%)	Limits (%)	RPD (%)	
Tetrachloroethene:	ND<15	15		<u> </u>	···	
1,1,2,2-Tetracl-ethane:	ND<15	15				
Toluene:	ND<15	15	99/102	76-124	3%	
Chlorobenzene:	ND<15	15	98/102	82-118	4%	
Ethyl Benzene:	ND<15	15				
Styrene:	ND<15	15				
Xylenes:	ND<15	15				
1,3-Dichlorobenzene:	ND<15	15				
1,4-Dichlorobenzene:	ND<15	15				
1,2-Dichlorobenzene:	ND<15	15				
1,2-Dichloroethane-d4:	93	•		70-121		
Toluene-d8:	99			81-117		
Bromofluorobenzene:	103			74-121		

Definitions:

ND = Not Detected

RPD = Relative Percent Difference

RL = Reporting Limit

ug/kg = Parts per billion (ppb)

QC File No. 58343

Senjor Chemist

Account Manager

Page 5 of 5

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 05-July-1994

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS

Chronology				Laboratory	Number	58343
Identification	Sampled	Received	Extracted	Analyzed	Run #	Lab #
MW-1.1	06/27/94	06/28/94	07/01/94	07/02/94		1
MW-2.1		06/28/94	, ,	07/02/94		2
MW-2.2	06/27/94	06/28/94	07/01/94	07/02/94		3

Page 1 of 7

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING

2-methyl-naphthalene:

Concentration:

hexaclorocyclopentadie:ND<300

2,4,6-trichlorophenol: ND<300

2,4,5-trichlorophenol: ND<300

Attn: JIM GRIBI

Project 20507-001-02 Reported 05-July-1994

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS

Laboratory Number	Sample	Identifica	tion	Matrix
58343- 1	MW-1.1			Soil
58343- 2	MW-2.1			Soil
58343- 3	MW-2.2			Soil
	RESUL	TS OF ANAL	YSIS	
Laboratory Number:	58343- 1	58343- 2	58343- 3	
bis(2-chloroethyl)eth	e:ND<300	. ND<300	ND<300	
aniline:	ND<300	ND<300	ND<300	
phenol:	ND<300	ND<300	ND<300	
2-chlorophenol:	ND<300	ND<300	ND<300	
1,3-dichlorobenzene:	ND<300	ND<300	ND<300	
1,4-dichlorobenzene:	ND<300	ND<300	ND<300	
1,2-dichlorobenzene:	ND<300	ND<300	ND<300	
benzyl alcohol:	ND<300	ND<300	ND<300	
bis-(2-chloroisopropy		ND<300	ND<300	
2-methylphenol:	ND<300	ND<300	ND<300	
hexachloroethane:	ND<300	ND<300	ND<300	
n-nitroso-di-n-propyl		ND<300	ND<300	
4-methylphenol:	ND<300	ND<300	ND<300	
nitrobenzene:	ИD<300	ND<300	ND<300	
isophorone:	ND<300	ND<300	ND<300	
2-nitrophenol:	ND<300	ND<300	ND<300	
2,4-dimethylphenol:	ND<300	ND<300	ND<300	•
bis(2-chloroethoxy)me		ND<300	ND<300	-
2,4-dichlorophenol:	ND<300	ND<300	ND<300	
1,2,4-trichlorobenzen	e:ND<300	ND<300	ND<300	
naphthalene:	ND<300	ND<300	ND<300	
benzoic acid:	ND<300	ND<300	ND<300	
4-chloroaniline:	ND<300	ND<300	ND<300	
hexachlorobutadiene:	ND<300	ND<300	ND<300	
4-chloro-3-methylphen	00E>DM:c	ND<300	ND<300	
^	NTD -0.00	3170 - 0 0 0	11D < 2 0 0	

Page 2 of 7

ND<300

ND<300

ND<300

ND<300

ug/kg

ND<300

ND<300

ND<300

ND<300

ug/kg

ND<300

ug/kg

Certified Laboratories

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING Attn: JIM GRIBI

Laboratory Number

phenanthrene:

fluoranthene:

di-n-butylphthlate:

butylbenzylphthlate:

3.3'-dichlorobenzidine:ND<300

anthracene:

benzidine:

pyrene:

Project 20507-001-02 Reported 05-July-1994

Matrix

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS

Sample Identification

58343- 1	MW-1.1			Soil
58343- 2	MW-2.1			Soil
58343- 3	MW-2.2			Soil
	RESUL!	TS OF ANAL	YSIS	
Laboratory Number:	58343- 1	58343- 2	58343- 3	
2-chloronaphthalene:	ND<300	ND<300	ND<300	
2-nitroaniline:	ND<300	ND<300	ND<300	
acenaphthylene:	ND<300	ND<300	ND<300	
dimethylphthlate:	ND<300	ND<300	ND<300	
2,6-dinitrotoluene:	ND<300	ND<300	ND<300	
acenaphthene:	ND<300	ND<300	ND<300	
3-nitroaniline:	ND<300	ND<300	ND<300	
2,4-dinitrophenol:	ND<300	ND<300	ND<300	
dibenzofuran:	ND<300	ND<300	ND<300	
2,4-dinitrotoluene:	ND<300	ND<300	ND<300	
4-nitrophenol:	ND<300	ND<300	ND<300	
fluorene:	ND<300	ND<300	ND<300	
4-chlorophenyl-phenyl	e:ND<300	ND<300	ND<300	
diethylphthlate:	ND<300	ND<300	ND<300	
4-nitroaniline:	ND<300	ND<300	ND<300	
4,6-dinitro-2-methylp		ND<300	ND<300	
n-nitrosodiphenylamin	e:ND<300	ND<300	ND<300	
1,2-diphenylhydrazine	: ND<300	ND<300	ND<300	
4-bromo-phenyl-phenyl	e:ND<300	ND<300	ND<300	
hexachlorobenzene:	ND<300	ND<300	ND<300	
pentachlorophenol:	ND<300	ND<300	ND<300	

Concentration: ug/kg ug/kg ug/kg

ND<300

ND<300

ND<300

ND<300

ND<300

ND<300

340

Page 3 of 7

ND<300

Certified Laboratories

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING Attn: JIM GRIBI

Project 20507-001-02 Reported 05-July-1994

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS

Laboratory Number	Sample :	Identifica	tion	Matrix
58343- 1	MW-1.1			Soil
58343- 2	MW-2.1			Soil
58343- 3	MW-2.2			Soil
	RESUL!	TS OF ANAL	YSIS	
Laboratory Number: 5	8343- 1	58343- 2	58343- 3	
benzo[a]anthracene:	ND<300	ND<300	ND<300	
chrysene:	ND<300	ND<300	ND<300	
bis(2-ethylhexyl)phtha	:ND<300	ND<300	ND<300	
di-n-octylphthalate:		ND<300	ND<300	
benzo(b,k)fluoranthene		ND<300	ND<300	
benzo[a]pyrene:	ND<300	ND<300	ND<300	
indeno[1,2,3-cd]pyrene		ND<300	ND<300	
dibenzo[a,h]anthracene	:ND<300	ND<300	ND<300	
benzo[g,h,i]perylene:	ND<300	ND<300	ND<300	
Concentration:	ug/kg	ug/kg	ug/kg	
Surrogate % Recover	ies			
2-fluorophenol:	74	72	55	
phenol-d6:	79	75	60	
nitrobenzene-d5:	73	69	58	
2-fluorobiphenyl:	86	82	70	
2,4,6-tribromophenol:	72	70	59	•
terphenyl-d14:	89	87	72	

Page 4 of 7

A member of ESSCON Environmental Support Service Consortium

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS
Quality Assurance and Control Data - Soil
Laboratory Number 58343

Compound .	Method Blank (ug/kg)	RL (ug/kg)	Spike Recovery (%)	Limits (%)	RPD (%)
bis(2-chloroethyl)ethe:	ND<300	300			
aniline:	ND<300	300			
phenol:	ND<300	300	78/78	44-107	0%
2-chlorophenol:	ND<300	300	78/80	44-107	3%
1,3-dichlorobenzene:	ND<300	300	•		
1,4-dichlorobenzene:	ND<300	300	78/79	32-115	1%
1,2-dichlorobenzene:	ND<300	300	•		
benzyl alcohol:	ND<300	300			
bis-(2-chloroisopropyl:	ND<300	300			
2-methylphenol:	ND<300	300			
hexachloroethane:	ND<300	300			
n-nitroso-di-n-propyla:	ND<300	300	90/88	40-123	2%
4-methylphenol:	ND<300	300			
nitrobenzene:	ND<300	300			
isophorone:	ND<300	300			
2-nitrophenol:	ND<300	300			
2,4-dimethylphenol:	ND<300	300			
<pre>bis(2-chloroethoxy)met:</pre>	ND<300	300			
2,4-dichlorophenol:	ND<300	300			
1,2,4-trichlorobenzene:	ND<300	300	86/86	40-104	0%
naphthalene:	ND<300	300			
benzoic acid:	ND<300	300			
4-chloroaniline:	ND<300	300			
hexachlorobutadiene:	ND<300	300			
4-chloro-3-methylpheno:	ND<300	300	82/81	47-113	1%
2-methyl-naphthalene:	ND<300	300			
hexaclorocyclopentadie:	ND<300	300		•	
2,4,6-trichlorophenol:	ND<300	300			
2,4,5-trichlorophenol:	ND<300	300			

Page 5 of 7

A member of ESSCON Environmental Support Service Consortium

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS
Quality Assurance and Control Data - Soil
Laboratory Number 58343

Compound	Method Blank (ug/kg)	RL (ug/kg)	Spike Recovery (%)	Limits (%)	RPD (%)	
2-chloronaphthalene:	ND<300	300	*****		· -	
2-nitroaniline:	ND<300	300				
Tacenaphthylene:	ND<300	300				
dimethylphthlate:	ND<300	300				
2,6-dinitrotoluene:	ND<300	300				
_acenaphthene:	ND<300	300	87/87	43-110	0%	
3-nitroaniline:	ND<300	300	0.,0.	2		
2,4-dinitrophenol:	ND<300	300				
dibenzofuran:	ND<300	300				
2,4-dinitrotoluene:	ND<300	300	90/87	35-100	3%	
4-nitrophenol:	ND<300	300	47/44	36-117	7%	
fluorene:	ND<300	300	•			
■4-chlorophenyl-phenyle:	ND<300	300				
diethylphthlate:	ND<300	300				
-4-nitroaniline:	ND<300	300				
_4,6-dinitro-2-methylph:	ND<300	300				
n-nitrosodiphenylamine:	ND<300	300				
■1,2-diphenylhydrazine:	ND<300	300				
4-bromo-phenyl-phenyle:	ND<300	300				
hexachlorobenzene:	ND<300	300				•
pentachlorophenol:	ND<300	300	75/73	20-122	3%	
phenanthrene:	ND<300	300				
anthracene:	ND<300	300				
di-n-butylphthlate:	ND<300	300				
fluoranthene:	ND<300	300				
_benzidine:	ND<300	300				
pyrene:	ND<300	300	89/85	62-117	5%	
butylbenzylphthlate:	ND<300	300				
3.3'-dichlorobenzidine:	ND<300	300				

Page 6 of 7

A member of ESSCON Environmental Support Service Consortium

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS Quality Assurance and Control Data - Soil Laboratory Number 58343

Compound	Method Blank (ug/kg)	RL (ug/kg)	Spike Recovery (%)	Limits (%)	RPD (%)
2-chloronaphthalene:	ND<300	300			
2-nitroaniline:	ND<300	300			
acenaphthylene:	ND<300	300			
dimethylphthlate:	ND<300	300			
2,6-dinitrotoluene:	ND<300	300			
acenaphthene:	ND<300	300	87/87	43-110	0%
3-nitroaniline:	ND<300	300	,		
2,4-dinitrophenol:	ND<300	300			
dibenzofuran:	ND<300	300			
2,4-dinitrotoluene:	ND<300	300	90/87	35-100	3%
4-nitrophenol:	ND<300	300	47/44	36-117	7%
fluorene:	ND<300	300	·		
4-chlorophenyl-phenyle:	ND<300	300			
diethylphthlate:	ND<300	300			
4-nitroaniline:	ND<300	300			
4,6-dinitro-2-methylph:	ND<300	300			
n-nitrosodiphenylamine:	ND<300	300			
1,2-diphenylhydrazine:	ND<300	300			
4-bromo-phenyl-phenyle:	ND<300	300			
hexachlorobenzene:	ND<300	300			
pentachlorophenol:	ND<300	300	75/73	20-122	3%
phenanthrene:	ND<300	300			
anthracene:	ND<300	300			
di-n-butylphthlate:	ND<300	300			
fluoranthene:	ND<300	300			
benzidine:	ND<300	300			•
pyrene:	ND<300	300	89/85	62-117	5%
butylbenzylphthlate:	ND<300	300			
3.3'-dichlorobenzidine:	ND<300	300			

Page 6 of 7

A member of ESSCON Environmental Support Service Consortium

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS Quality Assurance and Control Data - Soil Laboratory Number 58343

Compound	Method Blank (ug/kg)	RL (ug/kg)	Spike Recovery (%)	Limits (%)	RPD (%)
benzo[a]anthracene:	ND<300	300			
chrysene:	ND<300	300			
bis(2-ethylhexyl)phtha:	ND<300	300			
di-n-octylphthalate:	ND<300	300			
benzo(b,k)fluoranthene:	ND<300	300			
benzo[a]pyrene:	ND<300	300			
indeno[1,2,3-cd]pyrene:	ND<300	300			
dibenzo[a,h]anthracene:	ND<300	300			
<pre>benzo[g,h,i]perylene:</pre>	ND<300	300			
2-fluorophenol:	74			25-121	
phenol-d6:	78	•		24-113	
nitrobenzene-d5:	74			23-120	
2-fluorobiphenyl:	75			30-115	
2,4,6-tribromophenol:	66			19-122	
terphenyl-d14:	82			18-137	

Definitions:

ND = Not Detected

RPD = Relative Percent Difference

RL = Reporting Limit

ug/kg = Parts per billion (ppb)

QC File No. 58343

Senior Chemist Account Manager

Page 7 of 7

825 Arnold Drive, Suite 114 • Martinez, California 94553 • (510) 229-1512 / fax (510) 229-1526

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20570-001-02 Reported 01-July-1994

ANALYSIS FOR TOTAL LEAD by EPA Method SW-846 6010

Chronology	Laboratory	Number	58343			
Idențification	Sampled	Received	Extracted	Analyzed	Run #	Lab #
MW-5.1 IB-1.1		06/28/94 06/28/94		06/30/94 06/30/94		8 11

825 Arnold Drive, Suite 114 - Martinez, California 94553 - (510) 229-1512 / fax (510) 229-1526

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20570-001-02 Reported 01-July-1994

ANALYSIS FOR TOTAL LEAD

Laboratory Number Sample Identification Matrix

58343-8 MW-5.1 Soil 58343-11 IB-1.1 Soil

RESULTS OF ANALYSIS

Laboratory Number: 58343-8 58343-11

Lead (Pb): ND<5 5

Concentration: mg/Kg mg/Kg

825 Arnold Drive, Suite 114 • Martinez, California 94553 • [510] 229-1512 / fax [510] 229-1526

ANALYSIS FOR TOTAL LEAD
Quality Assurance and Control Data - Soil

Laboratory Number 58343

Compound		Method Blank (mg/Kg)	Blank RL		Limits (%)	RPD (%)	
Lead	(Pb):	ND<5	5	95/97	75-125	2%	

Definitions:

ND = Not Detected

RPD = Relative Percent Difference

RL = Reporting Limit

mg/Kg = Parts per million (ppm)

QC File No. 58343

Michael Lucar Senior Chemist Account Manager

Page 3 of 3 Certified Laboratories

ENVIRONMENTAL ENVIRONMENTAL TESTING, INC.	PROJECT NAME/LOCATION	5076-001-02 . 6181	REPORT TO: INVOICE TO: P.O. NO NET QUOTE NO
	SIGNATURE	ANALYS The residual of the second of the se	100
MW-2.2 (1) MW-3.1 (7) MW-3.2 (1) MW-4.1 (6) MW-4.2 (1) MW-5.1 (6) MW-5.2 (1)		Tease initial: Samples Stored Appropriate con Semples proser VOA's will out	in ice
CONDITION OF SAMPLE: BOTTLES INTACT? FIELD FILTERED? Y SAMPLE REMAINDER DISPOSAL: RETURN SA I REQUEST RELINQUISHED BY: DATÉ/TIME G/2F/37/0.3	MPLE REMAINDER TO CLIENT VIA	RELINQUISHED BY DATE	TEMPERATURE UPON RECEIPT: DATE TIME RECEIVED FOR NET BY: From Supplier M 6/12/70/70/70/70

12345678911

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 11-July-1994

ANALYSIS FOR GASOLINE RANGE HYDROCARBONS - by EPA SW-846 Methods 5030/8015M.

Chronology	Laboratory	Number	58384			
Identification	Sampled	Received	Extracted	Analyzed	Run #	Lab #
MW-1 MW-2		07/05/94 07/05/94		07/08/94 07/08/94		1 2

Page 1 of 3

ug/L

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Concentration:

Project 20507-001-02 Reported 11-July-1994

ANALYSIS FOR GASOLINE RANGE HYDROCARBONS - by EPA SW-846 Methods 5030/8015M.

Laboratory Number	Sample Identification	Matrix
58384- 1 58384- 2	MW-1 MW-2	Water Water
Laboratory Number:	RESULTS OF ANALYSIS 58384- 1 58384- 2	
Gasoline Range:	ND<50 ND<50	

ug/L

Page 2 of 3

A member of ESSCON Environmental Support Service Consortium

ANALYSIS FOR GASOLINE, BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES Quality Assurance and Control Data - Water Laboratory Number 58384

Compound	Method Blank (ug/L)	RL (ug/L)	Spike Recovery (%)	Limits (%)	RPD (%)	
Gasoline Range:	ND<50	50	88/93	61-134	6%	
Benzene:	ND<0.5	0.5	109/82	60-135	28%	
Toluene:	ND<0.5	0.5	93/86	60-135	8%	
Ethyl Benzene:	ND<0.5	0.5	73/78	60-135	7%	
Total Xylenes:	ND<0.5	0.5	94/84	60-135	11%	

Definitions:

ND = Not Detected

RPD = Relative Percent Difference

RL = Reporting Limit

ug/L = Parts per billion (ppb)

QC File No. 58384

Jaguin 7/12/94 Senior Chemist Account Manager

Page 3 of 3

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 11-July-1994

ANALYSIS FOR GASOLINE, BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES by EPA SW-846 Methods 5030/8015M/8020.

Chronology				Laboratory	Number	58384
Identification	Sampled	Received	Extracted	Analyzed	Run #	Lab #
MW-3	07/05/94	07/05/94	07/08/94	07/08/94		3
MW-4	• •	07/05/94	07/09/94	07/09/94		4
MW-5	07/05/94	07/05/94	07/09/94	07/09/94		5

Page 1 of 3

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 11-July-1994

ANALYSIS FOR GASOLINE, BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES

Laboratory Number	Sample	Identificat	ion	Matrix
58384- 3	MW-3			Water
58384- 4	MW-4			Water
58384- 5	MW-5			Water
	RESUL	TS OF ANALY	sis	
Laboratory Number:	58384- 3	58384- 4	58384- 5	
Gasoline Range:	5000	ND<50	ND<50	
Benzene:	15	0.9	1.1	
Toluene:	7.9	ND<0.5	ND<0.5	
Ethyl Benzene:	80	ND<0.5	ND<0.5	
Total Xylenes:	230	ND<0.5	ND<0.5	
Concentration:	ug/L	ug/L	ug/L	
Surrogate % Reco				
Trifluorotoluene (S	S): MI	94	86	

Page 2 of 3

ANALYSIS FOR GASOLINE RANGE HYDROCARBONS - by EPA SW-846 Methods 5030/8015M Quality Assurance and Control Data - Water

Laboratory Number 58384

Compound	Method Blank (ug/L)	RL (ug/L)	Spike Recovery (%)	Limits (%)	RPD (%)	_
Gasoline Range:	ND<50	50	95/93	61-134	2%	

Definitions: ND = Not Detected RPD = Relative Percent Difference RL = Reporting Limit ug/L = Parts per billion (ppb) QC File No. 58384

Senior Chemist Account Manager

Page 3 of 3

Certified Laboratories

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING Attn: JIM GRIBI

Project 20507-001-02 Reported 08-July-1994

Total Petroleum Hydrocarbons by EPA Method 8015M

Chronology				Laboratory	Number	58384
Identification	Sampled	Received	Extracted	Analyzed	Run #	Lab #
MW-2 MW-5		07/05/94 07/05/94	. ,	07/07/94 07/06/94		2 5

Page 1 of 3

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 08-July-1994

Total Petroleum Hydrocarbons by EPA Method 8015M

Laboratory Number Sample Identification Matrix

58384-2 MW-2 Water
58384-5 MW-5 Water

RESULTS OF ANALYSIS

Laboratory Number: 58384- 2 58384- 5

Diesel Range: ND<50 ND<50 Motor Oil Range: ND<500 ND<500

Concentration: ug/L ug/L

Page 2 of 3

Total Petroleum Hydrocarbons by EPA Method 8015M Quality Assurance and Control Data - Water Laboratory Number 58384

Compound	Method Blank (ug/L)	RL (ug/L)	Spike Recovery (%)	Limits (%)	RPD (%)	
Diesel Range: Motor Oil Range:	ND<50 ND<500	50 500	105/86	50-150	20%	

Definitions: ND -= Not Detected RPD = Relative Percent Difference RL = Reporting Limit ug/L = Parts per billion (ppb) QC File No. 58384

Ula 4 Joaquia Serior/Chémist Account Manager

Page 3 of 3

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING Attn: JIM GRIBI

Project 20507-001-02 Reported 18-July-1994

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by GAS CHROMATOGRAPHY - MASS SPECTROMETRY

Chronology				Laboratory	Number	58384
Identification	Sampled	Received	Extracted	Analyzed	Run #	Lab #
MW-1 MW-2		07/05/94 07/05/94		07/10/94 07/15/94		1 2

Page 1 of 5

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 18-July-1994

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS

Laboratory Number	Sample I	dentification	Matrix
58384- 1 58384- 2	MW-1 MW-2		Water Water
Laboratory Number: 5		S OF ANALYSIS 58384- 2	
Chloromethane: Bromomethane: Vinyl Chloride: Chloroethane: Methylene Chloride: Acetone: Carbon Disulfide: Trichlorofluoromethane: 1,1-Dichloroethane: 1,1-Dichloroethane: t-1,2-Dichloroethane: Chloroform: 1,2-Dichloroethane: 2-Butanone: 1,1,1-Trichloroethane: Carbon tetrachloride: Vinyl Acetate: Bromodichloromethane: 1,2-Dichloropropane: c-1,2-Dichloroethene: c-1,3-Dichloropropene: Trichloroethene: Dibromochloromethane: 1,1,2-Trichloroethane: Benzene: t-1,3-Dichloropropene: Bromoform:	ND<3 ND<3 ND<3 ND<3 ND<1 ND<20 ND<3 ND<3 ND<3 ND<3 ND<3 ND<3 ND<3 ND<3	ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<20 ND<3 ND<3 ND<3 ND<3 ND<3 ND<3 ND<3 ND<1 ND<20 ND<3 ND<1 ND<20 ND<3 ND<3 ND<3 ND<3 ND<1 ND<23 ND<3 ND<1 ND<3 ND<10 ND<3 ND<3 ND<3 ND<3 ND<3 ND<3 ND<3 ND<3	
4-Methyl-2-Pentanone: 2-Hexanone:	ND<10 ND<10	ND<10 ND<10	
Concentration:	ug/L	ug/L	

Page 2 of 5

Certified Laboratories

A member of ESSCON Environmental Support Service Consortium

93

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Bromofluorobenzene:

Project 20507-001-02 Reported 18-July-1994

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS

Laboratory Number	Sample I	dentification	Matrix
58384- 1 58384- 2	MW-1 MW-2		Water Water
Tohowatowy Numbers 5		S OF ANALYSIS	
Laboratory Number:	8384- 1	58384- 2	
Tetrachloroethene:	ND<3	ND<3	
1,1,2,2-Tetracl-ethane	:ND<3	ND<3	
Toluene:	ND<3	ND<3	
Chlorobenzene:	ND<3	ND<3	
Ethyl Benzene:	ND<3	ND<3	
Styrene:	ND<3	ND<3	
Xylenes:	ND<3	ND<3	
1,3-Dichlorobenzene:	ND<3	ND<3	
1,4-Dichlorobenzene:	ND<3	ND<3	
1,2-Dichlorobenzene:	ND<3	ND<3	
Methyl-t-butylether:	NA	600	
Concentration:	ug/L	ug/L	
Surrogate % Recover	ies		
1,2-Dichloroethane-d4:	99	100	ę
Toluene-d8:	100	101	

Page 3 of 5

92

A member of ESSCON Environmental Support Service Consortium

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS Quality Assurance and Control Data - Water

Laboratory Number 58384

Compound	Method Blank (ug/L)	RL (ug/L)	Spike Recovery (%)	Limits (%)	RPD (%)
Chloromethane:	ND<10	10			
Bromomethane:	ND<10	10			
Vinyl Chloride:	ND<10	10			
Chloroethane:	ND<10	10			
Methylene Chloride:	ND<10	10			
Acetone:	ND<20	20			
Carbon Disulfide:	ND<3	3			
Trichlorofluoromethane:	ND<3	3			
1,1-Dichloroethene:	ND<3	3	97/100	79-127	3%
1,1-Dichloroethane:	ND<3	3	. . ,		
t-1,2-Dichloroethene:	ИD<3	3			
Chloroform:	ND<3	3			
1,2-Dichloroethane:	ND<1	1			
2-Butanone:	ND<20	20			
1,1,1-Trichloroethane:	ND<3	3			
Carbon tetrachloride:	ND<3	3			
Vinyl Acetate:	ND<10	10			
Bromodichloromethane:	ND<3	3			
1,2-Dichloropropane:	ND<3	3			
c-1,2-Dichloroethene:	ND<3	3			
c-1,3-Dichloropropene:	ND<3	3			
Trichloroethene:	ND<3	3	98/96	69-117	2%
Dibromochloromethane:	ND<3	3			
1,1,2-Trichloroethane:	ND<3	3		•	
Benzene:	ND<1	1	99/95	78-122	4%
t-1,3-Dichloropropene:	ND<3	3			
Bromoform:	ND<3	3			
4-Methyl-2-Pentanone:	ND<10	10			
2-Hexanone:	ND<10	10			

Page 4 of 5

A member of ESSCON Environmental Support Service Consortium

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS Quality Assurance and Control Data - Water

Laboratory Number 58384

Compound	Method Blank (ug/L)	RL (ug/L)	Spike Recovery (%)	Limits (%)	RPD (%)
Tetrachloroethene:	 ND<3	3			
1,1,2,2-Tetracl-ethane:	ND<3	3			
Toluene:	ND<3	3	99/97	78-120	2%
Chlorobenzene:	ND<3	3	98/97	78-122	1%
Ethyl Benzene:	ND<3	3	-		
Styrene:	ND<3	3			
Xylenes:	ND<3	3			
1,3-Dichlorobenzene:	ND<3	3			
1,4-Dichlorobenzene:	ND<3	3			•
1,2-Dichlorobenzene:	ND<3	3			
Methyl-t-butylether:	ND<3	3			
1,2-Dichloroethane-d4:	92			76-114	
Toluene-d8:	101			88-110	
Bromofluorobenzene:	92			86-115	

Definitions:

ND = Not Detected

RPD = Relative Percent Difference

RL = Reporting Limit

ug/L = Parts per billion (ppb)

QC File No. 58384

Senior Chemist Account Manager

Page 5 of 5

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING Attn: JIM GRIBI

Project 20507-001-02 Reported 07-July-1994

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS

Chronology				Laboratory	Number	58384
Identification	Sampled	Received	Extracted	Analyzed	Run #	Lab #
MW-1 MW-2		07/05/94 07/05/94		07/07/94 07/07/94		1 2

Page 1 of 7

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 07-July-1994

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS

Laboratory Number	Sample Identification	Matrix
58384- 1	MW-1	Water
58384- 2	MM-5	Water

RESULTS OF ANALYSIS

Laboratory Number: 58384- 1 58384- 2

bis(2-chloroethyl)ethe	:ND<10	ND<10
aniline:	ND<10	ND<10
phenol:	ND<10	ND<10
2-chlorophenol:	ND<10	ND<10
1,3-dichlorobenzene:	ND<10	ND<10
1,4-dichlorobenzene:	ND<10	ND<10
1,2-dichlorobenzene:	ND<10	ND<10
benzyl alcohol:	ND<10	ND<10
bis-(2-chloroisopropyl	:ND<10	ND<10
2-methylphenol:	ND<10	ND<10
hexachloroethane:	ND<10	ND<10
n-nitroso-di-n-propyla	:ND<10	ND<10
4-methylphenol:	ND<10	ND<10
nitrobenzene:	ND<10	ND<10
isophorone:	ND<10	ND<10
2-nitrophenol:	ND<10	ND<10
2,4-dimethylphenol:	ND<10	ND<10
bis(2-chloroethoxy)met	:ND<10	ND<10 ·
2,4-dichlorophenol:	ND<10	ND<10
1,2,4-trichlorobenzene	:ND<10	ND<10
naphthalene:	ND<10	ND<10
benzoic acid:	ND<10	ND<10
4-chloroaniline:	ND<10	ND<10
hexachlorobutadiene:	ND<10	ND<10
4-chloro-3-methylpheno	:ND<10	ND<10
2-methyl-naphthalene:	ND<10	ND<10
hexaclorocyclopentadie	:ND<10	ND<10
2,4,6-trichlorophenol:	ND<10	ND<10
2,4,5-trichlorophenol:	ND<10	ND<10
Concentration:	ug/L	ug/L
	~ •	

Page 2 of 7

A member of ESSCON Environmental Support Service Consortium

CENTURY WEST ENGINEERING

Attn: JIM GRIBI

Project 20507-001-02 Reported 07-July-1994

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS

Laboratory Number	Sample Identification	Matrix
58384- 1	MW-1	Water
58384- 2	MW-2	Water

RESULTS OF ANALYSIS

Laboratory Number: 58384- 1 58384- 2

2-chloronaphthalene:	ND<10	ND<10	
2-nitroaniline:	ND<10	ND<10	
acenaphthylene:	ND<10	ND<10	
dimethylphthlate:	ND<10	ND<10	
2,6-dinitrotoluene:	ND<10	ND<10	
acenaphthene:	ND<10	ND<10	
3-nitroaniline:	ND<10	ND<10	
2,4-dinitrophenol:	ND<10	ND<10	
dibenzofuran:	ND<10	ND<10	
2,4-dinitrotoluene:	ND<10	ND<10	
4-nitrophenol:	ND<10	ND<10	
fluorene:	ND<10	ND<10	
4-chlorophenyl-phenyle	:ND<10	ND<10	
diethylphthlate:	ND<10	ND<10	
4-nitroaniline:	ND<10	ND<10	
4,6-dinitro-2-methylph	:ND<10	ND<10	
n-nitrosodiphenylamine	:ND<10	ND<10	
1,2-diphenylhydrazine:	ND<10	ND<10	
4-bromo-phenyl-phenyle	:ND<10	ND<10	
hexachlorobenzene:	ND<10	ND<10	
pentachlorophenol:	ND<10	ND<10	
phenanthrene:	ND<10	ND<10	
anthracene:	ND<10	ND<10	
di-n-butylphthlate:	ND<10	ND<10	
fluoranthene:	ND<10	ND<10	
benzidine:	ND<10	ND<10	
pyrene:	ND<10	ND<10	
butylbenzylphthlate:	ND<10	ND<10	
3.3'-dichlorobenzidine	:ND<10	ND<10	
Common to the control of the control	! =		
Concentration:	ug/L	ug/L	

Page 3 of 7

Certified Laboratories

A member of ESSCON Environmental Support Service Consortium

91

76

93

CENTURY WEST ENGINEERING Attn: JIM GRIBI

2-fluorobiphenyl:

terphenyl-d14:

2,4,6-tribromophenol:

Project 20507-001-02 Reported 07-July-1994

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS

Laboratory Number	Sample :	[dentification	Matrix
58384- 1	MW-1		Water
58384- 2	MW-2		Water
	RESUL!	rs of analysis	
Laboratory Number:	58384- 1		
benzo[a]anthracene:	ND<10	ND<10	
chrysene:	ND<10	ND<10	
bis(2-ethylhexyl)pht	ha:ND<10	ND<10	
di-n-octylphthalate:		ND<10	
benzo(b,k)fluoranthe		ND<10	
benzo[a]pyrene:	ND<10	ND<10	
indeno[1,2,3-cd]pyre	ene:ND<10	ND<10	
dibenzo[a,h]anthrace		ND<10	
benzo[g,h,i]perylene		ND<10	
Concentration:	ug/L	ug/L	
Surrogate % Recov	veries		
2-fluorophenol:	39	29	
phenol-d5:	30	21	
nitrobenzene-d5:	82	88	
		^ ~	

96 82

96

Page 4 of 7

A member of ESSCON Environmental Support Service Consortium

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS Quality Assurance and Control Data - Water Laboratory Number 58384

Compound	Method Blank (ug/L)	RL (ug/L)	Spike Recovery (%)	Limits (%)	RPD (%)
bis(2-chloroethyl)ethe:	ND<10	10			
aniline:	ND<10	10			
phenol:	ND<10	10	41/42	10 - 72	2%
2-chlorophenol:	ND<10	10	81/83	55-93	2%
1,3-dichlorobenzene:	ND<10	10	,		
1,4-dichlorobenzene:	ND<10	10	79/83	50-103	5%
1,2-dichlorobenzene:	ND<10	10	•		
benzyl alcohol:	ND<10	10			
bis-(2-chloroisopropyl:	ND<10	10			
2-methylphenol:	ND<10	10			
hexachloroethane:	ND<10	10			
n-nitroso-di-n-propyla:	ND<10	10	82/86	45-121	5왕
4-methylphenol:	ND<10	10			
nitrobenzene:	ND<10	10			
isophorone:	ND<10	10			
2-nitrophenol:	ND<10	10			
2,4-dimethylphenol:	ND<10	10			
<pre>bis(2-chloroethoxy)met:</pre>	ND<10	10			
2,4-dichlorophenol:	ND<10	10			
1,2,4-trichlorobenzene:	ND<10	10	86/87	53-92	1%
naphthalene:	ND<10	10			
benzoic acid:	ND<10	10			
4-chloroaniline:	ND<10	10			
hexachlorobutadiene:	ND<10	10			
4-chloro-3-methylpheno:	ND<10	10	78/78	56-94	0%
2-methyl-naphthalene:	ND<10	10		_	
hexaclorocyclopentadie:	ND<10	10		•	
2,4,6-trichlorophenol:	ND<10	10			
2,4,5-trichlorophenol:	ND<10	10			

Page 5 of 7

A member of ESSCON Environmental Support Service Consortium

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS Quality Assurance and Control Data - Water Laboratory Number 58384

Compound	Method Blank (ug/L)	RL (ug/L)	Spike Recovery (%)	Limits (%)	RPD (%)
				•	
2-chloronaphthalene:	ND<10	10			
2-nitroaniline:	ND<10	10			
acenaphthylene:	ND<10	10			
dimethylphthlate:	ND<10	10			
2,6-dinitrotoluene:	ND<10	10			
acenaphthene:	ND<10	10	88/91	60-100	3%
3-nitroaniline:	ND<10	10			
2,4-dinitrophenol:	ND<10	10			
dibenzofuran:	ND<10	10			
2,4-dinitrotoluene:	ND<10	10	88/87	43-94	1%
4-nitrophenol:	ND<10	10	24/22	1-75	9%
fluorene:	ND<10	10			
4-chlorophenyl-phenyle:	ND<10	10			
diethylphthlate:	ND<10	10			
4-nitroaniline:	ND<10	10			
4,6-dinitro-2-methylph:	ND<10	10			
n-nitrosodiphenylamine:	ND<10	10			
1,2-diphenylhydrazine:	ND<10	10			
4-bromo-phenyl-phenyle:	ND<10	10			
hexachlorobenzene:	ND<10	10			
pentachlorophenol:	ND<10	10	77/80	36-109	4%
phenanthrene:	ND<10	10			
anthracene:	ND<10	10			
di-n-butylphthlate:	ND<10	10			
fluoranthene:	ND<10	10			
benzidine:	ND<10	10			
pyrene:	ND<10	10	87/88	66-124 '	1%
butylbenzylphthlate:	ND<10	10			
3.37-dichlorobenzidine:	ND<10	10			

Page 6 of 7

A member of ESSCON Environmental Support Service Consortium

EPA SW-846 METHOD 8270 SEMIVOLATILE ORGANICS BY GC/MS
Quality Assurance and Control Data - Water
Laboratory Number 58384

Compound	Method Blank (ug/L)	RL	Spike Recovery (%)	Limits (%)	RPD (%)
benzo[a]anthracene:	ND<10	10			
chrysene:	ND<10	10			
bis(2-ethylhexyl)phtha:	ND<10	10			
di-n-octylphthalate:	ND<10	10			
benzo(b,k)fluoranthene:	ND<10	10			
<pre>benzo[a]pyrene:</pre>	ND<10	10			
<pre>indeno[1,2,3+cd]pyrene:</pre>	ND<10	10			
dibenzo[a,h]anthracene:	ND<10	10			
<pre>benzo[g,h,i]perylene:</pre>	ND<10	10			
2-fluorophenol:	45			21-110	
phenol-d5:	34			10-110	
nitrobenzene-d5:	67			35-114	
2-fluorobiphenyl:	76			43-116	
2,4,6-tribromophenol:	76			10-123	
terphenyl-d14:	75			33-141	

Definitions:

ND = Not Detected

RPD = Relative Percent Difference

RL = Reporting Limit

ug/L = Parts per billion (ppb)

QC File No. 58384

Cecilia 4 Joaques 7/12/94 Senjoy Chemist

Account Manager

Page 7 of 7

NATIONAL	CHAIN OF CUSTODY RECORD															
NATIONAL ENVIRONMENTAL ® TESTING, INC.	COMPANY CENTURY WEST ENGINEERING										REPORT TO:	REPORT TO:				
	ADDRESS 7950 DUBLIN BLVD, OUBLIN															
	PHONE (5/0) 557-7724 FAX (570) 557-7776													INVOICE TO:		
	PROJECT NAME/LOCATION JOHNNY (IN												P.O. NO			
	PROJECT NUMBER 20507-00/-02 PROJECT MANAGER T GRIBI															
		MANAGER		<u> </u>			And the second state of the							NET QUOTE NO		MANUFACTURE A SC
AMPLED BY BOD BODON III, SIGNAT	BOC E	bey-	<u> </u>	·	A (4)				/	/ : · /	AN	ALYS	SES			
RINT NAME) SIGNAT	TURE /							Y Y.	/		/,	Ι,	/ "			
		S.		g		/ \ ! ~	$\chi_{\mathcal{N}}$	X // 3. //	$\lambda/\sqrt{2}$	4/	//	/	1			
DATE TIME SAMPLE ID/DESCRIPTION	GRAB	COMP # OF YPE	MATRIX	PRESERVE	1/6	9 / 9)	X		V./	[/.	/	!	(46)	MENIS:	
7/5 MW-1 (6 YORS, 3 A)	mas	19	Hzs	V			$\mathbf{X}\mathbf{x}$	1×	1		[[<u>-</u>	1			MINITED STATES
7/5 MW-2 (6 Vons, 3 AM	nan \	1 9	122 U	-	 		$\sqrt{2}$	***	+-	 ,	1		, ,			
7/6 MW-3 (4 VOAS, I AM	IRON)	1 7	4	t					1	-	 	7	-	<u> </u>	<u> </u>	
	1,000	1 2	4	1		-+			┼	<u> </u>	-			00		
13 - VOPTS - VI II		1 2	 	Y				+	 	1	lea		•		601	
1/5 MW-5 (4 Was, 2 Ar.	neer Cy	 	4	<u> </u>		\triangle \mid		╅─	 	ļ				red in ice	1	
		 	 	 	 	_	 - `	<u> </u>	 					containers		
		 	<u> </u>					<u> </u>		Ĺ				served		<u> </u>
	1, 1	1	1 3 1H 748		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7 4	1,3	1:	(Com	ľ		July 1000 space	/	
			1=1	<u> </u>		`					-011		113,	, //		
			<u> </u>	ļ					<u> </u>				13			· · · · · · · · · · · · · · · · · · ·
	'													./	<u> </u>	
			T							#			-	The state of the s	The second secon	1-1-AL 4-1
		1	1	 							1					
		 		 			_	 	1	7	1 .	, ,:	¥	<u> </u>		
				 	 		 [. -		_		1-1	. 		<u></u>		
ONDITION OF SAMPLE: BOTTLES INTACT? YES / FIELD FILTERED? YES / I			COC SEAL VOLATILE							L			· T	EMPERATURE UPON RECE	IPT:	
AMPLE REMAINDER DISPOSAL: RETURN SAMPLE				MAINDI	ERS _			41		`	r	17. 1		DATE	-	
ELINQUISHED BY: DATE/TIME	RECEIVED BY:	0	7 - 0.	7/5/4.	RE	LINQUIS	SHED BY:	75	: 14:			DATE	/TIME	RECEIVED FOR	R NET BY:	
Bol Boy 5:38 pm 7/5/54	SIY F	9/4/ A	#136	3.40	on S	\$/4' /	Foda/		400			÷ 3·	* * 3	20 - 25		
METHOD OF SHIPMENT	REMARKS:	:			•	,· ,	0		-, I	_	l'h	ily	<u> </u>	Sandleya	SPA-SF	7/5/94
							100				`	71		110 /1 -		4:40

THE COLOMB WHITE PT? NET PROJECT MANAGER - YELLOW PT3 - CUSTOMER COPY - PINK

- 58-64-