

50 J-11-5 17 81 82

December 30, 1994

Mr. Steve Chrissanthos Alameda Cellars 1702 Lincoln Avenue Alameda, CA 94501

RE:

Results of Quarterly Groundwater Sampling at

2425 Encinal, Alameda, California

Dear Mr. Chrissanthos:

Thank you for providing ACC with the opportunity to present this report. The enclosed report describes the materials and procedures used during the quarterly groundwater investigation performed at 2425 Encinal, Alameda, California. This work was performed to evaluate the vertical extent of groundwater impact.

Analysis of the groundwater samples from monitoring wells MW-1, MW-2, MW-3, and MW-4 indicated elevated concentrations of hydrocarbons. Analytical results of groundwater samples from monitoring wells MW-5 and MW-6 indicated below detectable levels of constituents indicating a lateral extent of groundwater impact.

If you have any comments regarding this report, please call me.

Sincerely,

Misty C. Kaltreider Geologist

cc: Ms. Juliet Shin - Alameda County Health Care Services - Division of Hazardous Materials

QUARTERLY GROUNDWATER INVESTIGATION

2425 ENCINAL ALAMEDA, CALIFORNIA

Job Number 6039-5

December 1994

Prepared for: Mr. Steve Chrissanthos Alameda Cellars 1702 Lincoln Avenue Alameda, CA 94501

Prepared by:

Misty Kalfreider Project Geologist

Reviewed by: .

David R. DeMent, RG #5874 Registered Geologist

OF CALL

TABLE OF CONTENTS

															Page
1.0	Introduction											. ,		 	1
2.0	Background					 1
3.0	Field Procedures													 ٠.	. 2
	3.1 Groundwater S	ampling					. , .							 	. 2
4.0	Findings								• • •					 	. 4
	4.1 Analytical Resu	ılts - Groundwater												 	. 4
	4.2 Groundwater C	Gradient					. 							 	. 5
5.0	Conclusions													 	. 6
6.0	Recommendations													 	. 7
			TAI	BLES											
Tabl	e 1 - Groundwater D e 2 - Analytical Resu e 3 - Historical Grou	ilts - Groundwater												 	. 4
		AT	TAC]	HME	NTS										
Figu Figu		ite Plan roundwater Gradie	ent - 1	2/7/9	4										
~ -		otes of Well Samp	_	nd Ai	nalvi	rical	Re	silt	s - (Gro	nına	lwa	iter		

1.0 INTRODUCTION

This report presents the procedures and findings of the quarterly groundwater investigation conducted by ACC Environmental Consultants, Inc., (ACC) on behalf of Mr. Steve Chrissanthos and Alameda Cellars, site owner at 2425 Encinal, Alameda, California. The project objective, as described in the Work Plan prepared on November 5, 1993, was to evaluate the extent of groundwater impact from the previous underground storage of gasoline.

2.0 BACKGROUND

The site is presently occupied by Alameda Cellars, a commercial liquor store. In March, 1990, two 10,000-gallon gasoline tanks were removed from the above referenced site. Analysis of the soil samples collected from beneath the two gasoline tanks indicated up to 710 parts per million (ppm) of Total Petroleum Hydrocarbons (TPH) as gasoline. Soil samples collected from beneath the diesel tank indicated less than detectable levels of TPH as diesel.

In December 1992, five borings were drilled onsite. Three of the borings were converted into monitoring wells MW-1, MW-2a, and MW-3. Analytical results of the soil collected during drilling and soil sampling indicated a maximum soil concentration of Total Petroleum Hydrocarbons (TPH) as gasoline as 1,365 ppm. Benzene concentration was 18.9 ppm in the same sample.

Initial groundwater samples collected in January, 1993, from the monitoring wells indicated a maximum TPH-gasoline concentration of 5,680 ppb (MW-2a) and a maximum benzene concentration of 1,560 ppb (MW-1).

Additional soil investigation was conducted in May, 1993 to evaluate the extent of contamination in the soil and groundwater. Findings of the additional investigation indicated the lateral extent of hydrocarbon impacted soil did not appear to extend beyond the property boundaries along the northern, western, and eastern sides. However, along the southern side, the impacted soil appears to extend into Park and Encinal Avenues. Field observations made during the additional investigation and soil sample analysis indicated the soil hydrocarbon plume is primarily around the former tank excavation and the former dispenser island. The vertical limit of hydrocarbons in the soil is estimated to occur at the present groundwater table.

Analysis of "grab" groundwater samples collected from borings drilled during the additional investigation indicate the residual hydrocarbons from the former tank excavation and dispenser island is migrating off-site via the groundwater.

This preliminary Site Assessment was conducted to further evaluate the groundwater contamination from a gasoline release onsite according request of Alameda County Health Care Services - Hazardous Materials Division.

In December 1993, three additional monitoring wells (MW-4, MW-5, and MW-6) were installed to further evaluate the extent of hydrocarbon groundwater impact. Laboratory analysis of the soil collected from each boring indicated below detectable levels of constituents which verifies the lateral extent of soil impact.

Laboratory analysis of the groundwater samples collected from monitoring well MW-5 and MW-6 indicated below detectable levels of constituents evaluated. The groundwater results indicated a lateral extent of groundwater impact. Laboratory analysis of groundwater collected from monitoring well MW-4 indicated detectable levels of constituents. Constituents reported from monitoring well MW-4 are low when compared with reported levels in monitoring wells MW-1,

MW-2a, and MW-3. The location of the southern edge of the groundwater impact is just off-site to the south. This "cross" gradient movement is attributed to the relatively flat gradient and possible recharge into the excavated area.

3.0 FIELD PROCEDURES

3.1 Groundwater Sampling

Groundwater samples were collected on December 7, 1994 from monitoring wells MW-1, MW-2a, MW-3, MW-4, and MW-5. Monitoring well MW-6 was inaccessible and subsequently sampled on December 13, 1994. Prior to groundwater sampling, the depth to the surface of the water table was measured from the top of the PVC casing using a Solinst Water Level Meter. Information regarding well elevations and groundwater level measurements are summarized in Table 1.

Date Sampled	Depth to Groundwater (Ft.)	
Well No. MW-1	Elevation of Top of Casing-27.61	MSL
01/09/93	6.75	20.86
02/09/93	6.41	21.20
03/10/93	6.34	21.27
04/12/93	6.52	21.09
05/17/93	7.38	20.23
06/28/93	8.42	19.19
07/13/93	8.68	18.93
08/10/93	8.25	19.36
09/10/93	8.73	18.88
10/12/93	9.04	18.57
12/20/93	7.87	19.74
03/18/94	6.96	20.65
04/08/94	7.69	19.92
06/22/94	8.55	19.06
12/07/94	6.92	20.69
Wall No MW 20	Elevation of Ton of Cosing 27.08	Met
Well No. MW-2a 01/09/93	Elevation of Top of Casing-27.98 7.06	<u>MSL</u> 20.92
02/09/93	6.63	21.35
02/09/93	6.57	21.33
03/10/93	6.77	21.41
05/17/93	7.61	20.37
06/28/93	8.68	19.30
07/13/93	8.94	19.04
08/10/93	8.66	19.32
09/10/93	8.95	19.03
10/12/93	9.36	18.62
12/20/93	8.24	19.74
03/18/94	7.80	20.18
04/08/94	7.67	20.16
06/22/94	7.87 7.82	20.16
12/07/94	7.23	20.75
12/01/77	ل <i>سط</i> . ا	20.15

TABLE 1 - Groundwater Depth Information, cont.

TABLE 1 - Groundwater Depth Information, cont.					
Date Sampled	Depth to Groundwater (Ft.)	Groundwater Elevation (Ft.)			
Well No. MW-3	Elevation of Top of Casing-27.8	39 MSL			
01/09/93	6.68	21.21			
02/09/93	6.25	21.64			
03/10/93	6.18	21.71			
04/12/93	6.41	21.48			
05/17/93	7.37	20.52			
06/28/93	8.47	19.42			
07/13/93	8.74	19.15			
08/10/93	8.45	19.44			
09/10/93	8.52	19.37			
10/12/93	9.20	18.69			
12/20/93	7.95	19.94			
03/18/94	6.60	21.29			
04/08/94	7.70	20.19			
06/22/94	8.62	19.27			
12/07/94	6.92	20.97			
Well No. MW-4	Elevation of Top of Casing-26.9				
12/20/93	7.25	19.72			
03/18/94	6.64	20.33			
04/08/94	7.12	19.85			
06/22/94	7.96	19.01			
12/07/94	6.32	20.65			
MAIL NEW E	Elevation of Ton of Cosing 27.2	4 MCI			
Well No. MW-5 12/20/93	Elevation of Top of Casing-27.3 8.01	19.33			
03/18/94	7.80	19.54			
04/08/94	7.80 7.82	19.52			
	8.51	18.83			
06/22/94	7.08	20.26			
12/07/94	7.06	20.20			
Well No. MW-6	Elevation of Top of Casing-28.0	3 MSL			
12/20/93	8.00	20.03			
03/18/94					
04/08/94	7.72	20.31			
06/22/94	8.68	19.35			
12/07/94					
12/13/94	6.73	21.30			

Notes: All measurements in feet MSL = Mean Sea Level

After water-level measurements were collected, each onsite well was purged by hand using a designated disposable Teflon bailer for each well. Groundwater pH, temperature and electrical conductivity were monitored during well purging. Each well was considered to be purged when these parameters stabilized. Three to four well volumes were removed to purge each well. Worksheets of conditions monitored during purging are attached in Appendix A.

After the groundwater level had recovered to a minimum of approximately 80 percent of its static level, water samples were obtained using designated disposable Teflon bailers. Two 40 ml VOA vials, without headspace, were filled from the water collected from each monitoring well. The samples were preserved on ice and submitted to Chromalab Inc. under chain of custody protocol. Laboratory results with chain of custody forms are attached in Appendix B.

4.0 FINDINGS

4.1 Analytical Results - Groundwater

One groundwater sample each, from monitoring wells MW-1, MW-2a, MW-3, MW-4, MW-5, and MW-6, was collected and submitted for analysis for TPH as gasoline by EPA test method 5030 and BTEX by EPA test method 602. Analysis results from the groundwater samples are summarized in Table 2 and Figure 2. Analytical results are attached in Appendix B.

TABLE 2 - Analytical Results - Groundwater

Well	Date	TPH-gasoline	Benzene	Toluene	Ethylbenzene	Xylenes
Number	Collected	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1	01/09/93	5,360	1,560.0	1,026.6	641.0	2,706.2
	04/12/93	12,000	750.0	100.0	500.0	1,400.0
	07/13/93	720	119.6	32.7	70.8	262.0
	10/12/93	8,400	420.0	39.0	280.0	880.0
	12/20/93	5,200	270.0	58.0	170.0	590.0
	03/18/94	18,000	570.0	180.0	270.0	1,500.0
	04/08/94	NT	NT	NT	NT	NT
	06/22/94	4,800	160.0	56.0	130.0	310.0
	12/07/94	9,100	530.0	200.0	350.0	1,300.0
MW-2a	01/09/93	5,680	801.6	598.6	840.2	2,196.1
	04/12/93	12,000	460.0	110.0	240.0	1,600.0
	07/13/93	550	145.2	47.5	126.8	127.4
	10/12/93	2,000	280.0	17.0	100.0	120.0
	12/20/93	3,300	450.0	40.0	200.0	350.0
	03/18/94	7,900	370.0	53.0	190.0	530.0
	04/08/94	NT	NT	NT	NT	NT
	06/22/94	3,800	420.0	37.0	140.0	290.0
	12/07/94	6,800	640.0	100.0	370.0	950.0
MW-3	01/09/93	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	04/12/93	1,500	95.0	30.0	46.0	85.0
	07/13/93	540	18.3	106.2	75.7	128.0
	10/12/93	3,500	290.0	230.0	210.0	460.0
	12/20/93	690	31.0	10.0	31.0	25.0
	03/18/94	450	9.6	11.0	5. 5	23.0
	04/08/94	NT	NT	NT	NT	NT
	06/22/94	2,500	150.0	130.0	81.0	280.0
	12/07/94	420	16.0	8.3	26.0	37.0

TABLE 2 - Analytical Results - Groundwater, cont.

Well Number	Date Collected	TPH-gasoline (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)
			<u>-</u>			
MW-4	12/20/93	580	2.3	< 0.5	1.4	1.1
	03/18/94	2,100	11.0	1.5	2.3	6.0
	04/08/04	NT	NT	NT	NT	NT
	06/22/94	1,600	39.0	7.5	13.0	16.0
	12/07/94	2,100	82.0	9.6	4.7	14.0
MW-5	12/20/93	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	03/18/94	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	04/08/94	NT	NT	NT	NT	NT
	06/22/94	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	12/07/94	< 50	< 0.5	< 0.5	< 0.5	< 0.5
MW-6	12/20/93	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	03/18/94	NT	NT	NT	NT	NT
	04/08/94	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	06/22/94	< 50	< 0.5	< 0.5	< 0.5	< 0.5
	12/13/94	< 50	< 0.5	< 0.5	< 0.5	< 0.5

Notes: ug/L = parts per billion (ppb)

NT = Not Tested

4.2 Groundwater Gradient

Prior to calculating the groundwater gradient, elevations for the onsite monitoring wells were surveyed by Ron Archer Civil Engineer, Inc. to an accuracy of one-hundredth of a foot. The well elevation was surveyed at the top of the PVC well casing. The elevations of the monitoring wells were established relative to a nearby benchmark located in the curb on the northwest corner of the intersection of Park and Encinal Avenues in Alameda, California.

The groundwater gradient was calculated using the onsite monitoring wells. The location of the wells is shown on Figure 1 - Site Plan. Groundwater elevations were collected from monitoring wells MW-1, MW-2a, MW-3, MW-4, and MW-5 on December 7, 1994 (illustrated in Figure 2). The gradient was evaluated by triangulation using the elevation of the potentiometric surface measured with respect to Mean Sea Level datum.

The historical groundwater gradient and the direction of groundwater flow onsite is summarized in Table 3.

TABLE 3 - Historic Groundwater Gradient

Date Monitored	Gradient (foot/foot)	Direction
01/09/93	0.009	west
02/09/93	0.013	southwest
03/10/93	0.012	west/southwest
04/12/93	0.012	west/southwest

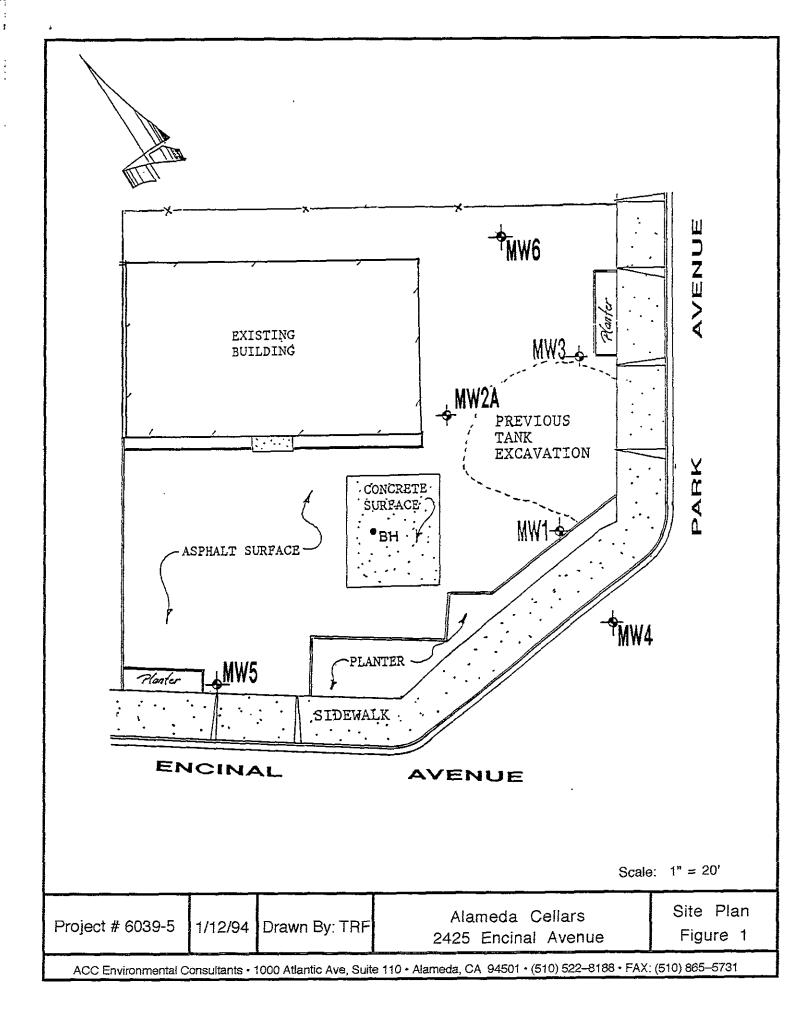
TABLE 3 - Historic Groundwater Gradient, cont.

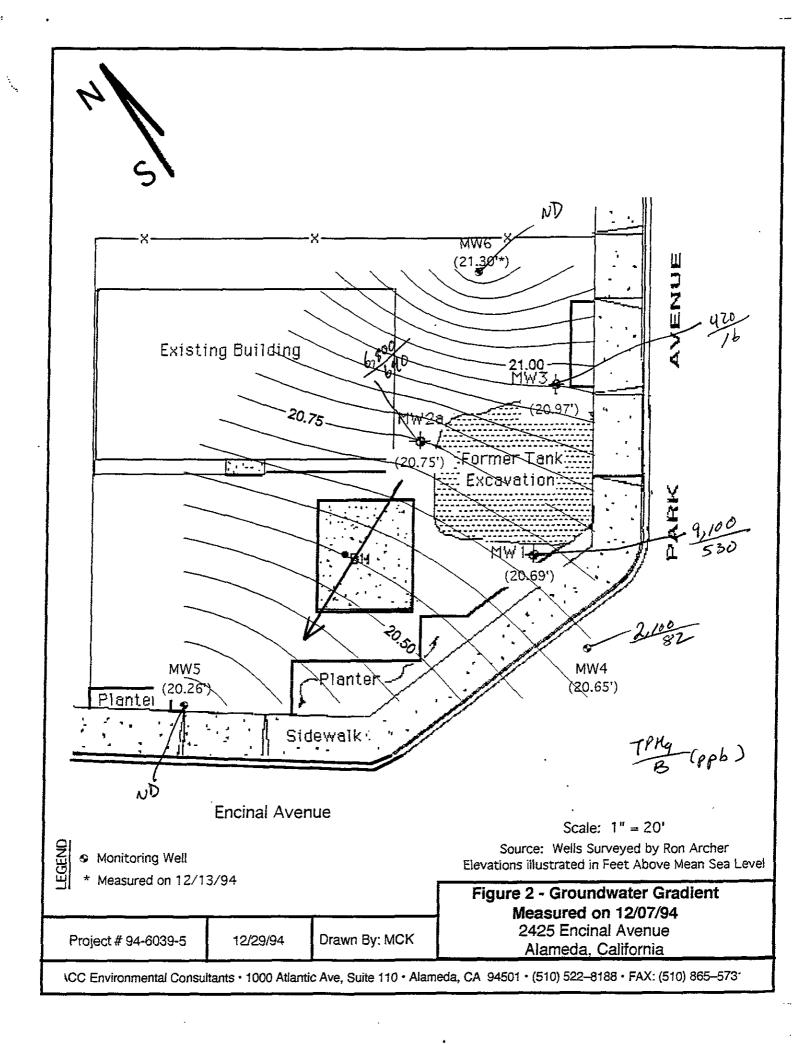
Date Monitored	Gradient (foot/foot)	Direction
05/17/93	0.008	south/southwest
06/28/93	0.008	southwest
07/13/93	0.008	southwest
08/10/93	0.004	west
09/10/93	0.015	southwest
10/12/93	0.004	southwest
12/20/93	800.0	west
03/18/94	0.018	west
04/08/94	0.011	west
06/22/94	0.027	south/southwest
12/07/94	0.008 (average)	west/southwest

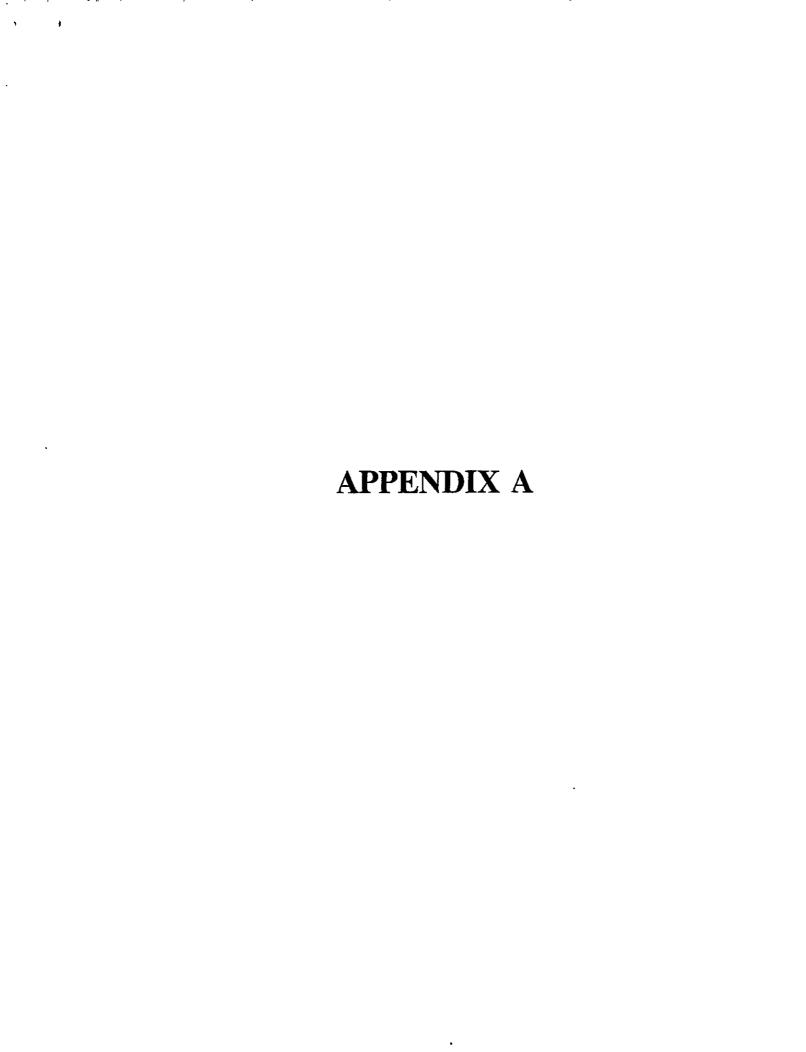
5.0 CONCLUSION

The data and observations discussed herein indicate that groundwater has been impacted due to an unauthorized hydrocarbon release. The analytical parameters used for soil and groundwater sampling performed were in accordance with the guidance document "Tri-Regional Water Quality Control Boards Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites", dated August 10, 1990, for gasoline tanks.

First quarter sampling and analysis indicated elevated levels of TPH as gasoline with BTEX in the groundwater from monitoring well MW-1 and MW-2a. Groundwater from monitoring well MW-3 has below detectable levels of constituents. Second quarterly sampling and analysis of the groundwater in April, 1993 indicated an increase in levels of Total Petroleum Hydrocarbons as gasoline in all wells, however, the benzene, toluene, ethylbenzene and xylenes levels have declined in water samples from monitoring wells MW-1 and MW-2a. Constituents detected during July 1993 appear decreasing due to the fluctuating groundwater elevation. During October 1993 sampling, constituents in monitoring wells MW-1 and MW-3 have increased while only TPH as gasoline and benzene have increased in monitoring well MW-2a. Benzene increase in MW-2a is probably due to residual drainage and the well's close proximity to the former tank location and/or hydrocarbon desorbation from sediment.


Three additional monitoring wells (MW-4, MW-5, and MW-6) were installed to evaluate the extent of groundwater impact plume. Laboratory analysis of the soil collected from each boring indicated below detectable levels of constituents which verifies the lateral extent of soil impact.


Laboratory analysis of the groundwater samples collected from monitoring wells MW-5 and MW-6 in January, March, April, June, and December, 1994 indicated below detectable levels of constituents evaluated. The groundwater results reported indicate a lateral extent of groundwater impact. Laboratory analysis of groundwater collected from monitoring well MW-4 indicated detectable levels of constituents.


The location of the southern edge of the groundwater contaminant plume appears to be just offsite to the south from evidence of laboratory results from groundwater collected from monitoring well MW-4. This "side" gradient movement is attributed to the relatively flat gradient and possible recharge into the excavated area causing fluctuating lateral movement. However, the data observed to date indicates that constituent movement is minimal.

6.0 RECOMMENDATIONS

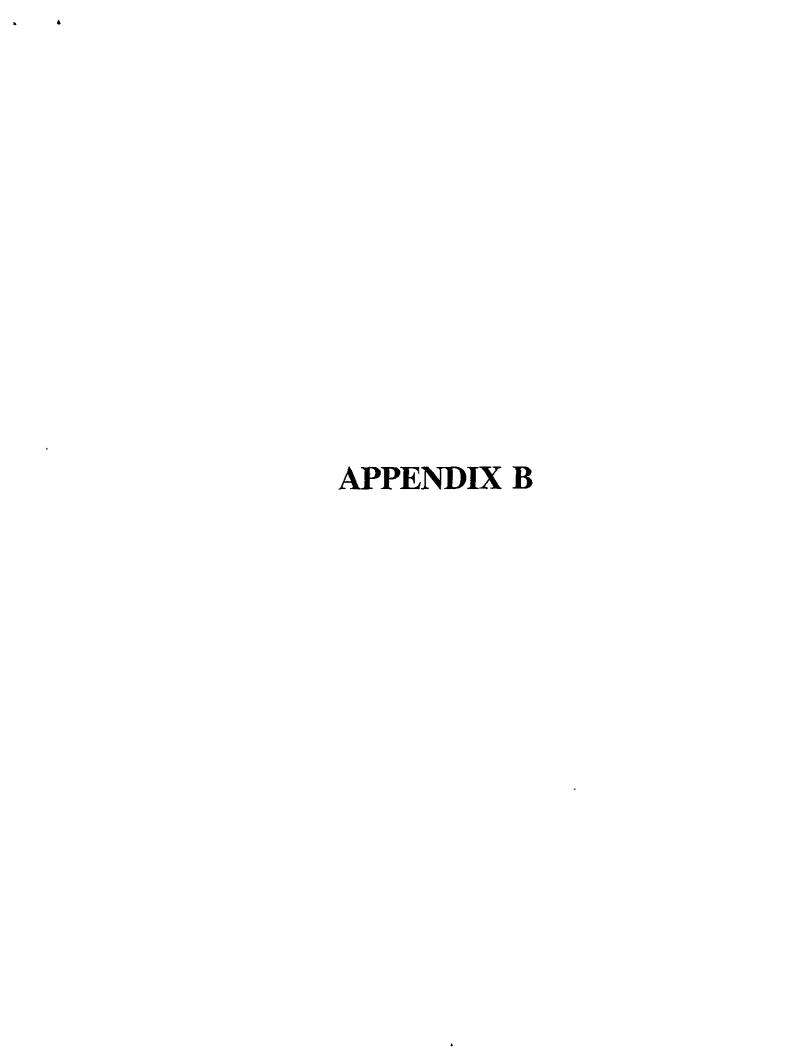
Pursuant to the Tri-Regional Board guidelines, groundwater sampling and monitoring of the onsite wells should continue on a quarterly basis.

Well Sampling Well Development check one	
Well Number: MW 2 P	
Job Number: 6039-5	
Job Name: 2425 Encinal	
Date: $\frac{12}{17/94}$	
Sampler: <u>ACF</u>	14.18
Depth to Water (measured from TCC): 7. 23	7.23
Inside Diameter of Casing:	6.95
Depth of Boring: 14 18	
Method of well development/purging:	
Amount of Water Bailed/Pumped from well: 7 gallons	
Depth to Water after well development:	
→ Depth to water prior to sampling: 7,3	
Bailed water stored on-site ? How ?	
Number of well volumes removed:	
TSP wash, distilled rinse, new rope ? New Rope, New Bailer	
fater Appearance:	
ves no	
ridesence	
nell Samples Obtained:	
ner describe TPH (gasoline)	

	ves	<u>no</u>
froth		/
irridesence		امز
oil		ار
smell	'	
product		V
other describe		أسر

Gailons Removed	cH	E	Temo
5	7.46	. 75	718
10	696	-86	71.8
15	6.75	-73	70. 7
20	6.68	-61	70.6
25	5.62	-63	70.8
30	5.58	-61	70.F
35	5.54	-53	70.3
40			
45			
50		1	

TPH (diesel) TPH (motor oil) BTXE EPA 624 EPA 625 EPA 608 PCBs only Metals Other, specify Field Blank	
EPA 624 EPA 625 EPA 608 PCBs only Metals Other, specify	
EPA 625 EPA 608 PCBs only Metals Other, specify	
EPA 608 PCBs only Metals Other, specify	
PCBs only Metals Other, specify	
Metals Other, specify	
Other, specify	
·	
Field Blank	


Well Sampling X Well Development	check one	
Well Number: MW3		
Job Number: 6039-5		
Job Name: 2425 Encinal		
	•	
Date: 12/7/94		
Sampler: ACE	13.93	
Depth to Water (measured from TOC	1: 6.92	
Inside Diameter of Casing	g: <u> </u>	
	g: <u>13.93</u>	
Method of well development/purging	_	
Amount of Water Bailed/Pumped from well	_	
	·	
Depth to Water after weil developmen	(C S	
Depth to water prior to sampling	J:	
Bailed water stored on-site ? How	? Drum	
Number of well volumes removed		
	? New rope, Wew Bailer	
(SC Wasti, distinct most		
Water Appearance:		
roth ves no		
rridesence		
oil	Samples Obtained:	
smell		
product	TPH (gasoline)	
other, describe	TPH (diesel)	
College Removed of I & Temp	TPH (motor oil)	
Gallons Heritoved 1 51	BTXE	
(1754)	EPA 624	
10 6.91 .31 72.1	EPA 625	
20 16.75 .65 70.6	EPA 608	
25 6.74 -63 70.7	PCBs only	
30 6.76 62 708	Metais	
35	Other, specify	
40	Field Blank	
45		
50		

Well Sampling X Well Development	check one
Well Number: MW4	
Job Number: 6039 - 5	
Job Name: 2425 Enciral	
Date: 12/7/94	
Sampler: ACE	17.5
Depth to Water (measured from TO	
Inside Diameter of Casin	ng: 2" 11. 2 c
	ng: 17.52
Method of well development/purgin	
Amount of Water Bailed/Pumped from we	
Depth to Water after well developme	nt
Depth to water prior to sampling	ng: 6.71
Bailed water stored on-site ? How	? I fum
Number of well volumes remove	d:
TSP wash, distilled rinse, new rope	? New Rope New Bather
Vater Appearance: ves m	
roth V	
ridesence	Samcies Obtained:
meil	
ther, describe	TPH (gasoline) TPH (diesel)
	TPH (motor oil)
allons Removed i oH EC Temp 5 6.88 .50 64.4	BTXE
10 7.03 -49 69.5	EPA 624 EPA 625
15 16-97 -49 69.3	EPA 608
20 7.04 46 66 4	PCEs arriy
25 7.011.47170.1 30 6.98 46 169.7	Metals
1 17.21	Other, specify
40 17.1 .45 67.7	Field Blank
45 7.03 .46 702	
50	

Well Sampling X Well Development	check one
Well Number: MW 5	•
Job Number: <u>603 9 - 5</u>	
Job Name: 2425 Encinal	-
Date: 12/7/94	
Sampler: ACE	, .
Depth to Water (measured from TOC	7.08 /7.5 ⁻
Inside Diameter of Casin	g: 2" 7.0%
Depth of Borin	g:17.51
Method of well development/purgin	g: <u>Bailing</u>
Amount of Water Bailed/Pumped from we	<u> </u>
Depth to Water after well developmen	
Depth to water prior to sampling	
Bailed water stored on-site ? How	
Number of well volumes removed	
TSP wasn, distilled rinse, new rope	
Water Appearance:	
roth	
rridesence	
pil	Campiae Chicined:
smeil	Samples Obtained:
product /	TPH (gasoline)
other, describe	TPH (diesel)
allons Removed to H E Temp	TPH (motor oil)
Cal do 3	BIXE
10 6-77 - 57 72.3	EPA 624
15 7.07 -57 70.8	EPA 625
20 17.05 - 56 70.6	EPA 608
25 7.02 57 70.8	PCBs only
30	Metals
. 35	Other, specify
40	Field Blank
45	

Well Sampling X Well Development	check one
Well Number:M & 6	
Job Number: 6039-5	
Job Name: 2425 Encinal	•
Date: 12/13/94	
Sampler: ACE	3
Depth to Water (measured from TCC	i: <u>6.75</u>
Inside Diameter of Casin	g:2"
Depth of Borin	g: 17.59
Method of well development/purgin	
Amount of Water Bailed/Pumped from we	11: 7.2 gallons
Depth to Water after well developmen	
Depth to water prior to sampling	,
Bailed water stored on-site ? How	
Number of well volumes removed	71
TSP wash, distilled rinse, new rope	? New Rope New Baile
Water Appearance:	
roth ves no	
rridesence	
nil V	Sametes Obtained:
mell variable variabl	
other, describe	TPH (gasoline)
	TPH (aiesei) TPH (motor ail)
allons Removed OH ED Temp	BIXE X
2 % 10.63 .55 63.8	EPA 624
4 18 16.52 .52 62.9	EPA 625
6 15 1/0.50 . 50 62.7	EPA 608
6-5-20 110-401-49 162-61 25 10-301-49 162-7	PCEs only
	Metals
30 /6-29 - 48 (62-5)	Other, specify
· · · · · · · · · · · · · · · · · · ·	-: -: -: -: -: -: -: -: -: -: -: -: -: -

Well Sampling X Well Development	check one
Well Number: MW 6	Car parked over well.
Job Number: 603 9 - 5	Over well.
Job Name: 2425 Encinal	. Inaccessible
Date: 12/7/94	,
Sampler: ACE	
Depth to Water (measured from TO	C):
Inside Diameter of Casir	ng:
Depth of Borin	ng:
Method of well development/purgin	ng:
Amount of Water Bailed/Pumped from we	
Depth to Water after well developmen	
·	
Depth to water prior to sampling	
Bailed water stored on-site? How	
Number of well volumes remove	d:
TSP wash, distilled rinse, new rope	?
Water Appearance: ves no froth irridesence oil smell product other, describe	Samcles Obtained: TPH (gasoline) TPH (diesel)
Gallons Removed DH EC Temp	TPH (motor oil) BTXE EPA 624 EPA 625 EPA 608 PCBs only Metais Other, specify Field Blank

Project#: 6039-5

CHROMALAB, INC.

Environmental Services (SDB)

December 15, 1994

Submission #: 9412132

Analyzed: December 15, 1994

ACC ENVIRONMENTAL CONSULTANTS

Atten: Misty Kaltreider

Project: 2425 ENCINAL

Received: December 8, 1994

re: 5 samples for Gasoline and BTEX analysis.

Matrix: WATER

Sampled: December 7, 1994 Run#: 4870

Method: EPA 5030/8015M/602/8020

Sol # CLIENT SMPL ID	Gasoline (mg/L)	Benzene	Toluene (ug/L)	Ethyl Benzene (ug/L)	Total Xylenes (ug/L)
72260 MW-1	9.1	530	200	350	1300
72261 MW-2A	6.8	640	10 0	370	950
<i>72262</i> MW-3	0.42	16	8.3	26	37
72263 MW-4	2.1	82_	9.6	4.7	14 M D
72264 MW-5	N.D.	N.D.	N.D.	N.U.	. כל - וית
Reporting Limits	0.05	0.5	0.5	0.5	0.5
	N.D.	N.D.	N.D.	N.D.	N.D.
	115	109	108	113	111
72264 MW-5 Reporting Limits Blank Result Blank Spike Result (%)	N.D.	N.D.	N.D.	N.D.	N.D.

Jack Kell Chemist

Ali Kharrazi Organic Manager

DOHS 1094

2239 Omega Road, #1 · San Ramon, California 94583 510/831-1788 • Facsimile 510/831-8798

Chain of Custody

DATE 12-7-94 Kaltveider ANALYSIS REPORT PURGEABLE HALOCARBONS ź Allantic PURGEABLE AROMATICS BTEX (EPA 602, 8020) VOLATILE ORGANICS (EPA 624, 8240, 524.2) PRIORITY POLLUTANT METALS (13) METALS: Cd, Cr, Pb, SAMPLERS (SIGNATURE) (PHONE NO.) EXTRACTION (TCLP, STLC) TOTAL LEAD PESTICIDES (EPA 608, 30 NUMBER OF alisan Challe MATHIX: PRESERV. MWI 2:35 Water MWZA 407 Water X MWZ X Cold MWY Wester 1.25 MWS 11:45 Water Cold γ PHOJECT INFORMATION SAMPLE HECEIPT RELINQUISHED BY **NELINQUISHED BY** 2. RELINQUISHED BY PROJECT NAME: 2425 ENCINCI TOTAL NO. OF CONTAINERS HEAD SPACE (SIGNATURE) (TIME) (SIGNATURE) (TIME) 6039-5 MISON EXAGE 12/8
(PAINTED NAME) (DATE) REC'D GOOD CONDITION/COLD (PRINTED NAME) (PRINTED NAME) 6039-5 (DATE) CONFORMS TO RECORD ACC Environmental **ICOMPANY** (COMPANY) OTHER 72 RECEIVED BY RECEIVED BY RECEIVED BY (LABORATORY) SPECIAL INSTRUCTIONS/COMMENTS: ISIGNATURE (SIGNATURE) TIME (PRINTED NAME) (PRINTED NAME) (DATE)

DEC-19-'94 MON 17:00 ID:CHROMALAB INC

CHROMALAB, INC.

Environmental Services (SDB)

December 19, 1994

Submission #: 9412204

Analyzed: December 16, 1994

ACC ENVIRONMENTAL CONSULTANTS

Atten: Misty Kaltreider

Project: 2425 ENCINAL

Project#: 6039-5

Received: December 14, 1994

re: 1 sample for Gasoline and BTEX analysis.

Matrix: WATER

Sampled: December 13, 1994 Run#: 4902

Method: EPA 5030/8015M/602/8020

Spl # CLIENT SMPL ID 72856 MW6	Gasoline (mg/L) N.D.	Benzene (ug/L) N.D.	Toluene (ug/L) N.D.	Sthyl Benzene (ug/L) N.D.	Total Xylenes (ug/L) N.D.
Reporting Limits	0.05	0.5	0.5	0.5	0.5
Blank Result	N.D.	N.D.	N.D.	N.D.	N.D.
Blank Spike Result (%)	90	109	109	109	113

Jack Kelly Chemist Ali Kharrazi Orqanic Manager

2239 Omega Road, #1 • San Ramon, California 94583 510/831-1788 • Facsimile 510/831-8798

Chain of Custody

	DOHS 1094	5	10/831	-1788	• Facs	lmite 5	10/83	-879	18	903			;	Cł	nai	n o	of C	Cus	to	d
PROJ. MGR. Misty Ko	iltieider										DAI	E	1.2/	14		PAGE .			OF	
PROJ. MGR. Misty Ko COMPANY ACC GOVER ADDRESS LOOD A o Alamach Co AMPLEAS (SIGNATURE) Cultural Underlee	Ave. Sulte III) 94501 (PIIONE NO) 570 - \$22-8188	asoline 30, 8015) asoline (5030, 8015)	(er4 602, 8020) iese! (0/3530, 8015)	PURGEABLE AROMATICS BTEX (EPA 602, 8020)	BLE HALOCARBONS , 8010) E ORGANICS	(EPA 624, 8240, 524,2) BASE/NEUTRALS, ACIDS (EPA 625/627, 8270, 525)	TOTAL OIL & GREASE (EPA 5520, 8+F, E+F)		8080)	(EPA 418.1))HT	Zn, Ni		PRIORITY POLLUTANT METALS (13)				•		CONTAINEDE
MW 6 12/13	TIME MATRIX PRESERV. 9:30 Dater Cold	1PH - C	H GE	PURGEA BTEX (EP	PURCEA (EPA 601 VOLATIL	(EPA 624 BASE/NEI (EPA 625,	TOTAL 0 (EPA 5520	PCB (EPA 608,	PESTICIDES (EPA 608, 8080)	TOTAL REC		METALS: Cd, Ct, Pb,	CAM METALS (17)	PRIORITY P	TOTAL LEAD	EXTRACTION (TCLP, STLC)			,	Niveed Of
i			-			_														
			_			-														
				-																
PHOJECT INFORMATION	SAMPLE RECEI	17	BELO	IQUISHE																
OJECT NUMBER: 6039-5	TOTAL NO OF CONTAINERS HEAD SPACE	3	(SIGH/	Olso ME)	en Ck	dale	UIME	THE	MOUIS		/			ł		ISHED	ВУ			
0. # 6039-5 AT STANDARD 5-DAY	REC'D GOOD CONDITION/COL CONFORMS TO RECORD	OTHER	(COMP	ED NAME)	en Uk un E En	Likk Liconom	12/14 IDATE	(Pri))	HTED HA		 -			Į.	PRINTED					JAC IAC
ECIAL INSTRUCTIONS/COMMENTS:	Rush 72 hr.	<u></u>	RECE	IVED BY	Tra		2 1	- PAN	MPANY)	Вү				2. Ji	COMPAN ECÉIVE	Ŋ D BY (L	ABORA	TORY)		
	turnaround t	ime ,	(ISIGNA	ED HAME)	rrou	12	(TIME)	3	HATURE)				!	- 1	IGHATUI				n	TIM
			СОМЬ	Alin	a/qf	7 		(COM	(PALIY)		~ ~		(DA 		NINTED A	IAME)			al	ATE

Environmental Services (SDB)

December 15, 1994

Submission #: 9412132

Analyzed: December 15, 1994

ACC ENVIRONMENTAL CONSULTANTS

Atten: Misty Kaltreider

Project: 2425 ENCINAL

Received: December 8, 1994

Project#: 6039-5

re: 5 samples for Gasoline and BTEX analysis.

Matrix: WATER

Sampled: December 7, 1994 Run#: 4870

Method: EPA 5030/8015M/602/8020

Spl # CLIENT SMPL ID	Gasoline (mq/L)	Benzene (uq/L)	Toluene	Ethyl Benzene (ug/L)	Total Xylenes (ug/L)
72260 MW-1	9.1	530	200	350	1300
72261 MW-2A	6.8	640	100	370	950
72262 MW-3	0.42	16	8.3	26_	37
72263 MW-4	2.1	32_	9.6	4.7	14
72264 MW-5	N.D.	N.D.	N.D.	N.D.	N.D.
Reporting Limits	0.05	0.5	0.5	0.5	0.5
Blank Result	N.D.	N.D.	N.D.	N.D.	N.D.
Blank Spike Result (%)	115	109	108	113	111
DISTRICT OF A STATE OF	ئى كى چەر	J. 11 /	- -		

Chemist

Ali Kharrazi Organic Manager

DOHS 1094

2239 Omega Road, #1 · San Ramon, California 94583 510/831-1788 • Facsimile 510/831-8798

Chain of Custody

DATE 12-7-94 PAGE ___ Kaltveider ANALYSIS REPORT ž Allantic PURGEABLE AROMATICS BTEX (EPA 602, 8020) Ľ'n, TOTAL RECOVERABLE HYDROCARBONS (EPA PRIORITY POLLUTANT METALS (13) VOLATILE ORGANICS (EPA 624, 8240, 524.2) Alameda METALS: Cd, Cr, Pb, SAMPLERS (SIGNATURE) (PHONE NO.) EXTRACTION (TCLP, STLC) TOTAL LEAD PESTICIDES (EPA 608, 80 NUMBER OF alian Challe SAMPLE ID. FOR DATE OF TIME MATRIX: PRESERV. MWI 2:35 Water MWZA 4.07 Water Y MW3 Water X Cold MWY Wester Cold MWS Water Cold PROJECT INFORMATION SAMPLE HECEIPT RELINQUISHED BY RELINQUISHED BY 2. RELINQUISHED BY PROJECT NAME: 2425 ENCINC.)
PROJECT NUMBER: TOTAL NO. OF CONTAINERS (SIGNATURE) **HEAD SPACE** (TIME) (SIGNATURE) (TIME) Alison EKolake 12/8
(PRINTED NAME) (DATE) 6039-5 REC'D GOOD CONDITION/COLD IPPINTED NAME) (PRINTED NAME) (DATE) 6039-5 CONFORMS TO RECORD (COMPANY) 48 72 OTHER RECEIVED BY RECEIVED BY RECEIVED BY (LABORATORY) SPECIAL INSTRUCTIONS/COMMENTS: (SIGNATURIE) (TIME) (SIGNATURE) (TIME) (PRINTED NAME) (PRINTED NAME) (DATE)

Environmental Services (SDB)

December 19, 1994

Submission #: 9412204

Analyzed: December 16, 1994

ACC ENVIRONMENTAL CONSULTANTS

Atten: Misty Kaltreider

Project: 2425 ENCINAL

Project#: 6039-5

Received: December 14, 1994

re: 1 sample for Gasoline and BTEX analysis.

Matrix: WATER

Sampled: December 13, 1994 Run#: 4902

Method: EPA 5030/8015M/602/8020

Spl # CLIENT SMPL ID	Gasoline (mq/L)	Benzene (uq/L)	Toluene (ug/L)	Ethyl Benzene (ug/L)	Total Xylenes (ug/L)
72856 MW6	N.D.	N.D.	N.D.	N.D.	N.D.
Reporting Limits Blank Result	0.05 N.D.	0.5 N.D.	0.5 N.D.	0.5 N.D.	0.5 N.D.
Blank Spike Result (%)	90	109	109	109	113

Jack Kelly Chemist Ali Khafrazi Organic Manager

DOHS 1094

2239 Omega Road, #1 • San Ramon, California 94583 510/831-1788 • Facsimile 510/831-8798

Chain of Custody

								1		o. Odal.	vuy
PROJ. MGR. Misty K COMPANY ACC GOVE	altreider						DA	TE/_2//5	/ PAGI	E OF	
COMPANY ACC GOUL	runmontal Com			S		ANALYSI		27.7			
ADDRESS 1000 A o Alameda C SAMPLERS (SIGNATURE) Company ALC ALC ALC ALC ALC ALC ALC AL	Ala Consultants	TPH - Casoline (EPA 5030, 8015) TPH - Casoline (5030, 8015) W/RTEX (EPA 607, 8020)		PURGEABLE HALOCARBONS (EPA 601, 8010) VOLATILE ORGANICS (EPA 624, 8240, 224, 23			418.1)				
Alamech (AVE. Suite 110	0,8		ARB 5	S S			j ž			
SAMPI EDG /CICHATUGE	4, 11301	503			4 5 8 £		H	LZ,	ž		K
OF ALLO	(PHONE NO)	ine (ARC 530	Y E S	\$ 8 8 H	6 6	S ER	[] [] [] [] []	<u> </u>		N Z
Coolean Challen	5/0 \$22-8188	30, 30, ESO!	iese 0/3		E 23 4 4	808 S	8 8			.	l S
	•1		TPH - Diesel (EPA 3510/3550, 8015) PURGEABLE AROMATICS	PURCEABLE HALOCAS (EPA 601, 8010) VOLATILE ORGANICS (FPA 624, 8240, 8274, 727	BASE/NEUTRALS, ACIDS (EPA 625/627, 8270, 525) TOTAL OIL & GREASE (EPA 5320, B+F, E+F)	PCB (EPA 608, 8080) PESTICIDES (EPA 608, 8080)	TOTAL RECOVERABLE HYDROCARBONS (EPA	METALS: Cd, Cr, Pb, CAM METALS (17)	METALS (13) TOTAL LEAD EXTRACTION		OF CONTAINERS
SAMPLE D. DATE	TIME MATRIX PRESERV.	TPH- (EPA 3 TPH-			PA SEV	PCB (EPA 6 PESTIC (EPA 6	₹ %	\frac{1}{2} \frac{1}{2}		[l es
MW6 12/13	9:30 Water Cold	1	- 	0 0 E > E	3 B E F E	と 国 記 母	P	🖁 👌 🥫		∄	NUMBER
12/13	1.20 Maret COLM	_						 -		<u> </u>	
					-						
			-	_						- 	-
								· -			-
				 	-		<u> </u>				
											_
							- <u>-</u> -	. _			
						ĺ				_	-
								·		_ _	
			-	-	-						
						1					_
	i					·		-			
1			·]				-
PROJECT INFORMATION								-		-	_
	SAMPLE HECE!	21	RELINQUIS	I IED BY	<u> </u>						
2425 Encinal PROJECT NUMBER: 6039-5	TOTAL NO OF CONTAINERS	3		1. 16	Cale (IME) (CARE) (CARE) (CARE)	REUNQUIS	SHED BY	7	RELINQUISHE	ED BY	
6039-5	HEAD SPACE		(SIGNATURE)	nsen und	MULE TOME	(SIGNATURE			1		3,
P.O. # 6039-5	HEC'D GOOD CONDITION/COL	.D		ison EX	Ak 12/14	COLONIONE	:)	(TIME	(SIGNATURE)	 	(TIME)
TAT STANDARD	CONFORMS TO RECORD		(NUMBED NY	ME)	(DATE)	(PRINTED NA	AME)				(11mc)
6-DAY	24 48 72	OTHER	(COMPANY)	Env	ron menta			lovie	(PRINTED NAME)	(DATE)
SPECIAL INSTRUCTIONS/COMMENTS:		4	RECEIVED	D.V.					(COMPANY)-	2	
•	Rush 72 hr.			1		RECEIVED	Вү	2		(LABORATORY)	
	turnaround t		ISIGNATURE	1000	1930				1	(SINOIMIONY)	3.
•	innaround f	IMK ,	11	lorrou	/) ~/b. //	(SIGNATURE)	(IIME	(SIGNATURE)		
	1		(IMINTED HA	ME)	12 / T 79 (DATE)	(PINNTED HA	WEI				(LIME)
			(COMPANY)	ama/op	12-74-94 (DATE)		·	(OATE)	(PRINTED NAME)		(DATE)
. '	-			· · · · · · · · · · · · · · · · · · ·		(COMPANY)					- 1