

Underground Contamination Investigations, Groundwater Consultants, Environmental Engineering

QUARTERLY GROUNDWATER SAMPLING REPORT

(Sampled August 12, 1996)

PACIFIC CRYOGENIC COMPANY
2311 Magnolia Street
Oakland, California

August 16, 1996

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	FIELD WORK	Ę
	Monitoring Well Sampling	5
	Wastewater Generation	6
III.	RESULTS OF WATER LEVEL MEASUREMENTS	7
	Shallow Groundwater Flow Direction	7
	Shallow Water Table Hydraulic Gradient	7
	Historical Water Level Measurements	7
IV.	SHALLOW GROUNDWATER SAMPLING RESULTS	
	Laboratory Analysis	11
	Results of Groundwater Sampling	11

ATTACHMENT A -- Well Sampling Logs

ATTACHMENT B -- Analytical Results: Groundwater

I. INTRODUCTION

The subject site is the historical location of Pacific Cryogenic Company at 2311 Magnolia Street, Oakland, California. The location of the site is shown on Figure 1 (site location map).

On June 30 and July 12, 1989, Geo-Environmental Technology removed three underground storage tanks from the subject site: one 8,000-gallon underground Diesel tank, one 1,000-gallon underground Gasoline tank, and one 550-gallon underground Waste Oil tank.

Due to the detection of subsurface contamination in the vicinity of the Gasoline and Waste Oil tanks, shallow groundwater monitoring wells MW-1, MW-2 and MW-3 were installed.

On November 12, 1992, the underground piping running between the previous Gasoline and Waste Oil underground tanks and the previous dispenser pedestal were removed by Hageman-Aguiar, Inc. Subsequent to the piping removal, additional excavation was conducted on November 18, 1992. The excavation extended to a depth of approximately 15 feet below ground surface and was conducted in order to mitigate the apparent subsurface gasoline contamination. The three monitoring wells MW-4, MW-5 and MW-6 were installed within the excavation at the time of the backfilling operation.

On August 12, 1996, on-site monitoring wells MW-3 and MW-4 were sampled for the laboratory analysis for dissolved petroleum constituents.

This "round" of groundwater sampling has been conducted as part of the quarterly groundwater monitoring program at the site, as required by the Alameda County Environmental Health Department and the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region. Currently, wells MW-3 and MW-4 are sampled quarterly, well MW-1 is sampled semi-annually, and sampling at well MW-2 has been discontinued.

II. FIELD WORK

Monitoring Well Sampling

On August 12, 1996, groundwater samples were collected from monitoring wells MW-3 and MW-4. Prior to groundwater sampling, each well was purged by bailing approximately 7 to 10 casing volumes of water. Field conductivity, temperature, and pH meters were present on-site during the monitoring well sampling. As the purging process proceeded, the three parameters were monitored. Purging continued until readings appeared to have reasonably stabilized. After the water level in the well had attained 80% or more of the original static water level, a groundwater sample was collected using a clean teflon bailer. The water sample was placed inside appropriate 40 mL VOA vials free of any headspace. The samples were immediately placed on crushed ice, then transported under chain-of-custody to the laboratory at the end of the work day.

At the time each monitoring well was sampled, the following information was recorded in the field: 1) depth-to-water prior to purging, using an electrical well sounding tape, 2) identification of any floating product, sheen, or odor prior to purging, using a clear teflon bailer, 3) sample pH, 4) sample temperature, and 5) specific conductance of the sample.

Copies of the well sampling logs are included as Attachment A.

Wastewater Generation

All water removed from the wells during purging and sampling was drummed and stored on-site until the results of laboratory analyses were obtained. Based upon these results, the water should be transported as a hazardous liquid waste under proper manifest to an appropriate TSD facility for treatment and disposal.

The ultimate disposal of this waste water is the responsibility of the property owner (waste generator), and is beyond the scope of work as outlined in this report.

III. RESULTS OF WATER LEVEL MEASUREMENTS

Shallow Groundwater Flow Direction

Shallow water table elevations were measured on August 12, 1996. These measurements are shown in Table 1. Figure 3 presents a contour map for the shallow groundwater table beneath the site. As shown in this figure, the data from the four monitoring wells MW-1, MW-2, MW-3 and MW-4 indicate that the shallow groundwater flow was in the easterly direction during this round of groundwater sampling.

Shallow Water Table Hydraulic Gradient

Figure 3 presents the contour map for the shallow groundwater table beneath the site. As shown in this figure, the shallow groundwater table beneath the site appears to have a calculated hydraulic gradient of dH/dL = 0.4'/47' = 0.0085.

Historical Water Level Measurements

Table 2 presents the results of all water level measurements collected between April 3, 1992, and the present time.

TABLE 1.

Shallow Water Table Elevations
August 12, 1996

Well	Top of Casing Elevation (feet)	Depth to Water (feet)	Water Table Elevation (feet)
MW-1	99.27	7.31	91.96
MW-2	100.00	8.45	91.55
MW-3	100.02	8.81	91.21
MW-4	99.95	8.23	91.72

FIGURE 3.
Shallow Groundwater Table
Contour Map, measured 8-12-96.

TABLE 2.

Historical Water Table Elevations (feet)

		Date of Measurement												
Well	4-3-92	6-16-92	10-8-92	1-7-93	4-23-93	7-16-93	11-8-93	2-2-94	5-2-94					
MW-1	95.58	92.01	91.11	97.17	95.17	92.07	91.78	94.42	93.55					
MW-2	93.25	91.60	90.83	94.24	92.69	91.46	91.04	92.55	92.19					
MW-3	92.52	91.87	90.65	94.43	92.64	91.21	91.14	92.21	91.94					
MW-4						91.48	91.16	92.67	92.37					
Flow Direction	SE	SE	E	SE	SE	E	SE	E	E					

		Date of Measurement											
Well	8-3-94	8-3-94	11-4-94	3-14-95	8-23-95	5-8-96	8-12-96						
MW-1		90.96	90.96	96.33	91.70	93.72	91.96						
MW-2	91.25	90.77	90.77	95.08	91.30	92.64	91.55						
MW-3	91.00	90.57	90.57	94.96	91.10	92.84	91.21						
MW-4	91.26	90.74	90.74	95.60	91.38	93.28	91.72						
Flow Direction	E	E	E	E	E	E	E						

IV. SHALLOW GROUNDWATER SAMPLING RESULTS

Laboratory Analysis

All analyses were conducted by a California State DOHS certified laboratory in accordance with EPA recommended procedures (Priority Environmental Labs, Milpitas, CA). All Groundwater samples were analyzed for Total Petroleum Hydrocarbons as Gasoline (EPA method 8015), and for Benzene, Toluene, Ethylbenzene, and Total Xylenes (EPA method 602).

Results of Groundwater Sampling

Tables 3 and 4 present the results of the laboratory analysis of the groundwater samples, as well as the results of all previous "rounds" of sampling from wells MW-1, MW-2, MW-3 and MW-4.

As shown in Table 3, for this round of sampling, Gasoline was detected in the groundwater sample collected from well MW-3 at a concentration of 8,900 μ g/L (ppb). In addition, Benzene was detected in the groundwater sample collected from well MW-3 at a concentration of 47 μ g/L (ppb).

No detectable concentration of either Gasoline, Benzene, Toluene, Ethylbenzene, or Total Xylenes was found in the shallow groundwater sample collected from well MW-4.

TABLE 3.
Shallow Groundwater Sampling Results

Well	Date	TPH as Gasoline (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
MW-1	10-26-90 03-04-92 04-03-92 06-16-92 10-09-92 01-07-93 04-23-93 07-16-93 11-08-93 01-28-94 05-02-94 08-03-94 11-04-94 03-14-95 08-23-95 05-08-96 08-12-96	460 300 220 ND 210 280 110 ND 190 ND ND ND ND ND ND ND	1200 120 21 54 ND 0.7 0.9 ND ND ND ND ND ND ND ND ND	18 9.0 6.0 17 ND 3.7 1.3 ND ND ND ND ND ND ND ND ND	7.1 16 15 29 ND 4.4 2.9 0.5 ND 6.7 ND ND ND ND ND ND	37 44 36 73 ND 9.6 6.2 1.1 ND 21 ND ND ND ND ND ND ND
Detection Limit		50	0.5	0.5	0.5	0.5

ND = Not Detected

TABLE 3. Shallow Groundwater Sampling Results

Well	Date	TPH as Gasoline (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
MW-2	03-04-92 04-03-92	ND ND	ND ND	ND ND	ND ND	ND ND
	06-16-92	ND	ND	ND	ND	ND
,	10-09-92	ND	ND	ND	ND	ND
	01-07-93	ND	ND	ND	ND	ND
	04-23-93	ND	ND	ND	ND	ND
	07-16-93	ND	ND	ND	ND	ND
	11-08-93	ND	ND	ND	ND	ND
	01-28-94	ND	ND	ND	ND	ND
	05-02-94	ND	ND	ND	ND	ND
	08-03-94	ND	ND	ND	ND	ND
	11-04-94	ND	ND	ND	ND	ND
	03-14-95	ND	ND	ND	ND	ND
	08-23-95	ND	ND	ND	ND	ND
	05-08-96	ND	ND	ND	ND	ND
	08-12-96			900 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -		
Detection Limit		50	0.5	0.5	0.5	0.5

ND = Not Detected

 $\mathscr{O}w_{\mathcal{U}}$

TABLE 3. (continued) Shallow Groundwater Sampling Results

Well	Date	TPH as Gasoline (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
MW-3	03-04-92 04-03-92 06-16-92 10-09-92 01-07-93 04-23-93 07-16-93 11-08-93 01-28-94 05-02-94 08-03-94 11-04-94 03-14-95 08-23-95 05-08-96 08-12-96	14,000 5,200 6,000 11,000 4,200 21,000 16,000 7,500 22,000 2,500 2,500 2,500 12,000 19,000 8,900	6,200 120 180 87 3.3 23 19 4.3 8.5 69 35 4.0 9.5 35 57	60 32 45 49 13 43 21 5.7 10 39 12 8.1 3.0 8.2 17 7.6	110 57 82 94 44 49 25 7.9 50 60 27 18 4.6 14 32	740 180 190 200 92 130 78 35 95 110 25 27 8.3 20 56 16
Detection	on Limit	50	0.5	0.5	0.5	0.5

ND = Not Detected

TABLE 3. (continued) Shallow Groundwater Sampling Results

Well	Date	TPH as Gasoline (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
MW-4	01-07-93 04-23-93 07-16-93 11-08-93 01-28-94 05-02-94 08-03-94 11-04-94 03-14-95 08-23-95 05-08-96 08-12-96	4,800 2,700 3,000 1,400 830 900 1,000 160 120 ND ND ND	6.4 8.3 3.7 0.6 8.5 7.3 22 0.6 3.6 ND ND	25 11 4.2 0.8 10 3.2 0.7 ND ND ND ND	60 31 4.9 1.1 12 0.5 8.0 1.9 ND ND ND	110 59 15 4.8 27 14 7.4 2.9 3.7 ND ND
Detection Limit		50	0.5	0.5	0.5	0.5

ND = Not Detected

QUARTERLY GROUNDWATER SAMPLING REPORT PACIFIC CRYOGENIC COMPANY 2311 Magnolia Street, Oakland, CA

August 16, 1996

No. C-34262

No. C-34262

RCE 34262

RCE 34262

ATTACHMENT A

Well Sampling Logs

WELL SAMPLING LOG

Page 1 of 2 Project/No. PACIFIC CRYOGENICS Site Location OAKLAND, CA. Date & 12-96 Well No. MW-3 Time Began // OO Weather SUNNY MID 70 5 Completed 12:56 Sampling Personnel J. CONNORS **EVACUATION DATA** Description of Measuring Point (MP) WELL BOX @ GRADE Total Sounded Depth of Well Below MP 2236 Diameter - Depth to Water Below MP 8.81 = Water Column in Well 1355 Gallons in Casing 21 + Annular Space $\frac{\times 4}{\times 10}$ = Total Gallons 212Gallons Pumped Prior to Sampling 15.5 Evacuation Method PVC HAND BAILER SAMPLING DATA / FIELD PARAMETERS Inspection for Free Product: NONE DETECTED (thickness to 0.1 inch, if any) 11:40 12:56 11:23 Time | 1 | O 13* 155 5 10 Gals Removed Temperature 78.7 72.3 738 70.2 Conductivity _750 740 730 690 PH 7.41 7.13 7.03 7.14
CHALK WHITE WHITE WHITE Color / Odor FUEL ODOR FUEL CLOCK FUEL ODOR FUEL ODOR Turbidity _ HIGH HIGH 141644 HOIH

Comments: * DEWATERED @ 13 GAL.

WELL SAMPLING LOG

Project/No. PACIFIC CRYOGENICS Page 2 of 2

Site Location	OAKLAN	1D, CA.			
Well No. Mi	,			Date 8-12-	96
Weather <u></u> SU	NNY MID	70 5		e Began <u>11:45</u> mpleted	
	onnel J.COA				
	EV	ACUATION DAT	ГА		
Description of Meas	suring Point (MF	WELL	BOX @ C	PRADE	
Total Sounded Depth	n of Well Below	MP 1347	_		
- Depth	to Water Below	мр <u>8.23</u>	Diam of (Casing 4	
= Wa	ter Column in W	ett 5.24			
Gallons in Casing _			* 10 =	Total Gallons	13.1 32.6
_		(30% porosity)			
		Ga	allons Pumped Pri	or to Sampling	35
Evacuation Method _	PVC I	HAND BY	AILER		
	SAMP	LING DATA /	FIELD PARAME	ETERS	
Inspection for (thickness to 0	_	NONE DE	TECTED		
Time	11152	12:13	12:28	12:43	
Gals Removed	_5_	_15	25	<u> 35 </u>	
Temperature	71.1	70.2	695	69.1	
Conductivity	420	410	400	400	
pH	6.98	7.17	7.13	7.15	
Color / Odor	CLEAR NO ODOR	NO ODOR	CLEAR NO OPOR	CLEAR NO ODOR	
Turbidity	LOW	LOW	LOW	LOW	
. ar or ar cy					
Comments:		WILL THE COLUMN TO THE COLUMN			_

Underground Contamination Investigations, Groundwater Consultants, Environmental Engineering

Project: PACIFIC CRYOGENICS

Date: 08-12-96

WELL #	TOTAL DEPTH	DTW	PRODUCT	COMMENTS
MW-1	18.82	7.31	Ø	GLIGHT FUEL ODOR
MW-2	22.72	8.45	Ø	NO ODOR
MW-3	22.36	8.81	Ø	FUEL ODOR
MW-4	13.47	8.23	Ø	NO ODOR

ATTACHMENT B

Analytical Results: Groundwater

PRIORITY ENVIRONMENTAL LABS

Precision Environmental Analytical Laboratory

August 16, 1996

PEL # 9608026

HAGEMAN - AGUIAR, INC.

Attn: Gary Aguiar

Re: Two water samples for Gasoline/BTEX analysis.

Project name: Pacific Cryogenic Co.

Project location: 2311 Magnolia St., - Oakland, CA.

Date sampled: Aug 12, 1996
Date extracted: Aug 14-15, 1996

Date submitted: Aug 13, 1996 Date analyzed: Aug 14-15, 1996

RESULTS:

SAMPLE I.D.	Gasoline	e Benzene	e Tolu		•	
	(ug/L)	(ug/L)	(ug/	Benze L) (ug/		
MW-3 MW-4	8900 U	47 N.D.	7.6 N.D.	14 N.D.	16 N.D.	
Blank	N.D.	N.D.	N.D.	N.D.	N.D.	
Spiked Recovery	86.9%	82.0%	94.0%	106.8%	112.4%	
Detection limit	50	0.5	0.5	0.5	0.5	
Method of Analysis	5030 / 8015	602	602	602	602	

David Duong Laboratory Director PEL# 9608026

INV# 27203

CHAIN OF CUSTODY RECORD

PROJECT NAME AS PACIFIC		enic	cc)	SAMPLER: (Signature)	no			IAI V	10		/,,/	7	////	
2311 M					HAGEMA 3732 M	N - AGUI. t. Diablo Blvd.,	AR, INC.		ANALYSIS REQUESTED						
CAKLA	ID, CA				Lafayette, CA 94549 (415)284-1661 (415)284-1664 (FAX)										
CROSS REFERENCE NUMBER	DATE	TIME	S O I L	W A T E R	STATIC	N LOCATIO	Ň		//	/ 0 			/	REMARK	ŝ
MW-3	8-12-96			×	MONITOR	WELL	¥ 3		X			1		NORM TAT.	
MW-4	8-12-96			×	¥	Ţ	* 4		X						
			-	-			····	 					<u> </u>		
								- 	11		+-	1	<u> </u>		r 15,5
													-		
								-	-			_	╁—		
									1		_	1-	1		·
				ļ					1				ļ		
							 						 		
***************************************			 	1							_	+			
RELINQUISHED BY	(Signature)	×				TE 81396 ME 1480	RECEIVED BY: (Si	gneture)						DATE TIME	
RELINGUISHED BY	(Signature)				DA Til		RECEIVED 8Y: (S	gnature)						DATE	
RECHNOUISHED BY	(Signature)				DA	TE	RECEIVED BY: (S	Guerra)		·				DATE	
RELINQUISHED BY	(Signature)			-	DA		RECEIVED FOR L	ABORATOR	BY: (S	gnadure)	• • • • •		<u></u>	TIME DATE 3-	12-0
					TI	WE		$-\mathit{M}$	010	Deco	حح	#	E		105