SOIL PARAMETERS AND CONFIRMATION SOIL SAMPLING INVESTIGATION REPORT

Pacific Supply Company, LLC 1735 24th Street Oakland, California

Project No. 029

January 31, 2005

Soil Parameters and Confirmation Soil Sampling Investigation Report

Pacific Supply Company, LLC 1735 24th Street Oakland, California

Prepared for:

Ms. Normita Callison
Corporate Environmental Specialist
Pacific Coast Companies, Inc.
Environmental Services
5550 Roseville Road
North Highlands, California 95660

Prepared by:

Brunsing Associates, Inc. P.O. Box 588 Windsor, California 95492 (707) 838-3027

Project No. 029

Author:

Michelle Floyd Frederick

Project Engineer

Reviewer:

Diana M. Dickerson, R.G., R.E.A.

Principal Geologist

DIAWA M. DICKERSON NO. 6013

OF CALIF

TABLE OF CONTENTS

			<u>Page No.</u>
1.0	INTR	ODUCTION	1
2.0	SITE	BACKGROUND	1
3.0	DRIL	LING AND FIELD INVESTIGATION	4
	3.1 Dril	ling and Soil Sampling	4
	3.2 Gral	Groundwater Sampling and Analyses	5
4.0	INVE	STIGATION RESULTS	6
	4.1 Stra	tigraphy	6
	4.2 Soil	Analytical Results	6
	4.3 Gral	Groundwater Analytical Results	7
5.0	COM	PARISON OF SITE RESULTS TO SCREENING LEVELS	7
	5.1 Prop	osed Soil Type Based on Oakland Guidance Document	7
	5.2 Prop	oosed Oakland Guidance Document Tier 2 SSTLs	8
	5.3 SFR	WQCB Petroleum Hydrocarbon Standard in Groundwater	9
	5.4 Con	parison of July 2004 Analytical Results To Historical	10
	Ana	ytical Results in Adjacent Borings/Wells and Tier 2 SSTLs	10
	5.4.1	Confirmation Boring CB-1	10
	5.4.2	Confirmation Boring CB-2	10
	5.4.3	Confirmation Boring CB-3	10
	5.4.4	Confirmation Boring CB-4	11
	5.4.5	Confirmation Boring CB-5	11
	5.4.6	Confirmation Boring CB-6	12
	5.4.7	Confirmation Boring CB-7	12
	5.4.8	Confirmation Boring CB-8	12
	5.4.9	Confirmation Boring CB-9	13
	5.4.10	Confirmation Boring CB-10	13
6.0	SUM	MARY AND CONCLUSIONS	14
7.0	DISTI	RIBUTION	15

Tables Plates Appendices

LIST OF ATTACHMENTS

TABLES

- Table 1. Summary of Groundwater Analytical Data for Monitoring Wells
- Table 2. Summary of Groundwater Analytical Data for Vapor Extraction Wells
- Table 3. Summary of Soil Analytical Data
- Table 4. Summary of Vapor Analytical Data
- Table 5. Grab Groundwater Analytical Results, 8/29/00
- Table 6. Grab Groundwater Analytical Results, 7/21/04

PLATES

- Plate 1. Vicinity Map
- Plate 2. Site Map
- Plate 3. Cross-Section Location Map
- Plate 4. Cross-Section A-A'

APPENDICES

- Appendix A. July 2004 Boring Logs
- Appendix B. Historical Boring Logs and Well Completion Details
- Appendix C. Analytical Report from Drilling Activities
- Appendix D. USGS Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California
- Appendix E. Geotechnical Report

1.0 INTRODUCTION

Brunsing Associates, Inc. (BAI) has prepared this investigation report, for the property located at 1735 24th Street, Oakland, California (Plate 1). This report presents the results of the soil and groundwater confirmation sampling and soil parameter testing performed at the Pacific Supply Company site during July 2004. Additionally, this report compares the results of the confirmation sampling with the Oakland Urban Land Redevelopment Program: Guidance Document", dated January 1, 2000 (Oakland Guidance). The Oakland Guidance document provides Risk Based Corrective Action Standards (RBCAs) for qualifying sites in Oakland. The analytical results for the soil and groundwater confirmation data, and the most recent groundwater data were compared to Oakland Guidance Tier 2 site-specific target levels (SSTLs) based on the results of the soil parameter samples, and available boring logs.

This work was performed as proposed in BAI's document titled "Soil Parameters and Confirmation Soil Sampling Workplan and Sensitive Receptor Survey Report", dated January 29, 2004, and in accordance with the modifications requested by the Alameda County Health Care Services (ACHCS). The workplan was approved by the ACHCS in their letter dated April 9, 2004.

2.0 SITE BACKGROUND

In May 1987, efforts were initiated to abandon a 1,000-gallon underground gasoline storage tank at Pacific Supply Company's West Oakland site. Soil and associated vapor samples from exploratory boreholes at the site were analyzed by gas chromatography carried out by CHIPS Environmental Consultants and Anatec Laboratories (Plate 2). The results indicated that soil in the vicinity of the tank was contaminated with gasoline and raised the possibility that gasoline may have reached groundwater below the site. During subsequent removal of the tank by Erickson Industrial Services, substantial deterioration of the tank body was documented. Gasoline odors were also detected during tank removal operations.

In order to assess the extent of potential soil and groundwater contamination below and immediately adjacent to the Pacific Supply Company site and the potential for migration of contaminants from off-site sources, BAI carried out a two-phase soil and groundwater investigation. Monitoring wells MW-1 through MW-5 were constructed in September 1988 as the first phase of a soil and groundwater investigation. Monitoring wells MW-6 and MW-7 were constructed on December 19, 1989 during

Phase II of the same investigation. The borings and well locations are shown on Plate 2. The construction and sampling of the wells is documented in BAI's Report of Findings, dated March 23, 1990. The results of the Phase I and II investigations indicated that light petroleum hydrocarbons had migrated beyond the immediate vicinity of the former underground storage tank (UST).

The Pacific Supply Company initiated quarterly groundwater monitoring at the request of the ACHCS in May 1992. Initially, only on-site wells were monitored for total petroleum hydrocarbons (TPH) as gasoline, benzene, toluene, ethylbenzene and xylenes (BTEX), and lead. Later, the five on-site and the two off-site wells were monitored quarterly.

A vapor extraction pilot study was performed in June 1992 to evaluate the feasibility of using vapor extraction technology as an insitu corrective action to remove volatile petroleum hydrocarbons from the shallow subsurface soils. A two-inch diameter vapor extraction well (VEW-1) was installed at the location indicated on Plate 2 to an approximate depth of eight feet bgs. The results of the 4-day pilot study indicated that the lithology at the site permitted the flow of air through the soils at a sufficient rate so as to volatilize hydrocarbon constituents in the soil. The radius of influence was determined in the field by measuring the relative pressure at several probe locations positioned at various radial distances away from the extraction well. The results indicated that the estimated radius of influence from a two-inch diameter extraction well was approximately 30 feet at a relatively low pressure of less than 50 inches of water, as discussed in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

In response to an ACHCS December 1992 request, BAI performed an additional investigation. Ten soil borings (B-1 through B-10) were drilled as part of this investigation to a depth of approximately seven to ten feet bgs (Plate 2). From each boring, one soil sample was retained from a depth of approximately seven to eight feet bgs for analytical testing of TPH as gasoline and BTEX. The results of this investigation were provided in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

Vapor recovery wells VRW-1 through VRW-9 (Plate 2) were constructed in August 1993 as part of a vapor recovery system. During installation of the extraction wells, soil samples were collected for chemical analysis in the borings at the depth where first groundwater occurred, at approximately seven feet bgs. Installation of these wells were documented in a February 7, 1994 report. A vapor extraction system was installed in the fall of 1993 as an interim remedial action. The system began operation on December

26, 1993. The system consisted of an internal combustion engine with a spray aeration tank for treatment of groundwater, and an activated carbon treatment polishing step prior to groundwater discharge. The internal combustion unit and spray aeration unit was manufactured by Remediation Service International (RSI), under the trade name Spray Aeration Vapor Extraction (SAVE) system.

On June 28, 1996, the treatment system was shut down with the concurrence of Pacific Supply Company. Prior to shut down, the system had destroyed an estimated 6,550 pounds of petroleum hydrocarbons since start of operations on December 26, 1993. After shut down, the water in the water tank was treated and discharged to the sanitary sewer under the existing permit and the inside of the tank was cleaned on July 15, 1996.

The permit with the Bay Area Air Quality Management District (BAAQMD) expired on September 1, 1996, and was not renewed. The water discharge permit was discontinued on July 31, 1996. The total volume of water discharged to the sanitary sewer was 151,089 gallons. In December 1996, the shut down and decommissioning of the system was authorized by Jennifer Eberle of the ACHCS.

Groundwater monitoring continued following shut down of the vapor extraction system. In August 2000, BAI supervised the drilling of 3 soil borings (B-10, B-11, and B-12) in 24th Street, on the north side of the Pacific Supply Company building in a downgradient direction from the former UST location. Grab groundwater samples were collected to evaluate whether off-site migration of hydrocarbon contamination in groundwater was occurring. One of the three groundwater samples was reported to contain low levels of TPH as gasoline, BTEX, and petroleum oxygenates. The results of the field investigation are presented in BAI's "Groundwater Investigation and Monitoring Report," dated December 14, 2000.

As requested by the ACHCS, BAI prepared a workplan to evaluate the effectiveness of the vapor extraction system, and prepared a sensitive receptor survey; BAI's report was titled "Soil Parameters and Confirmation Soil Sampling Workplan and a Sensitive Receptor Survey Report" dated January 29, 2004. The drilling activities were performed on July 21, 2004 to determine the effectiveness of the vapor extraction system and to collect soil samples for physical properties to aid in the evaluation of risk based cleanup scenarios. This report presents the results of these drilling activities.

Tables 1 and 2 present a summary of groundwater analytical data and groundwater elevations for the monitoring wells and vapor recovery wells, respectively. Table 3 presents a summary of the soil analytical data. Table 4 presents a summary of historic vapor analytical data. Tables 5 and 6 provide the grab groundwater analytical results

for the off-site and on-site borings drilled in August 2000 and July 2004, respectively. Tables 1, 2 and 3 also provide the Oakland Tier 2 SSTLs for BTEX, and the San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Gross Contamination Screening Levels for TPH as gasoline.

Plate 2 presents a site map that includes the boring and well locations. Boring logs for the July 2004 sampling event are presented in Appendix A. Appendix B presents the historical boring logs and well completion details for the site. Appendix C presents downloaded copies of USGS Geological Map of the Oakland Metropolitian Area, Alameda, Contra Costa, and San Francisco Counties in California and a more detailed version for the site vicinity. The geotechnical report that provides the results of the soil parameter testing is presented in Appendix E.

3.0 DRILLING AND FIELD INVESTIGATION

The purpose of the confirmation soil and groundwater sample borings was to evaluate remaining contaminant levels after remedial activities at the site, and to use the results of the drilling activities to evaluate the current risks associated with the site, particularly from those areas that previously contained elevated petroleum hydrocarbons in soils. The purpose of the soil parameter testing was to aid in identifying the site soil type.

3.1 Drilling and Soil Sampling

Prior to drilling, a Drilling Permit Application was obtained from the Alameda County Public Works Agency, and Underground Service Alert was contacted to locate the underground utilities in the vicinity. Gregg Drilling and Testing, Inc. (Gregg Drilling), of Martinez, California, a C-57 licensed drilling contractor was retained to drill the borings using direct push methods. The drill rig was equipped with 2-inch diameter Enviro-Core samplers for the confirmation soil samples, and 2.5-inch diameter split-spoon samplers for the soil parameter borings. The borings were logged by a BAI geologist according to the Unified Soil Classification System (Appendix A). Drilling of fourteen exploratory borings occurred on July 21, 2004. Boring logs for the confirmation borings are provided in Appendix A. All soil samples were collected using a sampler lined with plastic Enviro-Core liner or brass tubes. After the physical characteristics were noted on the boring log the ends of the Enviro-Core liner or brass tubes were covered with Teflon and secured with plastic end caps.

An attempt was made to continuously sample all borings. Soil borings CB-1 through CB-10 were drilled to depths of 8 feet below ground surface (bgs) or 8.5 feet bgs. Soil borings CB-11 through CB-14 were drilled to depths of 7.5 feet, 8.0 feet, 7.0 feet, and 7.0 feet bgs, respectively.

The soil samples selected for laboratory analyses were collected based on the elevation of the historical contamination in the vicinity of the boring, or direction from the ACHCS. The samples collected for laboratory analyses were labeled and sealed, and stored in a cooled ice chest until delivery. Soil samples were collected for laboratory analyses from boreholes CB-1 and CB-2 at 7 feet bgs and 6.5 feet bgs, respectively. Laboratory analyses were performed on soil samples collected from boreholes CB-4 through CB-9 at depths of 8 feet, 7 feet, 7.5 feet, 7.5 feet, 8.0 feet, and 7.5 feet bgs, respectively. Soil samples were collected for laboratory analyses from borehole CB-10 at 7 feet bgs. BACE Analytical and Field Services (BAFS), a California-certified laboratory, analyzed all soil samples for TPH as gasoline and BTEX by EPA Test Methods CATPH-G and SW8021F, respectively.

Soil borings CB-11 through CB-14 were drilled for the purpose of evaluating soil parameters. Soil samples from boreholes CB-11 at 5.5 feet bgs, CB-13 at 6.5 feet bgs, and CB-14 at 5.0 feet bgs were submitted to BACE Geotechnical for testing of soil parameters, including dry density, organic content, soil moisture content, permeability, porosity, and grain size distribution.

All drilling equipment was cleaned prior to drilling and the sampling equipment was cleaned prior to each use with a laboratory detergent, followed by a de-ionized water rinse. No soil cuttings were generated during drilling. Cleaning of the equipment occurred at the Gregg Drilling facility, and wash water was processed through a recycling system. Sediments from the recycling process are analyzed and disposed of to an appropriate landfill.

3.2 Grab Groundwater Sampling and Analyses

A hydropunch grab groundwater sample was collected from boring CB-3 from 8 feet bgs to 10 feet bgs. The water sample was submitted to BAFS and analyzed for TPH as gasoline and BTEX by EPA Test Methods CATPH-G and SW8021F, respectively.

Upon completion of the sampling activities, all soil borings were backfilled using hydrated bentonite chips to approximately 2 feet below ground surface. A 5-percent bentonite grout was placed in the borings from 2 feet bgs to within 3 inches of the

ground surface. The top of the borings were completed to match the original surface finish. All soil borings were backfilled the day they were drilled.

4.0 INVESTIGATION RESULTS

4.1 Stratigraphy

The July 2004 confirmation borings were generally sampled down to approximately 8 feet bgs. The borings were drilled through asphalt and baserock down to 1 to 2 feet bgs. In general, silts and clays to depths up to approximately 5.5 feet bgs were present beneath the baserock, with the exception of borings CB-8 and CB-11. Silty sand and/or gravels were encounted beneath the silts and clays in most borings. Clays and/or silts were generally present beneath the sandy silts and gravels at most locations. In borings CB-8 and CB-11 silts and clays were encountered beneath the baserock down to the bottom of the borings. Groundwater was encountered at approximately 7.5 to 8 feet bgs at most locations.

Boring logs for soil borings CB-1 through CB-14 are presented in Appendix A. Historical borings logs and well completion details for the site are presented in Appendix B. Plates 3 and 4 present the location of cross-section A-A' and cross-section A-A', respectively.

4.2 Soil Analytical Results

Due to the significant amount of analytical data obtained during this investigation, the following discussion will focus only on the results of the TPH as gasoline and benzene analyses. No benzene was reported above the reporting limits in any of the soil samples collected, however several of the benzene reporting limits were elevated. The benzene reporting limits for the soil samples ranged from 5.0 micrograms per kilogram (μ g/kg) to 2,500 μ g/kg. Table 3 provides the cumulative soil analytical results and the laboratory analytical report is provided in Appendix C.

No benzene or TPH as gasoline were reported above the laboratory reporting limits in the soil samples collected from boreholes CB-1 at 7 feet bgs, CB-5 at 7.0 feet bgs, and CB-10 at 7 feet bgs. Soil samples collected from borings CB-2 at 6.5 feet bgs, CB-6 at 7.5 feet bgs, CB-7 at 7.5 feet bgs, and CB-9 at 7.5 feet bgs contained 9.3 mg/kg, 430 mg/kg, 170 mg/kg, and 540 mg/kg of TPH as gasoline, respectively.

The most elevated concentrations of TPH as gasoline were reported in the soil samples collected from borings CB-4 and CB-8 at depths of 8 feet bgs located north and southeast of the former tank. The soil sample collected from CB-4 at 8 feet bgs contained 1,700 mg/kg of TPH as gasoline. The soil sample collected from boring CB-8 at 8 feet bgs reportedly contained TPH as gasoline at 5,700 mg/kg.

4.3 Grab Groundwater Analytical Results

One grab groundwater sample was collected during this investigation. The sample was collected from boring CB-3, near the vicinity of the former tank. The groundwater sample collected from boring CB-3 contained 23 milligrams per liter (mg/l) of TPH as gasoline, 1,100 micrograms per liter (μ g/l) of benzene, 100 μ g/l of toluene, 590 μ g/l of ethylbenzene, and 2,500 μ g/l of xylenes.

5.0 COMPARISON OF SITE RESULTS TO SCREENING LEVELS

5.1 Proposed Soil Type Based on Oakland Guidance Document

According to the "USGS Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California", the site is located on historic artificial fill (af), west of the Merritt Sands area (Qms), as shown in Appendix D. The Merritt Sands designation does not appear to be appropriate for this site based on the USGS map and the lithologies encountered during drilling.

During the investigation, three soil samples (CB-11 at 5.5 feet bgs, CB-13 at 6.5 feet bgs, and CB-14 at 5.0 feet bgs) were analyzed for soil parameters: including dry density, organic content, soil moisture content, effective permeability, porosity, and grain size distribution, including hydrometer testing to determine percentages of clay and silt.

Based on the laboratory analyses, the soil sample from boring CB-11 was classified as a green-brown sandy clayey silt (ML) composed of 2.2% gravel, 13.0% sand, 61.6% silt, and 23.1% clay. Soil sample CB-11 had a dry density of 123 pounds per cubic foot (pcf), an organic content of 0.4%, a soil moisture content of 5.4%, a permeability of 2.2×10^{-7} centimeters per second (cm/sec), and a porosity of 0.202. The soil sample from boring CB-13 was classified as a gray clayey silty sand (SM) composed of 69.3% sand, 15.5% silt, and 15.2% clay. Soil sample CB-13 had a dry density of 115 pcf, an organic content of 0.2%, a soil moisture content of 12.6%, a permeability of 3.3 x 10^{-8} cm/sec, and a porosity of 0.301. The soil sample from boring CB-14 was classified as a brown clayey silty sand (SM) composed of 2.1% gravel, 67.1% sand, 18.2% silt, and 12.6% clay. Soil

sample CB-14 had a dry density of 122 pcf, an organic content of 0.5%, a soil moisture content of 0.2%, a permeability of 2.9 x 10^6 cm/sec, and a porosity of 0.205. The soil parameter testing results are presented in Appendix E.

As previously discussed in Section 4.1, the surficial soils at the site are primarily varying mixtures of silts, clays, and sands with some organics. The data in Appendix C indicates that the most appropriate soil type for the site based on the options provided in the Oakland Guidance document (Merritt sands, sandy silts, and clayey silts) is clayey silt.

5.2 Proposed Oakland Guidance Document Tier 2 SSTLs

Because the soils encountered beneath the site are primarily varying amounts of silts, clays, and sands and there is no obvious predominate soil types, the SSTLs for both clayey silts and sandy silts have been provided. As discussed in the previous section, the site geology indicates that clayey silts are the predominate unit at the site. Thus, Tables 7 and 8 of the Oakland Guidance document were used to determine the necessary risk based cleanup objectives. The table presents four physical mediums: surficial soils, subsurface soils, groundwater, and water used for recreation. Surficial soils are defined by the Oakland Guidance as the top one meter of soil; while subsurface soils are defined as all soil deeper than one meter and above groundwater.

As no soil contamination has been observed in the surficial soil (top one meter), and water used for recreation is not present these two mediums were disregarded. Subsurface soils and groundwater were retained as the significant site media impacted by contamination. Based on BAI's sensitive receptor survey, no groundwater or irrigation wells were identified in a 1,000-foot radius of the site, therefore ingestion of the shallow water was not considered as a realistic exposure pathway. Inhalation of indoor air vapors and inhalation of outdoor air vapors are the two retained exposure pathways. The inhalation of indoor air vapors risk based numbers are more protective than the outdoor air vapors, and were therefore selected as the exposure pathway. The site is in an industrial portion of Oakland and no change in land use is expected to occur, therefore a commercial/industrial land use scenario was utilized in the SSTL selection process.

The resulting Tier 2 SSTLs for clayey silts and sandy silts were selected for comparison of petroleum hydrocarbon concentrations in site groundwater samples and soil samples, and are presented with the groundwater and soil analytical data in Tables 1, 2, 3, and 6.

5.3 SFRWQCB Petroleum Hydrocarbon Standard in Groundwater

In correspondence dated November 6, 2004, the ACHCS indicated that the risk assessment for total petroleum hydrocarbons would be required in addition to the Oakland Guidance document risk based numbers. The ACHCS recommended that environmental screening levels (ESLs) in the San Francisco Regional Water Quality Control Board (SFRWQCB) document, "Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, July 2003" might be used as a guide.

As requested, the total petroleum hydrocarbon ESLs provided in the SFRWQCB document were included in BAI's "Groundwater Monitoring Report, November 2003". The ESL for groundwater based on the recommended document was 0.5 mg/l. Further evaluation of this level indicated that it was not likely meant for use with the Oakland Guidance document, because allowable benzene concentrations in the Oakland Guidance document resulted in exceedances in the ESLs. As a result of this discrepancy, BAI contacted Mr. Roger Brewer, Ph.D. of the SFRWQCB for clarification. He indicated, in his correspondence dated November 1, 2004, that the 0.5 mg/l screening level was based on potential discharges to surface water bodies, and that in cases where surface water discharge is not an issue, the SFRWQCB uses 2.5 mg/l to 5.0 mg/l as a screening tool for gross contamination in groundwater. He also indicated that these levels are not necessarily cleanup levels, but may indicate areas where further remediation may be appropriate, as determined on a case-by-case basis.

The closest surface water source is the San Francisco Bay, which is located approximately 4,000 feet from the site. Furthermore, soil boring B-10, located approximately 50 feet from the site in the direction of the bay, contained no detectable petroleum hydrocarbons in soil at a depth of 6 feet bgs, and reported only low levels of petroleum hydrocarbon contamination (i.e. TPH as gasoline at 0.060 mg/l) in groundwater. Therefore, BAI proposes that discharge of contaminated groundwater to the bay from the site is unlikely, and has included the SFRWQCB screening range of 2.5 mg/l to 5.0 mg/l in Tables 1, 2, and 6.

5.4 Comparison of July 2004 Analytical Results To Historical Analytical Results in Adjacent Borings/Wells and Tier 2 SSTLs

The purpose of the July 2004 confirmation borings was to evaluate the effectiveness of the remediation system and determine the residual petroleum hydrocarbons in soil and groundwater. In the following sections, each confirmation boring is discussed with respect to the adjacent historical borings to evaluate changes in the site petroleum hydrocarbon concentrations.

5.4.1 Confirmation Boring CB-1

Confirmation boring CB-1 was drilled in the vicinity of historical boring MW-4. The TPH as gasoline, benzene, toluene, and organic xylenes concentrations in the soil sample collected from boring MW-4 at a depth of 8 feet bgs were 3,700 mg/kg, 3,700 μ g/kg, 2,400 μ g/kg, and 12,000 μ g/kg, respectively. The soil sample collected from confirmation soil boring CB-1 contained no reportable TPH as gasoline or BTEX above the laboratory reporting limit. This area has shown a significant decrease in petroleum hydrocarbon concentrations in soil, and is below the Tier 2 SSTLs.

5.4.2 Confirmation Boring CB-2

Confirmation boring CB-2 was drilled near historical boring B-4 and vapor extraction well VRW-3. The petroleum hydrocarbon concentrations collected from the soil sample collected from the borehole for VRW-3 at a depth of 7.5 feet bgs reportedly contained 15 mg/kg of TPH as gasoline, 700 μ g/kg of benzene, 90 μ g/kg of toluene, 16 μ g/kg of ethylbenzene, and 60 μ g/kg of organic xylenes. Boring B-4 reportedly contained the highest concentration of petroleum hydrocarbons to date at the site. The concentrations of TPH as gasoline and BTEX reported in the soil sample collected from boring B-4 at a depth of 7 feet bgs were 7,000 mg/kg, 28,000 μ g/kg, 17,000 μ g/kg, 73,000 μ g/kg, and 43,000 μ g/kg. The soil sample from soil confirmation boring CB-2, collected at a depth of 6.5 feet bgs reportedly contained 9.3 mg/kg of TPH as gasoline, and 13 μ g/kg of xylenes: all other constituents were reported below the laboratory reporting limit. Thus, this area has also shown a significant decrease in hydrocarbon concentrations in soil, and is below the Tier 2 SSTLs.

5.4.3 Confirmation Boring CB-3

Confirmation boring CB-3 was included at the request of the ACHCS, and per their instruction was only analyzed for groundwater concentrations. Boring CB-3 is located between the former tank area and well VRW-4. The highest concentration of petroleum

hydrocarbons in groundwater at the site has generally been found in water from well VRW-4. The grab groundwater sample from confirmation boring CB-3 reportedly contained 23 mg/l of TPH as gasoline, 1,100 μ g/l of benzene, 100 μ g/l of toluene, 590 μ g/l of ethylbenzene, and 2,500 μ g/l of xylenes. The grab groundwater sample from CB-3 is above the SFRWQCB gross contamination screening level of 2.5 mg/l to 5 mg/l for TPH as gasoline, however it is below the Oakland Tier 2 SSTLs for all BTEX constituents.

5.4.4 Confirmation Boring CB-4

Confirmation soil boring CB-4 was drilled between extraction wells VEW-1 and VRW-5. Two samples were collected from the borehole for well VEW-1; one soil sample collected at 4.5 feet bgs and the second sample collected at 8 feet bgs. The confirmation soil sample was collected a depth of 8 feet, therefore the 4.5-foot sample from VEW-1, which had lower concentrations than the 8-foot VEW-1 sample, will not be compared.

Petroleum hydrocarbon concentrations in the soil sample from extraction well VRW-5 reportedly contained TPH as gasoline and BTEX concentrations of 700 mg/kg, 7,300 μ g/kg, 3,000 μ g/kg, 5,300 μ g/kg, and 3,600 μ g/kg, respectively. The soil sample collected from extraction well VEW-1 at 8 feet bgs contained 780 mg/kg of TPH as gasoline, 23,000 μ g/kg of benzene, 93,000 μ g/kg of toluene, 60,000 μ g/kg of ethylbenzene, and 170,000 μ g/kg of xylenes. The analytical results for the soil sample collected from confirmation boring location CB-4 contained 1,700 mg/kg of TPH as gasoline, less than 2,500 μ g/kg of benzene (not detected), 7,900 μ g/kg of toluene, 25,000 μ g/kg of ethylbenzene, and 37,000 μ g/kg of xylenes.

This area has shown an increase in TPH as gasoline concentrations, but a significant reduction in benzene concentrations compared to both boring VRW-5 and VEW-1 data. The analytical results of soil boring CB-4 indicate that the concentrations are below the Oakland Tier 2 SSTLs.

5.4.5 Confirmation Boring CB-5

Confirmation boring CB-5 was drilled between extraction well VRW-7 and boring B-8. A 7-foot soil sample collected from the borehole for VRW-7 reportedly contained 1,100 mg/kg of TPH as gasoline, 1,300 μ g/kg of benzene, 2,900 μ g/kg of toluene, 2,600 μ g/kg of ethylbenzene, and 6,000 μ g/kg of xylenes. The soil sample collected from borehole B-8 was reported to contain 2,200 mg/kg of TPH as gasoline, 10,000 μ g/kg of benzene, 41,000 μ g/kg of toluene, 21,000 μ g/kg of ethylbenzene, and 94,000 μ g/kg of organic xylenes. The confirmation soil sample collected from borehole CB-5 at 7 feet bgs

contained no reportable concentrations of TPH as gasoline, benzene, toluene, and ethylbenzene, but did contain $5.1~\mu g/kg$ of xylenes. This area has also shown a significant decrease in hydrocarbon concentrations in soil, and the current concentrations are below the Tier 2 SSTLs.

5.4.6 Confirmation Boring CB-6

Confirmation boring CB-6 was drilled adjacent to monitoring well MW-3. The soil sample collected from monitoring well MW-3 at a depth of 8 feet bgs reportedly contained TPH as gasoline, benzene, toluene and organic xylenes at concentrations of 1,300 mg/kg, 530 μ g/kg, 590 μ g/kg, and 22,000, respectively. The confirmation soil sample from boring CB-6 reportedly contained TPH as gasoline, benzene, toluene, ethylbenzene, and xylenes concentrations at 430 mg/kg, less than 1,300 μ g/kg (not detected), 1,700 μ g/kg, 1,600 μ g/kg, and 3,000 μ g/kg, respectively. The analytical results from this boring indicate that the total mass of petroleum hydrocarbons has decreased, however the concentration of toluene has increased. The concentrations are below the Tier 2 SSTLs for all constituents.

5.4.7 Confirmation Boring CB-7

Confirmation boring CB-7 was drilled adjacent to extraction well VRW-6 and boring V-3. A 7-foot soil sample from boring V-3 was reported to contain 160 mg/kg of TPH as gasoline, 2,200 μ g/kg of benzene, 4,000 μ g/kg of toluene, and 12,000 μ g/kg of organic xylenes. The soil sample collected from the borehole for well VRW-6 at 7.5 feet bgs contained the highest concentrations of benzene, toluene and xylenes observed at the site. The VRW-6 sample contained 3,800 mg/kg of TPH as gasoline, 41,000 μ g/kg of benzene, 130,000 μ g/kg of toluene, 53,000 μ g/kg of ethylbenzene, and 270,000 μ g/kg of organic xylenes.

The 7.5-foot soil confirmation sample collected from boring CB-7 reportedly contained 170 mg/kg of TPH as gasoline, 660 μ g/kg of toluene, and 1,200 μ g/kg of organic xylenes. Benzene and ethylbenzene were not detected at a reporting limit of 500 μ g/kg.

5.4.8 Confirmation Boring CB-8

Confirmation boring CB-8 was drilled adjacent to monitoring well MW-2. An 8-foot soil sample collected from the borehole for monitoring well MW-2 reportedly contained 1,400 mg/kg of TPH as gasoline, 990 μ g/kg of benzene, 700 μ g/kg of toluene, and 1,100 μ g/kg of xylenes. The soil sample collected from soil boring CB-8 at a depth of 8 feet bgs reportedly contained 5,700 mg/kg of TPH as gasoline, less than 2,500 μ g/kg of

benzene (not detected), 54,000 μg/kg of toluene, 18,000 μg/kg of ethylbenzene, and 53,000 μg/kg of organic xylenes.

The soil sample from confirmation boring CB-8 contained the most elevated concentrations in soil observed during this investigation, and indicates an increase in petroleum hydrocarbon concentrations in soil in this location. However, the soil concentrations are below the Oakland Guidance Tier 2 SSTLs.

5.4.9 Confirmation Boring CB-9

Confirmation soil boring CB-9 is located in the vicinity of borings B-5, B-6 and extraction well VRW-8. Soil samples from boreholes B-6, B-7, VRW-8 and CB-9 were collected at depths of 7.0, 7.0, 7.5, and 7.5, respectively. TPH as gasoline concentrations in the soil samples from boreholes B-6, B-7, VRW-8 and CB-9 contained 10 mg/kg, 10 mg/kg, 30 mg/kg, and 540 mg/kg, respectively. Benzene concentrations reported in the soil samples collected from boreholes B-6, B-7, VRW-8 and CB-9 were 71 μ g/kg, 30 μ g/kg, 220 μ g/kg, and less than 500 μ g/kg (not detected), respectively. The soil samples collected from boreholes B-6, B-7, VRW-8 and CB-9 reportedly contained 38 μ g/kg, 42 μ g/kg, 120 μ g/kg, and 2,500 μ g/kg of toluene, respectively. Ethylbenzene concentrations reported in the soil samples collected from boreholes B-6, B-7, VRW-8 and CB-9 were 78 μ g/kg, 30 μ g/kg, 400 μ g/kg, and 1,300 μ g/kg, respectively. Xylenes concentrations reported in the soil samples collected from boreholes B-6, B-7, VRW-8 and CB-9 were 100 μ g/kg, 110 μ g/kg, 670 μ g/kg, and 4,600 μ g/kg, respectively.

The analytical results for the sample from soil confirmation boring CB-9 indicate increased petroleum hydrocarbon concentrations in that area. However, the concentrations are below the Tier 2 SSTLs.

5.4.10 Confirmation Boring CB-10

Soil confirmation boring CB-10 was drilled in the vicinity of vapor extraction well VRW-9. A 7-foot soil sample collected from the borehole for VRW-9 reportedly contained 370 mg/kg of TPH as gasoline, 2,300 μ g/kg of benzene, 2,200 μ g/kg of toluene, 620 μ g/kg of ethylbenzene, and 2,300 μ g/kg of xylenes. The CB-10 confirmation soil sample collected at 7 feet bgs reportedly contained all petroleum hydrocarbon concentrations below the laboratory reporting limits (not detected). Therefore, CB-10 indicates that a significant decrease of petroleum hydrocarbon concentrations has occurred in this area.

6.0 SUMMARY AND CONCLUSIONS

Based on the results of the investigation, the petroleum hydrocarbon concentrations in soils appear to have decreased significantly over the majority of the site, however two areas (in the vicinity of CB-8 and CB-9) did show increases in soil concentrations. Despite the increases in concentrations in the vicinity of borings CB-8 and CB-9, the soil samples did not contain petroleum hydrocarbon contamination exceeding the Oakland Tier 2 SSTLs for either clayey silts or sandy silts.

The grab groundwater sample collected from boring CB-3 contained petroleum hydrocarbon concentrations above the SFRWQCB gross contamination concerns for TPH as gasoline, however the reported benzene, toluene, ethylbenzene, and xylenes concentrations were below the Oakland Guidance Tier 2 SSTLs. As shown in Tables 1 and 2, the groundwater analytical data for monitoring wells and vapor extraction wells which are still sampled, have not exceeded either the Oakland Guidance Tier 2 SSTLs or the SFRWQCB gross contamination concerns in the past three sampling events, except wells MW-2, VRW-4, VRW-5, and VRW-8. Concentrations reported in samples from wells MW-2, VRW-4, VRW-5, and VRW-8 have exceeded the SFRWQCB gross contamination concerns, during the past three sampling events. Of the four wells that have exceeded the SFRWQCB gross contamination concerns level, only VRW-4 and the grab groundwater sample from CB-3 have exceeded the upper end of the range (5 mg/l).

Therefore, it appears that some residual petroleum hydrocarbon contamination in groundwater and likely soil still exists in a limited area in the immediate vicinity of the former tank. However, concentrations in the remaining area of the site appear to have been sufficiently reduced.

7.0 DISTRIBUTION

Copies of this report have been distributed to the organizations and individuals listed below.

Mr. Don Wang
Alameda County Health Care Services Agency
Environmental Protection
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502-6577

Ms. Normita Callison Corporate Environmental Specialist Pacific Coast Companies, Inc. Environmental Services 5550 Roseville Road North Highlands, California 95660 1 Copy

Original Copy

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(ug/L)	(mg/L)	(µg/L)
MW-1	10/14/1988	7.99	0.88	1.1	1.1	ND	_	ND		
MW-1	12/29/1989	7.74	1.13	ND	ND	ND	ND	ND	ND (1)	ii -
MW-1	5/28/1992	7.81	1.06	ND	ND	ND	ND	ND	0.003(2)	-
MW-1	9/3/1992	7.90	0.97	ND	ND	ND	ND	ND	0.12 (2)	-
MW-1	11/24/1992	7.90	0.97	ND	ND	ND	ND	ND	0.017 (2)	
MW-1	3/9/1993	7.38	1,49	ND	ND	ND	ND	ND	ND (1)	1 2
MW-1	7/21/1993	7.68	1.19	ND	ND	ND	ND	ND	ND (1)	-
MW-1	11/3/1993	7.83	1.04	ND	ND	ND	ND	ND	ND (1)	-
MW-1	2/1/1994	7.30	1,57	ND	ND	ND	ND	ND	ND (1)	-
MW-1	6/2/1994	7.43	1.44	ND	ND	ND	ND	ND	ND (1)	
MW-1	9/1/1994	7.70	1.17	ND	ND	ND	ND	ND	ND (1)	
MW-1	12/13/1994	6.90	1.97	ND	ND	ND	ND	ND		
MW-1	3/7/1995	7.30	1.57	0.06	3.8	ND	ND	ND		-
MW-1	6/9/1995	7.87	1.00	0.09	12	0.8	0.5	1.3		_
MW-1	9/21/1995	7.67	1.20	ND	4.1	ND	ND	ND		
MW-1	12/18/1995	7.15	1.72	ND	ND	ND	ND	ND	-	<u> </u>
MW-1	2/29/1996	6.74	2.13	0.09	1.4	0.5	ND	0.8		-
MW-1	7/15/1996	7.76	1.11			-	-	- 1		
MW-1	1/7/1997	6.80	2.07	0.06	0.6	<0.5	<0.5	<0.5		
MW-1	7/12/1997	7.67	1.20	-	- :	-				
MW-1	1/26/1998	6.93	1.94	<0.05	<0.5	<0.5	<0.5	1.1		=
MW-1	7/3/1998	7.51	1.36		240	V.		- 1	- 5-	-
MW-1	1/13/1999	7.63	1.24	< 0.05	<0.5	<0.5	<0.5	<0.5	-	-
MW-1	9/27/1999	7.77	1.10	-	-			- 1		-
MW-1	1/28/2000	6.85	2.02	<0.05	<0.5	<0.5	<0.5	<0.5		<5.0
MW-1	5/16/2002	7.45	1.42	0.35	<0.5	<0.5	<0.5	<0.5	128	<1.0
MW-1	6/10/2003	7.32	4.15	< 0.05	<0.5	<0.5	<0.5	<0.5		=
MW-1	11/19/2003	7.30	4.17	<0.050	< 0.30	< 0.30	<0.50	<0.50	-	
MW-1	6/23/2004	7.49	3.98	0.37	<1.0	<1.0	<1.0	<1.0		
kland Ti	er 2 SSTLs for S	Sandy Silts			53,000	>Sol	>Sol	>Sol	NA	>Sol
akland Ti	er 2 SSTLs for (Clayey Silts			89,000	>Sol	>Sol	>Sol	NA	>Sol
and the local division in the second		nation Concern	5	2.5-5						

Well	Sampling	Depth to Groundwater (feet)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene	Toluene	Ethylbenzene (ug/L)	Xylenes	Lead (mg/L)	MTBE
Name	Date 10/14/1988	7.29	0.85	11	23	20	3.5	16		-
MW-2	12/29/1989	6.87	1.27	4	200	6.7	ND	ND	0.22 (1)	-
MW-2	5/28/1992	6.92	1.22	8.9	550	48	ND	13	ND (2)	_
MW-2	9/3/1992	7.26	0.88	2.1	760	6.2	1.8	5.1	0.006 (2)	-
MW-2		7.28	0.86	4.2	370	15	3.4	9.5	ND (2)	_
MW-2	11/24/1992	6.73	1.41	4.3	280	14	3.7	7.1	ND (1)	_
MW-2	3/9/1993		1.12	3.4	250	9.6	2.5	11	ND(1)	_
MW-2	7/21/1993	7.02	0.92	2,5	230	7.8	2.1	9,9	ND(1)	_
MW-2	11/4/1993	7 22	1 21		240	17	ND	15	ND(1)	
MW-2	2/1/1994	6.93		3.4	150	9,8	3.0	10	ND(1)	-
MW-2	6/2/1994	6.86	1.28	3.0			2.0	9.6	ND(1)	-
MW-2	9/1/1994	7 10	1.04	2.1	120	9.8		9.6	ND(1)	1
MW-2	12/13/1994	6,58	1.56	2.0	200	10	2.7	-		_
MW-2	3/7/1995	6.69	1 45	3.0	500	15	5.8	16		-
MW-2	6/9/1995	7.00	1 14	2,1	300	14	5.8	13		_
MW-2	9/21/1995	6.91	1.23	1.6	120	9.6	ND	15		-
MW-2	12/18/1995	6.73	1,41	2.8	120	16	5.2	19	F.=-	_
MW-2	2/29/1996	6.36	1.78	1.7	170	15	2.9	17	-	
MW-2	7/15/1996	7.11	1.03	2.8	160	22	3.5	17	<u> </u>	_
MW-2	1/7/1997	6.40	1.74	3.0	350	25	8.1	24		-
MW-2	7/12/1997	6.98	1.16	2.1	55	11	<2.5	18		_
MW-2	1/26/1998	6.45	1.69	1.8	310	29	5.0	15		-
MW-2	7/3/1998	6.91	1,23	1.9	85	9.3	1.8	17	() -I	_
MW-2	1/13/1999	7.07	1.07	2.1	48	33	2.0	16		_
MW-2	9/27/1999	7.22	0.92	1.5	20	6.8	2.6	11		521
MW-2	1/28/2000	6.61	1.53	1.3	22	6.4	1.5	11	<u> </u>	<5.0
MW-2	8/9/2000	7.14	1.00	3.5	120	16	<5	28	-	5.09
MW-2	5/17/2002	6.95	1.19	3.3	25.4	<5.0	<5.0	<5.0	T-	<10
MW-2	6/10/2003	6.71	4.09	1.6	52	2.3	32	9.1	-	-
MW-2	11/19/2003	6.95	3.85	3.7	9.7	<1.1	<1.1	7.5	. 8	_
MW-2	6/23/2004	6.96	3.84	1.1	6.30	2.36	<1.0	7.41		
	r 2 SSTLs for				53,000	>Sol	>Sol	>Sol	NA	>So
	r 2 SSTLs for				89,000	>Sol	>Sol	>Sol	NA	>So
-		ination Concern		2.5-5				12 / Feb.		

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
Name	Date	(feet)	(feet, MSL)	(mg/L)	(ug/L)	(μg/L)	(ug/L)	(µg/L)	(mg/L)	(ug/L)
MW-3	10/14/1988	8.25	0.88	3.4	ND	ND		2.8	-	
MW-3	12/29/1989	7.79	1.34	ND	ND	ND	ND	ND	0.205 (1)	_
MW-3	5/28/1992	7.83	1,30	ND	0.8	0.5	ND	ND	0.016 (2)	-
MW-3	9/3/1992	8 22	0.91	ND	ND	ND	ND	ND	0.033 (2)	
MW-3	11/24/1992	8.29	0.84	ND	ND	ND	ND	ND	0.011 (2)	=
MW-3	3/9/1993	7.30	1.83	0.1	1.8	ND	ND	ND	ND(1)	_
MW-3	7/21/1993	7.87	1.26	ND	ND	ND	ND	ND	ND(1)	_
MW-3	11/4/1993	8.23	0.90	0.07	0.6	0.5	ND	ND	ND(1)	-
MW-3	2/1/1994	7.56	1.57	ND	ND	ND	ND	ND	ND(1)	_ =
MW-3	6/2/1994	7.46	1.67	0.06	ND	ND	ND	ND	ND(1)	
MW-3	9/1/1994	7.83	1.30	0.07	1.7	0.9	ND	ND	ND(1)	-
MW-3	12/13/1994	7.07	2.06	0.06	1.4	ND	ND	ND	-,2	
MW-3	3/8/1995	7.27	1.86	0.06	1.5	ND	ND	ND		-
MW-3	6/9/1995	7.79	1.34	0.10	5.7	ND	ND	ND	72	
MW-3	9/21/1995	7.87	1.26	ND	1.5	ND	ND	ND		
MW-3	12/18/1995	7.30	1.83	ND	1.3	ND	ND	ND	-	
MW-3	2/29/1996	6.84	2.29	ND	2.1	0.6	ND	0.7	-	-
MW-3	7/15/1996	7.79	1.34		-			- 0		-
MW-3	1/7/1997	6.62	2.51	0.05	1.0	<0.5	<0.5	<0.5		
MW-3	7/12/1997	7.83	1.30				_			
MW-3	1/26/1998	6.60	2.53	<0.05	0.8	<0.5	<0.5	<0.5	_	(=)
MW-3	7/3/1998	7.48	1.65	-	_	_	_	- 1	-	-
MW-3	1/13/1999	7.63	1.50	< 0.05	<0.5	<0.5	<0.5	<0.5		-
MW-3	9/27/1999	7.94	1.19		- 5		_	U	-	_
MW-3	1/28/2000	7.12	2.01	< 0.05	<0.5	<0.5	<0.5	<0,5		<5.0
MW-3	6/5/2003	7 53	4.23	<0.05	<0.5	<0.5	<0.5	<0.5		
MW-3	11/19/2003	7.83	3.93	0.16	<0.54	<0.54	<0.55	<1.6	-	(to 1
MW-3	6/23/2004	7.65	4.11	<0.05	<1.0	<1.0	<1.0	<1.0		
	er 2 SSTLs for S				53,000	>Sol	>Sol	>Sol	NA	>Sal
	er 2 SSTLs for G				89,000	>Sol	>Sol	>Sol	NA	>Sol
NAME OF TAXABLE PARTY.	Harmon Company of the Company of Company	nation Concern		2.5-5		NUMBER OF STREET	112133 E 111100	W SHIP	0.0002000	

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(ug/L)
MW-4	10/14/1988	8.33	0.74	4.6	1.2	ND		2.2	- -	_=
MW-4	12/29/1989	8.08	0.99	0.5	0.7	ND	ND	ND	ND (1)	
MW-4	5/28/1992	8.19	0.88	0.27	8.8	1	ND	3.2	0.030 (2)	-
MW-4	9/3/1992	8.37	0.70	0.20	4.5	4.4	ND	1.9	0.022 (2)	
MW-4	11/24/1992	8.28	0.79	0.14	3.2	3.2	ND	1.0	0.005 (2)	
MW-4	3/9/1993	7.98	1.09	0.47	10	ND	ND	2.5	ND (1)	-
MW-4	7/21/1993	8.17	0.90	0.28	4.4	5.9	ND	ND	ND(1)	
MW-4	11/4/1993	8.14	0.93	0.08	1.3	1.6	ND	ND	ND(1)	_
MW-4	2/1/1994	7.79	1.28	0.08	ND	ND	ND	ND	ND(1)	
MW-4	6/2/1994	7.53	1.54	0.30	3.1	2.9	ND	0.8	ND(1)	_
MW-4	9/1/1994	7.69	1,38	0.12	1.6	ND	ND	ND	ND(1)	
MW-4	12/13/1994	6.70	2.37	ND	ND	ND	ND	ND		-
MW-4	3/8/1995	6.83	2.24	0.09	ND	ND	ND	ND	-	-
MW-4	6/9/1995	7.66	1.41	0.19	ND	ND	ND	ND		
MW-4	9/21/1995	7.93	1.14	0.09	ND	ND	ND	ND		_
MW-4	12/18/1995	6.98	2.09	E41	-			- 1		
MW-4	2/29/1996	6.54	2.53	0.14	1.6	1.0	ND	0.6	-	-
MW-4	7/15/1996	7.74	1.33	3-0	-	-	-	= 3	-	-
MW-4	1/7/1997	6.46	2.61	0.09	1.0	0.5	< 0.5	<0.5		-
MW-4	7/12/1997	7.82	1.25		-				-	
MW-4	1/26/1998	6.67	2.40	0.09	1.1	0.8	<0.5	<0.5	\$ * 6	-
MW-4	7/3/1998	7 45	1.62	644	-	_	-	5- 1	-	-
MW-4	1/13/1999	7.51	1.56	0.12	1.1	0.62	<0.5	0.57		-
MW-4	9/27/1999	7.88	1.19	-				- 1		-
MW-4	1/28/2000	6.73	2.34	0.072	<0.5	<0.5	<0.5	<0.5		<5.0
	er 2 SSTLs for S	Sandy Silts			53,000	>Sol	>Sel	>Sol	NA	>Sol
MARKET CONTRACTOR OF THE PARTY	er 2 SSTLs for G				89,000	>Sol	>Sol	>Sol	NA	>Sol
THE RESERVE OF THE PARTY OF THE		nation Concern	9	2.5-5				Doorse mark		

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(ue/L)	(ug/L)	(ug/L)	(mg/L)	(ug/L)
MW-5	10/14/1988	8.04	0.89	3.2	ND	ND		ND		
MW-5	12/29/1989	7.40	1.53	ND	ND	ND	ND	ND	ND (1)	_
MW-5	5/28/1992	7.53	1.40	ND	ND	ND	ND	ND	0.008 (2)	-
MW-5	9/3/1992	8.02	0.91	ND	ND	ND	ND	ND	0.034 (2)	
MW-5	11/24/1992	7.75	1.18	ND	ND	ND	ND	ND	0.011 (2)	-
MW-5	3/9/1993	6.91	2.02	ND	ND	ND	ND	NĎ	ND (1)	<u> </u>
MW-5	7/21/1993	7.57	1.36	ND	ND	ND	ND	ND	ND(1)	_
MW-5	11/4/1993	7.77	1.16	ND	ND	ND	ND	ND	ND(1)	_
MW-5	2/1/1994	7.05	1.88	ND	ND	ND	ND	ND	ND(1)	-
MW-5	6/2/1994	7.18	1.75	ND	ND	ND	ND	ND	ND(1)	-
MW-5	9/1/1994	7.53	1.40	ND	ND	ND	ND	ND	20	
MW-5	3/8/1995	6.67	2.26	ND	ND	ND	ND	ND	7 4 9	-
MW-5	6/9/1995	7.33	1 60	ND	ND	ND	ND	ND	: - ::	-
MW-5	9/21/1995	7.67	1.26	ND	ND	ND	ND	ND	<u> </u>	=
MW-5	12/18/1995	6.62	2.31	-	0.7	-	-	- 1		-
MW-5	2/29/1996	6.16	2.77	ND	ND	ND	ND	ND		_
MW-5	7/15/1996	7.47	1.46	~	-	-	_		_	=
MW-5	1/7/1997	6 11	2.82	<0.05	<0.5	<0.5	<0,5	<0.5	-	-
MW-5	7/12/1997	7 61	1.32	TO -			- 3	-		
MW-5	1/26/1998	6.17	2.76	<0.05	<0.5	<0.5	<0.5	<0.5		-
MW-5	7/3/1998	7.23	1.70		-	-	_		-	2
MW-5	1/13/1999	7 27	1.66	< 0.05	<0.5	<0.5	<0.5	<0.5	-	=
MW-5	9/27/1999	7.76	1 17	-	-	-	=			-
MW-5	1/28/2000	6.43	2.50	< 0.05	<0.5	<0.5	<0.5	<0.5		<5.0
Dakland Tic	r 2 SSTLs for S	Sandy Silts			53,000	>Sol	>Sol	>Sol	NA	>Sol
Dakland Tie	er 2 SSTLs for C	Clayey Silts			89,000	>Sol	>Sol	>Sol	NA	>Sol
FRWQCB	Gross Contami	nation Concern	5	2.5-5						

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
Name	Date	(feet)	(feet, MSL)	(mg/L)	(ug/L)	(µg/L)	(µg/L)	(ug/L)	(mg/L)	(ug/L)
MW-6	12/29/1989	5.02	1.11	1.1	5.4	4.5	ND	ND	ND (1)	1
MW-6	3/9/1993	5.10	1,03	2.3	2.3	2.8	ND	3.1	ND (1)	
MW-6	7/21/1993	5.23	0.90	0.59	ND	7.6	ND	ND	ND(1)	-
MW-6	11/4/1993	5.25	0.88	1.5	ND	1.2	ND	0.7	ND(1)	
MW-6	2/1/1994	5.05	1.08	1.9	2.5	3.9	1.6	1.1	ND(1)	-
MW-6	6/2/1994	4.49	1.64	1.3	ND	11	ND	ND	ND(1)	0 4 50
MW-6	9/1/1994	4.53	1.60	2.2	ND	1.7	ND	ND	ND(1)	-
MW-6	12/13/1994	4.27	1.86	0.66 (3)	ND	ND	ND	ND	-	-
MW-6	3/8/1995	3.37	2.76	1.0 (3)	ND	ND	ND	ND	-	-
MW-6	6/9/1995	4.40	1.73	1.5	ND	3.3	ND	ND		_
MW-6	9/21/1995	4.69	1.44	0.28	ND	ND	ND	ND		- 29
MW-6	12/18/1995	4.42	1.71				-			-
akland Ti	er 2 SSTLs for 5	Sandy Silts			53,000	>Sol	>Sol	>Sol	NA	>Sol
	er 2 SSTLs for C				89,000	>Sol	>Sol	>Sol-	NA	>Sol
	THE RESERVE AND ADDRESS OF THE PARTY OF THE	nation Concern		2.5-5						

Pacific Supply Company, 1735 24th Street, Oakland, California

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(me/L)	(µg/L)	(ug/L)	(µ 2/L)	(µg/L)	(mg/L)	(ug/L)
MW-7	12/29/1989	8.35	-3.32	ND	ND	ND	ND	ND	0.235 (1)	_
MW-7	3/9/1993	13.60	-8.57	ND	ND	ND	ND	ND	ND (1)	-
MW-7	7/21/1993	12.59	-7.56	ND	ND	ND	ND	ND	ND(1)	
MW-7	11/4/1993	9.84	-4.81	ND	ND	ND	ND	ND	ND(1)	-
MW-7	2/1/1994	10.38	-5.35	ND	ND	ND	ND	ND	ND(1)	
MW-7	6/2/1994	10.10	-5.07	ND	ND	ND	ND	ND	ND(1)	-
MW-7	9/1/1994	9.63	-4.60	ND	ND	ND	ND	ND	ND(1)	-
MW-7	12/13/1994	11.27	-6.24	ND	ND	ND	ND	ND		-
MW-7	3/7/1995	9.68	-4.65	ND	ND	ND	ND	ND	-	-
MW-7	6/9/1995	9.37	-4.34	ND	ND	ND	ND	ND		- 20
MW-7	9/21/1995	9.43	-4.40	ND	ND	ND	ND	ND		5-1
MW-7	12/18/1995	13.28	-8.25	_ = _	-	- 1	-			-
MW-7	2/29/1996	11.70	-6.67	ND	ND	ND	ND	ND	<u> </u>	-
MW-7	7/15/1996	11.12	-6.09	-		- 3		-	<u> </u>	-
MW-7	1/7/1997	14.35	-9.32	< 0.05	<0.5	<0.5	<0.5	<0.5	4	
MW-7	7/12/1997	15.12	-10 09				-	-		
MW-7	1/26/1998	15.28	-10.25	< 0.05	<0.5	<0.5	<0.5	<0.5	=	-
MW-7	7/3/1998	14.10	-9.07	_	-	- 1	-			-
MW-7	1/13/1999	14.55	-9.52	< 0.05	<0.5	<0.5	<0.5	<0.5	-	-
MW-7	9/27/1999	14.03	-9.00				-			-20
MW-7	1/28/2000	10.91	-5.88	<0.05	<0.5	<0.5	<0.5	<0.5		<5.0
akland Ti	er 2 SSTLs for S	Sandy Silts			53,000	>Sol	>Sol	>Sol	NA	>Sol
	er 2 SSTLs for C				89,000	>Sol	>Sol	>Sol	NA	>Sol
FRWOCE	Gross Contami	nation Concern	s	2:5-5				Internal lating		

MTBE = methyl tertiary butyl ether. TPH = total petroleum hydrocarbons. TBA = tert-butanol

Groundwater elevations prior to 2003 based on the following well casing elevations in feet above MSL:

MW-1 (8.87'), MW-2 (8.14'), MW-3 (9.13'), MW-4 (9.07'), MW-5 (8.93'), MW-6 (6.13') and MW-7 (5.03').

Oakland SSTLs are based on a groundwater media for inhalation of indoor air vapors risk scenerio at a commerical/industrial site.

The City of Oakland BTEX standards are provided in lieu of the SFRWQCB ESLs due to the location of the site.

New survey data was obtained on June 23, 2003 by Phelps and Associates Land Surveyors.

June 2003 water levels were measured on June 5, 2003.

SFRWQCB Gross Contamination Concerns is based on correspondence with R. Brewer at SFRWQCB.

⁽¹⁾⁼Organic Lead, (2)=Total Lead, and (3)=chromatographic peak array does not match gasoline standard.

⁽⁴⁾ TBA was also reported in well MW-2 on 8/29/2000 at a concentration of 102 µg/L

ND = not detected at laboratory reporting limit. <= less than given laboratory reporting limit.

 $[\]mu g/L = micrograms per liter, mg/L = milligrams per liter. -= not analyzed.$

MSL = mean seal level.

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Sample ID	Sample Collection Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (pg/l)	Xylenes (µg/l)	MTBE (µg/l)	Other Oxygenates & Lead Scavengers (µg/l)
VRW-1	11/3/1993			-	3	1,600	19	1.1	16		
VRW-1	6/10/2003	7,31	11.18	3.87	0.44	5.9	< 0.5	<0.5	1.9	(¥	2
VRW-1	11/19/2003	7.33	11.18	3.85	1.2	19	< 0.54	< 0.55	6.3		-
VRW-1	6/22/2004	7,32	11.18	3.86	0.32	3.23	< 0.50	<0,50	3,36	-	
	SSTLS for Sandy					53,000	>Sol	>Sol	>Sol	>Sal	
Dakland Tier 2	SSTLS for Clayey	Silts				89,000	>Sol	>Sol	>Sol	>Sol	
FRWQCB Gr	ss Contamination	Concerns	YOUR DANK		2.5-5						
VRW-2	11/4/1993	-	-		7.2	3,300	600	2.4	870	2	
VRW-2	5/17/2002	/4	025		2.8	471	<10	<10	<10	<20	<10 to <20
VRW-2	6/9/2003	6.87	11.08	4.21	0.47	38	2.8	<1.0	<1.0		
VRW-2	11/19/2003	7.00	11.08	4.08	1.3	51	< 0.54	< 0.55	4.0		*
VRW-2	6/25/2004	7.00	11.08	4.08	0.24	274	4.10	4.11	8.22	-	
akland Tier 2	SSTLS for Sandy	Silts				53,000	>Sol	>Sol	>Sol	>5al	
Dakland Tier 2	SSTLS for Clayey	Silbs				89,000	>Sol	>Sol	>Sol	>Sol	
FRWQCB Gr	ss Contamination	Concerns			2.5-5			0.30			
VRW-3	11/4/1993	-	-	- 56	5.7	120	41	1.1	380	-	
VRW-3	5/17/2002		-	-	0.42	10.9	< 0.5	< 0.5	1.07	<1.0	<0.50 to <1.0
VRW-3	6/9/2003	7.41	11.62	4.21	0.061	4.8	< 0.5	< 0.5	<0.5	2	
VRW-3	11/19/2003	7.48	11.62	4.14	0.16	1.7	< 0.54	< 0.55	2.7	2	
VRW-3	6/25/2004	7.58	11.62	4.04	0.12	2.00	< 0.50	< 0.50	1.00	12	-
Dakland Tier 2	SSTLS for Sandy	Silts				53,000	>Sol	>Sol	>Sol	>Sol	
oakland Tier 2	SSTLS for Clayey	Silts	TO UNITED STATES			89,000	>Sol	>Sol	>Sol	>Sol	
FRWQCB Gr	ss Contamination	Concerns			2.5-5		Ole all Ullectua				
VRW-4	11/4/1993	7-2	S 4 5	- 1	9.0	4,400	900	5.4	990	-	-
VRW-4	5/15/2002	7÷	(4)	-	11	4,270	741	512	1,130	<50	<25 to <50
VRW-4	6/5/2003	7.01	11.33	4.32	2.2	1,200	100	12	89		
VRW-4	11/19/2003	7.44	11.33	3.89	1.7	210	2.4	<2.2	36	-	
VRW-4	6/22/2004	7.20	11.33	4.13	14	4,540	611.0	739	1,170		
akland Tier 2	SSTLS for Sandy	Silts				53,000	>Sol	>Sol	>Sol	>Sol	
A STATE OF THE STA	SSTLS for Clavey					89,000	>Sol	>Sol	>Sol	>Sol	
	ss Contamination				25-5	1000000	Dimension.				

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Sample ID	Sample Collection Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/l)	Benzene (ug/l)	Toluene	Ethyl- benzene (ug/l)	Xylenes (µg/l)	MTBE	Other Oxygenates & Lead Scavengers (µg/l)
VRW-5	11/4/1993				0.90	68	33	2.5	32	-	
VRW-5	5/16/2002	_			0,87	44.3	<5.0	<5.0	<5.0	<10	<5.0 to <10
VRW-5	6/9/2003	7.33	11.56	4.23	0.93	90	<1.0	14	0.16	. 2	
VRW-5	11/19/2003	7.53	11.56	4.03	2.9	250	<1.1	24	41	2	¥6
VRW-5	6/23/2004	7.47	11.56	4.09	0.72	40.5	<1.0	1.17	8.04	+	£
	SSTLS for Sandy			2288800000	- 1 T 1 (4-1)	53,000	>Sol	>Sol	>Sol	Sol 3	
	SSTLS for Clayey		The State of the S			89,000	>Sol	>Sol	>Sol	>Sol	
	oss Contamination				2.5-5		*** =		. العقال الع		
VRW-6	11/4/1993		_		0.41	6.6	1.0	ND	31	- 8	÷0
VRW-6	5/15/2002	_	-		0.73	178	4.58	1.41	6.10	<1.0	<0.50 to <1.0
VRW-6	6/6/2003	7.21	11.43	4.22	< 0.05	<0.5	<0.5	<0.5	<0.5	-	
VRW-6	11/19/2003	7.39	11.43	4.04	0.21	13	< 0.54	1.0	2.5		
VRW-6	6/23/2004	7.36	11.43	4.07	0.42	43.4	3.60	1.69	13.0	-	
	SSTLS for Sandy		SOUND THE PROPERTY OF	THE RESIDENCE OF THE PARTY OF T	O'UnasiPark!	53,000	>Sol	>Sol	>Sol	>Sol	
THE RESERVE OF THE PERSON NAMED IN	SSTLS for Clavey			WITE TAILING		89,000	>Sol	>Sol	>Sol	>Sol	
	oss Contamination				2.5-5	x his		ding. Na			
VRW-7	11/4/1993			2	0.10	ND	ND	ND	ND	<u> </u>	- 3
VRW-7	5/16/2002	_		_	1.6	28.9	0.980	< 0.50	< 0.50	<1.0	<0.50 to <1.0
VRW-7	6/6/2003	7.47	11.70	4.23	0.36	19	1.3	<0.5	2.2		
VRW-7	11/19/2003	7.78	11.70	3.92	1.1	14	< 0.54	1.7	5.6	-	
VRW-7	6/22/2004	7.61	11.70	4.09	1.3	130	8.06	9.81	15.9		•
Oakland Tier	SSTLS for Sandy	Silts				53,000	>Sol	>Sol	>Sol	>Sol	
Oakland Tier :	SSTLS for Clayey	Silts		ASUP##27F00F		89,000	>Sol	>Sol	>Sol	>Sol	
SFRWQCB Gr	oss Contamination	Concerns			2.5-5						
VRW-8	11/4/1993	T -			5.9	460	54	ND	53	-	
VRW-8	5/16/2002				3.3	248	16.0	<10	<10	<20	<10 to <20
VRW-8	6/6/2003	7.42	11 62	4.20	1.8	70	10	11	6.1		-
VRW-8	11/19/2003	7.85	11 62	3.77	3.6	36	<2.7	<2.7	4.3	_	-
VRW-8	6/23/2004	7.56	11.62	4.06	2.1	115	11.8	<5.0	18.2	-	
Oakland Tier	SSTLS for Sandy	Silts			#####################################	53,000	>Sol	>Sol	>Sol	>Sol	
Oakland Tier	SSTLS for Clayey	Silts		1489 - 1935		89,000	>Sol	>Sol	>Sul	>Sol	
SFRWOCB G	oss Contamination	Concerns			2.5-5	3 11 10 200	1000		A. C. St.		

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Pacific Supply Company, 1735 24th Street, Oakland, California

Sample ID	Sample Collection Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Xylenes (µg/l)	MTBE (µg/l)	Other Oxygenates & Lead Scavengers (µg/l)
VRW-9	11/4/1993	-	-	- 1	0.47	36	18	ND	1.0	-	
VRW-9	5/16/2002	-	-		0.080	0.990	2.00	< 0.50	5.93	<1.0	<0.50 to <1.0
VRW-9	6/6/2003	7.67	11.87	4.20	0.58	10	4.4	4.9	< 0.50	- 2	
VRW-9	11/19/2003	8.01	11.87	3.86	0.86	<1.1	<1.1	<1.1	5.5	S	9
VRW-9	6/22/2004	7.76	11.87	4.11	0.61	<1.0	1.35	< 0.50	5.55	E	9:
akland Tier	2 SSTLS for Sandy	Silts				53,000	>5ol	>Sol	>Sol	>Sol	
akland Tier	2 SSTL5 for Clayey	Silts				89,000	>Sol	>501	>Sol	>Sol	
FRWQCB Gr	oss Contamination	Concerns			2.5-5						

mg/l = milligrams per kilogram

µg/l = micrograms per kilogram

Oukland SSTLs are based on a groundwater media for inhalation of indoor air vapors risk scenerio at a commerical/industrial site.

There are no RBSLs for Total Petroleum Hydrocarbons.

SFRWQCB Gross Contamination Concerns is based on correspondence with R. Brewer at SFRWQCB.

The City of Oakland BTEX standards are provided in lieu of the SFRWQCB ESLs due to the location of the site.

ND = not detected above laboratory reporting limits.

>Sol = RBSL exceeds solubility of chemical in water.

TABLE 3. SUMMARY OF SOIL ANALYTICAL DATA

		Sample	TPH as	TPH as	TPH as						
Boring	Sample	Depth	Gasoline	Diesel	Motor Oil	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Location	Date	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(mg/kg)	(ug/kg
V-3	5/11/1987	7	160			2,200	4,000	-	12,000		-
V-7	5/11/1987	7	8	_	-	410	250		810	-	-
MW-1	9/13/1988	8	26	_	- 1	<2.5	220	-	850	-	
MW-2	9/13/1988	8	1,400	_	_	990	700		1,100	-	-
MW-3	9/13/1988	8	1,300	_	-	530	590		22,000	_	
MW-4	9/13/1988	8	3,700	_	_	3,700	2,400		12,000	-	
MW-6 ^(a)	12/19/1989	5.5	370	_	_	<500	<500	<500	<500	1.5	-
MW-7	12/19/1989	5.5	<2.5	<1.0	160	<5	<5	<5	<5	1.7	
VEW-1	6/6/1992	4.5	100	_	_	9,100	830	1,300	21,000	_	-
VEW-1	6/6/1992	8	780		_	23,000	93,000	60,000	170,000		-
B-1	3/5/1993	2.5	<1	_		<5	<5	<5	<5	199	-
B-2	3/5/1993	6.0	<1	84		<5	<5	<5	<5		-
B-3	3/5/1993	8.0	<1	-	_	<5	<5	<5	<5	-	-
B-4	3/5/1993	7.0	7,000	_	=	28,000	17,000	73,000	43,000	-	_
B-5	3/5/1993	7.0	900		_	1,600	2,400	10,000	6,200	_	
B-6	3/5/1993	7.0	10	74	=	71	38	78	100	_	-
B-7	3/5/1993	7.0	10	_		30	42	30	110	_	-
B-8	3/5/1993	7.0	2,200	_	_	10,000	41,000	21,000	94,000	-	-
B-9	3/5/1993	8.5	910	_	-	1,200	1,500	3,700	6,700	_	
B-10	3/5/1993	6.0	<1		_	<5	5	<5	<5	_	_
VRW-1	8/25/1993	7.5	1.5	_		14	<5	<5	<5		-
VRW-2	8/26/1993	7	27		-	110	200	46	190		-
VRW-3	8/25/1993	7.5	15	-	-	700	90	16	60	-	
VRW-4	8/26/1993	7	5.5	_	-	410	120	110	490		
VRW-5	8/27/1993	7.5	700	-	-	7,300	3,000	5,300	3,600	-	- C
VRW-6	8/26/1993	7.5	3,800			41,000	130,000	53,000	270,000	-	
VRW-7	8/27/1993	7	1,100	_		1,300	2,900	2,600	6,000		_
VRW-8	8/26/1993	7.5	30		-	220	120	400	670		_
VRW-9	8/27/1993	7	370	_		2,300	2,200	620	2,300		

TABLE 3. SUMMARY OF SOIL ANALYTICAL DATA

		Sample	TPH as	TPH as	TPH as						
Boring	Sample	Depth	Gasoline	Diesel	Motor Oil	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Location	Date	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(µg/kg)	(mg/kg)	(ug/kg)
CB-1	7/21/2004	7	<1.0		11102-00	<5.0	<5.0	<5.0	<5.0	- G <u>-</u>	-
CB-2	7/21/2004	6.5	9.3	_	ii -	<10	<10	<10	13	_	_
CB-4	7/21/2004	8.0	1,700	_	-	<2,500	7,900	25,000	37,000	_	: -
CB-5	7/21/2004	7.0	<1.0	-	-	<5.0	<5.0	<5.0	5.1	-	_
CB-6	7/21/2004	7.5	430	_	_	<1,300	1,700	1,600	3,000	5#4	-
CB-7	7/21/2004	7.5	170	-	-	<500	660	<500	1,200	-	-
CB-8	7/21/2004	8.0	5,700	_	_	<2,500	54,000	18,000	53,000	-	-
CB-9	7/21/2004	7.5	540	-	-	<500	2,500	1,300	4,600	_	-
CB-10	7/21/2004	7	<1.0		_	<5.0	<5.0	<5.0	<5.0	_	-
Oakland Tier 2 SSTLs for Sandy Silts					17,000	>Sat	>Sat	>Sat	WE S	>Sat	
	Oakland Tier 2 SSTLs for Clavey Silts					30,000	>Sat	>Sat	>Sat		>Sat

⁽a) This sample was also analyzed for volatile organic compounds (VOCs) by Method 8010 and semi-volatile compounds (SVOCs) by Method 625.

SSTLs are based on subsurface soil inhalation of indoor air vapors, for the specified soil type and for commercial/industrial site use.

>Sat = SSTLs exceeds saturation soil concentration of chemical.

There are no SSTLs for total petroleum hydrocarbons.

TABLE 4. SUMMARY OF VAPOR ANALYTICAL DATA

Pacific Supply Company, 1735 24th Street, Oakland, California

Sample Location	Sample Date	TPH as gasoline (ppm)
Tank Area (West)	4/28/1987	1,400
Tank Area (East)	4/28/1987	2,000
V-1	5/11/1987	3,700
V-2	5/11/1987	2,200
V-3	5/11/1987	2,500
V-4	5/11/1987	1,800
V-5	5/11/1987	2,300

ppm = parts per million

TABLE 5. GRAB GROUNDWATER ANALYTICAL RESULTS, 8/29/00

Pacific Supply Company, 1735 24th Street, Oakland, California

	TPH as			Ethyl-					Other Oxygenates
Sample	gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	TAME	TBA	& Scavengers
ID	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
B-10W	0.060	1.4	1.4	ND	1.0	0.660	4.03	58.3	ND
B-11W	ND	ND	ND	ND	ND	<2.5	<10	<500	<10
B-12W	ND	ND	ND	ND	ND	<1.25	<5	<250	<5
Method	0.05	0.5	0.5	0.5	0.5	0.5	2.0	100	2.00
Reporting Limit	mg/L	μg/L	µg/L	μg/L	ug/L	μg/L	μg/L	µg/L	μg/L

mg/L = milligrams per liter.

μg/L = micrograms per liter.
ND = Not detected at the method reporting limit.

< = Not detected at the indicated reporting limit.

TABLE 6. GRAB GROUNDWATER ANALYTICAL RESULTS, 7/21/04

Pacific Supply Company, 1735 24th Street, Oakland, California

Sample Location	Sample Date	Sample Depth (feet bgs)	TPH as gasoline (mg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)
CB-3	7/21/2004	8 to 10	23	1,100	100	590	2,500
Oakland Tier 2 SSTLs for Sandy Silts			a Jakon	53,000	>Sol	>Sol	>Sol
Oakland Tier 2 SSTLs for Clavey Silts				89,000	>Sol	>Sol	>Sol
SFRWOCB Gross Cor	2.5-5			开节添雕褶			

mg/l = milligrams per liter

µg/l = micrograms per liter

Oakland SSTLs are based on a groundwater media for inhalation of indoor air vapors risk scenerio at a commerical/industrial site.

There are no SSTLs for Total Petroleum Hydrocarbons.

(1) Per correspondence with SFRWQCB and Table F-1b in Appendix 1.

(2) The City of Oakland BTEX standars are provided in lieu of the SFRWQCB ESLs due to the location of the site. na = not analyzed.

ND = not detected above laboratory reporting limits.

>Sol = RBSL exceeds solubility of chemical in water.

- 780 ft Scale: 1 : 24,400 Detail: 13-4 Datous: NAD27

Brunsing Associates, Inc. 5803 Skylane Bivd., Suite A Windsor, California 95492 Tel: (707) 838-3027

Job No.: 029.2

Appr.:

Date: 1/8/04

VICINITY MAP PACIFIC SUPPLY COMPANY Oakland, California

PLATE

Brunsing Associates, Inc. 5803 Skylane Blvd., Suite A Windsor, California 95492 Tel: (707) 838-3027

12/7/04

Date:

PACIFIC SUPPLY COMPANY 1734 24th Street Oakland, California

Brunsing Associates, Inc. 5803 Skylane Blvd., Suite A Windsor, California 95492 Tel: (707) 838-3027

Job No.: 29

Appr.:

12/7/04 Dote:

CROSS SECTION LOCATION MAP

PACIFIC SUPPLY COMPANY 1734 24th Street Oakland, California

APPENDIX A

July 2004 Boring Logs

NOTE DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

		144 IOD DIVIDIO	10	SYM	BOLS	TYPICAL	
		MAJOR DIVISIO	NS	GRAPH	LETTER	DESCRIPTIONS	
	-	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
		GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
	COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES	67.50 57.05.72	GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
TEM		FRACTION RETAINED ON NO 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
SYS	ONIFIED SOIL CLASSIFICATION SYSTEM OF MATERIAL IS LARGER THAN 50% OF MATERIAL IS MORE THAN 50%	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	
MOIT		LARGER THAN NO	SANDY SOILS	(LITTLE OR NO FINES)	8 4	SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
FICA		MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
ASSI		FRACTION PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	
					ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY	
DS Q	FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
NFIE	JOILO				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
) 	MORE THAN 50% OF MATERIAL IS SMALLER THAN NO 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS	
	SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
					ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	
		HIGHLY ORGANIC SO	ILS	\$P \$	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH CRGANIC CONTENTS	

RELATIVE CONSISTENCY CLASSIFICATION

GRANULAR	COHESIVE
Silts, Sands, and Gravels	Clays and Clayey Silts
VERY LOOSE	SOFT
LOOSE	MEDIUM STIFF
MEDIUM DENSE	STIFF
DENSE	VERY STIFF
VERY DENSE	HARD

Relative Moisture Contents
DRY
DAMP
MOIST
WET
SATURATED

■ - Undisturbed sample retained 🛛 - Recovered, not retained 🗎 - Bulk Sample

 ∇ - Depth to water

Brunsing Associates, Inc. 5803 Skylane Blvd., Suite A Windsor, California 95492 Tel: (707) 838-3027

Job No.: 029

Date: 12/6/04

UNIFIED SOIL CLASSIFICATION CHART

P.O. BOX 588 Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES:

SURFACE ELEVATION: 9.5

DATUM:

CB-1 BORING NO.:

PACIFIC SUPPLY COMPANY

SHEET

1 OF 1

PROJECT: LOCATION:

Oakland, California

PROJECT NO.:

029

WHHC LOGGED BY:

	SAM	PLE INF	ORMA	TION			T.	WELL	NOL
DEPTH FEET	LAB SAMPLE	SAMPLE TYPE	BLOW COUNTS	Recovery (%)	PID (ppm)	DESCRIPTION	STRATA	CONSTRUCTION DETAIL	ELEVATION
						3" Asphaltic concrete			
		eg e				GRAY SANDY GRAVEL (GP) fill			70
						GRAY-GREEN SANDY CLAY (CH) moist, medium stiff			
						BLACK SANDY CLAY (CH) moist, medium stiff, some gravel at 3.5'			
					0.0	GRAY-GREEN SILTY SAND (SM) moist, medium dense			•
5-								5-	-5
্ৰ	000000000000000000000000000000000000000								
924						BLACK SILTY SAND (SM) saturated, medium dense, some weed fibres			=3
					0.0			₽	
								1005A	
		RACTOR:	0			REMARKS			

DRILLING EQUIPMENT:

DRILLING STARTED:

BRUNSING ASSOCIATES, INC.

Rhino 7/21/04

Job No.: 029

ENDED: 7/21/04

Appr.:

Date 1/27/05

LOG OF BORING CB-1 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

See key sheet for symbols and abbreviations used above.

PLATE

BORING LOG AND WELL COMPLETION 029 GPJ BACE GDT 1/27/05

P.O. BOX 588

Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES:

SURFACE ELEVATION: 9.5

DATUM:

CB-2 BORING NO.:

PACIFIC SUPPLY COMPANY

SHEET 1 OF 1

Oakland, California LOCATION:

029 PROJECT NO.:

PROJECT:

WHHC LOGGED BY:

	SAM	PLE INF	ORMAT	ION			4	WELL	NO.
EPTH EET S	LAB SAMPLE	SAMPLE TYPE	BLOW COUNTS	Recovery (%)	PID (ppm)	DESCRIPTION	STRATA	CONSTRUCTION DETAIL	ELEVATION
						3" Asphaltic concrete GRAY SANDY GRAVEL AND CONCRETE (GP)	0000		
s						BROWN SANDY CLAY (CH) moist, medium stiff, ~30% fine to medium-grained sand			_
_					0.0	BLACK SANDY CLAY (CH) moist, medium stiff			
± 1						BROWN SANDY CLAY (CH) moist, medium stiff, ~20% fine-grained sand			-5
5-						GRAY-GREEN SANDY GRAVEL (GP) moist, loose		5-	
= ==						BLACK SANDY SILT (OH) with heavy organics, plant fibers			

DRILLING METHOD: Envirocore

DRILLING EQUIPMENT: Rhino

7/21/04 DRILLING STARTED:

ENDED: 7/21/04 | See key sheet for symbols and abbreviations used above.

BORING LOG AND WELL COMPLETION 029:GPJ BACE GDT 1/27/05

BRUNSING ASSOCIATES, INC.

Job No.: 029

Appr.:

Date: 1/27/05

LOG OF BORING CB-2 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

P.O. BOX 588

Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES: N 54.7 E 70.0

SURFACE ELEVATION: 9.5

DATUM:

CB-3 BORING NO .:

PACIFIC SUPPLY COMPANY PROJECT:

SHEET

1 OF 1

Oakland, California LOCATION:

029 PROJECT NO .:

WHHC LOGGED BY:

	SAM	IPLE INF	ORMA	TION			Z.	WELL	o F
DEPTH FEET	LAB SAMPLE	SAMPLE TYPE	BLOW COUNTS	Recovery (%)	PID (ppm)	DESCRIPTION	STRATA	CONSTRUCTION DETAIL	ELEVATION
						3" Asphaltic concrete			
						GRAY SANDY GRAVEL (GP) dry, dense			
						BLACK SANDY CLAY (CH) moist, medium stiff, some green discoloration at 3'			
e									-5
5-						GRAY-GREEN SILTY SAND (SM) moist, medium dense, fine to medium-grained sand		5-	
-					0.0	BLACK SANDY CLAY (CH) moist, medium stiff, ~20% fine to very fine-grained sand			_
9						BLACK SANDY SILT (OH) saturated, soft, organics		⋤	

Envirocore **DRILLING METHOD:**

DRILLING EQUIPMENT: Rhino

7/21/04 ENDED: 7/21/04 DRILLING STARTED:

See key sheet for symbols and abbreviations used above.

BRUNSING ASSOCIATES, INC.

Job No.: 029

Appr.:

Date: 1/27/05

LOG OF BORING CB-3 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

PLATE

BORING LOG AND WELL COMPLETION 029 GPJ BACE GDT 1/27/05

P.O. BOX 588

Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES: SURFACE ELEVATION: 9.5

DATUM:

PROJECT:

CB-4

SHEET 1 OF 1

BORING NO.:

Oakland, California

PACIFIC SUPPLY COMPANY

LOCATION:

PROJECT NO.:

029

WHHC LOGGED BY:

SAIVI	PLE INF	FORMAT	TION			≤	WELL	No.
				PID (ppm)	DESCRIPTION	STRA	CONSTRUCTION DETAIL	ELEVATION
	T				3" Asphaltic concrete			
					GRAY SANDY GRAVEL (GP) dry, medium dense	000		-
					BROWN SANDY CLAY (CH) moist, medium stiff			
					GRAY-GREEN SILTY SAND (SM) moist, loose, ~80% medium-grained sand, ~20% coarse-grained sand at 5.5'		5-	-5
					BROWN SANDY CLAY (CH) moist, medium stiff			
					GRAY-GREEN SANDY CLAY (CH) moist, medium stiff, ~20% fine to medium-grained sand			-
					BLACK SANDY SILT (OH) heavy organics		立	
	CONT. AND STREET, STRE	STATE OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE		사용하다 사용 살아보다 그 그 내가 이렇게 하고 있다면 보다 보다 되었다고 있다면 하는데 하다 내 전에 살아 있다면 하다 때 하다 때 그래요?	사용 사용 전에 들고	AMPLE TYPE COUNTS (%) (ppm) 3" Asphaltic concrete GRAY SANDY GRAVEL (GP) dry, medium dense BROWN SANDY CLAY (CH) moist, medium stiff GRAY-GREEN SILTY SAND (SM) moist, loose, ~80% medium-grained sand, ~20% coarse-grained sand at 5.5' BROWN SANDY CLAY (CH) moist, medium stiff GRAY-GREEN SANDY CLAY (CH) moist, medium grained sand	AMPLE TYPE COUNTS (%) (ppm) 3" Asphaltic concrete GRAY SANDY GRAVEL (GP) dry, medium dense BROWN SANDY CLAY (CH) moist, medium stiff GRAY-GREEN SILTY SAND (SM) moist, loose, -80% medium-grained sand, ~20% coarse-grained sand at 5.5' BROWN SANDY CLAY (CH) moist, medium stiff GRAY-GREEN SANDY CLAY (CH) moist, medium stiff GRAY-GREEN SANDY CLAY (CH) moist, medium stiff GRAY-GREEN SANDY CLAY (CH) moist, medium-grained sand	LAB SAMPLE BLOW Recovery (%) (ppm) S" Asphaltic concrete GRAY SANDY GRAVEL (GP) dry, medium dense BROWN SANDY CLAY (CH) moist, medium stiff GRAY-GREEN SILTY SAND (SM) moist, loose, -80% medium-grained sand, -20% coarse-grained sand at 5.5' BROWN SANDY CLAY (CH) moist, medium stiff GRAY-GREEN SILTY SAND (SM) moist, loose, -80% medium-grained sand, -20% coarse-grained sand at 5.5' BROWN SANDY CLAY (CH) moist, medium stiff GRAY-GREEN SANDY CLAY (CH) moist, medium-grained sand

DRILLING METHOD: Envirocore

Rhino

DRILLING EQUIPMENT: DRILLING STARTED:

7/21/04

ENDED: 7/21/04 | See key sheet for symbols and abbreviations used above.

BORING LOG AND WELL

BRUNSING ASSOCIATES, INC.

Job No.: 029

Appr.:

Date: 1/27/05

LOG OF BORING CB-4 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

BRUNSING ASSOCIATES, INC. **CB-5** 1 OF 1 BORING NO.: SHEET P.O. BOX 588 PACIFIC SUPPLY COMPANY Windsor, CA. 95492 PROJECT: Telephone: (707) 838-3027 Fax: (707) 838-4420 Oakland, California LOCATION: 029 PROJECT NO .: COORDINATES: **WHHC** SURFACE ELEVATION: 9.5 DATUM: LOGGED BY: ELEVATION SAMPLE INFORMATION WELL STRATA CONSTRUCTION DESCRIPTION DEPTH SAMPLE LAB BLOW PID Recovery **DETAIL** FEET SAMPLE TYPE COUNTS (%) (ppm) 3" Asphaltic concrete GRAY SANDY GRAVEL (GP) fill Gravel in shoe, no recovery GRAY-GREEN, BROWN SILTY SAND (SM) moist, medium dense, some gravel -5 at 6' 5 5-COMPLETION 029 GPJ BACE GDT 1/27/06 BROWN SILTY SAND (SM) moist, medium dense, very little organics DRILLING CONTRACTOR: Gregg REMARKS No groundwater encountered ENVIRONMENTAL BORING LOG AND WELL Envirocore DRILLING METHOD: DRILLING EQUIPMENT: Rhino See key sheet for symbols and abbreviations used above. DRILLING STARTED: 7/21/04 ENDED: 7/21/04 PLATE Job No.: 029

BRUNSING ASSOCIATES, INC.

Appr.:

Date: 1/27/05

LOG OF BORING CB-5 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

P.O. BOX 588

Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES: N 43.0 E 20.0

SURFACE ELEVATION: 9.5

DATUM:

CB-6 BORING NO .:

PACIFIC SUPPLY COMPANY

SHEET 1 OF 1

PROJECT: LOCATION:

Oakland, California

PROJECT NO.: 029

WHHC LOGGED BY:

SAMPLE	1 Control (277) 112 (1997)	Recovery	PID	DESCRIPTION	STRATA	WELL CONSTRUCTION	EVATION
The company of the co	1 Control (277) 112 (1997)	Recovery	DID	DESCRIPTION	2	CONSTRUCTION	
	COUNTS	(%)	(ppm)	DESCRIPTION	STR	DETAIL	ELEVATION
				3" Asphaltic concrete GRAY SANDY GRAVEL (GP) dry, dense			
				GRAY-GREEN SANDY SILT (ML) moist, medium dense	000		
				GRAY-GREEN SANDY CLAY (CH) moist, medium stiff			-
				BROWN, GRAY-GREEN SILTY SAND (SM) moist, medium dense, some gravel		5-	-5
				BROWN, GRAY-BROWN CLAYEY GRAVEL (GC) wet, medium dense			
						₹	
					GRAY-GREEN SANDY SILT (ML) moist, medium dense GRAY-GREEN SANDY CLAY (CH) moist, medium stiff BROWN, GRAY-GREEN SILTY SAND (SM) moist, medium dense, some gravel	GRAY-GREEN SANDY SILT (ML) moist, medium dense GRAY-GREEN SANDY CLAY (CH) moist, medium stiff BROWN, GRAY-GREEN SILTY SAND (SM) moist, medium dense, some gravel BROWN, GRAY-BROWN CLAYEY	GRAY-GREEN SANDY SILT (ML) moist, medium dense GRAY-GREEN SANDY CLAY (CH) moist, medium stiff BROWN, GRAY-GREEN SILTY SAND (SM) moist, medium dense, some gravel BROWN, GRAY-BROWN CLAYEY GRAVEL (GC) wet, medium dense

DRILLING EQUIPMENT:

Rhino

DRILLING STARTED:

7/21/04

ENDED: 7/21/04 See key sheet for symbols and abbreviations used above.

BRUNSING ASSOCIATES, INC.

Job No.: 029

Appr.:

1/27/05 Date:

LOG OF BORING CB-6 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

PLATE

ENVIRONMENTAL BORRING LOG AND WELL

P.O. BOX 588

Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES:

SURFACE ELEVATION: 9.5

DATUM:

CB-7 BORING NO.:

PACIFIC SUPPLY COMPANY

SHEET 1 OF 1

Oakland, California LOCATION:

029 PROJECT NO.:

PROJECT:

WHHC LOGGED BY:

SURFACE	ELEVA	TION: 9.	5	DATO	JM:	LOGGED BY: WITH	ПС		
DEPTH S.		SAMPLE	BLOW COUNTS	Recovery	PID (ppm)	DESCRIPTION	STRATA	WELL CONSTRUCTION DETAIL	ELEVATION
						3" Asphaltic concrete GRAY SANDY GRAVEL (GC)			
						BROWN SANDY SILT (ML) dry, loose			-
						BLACK SANDY CLAY (CH) moist, medium stiff			
						GRAY-GREEN SILTY SAND (SM) moist, medium dense			-5
5-						GRAY-GREEN SANDY CLAY (CH) moist, medium stiff		5-	
						BLACK SANDY SILT (OH) wet, dense, with organics		፟፟፟ቖ	-
DRILLING	G CONT	RACTOR	: Gregg			REMARKS		₩	

DRILLING METHOD:

DRILLING STARTED:

Envirocore

DRILLING EQUIPMENT:

Rhino 7/21/04

ENDED: 7/21/04 See key sheet for symbols and abbreviations used above.

BRUNSING ASSOCIATES, INC.

Job No.: 029

Appr.:

Date: 1/27/05

LOG OF BORING CB-7 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

PLATE

BORING LOG AND WELL COMPLETION 029 GPJ BACE GDT 1/27/05

P.O. BOX 588

Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES:

SURFACE ELEVATION: 9.5

DATUM:

BORING NO .:

CB-8

SHEET 1 OF 1

PROJECT:

Oakland, California

PACIFIC SUPPLY COMPANY

LOCATION:

PROJECT NO.: 029

LOGGED BY:

WHHC

SAM	PLE IN	FORMA	TION			2	WELL	Š.
LAB SAMPLE				PID (ppm)	DESCRIPTION	STRA	CONSTRUCTION DETAIL	ELEVATION
					3" Paver stones sidewalk			
					3" Asphaltic concrete			
					BROWN SAND (SW) moist, dense			
					BROWN SANDY CLAY (CH) moist, medium stiff	///		
					TAN, BROWN GRAVELLY CLAY (CH) moist, medium stiff, some orange staining			-
					BROWN, ORANGE-BROWN SANDY CLAY (CH) moist, medium stiff, fine to medium-grained sand		5-	-5
					DARK BROWN, BLACK SANDY CLAY (CH) moist, medium stiff			
					BLACK SANDY SILT (OH) wet, organic fibres			
	LAB	LAB SAMPLE	LAB SAMPLE BLOW		LAB SAMPLE BLOW Recovery PID	LAB SAMPLE BLOW TYPE COUNTS (%) (ppm) 3" Paver stones sidewalk 3" Asphaltic concrete BROWN SAND (SW) moist, dense BROWN SANDY CLAY (CH) moist, medium stiff TAN, BROWN GRAVELLY CLAY (CH) moist, medium stiff, some orange staining BROWN, ORANGE-BROWN SANDY CLAY (CH) moist, medium-grained sand DARK BROWN, BLACK SANDY CLAY (CH) moist, medium stiff DARK BROWN, BLACK SANDY CLAY (CH) moist, medium stiff	LAB SAMPLE TYPE COUNTS (%) PID (ppm) 3" Paver stones sidewalk 3" Asphaltic concrete BROWN SAND (SW) moist, dense BROWN SANDY CLAY (CH) moist, medium stiff TAN, BROWN GRAVELLY CLAY (CH) moist, medium stiff, some orange staining BROWN, ORANGE-BROWN SANDY CLAY (CH) moist, medium-grained sand DARK BROWN, BLACK SANDY CLAY (CH) moist, medium stiff DARK BROWN, BLACK SANDY CLAY (CH) moist, medium stiff	LAB SAMPLE BLOW TYPE COUNTS (%) (ppm) DESCRIPTION DETAIL 3° Paver stones sidewalk 3° Asphaltic concrete BROWN SAND (SW) moist, dense BROWN SAND (SW) moist, medium stiff TAN, BROWN GRAVELLY CLAY (CH) moist, medium stiff, some orange staining BROWN, ORANGE-BROWN SANDY CLAY (CH) moist, medium stiff, fine to medium-grained sand DARK BROWN, BLACK SANDY CLAY (CH) moist, medium stiff DARK BROWN, BLACK SANDY CLAY (CH) moist, medium stiff BLACK SANDY SILT (OH) wet, organic

DRILLING METHOD:

DRILLING STARTED:

Envirocore

DRILLING EQUIPMENT:

Rhino 7/21/04

ENDED: 7/21/04 See key sheet for symbols and abbreviations used above.

BRUNSING ASSOCIATES, INC.

Job No.: 029

Appr.:

1/27/05 Date:

LOG OF BORING CB-8 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

P.O. BOX 588

Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES:

SURFACE ELEVATION: 9.5

DATUM:

BORING NO .:

CB-9

SHEET 1 OF 1

PROJECT:

LOGGED BY:

Oakland, California

PACIFIC SUPPLY COMPANY

LOCATION:

WHHC

PROJECT NO.: 029

0014174		tiion. 9.		DATE	7141.	LOGGED BY. WITE			_
DEPTH	SAM	PLE IN	[TION	PID	DESCRIPTION	STRATA	WELL CONSTRUCTION	ELEVATION
	SAMPLE		COUNTS		(ppm)		TS.	DETAIL	ELE,
						3" Asphaltic concrete GRAY SANDY GRAVEL (GP) moist, dense	00000		
						BROWN SILTY GRAVEL (GM) dry, medium dense			-
						BROWN SANDY CLAY (CH) moist, medium stiff, ~20% fine to medium-grained sand			
5-						BLACK SANDY CLAY (CH) moist, medium stiff		5-	-5
						GRAY-GREEN SILTY SAND (SM) moist, medium dense			
								⊽	-
DD!!!	NG CONT	7,407.00	Great			REMARKS			

DRILLING METHOD:

Envirocore

DRILLING EQUIPMENT:

Rhino

DRILLING STARTED:

7/21/04

ENDED: 7/21/04 See key sheet for symbols and abbreviations used above.

BRUNSING ASSOCIATES, INC.

Job No.: 029

Appr.:

Date: 1/27/05

LOG OF BORING CB-9 PACIFIC SUPPLY COMPANY 1735 24th Street

Oakland, California

P.O. BOX 588 Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES:

SURFACE ELEVATION: 9.5

DATUM:

BORING NO.:

CB-10

SHEET 1 OF 1

PROJECT:

PACIFIC SUPPLY COMPANY

LOCATION:

Oakland, California

029 PROJECT NO.:

WHHC LOGGED BY:

	SAN	IPLE INF	ORMAT	ΓΙΟΝ			4	WELL	No.
DEPTH FEET	LAB SAMPLE	SAMPLE TYPE	BLOW COUNTS	Recovery (%)	PID (ppm)	DESCRIPTION	STRATA	CONSTRUCTION DETAIL	ELEVATION
						3" Asphaltic concrete			
						GRAY GRAVEL (GW) moist, dense			-
						BROWN SANDY SILT (ML) maist, medium dense			
						GRAY-GREEN SILTY SAND (SM) mosit, medium dense, ~20% fine to medium-grained sand			
5-	-							5-	-5
2									
		2				BLACK SANDY SILT (OH) wet, medium dense, with organics		Ţ	-

DRILLING METHOD: Envirocore

DRILLING EQUIPMENT: Rhino

7/21/04 DRILLING STARTED:

ENDED: 7/21/04 | See key sheet for symbols and abbreviations used above.

BRUNSING ASSOCIATES, INC. Appr.:

Date: 1/27/05

Job No.: 029

LOG OF BORING CB-10 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

BRUNSING ASSOCIATES, INC. P.O. BOX 588 Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

PROJECT:

BORING NO .:

SHEET 1 OF 1

PACIFIC SUPPLY COMPANY

LOCATION:

Oakland, California

CB-11

029

COORDINATES:

PROJECT NO.: WHHC LOGGED BY:

	CE ELEVA	TION: 9.		DATU	IM:	LOGGED BY: WHI	TIC T		
ЕРТН	LAB	The second second	BLOW	Recovery	PID	DESCRIPTION	STRATA	WELL CONSTRUCTION DETAIL	ELEVATION
EET	SAMPLE	TYPE	COUNTS	(%)	(ppm)		200	DETAIL	ш
						3* Asphaltic concrete GRAY SANDY GRAVEL (GP) dry, dense	00000		
						BROWN GRAVELLY SILT (ML) dry, dense	200		_
						GRAY-GREEN SANDY CLAY (CH) moist, medium stiff			
5-						BROWN GRAVELLY SILT (ML) dry, medium dense		5-	-5
						LIGHT GRAY GRAVELLY SILT (ML) dry, dense			
14						DARK BROWN-BLACK GRAVELLY SILT (ML) dry, dense BLACK SANDY SILT (OH) wet, medium dense, with organics			-

DRILLING METHOD: Envirocore

Rhino DRILLING EQUIPMENT:

DRILLING STARTED:

7/21/04

ENDED: 7/21/04 | See key sheet for symbols and abbreviations used above.

BRUNSING ASSOCIATES, INC.

Job No.: 029

Appr.:

Date: 1/27/05

LOG OF BORING CB-11 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

P.O. BOX 588 Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES: N 68.5 W Abs(-60.6)

SURFACE ELEVATION: 9.5

DATUM:

CB-12 BORING NO .:

SHEET 1 OF 1 PACIFIC SUPPLY COMPANY

PROJECT: LOCATION:

Oakland, California

029 PROJECT NO.:

WHHC LOGGED BY:

	SAM	IPLE INF	ORMA	TION			TA	WELL	NOL
DEPTH FEET	LAB SAMPLE	SAMPLE TYPE	BLOW COUNTS	Recovery (%)	PID (ppm)	DESCRIPTION	STRATA	CONSTRUCTION DETAIL	ELEVATION
		a				3" Asphaltic concrete			
						GRAY SANDY GRAVEL (GP) dry, medium dense			
ž						ORANGE-BROWN SANDY GRAVEL (GP)	300		
19						DARK BROWN SANDY CLAY (CH) moist, medium stiff			
5-						BROWN CLAYEY GRAVEL (GP) fill, dry, medium dense, brick and pipe debris 4.5 to 5'		5-	-5
						BLACK SANDY SILT (ML) moist, medium dense, wood and plant fibres	0000		
12								⊽	<u>- 5</u>
DOWN	NO CONT	RACTOR:	Groos			REMARKS			

DRILLING METHOD: Direct push

DRILLING EQUIPMENT: Rhino

7/21/04 ENDED: 7/21/04 DRILLING STARTED:

See key sheet for symbols and abbreviations used above.

BRUNSING ASSOCIATES, INC.

Job No.: 029

Appr.:

1/27/05 Date:

LOG OF BORING CB-12 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

PLATE

BORING LOG AND WELL COMPLETION 029.GPJ. BACE.GDT. 1/27/05

P.O. BOX 588

Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES:

SURFACE ELEVATION: 9.5

BORING NO .:

CB-13

SHEET 1 OF 1

PROJECT:

PACIFIC SUPPLY COMPANY

LOCATION:

Oakland, California

PROJECT NO.:

029

LOGGED BY:

WHHC

EPTH LAB	MPLE IN	FORMA	TION					
	1	- Crainit	ION			T.	WELL	NOIT
EET SAMPLE		BLOW COUNTS	Recovery (%)	PID (ppm)	DESCRIPTION	STRATA	CONSTRUCTION DETAIL	ELEVATION
	11				3" Asphaltic concrete			
					GRAY SANDY GRAVEL (GP) dry, medium dense	2000	3	33
					DARK GREEN-GRAY CLAY (CH) moist, stiff			23
-							:	•
27					DARK GREEN-BLACK SANDY SILT (ML) moist, dense GRAY-GREEN SILTY SAND (SM) moist, very dense, some orange staining at 4.5'			-5
5-					very dense, some orange staining at 4.5		5-	
:=			_					
RILLING CON	TRACTOR:	Gregg			REMARKS No groundwater e	encounte	ered	

DRILLING METHOD:

2.5" Diameter Split spoon

DATUM:

DRILLING EQUIPMENT:

Rhino

DRILLING STARTED:

7/21/04

ENDED: 7/21/04 See key sheet for symbols and abbreviations used above.

BORING LOG AND WELL

BRUNSING ASSOCIATES, INC.

Job No.: 029

Appr.:

Date: 1/27/05

LOG OF BORING CB-13 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

P.O. BOX 588

Windsor, CA. 95492 Telephone: (707) 838-3027 Fax: (707) 838-4420

COORDINATES:

SURFACE ELEVATION: 9.5

DATUM:

BORING NO .:

CB-14

SHEET 1 OF 1 PACIFIC SUPPLY COMPANY

PROJECT: LOCATION:

Oakland, California

PROJECT NO .:

029

LOGGED BY:

WHHC

	SAM	PLE INF	ORMA	TION			¥.	WELL	NO.
DEPTH FEET	LAB SAMPLE	SAMPLE TYPE	BLOW COUNTS	Recovery (%)	PID (ppm)	DESCRIPTION	STRATA	CONSTRUCTION DETAIL	ELEVATION
						3" Asphaltic concrete			
						GRAY SANDY GRAVEL (GP) moist, medium dense			
8						DARK BROWN, BLACK SANDY SILT (ML) moist, very dense, some concrete debris			
5-						BROWN SANDY SILT (SM) dry, dense DARK BROWN SANDY SILT (ML) moist, dense, ~30% fine to medium-grained		5-	-5
57-4						sand, some gravels and charcoal debris GRAY-GREEN SILTY SAND (SM) moist, dense			
7.5						DARK GRAY-GREEN SANDY CLAY (CH) \text{moist, stiff, -20% very fine-grained sand_/}			

DRILLING METHOD:

2.5" Diameter Split spoon

DRILLING EQUIPMENT:

Rhino

DRILLING STARTED:

7/21/04

ENDED: 7/21/04

See key sheet for symbols and abbreviations used above.

BRUNSING ASSOCIATES, INC.

Job No.: 029

Date:

Appr.:

1/27/05

LOG OF BORING CB-14 PACIFIC SUPPLY COMPANY 1735 24th Street Oakland, California

APPENDIX B

Historical Boring Logs and Well Completion Details

BRUNSING ASSOCIATES Consulting Engineers

Project Name	PACIFIC SUPPLY	_
Project No.	029	_

	THE ADDRESS OF THE PARTY OF	THE RESERVE OF THE PARTY OF THE	THE RESERVE	
Boring Location	MW-1	1735 24th	Street,	Oakland

Surface Elevation 9.11 feet Driller ASE Date 9/13/88

£	SOIL DESCRIPTION	Lithology	U.S.C.S Soil Type	SF	th ct		SA	MPLE			LOV	V IT	Recovery In Inches	Piezometer
Depth	AND REMARKS	hol	U.S.	qu TSF	Contact Depth	No.	Type	Inte	rval	0	6	12	Cov	ezo
		五	- 05	9.	0.1	z	Ţ	From	To	6	12	18	Re II	E.
	asphalt first 3 inches base aggregate	0000												
	uase aggregate	000				-	-		-	-	-	-	-	_
	green loose silty sand with abundant quartz grains:	000				1	SS	3.0	4.5				18	
5	green loose silty sand with abundant quartz grains; molst; marsh gas odor?	000	Sarran.	. 1										
,		000	SW			2	SS	5.0 6.5	6.5 8.0	1	1	1	12	
	green soft day; very plastic; moist; strong SO4 odor		CL		6,0	3	SS	6,0	8.0	- '	-31	-	10	
	black soft sifty clay; very moist to wet, very abundant grass, etc.		CL		7,5									-
40			9		8,5	-								
10	green, soft clay; very plastic, very moist abundant grass, clams, etc.		CL			4	SS	10.0	11.5	2	3	1	18	
	grass, statistics.					\vdash								
15	.===============							45.0	10.0		_	- 0	40	
15	brown-black; very soft, very plastic clay; very moist; abundant grass, roots, clamshells, etc. strong SO4 odor.				15,0	5	SS	15.0	16,5	2	3	3	18	
	strong SO4 odor.					-		-						
	1				27.1									
20		//////					7							
20	Bottom of Boring at 20 feet					-	_				-	_	-	_
										\vdash				
25		1 1					_					_	_	_
23		1 1					-	-	_	\vdash	-	_	-	-
	20	1 1					_							
1 1		1 1	ш											
30														_
30	-	1 1				-	_		_		-		-	_
7.		1 1												
35											_	_		
. "											-			-
											=			
1														
									_		_	_	_	

Field Log of Boring No.	MW-1	Ву:	G. Eiche	Page	1	of	1	
0								

BRUNSING ASSOCIATES Consulting Engineers

Project Name	PACIFIC SUPPLY	E)
×		

**/						ject Ivo.		029							
Boring	Location	MW-2 1735 24th	<u>Stree</u>	t, Oak	land	·									
Surfac	e Elevation	8.14 feet	Driller	ASE			_	Date	9/	13/88	}		_		
Depth	SC	DIL DESCRIPTION	68y	U.S.C.S Soil Type	SF	t, tf		SA	MPLE		C	BLOV	V JT	y 80	Piezometer
2		AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Type	_	rval	0	6	12	Recovery In Inches	ezor
	asphalt first 3 i	nches	12				~	E.	From	To	6	12	18	장대	E
			000				-	\vdash		-	-				
	green loose silt well-rounded, v Heavy *marsh	ly sand; predominantly quartz, well-sorted grains. gas" odor	0000	sw			1	SS	3,0	4.5	2	3	2	14	
5			0000				2	SS	5.0	8,5	1	2	1	18	
	- light green, ver miscellaneous	y pastic soft clay; abundant roots and organic material; very strong SO4 odor		CL		6.0									
		day; very plastic; very wet abundant agments, roots, etc.; v. strong SO4		CL		7.5	3	SS SS	6.5 8.0	9.5	3	3	1	18	_
10	odor	Agricona, 1001a, 616., 1, 511011g 304													
	green very plas clamshelfs, gras	tic soft clay; wet; abundant sses, roots, etc. very strong SO4 odor		CL		9.5		-				-			
1	7	,, ord real group out out			9	10 13,5									
					Ï		5	SS	13.5	15.0	1	1	1	18	
15										15.0					
		0.00						2.				\exists	\exists		
1	brown very plasi			- c L-+		18.5						\dashv	\exists		
20	abundant grassy	tic soft clay; very moist; very y material; strong SO4 odor				10.0	6	SS	18.5	20.0	1	1	1	18	
	Bottom of Boring	1 21 20 foot									\dashv	\dashv	\dashv	\dashv	
ı	DOLLOW OF DOLLING	j di 20 leel				- 1		\neg				\Box	\Box		
2224					- 1	ŀ		-	-		\dashv	+	\dashv	\dashv	-
25								\Box				\dashv	コ		
		5			- 1	ŀ	\dashv	\dashv	-	-	+	+	\dashv	-	
					- 1							\perp	\exists	-	
30						╟	\dashv	+	-	-	-	+	+	-	
- 1		×				lt					\dashv	+	+	-	
						F	\neg	4			4	\neg	\dashv		
.						-	\dashv	+		-	+	+	+	-	5.1
5							\Box					丁	#	\Box	
		4				-	\dashv	+	-	-+	+	+	+	+	-
		- 1	- 1		- 1	- ⊪	\rightarrow	-	-	-	\rightarrow	-	-	_	-

ield Log of Boring No.	_MW-2	By:	G. Eiche	Page	1 of 1	
				U		_

BRUNSING ASSOCIATES Consulting Engineers

Project Name	PACIFIC SUPPLY					
Project No.	029					

Boring Location	MW-3	1735 24th	Street,	Oakland			
Surface Floration	9 49 1	feet	Driller	ASE	Date	9/13/88	

£	oou programmer:	ÁS.	C.S ype	SF.	t #	SAMPLE				BLOW			ery	Piezometer	
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type qu TSF Contact	Contact Depth	No.	Type	Inte From	rval To	6	6 12	12 18	Recovery In Inches	Piezo		
	asphalt first 3 Inches	0000		8									12		
5	green, loose sand; moist; some organic material (i.e. roots). predominantly quartz, well-rounded grains	0000	sw			1	SS	3,0	4.5				12		
	black, soft slity clay; very moist; strong hydrocarbon odor; extreme abundant grasses, leaves, etc Major tradion = organic debris. No hydrocarbon odor detected at greater than 9.0	0000	CL.			3	SS SS	6.5 8.0	8,0 9,5				18		
	No hydrocarbon odor detected at greater than 9.0 leet				×**			9.5	11.0				18		
10										F					
	green soft, very plastic clay; very moist; abundant clam shells, grasses, roots.		CL.		14.5	4	SS	14.5	16.0				18		
15	clam shells, grasses, roots.														
20	Bottom of Boring at 20 feet														
25															
30														E	
										,	F	-			
35	= 7/														
							F			F	F	F	F	F	

field Log of Boring No.	AW-3 By:	G.	Eiche	Page	1_	of	1	_
-------------------------	-----------------	----	-------	------	----	----	---	---

Project Name	PACIFIC SUPPLY
Project No.	029

Boring Location	MW-4	1735 24th	Street	, Oakland	 У		
Surface Elevation	9.30 fe	et	Driller	ASE	 Date	9/14/88	

ų.	SOIL DESCRIPTION	/8o	CS	SF	th Kt			MPLE			LOV	W INT		Piezometer
Depth	AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	o a Int		rval To	0 6	6 12	12 18	Recovery In Inches	Piezo
	3° asphalt cover					2 =								
5	green, line to medium grained, well-sorted sand; moist; abundant quartz; well-rounded; green color the result of chlorite? NO ODOR	0000				_	SS	4.0	5,5	1	-	2	12	
	dark brown/black sitty sandy day; wet; very abundant organic debris (i.e. peachpit?, leaves, grass, etc.). NO ODOR		CL			2	SS	7.0	8.5	2	1	1	4	
10	dark brown/black extremely organic sit? (resembles spahnum moss, i.e. marsh deposit?). no odor wet	****	PI		-20	3	SS	9.5	11.0	1	2	1	4	
	odor wei	****												
15	light green, soft clay; very plastic, wet; abundant organic debrls - clam shells, grass, etc. SO4 odor.		CL			4	SS	14.5	16.0	1	3	2	18	
	-						Ė							
20	black soft clay; very plastic; wet, abundant grass. SO4 odor.		CL			5	SS	19.5	21.0				18	
	Bottom of Boring at 21.0 feet													
25	h:													Y
	¥.													
30														
35	9						Ε							= \http://

Field Log of Boring No.	MW-4	Ву:	Greg Eiche	Page	1	lo _	1
-------------------------	------	-----	------------	------	---	------	---

Project Name	PACIFIC SUPPLY	

Project No. 029

	Boring Location	MW-5	1735 24th	Street.	Oakland
--	-----------------	------	-----------	---------	---------

Surface Elevation 9.31 feet Driller ASE Date 9/14/88

4	CON DESCRIPTION	ķ	C.S.	SF	t 4		SA	MPLE			LOV	V IT	ery nes	Piezometer
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Туре	Inte		0	6	12	Recovery In Inches	iezoı
_		Ä		-		_	H	From	То	6	12	18	X E	14
	3" asphalt cover	.,,,,,,,												
5	highly variable fill and base aggregate: sand, gravel, clay some organic debris					1	SS	4.0	5.5	-	_1	3	12	
	ciay, some organic deons					2	SS	6.5	8.0	1	1	1	12	
	dark brown/black silt with very abundant organic material; wood, clamshells, grass; very wet; no odor		CL		SEVI	3	SS	8.0	9,5	1	1	1	0	
10					1							_		
											_	_		_
	2.													
15	black-gray clay; very plastic, very wet abundant organic debris (grass, shells, etc.)		CL			4	SS	14.5	16.0	1	1	1	18	
	abundani organic debris (grass, shells, etc.)		"-								-			
						5	SS	19.5	21				18	
20	as above						Ü							
	Bottom of boring at 21 feet		CL								- 11	2		
	2 (1)													
25														
	*													
						_								
30	31													
						-								-
35														
	ES g													
										-		2.5		

Field Log of Boring No.	MW-5	Ву:	G. Eiche	Page	of	1
riela Log of Boring No.	C-WW	by:	G. Ciche	I age		

BRUN

Boring Location

BRUNSING ASSOCIATES, INC.

MW-6; Yellow Cab Co. Driveway, Willow Street

Project Name

PACIFIC SUPPLY COMPANY

1735 24TH STREET, OAKLAND, CALIFORNIA

Project No.

029.2

Surfac	e Elevation 6.13 feet D	riller	Aqua Scie	ence En	gineers	_	Date	<u>D</u>	ecembe	r 19, 1	989	_		_
£.	SOIL DESCRIPTION	v8v	CS	SF	p et		SA	MPLE			BLOV	۷T ۲۲	ery nes	Piezometer
Depth	AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Type	Inte	rval	0	6	12	Recovery In Inches	'iezoi
	Asphalt Black/green/brown/grey mottled soft clayey sand and sandy clay; abundant brick, glass, and organic debris; moist; oily odor	7999	sc	< 0.5		1	SS	From	3.5	2	12	18	4	
5,0	As above, but saturated with abundant water and oily substance; heavy hydrocarbon or solvent odor.		sc	< 0.5		2	SŞ	4.5	6.0	2	2	2	8	
	Black dayey slurry; very abundant oily substance; heavy has or solvent odor; abundant debris					3	SS	6.0	7.5	1	1	1	2	
10.0	Grey/green soft clayey silt; trace organic material; Hydrogen sulfide odor		ML	< 0.5		4	SS	10.0	11.5	2	3	3	18	
15.0	Grey/green/brpwm spft c;aueu so;t abundant molfusc fragments; hydrogen sulfide odor		ML	< 0.5		5	SS	15.0	16.5	1	1	1	18	
20.0	Bottom of boring @ 17.0 ft.				=									
	Sampled collected for chemical analysis MW-6/3.5 ft. MW-6/50 ft. MW-6/5.5 ft.													
											\exists			2
							$\overline{}$			-				

Field Log of Boring No.	MW-6	Ву:	Greg Elche	Page	1 of	1
-------------------------	------	-----	------------	------	------	---

Boring Location

BRUNSING ASSOCIATES, INC. Project Name

MW-7

Ву:

Field Log of Boring No.

MW-7: C & L Trucking, inc. Driveway, 24th Street

PACIFIC SUPPLY COMPANY

1735 24TH STREET, OAKLAND, CALIFORNIA

Project No.

029.2

Surface	e Elevation 5.03 feet	Driller	Aqua Scle	nce Eng	gineers	_	Date	De	cember	19, 1	989			_
설	SOIL DESCRIPTION	/3o	U.S.C.S Soil Type	FF.	act th			MPLE			OUN	1L \	ery	Piezometer
Depth	AND REMARKS	Lithology	Soil.	qu TSF	Contact Depth	ģ	Туре	Inte:	_	0	6	12	Recovery In Inches	Piezo
	Asphall						F	From	То	6	12	18	24 H	-
	Green slightly dense quartz-rich sand inter- fingered with thin veins of black, highly organic clayey material; moist; no odor	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	sc			1	SS	2.0	3.5	7	7	6	12	
5.0	Black/grey mottled soft clay; highly organic; abundant grasses and roots; hydrogen sulfide odor; wet		CL	< 0.5		2	SS	4.5	6.0	2	2	2	18	
10.0	Grey/green soft clayey sitt; some organic matte grasses and roots; wet	er;	ML	< 0.5	E.	3	SS	10.0	11.5	2	5	7	18	
15.0	mollusc shells; moist; hydrogen sulfide		ML.	3.0		4	SS	15,0	16.5	7	7	8	18	
12	odor		}											
20.0	Tan/brown stiff sifty clay; no organic material; mottled white/green/tan zones; moist; no odor		CL	3.5		5	SS	18.0	19,5	5	7	9	18	
	Bottom of boring @ 20.0 ft.													
	Sampled collected for chemical analysis													
	MW-7/3.5 ft. MW-7/5.5 ft. MW-7/11.5 ft.										Ξ		3	
	MW-7 / 16.5 ft.											\exists	\dashv	
	×												\dashv	
	-5											\exists	\Rightarrow	
													\dashv	_
												\Box		
								-		\dashv	\dashv	\dashv	-	-
												\Box		- 100
							\neg			_	\dashv	\dashv	-	
										_	_	_		_

Grea Eiche

Page

Project Name Pacific Supply Company

Project No.	29.6	
· reject in.		

	Location 65' northing and 185 Elevation ~10 feet	Westur Driller			rilling		Date		5/6/9			7		
		834	S. S	IL.	t e		SA	MPLE		,	BLC			ery hes
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact	è.	Type	Inte	rval	0	6	-	18	Recovery In Inches
Δ	AND REMARKS	E	2 %	5		z	Ł,	From	To	6	12	18	24	MH
0'0"	Asphalt surface cover				g									
0'6"	Base rock						-	-						
1'0"	Medium stiff green clay, moist, slight petroleum odor		CL	2	1'	1	SS	107	1'9"	6	6	6	-	9
					2									
2'6"	Medium stiff green clay, moist,					2	SS	2'6"	3'6"	4	5	7	-	12
	slight petroleum odor				3'	F					E	E		
			1			F		-						
4'0"	Medium stiff green clay, moist, slight petroleum odor				4	3	SS	4'6"	50"	5	16	14	-	16
5'0"	Very stiff black clay, moist, slight petroleum odor				5								F	
5'6"	Loose green silty sand, moist,	00000				4	SS	5'6"	66"	5	4	5	F	12
	slight petroleum odor	00000			6	=	F	F		F	F	F	E	
	g	0000				E	F				F			
7'0"	Loose green silty sand, wet, slight petroleum odor	0000	111		7		F			+	‡	+	‡	
2		0000	oll .		₩8	5	SS	8'0"	8'6"	2	-	2 2	2 -	2
8'4"	Soft black and green mottled clay, saturated, strong petroleum odo	DIOIO	CL		8'3"	F	F	-	+	+	+	+		
8'6"	Bottom of Boring				9		#	=		1	Ŧ	Ŧ	-	-
	Note: Converted into Vapor Extraction Well VEW-1						-			-	1	-	E	

			(%)	_	102	- 4	-
Field Log of Boring No.	VEW-1	By:	Teff Stivers	Page	_1_'	or -	

Note: Boring continuously cored with a driven double wall sampler

Project Name	Pacific Supply Company
	1735 24th Street, Oakland, Ca
Project No.	029.9

~														
Boring	Location 21' North and 13	'West	of NW	cori	ner of	driy	ewa	y						
Surface	Elevation 5 feet MSL (approx.) Dr	iller <u>F</u>	recisio	on Sa	mplin	g	Date	3-5	<u>5-93</u>	â				_
45	SOIL DESCRIPTION	ogy.	C.S Type	SF	t s		SA	MPLE			LOW OUN	/ T	rery thes	Piezometer
Depth	AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Type	Inter From	rval To	0 6		12 18	Recovery In Inches	Piezo
ď	Asphalt													
9"	Soft grey fine sand with gravel. Dry.	Ш	SP		1									
2'	Grades to medium stiff grey silty clay. Dry.		CL		2									
	*				3	1	CR	2.5	3.0		Ε	Ξ		
3' 3.5'	Very soft black organic clay. Moist to wet. No Recovery		OH					,						
0.5	and the state of t	\mathbb{N} /			=4									
		\mathbb{N}												
		IX			5					F	E			
	-	/			6									
	=	V 1								F		F		
7	Bottom of Boring				7					E	E			
						-	-	-	-	+	+	\vdash	-	
					8					\vdash	\vdash	F		
		1		1	1					_		1	_	_

Field Log of Boring No. B-1 By: <u>Joel Brux</u>	cvoort Page 1	of .	
--	---------------	------	--

9

Project Name	Pacific Supply Company 1735 24th Street, Oakland, Ca
Project No.	029.9

Boring	Location 21.5' North and 4	2.5' Ea	st of N	√W c	orner	of d	rive	way						
Surface	Elevation 5 feet MSL (approx.) Dri	ller <u>F</u>	recisio	on Sa	mplin	g	Date	<u>3-5</u>	5-93			-		
45	CON DESCRIPTION	98y	C.S ype	H:	ដុផ្ត		SA	MPLE		BI	LOW	7 T	ery hes	Piezometer
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Type	Inter From	val To	0 6	6 12	12 18	Recovery In Inches	Piezo
O,	Asphalt										\exists			
9"	Soft to medium stiff grey silty clay with some gravel. Dry.		CL		1									
2'	Very soft black organic clay. Moist.		OH		2									
3'	No Recovery				3									
B (8 9	$\backslash\!\!\!/$			5									
5.5'	Soft grey clay. Moist.		CL		6	1	CR	6.0	6.5	=				
7'	Bottom of Boring	////			7									
					8									
					9					F				
	Note: Boring continuously cored with a driven double wall sampler					F	F			F			\vdash	F

Field Log of Boring No.	B-2	By: Toel B	Bruxvoort Pa	age <u>1</u>	of1
TOTAL COLUMN TOTAL STATE	<i>D E</i>	-).	72 00 00 00 00 00 00 00 00 00 00 00 00 00	~	

Project Name	Pacific Supply Company
·	1735 24th Street, Oakland, Ca
Project No.	029.9

Boring Location 21' North and 88' East of NW corner of driveway														
Surface	Elevation 5 feet MSL (approx.) Dr	iller <u>F</u>	recisio	on Sa	<u>mplir</u>	ıg	Date	3-	5-9 <u>3</u>					
4	CONT. DESCONTANTAL) <u>8</u>	CS	Et.	tj.s		SA	MPLE			LOV	7 T	rery	Piezometer
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	ġ	Туре	Inter		0	6	12	Recovery In Inches	Piezo
		Ę	- "	_		\vdash	H	From	То	6	12	18	4 11	-
Q	Asphalt													
6"	Soft to medium stiff dark grey		CL											_
	silty clay with sand. Slightly				1		-	_						
	moist. Gravel layer observed.													
							-							
2'	Medium stiff dark grey clay and	11/1/1	OH	1	2									
	organic material. Slightly moist.		1			-	-				\vdash			
1														
3'	Very soft to soft grey clay. Moist.		CL		3	-	-			H	-		-	
1			1											
4'	No Recovery	1///	1	1	4	-	\vdash	_	-	-	\vdash	\vdash		
	110 1100 701 7	N /												
	a	$\ \setminus /$				H	\vdash	-	-	-	\vdash	-		
1		II V			5									
		$\mathbb{I} \wedge$			V	╟	+		-	+	⊢	\vdash	\vdash	\vdash
1	1	1 /\	1				\pm							
1		V 1	VI.		6		1		-	+	-	-	-	-
6.5'	Soft dark grey to black clay and	1///	OH	1	1		+			†		L		
10 NO.00	organic material. Wet.	2////							-	-	-	\vdash	-	
7	No Recovery				7	-	+			+	\vdash			
1	=	$I\Lambda$								1		F		
		100	 	-	1	-	CI	8.0	8.5	+	+	+		
8,	Soft to Medium stiff grey clay. Moist.		CL				1	0.0	1000		=			
1	ATACAD W					-	+	-	-	+	+	+	\vdash	
9'	Bottom of Boring	1///	1	1	9							T		
	I						-	-	-	+	+	+	+-	-
	Note: Boring continuously cored with a driven double wall sampler						t			\dagger	T	\pm		

Joel Bruxvoort

Ву:

Field Log of Boring No.

of 1

BACE Environmental

Project Name	Pacific Supply Company	
	1735 24th Street, Oakland, Ca	
Project No.	029.9	

	a Division of Brunsing Associates, I	nc.		Proje	ect No.			0	29.9					
Ť	Location 27' South and 93' Elevation 8 feet MSL (approx.) Dr								5-93					<u> </u>
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.		APLE Inter	val	CC O	LOW DUN 6	7 T	Recovery In Inches	Piezometer
0'	AND REWARKS Asphalt	3	7 %	<u></u>	80	Z	Type	From	То	6	12	18	ᅑᇃ	四
6"	Medium stiff silty clay with trace gravel (base rock). Dry		CL		1									
2'	No Recovery. Gravel blocked sampler.	X			3									
4'	Medium stiff to soft grey-green clay. Gravel at top of core. Mottled patches of silt and sand. Slightly moist.		CL		4									
5'	Loose to medium dense green fine sand with HC odor (1,000 ppm PID). Slightly Moist.		SP		5									
5.5'	No Recovery	X			6									
7	Soft grey-green clay with black silt and organic material at bottom of core. Slightly moist.		CL		7	1	CR	7.0	7.5		-			
8'	No Recovery Bottom of Boring				=8									

More: Dount Continuode	y cored with a d	IIVCII GOGDI	C III OMILIPIO				
Field Log of Boring No.	B-4	Ву:	Joel Bruxvoort	Page	1	of .	1

Field Log of Boring No. B-5

Project Name	Pacific Supply Company
-	1735 24th Street, Oakland, Ca
Project No.	029.9

Page <u>1</u> of <u>1</u>

Boring	Boring Location 99' South and 32' East of NW corner of driveway													
Surface	Elevation 8 feet MSL (approx.) D	riller <u>I</u>	recisi	on Sa	mplin	g_	Date	3-	5-93					
4	201 7120717701	\$6 0	C.S ype	H.	t E	SAMPLE					LOV	V T	ery hes	meter
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Interval From To			0	6 12	12 18	Recovery In Inches	Piezometer
O,	Asphalt	11.504.11												
6"	Medium stiff light grey sand with some gravel (base rock at top). Green mottling in places. Dry.		SP		1									
2.3'	No Recovery	7			2									
		X			3									
4' 4.3'	As above. No Recovery		SP		4									
					5									
		$/ \setminus$			6									
7'	Loose green-grey fine sand. Slightly moist.		SP		7	1	CR	7.0	7.5		Ē	F		
7.5'	No Recovery				Y		F					F		F
		\mathbb{I}			-°	E	F		-		F	F		E
					9									
		$ \rangle \setminus$					\vdash							
10'	Bottom of Boring Boring continuously cored with a drive	n doubl	A Troll a	lample	er er		_			L	_	_		

___By: <u>___Joel Bruxvoort</u>

Field Log of Boring No. B-6

Project Name	Pacific Supply Company 1735 24th Street, Oakland, Ca
Project No.	029.9

Page 1

										_		_		_	
Boring	Location 125'	South and 3	32' East_	of NW	/ cor	ner of	driv	ewa	Υ						
Surface	Elevation 8 feet MSL	(approx.)	riller <u>F</u>	recisi	on Sa	mplin	g	Date	_3-!	5-93					
£		Λ	83	S.S.	H	ti e	SAMPLE					LOW	402573	ery nes	neter
Depth	SOIL DESCRIP AND REMA		Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Type	Inter From	val To	6	6	12 18	Recovery In Inches	Piezometer
O'	Asphalt					in the						. 01			
6"	Medium stiff brown sa with some gravel (base top). Dry		0000	SM		1									
2'	Medium stiff grey-greand some mottled red odor. Dry.	en silty sand clay. No HC	0000			2									
4	HC odor.	8	000000000000000000000000000000000000000			3									
			000000000000000000000000000000000000000			5									
6	No Recovery		IX												
7	Soft green silty clay. B organic material at the odor (1,000 ppm PID).	bottom. HC		CL		7	1	CR	7.0	7.5	E	=			
7.8*	No Recovery					=8									
10'	Bottom of Boring Boring continuously con	red with a driv	ren douh	le wall	samp	ler									

By: Joel Bruxvoort

Project Name	Pacific Supply Company
	1735 24th Street, Oakland, Ca
Project No.	029.9

		brunsing Associates, i	nc.		i Tojs	:C: 140.	-			127.7					
Boring	Location	27' South and 13	0' East	of NW	V cor	ner of	driv	rewa	av		_		_	_	_
	5	8 feet MSL (approx.) D								5-93					
æ	SC	DIL DESCRIPTION	08y	U.S.C.S Soil Type	SF	th th		SA	MPLE			LOV	ίΤ V	rery	Piezometer
Depth		AND REMARKS	Lithology	U.S. Soil 7	qu TSF	Contact Depth	No.	Туре	Interval From To		6			Recovery In Inches	Piezo
o	Asphalt										Ě				
6"		stiff brown silty clay gravel (base rock). Dry		CL				E				Ε			
						1									
2'	Loose gree	en fine sand. HC odor.		SP		2			-						
	Dry.														
						3									
3.5'	No Recov	ery	X				77				F	F	E		
4'		um stiff black silt, aterial. Wet at bottom.		OH		4									
						5	=	F							
5.2'	No Recov	ery	$\mathbb{N}/$												
			IX			6			U .	Ė					
			$V \setminus$												7.
7"		um stiff brown clayey ravel. Wet.		ML		=7	1	CR	7.0	7.5	=	E	E		
			Ш			8		F				F	\vdash	H	
8'	No recove	ery	\backslash												
			IV												
			\mathbb{I}			9					-		F		
	I		 / \				-	+	-	_	+-	 	1	_	_

Note: Boring continuously cored with a driven double wall sampler

Bottom of Boring

Field Log of Boring No.	B-7	Ву:	Joel Bruxvoort	Page	_1	of	1

Project Name	Pacific Supply Company
	1735 24th Street, Oakland, Ca
Project No.	029.9

	brunsing Associates, i													
Boring	Location 71' South and 69	' East c	of NW	corn	er of c	lrive	way	7						
Surface Elevation 8 feet MSL (approx.) Driller Precision Sampling Date 3-5-93														
Depth	SOIL DESCRIPTION	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	SAMPLE				BLOW COUNT 0 6 12			Recovery In Inches	Piezometer
Ă	AND REMARKS	Lith	S. C.	пь	ðΔ	No.	Type	From	То	6		18	Rec In I	Fie
O	Asphalt					-								
6" 4'	Medium stiff brown silty clay with some gravel (base rock at top). Dry Medium dense to loose green fine		CL		3									
6'	sand, HC odor (240 ppm PID). Dry. No Recovery	X	7		5									
7"	As above with soft black silt, dry. Wet organic material at bottom.		SP		7	1	CR	7.0	7.5	=	E	E		
8'	No Recovery Bottom of Boring		OH		=8									

Note: Boring continuously cored with a driven double wall sampler

Tion beginning to D O	Field Log of Boring No.	B-8	By: Joel Bruxvoort	Page	1 0		
-----------------------	-------------------------	-----	--------------------	------	-----	--	--

BACE Environmental a Division of Brunsing Associates, Inc.

Project Name	Pacific Supply Company
-	1735 24th Street. Oakland. Ca
Project No.	029.9

Boring Location	37.5' South and 8' East of NW corner of driveway	

Surface Elevation 8 feet MSL (approx.) Driller Precision Sampling Date 3-5-93

æ	COH DECCRIPTION	% %	C.S ype	#: 	ਹ		SA	MPLE			LOV		ie.y	Piezometer
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Type	Inte		0	6	12	Recovery In Inches	iezo
		口口	9,		0	4	Η.	From	То	6	12	18	ᅜᄓ	므
0'	Asphalt				15	-								
6"	Medium stiff brown silt and sand with some gravel (base rock at top). Dry		SM		1									
2.5'	No Recovery	18888			3									
4'	Soft grey clay with bands of organic material with green mottling, HC odor at 6' (1,000 ppm PID). Slightly moist.		OH		5									
6'	No Recovery	X			6									
7	Soft grey organic clay, HC odor at 8' (350 ppm PID). Wet.		ОН		8	1	CR	8.5	9.0					
9'	Soft black organic clay, wet.				9	=								
9.5'	No Recovery		1											
10'	Bottom of Boring													

Note: Boring continuously cored with a driven double wall sampler

Field Log of Boring No	B-9	Ву:	Joel Bruxvoort	Page	1	of _	1
------------------------	-----	-----	----------------	------	---	------	---

Field Log of Boring No. B-10

Project Name	Pacific Supply Company
	1735 24th Street, Oakland, Ca
Project No.	029.9

Page 1 of 1

Boring Location 71' South and 105.5' East of NW corner of driveway														
Surface	Surface Elevation 8 feet MSL (approx.) Driller Precision Sampling Date 3-5-93													
-£i	CON DESCRIPTION	780	U.S.C.S Soil Type	SF	t 4		SA	MPLE			LOW	V T	Recovery In Inches	Piezometer
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.	qu TSF	Contact Depth	Ŋ.	Type	Inter	val	0	6	12	20 H	iezo
		Ĕ	S,	6	Q H	4	F)	From	То	6	12	18	內占	<u>Α</u> ,
0'	Asphalt					-		-		-	_	_	-	
6"	Soft to medium stiff grey-black		CL											
J	silty clay with some gravel (base		CL											
	rock at top). Dry				1	_	-		-		-			
	-				2	-	⊢		_	_	_	\vdash	-	
					ا ا		_				_		_	
		////			3	-	\vdash	_	-					
		////												
3.8'	Medium dense green fine sand. HC	****	SP				_			_	_	-	_	-
	odor. Dry.				4	H	╁	_			-			
4.5'	No Recovery	7	1											
					5	_			_			_	_	_
		II X		1	3	\vdash	+		-			-		
		I/Λ		1										
ii		/ \		1				- (0	1	_	\vdash	\vdash	-	-
6'	Medium dense to loose green fine sand. Wet.		SP	1	6	1	CR	6.0	6.5	=	=	干	\vdash	\vdash
	Said. Wet.													
6.8'	Soft black organic clay. Moist.	1/1/1/1	OH	1					-	_		-		_
7	No Recovery	\mathbb{N}		1	=7	⊩	\vdash	-	-	\vdash	\vdash	\vdash	\vdash	
	€	$\mathbb{I} X$		1	1	H	+							
]					_	_	1	-		_
8'	Bottom of Boring			1	8	⊩	╀	-	-	⊢	⊢	+	┼	┼─
				1		H	+		1	\vdash	\vdash	T		
	1			1								1		\vdash
l	I			1	9		-		-	-	\vdash	+	\vdash	-
	Note: Boring continuously cored					-	+	+	1	+	+	+	+	
	with a driven double wall sampler													

By: Joel Bruxvoort

PROJECT NO.:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	38	12/14/13

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 1.
LOG AND WELL.
CONSTRUCTION DETAILS, VRW-1
Pacific Supply
1735 24th Street
Oakland, California

PROJECT NO .:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	28	12/11/13

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 2
LOG AND WELL
CONSTRUCTION DETAILS, VRW-2
Pacific Supply
1735 24th Street
Oakland, California

PROJECT NO .:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	28	12/14/13

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 3
LOG AND WELL
CONSTRUCTION DETAILS, VRW-3
Pacific Supply
1735 24th Street
Oakland, California

PROJECT NO.:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	28	12/14/43
	-	

BACE Environmental

A Division Of

Brunsing Associates, Inc.

PLATE 4
LOG AND WELL
CONSTRUCTION DETAILS, VRW-4
Pacific Supply
1735 24th Street
Oakland, California

PROJECT NO.: 29.11					
DRAWN BY:	DD	11/15/93			
APPROVED BY:	28	12/14/43			

BACE Environmental
A Division Of
Brunsing Associates, Inc.

PLATE 5
LOG AND WELL
CONSTRUCTION DETAILS, VRW-5
Pacific Supply
1735 24th Street
Oakland, California

DRAWN BY:	DD	11/15/93
APPROVED BY:	16	12/14/93

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 6

LOG AND WELL

CONSTRUCTION DETAILS, VRW-6

Pacific Supply

1735 24th Street

Oakland, California

PROJECT NO .:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	48	12/14/43

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 7
LOG AND WELL
CONSTRUCTION DETAILS, VRW-7
Pacific Supply
1735 24th Street
Oakland, California

29.11	
DD	11/15/93
18	12/14/13
	29.11 DD JB

BACE Environmental
A Division Of
Brunsing Associates, Inc.

PLATE 8
LOG AND WELL
CONSTRUCTION DETAILS, VRW-8
Pacific Supply
1735 24th Street
Oakland, California

PROJECT NO.:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	76	12/4/43

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 9
LOG AND WELL
CONSTRUCTION DETAILS, VRW-9
Pacific Supply
1735 24th Street
Oakland, California

Log of Boring B-10

Equipment: Power Probe 9600, Direct Push

Drill Date: 8/29/00

Elevation:

Logged By: CES

Asphalt Baserock

Green Gray SANDY CLAY (CL)

moist, soft, no odor, grades to medium stiff

FILL, mixed debris and soil

Mottled Dark Gray and Brown CLAY (CH)

moist, soft, abundant organic debris Green Gray SILTY CLAY (CL)

moist to wet, soft

Dark Gray SANDY CLAY (CL) wet, soft Green Gray SILTY CLAY (CL) wet, soft

NOTES:

- 1) Hand auger through first five feet for utility clearance.
- 2) Water enters boring slowly.
- 3) Set temporary well casing before collecting groundwater sample.
- 4) Abandoned boring with bentonite chips and tremie grouting.

EGEND:

Equivalent "Standard Penetration" blow counts

Water encountered

PROJECT NO.: 029

PRAWN BY: CES 10/24/00

HECKED BY:

APPROVED BY:

EVISED BY:

BACE Environmental
A Division Of

Brunsing Associates, Inc.

PLATE C2

Log of Boring B-10
Pacific Coast Building Products
1735 24th Street
Oakland, California

NOTES:

1) Hand auger through first five feet for utility clearance.

2) Set temporary well casing before collecting groundwater sample.

3) Abandoned boring with bentonite chips and tremie grouting.

LEGEND:

* Equivalent "Standard Penetration" blow counts

▼ Water encountered

PROJECT NO.: 029						
DRAWN BY:	CES	10/24/00				
CHECKED BY:		(+				
APPROVED BY:						
REVISED BY:						

BACE Environmental

A Division Of

Brunsing Associates, Inc.

PLATE C3
Log of Boring B-11
Pacific Coast Building Products
1735 24th Street
Oakland, California

Log of Boring B-12

Equipment: Power Probe 9600, Direct Push

Drill Date: 8/29/00

Elevation:

Logged By: CES

Asphalt
Baserock
Dark Green Gray SILTY CLAY (CL)
moist, medium stiff
Dark Gray SILTY SAND (SM)
wet, medium dense, trace clay
Gray Green SANDY CLAY (CL)
moist, medium stiff, <10% sand
Dark Gray PEAT AND CLAY (Pt/OH)
'saturated, loose
Gray Green SILTY CLAY (CL)
moist, soft, abundant roots

No recovery from 8 to 15 feet, soft clay (Bay Mud) observed on drill rods

NOTES:

- 1) Hand auger through first five feet for utility clearance.
- 2) Set temporary well casing before collecting groundwater sample.

3) Abandoned boring with bentonite chips and tremie grouting.

GEND:

quivalent "Standard Penetration" blow counts

Water encountered

PROJECT NO.: 02	29	
DRAWN BY:	CES	10/24/00
ECKED BY:		100
APPROVED BY:		
VISED BY:		

BACE Environmental

A Division Of **Brunsing Associates, Inc.**

PLATE C4

Log of Boring B-12
Pacific Coast Building Products
1735 24th Street
Oakland, California

PROJECT NAME: PACIFIC SUPPLY COMPANY PROJECT NO. 029

BORING LOCATION: MW-1 DATE: 9/13/88 BY: GE

PROJECT NAME: PACIFIC SUPPLY COMPANY PROJECT NO. 029

BORING LOCATION: MW-2 DATE: 9/13/88 BY: GE

PROJECT NAME: PACIFIC SUPPLY COMPANY PROJECT NO. 029

BORING LOCATION: MW-3 DATE: 9/13/88 BY: GE

PROJECT NAME: PACIFIC SUPPLY COMPANY PROJECT NO. 029

BORING LOCATION: MW-4 DATE: 9/13/88 BY: GE

PROJECT NAME: PACIFIC SUPPLY COMPANY

PROJECT NO. 029

BORING LOCATION: MW-5

DATE: 9/13/88

BY: GE

PACIFIC SUPPLY CO. 1735 24th STREET,

PROJECT NAME: OAKLAND, CALIFORNIA

PROJECT NO. 029.2

BORING LOCATION:

MW-6

DATE: December 19,1989 BY: G. Eiche

PACIFIC SUPPLY CO.

PROJECT NAME: 0AKLAND. CALIFORNIA

PROJECT NO. 029.2

BORING LOCATION:

MW-7

DATE: December 19,1989 BY: G. Eiche

PROJECT NAME: Pacific Supply Company PROJECT NO. 29.6 BORING LOCATION: 65' northing and 185' westing of the north & east property lines BY: Jeff Stivers DATE: 6/6/92 VEW-1 WELL NUMBER: **METAL COVER -**CHRISTY BOX EL. ~10 feet GROUND SURFACE EL. 9'8" TOP OF CASING DEPTH 0'4" 2" DIAL SCH 40 LOCKING CAP **PVC PIPE** 10 SACK GROUT EL. 7'6" TOP OF SEAL **DEPTH 2'6"** BENTONITE SEAL EL. 6'6" TOP OF BACKFILL DEPTH 3'6" EL 6' MONTEREY #3 SAND TOP OF SCREEN DEPTH 4' 0.020" SLOT 2" DIA SCH. 40 PVC SCREEN EL. 2' 2" DIAMETER THREADED END CAP **BOTTOM OF SCREEN** DEPTH 8' EL 1'6" **BOTTOM OF BORING DEPTH 8'6"**

PROJECT NO .:	29,11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	38	12/14/13

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 1
LOG AND WELL
CONSTRUCTION DETAILS, VRW-1
Pacific Supply
1735 24th Street
Oakland, California

PROJECT NO .:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	28	12/11/43

BACE Environmental

A Division Of

Brunsing Associates, Inc.

PLATE 2
LOG AND WELL
CONSTRUCTION DETAILS, VRW-2
Pacific Supply
1735 24th Street
Oakland, California

DD 11/15/93
B 12/14/13

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 3
LOG AND WELL
CONSTRUCTION DETAILS, VRW-3
Pacific Supply
1735 24th Street
Oakland, California

PROJECT NO.:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	28	12/14/43

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 4
LOG AND WELL
CONSTRUCTION DETAILS, VRW-4
Pacific Supply
1735 24th Street
Oakland, California

29.11	
DD	11/15/93
28	12/14/43
	29.11 DD TB

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 5
LOG AND WELL
CONSTRUCTION DETAILS, VRW-5
Pacific Supply
1735 24th Street
Oakland, California

PROJECT NO.:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	16	12/14/43

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 6
LOG AND WELL
CONSTRUCTION DETAILS, VRW-6
Pacific Supply
1735 24th Street
Oakland, California

PROJECT NO.:	29.11			
DRAWN BY:	DD	11/15/93		
APPROVED BY:	48	12/14/43		

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 7
LOG AND WELL
CONSTRUCTION DETAILS, VRW-7
Pacific Supply
1735 24th Street
Oakland, California

PROJECT NO .:	29.11			
DRAWN BY:	DD	11/15/93		
APPROVED BY:	18	12/14/43		

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 8
LOG AND WELL
CONSTRUCTION DETAILS, VRW-8
Pacific Supply
1735 24th Street
Oakland, California

9.11	
DD	11/15/93
18	12/14/53

BACE Environmental
A Division Of
Brunsing Associates, Inc.

PLATE 9
LOG AND WELL
CONSTRUCTION DETAILS, VRW-9
Pacific Supply
1735 24th Street
Oakland, California

APPENDIX C

Analytical Report From Drilling Activities

Laboratory Report Project Overview

Laboratory:

Bace Analytical, Windsor, CA

Lab Report Number:

4368

Project Name:

PACIFIC SUPPLY

Work Order Number:

29.32

Control Sheet Number:

NA

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Labiotctl	Run Sub
4368	CB1-7-8'	4368-1	so	ÇS	CATPH-G	SW5035	07/21/200	07/26/200		07262004C	7
							4	4	4	0 20 00000000	_
4368	CB1-7-8'	4368-1	so	CS	SW8021F	SW5035	07/21/200 4	07/26/200	07/26/200 4	07262004C	7
4368	CB10-7-8'	4368-10	so	cs	CATPH-G	SW5035	07/21/200	07/26/200	•	07262004C	15
4500	CD 10-7-0	4000-10	00	00	OATT IT-O	0110000	4	4	4	012020040	10
4368	CB10-7-8'	4368-10	so	CS	SW8021F	SW5035	07/21/200	07/26/200	07/26/200	07262004C	15
							4	4	4		
4368	CB2-6.5'	4368-2	so	CS	CATPH-G	SW5035	07/21/200	07/26/200	07/26/200	07262004C	14
							4	4	4		
4368	CB2-6.5'	4368-2	so	CS	SW8021F	SW5035	07/21/200	07/26/200	07/26/200	07262004C	14
	000 0 401	4000.0	187	00	O LTDU O	014/50000	4	4	4	070000048	40
4368	CB3-8-10'	4368-3	W	CS	CATPH-G	SW5030B	07/21/200 4	07/26/200 4	07/26/200 4	07262004B	16
4368	CB3-8-10'	4368-3	w	cs	SW8021F	SW5030B	07/21/200	07/26/200	•	07262004B	16
	*****				•	*******	4	4	4		
4368	CB4-8'	4368-4	so	CS	CATPH-G	SW5035	07/21/200	07/26/200	07/26/200	07262004C	5
							4 .	4	4		
4368	CB4-8'	4368-4	so	CS	\$W8021F	SW5035	07/21/200	07/26/200	07/26/200	07262004C	5
		4000 =			6.TDU 6	G) 1/2002	4	4	4		40
4368	CB5-7.0'	4368-5	so	cs	CATPH-G	SW5035	07/21/200 4	07/26/200 4	07/26/200 4	07262004C	13
4368	CB5-7.0'	4368-5	so	cs	SW8021F	SW5035	07/21/200	07/26/200		07262004C	13
	320113	1000				• • • • • • • • • • • • • • • • • • • •	4	4	4		
4368	CB6-7.5'	4368-6	\$O	CS	CATPH-G	SW5035	07/21/200	07/26/200	07/26/200	07262004C	9
							4	4	4		
4368	CB6-7.5'	4368-6	so	CS	SW8021F	SW5035	07/21/200	07/26/200		07262004C	9
					A	A1118008	4	4	4		
4368	CB7-7.5'	4368-7	SO	CS	CATPH-G	SW5035	07/21/200 4	07/26/200 4	07/26/200 4	07262004C	6
4368	CB7-7.5'	4368-7	so	cs	SW8021F	SW5035	07/21/200	07/26/200	•	07262004C	6
	021 1.0	1000 /		-	J.,, 002	0110000	4	4	4	0,20200,0	· ·
4368	CB8-8.0'	4368-8	so	ÇS	CATPH-G	SW5035	07/21/200	07/26/200	07/26/200	07262004C	11
							4	4	4		
4368	CB8-8.0'	4368-8	so	CS	SW8021F	SW5035	07/21/200	07/26/200		07262004C	11
							4	4	4		_
4368	CB9-7.5'	4368-9	so	CS	CATPH-G	SW5035	07/21/200	07/26/200		07262004C	3
42E0	CP0.7.5!	4260 G	50	CC.	C/A/0024E	CIMEDSE	4	4	4	072620040	2
4368	CB9-7.5'	4368-9	\$0	CS	SW8021F	SW5035	07/21/200	07/2 6 /200	U1120/20U	07262004C	3

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotctl	Run Sub
							4	4	4		
		072604MS	W	NC	CATPH-G	SW5030B	11	07/26/200	07/26/200	07262004B	1
								4	4		
		072604MS	W	NC	SW8021F	SW5030B	11	07/26/200	07/26/200	07262004B	1
								4	4		
		4368MB	SO	LB1	SW8021F	SW5035	11	07/26/200	07/26/200	07262004C	1
								4	4		
		4368MB	W	LB1	CATPH-G	SW5030B	11	07/26/200	07/26/200	07262004B	1
		(aaa) 18			01100045	014(50005		4	4	070600048	4
		4368MB	W	LB1	SW8021F	SW5030B	11	07/26/200	4	07262004B	1
		4200140	20	1 D4	CATPH-G	SW5035	11	4 07/26/200		07262004C	1
		4368MS	SO	LDI	CAIFH-G	2442022) (4	4	072020040	'
		4368MS	so	MS1	CATPH-G	SW5035	11	07/26/200	07/26/200	07262004C	17
		4300WO	00	14101	0,4,11,11-0	5770000	, ,	4	4	.,_,_,	
		4368MS	so	MS1	SW8021F	SW5035	11	07/26/200	07/26/200	07262004C	17
								4	4		
		4368MS	W	MS1	CATPH-G	SW5030B	11	07/26/200	07/26/200	07262004B	21
								4	4		
		4368MS	W	MS1	SW8021F	SW5030B	11	07/26/200	07/26/200	07262004B	23
								4	4		
		4368SD	so	SD1	CATPH-G	SW5035	11	07/26/200	07/26/200	07262004C	18
								4	4		
		4368SD	so	SD1	SW8021F	SW5035	11	07/26/200	07/26/200	07262004C	18
								4	4		
		4368SD	W	SD1	CATPH-G	SW5030B	1.1	07/26/200		07262004B	22
						0141-005-		4	4	070000045	0.4
		4368SD	W	SD1	SW8021F	SW5030B	1.1	07/26/200		07262004B	24
								4	4		

Lab Report No.: 4368 Date: 08/23/2004

Page: 1

Project Name:

PACIFIC SUPPLY

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.32

Method: CATPH-G

Prep Meth: SW5035

Field ID:

CB1-7-8'

Descr/Location: CB1-7-8'

Sample Date: Sample Time: 07/21/2004

Matrix: Basis:

1000 Soil Wet

Lab Samp ID: 4368-1

Rec'd Date:

Prep Date:

07/23/2004 07/26/2004

QC Batch:

Analysis Date: 07/26/2004 07262004C

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Gasoline Range Organics (C5-C12)	0.5	1.0	PQL		ND	MG/KG	i 1	

Walliam H Approved by:

Lab Report No.: 4368 Date: 08/23/2004

Gasoline Range Organics (C5-C12)

Page: 2

MG/KG

ND

CA LUFT Method for Gasoline Range Organics Project Name: PACIFIC SUPPLY Analysis: Project No: 29.32 Method: CATPH-G Prep Meth: SW5035 Field ID: CB10-7-8' Lab Samp ID: 4368-10 Descr/Location: CB10-7-8' Rec'd Date: 07/23/2004 Sample Date: 07/21/2004 Prep Date: 07/26/2004 Sample Time: 1347 Analysis Date: 07/26/2004 Matrix: Soil QC Batch: 07262004C Basis: Wet Notes: Note Result Units Pvc Dil Analyte Det Limit Rep Limit

1.0

PQL

0.5

William & Approved by:

Date: 8/24/0**3**

Page: 3

Project Name:

PACIFIC SUPPLY

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.32

Method: CATPH-G

Prep Meth: SW5035

Field ID:

CB2-6.5'

Rec'd Date:

Lab Samp ID: 4368-2

Descr/Location: Sample Date:

CB2-6.5' 07/21/2004

07/23/2004 07/26/2004

Sample Time:

1022

Prep Date:

Analysis Date: 07/26/2004

Matrix:

Soil

QC Batch:

07262004C

Basis:

Wet

Notes:

Analyte	Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline Range Organics (C5-C12)	1.	2.0 PQL		9.3	MG/KG	3 2

Walliam A Approved by:

Date: 8/24/04

Page: 4

Project Name:

PACIFIC SUPPLY

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.32

Method: CATPH-G

Prep Meth: SW5035

Field ID:

CB4-81

CB4-8'

Rec'd Date:

Lab Samp ID: 4368-4

Descr/Location: Sample Date:

07/21/2004

07/23/2004 07/26/2004

Sample Time:

1120

Prep Date:

Matrix:

Analysis Date: 07/26/2004 QC Batch:

07262004C

Basis:

Soil Wet

Notes:

Analyte			
Gasoline	Range	Organics	(C5-C12)

Det Limit 300.

Rep Limit 500. PQL Note

Units Result 1700.

Pvc Dil

MG/KG 500

Walliam & Approved by:

Date: 8/24/04

Page: 5

Project Name:

PACIFIC SUPPLY

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.32

Method: CATPH-G

Prep Meth: SW5035

Field ID:

CB5-7.0'

Descr/Location: CB5-7.0'

07/21/2004

Sample Date: Sample Time:

1137

Lab Samp ID: 4368-5

Rec'd Date:

07/23/2004

Prep Date:

07/26/2004 Analysis Date: 07/26/2004

QC Batch:

07262004C

Matrix: Basis:

Soil Wet

Notes:

Analyte	Det Limit	Rep Limi	t	Note	Result	Units	Pvc Dil	
Gasoline Range Organics (C5-C12)	0.5	1.0	PQL		ND	MG/KG	3 1	

William 18 4 Approved by: _

Lab Report No.: 4368

Date: 08/23/2004

Page: 6

Project Name:

PACIFIC SUPPLY

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.32

Method: CATPH-G

Prep Meth: SW5035

Field ID:

CB6-7.5'

Lab Samp ID: 4368-6

Descr/Location: Sample Date:

CB6-7.5'

Rec'd Date:

07/23/2004

07/21/2004

Prep Date:

07/26/2004

Sample Time: Matrix:

1217 Soil

Analysis Date: 07/26/2004 QC Batch:

07262004C

Basis:

Wet

Notes:

Analyte	Det Limit	Rep Limi	t	Note	Result	Units	Pvc Dil	
Gasoline Range Organics (C5-C12)	100.	250.	PQL.		430.	MG/KG	250	

Walliam A Approved by:

Page: 7

Project Name:

PACIFIC SUPPLY

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.32

Method: CATPH-G

Prep Meth: SW5035

Field ID:

CB7-7.51

Lab Samp ID: 4368-7

Descr/Location: Sample Date:

CB7-7.5' 07/21/2004 Rec'd Date:

07/23/2004

Sample Time:

1228

Prep Date:

07/26/2004 Analysis Date: 07/26/2004

Matrix:

Soil

QC Batch:

07262004C

Wet Basis:

Notes:

Analyte	Det Limit	Rep Limi	t	Note	Result	Units	Pvc Dil
Gasoline Range Organics (C5-C12)	50.	100.	PQL		170.	MG/KG	100

William . Approved by:

Page: 8

Project Name: Project No:

PACIFIC SUPPLY

29.32

Analysis:

CA LUFT Method for Gasoline Range Organics

Method:

CATPH-G

Prep Meth: SW5035

Field ID:

CB8-8.0'

Descr/Location: Sample Date:

CB8-8.0' 07/21/2004

Sample Time: Matrix:

1250 Soil

Lab Samp ID: 4368-8

Rec'd Date:

07/23/2004

Prep Date:

07/26/2004 Analysis Date: 07/26/2004

QC Batch:

07262004C

Basis:

Wet

Notes:

Analyte	Det Limit	Rep Lim	ıit	Note	Result	Units	Pvc Dil
Gasoline Range Organics (C5-C12)	300.	500.	PQL		5700.	MG/KG	500

Walliam 8 4 Approved by:

Page: 9

Project Name:

PACIFIC SUPPLY

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.32

Method: CATPH-G

Prep Meth: SW5035

Field ID:

Basis:

CB9-7.5'

Descr/Location: Sample Date:

CB9-7.5' 07/21/2004

Sample Time: Matrix:

1305 Soil Wet

Lab Samp ID: 4368-9

Rec'd Date: Prep Date:

07/23/2004 07/26/2004

QC Batch:

Analysis Date: 07/26/2004 07262004C

Notes:

Units Pvc Dil Rep Limit Note Result Analyte Det Limit MG/KG 200. 540. 200 Gasoline Range Organics (C5-C12) 100. **PQL**

Wallowy A G

Page: 10

Project Name:

PACIFIC SUPPLY

Analysis:

Volatiles by GC/Gasoline Range Organics

Project No:

29.32

Method: SW8021F

Prep Meth: SW5035

Field ID:

CB1-7-8'

Lab Samp ID: 4368-1

Descr/Location: Sample Date:

CB1-7-8'

Rec'd Date:

07/23/2004

07/21/2004 1000

Prep Date:

07/26/2004

Sample Time: Matrix:

Soil

Analysis Date: 07/26/2004 QC Batch:

07262004C

Basis:

Wet

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	1.8	5.0	PQL		ND	UG/KG	1	
Toluene	2.0	5.0	PQL		ND	UG/KG	i 1	
Ethylbenzene	2.0	5.0	PQL		ND	UG/KG	1	
Xylenes	2.0	5.0	PQL		ND	UG/KG	1	
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:						
Trifluorotoluene		70-130	SLSA		90%			1

William 18 Approved by:

Page: 11

Lab Report No.: 4368 Date: 08/23/2004

Project Name: PACIFIC SUPPLY Analysis: Volatiles by GC/Gasoline Range Organics

Project No: 29.32 Method: SW8021F

Prep Meth: SW5035

 Field ID:
 CB10-7-8'
 Lab Samp ID:
 4368-10

 Descr/Location:
 CB10-7-8'
 Rec'd Date:
 07/23/2004

 Sample Date:
 07/21/2004
 Prep Date:
 07/26/2004

 Sample Time:
 1347
 Analysis Date:
 07/26/2004

 Matrix:
 Soil
 QC Batch:
 07262004C

Basis: Wet Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	1.8	5.0	PQL		ND	UG/KG	3 1
Toluene	2.0	5.0	PQL		ND	UG/KG	3 1
Ethylbenzene	2.0	5.0	PQL	1	ND	UG/KG	3 1
Xylenes	2.0	5.0	PQL		ND	UG/KG	1
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:					
Trifluorotoluene		70-130	SLSA		89%		

Approved by: William & Golf

Date: 8/24/64

Page: 12

Project Name: Project No:

PACIFIC SUPPLY

29.32

Volatiles by GC/Gasoline Range Organics Analysis:

Method: SW8021F

Prep Meth: SW5035

Field ID: Descr/Location: CB2-6.5' CB2-6.5'

07/21/2004

Sample Date: Sample Time: Matrix:

Basis:

1022 Soil Wet

Lab Samp ID: 4368-2

Rec'd Date: Prep Date:

07/23/2004 07/26/2004 Analysis Date: 07/26/2004

QC Batch:

07262004C

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	3.6	10.	PQL		ND	UG/KG	2
Toluene	4.0	10.	PQL	DX	ND	UG/KG	2
Ethylbenzene	4.0	10.	PQL		ND	UG/KG	2
Xylenes	4.0	10.	PQL		13.	UG/KG	2
SURROGATE AND INTERNA	AL STANDARD RECOV	ERIES:					
Trifluorotoluene		70-130	SLSA		95%		

Welliam

Date: 1/24/04

Page: 13

Project Name: Project No:

PACIFIC SUPPLY

29.32

Analysis: Method:

Volatiles by GC/Gasoline Range Organics

SW8021F

Prep Meth: SW5035

Field ID:

CB4-8'

CB4-81

Descr/Location: Sample Date:

07/21/2004

Sample Time: Matrix:

1120 Soil

Lab Samp ID: 4368-4

Rec'd Date: Prep Date:

07/23/2004 07/26/2004

Analysis Date: 07/26/2004 QC Batch:

07262004C

Basis:

Wet

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	900.	2500.	PQL		ND	UG/KG	500	
Toluene	1000.	2500.	PQL		7900	UG/KG	500	
Ethylbenzene	1000.	2500.	PQL		25000.	UG/KG	500	
Xylenes	1000.	2500.	PQL		37000.	UG/KG	500	
SURROGATE AND INTERNAL STANI	DARD RECOV	/ERIES:						
Trifluorotoluene		70-130	SLSA		117%			

William

Page: 14

Project Name:

PACIFIC SUPPLY

Analysis:

Volatiles by GC/Gasoline Range Organics

Project No:

29.32

Method:

SW8021F

Prep Meth: SW5035

Field ID:

CB5-7.0'

Rec'd Date:

Lab Samp ID: 4368-5

Descr/Location: Sample Date:

CB5-7.0' 07/21/2004

07/23/2004

Sample Time:

1137

Prep Date:

07/26/2004

Matrix:

Analysis Date: 07/26/2004 QC Batch:

07262004C

Basis:

Soil Wet

Notes:

Analyte	Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil
Benzene	1.8	5.0	PQL		ND	UG/KG	1
Toluene	2.0	5.0	PQL		ND	UG/KG	1
Ethylbenzene	2.0	5.0	PQL		ND	UG/KG	i 1
Xylenes	2.0	5.0	PQL		5.1	UG/KG	1
SURROGATE AND INTERN	AL STANDARD RECOV	ERIES:					
Trifluorotoluene		70-130	SLSA		78%		

William A Approved by:

Page: 15

Project Name:

PACIFIC SUPPLY

Analysis:

Volatiles by GC/Gasoline Range Organics

Project No:

29.32

Method: SW8021F

Prep Meth: SW5035

Field ID:

CB6-7.5' CB6-7.5'

Lab Samp ID: 4368-6

07/23/2004

Descr/Location: Sample Date:

07/21/2004

Rec'd Date: Prep Date:

07/26/2004

Sample Time: Matrix:

1217 Soil

Analysis Date: 07/26/2004 QC Batch:

07262004C

Basis:

Wet

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	450.	1300.	PQL		ND	UG/KG	250	
Toluene	500.	1300.	PQL		1700.	UG/KG	250	
Ethylbenzene	500.	1300.	PQL		1600.	UG/KG	250	
Xylenes	500.	1300.	PQL		3000.	UG/KG	250	
SURROGATE AND INTERNAL ST	ANDARD RECOV	ERIES:						
Trifluorotoluene		70-130	SLSA		102%			1

Walliam & Approved by:

Date: <u>8/24/04</u>

Lab Report No.: 4368

Date: 08/23/2004

Page: 16

Project Name: Project No:

PACIFIC SUPPLY

29.32

Analysis: Method:

Volatiles by GC/Gasoline Range Organics

SW8021F

Prep Meth: SW5035

Field ID:

CB7-7.5'

Descr/Location:

CB7-7.5' 07/21/2004

Sample Date:

1228

Sample Time: Matrix:

Soil Basis: Wet Lab Samp ID: 4368-7

Rec'd Date:

07/23/2004 07/26/2004

Prep Date: Analysis Date: 07/26/2004

07262004C

QC Batch: s:

Notes	3

Analyte	Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil
Benzene	180.	500.	PQL		ND	UG/KG	100
Toluene	200.	500.	PQL	1	660.	UG/KG	100
Ethylbenzene	200.	500.	PQL		ND	UG/KG	100
Xylenes	200.	500.	PQL		1200	UG/KG	100
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:			-		
Trifluorotoluene		70-130	SLSA		94%		

William & 4 Approved by:

Date: 8/34/04

Page: 17

Project Name: Project No:

PACIFIC SUPPLY

29.32

Analysis:

Volatiles by GC/Gasoline Range Organics

Method:

SW8021F

Prep Meth: SW5035

Field ID:

CB8-8.0'

Descr/Location:

CB8-8.0' 07/21/2004

Sample Date: Sample Time:

Matrix:

Basis:

1250

Soil

Wet

Lab Samp ID: 4368-8 Rec'd Date:

07/23/2004

Prep Date:

07/26/2004

QC Batch:

Analysis Date: 07/26/2004 07262004C

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	900.	2500.	PQL		ND	UG/KG	500
Toluene	1000.	2500.	PQL		54000	UG/KG	500
Ethylbenzene	1000.	2500.	PQL		18000.	UG/KG	500
Xylenes	1000.	2500.	PQL		53000.	UG/KG	500
SURROGATE AND INTERN	NAL STANDARD RECOV	/ERIES:					
Trifluorotoluene		70-130	SLSA		81%		

Walliam & G Approved by:

Page: 18

Project Name:

PACIFIC SUPPLY

Analysis:

Volatiles by GC/Gasoline Range Organics

Project No:

29.32

Method: SW8021F

Prep Meth: SW5035

Field ID:

CB9-7.5'

CB9-7.5'

Rec'd Date:

Lab Samp ID: 4368-9

Descr/Location: Sample Date:

07/21/2004

Prep Date:

07/23/2004 07/26/2004

Sample Time:

1305

Analysis Date: 07/26/2004

Matrix:

Soil

QC Batch:

07262004C

Basis:

Wet

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	180.	500.	PQL		ND	UG/KG	100	
Toluene	200.	500.	PQL		2500.	UG/KG	100	
Ethylbenzene	200.	500.	PQL		1300.	UG/KG	100	
Xylenes	200.	500.	PQL		4600.	UG/KG	100	
SURROGATE AND INTERNAL STAN	DARD RECOV	ERIES:						
Trifluorotoluene		70-130	SLSA		110%			1

William 18 4 Approved by:

Page: 19

Project Name:

PACIFIC SUPPLY

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.32

CATPH-G Method:

Prep Meth: SW5030B

Field ID:

CB3-8-10'

Descr/Location:

CB3-8-10'

Sample Date: Sample Time: 07/21/2004

Matrix: Basis:

1103 Water Wet

Lab Samp ID: 4368-3

Rec'd Date:

07/23/2004

Prep Date:

07/26/2004 Analysis Date: 07/26/2004

QC Batch:

07262004B

Notes:

		-						
Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Gasoline Range Organics (C5-C12)	1.00	2.50	PQL		23.	MG/L	50	
SURROGATE AND INTERNAL STAND	OARD RECOV	ERIES:						
Trifluorotoluene		70-130	SLSA		116%			1

William 18 Approved by:

Page: 20

Project Name: Project No:

PACIFIC SUPPLY

29.32

Analysis: Method:

Volatiles by GC/Gasoline Range Organics

SW8021F Prep Meth: SW5030B

Field ID:

CB3-8-10'

CB3-8-10'

Descr/Location: Sample Date:

07/21/2004

Sample Time: Matrix:

Water

1103

Wet Basis:

Lab Samp ID: 4368-3

Rec'd Date:

07/23/2004 07/26/2004

Prep Date: Analysis Date: 07/26/2004

07262004B

QC Batch: Notes:

Dasis: Frot							
Analyte	Det Limit	Rep Lin	nit	Note	Result	Units	Pvc Dil
Benzene	10.	30.	PQL		1100.	UG/L	50
Toluene	10.	30.	PQL		100.	UG/L	50
Ethylbenzene	10.	30.	PQL		590.	UG/L	50
Xylenes	10.	30.	PQL		2500	UG/L	50

William & Approved by: =

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4368 Date: 08/23/2004

Page: 21

QC Batch:

07262004B

Analysis:

CA LUFT Method for Gasoline Range

Matrix:

Basis:

Water

Method:

CATPH-G

Lab Samp ID: 4368MB

Prep Meth: SW5030B Prep Date: 07/26/2004

Analysis Date: 07/26/2004

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Gasoline Range Organics (C5-C12)	0.020	0.050	PQL		ND	MG/L	1
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:					
Trifluorotoluene		70-130	SLSA		94%		

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4368 Date: 08/23/2004

Page: 22

QC Batch: Matrix:

Basis:

07262004B

Water

Lab Samp ID: 4368MB Analysis Date: 07/26/2004

Not Filtered

Analysis:

Volatiles by GC/Gasoline Range Organics

Method:

SW8021F

Prep Meth: SW5030B

Prep Date: 07/26/2004

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	0.2	0.5	PQL		ND	UG/L	1
Toluene	0.2	0.5	PQL		ND	UG/L	1
Ethylbenzene	0.2	0.5	PQL		ND	UG/L	1
Xylenes	0.2	0.5	PQL		ND	ŲG/L	1

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4368 Date: 08/23/2004

Page: 23

QC Batch:

07262004B

Matrix: Lab Samp ID: 4368MS

Basis:

Water

Not Filtered

Project Name: Lab Generated or Non COE Sample

Project No.:

Lab Generated or Non COE Sample

Field ID:

Lab Generated or Non COE Sample

Lab Ref ID: 072604MS

	Analysis Spike Level		e Level	Sample	Spike	Result		% R	% Recoveries			Acceptance Criteria		
Analyte	Method	MS	DMS	Result	MS			MS DMS RPD			⊃ % Rec		RPD	
Gasoline Range Organics (C5-C12)	CATPH-G	1.00	1.00	ND	0.91	0.98	MG/L	91.0	98.0	7.4	130-70	MSA	20MSP	
Benzene	SW8021F	40.0	40.0	ND	39.1	39.8	UG/L	97.8	99.5	1.7	125-75	MSA	20MSP	
Ethylbenzene	SW8021F	40.0	40.0	ND	36.0	38.2	UG/L	90.0	95.5	5.9	125-75	MSA	20MSP	
Toluene	SW8021F	40.0	40.0	ND	43.7	40.3	UG/L	109	101	7.6	125-75	MSA	20MSP	
Xylenes	SW8021F	120.	120.	ND	115.	121.	UG/L	95.8	101	5.3	125-75	M\$A	20MSP	
Trifluorotoluene	CATPH-G	100.	100.	94.	93.	93.	PERCENT	93.0	93.0	0.00	130-70	SLSA	20SLSP	

1000

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4368 Date: 08/23/2004

Page: 24

QC Batch:

07262004C

Analysis:

CA LUFT Method for Gasoline Range

Matrix:

Soil

Method:

CATPH-G

Lab Samp ID: 4368MS Analysis Date: 07/26/2004

Prep Meth: SW5035 Prep Date: 07/26/2004

Basis:

Wet

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
7 trialy to	DCI LIIIIR	TTOP Entite		14010			
Gasoline Range Organics (C5-C12)	0.5	1.0	PQL		ND	MG/KC	5 1

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4368 Date: 08/23/2004

Page: 25

QC Batch:

07262004C

Analysis:

Volatiles by GC/Gasoline Range Organics

Matrix:

Soil

Method:

SW8021F

Lab Samp ID: 4368MB

Analysis Date: 07/26/2004

Prep Meth: SW5035 Prep Date: 07/26/2004

Basis:

Wet

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	1.8	5.0	PQL		ND	UG/KG	1	
Toluene	2.0	5.0	PQL		ND	UG/KG	6 1	
Ethylbenzene	2.0	5.0	PQL		ND	UG/KG	1	
Xylenes	2.0	5.0	PQL		ND	UG/KG	1	
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:	<u> </u>					
Trifluorotoluene		70-130	SLSA		94%			1

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4368 Date: 08/23/2004

Page: 26

QC Batch: Matrix: 07262004C

01202

Soil

Lab Samp ID: 4368MS

Basis:

Wet

Project Name: PACIFIC SUPPLY

Project No.:

29.32

Field ID:

CB1-7-8'

Lab Ref ID: 4368-1

	Analysis Spike Level Sample Spike Result				Result					ries	Acceptance Criteria			
Analyte	Method	MS	DMS	Result	MS	DM\$	Units		MS	DMS	RPD	% R	.ec	RPD
Gasoline Range Organics (C5-C12)	CATPH-G	2.00	2.00	ND	1.80	1.64	MG/KG	ww	90.0	82.0	9.3	130-70	MSA	20MSP
Benzene	SW8021F	80.0	80.0	ND	74.4	80.2	UG/KG	ww	93.0	100	7.3	130-72	MSA	20MSP
Ethylbenzene	SW8021F	80.0	80.0	ND	68.9	74.1	UG/KG	ww	86.1	92.6	7.3	130-72	MSA	20MSP
Toluene	SW8021F	80.0	80.0	ND	73.3	79.1	UG/KG	ww	91.6	98.9	7.7	130-72	MSA	20MSP
Xylenes	SW8021F	240.	240.	ND	230.	244.	UG/KG	ww	95.8	102	6.3	130-74	MSA	20MSP
Trifluorotoluene	SW8021F	100.	100.	90.	90.	96.	PERCEN	T ww	90.0	96.0	6.5	130-70	SLSA	20SLSP

Chain-of Custody Form

Project #	Project Name		·, ·, -					Ana	ilysis						
29.32	Pacific Supply	, Inc	-		304 BTZ										C.O.C. No. 11919
L.P. No.				No.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-									Remarks:
	Sampler's Signature Sample I.D.	1280	·	of Con-	H										Continue from coc
Date Sampled	Sample I.D.	Time (24 Hour)	Sample Type	tainers	d1		,								11920
7/21/04	CB-1 e 3,54-4'	0955	S=. 1	1					4	308					
		1000	1	1	X					-	-2		1	1.	
		1020									-2			W	6
	CB-2e6.54070	1022			X						#	_ ;	2,		L
	CB-3 e 6.5'	1050	-	A						,	\$				
	CB-3 e8 tol0 V	1103	water	7 VO/S	X						10	-	3		4 cupies. 3 pres inforgance
	CD-9 = 8.0' V			1	X					مي.	7		4		. , ,
		1137	(X				<u> </u>		8	_	ے		
\Box	CB-6 e 7.51 V	1217		<u> </u>	X						7		6		
	CB-7 e 7.51V	1228			X					<u> </u>	B	_	7		
	CB-8 e 8,0' V	1250			X						4		8		
		1305			X						2		9		
	CB-10e 7'68'V	1347			X					_ /	13		10		
	KB-11 C 5.81	1907													Hold all 2.5" & bres
	CB-11 e5.5' .V	1407													tuber for gested
7	CB-17-C6.5_ V	1412													tubes for gested
	CB-11 e7.0 V	1412		<u> </u>											· O
	CB-12e 5.0' CB-12e 7.56	W 33													
4	CB-12e7.52	1435	V	V									ح		*
Laboratory	BAFS				Prese	ervation: A					: D-F	INO3:	Œ - J	Se:F	- (specify)
Relinquished	by: 11	Date/	Time /800	Received/		1/22/5	7/ 5	840	Rema	arks:	. 0	, V.S.I	·		Brunsing Associates, Inc.
(signed) Relinguished		3/22/69 Date		Received	by:	7 10	7	7	10	SQ (ري. د	۰- ٦	L		P.O. Box 588
(signed)				(signed)		Clean	Med	Æ	 		>				5803 Skylane Blvd., Suite A Windsor, CA 95492
Relinquished (signed)	by:	Date/	Time	Received ((signed)	6 Labo	ratory by: /	-	1			,	۸ 🗠			Windsor, CA 93492 (707) 838-3027
(oignou)									Pa	<u>-2e</u>	_ 0	45	_	!	(707) 838-4420 fax

Chain-of Custody Form

Project#	Project Name									Analy	ysis					\blacksquare		_		
29.32	Pacitiz Supply Sampler's Signature	Inc	'p		MEX	ſ										L	C.O.C. No.		1920	
L.P. No.	Sampler's Signature	_		No.	3								-		1		Remarks:	^		
	W. H. M. Coss			of Con-	Phss	•											Contr	ruet	rom coc	
Date Sampled	Sample I.D.	Time (24 Hour)	Sample Type	tainers	2													1191	1	
7/2/04		1501	Sail						[l				
	CB-13 e 6.0'V			($_ \top$		T	T	T]				
	co-13 e 6.51	1503					$\neg \uparrow$		$\overline{}$					\neg						
		2530						\neg												
	13-14 e 5.0° 1	1530		7						1							1			
	13-14 e 6-0'V	1538						1	7	\neg										
 	CB-14 e 6,0'V CB-14 e 6,5	7538	4	4			\neg	$ \uparrow $					$\overline{}$,		
 -	The state of the s		•							\neg	\Box			\Box						
							$\neg \uparrow$	\neg									Hold a	UL 7.0	-4d 6x4	3
<u> </u>							o				\neg				$\overline{}$		Aul f	TOT Oscar	tade dealing	
			-	<u> </u>					\neg								,		7)
							\rightarrow		\neg						\neg				<u> </u>	
	-	-		<u> </u>				\dashv	\dashv		\neg									
							\rightarrow			$\neg \uparrow$	$\overline{}$		\dashv	$\overline{}$						
								\dashv		\dashv	\dashv		\neg		\dashv					
							\dashv	\dashv	\dashv	\dashv	\dashv				\dashv					
			<u> </u>	1		-		\rightarrow	\rightarrow	\dashv		<u> </u>	-		\dashv	\neg				
ļ			ļ	 				\dashv	\dashv	\dashv				\dashv	\dashv		 			
				 			\dashv		\dashv				\longrightarrow						· —	
Laboratory	<u> </u>		<u> </u>	<u></u>	Prese	rvation	n: A - I	HCL:	B - H2	!SO4:	C - N	laOH:	D - F	INO3:	E - 10	æ: F	- (specify)			
	15/15						7													
Relinquished (signed)	Ju. N.M. Com	月2少0 t	Time 1800	Received	Script 1/2304 840 Remarks: 137Ext 6,8021								Brunsir	_	ciates, Ind	C.				
Relinquished	V 23 =		/Time	Received to	ilved by								P.O. Box 588 5803 Skylane Blvd., Suite A							
(signed)			Time	Received f	1000	4	<u></u>	-/-	Det	一								Windsor, CA		
Relinquished (signed)	ву:	Date.	/Time	(signed)	UI LADO	rerory (P)	7 +		,	Ì	P		2 <u>.</u> f	5	_			(707) 838- (707) 838-4	-3027	
<u> </u>		L									حــــــــــــــــــــــــــــــــــــــ	K	4					,, 550 7		

APPENDIX D

USGS Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California

Af= Artificial Fill (Historic)

Qms= Merritt Sand (Holocene and Pleistocene)

Qhb= Basin Deposits (Holocene)

Qmt= Marine Terrace Deposit (Pleistocene)

Qpaf= Alluvial fan & Fluvial deposits

Qhl= Natural Levee deposit

Reference: Geologic Map and Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, CA by R.W. Graymer

APPENDIX E

Geotechnical Report

a division of Brunsing Associates, Inc. (707) 838-0780 **BACE Geotechnical**

Job No.:

SUMMARY OF FLEXIBLE WALL PERMEABILITY
AND LABORATORY TEST DATA
PACIFIC SUPPLY
1734 24th Street
Oakland, California

PLATE

SAMPLE SOURCE	CLASSIFICATION	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	FINAL MOISTURE CONTENT (%)	(2) PERMEABILITY (cm/sec.)	ORGANIC CONTENT (%)	SPECIFIC GRAVITY (G)	POROSITY (n)
CB-11 @ 5.5 feet	GREEN-BROWN SANDY CLAYEY SILT (ML)	123	5.4	21.3	2.2 x 10 ⁻⁷	0.4	2.46	0.202
CB-13 @ 6.5 feet	GRAY CLAYEY SILTY SAND (SM)	115	12.6	12.6	3.3 x 10 ⁻⁸	0.2	2.64	0.301
CB-14 @ 5.0 feet	BROWN CLAYEY SILTY SAND (SM)	122	0.2	17.4	2.9 x 10 ⁻⁶	0.5	2.45	0.205

NOTES: (1) Permeability tests performed in accordance with ASTM D-5084.

COBBLES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR GLAT

8	Specimen Identification Classification								Pl	Cc	Cu
•	CB-11	5.5 ft	GREE	EN-BROWN	SANDY CLA	YEY SILT (ML)				
	CB-13	6.5 ft	(GRAY CLAY	EY SILTY S						
▲	CB-14	5.0 ft	В	ROWN CLAY	YEY SILTY	SAND (SM)				8.36	77.54
5	Specimen Ide	entification	D100	D60	D30	D10	%Gravel	%Sand	%Sil	t 9	6Clay
•	CB-11	5.5 ft	19	0.045	0.01		2.2	13.0	61.6	;	23.1
X	CB-13	6.5 ft	4.75	0.207	0.07		0.0	69.3	15.5	j	15.2
▲	CB-14	5.0 ft	12.5	0.214	0.07	0.003	2.1	67.1	18.2	2	12.6

Job No.: W29,32
Appr.:

Date:

12/02/04

GRAIN SIZE DISTRIBUTION
PACIFIC SUPPLY
1734 24th Steet
Oakland, California

E.2