

No 514

January 8, 2004

Project No. 29

Mr. Barney Chan Hazardous Materials Specialist Alameda County Health Care Services Agency Alomeda County

Environmental Health

Response To November 6, 2003 Letter 1735 24th Street Oakland, California

Dear Mr. Chan,

This letter summarizes our telephone conversation of December 1, 2003 regarding your letter dated November 6, 2003. This letter also provides a response to the technical comments presented in your letter.

#### Response to Comment 1 —

Brunsing Associates, Inc. (BAI) had the surveying you requested in your May 2003 letter performed by Phelps Land Surveyors (Phelps) in June 2003. The resulting elevations are presented in a letter report from Phelps, which is provided as an attachment to this letter and are currently in the Geotracker system. This information was also provided in Appendix E of the June 2003 Groundwater Monitoring Report, dated July 29, 2003.

#### Response to Comment 2—

As we discussed, sieve analyses have not been performed for the site, however based on the boring logs the soil is primarily a mixture of silts and clays with occasional organic matter and peat. This description appeared to best correspond to the description of clayey silts listed on page 9 of the Oakland Urban Land Redevelopment (URL) Program Guidance document, dated January 1, 2000. The boring logs were included in our July 29, 2003 report. In order to perform a definitive analysis as required by the City of Oakland ULR document, BAI proposes that 3 soil samples be collected concurrently with the confirmation borings proposed below in response to comment 4. Please note that if the data indicates that the soils are not clayey silts, this will only impact the results of the

oh

Phone: (707) 838-3027 Fax: (707) 838-4420

soil analytical data compared to the Oakland Tier 2 SSTLs for Clayey Silts, and that the soil analytical data were based on samples collected prior to the initiation of soil vapor extraction at the site. A change in soil type would have no impact on the risk based analysis of groundwater since the groundwater monitoring results were less than the Tier 1 RBSLs, which are independent of soil type.

#### Response to Comment 3 —

Your letter requests that a plot of concentration versus time for the various contaminant concentrations and a mathematical interpretation should be provided in order to evaluate the decrease of TPH as gasoline and BTEX. After a review of the analytical data, it appears that the "sudden" decrease in concentration that you note refers primarily to vapor recovery well VRW-4. In the June 2003 groundwater monitoring report, BAI did not provide a plot of contaminant concentration verses time and a mathematical interpretation because there were only two recent data points available, one from May 15, 2002 and one from June 5, 2003. There was a third data point from November 4, 1993, however this was collected prior to remediation activities. Time verses concentration plots for selected wells are included in the attached November 2003 groundwater monitoring report.

#### Response to Comment 4—

Based on our telephone conversation, we will submit a soil sampling workplan that will provide the locations of verification soil sampling focusing on soils that had elevated petroleum hydrocarbon concentrations prior to remediation. The workplan will also propose sieve analyses on three soil samples to evaluate the soil types.

#### Response to Comment 5—

You requested that an utilities/preferential pathway and sensitive receptor survey be performed for both on and off-site. In our telephone conversation, you specified that this survey should include a search within a 1,000-foot radius of the site for wells and utilities, and that the search for municipal wells should be performed within a ¼-mile radius of the site.

#### Response to Comment 6 —

BAI included the residual total petroleum hydrocarbons as gasoline screening levels using the SFRWQCB document, Screening for Environmental Concerns at



Sites with Contaminated Soil and Groundwater, July 2003, in the November 2003 groundwater monitoring report, per your request.

The November 2003 groundwater monitoring field activities were performed on November 19, 2003. Your November 6, 2003 letter requested a deadline for submittal of the groundwater monitoring report of December 8, 2003. Analytical data was not available until Thursday, December 4, 2003. BAI requested and was verbally granted that the December 8, 2003 groundwater monitoring report submission date be extended. The November 2003 groundwater monitoring report is submitted concurrently with this letter, and includes: plots of concentrations verses time for the groundwater monitoring well MW-2 and the VRW series wells and their interpretation, and comparison with the SFRWQCB screening levels for total petroleum hydrocarbons as gasoline.

BAI's office was closed during the holiday season, thus BAI requests an extension until January 30, 2004 to complete the soil sampling/soil characterization workplan and the sensitive receptor survey. If you have any questions or comments regarding this letter or the proposed submission date for the workplan and sensitive receptor report, please do not hesitate to contact either Diana Dickerson or myself at (707) 838-3027. We look forward to continuing to work together on this site in the future.

Sincerely,

Michelle Floyd Frederick

infichelle Floyd frederick

**Project Engineer** 

cc: Ms. Normita Callison

Attachments





632 PETALUMA AVENUE, SEBASTOPOL, CALIFORNIA 95472 / (707) 829-0400 / FAX (707) 829-0401

June 23, 2003

Environmental Health

Michelle Frederick Brunsing Associates, Inc. P.O. Box 588 Windsor, California 95492

Re: Monitoring Well Locations --

1735 24th Street / Oakland

Dear Michelle:

Below are the elevations of the monitoring wells and vapor recovery wells located at the above-referenced site. An elevation was taken on the North side of the PVC pipes (either 2" or 4", depending on which well), and one was taken on the Northerly rim of the Christy box or manhole (ditto).

For reference, we tied the Southeast and Southwest corners of the main shop building, which is at the back of sidewalk on 24th Street.

The locations of the wells are shown on the enclosed plat, and per your request VRW-1 is referenced to the Southeast corner of the main shop building.

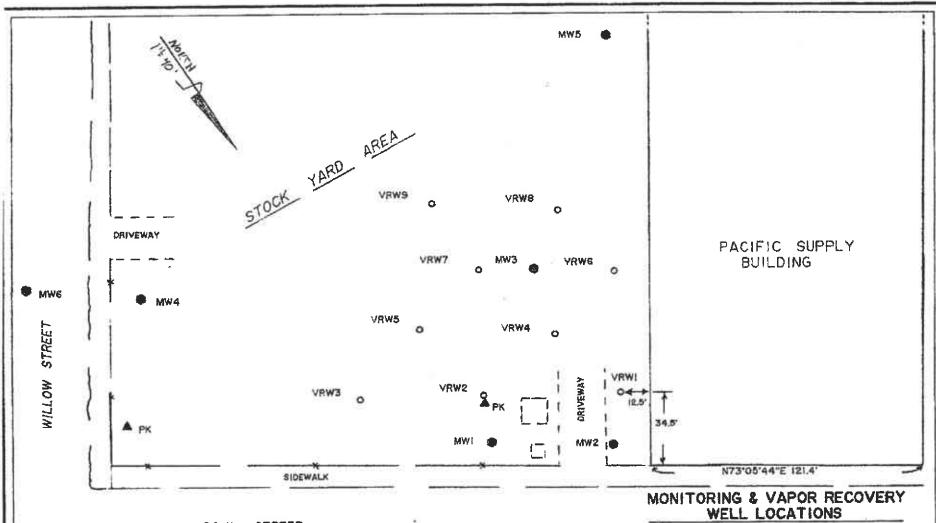
| Monitoring       | Elevation of     | North Rim             |
|------------------|------------------|-----------------------|
| <u>well</u>      | 2" / 4" PVC pipe | Christy Box / Manhole |
|                  | NAVD 88 Datum    | NAVD 88 Datum         |
| MW-1 = 2"        | 11.47            | 11.78                 |
| MW-2 = 4"        | 10,.80           | 11.25                 |
| MW - 3 = 2"      | 11.76            | 12.13                 |
| MW-4 = 2"        | 11.69            | 11.96                 |
| MW-5 = 2"        | 11.54            | 12.00                 |
| MW-6 = 2"        | 8.82             | 9.36                  |
| MW-7 = 2"        | 7.72             | 8.01                  |
| VRW-1 = 4"       | 11.18            | 11.85                 |
| VRW-2 = 4"       | 11.08            | 12.02                 |
| VRW-3 = 4"       | 11.62            | 11.90                 |
| $VRW-4 = 4^{11}$ | 11.33            | 12.08                 |
| VRW-5 = 4"       | 11.56            | 12.15                 |
| VRW-6 = 4"       | 11.43            | 12.08                 |
| VRW-7 = 4"       | 11.70            | 12,27                 |
| VRW-8 = 4"       | 11.62            | 12.23                 |
| VRW-9 = 4"       | 11.87            | 12.33                 |
|                  |                  |                       |

# -2(Brunsing Monitoring Wells continued)

| MONITORING |                 |                  |
|------------|-----------------|------------------|
| well       | <u>Latitude</u> | <u>Longitude</u> |
| MW-1       | 37.819811       | -122,291635      |
| MW-2       | 37.819893       | -122.291795      |
| MW-3       | 37.819653       | -122.291839      |
| MW-4       | 37.819425       | -122.291297      |
| MW-5       | 37.819451       | -122.292134      |
| MW-6       | 37.819340       | -122.291155      |
| MW - 7     | 37.819929       | -122.291510      |
| VRW-1      | 37.819843       | -122.291849      |
| VRW-2      | 37.819756       | -122.291666      |
| VRW-3      | 37.819677       | -122.291499      |
| VRW-4      | 37.819735       | -122.291813      |
| VRW-5      | 37.819642       | -122.291636      |
| VRW-6      | 37.819707       | -122.291944      |
| VRW-7      | 37.819617       | -122.291766      |
| VRW-8      | 37.819605       | -122.291919      |
| VRW-9      | 37.819515       | -122.291758      |

GPS reference points: 941 4777 B TIDAL (PID AE5211)

PORT 1 (PID HT0654)


Horizontal datum: CA SPC Zone 3, NAD 83

Vertical datum: NAVD 88

GPS date and time: 06-20-2003 / 10:54AM
Type of GPS unit: RTK Topcon TPS Odyssey

Sincerely, Phelps & Associates, Inc.

Fred M. Phelps



24 th STREET

1735 24TH STREET / OAKLAND, CA



LAND SURVEYORS
632 PETALLIMA AVE. SEBASTOPOL, CALIFORNIA 95472 / (707) \$29-0406

■ - MONITORING WELLIMW#)

O- VAPOR RECOVERY WELL(VRW#)

△- SURVEY CONTROL POINT(PK)

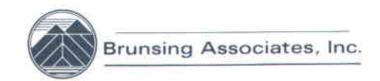


January 8, 2004

Project No. 029.022

Mr. Barney Chan Alameda County Health Care Services Agency Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Groundwater Monitoring Report November 2003 Pacific Supply Company 1735 24th Street Oakland, California


35 24th Street Ro 514 akland, California

Dear Mr. Chan:

This correspondence has been prepared by Brunsing Associates, Inc. (BAI) to provide you with a report summarizing the fieldwork completed at the above-referenced site on November 19, 2003, and the laboratory analyses of the groundwater samples collected. The fieldwork was completed in accordance with your correspondence dated November 6, 2003. This report also compares the results of the current groundwater monitoring event with the "Oakland Urban Land Redevelopment Program: Guidance Document", which provides Risk Based Corrective Action Levels (RBCAs) for qualifying sites in Oakland, and with the total petroleum hydrocarbon (TPH) as gasoline environmental screening level (ESL) listed in the San Francisco Regional Water Quality Control Board's (SFRWQCB) document, "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," as requested in your November 6, 2003 letter.

#### Site Background

In May 1987, efforts were initiated to abandon a 1,000-gallon underground gasoline storage tank at Pacific Supply Company's West Oakland Site. Soil and associated vapor samples from exploratory boreholes at the site were analyzed by gas chromatography carried out by CHIPS Environmental Consultants and Anatec Laboratories (Plate 2). The results indicated that soil in the vicinity of the tank was contaminated with gasoline and raised the possibility that gasoline may have reached groundwater below the site.



pe 514

January 8, 2004

Project No. 029.022

Mr. Barney Chan Alameda County Health Care Services Agency Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Groundwater Monitoring Report November 2003 Pacific Supply Company 1735 24th Street Oakland, California

Dear Mr. Chan:



This correspondence has been prepared by Brunsing Associates, Inc. (BAI) to provide you with a report summarizing the fieldwork completed at the above-referenced site on November 19, 2003, and the laboratory analyses of the groundwater samples collected. The fieldwork was completed in accordance with your correspondence dated November 6, 2003. This report also compares the results of the current groundwater monitoring event with the "Oakland Urban Land Redevelopment Program: Guidance Document", which provides Risk Based Corrective Action Levels (RBCAs) for qualifying sites in Oakland, and with the total petroleum hydrocarbon (TPH) as gasoline environmental screening level (ESL) listed in the San Francisco Regional Water Quality Control Board's (SFRWQCB) document, "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater," as requested in your November 6, 2003 letter.

#### Site Background

In May 1987, efforts were initiated to abandon a 1,000-gallon underground gasoline storage tank at Pacific Supply Company's West Oakland Site. Soil and associated vapor samples from exploratory boreholes at the site were analyzed by gas chromatography carried out by CHIPS Environmental Consultants and Anatec Laboratories (Plate 2). The results indicated that soil in the vicinity of the tank was contaminated with gasoline and raised the possibility that gasoline may have reached groundwater below the site.

During subsequent removal of the tank by Erikson Industrial Services, substantial deterioration of the tank body was documented. Gasoline odors were also detected during tank removal operations.

In order to assess the extent of soil and groundwater quality beneath and immediately adjacent to the Pacific Supply Company site and the potential for migration of contaminants from off-site sources, BAI carried out a two-phase soil and groundwater investigation. Monitoring wells MW-1 through MW-5 (Plate 2) were constructed in September 1988 as the first phase of a soil and groundwater investigation. Monitoring wells MW-6 and MW-7 were constructed on December 19, 1989 during Phase II of the same investigation. The construction and sampling of these wells are also documented in BAI's Report of Findings, dated March 23, 1990. The results of the Phase I and II investigations indicated that light petroleum hydrocarbons had migrated beyond the immediate vicinity of the former UST; however, it was concluded that hydrocarbons in the soil and groundwater had not extended beyond the limits of the property.

The Pacific Supply Company initiated quarterly groundwater monitoring at the request of the Alameda County Health Care Services Agency (ACHCSA) in May 1992. Initially, only on-site wells were monitored for total petroleum (TPH) as gasoline, benzene, toluene, ethylbenzene and xylenes (BTEX), and lead. Later, the five on-site and the two off-site wells were monitored quarterly.

A vapor extraction pilot study was performed in June 1992 to determine the feasibility of using vapor extraction technology as an in-situ corrective action to remove volatile petroleum hydrocarbons from the shallow subsurface soils. A two-inch diameter vapor extraction well (VEW-1) was installed at the location indicated on Plate 2 to an approximate depth of eight feet below ground surface (bgs). The results of the 4-day pilot study indicated that the lithology at the site permitted the flow of air through the soils at a sufficient rate so as to volatilize hydrocarbon constituents in the soil. The radius of influence was determined in the field by measuring the relative pressure at several probe locations positioned at various radial distances away from the extraction well. The results indicated that the estimated radius of influence from a two-inch diameter extraction well was approximately 30 feet at a relatively low pressure of less than 50 inches of water, as discussed in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

In response to an ACHCSA December 1992 request, BAI also performed an investigation to delineate the zero line of contamination. Ten soil borings were drilled as part of this investigation (B-1 through B-10) to a depth of approximately seven to ten feet bgs (Plate 2). From each boring, one soil sample was retained from a depth of approximately seven to eight feet bgs for analytical testing of TPH as gasoline and



BTEX. Further discussions of the zero line investigation are provided in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

Vapor recovery wells VRW-1 through VRW-9 were constructed in August 1993 as part of a vapor recovery system. During installation of the extraction wells, soil samples were collected for chemical analysis in the borings at the depth where first groundwater occurred, at approximately seven feet bgs. Installations of these wells were documented in a February 7, 1994 report. A vapor extraction system was installed in the fall of 1993 as an interim remedial action. The system began operation on December 26, 1993. The system consisted of an internal combustion engine with a spray aeration tank for treatment of groundwater, and an activated carbon treatment polishing step prior to groundwater discharge. The internal combustion unit and spray aeration unit was manufactured by Remediation Service International (RSI), under the trade name Spray Aeration Vapor Extraction (SAVE) system.

On June 28, 1996, the treatment system was shut down with the concurrence of Pacific Supply Company. Prior to shut down, the system had destroyed an estimated 6,550 pounds of petroleum hydrocarbons since start of operations on December 26, 1993. After shut down, the water in the water tank was treated and discharged to the sanitary sewer under the existing permit and the inside of the tank was cleaned on July 15, 1996.

The permit with the Bay Area Air Quality Management District (BAAQMD) expired on September 1, 1996, and was not renewed. The water discharge permit was discontinued on July 31, 1996. The total volume of water discharged to the sanitary sewer was 151,089 gallons. In December 1996, the shut down and decommissioning of the system was authorized by Jennifer Eberle of the Alameda County Department of Health Services.

Groundwater monitoring continued following the shut down of the vapor extraction system. In August 2000, BAI supervised the drilling of 3 soil borings in 24th Street, on the north side of the Pacific Supply Company building in a downgradient direction from the former UST location. Grab groundwater samples were collected to evaluate whether off-site migration of hydrocarbon contamination in groundwater was occurring. One of the three groundwater samples was reported to contain low levels of TPH as gasoline, BTEX, and petroleum oxygenates. The results of the field investigation are presented in BAI's "Groundwater Investigation and Monitoring Report," dated December 14, 2000.

Table 1 presents a summary of groundwater analytical data and groundwater elevations for the monitoring wells, Oakland Tier 1 Risk Based Screening Levels



(RBSLs) for inhalation of indoor air vapors at a commercial/industrial site for BTEX, and the ESL for TPH as gasoline based on Table B of the SFRWQCB's document, "Screening for Environmental Concerns with Contaminated Soils and Groundwater." Table 2 presents the groundwater concentrations and groundwater elevations for vapor recovery wells, and includes groundwater elevations and the Oakland Tier 1 RBSLs for inhalation of indoor air vapors at a commercial/industrial site, and the ESL for TPH as gasoline based on Table B of the SFRWQCB's document, "Screening for Environmental Concerns with Contaminated Soils and Groundwater." Plate 2 presents a site map that includes the historical boring and sampling locations. Groundwater elevations and flow direction for November 2003 are provided on Plate 3. Appendix A presents the monitoring well sampling protocol and field reports. Appendix B presents the analytical laboratory report for this sampling period. Concentration verses time for TPH and BTEX components in the VRW series wells and monitoring well MW-2 are presented in Appendix C.

#### Scope of Work

The scope of work performed for this sampling event included collecting groundwater samples for laboratory analysis from monitoring wells MW-1 through MW-3, and vapor extraction wells VRW-1 through VRW-9. The groundwater sampling was completed on November 19, 2003. Prior to sampling, groundwater levels were also measured in all wells. The purpose of the sampling work was to further evaluate the effectiveness of the vapor extraction and remediation that was performed at the site between December 1993 and June 1996.

#### **Groundwater Flow Direction**

Groundwater elevations and flow directions are presented on Plate 3. The groundwater flow direction was predominately to the west with is highest elevation observed in monitoring well MW-1. The groundwater elevation measured in well VRW-4 was slightly higher than the adjacent wells indicating a local flow direction in this area to the north. The groundwater gradient was approximately 0.003 foot per foot, using data from wells MW-1, MW-3, and VRW-3.



#### **Groundwater Sampling and Analytical Results**

Groundwater samples for laboratory analysis were collected from selected wells on November 19, 2003. Groundwater sampling was performed in accordance with the sampling protocol presented in Appendix A. Alpha Analytical Laboratories, Inc., a state-certified analytical laboratory, analyzed the groundwater samples for TPH as gasoline by EPA Test Method 8015, and BTEX, petroleum oxygenates and lead scavengers by EPA Test Method 8260 (EPA 8260). A copy of the laboratory analytical report for this sampling event is presented in Appendix B.

Table 1 presents a summary of groundwater analytical results for the monitoring well sampling events at the site. The results of the November 2003 groundwater analyses for monitoring wells MW-1 through MW-3 are included in the summary.

The groundwater sample collected from monitoring well MW-1 was reported to contain no detectable TPH as gasoline, BTEX, petroleum oxygenates or lead scavengers. The sample from monitoring well MW-2 was reported to contain TPH as gasoline at 3.7 milligrams per liter (mg/l), benzene at 9.7 micrograms per liter ( $\mu$ g/l), and xylenes at 7.5  $\mu$ g/l; no other petroleum constituents were detected above the reporting limit in monitoring well MW-2. The groundwater sample collected from monitoring well MW-3 contained 0.16 mg/l of TPH as gasoline, but contained no other petroleum constituents above the laboratory reporting limits.

Table 2 presents a summary of the available groundwater analytical results for vapor recovery wells VRW-1 through VRW-9 (Plate 2). For well VRW-1, the November 2003 sample contained TPH as gasoline at a concentration of 1.2 mg/l, benzene at 19 µg/l and xylenes at 6.3 µg/l. The groundwater sample collected from well VRW-2 during November 2003 reportedly contained TPH as gasoline at 1.3 mg/l, benzene at 51 µg/l, and xylenes at 4.0 µg/l. The VRW-3 sample contained 0.16 mg/l of TPH as gasoline, 1.7 ug/l of benzene, and 2.7 µg/l of xylenes. The groundwater sample collected from vapor recovery well VRW-4 contained 1.7 mg/l of TPH as gasoline, 210 µg/l of benzene, 2.4 µg/l of toluene, and 36 µg/l of xylenes. TPH as gasoline, benzene, ethylbenzene, and xylenes were reported in the groundwater sample from well VWR-5 at concentrations of 2.9 mg/l, 250 µg/l, 24 µg/l, and 41 µg/l, respectively. For well VRW-6, the November 2003 sample was reported to contain 0.21 mg/l of TPH as gasoline, 13  $\mu$ g/l of benzene, 1.0  $\mu$ g/l of ethylbenzene, 2.5  $\mu$ g/l of xylenes. groundwater sample collected from well VRW-7 during November 2003 contained 1.1 mg/l of TPH as gasoline, 14  $\mu$ g/l of benzene, 1.7  $\mu$ g/l of ethylbenzene, and 5.6  $\mu$ g/l of xylenes. For well VRW-8, the November 2003 sample reportedly contained 3.6 mg/l of TPH as gasoline, 36 µg/l of benzene, and 4.3 µg/l of xylenes. The groundwater sample



collected from vapor recovery well VRW-9 was reported to contain TPH as gasoline at a concentration of 0.86 mg/l and xylenes at 5.50 µg/l.

#### **Discussion of Groundwater Analytical Results**

The samples collected from monitoring well MW-1 in June 2003 and November 2003 reportedly contained no petroleum hydrocarbon constituents in the groundwater above the laboratory reporting limits. The groundwater sample collected from monitoring well MW-2 in November 2003 showed an increase in TPH as gasoline concentrations, but a decrease in the BTEX concentrations. Concentration of TPH as gasoline, and BTEX verses time plots are presented in Appendix C for well MW-2. The TPH as gasoline verses time plot shows that concentrations in this well have been in the range of approximately 2 to 4 mg/l since April 1992. The concentrations of BTEX components verses time in well MW-2 shows a general decreasing trend of benzene that has on occasions shown a significant increase in concentrations, generally during spring but appears to have stabilized at approximately 20 to 50 µg/l. The laboratory analytical results for the groundwater sample collected in November 2003 from monitoring well MW-3 reported the first detection of TPH as gasoline (0.16 mg/l) since January 1997, however no BTEX components were reported. Generally, groundwater samples collected from wells MW-1 and MW-3 have reported concentrations below the laboratory reporting limits or low levels of petroleum constituents; thus no concentration verses time plots were created.

During the recent monitoring events, vapor recovery wells in general have shown higher groundwater concentrations of petroleum constituents than the monitoring wells. This may be a result of the differences in screening intervals between the vapor recovery wells and the monitoring wells (the vapor recovery wells are generally screened shallower than the monitoring wells), and/or due to the SVE remediation activities that pulled contamination toward the vapor recovery wells.

Only a limited quantity of groundwater monitoring data exists for the vapor recovery wells. Vapor recovery wells VRW-2 through VRW-9 have been sampled on four occasions, whereas, vapor recovery well VRW-1 has been sampled only three times. Concentration verse time plots for TPH and BTEX components in the VRW series wells are presented in Appendix C.

A review of the BTEX concentration verses time plots show generally decreasing trends in wells VRW-1, VRW-2, VRW-3, VRW-4, VRW-8, and VRW-9. The groundwater sample collected from vapor recovery well VRW-5 contained a significant increase in benzene concentration in November 2003. Benzene concentrations in wells VRW-6 and VRW-7 increased in May 2002 but have had decreased since May 2002. A review of the



TPH as gasoline concentration verses time plots for the VRW wells show generally decreasing trends with slightly increased November 2003 concentrations in wells VRW-1, VRW-2, and VRW-3. A review of the TPH as gasoline concentration verses time plot for well VRW-4 shows a generally decreasing trend since May 2002, while well VRW-9 shows an increasing trend but at low concentrations (less than 1.0 mg/l). The trend in well VRW-5 shows stable concentrations through June 2003 generally below 1.0 mg/l, and an increase during the November 2003 monitoring event. The plots for wells VRW-6, VRW-7, and VRW-8 indicate fluctuating TPH as gasoline concentrations, with the last two concentrations being less than the maximum reported concentration for each well.

#### Conclusion

As discussed in BAI's January 8, 2004 correspondence, BAI will be submitting a soil sampling workplan that will include the collection of samples for soil type analyses. An utilities/preferential pathway and sensitive receptor survey will also be performed.

If you should have any questions regarding this report, please contact Michelle Floyd Frederick or Diana Dickerson at (707) 838-3027.

DICKERSON NO. 6013

Sincerely,

Michelle Floyd Frederick

Project Engineer

Diana M. Dickerson, R.G., R.E.A.

Principal Geologist

cc: Ms. Normita Callison, Pacific Coast Building Supply



#### LIST OF ATTACHMENTS

#### **TABLES**

Table 1. Summary of Groundwater Analytical Data for Monitoring Wells

Table 2. Summary of Groundwater Analytical Data for Vapor Extraction Wells

#### **PLATES**

Plate 1. Vicinity Map Plate 2. Site Map

Plate 3. Groundwater Elevations, November 19, 2003

#### **APPENDICES**

Appendix A. Monitoring Well Sampling Protocol and Field Reports

Appendix B. Analytical Laboratory Report Appendix C. Concentration verses Time Plots



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | Depth to     | Groundwater | TPH as    |         |         |              |         |           |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-------------|-----------|---------|---------|--------------|---------|-----------|--------|
| Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampling        | Groundwater  | Elevation   | gasoline  | Benzene | Toluene | Ethylbenzene | Xylenes | Lead      | MTBE   |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date            | (feet)       | (feet, MSL) | (mg/L)    | (µg/L)  | (µg/L)  | (ug/L)       | (µg/L)  | (mg/L)    | (µg/L) |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/14/1988      | 7.99         | 0.88        | 1.1       | 1.1     | ND      | _            | ND      |           | -      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/29/1989      | 7.74         | 1.13        | ND        | ND      | ND      | ND           | ND      | ND (1)    | -      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/28/1992       | 7.81         | 1.06        | ND        | ND      | ND      | ND           | ND      | 0.003(2)  |        |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9/3/1992        | 7.90         | 0.97        | ND        | ND      | ND      | ND           | ND      | 0.12 (2)  | - 3    |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/24/1992      | 7.90         | 0.97        | ND        | ND      | ND      | ND           | ND      | 0.017 (2) | -      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/9/1993        | 7.38         | 1.49        | ND        | ND      | ND      | ND           | ND      | ND (1)    | _      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/21/1993       | 7.68         | 1.19        | ND        | ND      | ND      | ND           | ND      | ND (1)    |        |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/3/1993       | 7.83         | 1.04        | ND        | ND      | ND      | ND           | ND      | ND (1)    | _      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/1/1994        | 7.30         | 1.57        | ND        | ND      | ND      | ND           | ND      | ND (1)    |        |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/2/1994        | 7.43         | 1.44        | ND        | ND      | ND      | ND           | ND      | ND (1)    | _      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9/1/1994        | 7.70         | 1.17        | ND        | ND      | ND      | ND           | ND      | ND (1)    | -      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/13/1994      | 6.90         | 1,97        | ND        | ND      | ND      | ND           | ND      |           | -      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/7/1995        | 7.30         | 1.57        | 0.06      | 3.8     | ND      | ND           | ND      |           |        |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/9/1995        | 7.87         | 1.00        | 0.09      | 12      | 0.8     | 0,5          | 1.3     |           | -      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9/21/1995       | 7.67         | 1.20        | ND        | 4.1     | ND      | ND           | ND      | _         | -      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/18/1995      | 7.15         | 1.72        | ND        | ND      | ND      | ND           | ND      | -         | _      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/29/1996       | 6.74         | 2.13        | 0.09      | 1.4     | 0.5     | ND           | 0.8     |           | -      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/15/1996       | 7.76         | 1.11        |           |         |         |              | - 1     |           | _      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/7/1997        | 6.80         | 2.07        | 0.06      | 0.6     | <0.5    | <0.5         | <0.5    | 92        | 20     |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/12/1997       | 7 67         | 1 20        | _         |         |         |              |         | _         | _      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/26/1998       | 6.93         | 1 94        | < 0.05    | <0.5    | <0.5    | <0.5         | 1.1     | _         | _      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/3/1998        | 7.51         | 1 36        |           | _       |         |              |         | -         |        |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/13/1999       | 7 63         | 1 24        | < 0.05    | <0.5    | <0.5    | <0.5         | <0.5    |           | -      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9/27/1999       | 7.77         | 1.10        |           |         |         |              |         |           | -      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/28/2000       | 6.85         | 2.02        | <0.05     | <0.5    | <0.5    | <0.5         | <0.5    | _         | <5.0   |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/16/2002       | 7 45         | 1 42        | 0.35      | <0.5    | <0.5    | <0.5         | <0.5    | _         | <1.0   |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/10/2003       | 7.32         | 4.15        | <0.05     | <0.5    | <0.5    | <0.5         | <0.5    | _         | _      |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/19/2003      | 7.30         | 4.17        | < 0.050   | < 0.30  | <0.30   | < 0.50       | <0.50   | -         | =      |
| Oakland T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ier 1 RBSLs     |              |             | Yang Line | 1,800   | >Sol    | >Sol         | >Sol    | NA        | >Sol   |
| THE RESIDENCE PARTY AND ADDRESS OF THE PARTY A | SLs Table B-Gro | undwater (4) |             | 0.5       |         |         |              |         |           |        |



| Well      | Sampling        | Depth to<br>Groundwater | Groundwater<br>Elevation | TPH as | Benzene | Toluene | Ethylbenzene | Xylenes | Lead         | мтве   |
|-----------|-----------------|-------------------------|--------------------------|--------|---------|---------|--------------|---------|--------------|--------|
| Name      | Date            | (feet)                  | (feet, MSL)              | (mg/L) | (ug/L)  | (ug/L)  | (µg/L)       | (ug/L)  | (mg/L)       | (ug/L) |
| MW-2      | 10/14/1988      | 7.29                    | 0.85                     | 11     | 23      | 20      | <u>-</u>     | 16      | <del>-</del> | -      |
| MW-2      | 12/29/1989      | 6.87                    | 1.27                     | 4      | 200     | 6.7     | ND           | ND      | 0.22 (1)     | -      |
| MW-2      | 5/28/1992       | 6.92                    | 1.22                     | 8.9    | 550     | 48      | ND           | 13      | ND (2)       | -      |
| MW-2      | 9/3/1992        | 7.26                    | 0.88                     | 2.1    | 760     | 6.2     | 1.8          | 5.1     | 0.006 (2)    | -      |
| MW-2      | 11/24/1992      | 7.28                    | 0.86                     | 4.2    | 370     | 15      | 3.4          | 9.5     | ND (2)       | _      |
| MW-2      | 3/9/1993        | 6.73                    | 1.41                     | 4.3    | 280     | 14      | 3.7          | 7.1     | ND (1)       |        |
| MW-2      | 7/21/1993       | 7.02                    | 1.12                     | 3.4    | 250     | 9.6     | 2.5          | 11      | ND(1)        | -      |
| MW-2      | 11/4/1993       | 7.22                    | 0.92                     | 2.5    | 230     | 7.8     | 2.1          | 9.9     | ND(1)        | -      |
| MW-2      | 2/1/1994        | 6.93                    | 1.21                     | 3.4    | 240     | 17      | ND           | 15      | ND(1)        | -      |
| MW-2      | 6/2/1994        | 6.86                    | 1.28                     | 3.0    | 150     | 9.8     | 3.0          | 10      | ND(1)        |        |
| MW-2      | 9/1/1994        | 7.10                    | 1 04                     | 2.1    | 120     | 9.8     | 2.0          | 9.6     | ND(1)        |        |
| MW-2      | 12/13/1994      | 6.58                    | 1.56                     | 2.0    | 200     | 10      | 2.7          | 11      |              |        |
| MW-2      | 3/7/1995        | 6.69                    | 1.45                     | 3.0    | 500     | 15      | 5.8          | 16      | -            | -      |
| MW-2      | 6/9/1995        | 7.00                    | 1.14                     | 2.1    | 300     | 14      | 5.8          | 13      | _            | -      |
| MW-2      | 9/21/1995       | 6.91                    | 1.23                     | 1.6    | 120     | 9,6     | ND           | 15      | -            | -      |
| MW-2      | 12/18/1995      | 6.73                    | 1.41                     | 2.8    | 120     | 16      | 5.2          | 19      |              | _      |
| MW-2      | 2/29/1996       | 6.36                    | 1.78                     | 1.7    | 170     | 15      | 2.9          | 17      |              |        |
| MW-2      | 7/15/1996       | 7 11                    | 1.03                     | 2.8    | 160     | 22      | 3.5          | 17      | _            | -      |
| MW-2      | 1/7/1997        | 6 40                    | 1.74                     | 3.0    | 350     | 25      | 8.1          | 24      | -            | -      |
| MW-2      | 7/12/1997       | 6.98                    | 1.16                     | 2.1    | 55      | 11      | <2.5         | 18      | -            | -      |
| MW-2      | 1/26/1998       | 6.45                    | 1.69                     | 1.8    | 310     | 29      | 5.0          | 15      |              | -      |
| MW-2      | 7/3/1998        | 6.91                    | 1.23                     | 1.9    | 85      | 9.3     | 1.8          | 17      | -            | -      |
| MW-2      | 1/13/1999       | 7.07                    | 1.07                     | 2.1    | 48      | 33      | 2.0          | 16      |              |        |
| MW-2      | 9/27/1999       | 7.22                    | 0.92                     | 1.5    | 20      | 6.8     | 2.6          | 11      |              | _      |
| MW-2      | 1/28/2000       | 6.61                    | 1.53                     | 1.3    | 22      | 6.4     | 1.5          | 11      | _            | <5.0   |
| MW-2      | 5/17/2002       | 6.95                    | 1.19                     | 3.3    | 25.4    | <5.0    | <5.0         | <5.0    | _            | <10    |
| MW-2      | 6/10/2003       | 6.71                    | 4.09                     | 1.6    | 52      | 2.3     | 32           | 9.1     |              | -      |
| MW-2      | 11/19/2003      | 6.95                    | 3.85                     | 3.7    | 9.7     | <1.1    | <1.1         | 7.5     | -            |        |
| Oakland T | ier 1 KBSLs     |                         |                          |        | 1.800   | >Sol    | >Sol         | >Sol    | NA           | >Sol   |
| FRWQCB I  | SLs Table B-Gro | undwater (4)            |                          | 0.5    |         |         |              |         |              |        |



| 747.11    | 6 11            | Depth to      | Groundwater            | TPH as     | _       | <b></b> | T/1 11       |                  | , ,       | ) (TENE          |
|-----------|-----------------|---------------|------------------------|------------|---------|---------|--------------|------------------|-----------|------------------|
| Well      | Sampling        | Groundwater   | Elevation              | gasoline   | Benzene | Toluene | Ethylbenzene | Xylenes          | Lead      | MTBE             |
| Name      | Date            | (feet)        | (feet, MSL)            | (mg/L)     | (ug/L)  | (ug/L)  | (ug/L)       | (µg/L)           | (mg/L)    | (µg/L)           |
| MW-3      | 10/14/1988      | 8.25          | 0.88                   | 3.4        | ND      | ND      |              | 2.8              |           |                  |
| MW-3      | 12/29/1989      | 7.79          | 1.34                   | ND         | ND      | ND      | ND           | ND               | 0.205 (1) |                  |
| MW-3      | 5/28/1992       | 7.83          | 1.30                   | ND         | 0.8     | 0.5     | ND           | ND               | 0.016 (2) |                  |
| MW-3      | 9/3/1992        | 8.22          | 0.91                   | ND         | ND      | ND      | ND           | ND               | 0.033 (2) | -                |
| MW-3      | 11/24/1992      | 8.29          | 0.84                   | ND         | ND      | ND      | ND           | ND               | 0.011 (2) | -                |
| MW-3      | 3/9/1993        | 7.30          | 1.83                   | 0.1        | 1.8     | ND      | ND           | ND               | ND(1)     | -                |
| MW-3      | 7/21/1993       | 7.87          | 1.26                   | ND         | ND      | ND      | ND           | ND               | ND(1)     |                  |
| MW-3      | 11/4/1993       | 8.23          | 0.90                   | 0.07       | 0.6     | 0.5     | ND           | ND               | ND(1)     |                  |
| MW-3      | 2/1/1994        | 7.56          | 1.57                   | ND         | ND      | ND      | ND           | ND               | ND(1)     | -                |
| MW-3      | 6/2/1994        | 7.46          | 1 67                   | 0.06       | ND      | ND      | ND           | ND               | ND(1)     | -                |
| MW-3      | 9/1/1994        | 7.83          | 1.30                   | 0.07       | 1.7     | 0.9     | ND           | ND               | ND(1)     | -                |
| MW-3      | 12/13/1994      | 7.07          | 2.06                   | 0.06       | 1.4     | ND      | ND           | ND               |           |                  |
| MW-3      | 3/8/1995        | 7.27          | 1.86                   | 0.06       | 1.5     | ND      | ND           | ND               | -         | -                |
| MW-3      | 6/9/1995        | 7.79          | 1.34                   | 0.10       | 5.7     | ND      | ND           | ND               |           |                  |
| MW-3      | 9/21/1995       | 7.87          | 1.26                   | ND         | 1.5     | ND      | ND           | ND               | -         | -                |
| MW-3      | 12/18/1995      | 7.30          | 1.83                   | ND         | 1.3     | ND      | ND           | ND               | -         |                  |
| MW-3      | 2/29/1996       | 6.84          | 2 29                   | ND         | 2.1     | 0.6     | ND           | 0.7              |           |                  |
| MW-3      | 7/15/1996       | 7. <b>7</b> 9 | 1.34                   |            | = = :   | -       | -            | ===              | -         | 35               |
| MW-3      | 1/7/1997        | 6.62          | 2.51                   | 0.05       | 1.0     | <0.5    | <0.5         | <0.5             |           | -                |
| MW-3      | 7/12/1997       | 7.83          | 1.30                   | ( <u>*</u> | (40)    | (4)     | =            | £ <del>2</del> 1 | =         | £ <del>4</del> 5 |
| MW-3      | 1/26/1998       | 6.60          | 2.53                   | <0.05      | 0.8     | <0.5    | <0.5         | <0.5             | _         | -                |
| MW-3      | 7/3/1998        | 7.48          | 1.65                   | -          | -       | -       |              |                  | -         | -                |
| MW-3      | 1/13/1999       | 7.63          | 1 50                   | < 0.05     | <0.5    | <0.5    | < 0.5        | < 0.5            |           | -                |
| MW-3      | 9/27/1999       | 7.94          | 1 19                   |            |         |         |              | ų.               | _         |                  |
| MW-3      | 1/28/2000       | 7.12          | 2 01                   | <0.05      | <0.5    | <0.5    | <0.5         | <0.5             |           | <5.0             |
| MW-3      | 6/5/2003        | 7.53          | 4.23                   | <0.05      | <0.5    | <0.5    | < 0.5        | < 0.5            |           |                  |
| MW-3      | 11/19/2003      | 7.83          | 3.93                   | 0.16       | <0.54   | <0.54   | <0.55        | <1.6             | _         |                  |
| Oakland T | ier 1 RBSLs     |               |                        |            | 1,800   | >Sol    | >Sol         | >Sol             | NA        | >Sol             |
| SFRWQCB I | SLs Table B-Gro | undwater (4)  | and the distribute his | 0,5        |         |         | 7            | •                |           | -                |



| Well<br>Name | Sampling<br>Date | Depth to<br>Groundwater<br>(feet) | Groundwater Elevation (feet, MSL) | TPH as<br>gasoline<br>(mg/L) | Benzene<br>(ug/L) | Toluene<br>(ug/L) | Ethylbenzene<br>(µg/L) | Xylenes<br>(ug/L) | Lead<br>(mg/L) | MTBE     |
|--------------|------------------|-----------------------------------|-----------------------------------|------------------------------|-------------------|-------------------|------------------------|-------------------|----------------|----------|
| MW-4         | 10/14/1988       | 8.33                              | 0.74                              | 4.6                          | 1.2               | ND                | - 1.0                  | 2.2               |                |          |
| MW-4         | 12/29/1989       | 8.08                              | 0.99                              | 0.5                          | 0.7               | ND                | ND                     | ND                | ND (1)         |          |
| MW-4         | 5/28/1992        | 8 19                              | 0.88                              | 0.27                         | 8.8               | 1                 | ND                     | 3.2               | 0.030 (2)      | _        |
| MW-4         | 9/3/1992         | 8.37                              | 0.70                              | 0.20                         | 4.5               | 4.4               | ND                     | 1.9               | 0.022 (2)      | -        |
| MW-4         | 11/24/1992       | 8.28                              | 0.79                              | 0.14                         | 3.2               | 3.2               | ND                     | 1.0               | 0.005 (2)      |          |
| MW-4         | 3/9/1993         | 7.98                              | 1.09                              | 0.47                         | 10                | ND                | ND                     | 2.5               | ND (1)         | -        |
| MW-4         | 7/21/1993        | 8.17                              | 0.90                              | 0.28                         | 4.4               | 5.9               | ND                     | ND                | ND(1)          | _        |
| MW-4         | 11/4/1993        | 8 14                              | 0.93                              | 0.08                         | 1.3               | 1.6               | ND                     | ND                | ND(1)          | -        |
| MW-4         | 2/1/1994         | 7.79                              | 1 28                              | 0.08                         | ND                | ND                | ND                     | ND                | ND(1)          | -        |
| MW-4         | 6/2/1994         | 7.53                              | 1.54                              | 0.30                         | 3.1               | 2.9               | ND                     | 0.8               | ND(1)          |          |
| MW-4         | 9/1/1994         | 7.69                              | 1.38                              | 0.12                         | 1.6               | ND                | ND                     | ND                | ND(1)          | 241      |
| MW-4         | 12/13/1994       | 6.70                              | 2.37                              | ND                           | ND                | ND                | ND                     | ND                |                | -        |
| MW-4         | 3/8/1995         | 6.83                              | 2.24                              | 0.09                         | ND                | ND                | ND                     | ND                | -              |          |
| MW-4         | 6/9/1995         | 7.66                              | 1 41                              | 0.19                         | ND                | ND                | ND                     | ND                | -              | -        |
| MW-4         | 9/21/1995        | 7.93                              | 1.14                              | 0.09                         | ND                | ND                | ND                     | ND                | _              | -        |
| MW-4         | 12/18/1995       | 6.98                              | 2.09                              | -                            |                   | -                 | 7                      | -                 |                |          |
| MW-4         | 2/29/1996        | 6.54                              | 2.53                              | 0.14                         | 1.6               | 1.0               | ND                     | 0.6               |                |          |
| MW-4         | 7/15/1996        | 7.74                              | 1.33                              | _                            |                   |                   | 14                     | ~                 |                | -        |
| MW-4         | 1/7/1997         | 6.46                              | 2.61                              | 0.09                         | 1.0               | 0.5               | <0.5                   | <0.5              | _              | <u>-</u> |
| MW-4         | 7/12/1997        | 7.82                              | 1.25                              | -                            | -                 | -                 |                        | E-2               | _              | -        |
| MW-4         | 1/26/1998        | 6.67                              | 2.40                              | 0,09                         | 1.1               | 0.8               | <0.5                   | <0.5              |                | -        |
| MW-4         | 7/3/1998         | 7.45                              | 1.62                              |                              |                   |                   |                        |                   | <u> </u>       |          |
| MW-4         | 1/13/1999        | 7.51                              | 1.56                              | 0.12                         | 1.1               | 0.62              | <0.5                   | 0.57              | _              |          |
| MW-4         | 9/27/1999        | 7.88                              | 1.19                              | 2                            | :42               |                   | _                      |                   |                | 5.7      |
| MW-4         | 1/28/2000        | 6.73                              | 2.34                              | 0.072                        | <0.5              | <0.5              | <0.5                   | <0.5              |                | <5.0     |
| Oakland T    | ler 1 RBSLs      |                                   |                                   |                              | 1,800             | >5ol              | >Sol                   | >Sol              | NA             | >Sol     |
| SFRWQCB I    | SLs Table B-Gro  | undwater (4)                      |                                   | 0.5                          |                   |                   |                        |                   |                |          |



| Well      | Sampling        | Depth to<br>Groundwater | Groundwater<br>Elevation | TPH as<br>gasoline | Benzene | Toluene        | Ethylbenzene | Xylenes | Lead      | мтве   |
|-----------|-----------------|-------------------------|--------------------------|--------------------|---------|----------------|--------------|---------|-----------|--------|
| Name      | Date            | (feet)                  | (feet, MSL)              | (mg/L)             | (µg/L)  | (µg/L)         | (ug/L)       | (ug/L)  | (mg/L)    | (µg/L) |
| MW-5      | 10/14/1988      | 8.04                    | 0.89                     | 3.2                | ND      | ND             |              | ND      | <u> </u>  | -      |
| MW-5      | 12/29/1989      | 7.40                    | 1.53                     | ND                 | ND      | ND             | ND           | ND      | ND (1)    |        |
| MW-5      | 5/28/1992       | 7.53                    | 1.40                     | ND                 | ND      | ND             | ND           | ND      | 0.008 (2) |        |
| MW-5      | 9/3/1992        | 8.02                    | 0.91                     | ND                 | ND      | ND             | ND           | NID     | 0.034 (2) | - 1    |
| MW-5      | 11/24/1992      | 7.75                    | 1.18                     | ND                 | ND_     | ND             | ND           | ND      | 0.011 (2) |        |
| MW-5      | 3/9/1993        | 6.91                    | 2.02                     | ND                 | ND      | ND             | ND           | ND      | ND (1)    |        |
| MW-5      | 7/21/1993       | 7.57                    | 1.36                     | ND                 | ND      | ND             | ND           | ND      | ND(1)     | 5.7    |
| MW-5      | 11/4/1993       | 7.77                    | 1.16                     | ND                 | ND      | ND             | ND           | ND      | ND(1)     |        |
| MW-5      | 2/1/1994        | 7.05                    | 1.88                     | ND                 | ND      | ND             | ND           | ND      | ND(1)     |        |
| MW-5      | 6/2/1994        | 7.18                    | 1.75                     | ND                 | ND      | ND             | ND           | ND      | ND(1)     | -      |
| MW-5      | 9/1/1994        | 7.53                    | 1.40                     | ND                 | ND      | ND             | ND           | ND      | Ξ.        |        |
| MW-5      | 3/8/1995        | 6.67                    | 2.26                     | ND                 | ND      | ND             | ND           | ND      |           | -      |
| MW-5      | 6/9/1995        | 7.33                    | 1 60                     | ND                 | ND      | ND             | ND           | ND      | -         | -      |
| MW-5      | 9/21/1995       | 7 67                    | 1.26                     | ND                 | ND      | ND             | ND           | ND      | -         |        |
| MW-5      | 12/18/1995      | 6.62                    | 2.31                     | -                  |         | -              |              |         |           | 32     |
| MW-5      | 2/29/1996       | 6.16                    | 2.77                     | ND                 | ND      | ND             | ND           | ND      | _         |        |
| MW-5      | 7/15/1996       | 7.47                    | 1 46                     | _                  | 21      | _ ( <u>a</u> ) | _            | -       |           | _      |
| MW-5      | 1/7/1997        | 6 11                    | 2.82                     | < 0.05             | <0.5    | <0.5           | <0.5         | <0.5    |           | -      |
| MW-5      | 7/12/1997       | 7.61                    | 1 32                     | _                  | -       | -              |              | -       |           |        |
| MW-5      | 1/26/1998       | 6.17                    | 2.76                     | < 0.05             | <0.5    | <0.5           | <0.5         | <0.5    |           | -      |
| MW-5      | 7/3/1998        | 7.23                    | 1.70                     |                    | 20      | - 22           |              |         |           | -      |
| MW-5      | 1/13/1999       | 7.27                    | 1.66                     | < 0.05             | <0.5    | <0.5           | <0.5         | < 0.5   | -         |        |
| MW-5      | 9/27/1999       | 7.76                    | 1.17                     |                    | -       | -              | H            | 1.0     |           |        |
| MW-5      | 1/28/2000       | 6.43                    | 2.50                     | < 0.05             | <0.5    | <0.5           | <0.5         | <0.5    | -         | <5.0   |
| Oakland T | ier 1 RBSLs     |                         |                          |                    | 1,800   | >Sol           | >Sol         | >Sol    | NA        | >Sol   |
| SFRWQCB R | SLa Table B-Gro | undwater (4)            |                          | 0.5                |         |                |              |         |           |        |



| Well     | Sampling        | Depth to<br>Groundwater | Groundwater<br>Elevation | TPH as<br>gasoline | Benzene | Toluene | Ethylbenzene | Xylenes | Lead   | мтве    |
|----------|-----------------|-------------------------|--------------------------|--------------------|---------|---------|--------------|---------|--------|---------|
| Name     | Date            | (feet)                  | (feet, MSL)              | (mg/L)             | (µg/L)  | (µg/L)  | (µg/L)       | (µg/L)  | (mg/L) | (ug/L)  |
| MW-6     | 12/29/1989      | 5.02                    | 1 11                     | 1.1                | 5.4     | 4.5     | ND           | ND      | ND (1) | 1,007.0 |
| MW-6     | 3/9/1993        | 5 10                    | 1.03                     | 2.3                | 2.3     | 2.8     | ND           | 3.1     | ND (1) |         |
| MW-6     | 7/21/1993       | 5.23                    | 0.90                     | 0,59               | ND      | 7.6     | ND           | ND      | ND(1)  | -       |
| MW-6     | 11/4/1993       | 5.25                    | 0.88                     | 1.5                | ND      | 1.2     | ND           | 0.7     | ND(1)  |         |
| MW-6     | 2/1/1994        | 5.05                    | 1.08                     | 1.9                | 2.5     | 3.9     | 1.6          | 1.1     | ND(1)  | -       |
| MW-6     | 6/2/1994        | 4.49                    | 1 64                     | 1.3                | ND      | 1       | ND           | ND      | ND(1)  | -       |
| MW-6     | 9/1/1994        | 4.53                    | 1.60                     | 2.2                | ND      | 1.7     | ND           | ND      | ND(1)  | -       |
| MW-6     | 12/13/1994      | 4.27                    | 1.86                     | 0.66 (3)           | ND      | ND      | ND           | ND      | -      |         |
| MW-6     | 3/8/1995        | 3.37                    | 2.76                     | 1.0 (3)            | ND      | ND      | ND           | ND      |        | _       |
| MW-6     | 6/9/1995        | 4.40                    | 1.73                     | 1.5                | ND      | 3.3     | ND           | ND      | _      |         |
| MW-6     | 9/21/1995       | 4.69                    | 1.44                     | 0.28               | ND      | ND      | ND           | ND      |        | ===     |
| MW-6     | 12/18/1995      | 4.42                    | 1.71                     |                    |         |         |              |         | atur . |         |
| akland I | ier 1 KBSLs     |                         |                          |                    | 1,800   | >Sol    | >Sol         | >Sol    | NA     | >501    |
| FRWOCE I | SLs Table B-Gro | undwater (4)            |                          | 0.5                |         |         |              |         |        |         |



Pacific Supply Company, 1735 24th Street, Oakland, California

| Well                | Sampling        | Depth to<br>Groundwater | Groundwater<br>Elevation | TPH as<br>gasoline | Benzene | Toluene | Ethylbenzene | Xylenes | Lead      | МТВЕ   |
|---------------------|-----------------|-------------------------|--------------------------|--------------------|---------|---------|--------------|---------|-----------|--------|
| Name                | Date            | (feet)                  | (feet, MSL)              | (mg/L)             | (µg/L)  | (µg/L)  | (μg/L)       | (µg/L)  | (mg/L)    | (µg/L) |
| MW-7                | 12/29/1989      | 8,35                    | -3.32                    | ND                 | ND      | ND      | ND           | ND      | 0.235 (1) |        |
| MW-7                | 3/9/1993        | 13.60                   | -8.57                    | ND                 | ND      | ND      | ND           | ND      | ND (1)    |        |
| MW-7                | 7/21/1993       | 12.59                   | -7.56                    | ND                 | ND      | ND      | ND           | ND      | ND(1)     | -      |
| MW-7                | 11/4/1993       | 9.84                    | -4.81                    | ND                 | ND      | ND      | ND           | ND _    | ND(1)     | 725    |
| MW-7                | 2/1/1994        | 10.38                   | -5.35                    | ND                 | ND      | ND      | ND           | ND      | ND(1)     | _      |
| MW-7                | 6/2/1994        | 10.10                   | -5.07                    | ND                 | ND      | ND      | ND           | ND      | ND(1)     |        |
| MW-7                | 9/1/1994        | 9.63                    | -4.60                    | ND                 | ND      | ND      | ND           | ND      | ND(1)     | -      |
| MW-7                | 12/13/1994      | 11 27                   | -6.24                    | ND                 | ND      | ND      | ND           | ND      | _         | -      |
| MW-7                | 3/7/1995        | 9.68                    | -4.65                    | ND                 | ND      | ND      | ND           | ND      | _         |        |
| MW-7                | 6/9/1995        | 9.37                    | -4.34                    | ND                 | ND      | ND      | ND           | ND      | _         | _      |
| MW-7                | 9/21/1995       | 9.43                    | -4.40                    | ND                 | ND      | ND      | ND           | ND      | _         |        |
| MW-7                | 12/18/1995      | 13,28                   | -8.25                    | -                  | -       | -       | - 1          | 5-E     | -         | -      |
| MW-7                | 2/29/1996       | 11.70                   | -6.67                    | ND                 | ND      | ND      | ND           | ND      | -         | -      |
| MW-7                | 7/15/1996       | 11.12                   | -6.09                    | ~                  | -       |         | -            | 5-2     |           | S.= 1  |
| MW-7                | 1/7/1997        | 14.35                   | -9.32                    | < 0.05             | <0,5    | < 0.5   | < 0.5        | <0.5    | _         | _      |
| MW-7                | 7/12/1997       | 15.12                   | -10.09                   |                    |         |         |              |         |           | _      |
| MW-7                | 1/26/1998       | 15.28                   | -10.25                   | < 0.05             | <0.5    | <0.5    | <0.5         | <0.5    | - 4       | -      |
| MW-7                | 7/3/1998        | 14 10                   | -9.07                    | _                  | -       |         | _            |         | -         | _      |
| MW-7                | 1/13/1999       | 14.55                   | -9.52                    | <0.05              | <0,5    | <0.5    | < 0.5        | <0.5    | -         | E + 1  |
| MW-7                | 9/27/1999       | 14.03                   | -9.00                    | -                  |         |         | _            | - 1     |           | -      |
| MW-7                | 1/28/2000       | 10.91                   | -5.88                    | < 0.05             | <0.5    | <0.5    | <0.5         | <0.5    |           | <5.0   |
| akland Tier 1 RBSLs |                 |                         |                          |                    | 1,800   | >Sol    | >Sol         | >Sol    | NA        | >Sol   |
| FRWQCB E            | SLs Table B-Gro | undwater (4)            |                          | 0.5                |         |         |              |         |           |        |

MTBE = methyl tertiary butyl ether. TPH = total petroleum hydrocarbons.

(1)=Organic Lead, (2)=Total Lead, and (3)=chromatographic peak array does not match gasoline standard.

ND = not detected at laboratory reporting limit. <= less than given laboratory reporting limit.

μg/L = micrograms per liter. mg/L = milligrams per liter. - = not analyzed.

MSL = mean seal level.

Groundwater elevations prior to 2003 based on the following well casing elevations in feet above MSL:

MW-1 (8.87'), MW-2 (8.14'), MW-3 (9.13'), MW-4 (9.07'), MW-5 (8.93'), MW-6 (6.13') and MW-7 (5.03').

Oakland RBSLs are based on a groundwater media for inhalation of indoor air vapors risk scenerio at a commerical/industrial site.

(4) SFRWQCB ESLs are taken from Table B of the SFRWQCB document, Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, July 2003. Table B provides the ESLs for shallow soils where groundwater is not a current or potential source of drinking water.

The City of Oakland BTEX standards are provided in lieu of the SFRWQCB ESLs due to the location of the site.

New survey data was obtained on June 23, 2003 by Phelps and Associates Land Surveyors.

June 2003 water levels were measured on June 5, 2003.



#### TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

| Sample<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample<br>Collection<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Depth to<br>Groundwater<br>(feet) | Top of<br>Casing Elevation<br>(feet, MSL) | Groundwater<br>Elevation<br>(feet, MSL) | TPH as<br>gasoline<br>(mg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>benzene<br>(µg/l) | Xylenes<br>(µg/l) | MTBE<br>(pg/l) | Other Oxygenates<br>& Lead Scavengers<br>(µg/l) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------------|------------------------------|-------------------|-------------------|-----------------------------|-------------------|----------------|-------------------------------------------------|
| VRW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/3/1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | -                                         | 2                                       | 5                            | 1600              | 19                | 1.1                         | 16                |                | ( )                                             |
| VRW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/10/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,31                              | 11.18                                     | 3.87                                    | 0.44                         | 5.9               | <0.5              | < 0.5                       | 1.9               | -              | -                                               |
| VRW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/19/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.33                              | 11.18                                     | 3.85                                    | 1.2                          | 19                | < 0.54            | < 0.55                      | 6.3               |                |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ls Table B-Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | 0 10 1                                    | 1300                                    | 8.5                          | 7 700             | 6.7               | 5.1                         | - 6.1             |                |                                                 |
| THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW | THE RESERVE THE PROPERTY OF THE PARTY OF THE | of Indoor Air Vapo                | rs, Commerical/Indust                     | trial bite                              |                              | 1,800             | >501              | >5ol                        | >Sal              | >501           |                                                 |
| VRW-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/4/1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5-                               |                                           |                                         | 7.2                          | 3,300             | 600               | 2.4                         | 870               | 202            |                                                 |
| VRW-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/17/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | . 2                                       |                                         | 2.8                          | 471               | <10               | <10                         | <10               | <20            | <10 to <20                                      |
| VRW-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/9/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,87                              | 11.08                                     | 4.21                                    | 0.47                         | 38                | 2.8               | <1.0                        | <1.0              | ( + )          |                                                 |
| VRW-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/19/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.00                              | 11.08                                     | 4.08                                    | 1.3                          | 51                | < 0.54            | < 0.55                      | 4.0               | -              |                                                 |
| FRWQC8 ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Es Table B-Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | water (1)                         |                                           |                                         | 0.5                          |                   |                   |                             |                   |                |                                                 |
| Dakland Tier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRBSLs-Inhalation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of Indoor Air Vapo                | rs, Commerical/Indust                     | trial Site                              |                              | 1,800             | >501              | >501                        | >Sal              | >501           |                                                 |
| VRW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/4/1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | -                                         | ~                                       | 5.7                          | 120               | 41                | 1.1                         | 380               |                |                                                 |
| VRW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/17/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                           |                                         | 0.42                         | 10.9              | <0.5              | < 0.5                       | 1.07              | <1.0           | <0.50 to <1.0                                   |
| VRW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/9/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.41                              | 11.62                                     | 4.21                                    | 0.061                        | 4.8               | <0.5              | < 0.5                       | < 0.5             | (E.            | -                                               |
| VRW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/19/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.48                              | 11.62                                     | 4.14                                    | 0.16                         | 1.7               | < 0.54            | <0,55                       | 2.7               |                |                                                 |
| FRWQCB ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | La Table B-Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | water (1)                         |                                           |                                         | 0.5                          |                   |                   |                             |                   |                |                                                 |
| bakland Tier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 RBSLs-Inhalation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of Indoor Air Vapo                | rs, Commerical/Indust                     | trial fitte                             |                              | 1,500             | >Sol              | >Sol                        | >Sol              | >Sol           |                                                 |
| VRW-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/4/1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | -                                         | _                                       | 9.0                          | 4,400             | 900               | 5,4                         | 990               |                | 242                                             |
| VRW-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/15/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                 |                                           | -                                       | 11                           | 4,270             | 741               | 512                         | 1,130             | <50            | <25 to <50                                      |
| VRW-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/5/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.01                              | 11.33                                     | 4.32                                    | 2.2                          | 1,200             | 100               | 12                          | 59                | (4)            | 787                                             |
| VRW-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/19/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.44                              | 11.33                                     | 3.89                                    | 1.7                          | 210               | 2.4               | <22                         | 36                | -              |                                                 |
| FRWOCH ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | La Table B-Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | water (1)                         |                                           |                                         | 0.5                          |                   |                   |                             |                   | 100 B          |                                                 |
| akland Tier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RBSLs-Inhalation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of Indoor Air Vapo                | rs, Commerical/Indust                     | trial Site                              |                              | 1,800             | >Sol              | >501                        | >501              | >Sol           |                                                 |
| VRW-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/4/1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                           | - 1                                     | 0.90                         | 68                | 33                | 2.5                         | 32                | -              |                                                 |
| VRW-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/16/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                 |                                           | -                                       | 0.87                         | 44.3              | <5.0              | <5.0                        | <5.0              | <10            | <5.0 to <10                                     |
| VRW-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/9/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.33                              | 11.56                                     | 4.23                                    | 0.93                         | 90                | <1.0              | 14                          | 0.16              | C221           |                                                 |
| VRW-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/19/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.53                              | 11.56                                     | 4.03                                    | 2.9                          | 250               | <1.1              | 24                          | 41                |                |                                                 |
| FRWOCHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | la Table B-Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | water(I)                          | THE RESERVE OF THE PERSON NAMED IN        |                                         | 0.5                          |                   |                   | ALC: U                      |                   |                |                                                 |
| WINDOWS PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROPERTY OF STREET, ST |                                   | rs, Commerical/Indust                     | trial Site                              |                              | 1,800             | >Sol              | >Sol                        | >501              | >Sel           |                                                 |
| VRW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/4/1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                 | -                                         | =                                       | 0.41                         | 6.6               | 1.0               | ND                          | 31                |                |                                                 |
| VRW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/15/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                           |                                         | 0.73                         | 178               | 4.58              | 1.41                        | 6.10              | <1.0           | <0.50 to <1.0                                   |
| VRW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/6/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.21                              | 11.43                                     | 4.22                                    | < 0.05                       | < 0.5             | < 0.5             | < 0.5                       | < 0.5             | -              | *                                               |
| VRW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/19/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.39                              | 11.43                                     | 4.04                                    | 0.21                         | 13                | <0.54             | 1.0                         | 2.5               |                | 1000                                            |
| FRWOCHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | La Table B-Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | water (1)                         |                                           |                                         | 0.5                          |                   | 1000              |                             |                   |                |                                                 |
| ACRES OF THE PARTY | THE RESIDENCE OF THE PARTY OF T |                                   | rs, Commerical/Indust                     | trial Site                              |                              | 1,500             | ⇒Sol              | >Sol                        | >Sai              | >5ol           |                                                 |
| VRW-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/4/1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T -                               | _                                         |                                         | 0.10                         | ND                | ND                | ND                          | ND                |                |                                                 |
| VRW-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/16/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                 | -                                         | -                                       | 1.6                          | 28.9              | 0.980             | < 0.50                      | < 0.50            | <1.0           | <0.50 to <1.0                                   |
| VRW-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/6/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.47                              | 11.70                                     | 4.23                                    | 0.36                         | 19                | 1.3               | <0.5                        | 2.2               |                |                                                 |
| VRW-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/19/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.78                              | 11.70                                     | 3.92                                    | 1.1                          | 14                | <0.54             | 1.7                         | 5.6               |                |                                                 |
| THE PERSON NAMED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | THE RESERVE THE PARTY OF THE PA |                                   |                                           |                                         | 0.5                          |                   |                   | HARLES                      | 1000              |                |                                                 |
| FRWOCH ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A Labor Hel-Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                           |                                         |                              |                   |                   |                             |                   |                |                                                 |



#### TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

| Sample<br>ID | Sample<br>Collection<br>Date | Depth to<br>Groundwater<br>(feet)                                                | Top of<br>Casing Elevation<br>(feet, MSL) | Groundwater<br>Elevation<br>(feet, MSL) | TPH as<br>gasoline<br>(mg/l) | Benzene<br>(µg/l) | Toluene<br>(µg/l) | Ethyl-<br>benzene<br>(µg/l) | Xylenes<br>(µg/l) | MTBE<br>(µg/l) | Other Oxygenates<br>& Lead Scavengers<br>(µg/l) |
|--------------|------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|------------------------------|-------------------|-------------------|-----------------------------|-------------------|----------------|-------------------------------------------------|
| VRW-8        | 11/4/1993                    | -                                                                                |                                           | -                                       | 5.9                          | 460               | 54                | ND                          | 53                |                | 77,5711                                         |
| VRW-8        | 5/16/2002                    | (2)                                                                              |                                           | (2)                                     | 3.3                          | 248               | 16.0              | <10                         | <10               | <20            | <10 to <20                                      |
| VRW-8        | 6/6/2003                     | 7.42                                                                             | 11.62                                     | 4.20                                    | 1.8                          | 70                | 10                | 11                          | 6.1               | +              | 3,000,000                                       |
| VRW-8        | 11/19/2003                   | 7.85                                                                             | 11.62                                     | 3.77                                    | 3.6                          | 36                | <27               | <2.7                        | 4.3               |                |                                                 |
| RWQCB ES     | Le Table & Ground            | water (1)                                                                        |                                           |                                         | 0.5                          | -                 |                   |                             |                   |                |                                                 |
| aldand Turr  | 1 RBSLs-Inhalation           | of Indoor Air Vapo                                                               | rs, Commerical/Indust                     | rial Site                               |                              | 1,800             | >501              | >Sol                        | >Sof              | >50l           |                                                 |
| VRW-9        | 11/4/1993                    | (-                                                                               | -                                         |                                         | 0.47                         | 36                | 1.8               | ND                          | 1.0               |                |                                                 |
| VRW-9        | 5/16/2002                    |                                                                                  |                                           |                                         | 0.080                        | 0.990             | 2.00              | < 0.50                      | 5.93              | <1.0           | <0.50 to <1.0                                   |
| VRW-9        | 6/6/2003                     | 7.67                                                                             | 11.87                                     | 4.20                                    | 0.58                         | 10                | 4.4               | 4.9                         | < 0.50            | 2              | -                                               |
| VRW-9        | 11/19/2003                   | 8.01                                                                             | 11.87                                     | 3.86                                    | 0.56                         | <1.1              | <1.1              | <1.1                        | 5.5               | -              |                                                 |
| RWOCH ES     | Ls Table B-Ground            | water (I)                                                                        |                                           |                                         | 0.5                          |                   |                   |                             |                   |                |                                                 |
| kland Tree   | 1 RBSLs-inhalation           | Oakland Tier 1 RBSLs-Inhalation of Indoor Air Vapors, Commercial/Industrial Site |                                           |                                         |                              |                   | >Sol              | >Sel                        | >Sol              | >Sal           |                                                 |

mg/l = milligrams per kilogram which is generally equivalent to parts per million (ppm).



ug/l = micrograms per kilogram which is generally equivalent to parts per billion (ppb)

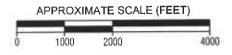
Oukland RBSLs are based on a groundwater media for inhalation of indoor air vapors risk scenerio at a commerical/industrial site.

There are no RBBSLs for Total Petroleum Hydrocarbons.


<sup>(1)</sup> SFRWQCB ESLs are taken from Table B of the SFRWQCB document. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, July 2003. Table B provides the ESLs for shallow soils where groundwater is not a current or potential source of drinking water. The City of Oakland BTEX standards are provided in lieu of the

SFRWQCB ESLs due to the location of the site.

na = not analyzed.


ND = not detected above laboratory reporting limits.

<sup>&</sup>gt;Sol = RBSL exceeds solubility of chemical in water.



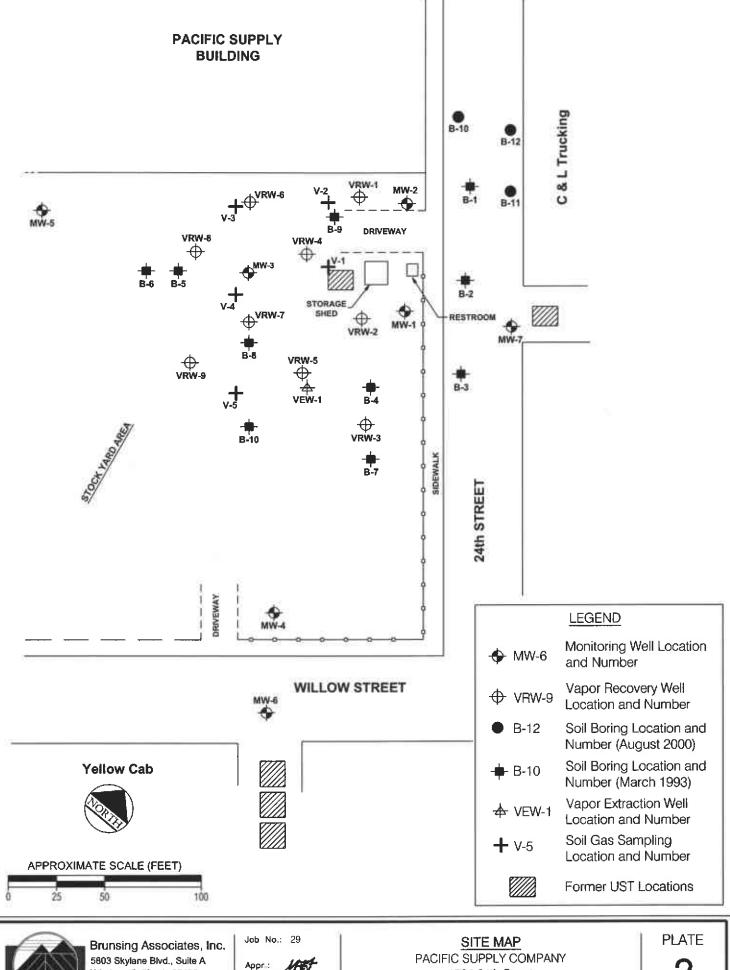
700 ft Scale: I : 24,000 Detail: 13-0 Datum: NAD27







Brunsing Associates, Inc. 5803 Skylane Blvd., Suite A Windsor, California 95492 Tel: (707) 838-3027

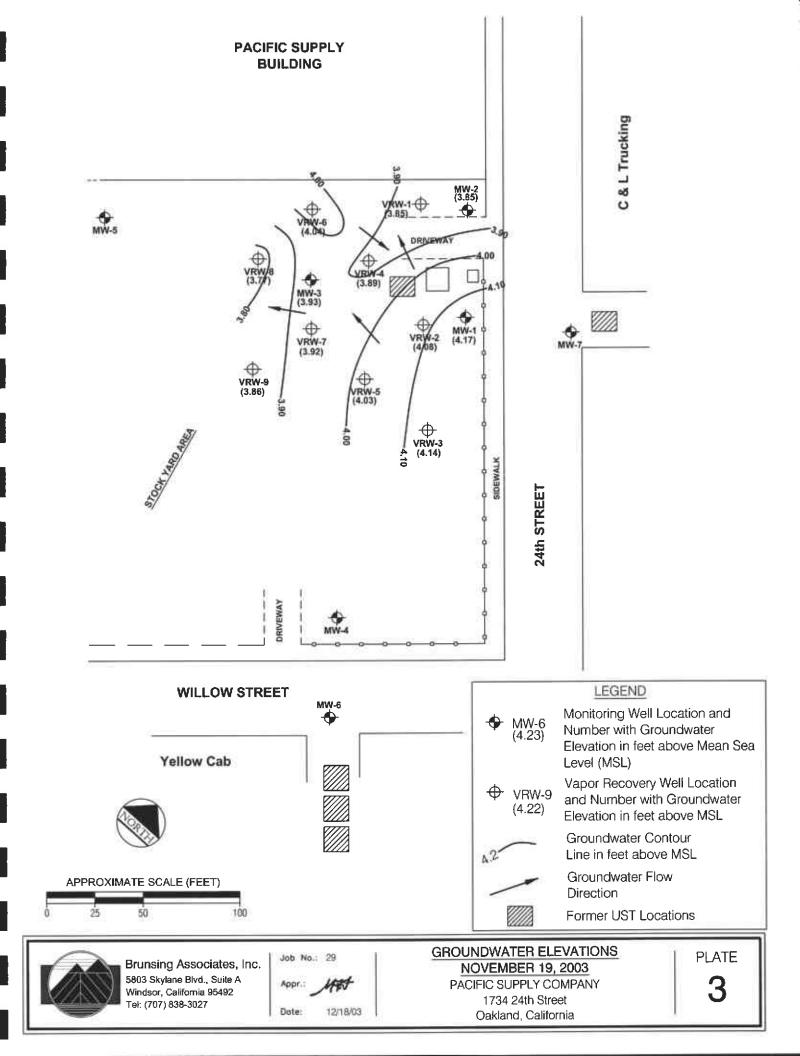

Job No.: 029.2

Appr.:

Oote: 1/8/04

VICINITY MAP PACIFIC SUPPLY COMPANY Oakland, California

**PLATE** 








1734 24th Street Oakland, California

2



### APPENDIX A

**Monitoring Well Sampling Protocol and Field Reports** 



#### **Groundwater Sampling Protocol**

#### **Monitoring Wells**

Prior to purging a monitoring well, groundwater levels are measured with a Solinst electric depth measurement device, or an interface probe, in all wells that are to be measured. At sites where petroleum hydrocarbons are possible contaminants, the well is checked for floating product using a clear bailer, a steel tape with water/oil paste, or an interface probe, during the initial sampling round. If floating product is measured during the initial sampling round or noted during subsequent sampling rounds, floating product measurements are continued.

After the water level and floating product measurements are complete, the monitoring well is purged until a minimum of three casing volumes of water are removed, water is relatively clear of sediment, and pH, conductivity, and temperature measurements of the water become relatively stabile. If the well is purged dry, groundwater samples are collected after the water level in the well recovers to at least 80 percent of the original water column measured in the well prior to sampling, or following a maximum recovery period of two hours. The well is purged using a factory-sealed, disposable, polyethylene bailer, a four-inch diameter submersible Grundfos pump, a two-inch diameter ES-40 purge pump, or a peristaltic pump. The purge water is stored on-site in clean, 55-gallon drums.

A groundwater sample is collected from each monitoring well following reequilibration of the well after purging. The groundwater sample is collected using a factory-sealed disposable, polyethylene bailer with a sampling port, or a factory-sealed Teflon bailer. A factory provided attachment designed for use with volatile organic compounds (VOCs) is attached to the polyethylene bailer sampling port when collecting samples to be analyzed for VOCs. The groundwater sample is transferred from the bailer into sample container(s) that are obtained directly from the analytical laboratory.

The sample container(s) is labelled with a self-adhesive tag. The following information is included on the tag:

- Project number
- Sample number
- Date and time sample is collected
- Initials of sample collector(s).

Individual log sheets are maintained throughout the sampling operations. The following information is recorded:





- Sample number
- Date and time well sampled and purged
- Sampling location
- · Types of sampling equipment used
- Name of sampler(s)
- Volume of water purged.

Following collection of the groundwater sample, the sample is immediately stored on blue ice in an appropriate container. A chain-of-custody form is completed with the following information:

- Date the sample was collected
- · Sample number and the number of containers
- · Analyses required
- Remarks including preservatives added and any special conditions.

The original copy of the chain-of-custody form accompanies the sample containers to a California-certified laboratory. A copy is retained by BAI and placed in company files.

Sampling equipment including thermometers, pH electrodes, and conductivity probes are cleaned both before and after their use at the site. The following cleaning procedures are used:

- Scrub with a potable water and detergent solution or other solutions deemed appropriate using a hard bristle brush
- Rinse with potable water
- Double-rinse with organic-free or deionized water

Package and seal equipment in plastic bags or other appropriate containers to prevent contact with solvents, dust, or other contaminants.

In addition, the pumps are cleaned by pumping a potable water and detergent solution and deionized water through the system. Cleaning solutions are contained on-site in clean 55-gallon drums.



#### **Domestic and Irrigation Wells**

Groundwater samples collected from domestic or irrigation wells are collected from the spigot that is the closest to the well. Prior to collecting the sample, the spigot is allowed to flow for at least 5 minutes to purge the well. The sample is then collected directly into laboratory-supplied containers, sealed, labeled, and stored on blue ice in an appropriate container, as described above. A chain-of-custody form is completed and submitted with the samples to the analytical laboratory.



# FIELD REPORT

| JOB NO:<br>INITIAL:<br>DATE: | 29.016 PROJECT: PACIFIC SUPPLY  8-15-77- SUBJECT: URBONDWATER SAMPLING  (1/18/03) PROJECT PHASE NUMBER: 04 |
|------------------------------|------------------------------------------------------------------------------------------------------------|
| 19505000000000000            | VEHICLE USED: Bodge DAJOTA TOTAL MILEAGE:                                                                  |
|                              |                                                                                                            |
| TIME                         | DESCRIPTION OF WORK AND CONVERSATION RECORD                                                                |
| •                            |                                                                                                            |
| 10:00                        | Arrived at site, set up For Ground Water Sampling                                                          |
|                              |                                                                                                            |
|                              | Mensored Tas Roads of DTW of wells MW-1+2+3,                                                               |
|                              | VRW-1-2-3-4-5-6-7-8                                                                                        |
| :                            | ST 1 P M = 1 P P P P P P P P P P P P P P P P P P                                                           |
|                              | STORED Purge WATE IN Drums LOCATED IN THE COMPOUND AVER. BANKED All Wells.                                 |
|                              | som pled All Wells.                                                                                        |
|                              | Measured Last DTW                                                                                          |
|                              |                                                                                                            |
| <u> </u>                     | Closed All Wells + Manuarenis                                                                              |
|                              | Decored Sampling SEquipment                                                                                |
|                              |                                                                                                            |
|                              | Losded Teguipment                                                                                          |
| 17.20                        | Departed SiT                                                                                               |
| <del></del>                  |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |
|                              |                                                                                                            |

# BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

WATER LEVELS

SHEET Z OF

| PROJECT:   | Pacific Su | PPLY                                         | •           | PROJECT NUMBER: 29.016 |               |  |  |
|------------|------------|----------------------------------------------|-------------|------------------------|---------------|--|--|
| INSTRUME   | NT TYPE:修  | ck Interfac                                  | E; ET (WEP) | INITIALS:              | DATE: /////03 |  |  |
| WELL       | DEPTH TO * | DISTANCE                                     | TIME        | EQUILIBRATED           |               |  |  |
| NUMBER     | PRODUCT    | TO WATER                                     | (24 HOUR)   | (CHECK FOR YES)        | NOTES         |  |  |
| MW-1       | 9          | 7.30                                         | 1109        | ,                      | NOTTH         |  |  |
| MW-2       |            | 6.15                                         | 1039        |                        | NOPTH         |  |  |
| Mw-3       |            | 7.83                                         | 1351        |                        | No P-77+      |  |  |
| vew-1      |            | 7.33'                                        | 1037        |                        | NOTESH WOFTH  |  |  |
| -V D w - Z |            | 7.00'                                        | 11/1        |                        | NORTH         |  |  |
| VRW-3      |            | 7.47                                         | 1404        | ·                      | NORTH         |  |  |
| VRW-4      |            | 7.44                                         | 1114        | 1                      | NOPTH         |  |  |
| Vew-5      |            | 7.53                                         | 1402        |                        | NOTTH         |  |  |
| vew-6      | -          | 7.48                                         | 1354        |                        | NOFTA         |  |  |
| y 2w-7     |            | 7.77                                         | 1349        | ·····                  | Joen I        |  |  |
| vrw-8      | ر منید و   | 7.85                                         | 1356        |                        | NOPTH         |  |  |
| VRW-9      |            | 8.00                                         | 135°C7      |                        | 706-44        |  |  |
|            |            |                                              | <u></u>     |                        |               |  |  |
| MW-I       |            | 7.20                                         | 1121        |                        |               |  |  |
| MW-Z       |            | 6.95'                                        | 1107        | ·/                     |               |  |  |
| MW-3       |            | 7.83                                         | 407         |                        |               |  |  |
| VRW-1      |            | 7.33                                         | 1105        |                        |               |  |  |
| vrw-Z      |            | 7.00                                         | 1123        |                        |               |  |  |
| VRW-3      |            | 7.48                                         | 1414        |                        |               |  |  |
|            |            | 7.11                                         |             |                        |               |  |  |
| VRW-4      |            | 753                                          | 1/25        |                        | <b>*</b> *    |  |  |
| V2W-5      |            | 7.39                                         | 408         |                        |               |  |  |
| VRW-7      |            | 7.78                                         | (406        |                        |               |  |  |
| VRW-8      |            | 7.85                                         | 1409        | <u> </u>               |               |  |  |
|            |            |                                              |             | <b>Y</b> /             |               |  |  |
| VRW-9      |            | 8.01                                         | 1411.       |                        |               |  |  |
|            | 2          |                                              |             |                        |               |  |  |
|            | <u> </u>   |                                              | <del></del> | <b></b>                |               |  |  |
|            |            |                                              |             |                        |               |  |  |
|            |            | <u>.                                    </u> | 1111        | · ·                    |               |  |  |
|            |            |                                              |             |                        |               |  |  |
|            |            |                                              |             |                        |               |  |  |

# BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION WELL SAMPLING SHEET OF

|                                                                       |                                           |                                       | ,            | <del></del>  |                                       |                   |                                        |   |  |
|-----------------------------------------------------------------------|-------------------------------------------|---------------------------------------|--------------|--------------|---------------------------------------|-------------------|----------------------------------------|---|--|
| PROJECT: P                                                            |                                           |                                       |              |              | _                                     |                   | T NUMBER: 29.016                       |   |  |
| WELL# M                                                               | w-(                                       | PRECIP. IN                            | LAST 5 DAYS: | Mone         | WIND CALL                             | DATE              | 11/19/63                               |   |  |
| STARTING                                                              | TIME:                                     | 11:09                                 | FINISHING    | TIME: ノス     | :52                                   | INITIALS          | S:                                     |   |  |
| CALCULATIO                                                            | ON OF PU                                  | RGE VOLUM                             | <u>IE</u>    |              | · ·                                   |                   |                                        | G |  |
| 2" WELL DEPTH: 19.00 - D.T.W. 7.30 = H20 COLUMN: 11.7 X 0.5 = 67.85 L |                                           |                                       |              |              |                                       |                   |                                        |   |  |
| 4" WELL DEPTH: D.T.W = H20 COLUMN: X 2.0 = O                          |                                           |                                       |              |              |                                       |                   |                                        |   |  |
| THEREFORI                                                             | THEREFORE TOTAL PURGE GALLONS EQUALS  N S |                                       |              |              |                                       |                   |                                        |   |  |
|                                                                       | FIELD MEASUREMENTS                        |                                       |              |              |                                       |                   |                                        |   |  |
|                                                                       | GALLONS                                   |                                       | <u> </u>     |              | ,                                     | <u></u>           |                                        |   |  |
|                                                                       | REMOVED                                   | рH                                    | CONDUCTIVITY | TEMP.        | · · · · · · · · · · · · · · · · · · · | OBSERVA           |                                        |   |  |
| 1240                                                                  | 1 :                                       | 7.56                                  | 1340         | 19.7         | LT. BRUN.                             | CUEAR             | - No over                              | · |  |
| 1243                                                                  | 3                                         | 6.92                                  | (680         | 20           | SAM                                   | ME                | <u> </u>                               |   |  |
| 1246                                                                  | 4                                         | 6.96                                  | 252          | 20           | <i>&gt;</i>                           | ME                |                                        |   |  |
|                                                                       |                                           |                                       |              |              |                                       |                   |                                        |   |  |
|                                                                       |                                           |                                       |              |              |                                       | ···- <u>·</u> ··· |                                        |   |  |
|                                                                       |                                           |                                       |              |              |                                       | <u>.</u>          |                                        |   |  |
|                                                                       |                                           |                                       | ·            |              |                                       | <u> </u>          | · · · · · · · · · · · · · · · · · · ·  |   |  |
|                                                                       | <u></u>                                   |                                       |              |              |                                       |                   |                                        |   |  |
| SAMPLING                                                              | <u>i:</u>                                 | SAMPLE                                | ANALYSIS: [  | TPH. GAS     | BTEX                                  |                   |                                        |   |  |
|                                                                       | SAMPLE TIME: 1248 DID WELL GO DRY? 10     |                                       |              |              |                                       |                   |                                        |   |  |
| WATER LE                                                              | VELS:                                     | NOTES:                                |              |              |                                       |                   |                                        |   |  |
| TIME (                                                                | D.T.W.                                    |                                       |              |              |                                       | *                 |                                        |   |  |
| 1/21                                                                  | 7.30                                      |                                       |              | <del></del>  |                                       |                   |                                        |   |  |
| 12-52-                                                                | 7.75                                      |                                       |              |              | ····                                  |                   | · · · · · · · · · · · · · · · · · · ·  |   |  |
|                                                                       |                                           |                                       |              |              |                                       |                   |                                        | * |  |
|                                                                       |                                           |                                       |              |              |                                       |                   |                                        |   |  |
|                                                                       |                                           |                                       | ·            | ^            |                                       |                   | · · · · · · · · · · · · · · · · · · ·  |   |  |
|                                                                       |                                           | · · · · · · · · · · · · · · · · · · · | <del> </del> | ,            |                                       |                   | ······································ |   |  |
|                                                                       |                                           |                                       |              | <del> </del> |                                       | <del></del>       |                                        |   |  |
|                                                                       |                                           |                                       | <del></del>  |              | <del></del>                           |                   |                                        |   |  |

### BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

## WELL SAMPLING SHEET OF

| PROJECT                       | PACIFICS                                  | SUPPLY     |              |          |             |                                        | PROJECT                               | NUMBER: 29.016 |     |
|-------------------------------|-------------------------------------------|------------|--------------|----------|-------------|----------------------------------------|---------------------------------------|----------------|-----|
| WELL#                         | 4w-2                                      | PRECIP. IN | LAST 5 DAYS: | Youle    | WIND        | chem                                   | DATE:                                 | 11/19/03       | •   |
| STARTIN                       | G TIME:                                   | 10:59      | FINISHING    | TIME: 仏: | 35          |                                        | INITIALS:                             |                |     |
| CALCULATION OF PURGE VOLUME G |                                           |            |              |          |             |                                        |                                       |                |     |
| 2" WELL                       | DEPTH:                                    |            | ] - D.T.W.   | · ·      | ] = H20     | COLUMN                                 | :                                     | X 0.5 =        | ] L |
| 4" WELL                       | DEPTH:                                    | 20.00      | ] - D.T.W.   | 4.95     | = H20       | COLUMN                                 | : 13.05                               | X 2.0 = 26,/   | ] O |
| THEREFO                       | THEREFORE TOTAL PURGE GALLONS EQUALS  N S |            |              |          |             |                                        |                                       |                |     |
| FIELD MEASUREMENTS            |                                           |            |              |          |             |                                        |                                       |                |     |
| TIME                          | GALLONS<br>REMOVED                        | рН         | CONDUCTIVITY | TEMP.    | •           |                                        | OBSERVATIO                            | <u>DNS</u>     |     |
| 12:10                         | 1                                         | 692        | 369          | 20.6     | 73/0        | سر ، د                                 | gance .                               | odor           |     |
| 12:15                         | 13                                        | 69a        | 33 <i>3</i>  | 20.5     | SAU         | •                                      | )                                     |                |     |
| 12:00                         | 26                                        | 687        | 283          | 205      | 54m         | ۱٠                                     |                                       |                |     |
| ·                             |                                           |            |              |          |             |                                        |                                       |                | •   |
|                               |                                           |            |              |          | <u> </u>    | · · · · · · · · · · · · · · · · · · ·  |                                       |                |     |
|                               |                                           |            | <u>-</u>     | :        | -           |                                        | · · · · · · · · · · · · · · · · · · · |                |     |
|                               |                                           |            |              |          |             |                                        |                                       |                |     |
| CAMPI                         |                                           | 044515     | 44444        |          |             |                                        |                                       |                | -   |
| SAMPLI                        | NG:                                       | SAMPLE     | ANALYSIS:    | TPH-LAS  |             | BTEX                                   | 1                                     |                | J   |
|                               |                                           | SAM        | IPLE TIME:   | 12:25    | Dli<br>·    | D WELL G                               | O DRY? [                              | <i>N</i> 2     |     |
| WATER                         | LEVELS:                                   | NOTES:     |              |          |             |                                        |                                       |                |     |
| TIME                          | D.T.W.                                    |            |              |          |             |                                        |                                       |                |     |
| 1107                          | 6.95                                      |            |              |          |             |                                        |                                       |                |     |
|                               |                                           |            |              | <u>.</u> |             | ······································ |                                       |                |     |
|                               |                                           |            |              |          | •           | ······································ |                                       |                | ř.  |
| 12:35                         | 698                                       |            | ·            |          | <del></del> | ·                                      |                                       |                |     |
|                               |                                           |            |              |          |             | ·                                      |                                       |                |     |
| <u> </u>                      | ·                                         |            |              | ·        | ·           | <del></del>                            |                                       |                |     |
|                               |                                           |            |              |          |             |                                        |                                       |                |     |

# BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

### WELL SAMPLING

SHEET

ΩE

| PROJECT: PACIFIC SUPPLY PROJECT NUMBER: 29                        | 016         |  |  |  |  |  |  |  |
|-------------------------------------------------------------------|-------------|--|--|--|--|--|--|--|
| WELL # MW-3 PRECIP. IN LAST 5 DAYS: NOW WIND CARM DATE: "/19/03   |             |  |  |  |  |  |  |  |
| STARTING TIME: (3:57) FINISHING TIME: (4:43) INITIALS:            |             |  |  |  |  |  |  |  |
| CALCULATION OF PURGE VOLUME                                       | G           |  |  |  |  |  |  |  |
| 2" WELL DEPTH: 16.00 - D.T.W. 7.33 = H20 COLUMN: 8.67 X 0.5 = 4.3 | A<br>3 L    |  |  |  |  |  |  |  |
| 4" WELL DEPTH: D.T.W = H20 COLUMN: X 2.0 = O                      |             |  |  |  |  |  |  |  |
| THEREFORE TOTAL PURGE GALLONS EQUALS  S  N S                      |             |  |  |  |  |  |  |  |
| FIELD MEASUREMENTS                                                |             |  |  |  |  |  |  |  |
| GALLONS                                                           |             |  |  |  |  |  |  |  |
| TIME REMOVED D.H. CONDUCTIVITY TEMP. OBSERVATIONS                 |             |  |  |  |  |  |  |  |
| 1430 1 7.03 617 24.0 CUEAR HOWN/GRN. ORGANIC DOOR                 |             |  |  |  |  |  |  |  |
| 1433 2.5 7.04 617. 24.1 SAME                                      |             |  |  |  |  |  |  |  |
| 1935 5 7.12 621 24.0 SAME                                         |             |  |  |  |  |  |  |  |
|                                                                   |             |  |  |  |  |  |  |  |
|                                                                   | <del></del> |  |  |  |  |  |  |  |
|                                                                   |             |  |  |  |  |  |  |  |
|                                                                   |             |  |  |  |  |  |  |  |
|                                                                   |             |  |  |  |  |  |  |  |
|                                                                   | <del></del> |  |  |  |  |  |  |  |
| SAMPLING: SAMPLE ANALYSIS: TOH-GAS BTEX                           |             |  |  |  |  |  |  |  |
| SAMPLE TIME: 1438 DID WELL GO DRY?                                |             |  |  |  |  |  |  |  |
| WATER LEVELS: NOTES:                                              |             |  |  |  |  |  |  |  |
| TIME D.T.W.                                                       |             |  |  |  |  |  |  |  |
|                                                                   |             |  |  |  |  |  |  |  |
| Could be the second                                               | s           |  |  |  |  |  |  |  |
| 1440 8.5/                                                         |             |  |  |  |  |  |  |  |
|                                                                   |             |  |  |  |  |  |  |  |
|                                                                   |             |  |  |  |  |  |  |  |
|                                                                   |             |  |  |  |  |  |  |  |
|                                                                   |             |  |  |  |  |  |  |  |
| · ·                                                               |             |  |  |  |  |  |  |  |

## BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

## WELL SAMPLING

SHEET

| PROJ    | IECT:                                     | PACIFIC S          | <b>SUPPLY</b>                         |                                       |              | -              | PROJECT NUMBER: 29.016                |          |  |  |  |
|---------|-------------------------------------------|--------------------|---------------------------------------|---------------------------------------|--------------|----------------|---------------------------------------|----------|--|--|--|
| WEL     | L# V                                      | ew-1               | PRECIP. IN                            | LAST 5 DAYS: /                        | llool 6      | WIND CALM      | DATE: 11/19/03                        |          |  |  |  |
| STAF    | RTING                                     | TIME:              | 10:37                                 | FINISHING                             | TIME: //     | 73             | INITIALS:                             | :        |  |  |  |
| CALC    | ULAT                                      | ION OF PU          | RGE VOLUM                             | Æ                                     |              |                |                                       | G        |  |  |  |
| 2" WI   | ELL                                       | DEPTH:             | · · · · · · · · · · · · · · · · · · · | ] - D.T.W.                            |              | ] = H20 COLUMI | N: X 0.5 =                            | A<br>L   |  |  |  |
| 4" W    | ELL                                       | DEPTH:             | 20,00                                 | ] - D.T.W.                            | 7.33         | = H20 COLUM    | N: 12.67 X 2.0 = 75.34                | L<br>O   |  |  |  |
| THEF    | THEREFORE TOTAL PURGE GALLONS EQUALS  N S |                    |                                       |                                       |              |                |                                       |          |  |  |  |
|         | FIELD MEASUREMENTS                        |                    |                                       |                                       |              |                |                                       |          |  |  |  |
| ŢĮŅ     | ΛE                                        | GALLONS<br>REMOVED | <u>p H</u>                            | CONDUCTIVITY                          | <u>TEMP.</u> |                | OBSERVATIONS                          | <u> </u> |  |  |  |
| 11:     | 45                                        | /                  | 4.70                                  | 492                                   | 21.2         | Black o        | cypnic odo                            |          |  |  |  |
| 11:     | 50                                        | 12                 | # 6.85                                | · -                                   |              | Same           |                                       |          |  |  |  |
| 11:     | 55                                        | 25                 | 6.12                                  | 925                                   | 1 '          | Same           |                                       |          |  |  |  |
| <u></u> | •                                         |                    |                                       | · · · · · · · · · · · · · · · · · · · |              |                |                                       |          |  |  |  |
|         |                                           |                    |                                       |                                       |              | '              |                                       |          |  |  |  |
|         |                                           |                    |                                       |                                       | ,            |                |                                       |          |  |  |  |
| ļ       |                                           | <del></del>        |                                       | <u></u>                               |              |                |                                       |          |  |  |  |
|         |                                           |                    |                                       | <u> </u>                              |              |                |                                       |          |  |  |  |
| SAN     | IPLIN                                     | <u>G:</u>          | SAMPLE                                | ANALYSIS:                             | TPH. GAS     | BTEX           |                                       |          |  |  |  |
|         |                                           |                    | SAM                                   | IPLE TIME:                            | 12:00        | DID WELL G     | GO DRY? NO                            |          |  |  |  |
| WAT     | ERL                                       | EVELS:             | NOTES:                                |                                       |              |                |                                       |          |  |  |  |
| TIM     | E                                         | D.T.W.             |                                       |                                       |              |                |                                       |          |  |  |  |
| 1105    |                                           | 7.33'              |                                       |                                       |              |                |                                       |          |  |  |  |
|         |                                           |                    |                                       |                                       |              | . 3            |                                       |          |  |  |  |
| 11:13   | 3                                         | 12:05              |                                       |                                       |              | <del></del>    | · · · · · · · · · · · · · · · · · · · |          |  |  |  |
|         |                                           |                    |                                       |                                       |              |                |                                       |          |  |  |  |
|         |                                           |                    |                                       |                                       |              |                |                                       |          |  |  |  |
|         |                                           |                    |                                       |                                       |              |                |                                       |          |  |  |  |
|         |                                           |                    |                                       |                                       |              |                |                                       |          |  |  |  |

# BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

## WELL SAMPLING

SHEET

ΛE

| PROJECT: | PACIFICS           | UPPLT       |              |                                       |                | PROJECT NUMBER: 29.016 |                                       |  |  |  |
|----------|--------------------|-------------|--------------|---------------------------------------|----------------|------------------------|---------------------------------------|--|--|--|
| WELL#V   | 1ew-2              | PRECIP. IN  | LAST 5 DAYS: | lone                                  | WIND Chem      | DATE: 1 1/19 /03       | · ,                                   |  |  |  |
| STARTIN  | G TIME:            | 11:11       | FINISHING    | TIME: /3 <u>'</u>                     | 08             | INITIALS:              | •                                     |  |  |  |
| CALCULA  | TION OF PU         | RGE VOLUM   | <u>IE</u>    |                                       |                |                        | G                                     |  |  |  |
| 2" WELL  | DEPTH:             |             | ] - D.T.W.   |                                       | ] = H20 COLUMN | X 0,5 =                | ] A<br>L                              |  |  |  |
| 4" WELL  | DEPTH:             | 20.00       | ] - D.T.W.   | 7,00                                  | ] = H20 COLUMN | 15,0 X 2.0 = 26,0      | ] O                                   |  |  |  |
| THEREFO  | RE TOTAL           | . PURGE G   | ALLONS EQUA  | LS.                                   |                | 26                     | N<br>S                                |  |  |  |
|          | FIELD MEASUREMENTS |             |              |                                       |                |                        |                                       |  |  |  |
| TIME     | GALLONS<br>REMOVED | рН          | CONDUCTIVITY | TEMP.                                 | CLOUDY         | OBSERVATIONS           |                                       |  |  |  |
| 1256     | /                  | 6.93        | 363 m        | 22.4                                  |                | Com pelowic opp        |                                       |  |  |  |
| 1300     | 13                 | 7.05        | 1952         | 22.1                                  | SA             |                        |                                       |  |  |  |
| 1304     | 26                 | 6.97        | 315          | 22.8                                  | Str            | <b>6</b>               |                                       |  |  |  |
|          |                    |             |              |                                       |                |                        |                                       |  |  |  |
|          |                    |             |              |                                       | •              |                        | <del></del>                           |  |  |  |
|          |                    |             |              |                                       |                | •                      |                                       |  |  |  |
|          |                    |             |              |                                       |                |                        | -                                     |  |  |  |
|          |                    |             |              |                                       |                |                        |                                       |  |  |  |
| SAMPLII  | /G-                | SAMDLE      | ANALYSIS:    |                                       |                |                        | · · · · · · · · · · · · · · · · · · · |  |  |  |
|          |                    |             |              | трн.6-А5                              | BTEX           |                        |                                       |  |  |  |
|          |                    | SAM         | IPLE TIME:   | 1305                                  | DID WELL G     | O DRY? NO              | ·.                                    |  |  |  |
| WATER    | LEVELS:            | NOTES:      |              |                                       | •              |                        |                                       |  |  |  |
| TIME     | D.T.W.             |             |              |                                       |                |                        |                                       |  |  |  |
| //23     | 7.00               |             |              |                                       |                |                        |                                       |  |  |  |
| 1308     | 8.19               |             | •            |                                       |                |                        |                                       |  |  |  |
|          |                    |             |              | · M                                   |                |                        |                                       |  |  |  |
|          |                    |             |              | ₹3 <sup>†</sup>                       | · ·            |                        |                                       |  |  |  |
|          |                    |             |              | -                                     |                |                        |                                       |  |  |  |
|          |                    | <del></del> |              | ,                                     |                |                        |                                       |  |  |  |
|          | ***********        |             | - i-         | · · · · · · · · · · · · · · · · · · · |                |                        |                                       |  |  |  |
| F        |                    | ·           | <del></del>  |                                       |                |                        |                                       |  |  |  |

# BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

## WELL SAMPLING

SHEET

OE.

|                                                                      | ,            |
|----------------------------------------------------------------------|--------------|
| PROJECT: PACIFIC SUPPLY PROJECT NUMBER: 29.016                       | 1 .<br>•     |
| WELL # Vew-3 PRECIP. IN LAST 5 DAYS: No WIND No DATE: 11/19/=3       |              |
| STARTING TIME: 14:04 FINISHING TIME: 16:53 INITIALS: 56              |              |
| CALCULATION OF PURGE VOLUME                                          | G            |
| 2"WELL DEPTH: D.T.W = H20*COLUMN: X 0.5 =                            | A<br>L       |
| 4* WELL DEPTH; 20.00 - D.T.W. 7.47 = H20 COLUMN: 12.53 X 2.0 = 26.06 | L<br>O       |
|                                                                      | N            |
| THEREFORE TOTAL PURGE GALLONS EQUALS                                 | S            |
| FIELD MEASUREMENTS                                                   |              |
|                                                                      |              |
| GALLONS TIME REMOVED P.H. CONDUCTIVITY TEMP. OBSERVATIONS            |              |
| 16:25 ( 6.75 /797 a 22.0                                             |              |
| 16:33 13 6:75 416 × 21.3                                             |              |
| 16:35 25 7.01 5.57m 20.1                                             |              |
|                                                                      |              |
|                                                                      |              |
|                                                                      | · · · ·      |
|                                                                      | · · ·        |
|                                                                      |              |
| SAMPLING: SAMPLE ANALYSIS: TOLILOW   PARTY                           |              |
| SAMPLING: SAMPLE ANALYSIS: TALL GAS BTEX                             |              |
| SAMPLE TIME: 1/2:49 DID WELL GO DRY? No                              | •            |
| WATER LEVELS: NOTES:                                                 | <del>`</del> |
| TIME D.T.W.                                                          |              |
| THE D.T. VV.                                                         | 1            |
|                                                                      |              |
|                                                                      | •            |
|                                                                      |              |
| 14:53 \$16.45                                                        |              |
|                                                                      |              |
|                                                                      |              |
|                                                                      |              |

## BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

## WELL SAMPLING

SHEET OF

| F        | ROJECT:  | PACIFIC            | SUPPLY     |                                       |                                       |            |             | PROJECT     | NUMBER:                               | 29,016       |                                       |
|----------|----------|--------------------|------------|---------------------------------------|---------------------------------------|------------|-------------|-------------|---------------------------------------|--------------|---------------------------------------|
| V        | VELL# V  | rw-4               | PRECIP. IN | LAST 5 DAYS: 🔨                        | outer 1                               | WIND       | CALM        | DATE:       | 11/19 /                               | ,<br>23      | •                                     |
| S        | STARTING | 3 TIME:            | 11:14      | FINISHING                             | TIME: /3                              | 5:40       |             | INITIALS:   |                                       |              | -                                     |
| <u> </u> | ALCULAT  | ION OF PU          | RGE VOLUN  | 1E                                    |                                       | •          |             |             | <u> </u>                              |              | G                                     |
| 2        | "WELL    | DEPTH:             |            | ] - D.T.W.                            |                                       | ] = H20    | COLUMN      |             | X 0.5 =                               |              | A<br>L                                |
| 4        | "WELL    | DEPTH:             | 20.00      | ] - <sub>,</sub> D.T.W.               | 7.44                                  | ] = H20    | COLUMN      | 1256        | X 2.0 =                               | 25.12        | O L                                   |
| T        | HEREFO   | RE TOTAL           | . PURGE G  | ALLONS EQUA                           | LS                                    |            |             |             | 25                                    |              | . S                                   |
| 4        |          |                    | -          | FIE                                   | LD ME                                 | ASUR       | EMENT       | <u>s</u>    | r                                     |              |                                       |
|          | TIME     | GALLONS<br>REMOVED | - LI       | COLIDITATIVE                          |                                       |            | . D /       |             |                                       |              |                                       |
|          | 3/8      | / KEMIOVED         | 1.82       | 1598 M                                | 1EMP. 25.7                            | Conte      | See Bee     | OBSERVATION | UIC Abal                              | -,5127       | * ; .                                 |
| 1        | 325      | 12                 | 6.8/       | 397                                   | 25.2                                  | CCO        | CAM         | =           | - C OPOF                              | ->101        | 7                                     |
| 1        | 335      | 25                 | 7.15       | 716                                   | 21.7                                  | ļ <u>.</u> |             |             | 91. 7/9                               | es mou       |                                       |
|          |          |                    | (.,,       |                                       | 01.7                                  |            | 77          | NON         | 3141/2                                | eg imeo i    | · · · · · · · · · · · · · · · · · · · |
|          |          |                    |            |                                       |                                       |            | <del></del> |             | <del> </del>                          |              |                                       |
|          |          |                    |            |                                       |                                       |            |             |             |                                       | <del> </del> |                                       |
|          |          |                    |            |                                       |                                       |            |             |             |                                       |              |                                       |
|          |          |                    |            |                                       |                                       |            |             |             |                                       |              |                                       |
| 1_       | SAMPLIN  | \G:                | SAMPLE     | ANALYSIS:                             | TPH-6AS                               | :-         | BTEX        |             | · ·                                   |              | •                                     |
|          |          |                    |            | •                                     | /337                                  | DI         | D WELL G    | O DRY?      | NO                                    | <del></del>  |                                       |
|          | WATER I  | LEVELS:            | NOTES:     | · · · · · · · · · · · · · · · · · · · | <del></del>                           |            |             |             | •                                     |              |                                       |
|          | TIME     | D.T.W.             |            | ·                                     |                                       |            |             |             |                                       |              |                                       |
| Ŀ        | 1125     | 7.44               |            |                                       |                                       |            |             |             |                                       |              | _                                     |
|          | 340      | 16.98              |            |                                       |                                       |            |             |             |                                       |              |                                       |
|          |          |                    |            |                                       |                                       |            |             |             |                                       | •••          | • 393                                 |
|          |          | -                  |            | ,                                     |                                       |            |             |             |                                       |              | ·                                     |
|          |          |                    |            |                                       |                                       |            |             |             | · · · · · · · · · · · · · · · · · · · |              | <del></del>                           |
| Γ        | ,        |                    | ,          |                                       |                                       |            |             |             |                                       |              |                                       |
|          | è        | - · · · · ·        |            |                                       | · · · · · · · · · · · · · · · · · · · | ,          |             |             |                                       | · .          |                                       |
| _        |          |                    |            |                                       |                                       |            |             | ~           | 7,7                                   |              |                                       |

## BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

## WELL SAMPLING

SHEET

| PROJECT: | PACIFICS           | orppl4                                 |                                       | ·                                     |          |          | PROJECT NUMBER: 29,016                 |        |  |  |
|----------|--------------------|----------------------------------------|---------------------------------------|---------------------------------------|----------|----------|----------------------------------------|--------|--|--|
| WELL#V   | ew-5               | PRECIP. IN                             | LAST 5 DAYS:                          | Jo .                                  | WIND     | No.      | DATE: (1/19/03                         |        |  |  |
| STARTING | G TIME:            | 14:02                                  | FINISHING                             | TIME: 16.                             | 125      |          | INITIALS: JE                           |        |  |  |
| CALCULAT | TION OF PU         | RGE VOLUM                              | E                                     | · · · · · · · · · · · · · · · · · · · |          |          |                                        | G      |  |  |
| 2" WELL  | DEPTH:             |                                        | ] - D.T.W.                            | <u> </u>                              | ] = H20  | COLUMN   | V: X 0,5 =                             | A<br>L |  |  |
| 4" WELL  | DEPTH:             | 20.00                                  | ] - D.T.W.                            | 7.53                                  | ] = H20  | COLUMN   | 1: 12.47 X 2.0 = 24.94                 | L<br>O |  |  |
| THEREFO  | RE TOTAL           | PURGE G                                | ALLONS EQUA                           | \                                     | -        |          | a/5                                    | N<br>S |  |  |
|          | FIELD MEASUREMENTS |                                        |                                       |                                       |          |          |                                        |        |  |  |
| TIME     | GALLONS<br>REMOVED | рН                                     | CONDUCTIVITY                          | TEMP.                                 |          |          | OBSERVATIONS                           |        |  |  |
| 16:03    | (                  | 6.77                                   | 315                                   | 20.7                                  | Blac     | . J.     | rganic odur                            |        |  |  |
| 14:08    | 13                 | 4.83                                   | 3,81                                  | 21.0                                  | SAM-     | •        |                                        |        |  |  |
| 16:14    | 25                 | 6.81                                   | 382                                   | 21.1                                  | SAM      | <u> </u> |                                        |        |  |  |
| ·        |                    |                                        |                                       |                                       | ,        |          | · · · · · · · · · · · · · · · · · · ·  | •      |  |  |
|          |                    |                                        |                                       |                                       |          |          |                                        |        |  |  |
|          |                    |                                        | :-···                                 |                                       |          |          |                                        |        |  |  |
|          |                    |                                        |                                       |                                       |          |          |                                        |        |  |  |
| SAMPLIN  | <b>√G</b> :        | SAMPLE                                 | ANALYSIS:                             | TPH GAS                               |          | BIEX     |                                        |        |  |  |
|          |                    | SAM                                    | PLE TIME: [                           | 1680                                  |          | WELL G   | O DRY? NS                              |        |  |  |
|          |                    | <del></del>                            |                                       |                                       |          |          |                                        | ·      |  |  |
| WATER    | LEVELS:            | NOTES:                                 |                                       | , ·                                   |          |          |                                        |        |  |  |
| TIME     | D.T.W.             | -                                      | · · · · · · · · · · · · · · · · · · · |                                       | <u> </u> |          | ·                                      |        |  |  |
|          |                    | · · · · · · · · · · · · · · · · · · ·  | ·                                     |                                       |          | ·        |                                        |        |  |  |
| 7.       |                    |                                        |                                       |                                       |          |          | ·-···································· | 34     |  |  |
| ,        | 2                  | ······································ |                                       |                                       |          |          |                                        |        |  |  |
| 16:25    | 7.68               |                                        |                                       | •                                     | ·        |          |                                        |        |  |  |
|          |                    |                                        |                                       | ,                                     |          | ·        | · · · · · · · · · · · · · · · · · · ·  |        |  |  |
|          |                    |                                        | <del></del>                           | <u> </u>                              |          |          |                                        | :      |  |  |
|          |                    | ·                                      |                                       | <del></del>                           |          |          | <u> </u>                               | ,      |  |  |

# BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

## WELL SAMPLING

SHEET

| PROJECT: PA | AZIFICS  | LPPLY                                 |                                       |             |                                       | PROJE                                 | ECT NUMBER: 29. | .016                                  |
|-------------|----------|---------------------------------------|---------------------------------------|-------------|---------------------------------------|---------------------------------------|-----------------|---------------------------------------|
| WELL # VPU  | w-6      | PRECIP. IN                            | LAST 5 DAYS: 🔥                        | IONE        | WIND CALL                             | M DAT                                 | re: 11/19/03    |                                       |
| STARTING    | TIME:    | 13:54                                 | FINISHING                             | TIME: (5    | :08                                   | INITIAL                               | <b>.</b> \$:    | •                                     |
| CALCULATIO  | N OF PU  | RGE VOLUM                             | IE                                    |             | *                                     |                                       |                 | G                                     |
| * .         | DEPTH:   |                                       | _<br>] - D.T.W.                       |             | ] = H20 COLUI                         | MN:                                   | X 0.5 =         | ^^^                                   |
| 4" WELL     | DEPTH:   | 20.00                                 | ] - D.T.W.                            | 7,38        |                                       |                                       | . · ·           | L 0                                   |
| THEREFORE   | E TOTAL  | PURGE G                               | ALLONS EQUA                           | LS          |                                       |                                       | 25              | N<br>. S                              |
|             |          |                                       | FIE                                   | LD ME       | ASUREMEN                              | T S                                   |                 |                                       |
|             | ALLONS   | · · · · · · · · · · · · · · · · · · · | I                                     | I           | · · · · · · · · · · · · · · · · · · · |                                       |                 |                                       |
| TIME R      | EMOVED   | рН                                    | CONDUCTIVITY                          | ТЕМР.       | DK.                                   | OBSERV                                | ATIONS          | <i>,</i>                              |
| 1441        |          | 6.66                                  | 789                                   | 2118        |                                       |                                       | C ODOR , SAE    | يعدا                                  |
| 1446        | 13       | 6.72                                  | 478                                   | 11.1        |                                       | AME                                   |                 | 19.                                   |
| 45          | 25       | 7-13                                  | 633                                   | 20.3        | BLACK, TO                             | NBIA,                                 | steen ore       | full over                             |
|             |          |                                       |                                       |             |                                       | ·                                     |                 | , , , , , , , , , , , , , , , , , , , |
|             |          |                                       | <del></del>                           |             | · · · · · · · · · · · · · · · · · · · |                                       |                 | <u> </u>                              |
|             | <u></u>  |                                       |                                       |             |                                       |                                       |                 | · · · · · · · · · · · · · · · · · · · |
|             |          |                                       |                                       |             |                                       |                                       | ·····           |                                       |
| SAMPLING    |          | CAMPLE                                | ANIAL YOLO                            |             |                                       | · · · · · · · · · · · · · · · · · · · |                 | <del></del> 1                         |
| OAIII LING  | 4        | SAMPLE                                |                                       | TOH . LAS   | Втех                                  | I                                     |                 | <u></u>                               |
|             |          | SAM                                   | IPLE TIME:                            | 1502        | DID WELL                              | GO DRY?                               | N <sub>2</sub>  | ·                                     |
| WATER LEV   | VELS:    | NOTES:                                | -                                     |             |                                       | •                                     | *               |                                       |
| TIME C      | D.T.W.   | <del></del> -                         |                                       |             |                                       |                                       |                 |                                       |
|             |          |                                       |                                       |             |                                       |                                       |                 |                                       |
| 150B 1      | 8-11     | <del></del>                           |                                       | ·           | <u> </u>                              |                                       |                 |                                       |
|             |          |                                       | · · · · · · · · · · · · · · · · · · · | <del></del> |                                       |                                       |                 |                                       |
|             | <u> </u> |                                       |                                       | <del></del> |                                       |                                       |                 |                                       |
|             |          | · ·                                   |                                       | •           |                                       |                                       |                 |                                       |
|             |          |                                       | ·                                     | ·           |                                       |                                       |                 |                                       |
| 34          | i        |                                       |                                       |             |                                       |                                       | ·               | :                                     |

# BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

## WELL SAMPLING

SHEET

| PROJECT: PACIFIC!    | Supply                                |                                       | ,           | PROJECT NUMBER: 29-016  |
|----------------------|---------------------------------------|---------------------------------------|-------------|-------------------------|
| WELL#Vew-7           | PRECIP. IN LAST 5 DAYS:               | NOJE W                                | ND eArm     | DATE: (1/19/03          |
| L                    | /3.45 FINISHING                       | TIME: 14:3                            |             | INITIALS:               |
| CALCULATION OF PU    | URGE VOLUME                           |                                       |             | G                       |
| 2" WELL DEPTH        | : D.T.W.                              | =                                     | H20 COLUMN: | X 0.5 = A               |
| 4" WELL DEPTH        | : 20.00 - D.T.W.                      | 7.7 7 =                               | H20 COLUMN: | 12.23 X 2.0 = 24.46 0   |
| THEREFORE TOTAL      | L PURGE GALLONS EQI                   | JALS                                  |             | 35 S                    |
|                      |                                       | IELD MEAS                             | UREMENTS    | <i>y</i><br><b>3</b>    |
| GALLONS TIME REMOVED | _ <b>_</b>                            | <u> </u>                              |             | OBSERVATIONS            |
| 415 1                | 6.82 428                              | 24 TU                                 | RBID, BLA   | CK, STRONG HE ODER SHOW |
| 1419 13              | 695 198                               | 22.9                                  | SA          | ME                      |
| 142 25               | 7.04 941                              | 22.1                                  | SAN         | vie                     |
|                      |                                       |                                       |             |                         |
|                      |                                       |                                       |             |                         |
|                      | <u> </u>                              |                                       | ····        |                         |
|                      |                                       | -                                     | <u> </u>    |                         |
| SAMPLING:            | CAMPI E ANALYGIG                      |                                       |             |                         |
| SAMPLING.            | SAMPLE ANALYSIS:                      | TPHILAS                               | BTEX        |                         |
|                      | SAMPLE TIME:                          | 1425                                  | DID WELL GO | DRY? No                 |
| WATER LEVELS:        | NOTES:                                |                                       |             |                         |
| TIME D.T.W.          |                                       |                                       |             | o .                     |
|                      |                                       |                                       |             |                         |
| 1000114              |                                       | <del></del>                           |             |                         |
| 1430 454             | · · · · · · · · · · · · · · · · · · · |                                       | <del></del> |                         |
|                      | ę .                                   |                                       |             |                         |
| <u> </u>             |                                       | · · · · · · · · · · · · · · · · · · · |             | 5                       |
|                      |                                       | ·                                     | <del></del> | *                       |
|                      |                                       |                                       |             |                         |

### BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

## WELL SAMPLING

SHEET

OΕ

| PROJECT | : PACIFIC          | Supply     |                 |                    |         |             | PROJECT NUMBER: 29,016                                                                 |
|---------|--------------------|------------|-----------------|--------------------|---------|-------------|----------------------------------------------------------------------------------------|
| WELL#   | 12w-8              | PRECIP. IN | LAST 5 DAYS: &  | عدد                | WIND    | Novi        |                                                                                        |
| STARTIN | G TIME: 4          | 13:56      | FINISHING       | TIME: /s?          | 150     |             | INITIALS: Se                                                                           |
|         | TION OF PU         |            | •               |                    |         | <del></del> |                                                                                        |
| 2" WELL | DEPTH:             |            | —<br>] - р.т.ŵ. |                    | 1 – มวก | COLUN       | G<br>A                                                                                 |
| 4" WELL |                    | 20.00      | •               |                    |         |             |                                                                                        |
| ,       |                    | •          | 4               | 7.85               | ] = H20 | COLUM       | N: \[ \lambda \cdot 15 \] \times \times 2.0 = \[ \frac{29.3}{0} \] \times \[ \times \] |
| THEREF  | JRE TOTAL          | PURGE G    | ALLONS EQUA     | .L\$<br>           |         | ,           | <i>24</i> s                                                                            |
|         |                    |            | FIE             | LD ME              | ASURI   | EMEN        | <u>T S</u>                                                                             |
| TIME    | GALLONS<br>REMOVED | рН         | CONDUCTIVITY    | TEMP.              |         |             | OBSERVATIONS                                                                           |
| 15:30   | - /                | 1.32       | 436             | 20.9               | Bluc    | N gr        | een , organic odor                                                                     |
| 15:35   |                    | 6.88       | 376             | 20.9               | Sam-    | ı t         |                                                                                        |
| 15540   | 24                 | 4.93       | 362             | 21.0               | SAMY    | 2           |                                                                                        |
|         |                    |            |                 |                    |         |             |                                                                                        |
|         |                    | !          |                 |                    |         |             |                                                                                        |
| ļ       |                    | _          | ·               |                    |         |             |                                                                                        |
|         |                    |            |                 |                    |         |             |                                                                                        |
|         |                    |            |                 | - * ·              |         | ·           |                                                                                        |
| SAMPLI  | NG:                | SAMPLE     | ANALYSIS: [     | TPH-WAS            | -       | BTEX        |                                                                                        |
|         |                    | SAM        | IPLE TIME: [    | 15:45              | DII     | ) WELL      | GO DRY? No                                                                             |
| WATER   | LEVELS:            | NOTES:     |                 |                    |         | •           |                                                                                        |
| TIME    | D.T.W.             |            |                 |                    |         |             |                                                                                        |
|         |                    |            |                 | · 77   1-37 · 1-37 |         |             |                                                                                        |
|         |                    | ind        |                 |                    |         |             |                                                                                        |
|         |                    |            |                 |                    |         |             |                                                                                        |
| 15:50   | 7.90               | er e       |                 |                    |         |             |                                                                                        |
|         |                    |            |                 |                    | ž.      |             |                                                                                        |
|         |                    |            |                 |                    |         |             |                                                                                        |
|         |                    |            |                 |                    |         |             | · a,                                                                                   |

# BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

## WELL SAMPLING

SHEET

| ı                                         | PROJECT                               | PACIFIC .          | SUPPLY     | and the second | 4. 4.        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROJECT NUMBER: 29.016 |                |  |  |  |
|-------------------------------------------|---------------------------------------|--------------------|------------|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|--|--|--|
| ľ                                         | WELL# V                               | rw-9               | PRECIP. IN | LAST 5 DAYS! A | bue 🏃        | WIND CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE: 1 //9 /03        |                |  |  |  |
|                                           | STARTIN                               | G TIME:            | 13:59      | FINISHING      | TIME: /s'    | · 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INITIALS:              |                |  |  |  |
| -                                         | CALCULA                               | TION OF PU         | RGE VOLUM  | (E             |              | and the second s |                        | <u>.</u>       |  |  |  |
| 2                                         | 2" WELL                               | DEPTH:             |            | ] - D.T.W.     |              | ] = H20 COLUMN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X 0.5 =                | A<br>L         |  |  |  |
| 4                                         | "WELL                                 | DEPTH:             | 20.00      | ] - D.T.W.     | 8,00         | ] = H20 COLUMN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.0 X 2.0 = 24.0      | O              |  |  |  |
| THEREFORE TOTAL PURGE GALLONS EQUALS  N S |                                       |                    |            |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                |  |  |  |
|                                           | FIELD MEASUREMENTS                    |                    |            |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                |  |  |  |
|                                           | TIME                                  | GALLONS<br>REMOVED | pН         | CONDUCTIVITY   | TEMP.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OBSERVATIONS           | <del>`</del> - |  |  |  |
| L                                         | 5:05                                  | 1                  | 7.16       | 463            | 23,3         | Creen Bli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acri, organic odo-     |                |  |  |  |
| ┢                                         | <u>(5) 60</u>                         | 12                 | 7.21       | 450            | 23.5         | SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                |  |  |  |
| $\vdash$                                  | 1575                                  | 24                 | 7.16       | 418            | 23.4         | Sane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                |  |  |  |
| F                                         | · · · · · · · · · · · · · · · · · · · | ·                  |            |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                |  |  |  |
| -                                         |                                       |                    |            |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>               |                |  |  |  |
| $\vdash$                                  |                                       |                    |            | <i>,</i>       |              | <u>.                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                |  |  |  |
|                                           |                                       | <u> </u>           |            |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                |  |  |  |
|                                           | CAMPIN                                | <u> </u>           |            |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                |  |  |  |
| -                                         | SAMPLIN                               | <u>iG:</u>         | SAMPLE     | ANALYSIS:      | TPH. LAS     | BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                |  |  |  |
| L                                         |                                       |                    | SAM        | PLE TIME:      | 15,20        | DID WELL GO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DRY? No                |                |  |  |  |
|                                           | WATER I                               | EVELS:             | NOTES:     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                |  |  |  |
|                                           | TIME                                  | D.T.W.             |            | ·              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                |  |  |  |
|                                           |                                       |                    |            |                | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ¥.             |  |  |  |
|                                           |                                       |                    |            | · .            | <del>_</del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                |  |  |  |
| L                                         |                                       |                    |            |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                |  |  |  |
| 1                                         | 5:25                                  | 8.12               |            |                |              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No.                    |                |  |  |  |
|                                           |                                       |                    | , .        |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                |  |  |  |
| <u> </u>                                  |                                       | ·                  |            | -              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                |  |  |  |
| L,                                        |                                       |                    |            |                |              | ··                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                |  |  |  |

## **APPENDIX B**

**Analytical Laboratory Report** 





208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

03 December 2003

Brunsing Associates, Inc

Attn: Michelle Floyd Frederick

P.O. Box 588

Windsor, CA 95492

RE: Pacific Supply

Work Order: A311436

Enclosed are the results of analyses for samples received by the laboratory on 11/20/03 11:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Melanie B. Neece For Sheri L. Speaks

Melanie B. Teece

Project Manager

Alpha Analytical

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 1 of 9

Brunsing Associates, Inc

P.O. Box 588

Windsor, CA 95492

Attn: Michelle Floyd Frederick

Report Date: 12/03/03 15:39

Project No: 29.016

Project ID: Pacific Supply

Order Number A311436 Receipt Date/Time

11/20/2003 11:10

Client Code BRUNS Client PO/Reference

! Global ID

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-----------|---------------|--------|----------------|----------------|
| MW-i      | A311436-01    | Water  | 11/19/03 12:48 | 11/20/03 11:10 |
| MW-2      | A311436-02    | Water  | 11/19/03 12:25 | 11/20/03 11:10 |
| MW-3      | A311436-03    | Water  | 11/19/03 14:38 | 11/20/03 11:10 |
| VRW-1     | A311436-04    | Water  | 11/19/03 12:00 | 11/20/03 11:10 |
| VRW-2     | A311436-05    | Water  | 11/19/03 13:05 | 11/20/03 11:10 |
| VRW-3     | A311436-06    | Water  | 11/19/03 16:44 | 11/20/03 11:10 |
| VRW-4     | A311436-07    | Water  | 11/19/03 13:37 | 11/20/03 11:10 |
| VRW-5     | A311436-08    | Water  | 11/19/03 16:25 | 11/20/03 11:10 |
| VRW-6     | A311436-09    | Water  | 11/19/03 15:02 | 11/20/03 11:10 |
| VRW-7     | A311436-10    | Water  | 11/19/03 14:25 | 11/20/03 11:10 |
| VRW-8     | A311436-11    | Water  | 11/19/03 15:45 | 11/20/03 11:10 |
| VRW-9     | A311436-12    | Water  | 11/19/03 15:20 | 11/20/03 11:10 |
|           |               |        |                |                |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie B. Thece



208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 2 of 9

Brunsing Associates, Inc

P.O. Box 588

Windsor, CA 95492

Attn: Michelle Floyd Frederick

Report Date: 12/03/03 15:39

Project No: 29.016

Project ID: Pacific Supply

Order Number A311436 Receipt Date/Time

11/20/2003 11:10

Client Code

Client PO/Reference

! Global ID

| A311436 ]                         | 1/20/2003 11:10   |            | В          | RUNS      |            | ! Glob               | al ID  |      |      |
|-----------------------------------|-------------------|------------|------------|-----------|------------|----------------------|--------|------|------|
|                                   |                   | Alpha A    | nalytical  | Laborato  | ries, Inc. |                      |        |      |      |
|                                   | METHOD            | BATCH      | PREPARED   | ANALYZED  | DILUTION   | RESULT               |        | PQL  | NOTE |
| MW-1 (A311436-01)                 |                   | ;          | Sample Typ | e: Water  |            | Sampled: 11/19/03 12 | :48    |      |      |
| TPH as Gasoline by GCFID/5030 an  | d BTEX by 8020/50 | 030        |            |           |            |                      |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020      | AK32607    | 11/24/03   | 11/25/03  | 1          | ND ug/l              |        | 50   |      |
| Benzene                           | tt.               | **         | II         | 45        | 11         | ND "                 |        | 0.30 |      |
| Toluene                           | "                 | 11         | Ħ          | н         | n          | ND "                 |        | 0.30 |      |
| Ethylbenzene                      | 11                | п          | **         | п         | 11         | ND "                 |        | 0.50 |      |
| Xylenes (total)                   | II                | Ħ          | **         | н         | н          | ND "                 |        | 0.50 |      |
| Surrogate: 1,4-Bromofluorobenzene | ? "               | <b>~</b> " | H          | n         |            | 103 %                | 63-150 |      |      |
| /W-2 (A311436-02)                 |                   |            | Sample Typ | pe: Water |            | Sampled: 11/19/03 12 | :25    |      |      |
| TPH as Gasoline by GCFID/5030 an  | d BTEX by 8020/5  | 030        |            |           |            |                      |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020      | AK32607    | 11/24/03   | 11/25/03  | 1          | 3700 ug/l            |        | 50   |      |
| Benzene                           | 79                | U          | U .        | II        | n          | 9.7 "                |        | 0.30 |      |
| Toluene                           | н                 | н          |            | II        | 3.7        | ND "                 |        | 1.1  | R-0  |
| Ethylbenzene                      | 11                | **         | **         | **        | 2.2        | ND"                  |        | 1.1  | R-0  |
| Xylenes (total)                   | tt                | **         | *          | ••        | 1          | 7.5 "                |        | 0.50 |      |
| Surrogate: 1,4-Bromofluorobenzen  | е "               | "          | n          | н         |            | 78.8 %               | 63-150 |      |      |
| MW-3 (A311436-03)                 |                   |            | Sample Ty  | pe: Water |            | Sampled: 11/19/03 14 | 1:38   |      |      |
| TPH as Gasoline by GCFID/5030 ar  | d BTEX by 8020/5  | 030        |            |           |            |                      |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020      | AK32607    | 11/24/03   | 11/25/03  | 1          | 160 ug/l             |        | 50   |      |
| Benzene                           | п                 | "          | **         | н         | 1.8        | ND"                  |        | 0.54 | R-0  |
| Toluene                           | n                 | **         | **         | *         | Ħ          | ND "                 |        | 0.54 | R-0  |
| Ethylbenzene                      | н                 | n          | **         | **        | 1.1        | ND"                  |        | 0.55 | R-0  |
| Xylenes (total)                   | 17                | **         | 11         | **        | 3.2        | ND"                  |        | 1.6  | R-0  |
| Surrogate: 1,4-Bromofluorobenzen  | e "               | "          | "          | n         |            | 103 %                | 63-150 |      |      |
| VRW-1 (A311436-04)                |                   |            | Sample Ty  | pe: Water |            | Sampled: 11/19/03 12 | 2:00   |      |      |
| TPH as Gasoline by GCFID/5030 ar  | nd BTEX by 8020/5 | 5030       |            |           |            |                      |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020      | AK32607    | 11/24/03   | 11/25/03  | 1          | 1200 ug/l            |        | 50   |      |
| Benzene                           | **                | **         | н          | n         | **         | 19 "                 |        | 0.30 |      |
| Toluene                           | •                 | **         | 11         | "         | 1.8        | ND "                 |        | 0.54 | R-0  |
| Ethylbenzene                      | 11                | п          | It         | +1        | 1.1        | ND "                 |        | 0.55 | R-0  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Malanie B. Theres



208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 3 of 9

Brunsing Associates, Inc

P.O. Box 588

Order Number

A311436

Windsor, CA 95492

Attn: Michelle Floyd Frederick

Receipt Date/Time

11/20/2003 11:10

Client Code

**BRUNS** 

Report Date: 12/03/03 15:39 Project No: 29.016

Project ID: Pacific Supply

Client PO/Reference ! Global ID

|       | ·           |             |     |
|-------|-------------|-------------|-----|
| Almha | Amalastical | aboratories | Ina |

|                                   |                 | Alpha A     | Analytical | Laborato  | ries, Inc.           |                      |        |      |      |
|-----------------------------------|-----------------|-------------|------------|-----------|----------------------|----------------------|--------|------|------|
|                                   | METHOD          | BATCH       | PREPARED   | ANALYZED  | DILUTION             | RESULT               |        | PQL  | NOTE |
| RW-1 (A311436-04)                 |                 | Sample Ty   | pe: Water  |           | Sampled: 11/19/03 12 | :00                  |        |      |      |
| TPH as Gasoline by GCFID/5030 and | BTEX by 8020/50 | )30 (cont'd | )          |           |                      |                      |        |      |      |
| Xylenes (total)                   | 8015GRO/8020    | *           | n          | 11/25/03  | 1                    | 6.3 "                |        | 0.50 |      |
| Surrogate: 1,4-Bromofluorobenzene | н               | IT          | "          | и         |                      | 86.6 %               | 63-150 |      |      |
| RW-2 (A311436-05)                 |                 |             | Sample Ty  | pe: Water |                      | Sampled: 11/19/03 13 | :05    |      |      |
| TPH as Gasoline by GCFID/5030 and | BTEX by 8020/50 | )30         |            |           |                      |                      |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020    | AK32607     | 11/24/03   | 11/25/03  | I                    | 1300 ug/l            |        | 50   |      |
| Benzene                           | n               | II .        | "          | tı        | **                   | 51 "                 |        | 0.30 |      |
| Toluene                           | Ħ               | u           | **         | 77        | 1.8                  | ND "                 |        | 0.54 | R-0  |
| Ethylbenzene                      | **              | н           | If         | "         | 1.1                  | ND "                 |        | 0.55 | R-0  |
| Xylenes (total)                   | "               | **          | 17         | n         | 1                    | 4.0 "                |        | 0.50 |      |
| Surrogate: 1,4-Bromofluorobenzene | "               | п           | "          | rr        |                      | 87.4 %               | 63-150 |      |      |
| RW-3 (A311436-06)                 |                 |             | Sample Ty  | pe: Water |                      | Sampled: 11/19/03 16 | 5:44   |      |      |
| TPH as Gasoline by GCFID/5030 and | BTEX by 8020/50 | 030         |            |           |                      |                      |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020    | AK32607     | 11/24/03   | 11/25/03  | 1                    | 160 ug/l             |        | 50   |      |
| Benzene                           | "               | н           | и          | 11        | **                   | 1.7 "                |        | 0.30 |      |
| Toluene                           | "               | п           | ++         | ęt.       | 1.8                  | ND "                 |        | 0.54 | R-G  |
| Ethylbenzene                      | 10              | II          | **         | #         | 1.1                  | ND "                 |        | 0.55 | R-(  |
| Xylenes (total)                   | "               | н           | "          | *         | 1                    | 2.7 "                |        | 0.50 |      |
| Surrogate: 1,4-Bromofluorobenzene | "               | "           | "          | rr        |                      | 109 %                | 63-150 |      |      |
| /RW-4 (A311436-07)                |                 |             | Sample Ty  | pe: Water |                      | Sampled: 11/19/03 13 | 3:37   |      |      |
| TPH as Gasoline by GCFID/5030 and | BTEX by 8020/5  | 030         |            |           |                      |                      |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020    | AK32607     | 11/24/03   | 11/25/03  | 1                    | 1700 ug/l            |        | 50   |      |
| Benzene                           | **              | 11          | ш          | II .      | 11                   | 210 "                |        | 0.30 |      |
| Toluene                           | "               | n           | Ħ          | н         | **                   | 2.4 "                |        | 0.30 |      |
| Ethylbenzene                      | IT              | II .        | **         | **        | 4.4                  | ND"                  |        | 2.2  | R-   |
| Xylenes (total)                   | **              | tı          | Ħ          | *         | 1                    | 36 "                 |        | 0.50 |      |
| Surrogate: 1,4-Bromofluorobenzene | "               | rr          | "          | rr        |                      | 88.7 %               | 63-150 |      |      |

/RW-5 (A311436-08)

Sample Type: Water

Sampled: 11/19/03 16:25

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Manie B. There

Melanie B. Neece For Sheri L. Speaks Project Manager

12/3/2003



208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 4 of 9

Brunsing Associates, Inc

P.O. Box 588

Windsor, CA 95492

Attn: Michelle Floyd Frederick

Report Date: 12/03/03 15:39

Project No: 29.016

Project ID: Pacific Supply

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

| A311436 1                         | 1/20/2003 11:10   | RUNS    | UNS ! Global ID |           |            |                       |        |      |      |
|-----------------------------------|-------------------|---------|-----------------|-----------|------------|-----------------------|--------|------|------|
|                                   |                   | Alpha A | nalytical       | Laborato  | ries, Inc. |                       |        |      |      |
|                                   | METHOD            | BATCH   | PREPARED        | ANALYZED  | DILUTION   | RESULT                |        | PQL  | NOTE |
| VRW-5 (A311436-08)                |                   |         | Sample Ty       | pe: Water |            | Sampled: 11/19/03 16: | 25     |      |      |
| TPH as Gasoline by GCFID/5030 an  | d BTEX by 8020/50 | 030     |                 |           |            |                       |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020      | AK32607 | 11/24/03        | 11/25/03  | 1          | 2900 ug/l             |        | 50   |      |
| Benzene                           | **                | **      | II              | н         | u          | 250 "                 |        | 0.30 |      |
| Toluene                           | **                | 11      | "               | II .      | 3.7        | ND "                  |        | 1.1  | R-01 |
| Ethylbenzene                      | N                 | **      |                 | II .      | 1          | 24 "                  |        | 0.50 |      |
| Xylenes (total)                   | **                | **      | **              | H         | *          | 41 "                  |        | 0.50 |      |
| Surrogate: 1,4-Bromofluorobenzene | , "               | "       | "               | "         | <u> </u>   | 75.8 %                | 63-150 |      |      |
| VRW-6 (A311436-09)                |                   |         | Sample Ty       | pe: Water |            | Sampled: 11/19/03 15: | :02    |      |      |
| TPH as Gasoline by GCFID/5030 an  | d BTEX by 8020/5  | 030     |                 |           |            |                       |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020      | AK32607 | 11/24/03        | 11/25/03  | 1          | 210 ug/l              |        | 50   |      |
| Benzene                           | н                 | **      | п               | n         | п          | 13 "                  |        | 0.30 |      |
| Toluene                           | "                 | **      | п               | II        | 1.8        | ND "                  |        | 0.54 | R-04 |
| Ethylbenzene                      | 11                | N       |                 | II .      | 1          | 1.0 "                 |        | 0.50 |      |
| Xylenes (total)                   | **                | #f      | *               | Ħ         | *          | 2.5 "                 |        | 0.50 |      |
| Surrogate: 1,4-Bromofluorobenzene | ? "               | "       | "               | . 11      |            | 77.1 %                | 63-150 |      |      |
| VRW-7 (A311436-10)                |                   |         | Sample Ty       | pe: Water |            | Sampled: 11/19/03 14: |        |      |      |
| TPH as Gasoline by GCFID/5030 an  | d BTEX by 8020/5  | 030     |                 |           |            |                       |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020      | AK32607 | 11/24/03        | 11/25/03  | 1          | 1100 ug/l             |        | 50   |      |
| Benzene                           | **                | **      | II .            | **        | II .       | 14 "                  |        | 0.30 |      |
| Toluene                           | **                | #       | 11              | 11        | 1.8        | ND "                  |        | 0.54 | R-0- |
| Ethylbenzene                      | H                 | **      | *               | II        | l          | 1.7 "                 |        | 0.50 |      |
| Xylenes (total)                   | "                 | **      | "               | íi,       | #          | 5.6 "                 |        | 0.50 |      |
| Surrogate: 1,4-Bromofluorobenzen  | е "               | н       | "               | 11        |            | 85.3 %                | 63-150 |      |      |
| VRW-8 (A311436-11)                |                   |         | Sample Ty       | pe: Water |            | Sampled: 11/19/03 15  | :45    |      |      |
| TPH as Gasoline by GCFID/5030 ar  | d BTEX by 8020/5  | 030     |                 |           |            |                       |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020      | AL30316 | 12/02/03        | 12/02/03  | 1          | 3600 ug/l             |        | 50   |      |
| Benzene                           | **                | n       | **              | · ·       | **         | 36 "                  |        | 0.30 |      |
| Toluene                           | •                 | **      | **              | п         | 9          | ND "                  |        | 2.7  | R-0  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie B. Thece

Alpha Analytical I

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 5 of 9

Brunsing Associates, Inc

P.O. Box 588

Windsor, CA 95492

Attn: Michelle Floyd Frederick

Report Date: 12/03/03 15:39

Project No: 29.016

Project ID: Pacific Supply

Order Number A311436 Receipt Date/Time

11/20/2003 11:10

Client Code BRUNS Client PO/Reference

! Global ID

|                                   | 1/20/2005 11:10   |             |           | 10110     |            | . 0.00               |        |      |      |
|-----------------------------------|-------------------|-------------|-----------|-----------|------------|----------------------|--------|------|------|
|                                   |                   | Alpha A     | nalytical | Laborato  | ries, Inc. |                      |        |      |      |
|                                   | METHOD            | BATCH       | PREPARED  | ANALYZED  | DILUTION   | RESULT               |        | PQL  | NOTE |
| /RW-8 (A311436-11)                |                   |             | Sample Ty | pe: Water |            | Sampled: 11/19/03 15 | :45    |      |      |
| TPH as Gasoline by GCFID/5030 and | d BTEX by 8020/50 | 030 (cont'd | )         |           |            |                      |        |      |      |
| Ethylbenzene                      | 8015GRO/8020      | **          | 11        | 12/02/03  | 5.4        | ND "                 |        | 2.7  | R-01 |
| Xylenes (total)                   | •                 | 11          | **        | П         | 1          | 4.3 "                |        | 0.50 |      |
| Surrogate: 1,4-Bromofluorobenzene | "                 | "           | "         | "         |            | 112%                 | 63-150 |      |      |
| 7RW-9 (A311436-12)                |                   |             | Sample Ty | pe: Water |            | Sampled: 11/19/03 15 | :20    |      |      |
| TPH as Gasoline by GCFID/5030 and | d BTEX by 8020/50 | 030         |           |           |            |                      |        |      |      |
| TPH as Gasoline                   | 8015GRO/8020      | AL30316     | 12/02/03  | 12/02/03  | 1          | 860 ug/l             |        | 50   |      |
| Benzene                           | н                 | п           | *         | ***       | 3.7        | ND "                 |        | 1.1  | R-01 |
| Toluene                           | н                 | п           | "         | п         | ij         | ND "                 |        | 1.1  | R-01 |
| Ethylbenzene                      | *                 | н           | **        | ••        | 2.2        | ND "                 |        | 1.1  | R-01 |
| Xylenes (total)                   | *                 | **          | **        | •         | 1          | 5.5 "                |        | 0.50 |      |
| Surrogate: 1,4-Bromofluorobenzene | rr                | "           | "         | "         | 1          | 96.5 %               | 63-150 |      |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie B. Theca



208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 6 of 9

Brunsing Associates, Inc

P.O. Box 588

Order Number

A311436

Windsor, CA 95492

Attn: Michelle Floyd Frederick

Receipt Date/Time

11/20/2003 11:10

Client Code

BRUNS

Report Date: 12/03/03 15:39

Project No: 29.016

Project ID: Pacific Supply

Client PO/Reference ! Global ID

SourceResult

#### TPH as Gasoline by GCFID/5030 and BTEX by 8020/5030 - Quality Control

| Analyte(s)                        | Result | PQL  | Units | Spike S<br>Level I | Source<br>Result | %REC      | %REC<br>Limits | RPD  | RPD<br>Limit | Flag |
|-----------------------------------|--------|------|-------|--------------------|------------------|-----------|----------------|------|--------------|------|
| Batch AK32607 - EPA 5030 Water GC |        |      |       |                    |                  |           |                |      |              |      |
| Blank (AK32607-BLK1)              |        |      |       | Prepared: 11       | /24/03           | Analyzed: | 11/25/03       |      |              |      |
| TPH as Gasoline                   | ND     | 50   | ug/l  |                    |                  |           |                |      |              |      |
| Benzene                           | ND     | 0.30 | 11    |                    |                  |           |                |      |              |      |
| Toluene                           | ND     | 0.30 | п     |                    |                  |           |                |      |              |      |
| Ethylbenzene                      | ND     | 0.50 | п     |                    |                  |           |                |      |              |      |
| Xylenes (total)                   | ND     | 0.50 | u     |                    |                  |           |                |      |              |      |
| Surrogate: 1,4-Bromofluorobenzene | 24.0   |      | п     | 23.1               |                  | 104       | 63-150         |      |              |      |
| LCS (AK32607-BS1)                 |        |      |       | Prepared: 11       | /24/03           | Analyzed: | 11/25/03       |      |              |      |
| Benzene                           | 5.36   | 0.30 | ug/l  | 5.00               |                  | 107       | 74-115         |      |              |      |
| Toluene                           | 5.43   | 0.30 | **    | 5.00               |                  | 109       | 75-115         |      |              |      |
| Ethylbenzene                      | 5.27   | 0.50 | 11    | 5.00               |                  | 105       | 75-115         |      |              |      |
| Xylenes (total)                   | 15.8   | 0.50 | 11    | 15.0               |                  | 105       | 74-116         |      |              |      |
| Surrogate: 1,4-Bromofluorobenzene | 21.3   |      | В     | 20.0               |                  | 106       | 63-150         |      |              |      |
| LCS (AK32607-BS2)                 |        |      |       | Prepared: 11       | /24/03           | Analyzed: | 11/25/03       |      |              |      |
| TPH as Gasoline                   | 55.1   | 50   | ug/l  | 50.0               |                  | 110       | 79-123         |      |              |      |
| Surrogate: 1,4-Bromofluorobenzene | 22.0   |      | *     | 20.0               |                  | 110       | 63-150         |      |              |      |
| LCS Dup (AK32607-BSD1)            |        |      |       | Prepared: 11       | 1/24/03          | Analyzed: | 11/25/03       |      |              |      |
| Benzene                           | 4.75   | 0.30 | ug/l  | 5.00               |                  | 95.0      | 74-115         | 12.1 | 15           |      |
| Toluene                           | 4.86   | 0.30 | II .  | 5.00               |                  | 97.2      | 75-115         | 11.1 | 15           |      |
| Ethylbenzene                      | 4.67   | 0.50 | ır    | 5.00               |                  | 93.4      | 75-115         | 12.1 | 15           |      |
| Xylenes (total)                   | 14.1   | 0.50 | "     | 15.0               |                  | 94.0      | 74-116         | 11.4 | 15           |      |
| Surrogate: 1,4-Bromofluorobenzene | 19.4   |      | "     | 20.0               |                  | 97.0      | 63-150         |      |              |      |
| LCS Dup (AK32607-BSD2)            |        |      |       | Prepared: 11       | 1/24/03          | Analyzed  | : 11/25/03     |      |              |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie B. Theca



208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 7 of 9

Brunsing Associates, Inc

P.O. Box 588

Windsor, CA 95492

Attn: Michelle Floyd Frederick

Report Date: 12/03/03 15:39

Project No: 29.016

Project ID: Pacific Supply

Order Number A311436 Receipt Date/Time

11/20/2003 11:10

Client Code BRUNS Client PO/Reference

! Global ID

#### TPH as Gasoline by GCFID/5030 and BTEX by 8020/5030 - Quality Control

| Analyte(s)                        | Result | PQL  | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Flag |
|-----------------------------------|--------|------|-------|----------------|------------------|-------------|----------------|------|--------------|------|
| Batch AK32607 - EPA 5030 Water    | GC     |      |       |                |                  |             |                |      |              |      |
| LCS Dup (AK32607-BSD2)            |        |      |       | Prepared:      | 11/24/03         | Analyzed    | : 11/25/03     |      |              |      |
| TPH as Gasoline                   | 53.2   | 50   | ug/l  | 50.0           |                  | 106         | 79-123         | 3.51 | 15           |      |
| Surrogate: 1,4-Bromofluorobenzene | 22.0   |      | п     | 20.0           |                  | 110         | 63-150         |      | ,            |      |
| Batch AL30316 - EPA 5030 Water    | GC     |      |       |                |                  |             |                |      |              |      |
| Blank (AL30316-BLK1)              |        |      |       | Prepared       | & Analyze        | ed: 12/02/0 | 03             |      |              |      |
| TPH as Gasoline                   | ND     | 50   | ug/l  |                |                  |             |                |      |              |      |
| Benzene                           | ND     | 0.30 | ш     |                |                  |             |                |      |              |      |
| Toluene                           | ND     | 0.30 | н     |                |                  |             |                |      |              |      |
| Ethylbenzene                      | ND     | 0.50 | н     |                |                  |             |                |      |              |      |
| Xylenes (total)                   | ND     | 0.50 | tr    |                |                  |             |                |      |              |      |
| Surrogate: 1,4-Bromofluorobenzene | 19.4   |      | п     | 23.1           |                  | 84.0        | 63-150         |      |              |      |
| LCS (AL30316-BS1)                 |        |      |       | Prepared       | & Analyz         | ed: 12/02/  | 03             |      |              |      |
| Benzene                           | 5.21   | 0.30 | ug/l  | 5.00           |                  | 104         | 74-115         |      |              |      |
| Toluene                           | 5.22   | 0.30 | **    | 5.00           |                  | 104         | 75-115         |      |              |      |
| Ethylbenzene                      | 5.23   | 0.50 | н     | 5.00           |                  | 105         | 75-115         |      |              |      |
| Xylenes (total)                   | 15.6   | 0.50 | II .  | 15.0           |                  | 104         | 74-116         |      |              |      |
| Surrogate: 1,4-Bromofluorobenzene | 22.5   |      | н     | 20.0           |                  | 112         | 63-150         |      |              |      |
| LCS (AL30316-BS2)                 |        |      |       | Prepared       | & Analyz         | ed: 12/02/  | 03             |      |              |      |
| TPH as Gasoline                   | 53.8   | 50   | ug/l  | 50.0           | ·                | 108         | 79-123         |      |              |      |
| Surrogate: 1,4-Bromofluorobenzene | 22.4   | ,    | #     | 20.0           |                  | 112         | 63-150         |      |              |      |
| LCS Dup (AL30316-BSD1)            |        |      |       | Prepared       | & Analyz         | ed: 12/02/  | 03             |      |              |      |
| Веплепе                           | 5.03   | 0.30 | ug/l  | 5.00           |                  | 101         | 74-115         | 3.52 | 15           |      |
| Toluene                           | 5.15   | 0.30 | н     | 5.00           |                  | 103         | 75-115         | 1.35 | 15           |      |
| Ethylbenzene                      | 5.05   | 0.50 | tt    | 5.00           |                  | 101         | 75-115         | 3.50 | 15           |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie B. Thece



208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 8 of 9

Brunsing Associates, Inc

P.O. Box 588

Windsor, CA 95492

Attn: Michelle Floyd Frederick

Report Date: 12/03/03 15:39

Project No: 29.016

Project ID: Pacific Supply

Order Number A311436 Receipt Date/Time 11/20/2003 11:10

Client Code BRUNS Client PO/Reference

! Global ID

#### TPH as Gasoline by GCFID/5030 and BTEX by 8020/5030 - Quality Control

| Analyte(s)                        | Result | PQL  | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Flag |
|-----------------------------------|--------|------|-------|----------------|------------------|-------------|----------------|-------|--------------|------|
| Batch AL30316 - EPA 5030 Water Go | 2      |      |       |                |                  |             |                |       | "            |      |
| LCS Dup (AL30316-BSD1)            |        |      |       | Prepared       | & Analyze        | ed: 12/02/0 | 03             |       |              |      |
| Xylenes (total)                   | 15.1   | 0.50 | D     | 15.0           |                  | 101         | 74-116         | 3.26  | 15           |      |
| Surrogate: 1,4-Bromofluorobenzene | 21.8   |      | N     | 20.0           |                  | 109         | 63-150         |       |              |      |
| LCS Dup (AL30316-BSD2)            |        |      |       | Prepared       | & Analyze        | ed: 12/02/0 | 03             |       |              |      |
| TPH as Gasoline                   | 53.6   | 50   | ug/l  | 50.0           |                  | 107         | 79-123         | 0.372 | 15           |      |
| Surrogate: 1,4-Bromofluorobenzene | 22.5   |      | n n   | 20.0           |                  | 112         | 63-150         |       |              |      |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Melanie B. There

alpha Analytical I

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

#### CHEMICAL EXAMINATION REPORT

Page 9 of 9

Brunsing Associates, Inc

P.O. Box 588

Windsor, CA 95492

Attn: Michelle Floyd Frederick

Report Date: 12/03/03 15:39

Project No: 29.016

Project ID: Pacific Supply

Order Number A311436 Receipt Date/Time 11/20/2003 11:10

Client Code BRUNS Client PO/Reference

! Global ID

#### **Notes and Definitions**

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

R-04 The Reporting Limits for this analysis are elevated due to sample foaming.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

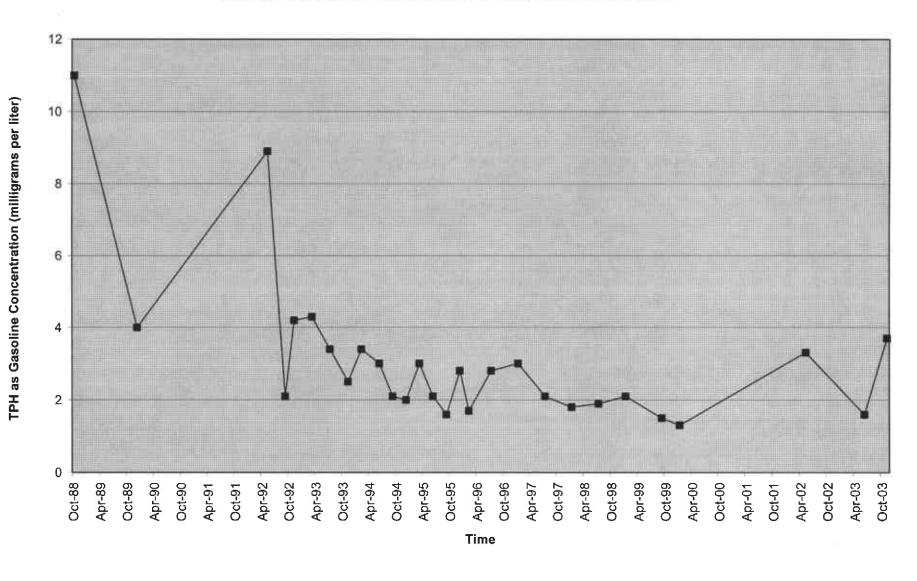
NR Not Reported

dry Sample results reported on a dry weight basis

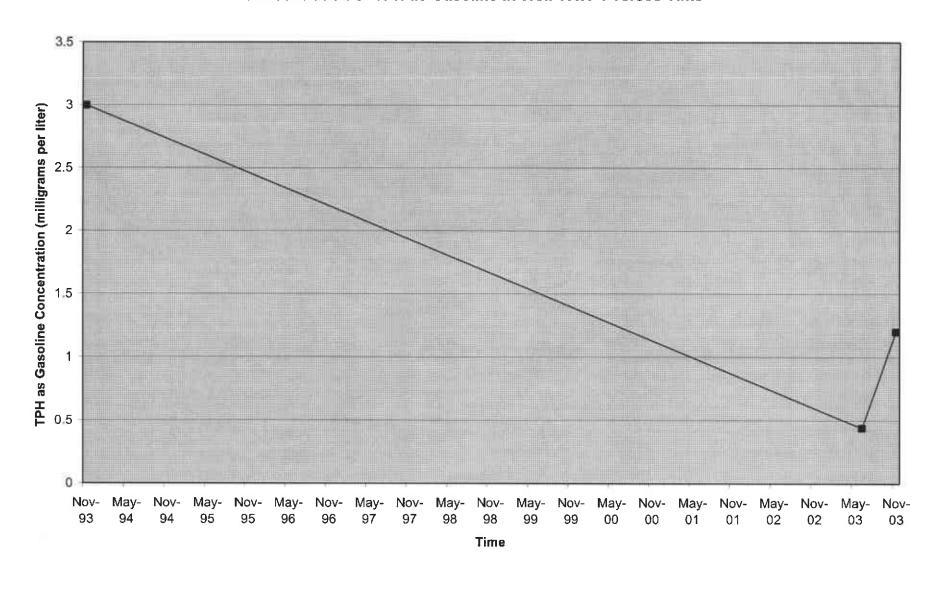
RPD Relative Percent Difference

PQL Practical Quantitation Limit

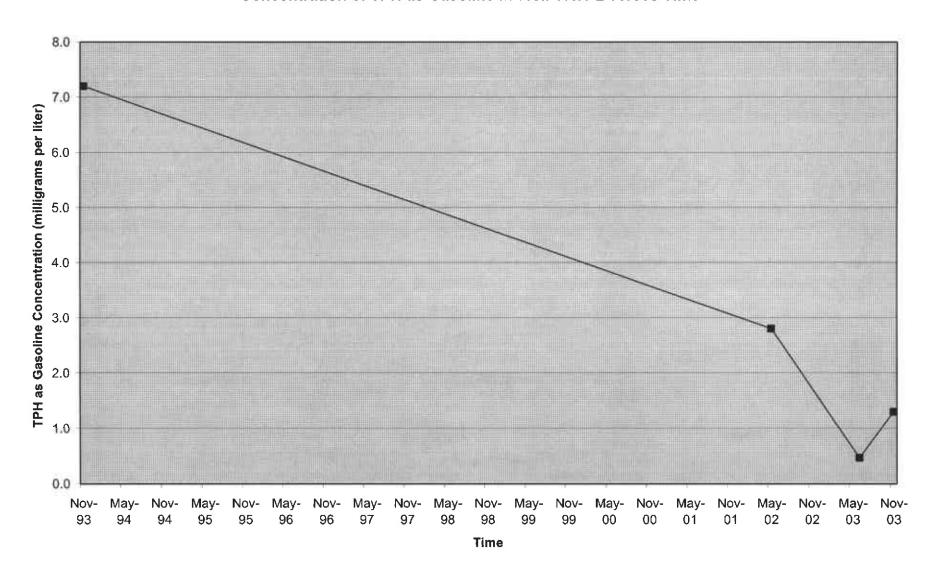
#### **Chain-of Custody Form**


| Project#                 | Project Name        | 1                                 | Analysis                     |                     |                 |             |      |      |      |      |            | C.O.C. No. 10838 |         |              |                                      |
|--------------------------|---------------------|-----------------------------------|------------------------------|---------------------|-----------------|-------------|------|------|------|------|------------|------------------|---------|--------------|--------------------------------------|
| 29016                    | PACIFIC SUPPLY      |                                   |                              |                     | <u>4</u>        |             |      |      |      |      |            |                  |         |              |                                      |
| L.P. No.                 | Sampler's Signature |                                   | No.                          | \ <u>\</u>          | 8.20            |             |      |      |      |      |            |                  |         | Remark       | _                                    |
|                          | Falto               | ,                                 | of<br>Con-                   | 1.6AS               | $\smile$ $\Box$ |             |      |      |      |      |            |                  |         |              | EDF                                  |
| Date<br>Sampled          | Sample I.D/         |                                   | ample tainers<br>Type        | TPH                 | Втех            |             |      |      |      |      |            |                  |         |              |                                      |
| 11/1/3                   | MW-1                | 11:48 W                           | ATER 4                       | X                   | X               |             | A    | 31   | 14   | 36   |            |                  |         | Rec          | d-4-HCL yoas<br>per site             |
| / /                      | MW-2                | 12:25                             | 1                            | X                   | X               |             |      |      |      | •    | <u>- a</u> | 2                | _       | -            | per site                             |
| )                        | MW-3 /              | 14:38                             | 1 1 1                        | X                   | X               |             |      |      | _    |      | -0         | /                |         | -            | ,                                    |
|                          | ven-1               | 11:00                             |                              | $\langle X \rangle$ | X               |             |      |      |      |      | -0         |                  | _       | <del> </del> |                                      |
|                          | VRW-Z               | 13:05                             |                              | X                   | X               |             |      | _    |      |      | -0         | <u> </u>         | _ -     |              |                                      |
| /                        | VRW-3 /             | 16:44                             |                              | X                   | X               |             |      |      |      |      | -04        | -                |         |              |                                      |
|                          | VRW-4               | 13:37                             |                              | $\times$            | X               |             |      |      |      |      | 0          | <u>'</u>         |         |              |                                      |
|                          | VRW-5               | 14:25                             |                              | X                   | X               |             |      |      |      |      | 0          |                  |         | -            |                                      |
|                          | VRW-6               | 15702                             |                              | X                   | X               |             |      |      |      | _    | 09         |                  | $\perp$ |              |                                      |
| <u> </u>                 | VRW-7 /             | 14:25                             |                              | X                   | X               |             |      |      |      |      | 10         |                  |         | _            |                                      |
| Ц                        | vru-8               | 15145                             |                              | X                   | X               |             |      |      |      | _    | 11         |                  |         |              |                                      |
|                          | vau-9               | 15120                             | 4 4                          |                     | $ \mathbf{X} $  |             |      |      |      |      | 12         |                  |         | <del> </del> |                                      |
|                          |                     |                                   |                              | <del> </del>        |                 |             |      |      |      |      |            |                  |         | <u> </u>     |                                      |
|                          | _                   | <u> </u>                          |                              | <u> </u>            |                 |             |      |      |      |      |            |                  |         | <u> </u>     |                                      |
|                          |                     |                                   |                              | ļ                   |                 |             |      |      |      |      |            |                  |         | <u> </u>     |                                      |
|                          |                     |                                   |                              | 1_                  |                 |             |      |      |      |      |            |                  | -       |              |                                      |
|                          |                     |                                   |                              | 1                   | <u> </u>        |             |      |      |      |      |            |                  |         | _            |                                      |
|                          |                     |                                   |                              |                     |                 |             |      |      |      |      |            |                  |         |              |                                      |
|                          |                     |                                   | <u> </u>                     |                     |                 | 1161        | لِيا | 0001 |      | 1-01 |            | -NO2             | E los:  | E /openi     | 6.4                                  |
| Laboraton                | BAPS AIPHA          |                                   |                              | Pres                | ervatio         | n: A - HCL: | в-H  | 2504 |      |      | ו-ט:       | INU3:            | - ICEL  | r - (speci   | ·y)                                  |
| Relinquished<br>(signed) | DC NA               | Date/Tim<br>  /20/03 <sup>©</sup> | ne Received<br>9:よっ (signed) | by:                 | 011             | turas.      |      | •    | Rema |      | ap T       | AT.              |         | Bru          | unsing Associates, Inc.              |
| Relinquiste              | 1/20/0              | Date/Tim                          | ne Received                  | V/)                 | 11:00           | won         | 11/2 | 03   | A    |      | •          |                  |         |              | P.O. Box 588<br>5803 Skylane Blvd.   |
| (signed)<br>Relinquished | MANUADO 11.10       | 7 5 - 5                           | (signed)                     |                     | pratory         |             | 4 1  |      | Mici | HELL | (Flo       | 10-Fai           | DURK    | <b>(</b>     | Windsor, CA 95492                    |
| (signed)                 |                     | 11/22/05                          | 924                          |                     |                 |             | 11:  | 0    |      |      |            |                  |         |              | (707) 838-3027<br>(707) 838-4420 fax |

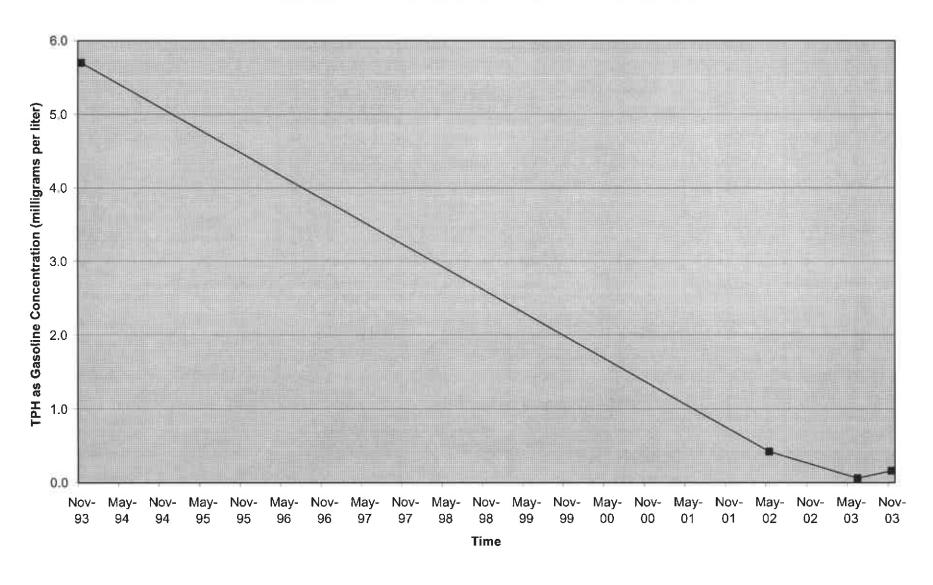
## **APPENDIX C**


**Concentration verses Time Plots** 

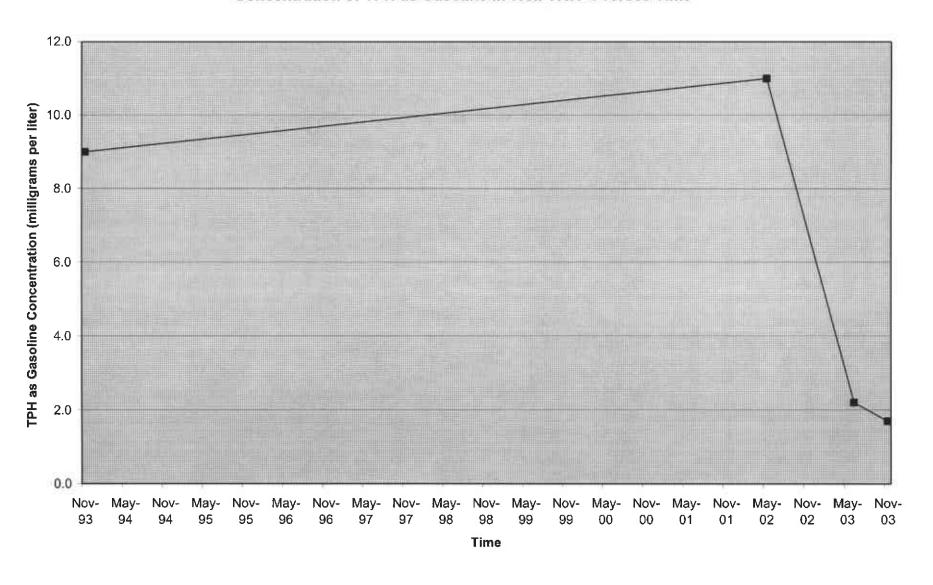



#### Concentration of TPH as Gasoline in Well MW-2 verses Time

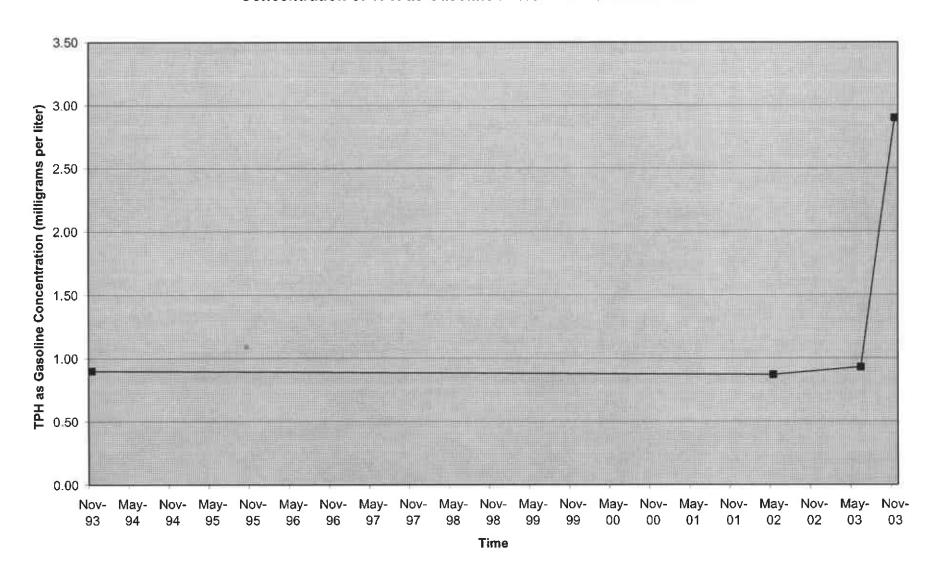



#### Concentration of TPH as Gasoline in Well VRW-1 verses Time

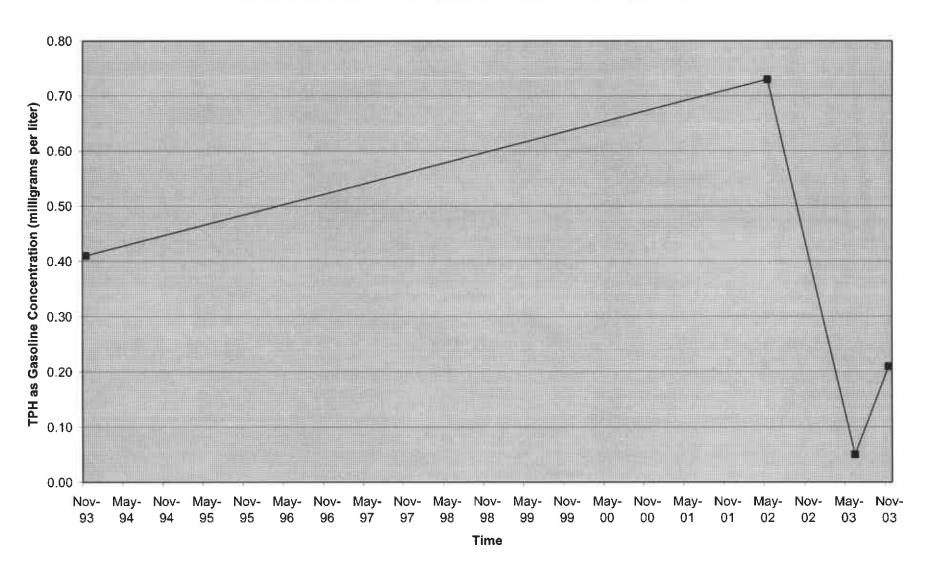



#### Concentration of TPH as Gasoline in Well VRW-2 verses Time

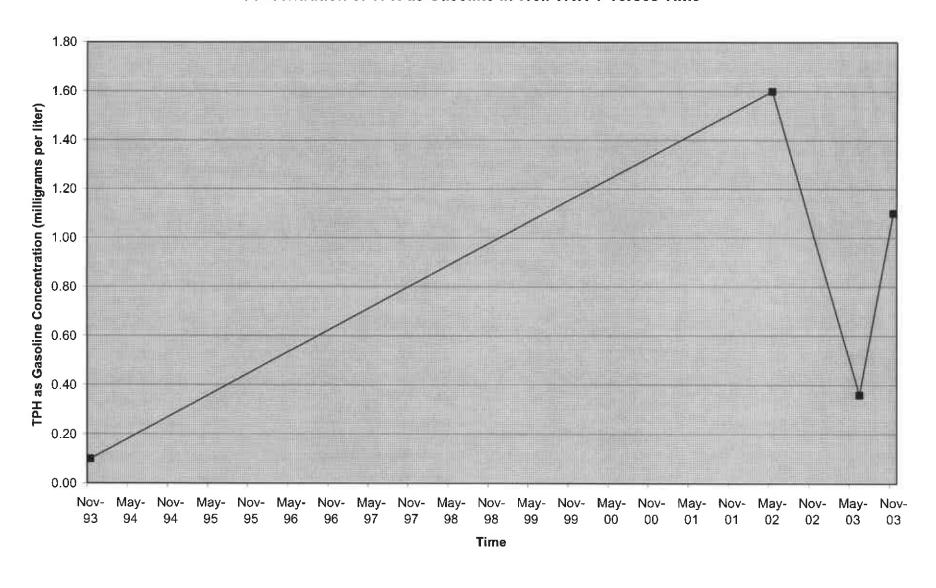



#### Concentration of TPH as Gasoline in Well VRW-3 verses Time

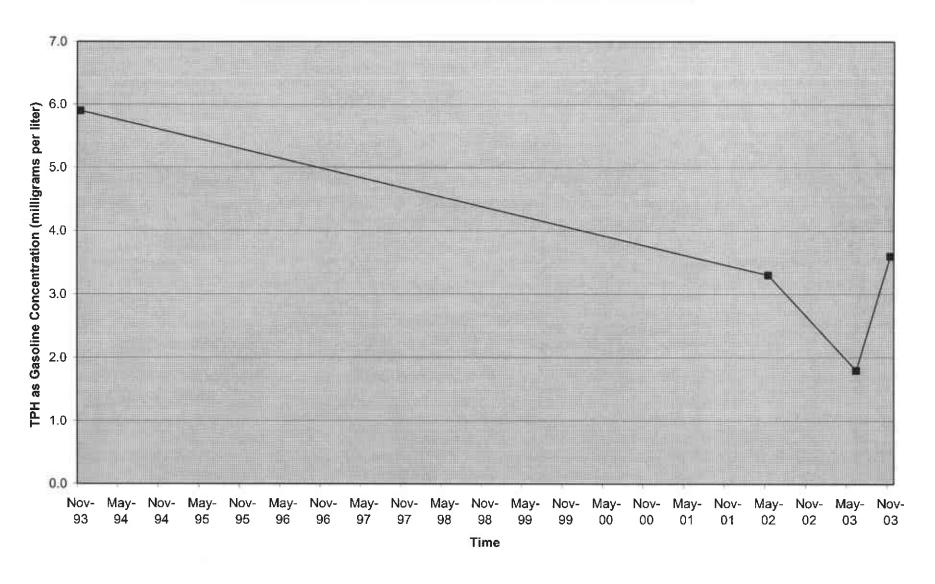



#### Concentration of TPH as Gasoline in Well VRW-4 verses Time

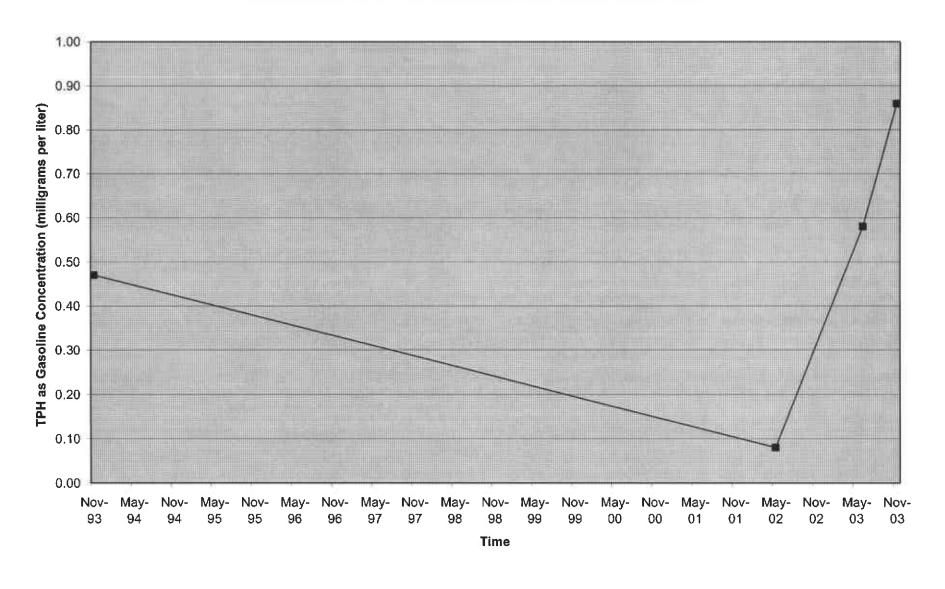



#### Concentration of TPH as Gasoline in Well VRW-5 verses Time

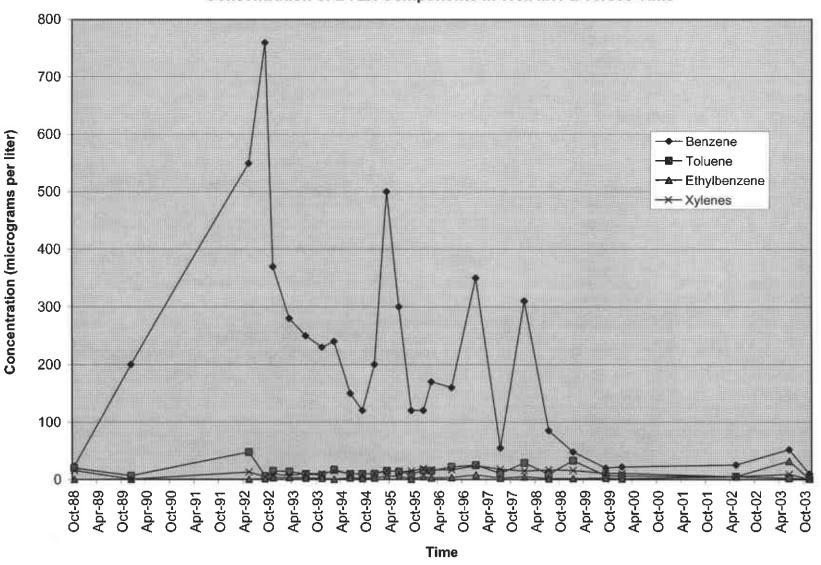



#### Concentration of TPH as Gasoline in Well VRW-6 verses Time

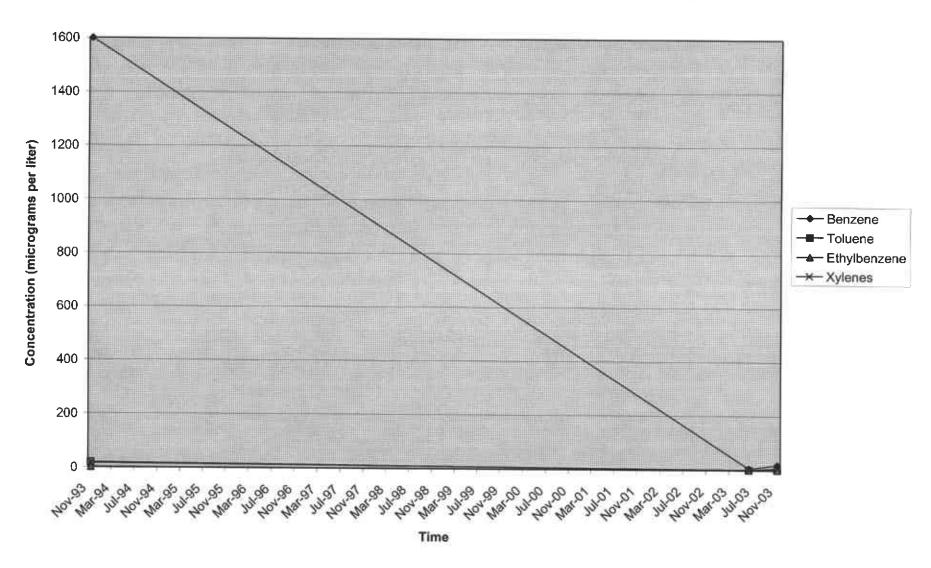



#### Concentration of TPH as Gasoline in Well VRW-7 verses Time




#### Concentration of TPH as Gasoline in Well VRW-8 verses Time

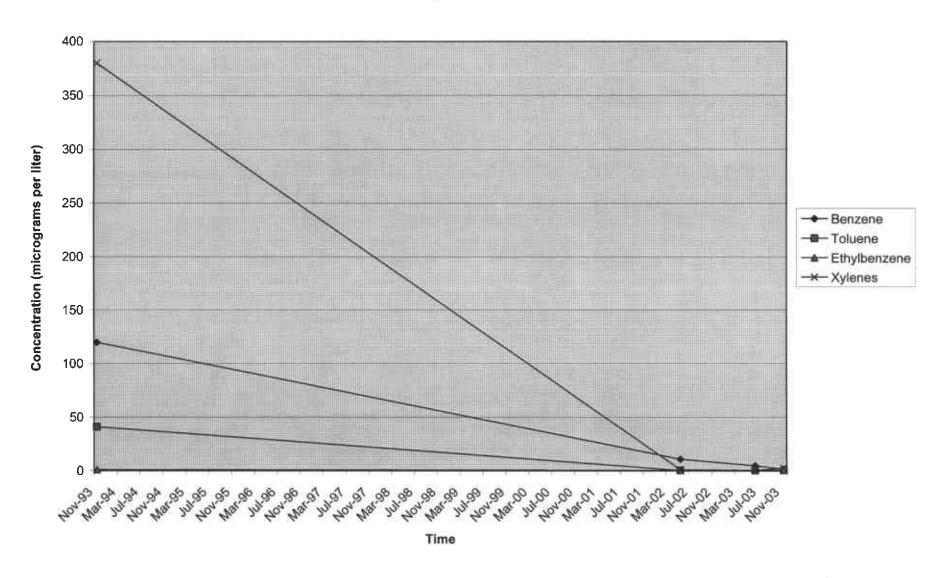



#### Concentration of TPH as Gasoline in Well VRW-9 verses Time

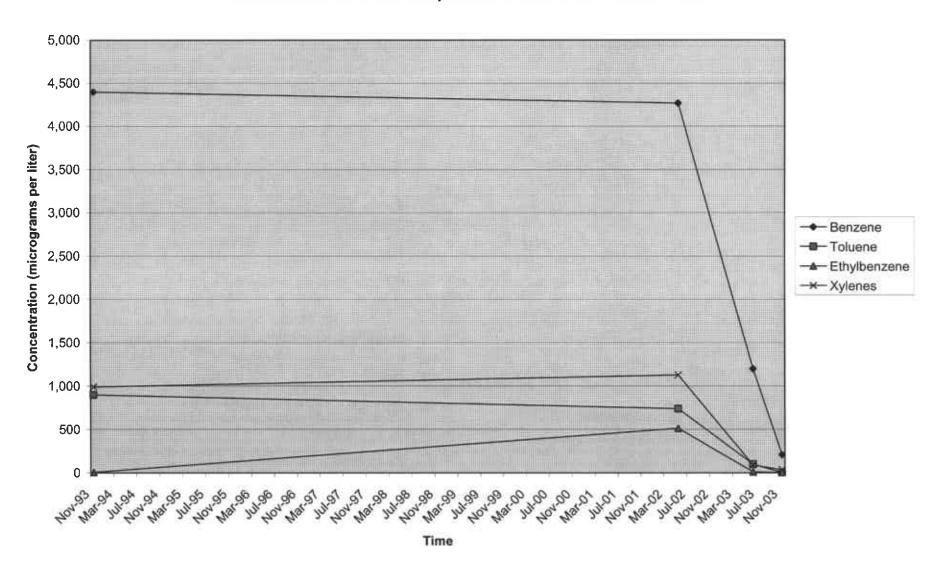


#### Concentration of BTEX Components in Well MW-2 verses Time

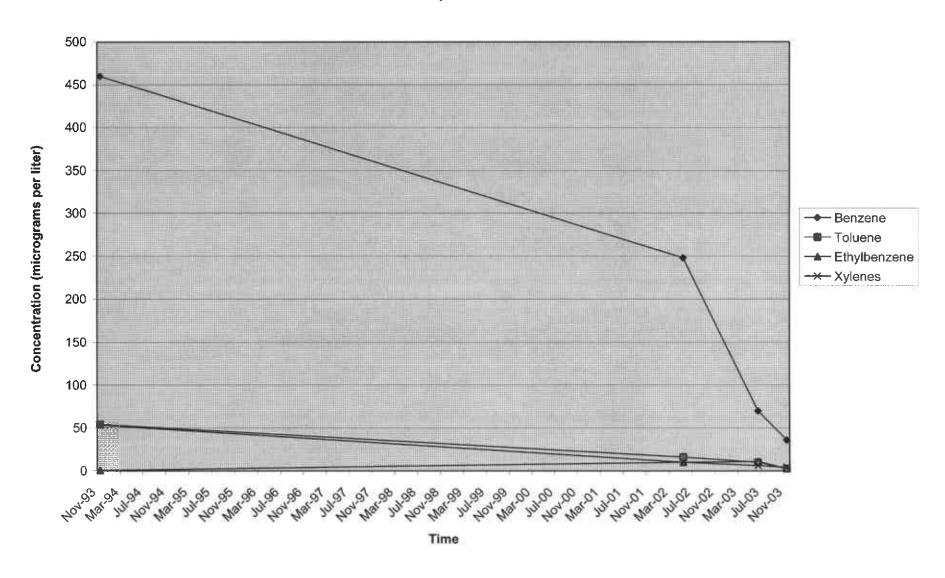



### Concentration of BTEX Components in Well VRW-1 verses Time

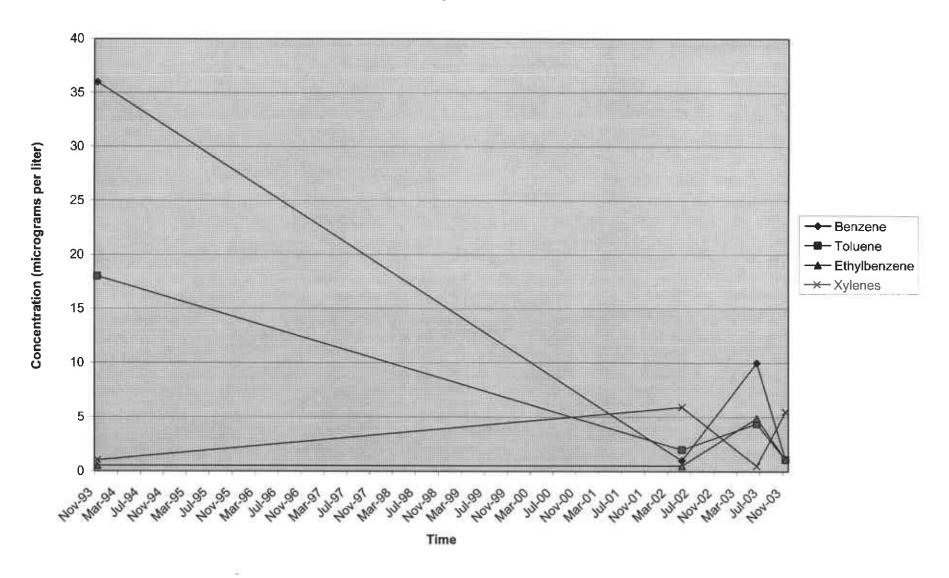



#### Concentration of BTEX Components in Well VRW-2 verses Time

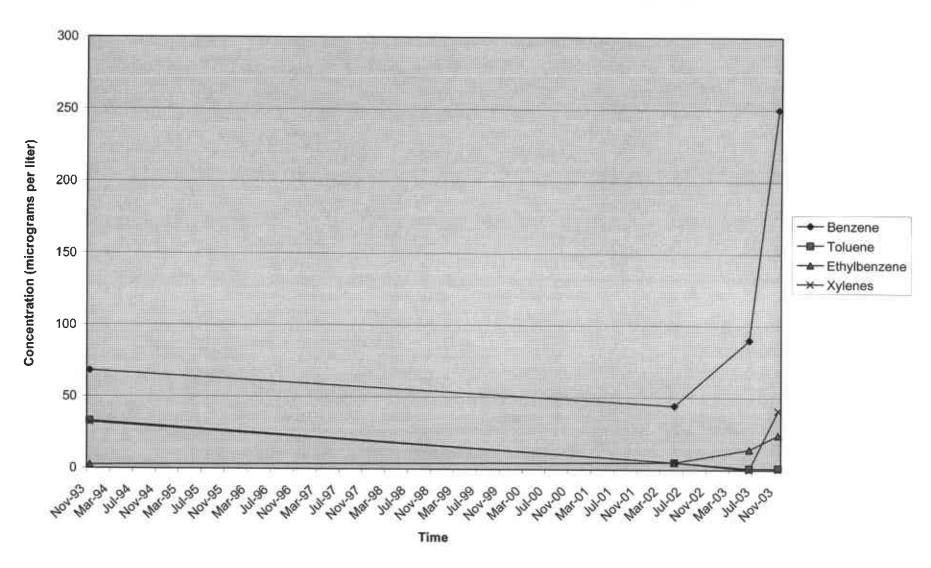



#### Concentration of BTEX Components in Well VRW-3 verses Time

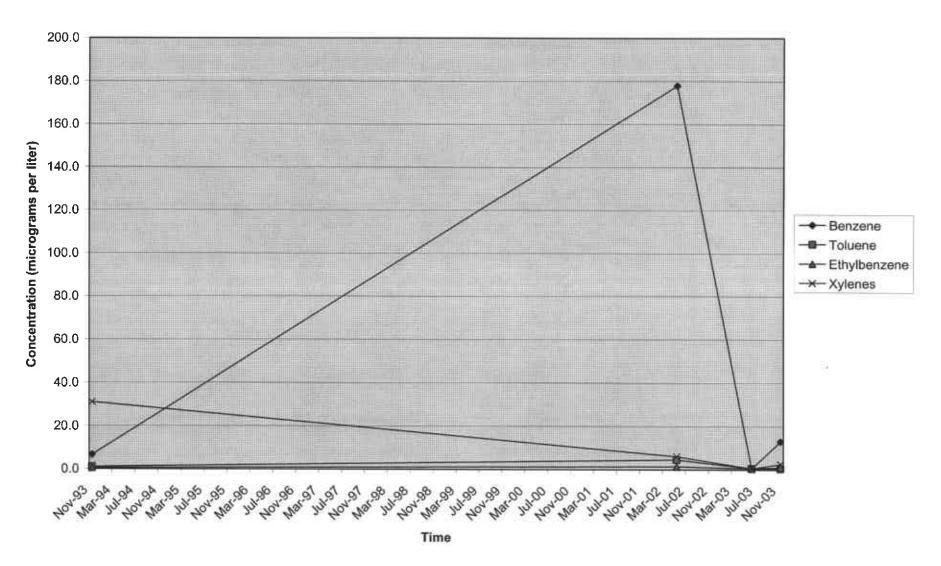



#### Concentration of BTEX Components in Well VRW-4 verses Time

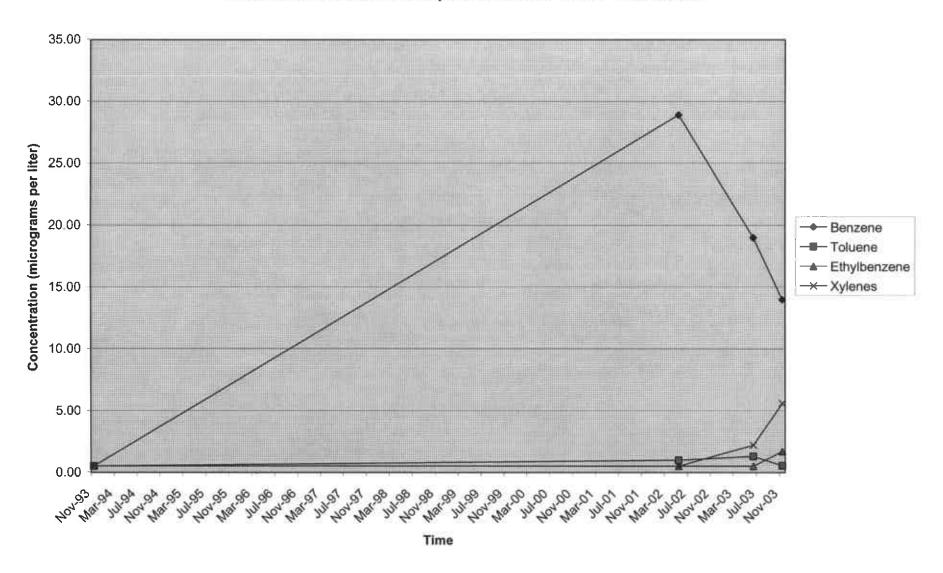



#### Concentration of BTEX Components in Well VRW-8 verses Time




#### Concentration of BTEX Components in Well VRW-9 verses Time




#### Concentration of BTEX Components in Well VRW-5 verses Time



#### Concentration of BTEX Components in Well VRW-6 verses Time



#### Concentration of BTEX Components in Well VRW-7 verses Time

