February 21, 2006

Project No. 029

Mr. Don Hwang Alameda County Health Care Services Agency Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Groundwater Monitoring Report January 2006 Pacific Supply Company 1735 24th Street Oakland, California

Dear Mr. Hwang:

This correspondence has been prepared by Brunsing Associates, Inc. (BAI) to provide a report summarizing the fieldwork completed at 1735 24th Street, Oakland, California on January 18 and 19, 2006, and the results of the laboratory analyses of the groundwater samples collected. The fieldwork was completed in accordance with the Alameda County Health Care Services Agency (ACHCSA) correspondence dated November 6, 2003.

Site Background

In May 1987, efforts were initiated to abandon a 1,000-gallon underground gasoline storage tank at Pacific Supply Company's West Oakland site. Soil and associated vapor samples from exploratory boreholes at the site were analyzed by Anatec Laboratories. The results indicated that soil in the vicinity of the tank was contaminated with gasoline and raised the possibility that gasoline may have reached groundwater below the site. During subsequent removal of the tank by Erikson Industrial Services, substantial deterioration of the tank body was documented. Gasoline odors were also detected during tank removal operations.

ENVIRONMENTAL HEALTH SELITABLE

Mr. Don Hwang February 21, 2006 Page 2

In order to assess the extent of soil and groundwater quality beneath and immediately adjacent to the Pacific Supply Company site and the potential for migration of contaminants from off-site sources, BAI carried out a two-phase soil and groundwater investigation. Monitoring wells MW-1 through MW-5 (Plate 2) were constructed in September 1988 as the first phase of the soil and groundwater investigation. Monitoring wells MW-6 and MW-7 were constructed on December 19, 1989 during Phase II of the same investigation. The construction and sampling of these wells are documented in BAI's Report of Findings, dated March 23, 1990. The results of the Phase I and II investigations indicated that light petroleum hydrocarbons had migrated beyond the immediate vicinity of the former underground storage tank (UST); however, it was concluded that hydrocarbons in the soil and groundwater had not extended beyond the limits of the property.

The Pacific Supply Company initiated quarterly groundwater monitoring at the request of the ACHCSA in May 1992. Initially, only on-site wells were monitored for total petroleum hydrocarbons (TPH) as gasoline, benzene, toluene, ethylbenzene and xylenes (BTEX), and lead. Later, the five on-site and the two off-site wells were monitored quarterly.

A vapor extraction pilot study was performed in June 1992 to determine the feasibility of using vapor extraction technology as an in-situ corrective action to remove volatile petroleum hydrocarbons from the shallow subsurface soils. A two-inch diameter vapor extraction well (VEW-1) was installed at the location indicated on Plate 2 to an approximate depth of eight feet below ground surface (bgs). The results of the 4-day pilot study indicated that the lithology at the site permitted the flow of air through the soils at a sufficient rate so as to volatilize hydrocarbon constituents in the soil. The radius of influence was determined in the field by measuring the relative pressure at several probe locations positioned at various radial distances away from the extraction well. The results indicated that the estimated radius of influence from the two-inch diameter extraction well was approximately 30 feet at a relatively low pressure of less than 50 inches of water, as discussed in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

In response to an ACHCSA December 1992 request, BAI also performed an investigation to attempt to delineate the zero line of contamination. Ten soil borings (B-1 through B-10) were drilled as part of this investigation to depths of approximately seven to ten feet bgs (Plate 2). From each boring, one soil sample was retained from a

Mr. Don Hwang February 21, 2006 Page 3

depth of approximately seven to eight feet bgs for analytical testing of TPH as gasoline and BTEX. Further discussions of this investigation are provided in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

Vapor recovery wells VRW-1 through VRW-9 were constructed in August 1993 as part of a vapor recovery system. During installation of the extraction wells, soil samples were collected for chemical analysis in the borings at the depth where groundwater was first encountered, at approximately seven feet bgs. Installations of these wells were documented in a February 7, 1994 report. A vapor extraction system was installed in the fall of 1993 as an interim remedial action. The system began operation on December 26, 1993. The system consisted of an internal combustion engine with a spray aeration tank for treatment of groundwater, and an activated carbon treatment polishing step prior to groundwater discharge. The internal combustion unit and spray aeration unit was manufactured by Remediation Service International (RSI), under the trade name Spray Aeration Vapor Extraction (SAVE) system.

On June 28, 1996, the treatment system was shut down with the concurrence of Pacific Supply Company. Prior to shut down, the system had destroyed an estimated 6,550 pounds of petroleum hydrocarbons since start of operations on December 26, 1993. After shut down, the water in the water tank was treated and discharged to the sanitary sewer under the existing permit and the inside of the tank was cleaned on July 15, 1996.

The permit with the Bay Area Air Quality Management District (BAAQMD) expired on September 1, 1996, and was not renewed. The water discharge permit was discontinued on July 31, 1996. The total volume of water discharged to the sanitary sewer was 151,089 gallons. In December 1996, the shut down and decommissioning of the system was authorized by Jennifer Eberle of the Alameda County Department of Health Services.

Groundwater monitoring continued following the shut down of the vapor extraction system. In August 2000, BAI supervised the drilling of 3 soil borings in 24th Street, on the north side of the Pacific Supply Company building in a downgradient direction from the former UST location. Grab groundwater samples were collected to evaluate whether off-site migration of hydrocarbon contamination in groundwater was occurring. One of the three groundwater samples was reported to contain low levels of TPH as gasoline, BTEX, and petroleum oxygenates. The results of the field

Mr. Don Hwang February 21, 2006 Page 4

investigation are presented in BAI's "Groundwater Investigation and Monitoring Report," dated December 14, 2000.

The drilling activities were performed on July 21, 2004 to determine the effectiveness of the vapor extraction system and to collect soil samples for geotechnical properties to aid in the evaluation of risk based cleanup scenarios. Soil borings CB-1 through CB-14 were drilled to depths ranging from 7 to 8.5 feet bgs. The soil samples selected for laboratory analyses were collected based on the elevation of the historical contamination in the vicinity of the boring, or direction from the ACHCS. The results of this investigation are presented in BAI's report titled "Soil Parameters and Confirmation Soil Sampling Investigation Report", dated January 31, 2005.

Table 1 presents a summary of groundwater analytical data and groundwater elevations for the monitoring wells. Table 2 presents the groundwater concentrations and groundwater elevations for vapor recovery wells. Plate 2 presents a site map that shows the historical boring and sampling locations. Groundwater elevations and flow directions for July 2005 are provided on Plate 3.

Scope of Work

The scope of work performed for this sampling event included collecting groundwater samples for laboratory analysis from monitoring wells MW-1 through MW-3, and vapor extraction wells VRW-1 through VRW-9. The groundwater sampling was completed on January 18 and 19, 2006. Prior to sampling, groundwater levels were measured in the 12 wells on January 18, 2006. The groundwater sampling protocol and field logs are included in Appendix A. BACE Analytical & Field Services (BAFS) analyzed the groundwater samples for TPH as gasoline and for BTEX by EPA Test Method 8260. The groundwater analytical report for the groundwater samples is presented in Appendix B.

Groundwater Flow Direction

Groundwater elevations are presented on Plate 3. The highest groundwater elevation for this reporting period was in well VRW-6, and the lowest groundwater elevation was in well MW-2.

Discussion of Groundwater Analytical Results

Petroleum hydrocarbons were reported in all of the groundwater samples except for the sample collected from well MW-1. TPH as gasoline was reported in the samples collected from wells MW-2 and VRW-1 through VRW-9 at concentrations ranging from 0.13 to 7.8 mg/l. BTEX were reported in the VRW-4 and VRW-7 samples at concentrations ranging from 3.63 to 1,670 μ g/l. Benzene, toluene, ethylbenzene and/or xylenes were also reported in the samples collected from wells VRW-1, VRW-2, VRW-3, VRW-5, VRW-6, VRW-8, VRW-9, MW-2 and MW-3. The highest petroleum hydrocarbon concentrations were reported in the sample collected from well VRW-4.

Next Monitoring Period

BAI is currently waiting for the ACHCSA response to the January 31, 2005 report titled "Soil Parameters and Confirmation Soil Sampling Investigation Report". Groundwater sampling is currently scheduled for June 2006. A report summarizing the results of the June 2006 monitoring event will be provided after the analytical results have been obtained and reviewed by BAI. Because petroleum hydrocarbons have not been reported in the recent groundwater samples collected from wells MW-1 and MW-3, BAI recommends that these wells no longer be sampled.

If you should have any questions regarding this report, please contact Diana Dickerson at (707) 838-3027.

Sincerely,

Diana M. Dickerson, P.G., R.E.A.

Principal Geologist

David E. Conley, P.G.

Senior Geologist

cc: Ms. Normita Callison

LIST OF ATTACHMENTS

TABLES

Table 1. Summary of Groundwater Analytical Data for Monitoring Wells

Table 2. Summary of Groundwater Analytical Data for Vapor Extraction Wells

PLATES

Plate 1. Vicinity Map

Plate 2. Site Map

Plate 3. Groundwater Elevations, January 18, 20006

<u>APPENDICES</u>

Appendix A. Monitoring Well Sampling Protocol and Field Reports

Appendix B. Analytical Laboratory Report

,	Depth to	Depth to	Groundwater	TPH as						
Well	Groundwater	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(mg/L)	(μg/L)
MW-1	10/14/1988	7.99	0.88	1.1	1.1	ND	_	ND	_	-
MW-1	12/29/1989	7.74	1.13	ND	ND	ND	ND	ND	ND (1)	
MW-1	5/28/1992	7.81	1.06	ND	ND	ND	ND	ND	0.003(2)	- LALLER
MW-1	9/3/1992	7.90	0.97	ND	ND	ND	ND	ND	0.12 (2)	
MW-1	11/24/1992	7.90	0.97	ND	ND	ND	ND	ND	0.017 (2)	
MW-1	3/9/1993	7.38	1.49	ND	ND	ND	ND	ND	ND (1)	_
MW-1	7/21/1993	7.68	1.19	ND	ND	ND	ND	ND	ND (1)	
MW-1	11/3/1993	7.83	1.04	ND	ND	ND	ND	ND	ND (1)	_
MW-1	2/1/1994	7.30	1.57	ND	ND	ND	ND	ND	ND (1)	-
MW-1	6/2/1994	7.43	1.44	ND	ND	ND	ND	ND	ND (1)	_
MW-1	9/1/1994	7.70	1.17	ND	ND	ND	ND	ND	ND (1)	_
MW-1	12/13/1994	6.90	1.97	ND	ND	ND	ND	ND		
MW-1	3/7/1995	7.30	1.57	0.06	3.8	ND	ND	ND	_	
MW-1	6/9/1995	7.87	1.00	0.09	12	0.8	0.5	1.3		
MW-1	9/21/1995	7.67	1.20	ND	4.1	ND	ND	ND	_	_
MW-1	12/18/1995	7.15	1.72	ND	ND	ND	ND	ND	_	_
MW-I	2/29/1996	6.74	2.13	0.09	1.4	0.5	ND	0.8	_	
MW-1	7/15/1996	7.76	1.11	-		_				
MW-1	1/7/1997	6.80	2.07	0.06	0.6	<0.5	<0.5	<0.5		_
MW-1	7/12/1997	7.67	1.20	-			_		_	
MW-1	1/26/1998	6.93	1.94	< 0.05	< 0.5	<0.5	<0.5	1.1		_
MW-1	7/3/1998	7.51	1.36		_	_	-		_	-
MW-1	1/13/1999	7.63	1,24	< 0.05	<0.5	<0.5	<0.5	<0.5	<u> </u>	_
MW-1	9/27/1999	7.77	1.10	_	_		_	_		-
MW-1	1/28/2000	6.85	2.02	< 0.05	<0.5	<0.5	<0.5	<0.5		<5.0
MW-1	5/16/2002	7.45	1.42	0.35	<0.5	<0.5	<0.5	<0.5	<u>-</u>	<1.0
MW-1	6/10/2003	7.32	4.15	<0.05	<0.5	<0.5	<0.5	<0.5		_
MW-1	11/19/2003	7.30	4.17	<0.050	<0.30	< 0.30	<0.50	<0.50		_
MW-1	6/23/2004	7.49	3.98	0.37	<1.0	<1.0	<1.0	<1.0	-	
MW-1	12/10/2004	6.27	5.20	<0.050	<0.5	<0.5	<0.5	<0.5	_	_
MW-1	7/21/2005	7.41	4.06	<0.05	<0.50	<0.50	<0.50	<0.50	_	
	 	6.28	5.19	<0.05	<0.50	<0.50	<0.50	<0.50	_	
MW-1	1/18/2006	U.Z8	J.17	~0.05		1 .0.50		<u> </u>		

		B (14)	Groundwater	TPH as		T				
	Depth to	Depth to Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
Well	Groundwater	i	+			1	l -	_		!
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(mg/L)	(µg/L)
MW-2	10/14/1988	7.29	0.85	11	23	20	-	16		-
MW-2	12/29/1989	6.87	1.27	4	200	6.7	ND	ND 12	0.22 (1)	· <u>-</u>
MW-2	5/28/1992	6.92	1.22	8.9	550	48	ND	13	ND (2)	
MW-2	9/3/1992	7.26	0.88	2.1	760	6.2	1.8	5.1	0.006 (2)	
MW-2	11/24/1992	7.28	0.86	4.2	370	15	3.4	9.5	ND (2)	
MW-2	3/9/1993	6.73	1.41	4.3	280	14	3.7	7.1	ND (1)	
MW-2	7/21/1993	7.02	1.12	3.4	250	9.6	2.5	11	ND(1)	
MW-2	11/4/1993	7.22	0.92	2.5	230	7.8	2.1	9.9	ND(1)	
MW-2	2/1/1994	6.93	1.21	3.4	240	17	ND	15	ND(1)	
MW-2	6/2/1994	6.86	1.28	3.0	150	9.8	3.0	10	ND(1)	-
MW-2	9/1/1994	7.10	1.04	2.1	120	9.8	2.0	9.6	ND(1)	
MW-2	12/13/1994	6.58	1.56	2.0	200	10	2.7	11	_	
MW-2	3/7/1995	6.69	1.45	3.0	500	15	5.8	16		_
MW-2	6/9/1995	7.00	1.14	2.1	300	14	5.8	13	-	
MW-2	9/21/1995	6.91	1.23	1.6	120	9.6	ND	15	_	<u> </u>
MW-2	12/18/1995	6.73	1.41	2.8	120	16	5.2	19		
MW-2	2/29/1996	6.36	1.78	1.7	170	15	2.9	17		_
MW-2	7/15/1996	7.11	1.03	2.8	160	22	3.5	17		_
MW-2	1/7/1997	6.40	1.74	3.0	350	25	8.1	24		
MW-2	7/12/1997	6.98	1.16	2.1	55	11	<2.5	18		
MW-2	1/26/1998	6.45	1.69	1.8	310	29	5.0	15	_	
MW-2	7/3/1998	6.91	1.23	1.9	85	9.3	1.8	17	_	
MW-2	1/13/1999	7.07	1.07	2.1	48	33	2.0	16	-	
MW-2	9/27/1999	7.22	0.92	1.5	20	6.8	2.6	11	_	
MW-2	1/28/2000	6.61	1.53	1.3	22	6.4	1.5	11		<5.0
MW-2	5/17/2002	6.95	1.19	3.3	25.4	<5.0	<5.0	<5.0		<10
MW-2	6/10/2003	6.71	4.09	1.6	52	2.3	32	9.1		_
MW-2	11/19/2003	6.95	3.85	3.7	9.7	<1.1	<1.1	7.5	_	
MW-2	6/23/2004	6.96	3.84	1.1	6.30	2.36	<1.0	7.41	_	
MW-2	12/9/2004	6.54	4.26	3.0	13.0	13.0	<0.5	24	_	_
MW-2	7/22/2005	6.89	3.91	2.7	5.84	<2.5	<2.5	5.81	_	
MW-2	1/19/2006	6.33	4.47	3.6	15.0	<2.5	<2.5	11.2	_	
TAT AA -T-	1/17/2000									200000000000000000000000000000000000000

	Depth to	Depth to	Groundwater	TPH as						1
Well	Groundwater	Groundwater	Elevation	gasoline	Вепzепе	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(mg/L)	(µg/L)
MW-3	10/14/1988	8.25	0.88	3.4	ND	ND		2.8	_	
MW-3	12/29/1989	7.79	1.34	ND	ND	ND	ND	ND	0.205 (1)	-
MW-3	5/28/1992	7.83	1.30	ND	0.8	0.5	ND	ND	0.016 (2)	_
MW-3	9/3/1992	8.22	0.91	ND	ND	ND	ND	ND	0.033 (2)	_
MW-3	11/24/1992	8.29	0.84	ND	ND	ND	ND	ND	0.011 (2)	_
MW-3	3/9/1993	7.30	1.83	0.1	1.8	ND	ND	ND	ND(1)	-
MW-3	7/21/1993	7.87	1.26	ND	ND	ND	ND	ND	ND(1)	
MW-3	11/4/1993	8.23	0.90	0.07	0.6	0.5	ND	ND	ND(1)	
MW-3	2/1/1994	7.56	1.57	ND	ND	ND	ND	ND	ND(1)	
MW-3	6/2/1994	7.46	1.67	0.06	ND	ND	ND	ND	ND(1)	_
MW-3	9/1/1994	7.83	1.30	0.07	1.7	0.9	ND	ND	ND(1)	
MW-3	12/13/1994	7.07	2.06	0.06	1.4	ND	ND	ND		_
MW-3	3/8/1995	7.27	1.86	0.06	1.5	ND	ND	ND		_
MW-3	6/9/1995	7.79	1.34	0.10	5.7	ND	ND	ND	_	_
MW-3	9/21/1995	7.87	1.26	ND	1.5	ND	ND	ND		_
MW-3	12/18/1995	7.30	1.83	ND	1.3	ND	ND	ND	_	_
MW-3	2/29/1996	6.84	2.29	ND	2.1	0.6	ND	0.7		_
MW-3	7/15/1996	7.79	1.34						_	-
MW-3	1/7/1997	6.62	2.51	0.05	1.0	<0.5	<0.5	<0.5		
MW-3	7/12/1997	7.83	1.30	_					_	
MW-3	1/26/1998	6.60	2.53	<0.05	0.8	<0.5	<0.5	<0.5	_	_
MW-3	7/3/1998	7.48	1.65	_			_	_		-
MW-3	1/13/1999	7.63	1.50	<0.05	<0.5	<0.5	<0.5	<0.5		_
MW-3	9/27/1999	7.94	1.19	_					-	
MW-3	1/28/2000	7.12	2.01	< 0.05	<0.5	<0.5	<0.5	<0.5		<5.0
MW-3	6/5/2003	7.53	4.23	<0.05	< 0.5	<0.5	<0.5	<0.5		-
MW-3	11/19/2003	7.83	3.93	0.16	< 0.54	<0.54	<0.55	<1.6	_	
MW-3	6/23/2004	7.65	4.11	<0.05	<1.0	<1.0	<1.0	<1.0		
MW-3	12/8/2004	7.53	4.23	< 0.050	<0.5	<0.5	<0.5	<0.5		
MW-3	7/20/2005	7.62	4.14	< 0.10	<1.0	<1.0	<1.0	<1.0	-	
MW-3	1/19/2006	6.76	5.00	< 0.05	< 0.50	<0.50	<0.50	0.71		

	Depth to	Depth to	Groundwater	TPH as	,	T-1	Ethylbenzene	Xylenes	Lead	мтве
Well	Groundwater	Groundwater	Elevation	gasoline	Вепzепе	Toluene	, ,	•		
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(mg/L)	(μg/L)
MW-4	10/14/1988	8.33	0.74	4.6	1.2	ND		2.2		
MW-4	12/29/1989	8.08	0.99	0.5	0.7	ND _	ND	ND	ND (1)	
MW-4	5/28/1992	8.19	0.88	0.27	8.8	1	ND	3.2	0.030 (2)	
MW-4	9/3/1992	8.37	0.70	0.20	4.5	4.4	ND	1.9	0.022 (2)	
MW-4	11/24/1992	8.28	0.79	0.14	3.2	3.2	ND	1.0	0.005 (2)	
MW-4	3/9/1993	7.98	1.09	0.47	10	ND	ND	2.5	ND (1)	
MW-4	7/21/1993	8.17	0.90	0.28	4.4	5.9	ND	ND	ND(1)	_
MW-4	11/4/1993	8.14	0.93	0.08	1.3	1.6	ND	ND	ND(1)	
MW-4	2/1/1994	7.79	1.28	0.08	ND	ND	ND	ND	ND(1)	
MW-4	6/2/1994	7.53	1.54	0.30	3.1	2.9	ND	0.8	ND(1)	
MW-4	9/1/1994	7.69	1.38	0.12	1.6	ND	ND	ND	ND(1)	
MW-4	12/13/1994	6.70	2.37	ND	ND	ND	ND	ND_		_
MW-4	3/8/1995	6.83	2.24	0.09	ND	ND	ND	ND		_
MW-4	6/9/1995	7.66	1.41	0.19	ND	ND	ND	ND	<u> </u>	-
MW-4	9/21/1995	7.93	1.14	0.09	ND	ND	ND	ND	<u> </u>	-
MW-4	12/18/1995	6,98	2.09	_		_				_
MW-4	2/29/1996	6.54	2.53	0.14	1.6	1.0	ND	0.6	_	
MW-4	7/15/1996	7.74	1.33	_	_	_				_
MW-4	1/7/1997	6.46	2.61	0.09	1.0	0.5	<0.5	<0.5	_	
MW-4	7/12/1997	7.82	1.25	_	_]			-	
MW-4	1/26/1998	6.67	2.40	0.09	1.1	0.8	<0.5	<0.5	_	
MW-4	7/3/1998	7.45	1.62	_						
MW-4	1/13/1999	7.51	1.56	0.12	1.1	0.62	<0.5	0.57	_	
MW-4	9/27/1999	7.88	1.19	_			-			_
MW-4	1/28/2000	6.73	2.34	0.072	<0.5	<0.5	<0.5	<0.5	_	<5.0

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(μg/L)
MW-5	10/14/1988	8.04	0.89	3.2	ND	ND		ND		
MW-5	12/29/1989	7.40	1.53	ND	ND	ND	ND	ND	ND (1)	
MW-5	5/28/1992	7.53	1.40	ND	ND	ND	ND	ND	0.008 (2)	-
MW-5	9/3/1992	8.02	0.91	ND	ND	ND	ND	ND	0.034 (2)	
MW-5	11/24/1992	7.75	1.18	ND	ND	ND	ND	ND	0.011 (2)	_
MW-5	3/9/1993	6.91	2.02	ND	ND	ND	ND	ND	ND (1)	_
MW-5	7/21/1993	7.57	1.36	ND	ND	ND	ND	ND	ND(1)	_
MW-5	11/4/1993	7.77	1.16	ND	ND	ND	ND	ND	ND(1)	
MW-5	2/1/1994	7.05	1.88	ND	ND	ND	ND	ND	ND(1)	
MW-5	6/2/1994	7.18	1.75	ND	ND	ND	ND	ND	ND(1)	
MW-5	9/1/1994	7.53	1.40	ND	ND	ND	ND	ND		
MW-5	3/8/1995	6.67	2.26	ND	ND	ND	ND	ND		_
MW-5	6/9/1995	7.33	1.60	ND	ND	ND	ND	ND		
MW-5	9/21/1995	7.67	1.26	ND	ND	ND	ND	ND		
MW-5	12/18/1995	6.62	2.31	_	-	_	_			
MW-5	2/29/1996	6.16	2.77	ND	ND	ND	ND	ND		_
MW-5	7/15/1996	7.47	1.46	_		-				
MW-5	1/7/1997	6.11	2.82	< 0.05	<0.5	<0.5	<0.5	<0.5	-	
MW-5	7/12/1997	7.61	1.32	_		_	_			
MW-5	1/26/1998	6.17	2.76	<0.05	<0.5	<0.5	<0.5	<0.5		_
MW-5	7/3/1998	7.23	1.70		-		_			
MW-5	1/13/1999	7.27	1.66	<0.05	<0.5	<0.5	<0.5	<0.5		
MW-5	9/27/1999	7.76	1.17	_	-		_	_	_	
MW-5	1/28/2000	6.43	2.50	< 0.05	<0.5	<0.5	<0.5	<0.5	<u> </u>	<5.0

Well	Depth to Groundwater	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Веплепе	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(mg/L)	(µg/L)
MW-6	12/29/1989	5.02	1.11	1.1	5.4	4.5	ND	ND	ND (1)	
MW-6	3/9/1993	5.10	1.03	2.3	2.3	2.8	ND	3.1	ND (1)	<u> </u>
MW-6	7/21/1993	5.23	0.90	0.59	ND	7.6	ND	ND	ND(1)	
MW-6	11/4/1993	5.25	0.88	1.5	ND	1.2	ND	0.7	ND(1)	
MW-6	2/1/1994	5.05	1.08	1.9	2.5	3.9	1.6	1.1	ND(1)	
MW-6	6/2/1994	4.49	1.64	1.3	ND	1	ND	ND	ND(1)	
MW-6	9/1/1994	4.53	1.60	2.2	ND	1.7	ND	ND	ND(1)	_
MW-6	12/13/1994	4.27	1.86	0.66 (3)	ND	ND	ND	ND	_	_
MW-6	3/8/1995	3.37	2.76	1.0 (3)	ND	ND	ND	ND		
MW-6	6/9/1995	4.40	1.73	1.5	ND	3.3	ND	ND	_	
MW-6	9/21/1995	4.69	1.44	0.28	ND	ND	ND	ND	_	_
14317.6	12/18/1995	4.42	1 71	_	_	_	_	_	_	

Pacific Supply Company, 1735 24th Street, Oakland, California

	Depth to	Depth to	Groundwater	TPH as	_			W1	Fand	MTDE
Well	Groundwater	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(µg/L)
MW-7	12/29/1989	8.35	-3.32	ND	ND	ND	ND	ND	0.235 (1)	_
MW-7	3/9/1993	13.60	-8.57	ND	ND	ND	ND	ND	ND (1)	
MW-7	7/21/1993	12.59	-7.56	ND	ND	ND	ND	ND	ND(1)	_
MW-7	11/4/1993	9.84	-4.81	ND	ND	ND	ND	ND	ND(1)	_
MW-7	2/1/1994	10.38	-5.35	ND	ND	ND	ND	ND	ND(1)	
MW-7	6/2/1994	10.10	-5.07	ND	ND	ND	ND	ND	ND(1)	
MW-7	9/1/1994	9.63	-4.60	ND	ND	ND	ND	ND	ND(1)	
MW-7	12/13/1994	11.27	-6.24	ND	ND	ND	ND	ND	<u> </u>	
MW-7	3/7/1995	9.68	-4.65	ND	ND	ND	ND	ND	<u> </u>	_
MW-7	6/9/1995	9.37	-4.34	ND	ND	ND	ND	ND		<u> </u>
MW-7	9/21/1995	9.43	-4.40	ND	ND	ND	ND	ND		_
MW-7	12/18/1995	13.28	-8.25	_	_	_	_			-
MW-7	2/29/1996	11.70	-6.67	ND	ND	ND	ND	ND		-
MW-7	7/15/1996	11.12	-6.09	_	_	_				
MW-7	1/7/1997	14.35	-9.32	<0.05	<0.5	<0.5	<0.5	<0.5		-
MW-7	7/12/1997	15.12	-10.09	_		_			_	<u> </u>
MW-7	1/26/1998	15.28	-10.25	<0.05	<0.5	<0.5	<0.5	<0.5		-
MW-7	7/3/1998	14.10	-9.07	_	_	_			_	_
MW-7	1/13/1999	14.55	-9.52	<0.05	<0.5	<0.5	<0.5	<0.5	_	
MW-7	9/27/1999	14.03	-9.00	-	_			_		_
MW-7	1/28/2000	10.91	-5.88	< 0.05	<0.5	<0.5	<0.5	<0.5		<5.0

MTBE = methyl tertiary butyl ether. TPH = total petroleum hydrocarbons.

MSL = mean seal level.

Groundwater elevations prior to 2003 based on the following well casing elevations in feet above MSL:

MW-1 (8.87'), MW-2 (8.14'), MW-3 (9.13'), MW-4 (9.07'), MW-5 (8.93'), MW-6 (6.13') and MW-7 (5.03').

New survey data was obtained on June 23, 2003 by Phelps and Associates Land Surveyors.

June 2003 water levels were measured on June 5, 2003.

June 2004 water levels were measured on June 22, 2004.

December 2004 water levels were measured on December 8, 2004.

⁽¹⁾⁼Organic Lead, (2)=Total Lead, and (3)=chromatographic peak array does not match gasoline standard.

ND = not detected at laboratory reporting limit. <= less than given laboratory reporting limit.

 $[\]mu$ g/L = micrograms per liter. mg/L = milligrams per liter. = not requested.

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-1	11/3/1993		_	_	3	1600	19	1.1	16		-
VRW-1	6/10/2003	7.31	11.18	3.87	0.44	5.9	<0.5	<0.5	1.9	-	
VRW-1	11/19/2003	7.33	11.18	3.85	1.2	19	<0.54	<0.55	6,3	-	<u> </u>
VRW-1	6/22/2004	7.32	11.18	3.86	0.32	3.23	<1.0	<1.0	3.36	-	-
VRW-1	12/9/2004	6.93	11.18	4.25	0.32	8.0	<3	<3	3.7	-	<u> </u>
VRW-1	7/22/2005	7.25	11.18	3.93	0.69	5.35	1.27	<0.50	3.66	-	· •
VRW-1	1/19/2006	6.63	11.18	4.55	0.53	6.98	1.41	<0.50	3.18	=	
VRW-2	11/4/1993	_		_	7.2	3,300	600	2.4	870	•	-
VRW-2	5/17/2002	_	-]	2.8	471	<10	<10	<10	<20	<10 to <20
VRW-2	6/9/2003	6.87	11.08	4.21	0.47	38	2.8	<1.0	<1.0	-	
VRW-2	11/19/2003	7.00	11.08	4.08	1.3	51	<0.54	< 0.55	4.0	-	-
VRW-2	6/25/2004	7.00	11.08	4.08	0.24	274	4,10	4.11	8.22	-	_
VRW-2	12/9/2004	6,45	11.08	4.63	< 0.050	9.6	4.2	2.5	4.3	-	
VRW-2	7/21/2005	6.93	11.08	4.15	2.1	102	1.43	0.84	3.81	-	•
VRW-2	1/18/2006	5.83	11.08	5.25	3.8	280	<2.5	3.81	7.54	-	-
VRW-3	11/4/1993		_	_	5.7	120	41	1.1	380	-	-
VRW-3	5/17/2002	_	-	-	0.42	10.9	<0.5	<0.5	1.07	<1.0	<0.50 to <1.0
VRW-3	6/9/2003	7.41	11.62	4.21	0.061	4.8	<0.5	<0.5	<0.5	-	-
VRW-3	11/19/2003	7.48	11.62	4.14	0.16	1.7	<0.54	< 0.55	2.7		<u>-</u>
VRW-3	6/25/2004	7.58	11.62	4.04	0.12	2.00	< 0.50	< 0.50	1.00	-	-
VRW-3	12/10/2004	6.34	11.62	5.28	0.22	27	3.7	1.0	3.1	-	-
VRW-3	7/22/2005	7.50	11.62	4.12	0.11	<1.0	<1.0	<1.0	2.02	-	-
VRW-3	1/18/2006	6.37	11.62	5.25	0.18	230	< 0.50	<0.50	1.46	<u> </u>	-
VRW-4	11/4/1993	_	_	_	9.0	4,400	900	5.4	990	-	-
VRW-4	5/15/2002	_	_	-	11	4,270	741	512	1,130	<50	<25 to <50
VRW-4	6/5/2003	7.01	11.33	4.32	2.2	1,200	100	12	89	-	-
VRW-4	11/19/2003	7.44	11.33	3.89	1.7	210	2.4	<2.2	36	-	-
VRW-4	6/22/2004	7.20	11.33	4.13	14	4,540	611	739	1,170	-	<u> </u>
VRW-4	12/8/2004	6.99	11.33	4.34	2.7	780	68	90	160		-
VRW-4	7/20/2005	7.12	11.33	4.21	19	3,740	381	480	643	-	-
VRW-4	1/19/2006	6.29	11.33	5.04	7.8	1,670	196	270	324	-	-

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-5	11/4/1993	<u> </u>			0.90	68	33	2.5	32		-
VRW-5	5/16/2002	_	-	_	0.87	44.3	<5.0	<5.0	<5.0	<10	<5.0 to <10
VRW-5	6/9/2003	7.33	11.56	4.23	0.93	90	<1.0	14	0.16	•	-
VRW-5	11/19/2003	7.53	11.56	4.03	2.9	250	<1.1	24	41	-	-
VRW-5	6/23/2004	7.47	11.56	4.09	0.72	40.5	<1.0	1.17	8.04	-	<u> </u>
VRW-5	12/10/2004	7.11	11.56	4.45	0.72	60	10	<3	33	•	-
VRW-5	7/21/2005	7.38	11.56	4.18	1.6	102	3,83	4.62	12.4	-	-
VRW-5	1/19/2006	6.29	11.56	5.27	1.8	65.4	<2.5	31.4	33.4	-	_
VRW-6	11/4/1993	-	_	_	0.41	6.6	1.0	ND	31	-	-
VRW-6	5/15/2002	_	-	_	0.73	178	4.58	1.41	6.10	<1.0	<0.50 to <1.0
VRW-6	6/6/2003	7.21	11.43	4.22	< 0.05	< 0.5	<0.5	<0.5	<0.5	-	-
VRW-6	11/19/2003	7.39	11.43	4.04	0.21	13	<0.54	1.0	2.5	-	•
VRW-6	6/23/2004	7.36	11.43	4.07	0.42	43.4	3.60	1.69	13.0	-	-
VRW-6	12/9/2004	6.71	11.43	4.72	0.14	8.0	21	< 0.5	3.6	-	-
VRW-6	7/21/2005	7.32	11.43	4.11	0.33	18.3	1.13	0.95	5.05	-	-
VRW-6	1/19/2006	5.85	11.43	5.58	0.13	3.96	<0.50	< 0.50	1.25	-	-
VRW-7	11/4/1993		_	_	0.10	ND	ND	ND	ND	-	-
VRW-7	5/16/2002	_	_	_	1.6	28.9	0.980	< 0.50	< 0.50	<1.0	<0.50 to <1.0
VRW-7	6/6/2003	7.47	11.70	4.23	0.36	19	1.3	<0.5	2.2	-	
VRW-7	11/19/2003	7.78	11.70	3.92	1.1	14	<0.54	1.7	5.6	-	-
VRW-7	6/22/2004	7.61	11.70	4.09	1.3	130	8.06	9.81	15.9	-	-
VRW-7	12/9/2004	7.54	11.70	4.16	0.34	28	<3	<3	5.0	-	-
VRW-7	7/21/2005	7.54	11.70	4.16	1.7	48.1	2.76	2.56	6.94	-	
VRW-7	1/19/2006	6.70	11.70	5.00	1.6	86.8	3.63	6.89	9.04	-	-
VRW-8	11/4/1993	_	_	_	5.9	460	54	ND	53	-	-
VRW-8	5/16/2002		_	_ }	3.3	248	16.0	<10	<10	<20	<10 to <20
VRW-8	6/6/2003	7.42	11.62	4.20	1.8	70	10	11	6.1		•
VRW-8	11/19/2003	7.85	11.62	3.77	3.6	36	<2.7	<2.7	4.3	-	-
VRW-8	6/23/2004	7.56	11.62	4.06	2.1	115	11.8	<5.0	18.2	-	-
VRW-8	12/9/2004	7.41	11.62	4.21	1.3	30	9.0	♡	7.6	-	-
VRW-8	7/21/2005	7.49	11.62	4.13	4.1	24.8	3.44	<2.5	7.34	-	-
VRW-8	1/19/2006	6.73	11.62	4.89	4.8	18.1	4.26	<2.5	8.30		7

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Pacific Supply Company, 1735 24th Street, Oakland, California

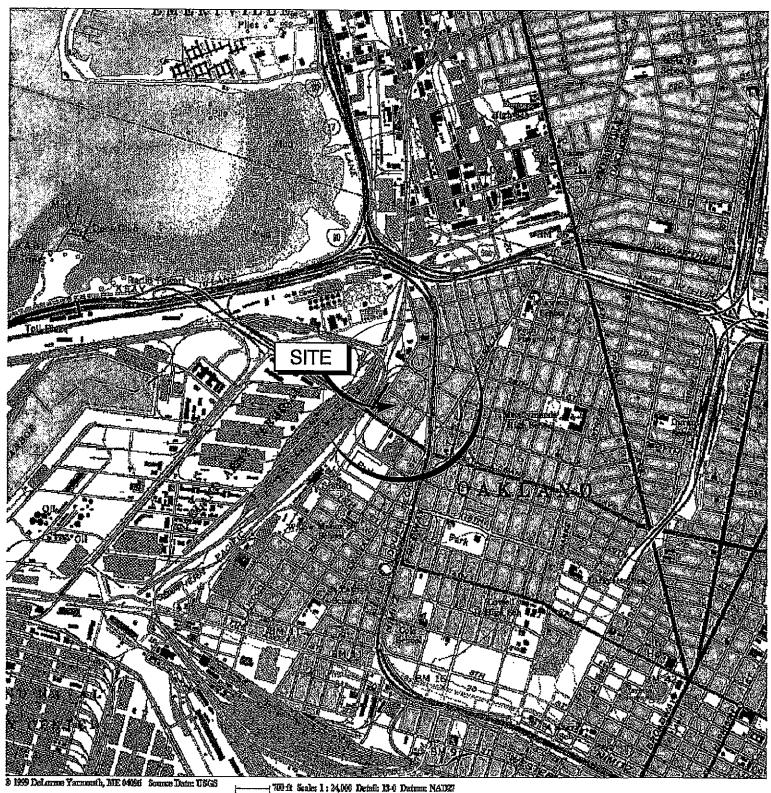
Sample ID	Depth to Groundwater Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (μg/L)	МТВЕ (µg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-9	11/4/1993		_	-	0.47	36	18	ND	1.0		•
VRW-9	5/16/2002			-	0.080	0.990	2.00	<0.50	5.93	<1.0	<0.50 to <1.0
VRW-9	6/6/2003	7.67	11.87	4.20	0.58	10	4.4	4.9	<0.50	-	
VRW-9	11/19/2003	8.01	11.87	3.86	0.86	<1.1	<1.1	<1.1	5.5	-	
VRW-9	6/22/2004	7.76	11.87	4.11	0.61	<1.0	1.35	<1.0	5,55	-	<u> </u>
VRW-9	12/9/2004	7.51	11.87	4.36	0.57	8.8	10	<0.5	5.5	-	
VRW-9	7/21/2005	7.71	11.87	4.16	0.66	<1.0	<1.0	<1.0	2.83	-	<u>-</u>
VRW-9	1/19/2006	6.94	11.87	4.93	1.0	2.04	<1.0	<1.0	4.91	-	-

 $mg/L = milligrams \ per \ liter$

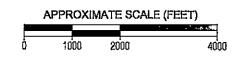
 $\mu g/L = micrograms per liter$

na = not analyzed.

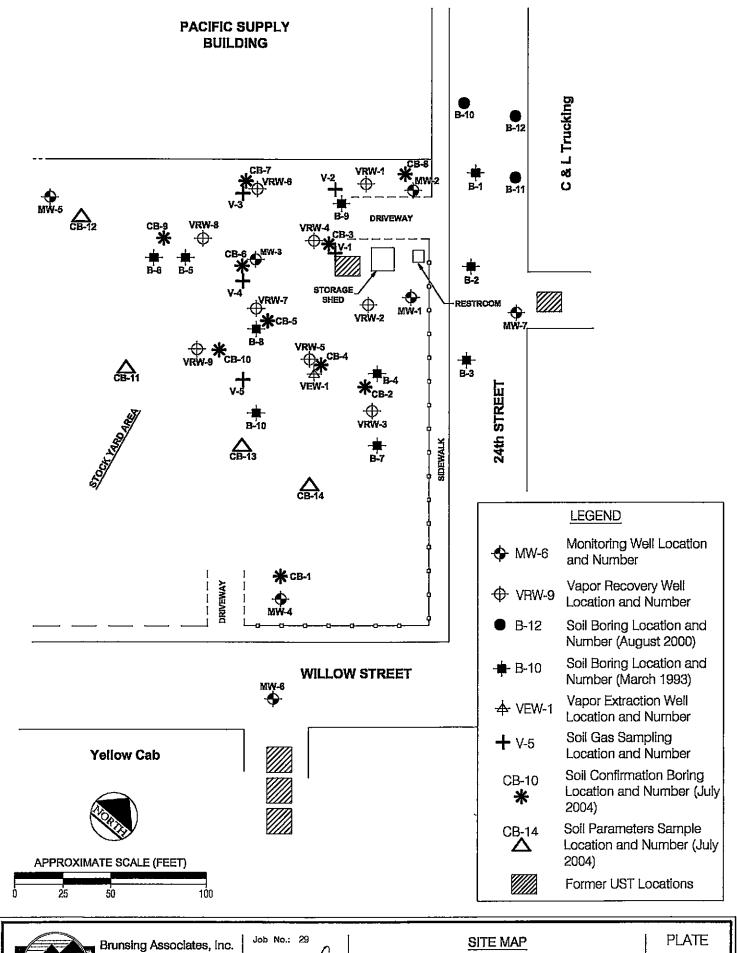
ND = not detected above laboratory reporting limits.


MSL = Mean Sea Level

< = less than the specified laboratory reporting limit


June 2004 groundwater elevations were collected on June 22, 2004.

December 2004 groundwater elevations were collected on December 8, 2004.

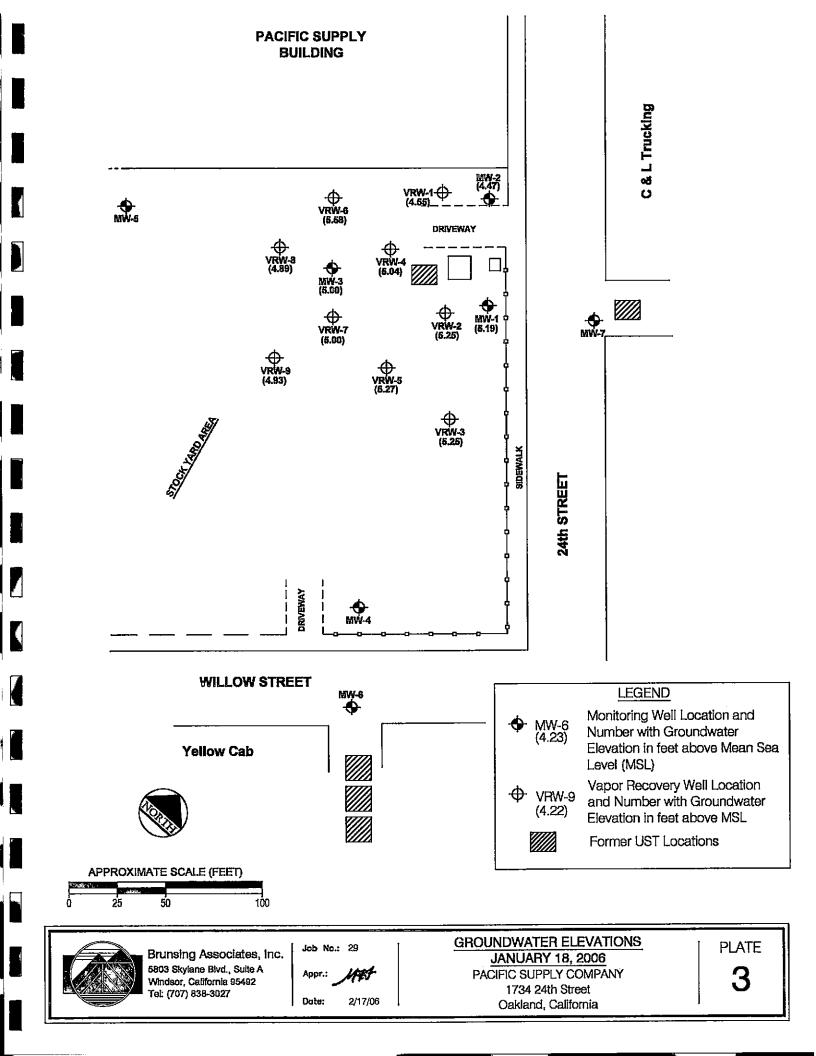

Brunsing Associates, Inc. 5803 Skylane Blvd., Suite A Windsor, Callfornia 95492 Tel: (707) 838-3027

Job No.: 029.2

1/8/04

VICINITY MAP PACIFIC SUPPLY COMPANY Oakland, California

PLATE



Brunsing Associates, Inc. 5803 Skylane Blvd., Suite A Windsor, California 95492 Tel: (707) 838-3027

PACIFIC SUPPLY COMPANY 1734 24th Street Oakland, California

2

APPENDIX A

Monitoring Well Sampling Protocol and Field Reports

Groundwater Sampling Protocol

Monitoring Wells

Prior to purging a monitoring well, groundwater levels are measured with a Solinst electric depth measurement device, or an interface probe, in all wells that are to be measured. At sites where petroleum hydrocarbons are possible contaminants, the well is checked for floating product using a clear bailer, a steel tape with water/oil paste, or an interface probe, during the initial sampling round. If floating product is measured during the initial sampling round or noted during subsequent sampling rounds, floating product measurements are continued.

After the water level and floating product measurements are complete, the monitoring well is purged until a minimum of three casing volumes of water are removed, water is relatively clear of sediment, and pH, conductivity, and temperature measurements of the water become relatively stabile. If the well is purged dry, groundwater samples are collected after the water level in the well recovers to at least 80 percent of the original water column measured in the well prior to sampling, or following a maximum recovery period of two hours. The well is purged using a factory-sealed, disposable, polyethylene bailer, a four-inch diameter submersible Grundfos pump, a two-inch diameter ES-40 purge pump, or a peristaltic pump. The purge water is stored on-site in clean, 55-gallon drums.

A groundwater sample is collected from each monitoring well following re-equilibration of the well after purging. The groundwater sample is collected using a factory-sealed disposable, polyethylene bailer with a sampling port, or a factory-sealed Teflon bailer. A factory provided attachment designed for use with volatile organic compounds (VOCs) is attached to the polyethylene bailer sampling port when collecting samples to be analyzed for VOCs. The groundwater sample is transferred from the bailer into sample container(s) that are obtained directly from the analytical laboratory.

The sample container(s) is labelled with a self-adhesive tag. The following information is included on the tag:

- Project number
- Sample number
- Date and time sample is collected
- Initials of sample collector(s).

Individual log sheets are maintained throughout the sampling operations. The following information is recorded:

- Sample number
- Date and time well sampled and purged
- Sampling location
- Types of sampling equipment used
- Name of sampler(s)
- Volume of water purged.

Following collection of the groundwater sample, the sample is immediately stored on blue ice in an appropriate container. A chain-of-custody form is completed with the following information:

- Date the sample was collected
- Sample number and the number of containers
- Analyses required
- Remarks including preservatives added and any special conditions.

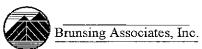
The original copy of the chain-of-custody form accompanies the sample containers to a California-certified laboratory. A copy is retained by BAI and placed in company files.

Sampling equipment including thermometers, pH electrodes, and conductivity probes are cleaned both before and after their use at the site. The following cleaning procedures are used:

- Scrub with a potable water and detergent solution or other solutions deemed appropriate using a hard bristle brush
- Rinse with potable water
- Double-rinse with organic-free or deionized water
- Package and seal equipment in plastic bags or other appropriate containers to prevent contact with solvents, dust, or other contaminants.

In addition, the pumps are cleaned by pumping a potable water and detergent solution and deionized water through the system. Cleaning solutions are contained on-site in clean 55-gallon drums.

Domestic and Irrigation Wells


Groundwater samples collected from domestic or irrigation wells are collected from the spigot that is the closest to the well. Prior to collecting the sample, the spigot is allowed to flow for at least 5 minutes to purge the well. The sample is then collected directly into laboratory-supplied containers, sealed, labeled, and stored on blue ice in an appropriate container, as described above. A chain-of-custody form is completed and submitted with the samples to the analytical laboratory.

UST	Yes
Fund Site:	No

FIELD REPORT

IOD NO.	20	PRO IFOT. Paris County		PAGE OF
JOB NO:	29 /	PROJECT: Pacific Supply	2,332 04021	
		SUBJECT: GW Monitoring		Total Time:
DATE:	1/18/04	PROJECT PHASE NUMBER:		End. Mileage: <u>/2/208/</u>
	,	VEHICLE USED: 2003 CHOW		Beg. Mileage: <u>/2/900</u>
******************		1999 Lange - 7x4	TOTAL	MILEAGE: 18/
	SEASSISTIS	u ormanicum acustos estas proces		
TIME	DESCRIPTIO	N OF WORK AND CONVERSATION RECORD		
1030	Avrive	Low site		
	<	E / 1 S. 19		
	Sec up	For GW Sampling		
	oper ed	all welly		
			5 (- ()	100 (1 2 2
	Measur	ed Two Rounds of DTW	ic wells	mw-light +
	VRW-	1,2,3,4,5,6,7		
		med sampling on welly -		
	Stored	Purge hatter in Drums on	. The old	Remediation
	System	~		
	τ	all hells		
	hoaded	Requipment		
\$ 1600	End 1	WOVK		
		•		
		<u> </u>	····	
				A Seed
			DRUM COU	N1:
			Water =	Devlpmt Water =
			Soil =	Decon Water =

WATER LEVELS

SHEET.___OF__

NUMBER PRODUCT TO W MW-1 6.7 MW-2 6.3 MW-3 6.7 VRW-1 6.6 VRW-2 5.8 VRW-3 6.3 VRW-4 6.3 VRW-5 6.7 VRW-6 5.6 VRW-7 6.7 VRW-8 6.7 VRW-9 6.6 MW-1 6.7 MW-3 6.7 VRW-1 6.6	ANCE TIME (24 HOLD) 27 123 9 25 123 9 25 123 9 27 123 9 29 124 9 29 124 9 29 124 9 21 124 9	E EQUILIBRATED UR) (CHECK FOR YES O F O O O O O O O O O O O	0	1/18/06 NOTES	
NUMBER PRODUCT TO W MW-1 6.7 MW-2 6.3 MW-3 6.7 VRW-1 6.6 VRW-2 5.8 VRW-3 6.3 VRW-4 6.3 VRW-5 6.7 VRW-7 6.7 VRW-8 6.7 VRW-9 6.7 MW-1 6.7 MW-3 6.7 VRW-1 6.7 VRW-2 5.8	ATER (24 HOLD R) (24 HOLD R) (24 HOLD R) (24 HOLD R) (23 S) (23 S) (23 S) (23 S) (24 S	UR) (CHECK FOR YES)	NOTES	
MW-1 MW-2 MW-3 VRW-1 VRW-2 VRW-3 VRW-4 VRW-5 VRW-6 VRW-7 VRW-8 VRW-9 MW-1 MW-2 MW-3 VRW-1 MW-2 MW-3 VRW-1 VRW-2 S.8 S.8 S.8 S.8 S.8 S.8 S.8 S.	27 123 5 33 123 5 33 123 6 3 123 6 3 123 6 3 123 6 3 123 6 3 124 6 4 124 6 7 124 6 7 124 6	0 / 5 6 7 9 9		NOTES	
MW-2 MW-3 VRW-1 VRW-2 VRW-3 VRW-4 VRW-5 VRW-6 VRW-7 VRW-8 VRW-9 MW-1 MW-2 MW-3 VRW-1 VRW-2 S. 8 S	3 /239 75 /235 63 /236 3 /236 3 /236 3 /236 3 /236 3 /246 4 /245 7 /246	£			
MW-3 VRW-1 VRW-2 VRW-3 VRW-4 VRW-5 VRW-6 VRW-7 VRW-8 VRW-9 MW-1 MW-2 MW-3 VRW-1 VRW-2 MW-2 MW-1 VRW-2 MW-2 MW-2 MW-3 VRW-2 MW-2 MW-3 VRW-2 MW-3 VRW-2 MW-2 MW-3 VRW-2 MW-2 MW-3 VRW-1	75 1235 63 1236 3 1236 3 1236 3 1246 3 0 1246 4 1246 7 3 1246	7			
VRW-1 VRW-2 VRW-3 VRW-4 VRW-5 VRW-6 VRW-7 VRW-8 VRW-9 MW-1 MW-2 MW-3 VRW-1 VRW-2 VRW-2 S. 8	3 1237 36 1239 29 1249 30 1249 49 1249 73 1249	7			
VRW-2 VRW-3 VRW-4 VRW-5 VRW-6 VRW-7 VRW-8 VRW-9 MW-1 MW-2 MW-3 VRW-1 VRW-2 VRW-2 VRW-2 VRW-2 VRW-2 VRW-2 VRW-2 VRW-3 VRW-2 VRW-2 VRW-2	3 1237 36 1239 29 1249 30 1249 49 1249 73 1249	7			
VRW-3 VRW-4 VRW-5 VRW-6 VRW-7 VRW-8 VRW-9 MW-1 MW-2 MW-3 VRW-1 VRW-2 VRW-2 VRW-2 VRW-2 VRW-2 VRW-2 VRW-3 VRW-1 VRW-2	36 1236 29 1246 30 1241 69 1243 71 1246 73 1246	9 0 ,			
VRW-4 VRW-5 VRW-6 VRW-7 VRW-8 VRW-9 MW-1 MW-2 MW-3 VRW-1 VRW-2 VRW-2 VRW-2 VRW-2 VRW-2 VRW-2 VRW-2	29 /240 30 /24/ 69 /243 71 /245 73 /240	ó '			
VRW-5 VRW-6 VRW-7 VRW-8 VRW-9 MW-1 MW-2 MW-3 VRW-1 VRW-2 VRW-2 S. S	30 1241 69 1243 71 1245 73 1246	5-			
VRW-6 VRW-7 VRW-8 VRW-9 MW-1 MW-2 MW-3 VRW-1 VRW-2 S. S	69 1243 71 1245 73 1246				
VRW-6 VRW-7 VRW-8 VRW-9 MW-1 MW-2 MW-3 VRW-1 VRW-2 S. S	69 1243 71 1245 73 1246				
VRW-8 VRW-9 6.7 MW-1 MW-2 MW-3 VRW-1 VRW-2 5.8	73 124				
VRW-8 VRW-9 6.7 MW-1 MW-2 MW-3 VRW-1 VRW-2 5.8	73 124	4			
MW-1 6, 6 MW-2 6, 7 MW-3 6, 7 VRW-1 6, 6 VRW-2 5, 8					
MW-2 6 7 MW-3 6 7 VRW-1 6 6	94 124				
MW-2 6 7 MW-3 6 7 VRW-1 6 6	28/30	8 1			
MW-3		7 /			
VRW-1 6 - 6	76 13/0				
VRW-2 5. S					
	83 /3/2				
	37 13 /	2 /	<u> </u>	····	
VRW-4 6,2	13/4				
	29 /3/4	<u></u>			
VRW-6 5.		8	, .		
VRW-7 (0)		9 1			
VRW-8 6.7			2	•	
VRW-9 6.7		2 10 0			
1RW-6 5.5	85 132	2 -			
11/2 8 2	<u> </u>	71			

WELL SAMPLING SHEET

PROJECT: Pacific Supply PROJECT NUMBER: 29
WELL # MW-1 PRECIP. IN LAST 5 DAYS: Yes WIND WO DATE: 1/18/06
STARTING TIME: 1338 FINISHING TIME: 1415 INITIALS: 166
CALCULATION OF PURGE VOLUME A
2" WELL DEPTH: 19.00 - D.T.W. 6.28 = H20 COLUMN: 12.72 X 0.5 = 6.36
4" WELL DEPTH: D.T.W = H20 COLUMN: X 2.0 = O
THEREFORE TOTAL PURGE GALLONS EQUALS S S
FIELD MEASUREMENTS
GALLONS TIME REMOVED P.H. CONDUCTIVITY TEMP. OBSERVATIONS
TIME REMOVED PH CONDUCTIVITY TEMP. OBSERVATIONS 1341 1 7.31 4.94 17.3 Black Organic oder
1347 3 7.33 2.68 16.7 Cloudy organic oder
1359 6 7.32 1684 17.0 Cloudy organick order
1359 6 7.32 /684 17.0 CCTAG OVJ-nick order
SAMPLING: SAMPLE ANALYSIS: TPH-Gas, 8260B (BTEX, petro oxy & Pb scav)
SAMPLE TIME: DID WELL GO DRY? NO
WATER LEVELS: NOTES:
TIME D.T.W.
1407 6.35

WELL SAMPLING SHEET OF

PROJECT:	: Pacific Si	upply					PROJECT NUMBER: 29	
WELL#	MW-2	PRECIP. IN	NLAST 5 DAYS:	Yes	WIND	No	DATE: ///5/06	
STARTIM	G TIME(/	740	FINISHING	TIME:			INITIALS:	
CALCULA	TION OF PL	JRGE VOLUI	ME					
2" WELL	DEPTH		D.T.W.		T = H20 €	COLUMN:	X 0.5 =	G A I
4" WELL	DEPTH	20.00		6.33			i3,67 X2.0 = 27.34	L O
THEREFC	RE TOTAL	 L PURGE G	SALLONS EQU		_ [27]	N S
			<u>F1</u>	ELD MEA	ASURE	MENTS	<u>S</u>	
TIME	GALLONS REMOVED	рН	CONDUCTIVITY	<u> </u>			OBSERVATIONS	
		7 7 7					OBSERVATIONS	
0743		7,32	2.98	17.8	4	Con	dy organic orde	<u></u>
752	14	7.18	2.59	18-4			g, organicora	
- <u></u> -	,						,	
0907	27	7,20	1659	17.3	C60	udg	organic ocdo	
			 				/	
SAMPLIN	 NG:	SAMPLE	E ANALYSIS:	TPH-Gas 8	POROR (RTE	- notro	oxy & Pb scav)	
				8:08				
			II Lake Little,	0,00	י חוט	WELL GO	DRY? 170	
WATER L	_EVELS:	NOTES:						
TIME	D.T.W.							
0820	6.42							
		- 1)	appea-	es The	a 7 g	a55	are coming on 7	7
		<u>0</u> +	1.906	-T:00	Whee	1 V F	ill Voa's	
	-	<u> </u>	ery no	a-a 1.	o ge	<u>:/_K</u>	id of Bubbles	
•								

Sheet of
Project: Pacific 5-116- Job No: 61-29
Project: Project: Job No: 15-29 Subject: FIELD CONSTRUCTION OBSERVATION AND TESTING REPORT Date: 1-16-66
From: 7:00 To: From: To: Rept. No.:
Equipment in Use: Mileage
Job Time: Standby Time: Total Time:
UNSATISFACTORY CONDITIONS PREVIOUSLY REPORTED (Give report date only. Circle dates of items corrected in this report and explain below.)
Description of Work and Conversation Record
Varied ensite at = 7:00 To completa Water soufling.
Wate- 5-nfling.
I had Trouble With VRW-7 (slow Recha-
I had Tromple W:Th VRW-7 (slow Rechard) I measured The TiTa & Depth 16,25 ft Not 20,00 Alecal calated The Volume and was abla
The calcalated the Votame and was abla
To complète sampling.
VRW-9 also was slow in Rechargen
becouse laufic supply was closing up
become facific sapply was closing up for the day of sampled at 20 gal Remove
101 26r
Left site at to 1650
Windson = 1900
there are 8 Drums of parged water
<u> </u>
Initial

BACE Geotechnical, a division of Brunsing Associates, Inc.

WELL SAMPLING SHEET

PROJECT:	Pacific Sup	oply		·	•	PROJECT NUMBER: 29	
WELL#	MW-3	PRECIP. IN 1	AST 5 DAYS:	Ye>	WIND No	DATE: 1-19-06	
			FINISHING	⊕ (TIME:	0 1454	DATE: 1-19-06 INITIALS: 966	
CALCULAT	ION OF PU	RGE VOLUM	E	··			G A
2" WELL	DEPTH:	16.00] - D.T.W.	6.76	= H20 COLUM	MN: 9.24 X 0.5 = 4.62	A L.
4" WELL	DEPTH:] - D.T.W.	<u>.</u>] = H20 COLUM))
THEREFO	RE TOTAL	PURGE G/	ALLONS EQUA	LS	5		s
	•		FIE	LD ME	ASUREMEN	<u>TS</u>	
TIME	GALLONS REMOVED	pН	CONDUCTIVITY	ТЕМР.		OBSERVATIONS A	•
	KEWIOVED	<u> </u>	404	20.0	Vell	ow Clear organicodo	
1433	1	7.54		_	1	CC O O O O O O O O O O O O O O O O O O	
		-					
	3	7.35	4.16	20.1			
ļ					 		
1441	5	7.35	4.25	20,4			
			· · · · · · · · · · · · · · · · · · ·				
SAMPLII	l NG:	SAMPI F	ANALYSIS:	TPH-Gas	8260B (BTEX_pe	etro oxy & Pb scav)	
			MPLE TIME:			. GO DRY? // O	
WATER	LEVELS:	NOTES:				*.	
TIME	D.T.W.						
1450	7,38						
	,						
		<u></u>					
ļ					 .		

WELL SAMPLING

SHEET

			· · · · · · · · · · · · · · · · · · ·				
PROJECT:	Pacific Sup	ply					PROJECT NUMBER: 29
WELL#	VRW-1	PRECIP. IN L	AST 5 DAYS:	145	WIND	دىم	DATE: 1-19-06
			FINISHING 1				INITIALS: JUW
CALCULAT	ION OF PUR	RGE VOLUM	<u>E</u>				G
2" WELL	DEPTH:		- D.T.W.		= H20	COLUMN:	X 0.5 =
4" WELL	DEPTH:	20.00	- D.T.W.	6.63] = H20	COLUMN:	(73.37) X 2.0 = (24.74) O
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS		27	s
			FIE	LD MEA	ASUR	EMENT	<u>s</u>
	GALLONS						
TIME	REMOVED	pН	CONDUCTIVITY	TEMP.			OBSERVATIONS
0837	/	7.19	2.94	17.9	E	Lowd	1 Organic oddor
0848	14	7,25	2.69	18:0	<u> </u>	' (((. '
			1/ 0-				1.0
0857	27	7,18	4.97	19.3		1 (, (
	<u></u>						
SAMPLI	NG:	SAMPLE	: ANALYSIS:	TPH-Gas,	8260B (E	BTEX, petro	o oxy & Pb scav)
				0903	_	ID WELL G	
				1.57.52			
WATER	LEVELS:	NOTES:					
TIME	D.T.W.						· .
0905	99.26	J					

WELL SAMPLING SHEET OF

PROJECT:	Pacific Sup	ply				PROJECT NUMBER:	29
WELL#	VRW-2	PRECIP. IN L	AST 5 DAYS:		WIND	DATE:	
STARTING	TIME:	15/9	FINISHING T	IME:		INITIALS:	
CALCULAT	ION OF PUR	GE VOLUM	<u> </u>				G
2" WELL	DEPTH:		- D.T.W.		= H20 COLUMN	X 0.5 =	A L L
4" WELL	DEPTH: 20.00 - D.T.W. 6.83 = H20 COLUMN: $/4./7$ X 2.0 = 26.39 ON						
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS	38		S
			FIE	LD MEA	SUREMENT	<u>s</u>	
TIME	GALLONS REMOVED	р Н	CONDUCTIVITY	TEMP.		OBSERVATIONS	
			, ,	-			
1520	/	7,28	1210	18,1	Cloudy	organic	odov
1527	14	7.14	1283	19.0	Cloudy	organic	6 d o -
1,537	9 -	715	1325	19.5			10
1532	28	711	126)	1.7.3			
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas, 8	8260B (BTEX, petro	o oxy & Pb scav)	
		SA	MPLE TIME:	<u> </u>] DID WELL G	GO DRY?	
WATER LEVELS: NOTES:							
TIME	D.T.W.						
		<u> </u>					
 	<u></u>	 					
	-	 					
_			. <u> </u>				
		1					

WELL SAMPLING

SHEET

PROJECT:	Pacific Su	pply	ţ			PROJECT NUME	BER: 29	
WELL#	VRW-3	PRECIP. IN	LAST 5 DAYS:	Yes	ويم WIND	DATE:		
STARTING	G TIME://	4:30	FINISHING	TIME:		INITIALS:	ŧ	
CALCULAT	ION OF PUI	RGE VOLUM	<u>IE</u>					G
2" WELL	DEPTH:] - D.T.W.] = H20 COLU	JMN: X 0	5 =	A L
4" WELL	DEPTH:	20.00] - D.T.W.	6.37] = H20 COLU	IMN: [13.6] X2	0= 27.25	O L
THEREFC	RE TOTAL	. PURGE G	ALLONS EQU	ALS	27	· ·		N S
4			<u>F1</u>	ELD ME	A S U R E M E I	NTS		
, , , , , , , , , , , , , , , , , , ,	GALLONS	<u> </u>]		•	
<u>TIME</u>	REMOVED	pН	CONDUCTIVITY	Y TEMP.	,	OBSERVATIONS		
1431	/	717	1603	16.5	CLOU	dy odov		
W		, ,						
1439	14	7/5	1021	17,2	17	71		
17.70		7 12	- 16	100				
1447	27	7,10	529	19.1	<u>~</u>	17		
			eX I.	<u></u>				
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH-Gas. 8	8260B (BTEX, p	petro oxy & Pb scav)		
		SAI	MPLE TIME:	1449] DID WEI	LL GO DRY?	10	
WATER	LEVELS:	NOTES:						
TIME	D.T.W.							
1454	7.51							
								
			¥					
ľ	1	P.						

WELL SAMPLING SHEET

PROJECT: Pacific Supply PROJECT NUMBER: 29
WELL# VRW-4 PRECIP. IN LAST 5 DAYS: Yes WIND No DATE: 1-19-06
STARTING TIME: 0950 FINISHING TIME: 10:51 INITIALS: 10
CALCULATION OF PURGE VOLUME
2" WELL DEPTH: D.T.W = H20 COLUMN: X 0.5 = L 4".WELL DEPTH: 20.00
THEREFORE TOTAL PURGE GALLONS EQUALS
FIELD MEASUREMENTS
GALLONS
TIME REMOVED DH CONDUCTIVITY TEMP. OBSERVATIONS
į į į
0955 1 7.11 1408 19:2 (Loudy 0 - ganic odor
1003 14 7.03 3.14 20.7 5: (ty pranic odor
10:37 27 7.50 1486 20.3 3:67, organic olo-
SAMPLING: SAMPLE ANALYSIS: TPH-Gas, 8260B (BTEX, petro oxy & Pb scav)
SAMPLE TIME: 1037 DID WELL GO DRY? almost
WATER LEVELS: NOTES:
TIME D.T.W.
1040 14.28
t = 22 (= 1/2)
in neck of Bailer
in neck of Britz-
Roje slipped + fellinto well fishelitoo
11100

WELL SAMPLING SHEET OF

PROJECT: Pacific Supply PROJECT NUMBER: 29
WELL# VRW-5 PRECIP. IN LAST 5 DAYS: YES WIND NO DATE: 1-19-06
STARTING TIME: 1/08 FINISHING TIME: 1/53 INITIALS: 100
CALCULATION OF PURGE VOLUME G
2" WELL DEPTH: D.T.W = H20 COLUMN: X 0.5 = L
4" WELL DEPTH: 20.00 - D.T.W. 6.35 = H20 COLUMN: 73.77 X 2.0 = スフ. ソン O N
THEREFORE TOTAL PURGE GALLONS EQUALS 3 S
FIELD MEASUREMENTS
GALLONS TIME REMOVED p.H CONDUCTIVITY TEMP. OBSERVATIONS
1/12 1 7.97 1305 15,5 Chowdy organicodor
1/21 16 7.04 1815 16.2 11 11 11
1/21 16 7.04 1815 16.2
27 7.08 1922 15:0 11 11 11
SAMPLE ANALYSIS: TPH-Gas, 8260B (BTEX, petro oxy & Pb scav)
SAMPLE TIME: 1/35 DID WELL GO DRY? 10
WATER LEVELS: NOTES:
TIME D.T.W.
11436.68
4.

WELL SAMPLING

SHEET

PROJECT:	Pacific Sup	ply				PROJECT NUMBER: 29		
WELL#	VRW-6	PRECIP. IN	.AST 5 DAYS:	Yes	WIND No	DATE: 1-19-06		
STARTING	G TIME: 1	558	FINISHING	TIME:		INITIALS:		
CALCULAT	ION OF PUF	RGE VOLUM	Ε	·_·_		G		
	DEPTH:					MN: X 0.5 = L		
4" WELL	DEPTH:	20.00] - D.T.W.	5.55	= H20 COLUM	1N: 14.15 X 2.0 = 28,30 0		
			ALLONS EQUA		28	- 13.15° 26-3 °S		
			FII	ELD MEA	A S _U UREMEN	<u>TS</u>		
71145	GALLON\$							
<u>TIME</u>	REMOVED	pН	2.93	NW	Clara	OBSERVATIONS Organic of 0-		
1559	/	7,74	21/	11///	00000	Jan's our		
		//						
1606	14	7.18	3.85	19.9	5.17	organic oder		
1121	2.5	8,00	1725	10.1	77/-	, , , , , , , , , , , , , , , , , , ,		
1636	28	0,00	176)	17.1	5-6/2	organic odor		
						·		
SAMPLI	NG:	SAMPLE	: ANALYSIS:	TPH-Gas. 8	3260B (BTEX. pe	tro oxy & Pb.scay)		
			MPLE TIME:	1637				
		SAI	//PLE 111VIC.	1627	DID VÄETT	.GO DRY?		
WATER	LEVELS:	NOTES:			er en			
TIME	D.Ţ.W.							
1615	18.11	16	gal	To	Tal Pall	th 19.0 fT		
1624	18,62	2						
1633	1744	17	gal	N.				
	الميل ووداة	/			<u>, , , , , , , , , , , , , , , , , , , </u>			
			 			1		
			.	·				
,	I							

WELL SAMPLING SHEET

PROJECT: Pacific Supply PROJECT NUMBER: 29
WELL# VRW-7 PRECIP. IN LAST 5 DAYS: Yes WIND No DATE: 1-19-06
STARTING TIME: 13/8 FINISHING TIME: 14/3 INITIALS: JUW
CALCULATION OF PURGE VOLUME G
2" WELL DEPTH: D.T.W = H20 COLUMN: X 0.5 = L
4" WELL DEPTH: 20.00 - D.T.W. 6.70 = H20 COLUMN: 13.30 X 2.0 = 26.60 O 16.25 6.70 9.55 19.1 N
THEREFORE TOTAL PURGE GALLONS EQUALS 19.55 19.7 N S
FIELD MEASUREMENTS
GALLONS TIME REMOVED D.H. CONDUCTIVITY TEMP. OBSERVATIONS
1321 1 7:12 3:57 19:6 Yellowish clear organic odos
1332 14 7,27 4,77 20,6 silti organic odor
1355 19 7:563.52 20.0 yellowish ouganico-do-
SAMPLING: SAMPLE ANALYSIS: TPH-Gas, 8260B (BTEX, petro oxy & Pb scav)
SAMPLE TIME: 1404 DID WELL GO DRY? A10
WATER LEVELS: NOTES:
TIME D.T.W.
1740 14,96 ToTal Best 16,25
called BAI Talked with steve silva
He said That I could Recalculate the purge volum
To Reflect the Total Depth of water + use the lowe
Volame.
Healso said that I could go onto another well and
come back afterit Recharges.

WELL SAMPLING SHEET OF

WELL SAMPLING

SHEET

OF

PROJECT:	Pacific Sup	pply					PROJECT	NUMBER:	29	
WELL#	VRW-9	PRECIP. IN L	AST 5 DAYS:	Yes	WIND	6 0	DATE:	1-19-	-06	
STARTING	TIME: /	508	,	ГІМЕ:		1555	-INITIALS:	901		
CALCULATI	ON OF PUF	RGE VOLUM	<u>E</u>							G
2" WELL	DEPTH:] - D.T.W.		= H20	COLUMN:		X 0.5 = [A L L
4" WELL	DEPTH:	20.00] - D.T.W.	6.94] = H20	COLUMN:	13.06	X 2.0 =	26.12	о N
THEREFOR	RE TOTAL	PURGE GA	ALLONS EQUA	LS		26]			S
			FIE	LD MEA	SURI	EMENTS	<u> </u>			
<u>TIME</u>	GALLONS REMOVED	рН	CONDUCTIVITY	TEMP.			OBSERVATION	<u>DNS</u>		
1513	/	7.64	338	20,5	ye	1100	0	ogan	<u></u>	vdæ.
1522	14	7.45	2.94	20.4						; 6
1537	20	7.46	2.75	203	5,0	<i>T</i> ;	Ô I	gan:	codi	> -/-
SAMPLIN	IG:	SAMPLE	: ANALYSIS:	TPH-Gas, 8	3260B (E	BTEX, petro	oxy & Pb sc	av)		:
		SAM	MPLE TIME:	1540	DI	D WELL GO	D DRY?	1/0		
WATER L	EVELS:	NOTES:			·					
TIME	D.T.W.									
1544	7.09									
							<u>. </u>			
	<u> </u>									
										4
		}								

APPENDIX B

Analytical Laboratory Report

Laboratory Report Project Overview

Laboratory:

Bace Analytical, Windsor, CA

Lab Report Number:

4740

Project Name:

1735 24TH STREET

Work Order Number:

29.027

Control Sheet Number:

NA

FILE COPY

Case Narrative

Bace Analytical, Windsor, CA

Report Date:

02/07/2006

Report Number: 4740

Project:

1735 24TH STREET

Order #:

29.027

Please be advised that the volatile aromatics analysis (BTEX) required for this sample batch was performed by means of EPA 8260B (GC/MS) rather than by EPA 8021 as specified on the chain of custody. The reporting limits of the two methods are equivalent. There will be no additional fee assessed for the GC/MS analysis.

Wrelvery & Got Date: 2/8/06 Approved by:

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotcti	Run Sub
4740	MW-1	4740-1	W	CS	8260FAB	SW5030B	01/18/200	01/31/200	01/31/200	20060131B	16
							6	6	6		
4740	MW-1	4740-1	W	CS	8260TPH	SW5030B	01/18/200	01/31/200		20060131B	16
							6	6	6		40
4740	MW-2	4740-2	W	CS	8260FAB	SW5030B	01/19/200	01/31/200		20060131B	19
							6	6	6	20060121B	19
4740	MW-2	4740-2	W	CS	8260TPH	SW5030B	01/19/200	01/31/200		20060131B	19
					****	OLLICOSOD	6	6 01/31/200	6 01/21/200	20060131B	20
4740	MW-3	4740-3	W	CS	8260FAB	SW5030B	01/19/200 6	6	6	200001315	20
					AAAATTIL	OWICOZOB	01/19/200	01/31/200	-	20060131B	20
4740	MW-3	4740-3	W	CS	8260TPH	SW5030B	6	6	6	200001010	20
			141	00	DOCOTAD	SW5030B	01/19/200	01/31/200	01/31/200	20060131B	23
4740	VRW-1	4740-4	W	CS	8260FAB	24100300	6	6	6	200001512	-+
		4740.4	w	cs	8260TPH	SW5030B	01/19/200	01/31/200	_	20060131B	23
4740	VRW-1	4740-4	VV	Co	02001111	01100000	6	6	6		
	100144.0	4740 E	w	cs	8260FAB	SW5030B	01/18/200	01/31/200	01/31/200	20060131B	24
4740	VRW-2	4740-5	**	-	02001715	0110000	6	6	6		
4740	VRW-2	4740-5	w	cs	8260TPH	SW5030B	01/18/200	01/31/200	01/31/200	20060131B	24
4740	VIVV-2	41400	**				6	6	6		
4740	VRW-3	4740-6	W	cs	8260FAB	SW5030B	01/18/200	01/31/200	01/31/200	20060131B	25
4740	V1(VY-0	11 10 0					6	6	6		
4740	VRW-3	4740-6	w	cs	8260TPH	SW5030B	01/18/200	01/31/200	01/31/200	20060131B	25
., .,							6	6	6		
4740	VRW-4	4740-7	W	cs	8260FAB	SW5030B	01/19/200	01/31/200	01/31/200	20060131B	26
							6	6	6		
4740	VRW-4	4740-7	W	CS	8260TPH	SW5030B	01/19/200	01/31/200	01/31/200	20060131B	26
							6	6	6		
4740	VRW-5	4740-8	W	cs	8260FAB	SW5030B	01/19/200	01/31/200		20060131B	27
							6	6	6	000004040	27
4740	VRW-5	4740-8	W	cs	8260TPH	SW5030B	01/19/200	01/31/200		20060131B	27
							6	6	6	20060424D	28
4740	VRW-6	4740-9	W	CS	8260FAB	SW5030B	01/19/200	01/31/200	01/31/200 6	20060131B	20
						014/50000	6	6	· - ·	20060131B	28
4740	VRW-6	4740-9	W	CS	8260TPH	SW5030B	01/19/200 6	01/31/200 6	6	200001010	20
		.=.0.45	. 187		DOCUEAD	SW5030B	01/19/200	02/01/200	-	20060131B	29
4740	VRW-7	4740-10	W	CS	8260FAB	9442020B	6	6	6		
_		4740.40	101	cs	8260TPH	SW5030B	01/19/200	02/01/200	-	20060131B	29
4740	VRW-7	4740-10	W	CS	02001711	34420300	3 H 10/200	JE 0 1 E 0	J		

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotcti	Run Sub
					<u></u>		6	6	6		
4740	VRW-8	4740-11	W	cs	8260FAB	SW5030B	01/19/200	02/01/200	02/01/200	20060131B	30
							6	6	6		_
4740	VRW-8	4740-11	W	CS	8260TPH	SW5030B	01/19/200	02/01/200	02/01/200	20060131B	30
							6	6	6	000004040	24
4740	VRW-9	4740-12	W	ÇS	8260FAB	SW5030B	01/19/200	02/01/200	02/01/200	20060131B	31
						014/50000	6	6 02/01/200	6 02/01/200	20060131B	31
4740	VRW-9	4740-12	. W	cs	8260TPH	SW5030B	01/19/200 6	6	6	200001318	51
		00404140	W	NC	8260TPH	SW5030B	11	01/31/200	01/31/200	20060131B	10
		060131MS	VV	NG	02001111	0110000	, ,	6	6		
		4740MB	w	i B1	8260FAB	SW5030B	11	01/31/200	01/31/200	20060131B	2
		4740110	**		02001712	***************************************		6	6		
		4740MB	W	LB1	8260TPH	SW5030B	1.1	01/31/200	01/31/200	20060131B	10
								6	6		
		4740MS	W	MS	8260FAB	SW5030B	1.1	01/31/200		20060131B	17
								6	6		
		4740MS	W	MS	1 8260TPH	\$W5030B	11	01/31/200	01/31/200	20060131B	21
								6	6	000004345	40
		4740SD	W	SD′	8260FAB	SW5030B	1.1	01/31/200	01/31/200	20060131B	18
					* *****	CIMEOSCO		6 01/31/200	6 01/31/200	20060131B	22
		4740SD	W	SD	8260TPH	SW5030B	11	6	6	200001310	22
								U	U		

Page: 1

Project Name:

1735 24TH STREET

Analysis:

VOCs by GC/MS Fuel Additives Plus BTEX

Project No:

29.027

Method: 8260FAB

Prep Meth: SW5030B

Field ID:

MW-1

Lab Samp ID: 4740-1

MW-1

Rec'd Date:

01/20/2006

Descr/Location: Sample Date:

01/18/2006

01/31/2006

Sample Time:

1356

Prep Date:

Analysis Date: 01/31/2006

Matrix:

Water

QC Batch:

20060131B

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	0.27	0.50	PQL		ND	UG/L	1	
Toluene	0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene	0.25	0.50	PQL	1	ND	UG/L	1	
Xylenes	0.25	0.50	PQL		ND _	UG/L	1	
SURROGATE AND INTERNAL ST 4-Bromofluorobenzene	ANDARD RECOV	ERIES: 86-118	ŞLSA		102%			
Toluene-d8		88-110	SLSA		102%			
Dibromofluoromethane		86-115	SLSA		101%			

Wallan &

DX: Value < lowest standard (MQL), but > than MDL

Page: 2

Project Name: Project No:	1735 24TH STREET 29.027		Analysis Method Prep M	: 82	OCs by GC/MS F 60FAB N5030B	uel Additive	s Plus E	BTEX	
Field ID: Descr/Location: Sample Date: Sample Time: Matrix: Basis:	MW-2 MW-2 01/19/2006 0808 Water Not Filtered		Rec'd D	oate: ate: s Date:	4740-2 01/20/2006 01/31/2006 01/31/2006 20060131B				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene Toluene Ethylbenzene Xylenes		1.4 1.3 1.3 1.3	2.5 2.5 2.5 2.5	PQL PQL PQL PQL	DX	15.0 ND ND 11.2	UG/L UG/L UG/L UG/L	5 5 5 5	
	ND INTERNAL STAND nzene	ARD RECOV	ERIES: 86-118	SLSA		102%			1
Toluene-d8 Dibromofluorome	othana		88-110 86-115	SLSA SLSA		100% 97%			1

Approved by: Walliam of Coty

Page: 3

Project Name:

Project No:

1735 24TH STREET

29.027

VOCs by GC/MS Fuel Additives Plus BTEX Analysis:

8260FAB Method:

Prep Meth: SW5030B

Field ID: Descr/Location:

Sample Date:

Sample Time:

MW-3

1448

MW-3 01/19/2006 Rec'd Date:

Lab Samp ID: 4740-3

01/20/2006

Prep Date: Analysis Date: 01/31/2006

01/31/2006

QC Batch:

20060131B

Matrix: Basis:

Water Not Filtered

Notes:

Anglyto	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Analyte	0.27	0.50	PQL		ND	UG/L	1
Benzene	0.27	0.50	PQL		ND	UG/L	1
Toluene Ethylbenzene	0.25	0.50	PQL		ND	UG/L	1
Xylenes	0.25	0.50	PQL		0.71	UG/L	1
SURROGATE AND INTERNAL : 4-Bromofluorobenzene	STANDARD RECOV	ERIES: 86-118	SLSA		98%		
Toluene-d8		88-110	SLSA		98%		
Dibromofluoromethane		86-115	SLSA		98%		

Approved by: Walling & 4

Page: 4

1735 24TH STREET Project Name:

Project No:

29.027

VOCs by GC/MS Fuel Additives Plus BTEX Analysis:

8260FAB Method:

Prep Meth: SW5030B

Field ID: Descr/Location:

Sample Date:

VRW-1 VRW-1 01/19/2006 Lab Samp ID: 4740-4 01/20/2006 Rec'd Date:

0903

Prep Date: 01/31/2006 Analysis Date: 01/31/2006

Sample Time: Matrix:

Water

QC Batch:

20060131B

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	0.27	0.50	PQL		6.98	UG/L	1
Toluene	0.25	0.50	PQL		1.41	UG/L	1
Ethylbenzene	0.25	0.50	PQL		ND	UG/L	1
Xylenes	0.25	0.50	PQL		3.18	UG/L	1
SURROGATE AND INTERNAL S 4-Bromofluorobenzene	STANDARD RECOV		SLSA		99%		
Toluene-d8		88-110	SLSA		99%		
Dibromofluoromethane		86-115	SLSA		97%		

Approved by: Wallson & John

Page: 5

Project Name:

1735 24TH STREET

Analysis: VOCs by GC/MS Fuel Additives Plus BTEX

Project No:

29.027

Method: 8260FAB

Prep Meth: SW5030B

Field ID:

VRW-2 VRW-2 Lab Samp ID: 4740-5 Rec'd Date: 01/20/2

Descr/Location: V

V-2 Rec'd

d Date: 01/20/2006 Date: 01/31/2006

Sample Date: Sample Time:

01/18/2006 1531 Prep Date: 01/31/2006 Analysis Date: 01/31/2006

Matrix:

Water

QC Batch: 20060131B

Basis:	Not Filtered		Notes:						
Analyte	·····	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene		1.4	2.5	PQL		280.	UG/L	5	
Toluene		1.3	2.5	PQL	Ì	ND	UG/L	5	
Ethylbenzen	e	1.3	2.5	PQL	ļ	3.81	UG/L	5	
Xylenes		1.3	2.5	PQL		7.54	UG/L	5	
	TE AND INTERNAL STA probenzene	NDARD RECOV	ERIES: 86-118	SLSA		100%			1
Toluene-d8			88-110	SLSA		1 01%			1
Dibromofluo			86-115	SLSA		97%			1

pproved by: William & Got

Date: <u>2/8/06</u>

Page: 6

Project Name:

Project No:

1735 24TH STREET

29.027

VOCs by GC/MS Fuel Additives Plus BTEX Analysis:

8260FAB Method:

Prep Meth: SW5030B

Field ID: Descr/Location:

Sample Date:

VRW-3 VRW-3

01/18/2006

Sample Time: Matrix:

1449 Water Lab Samp ID: 4740-6

Rec'd Date:

01/20/2006

Prep Date: Analysis Date: 01/31/2006

01/31/2006

QC Batch:

20060131B

Basis:	Not Filtered		Notes:						
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene		0.27	0.50	PQL		230	UG/L	1	
Toluene		0.25	0.50	PQL		ND	UG/L	1	:
Ethylbenzen	e	0.25	0.50	PQL		ND	UG/L	1	
Xvlenes		0.25	0.50	PQL		1.46	UG/L	1	
SURROGAT 4-Bromofluo	E AND INTERNAL STA robenzene	NDARD RECOV	ERIES: 86-118	SLSA		99%			1
Toluene-d8			88-110	SLSA		100%			1
Dibromofluo	romethane		86-115	SLSA		96%			1

William & G

Page. 7

1735 24TH STREET Project Name:

Project No:

29.027

VOCs by GC/MS Fuel Additives Plus BTEX Analysis:

8260FAB Method:

Prep Meth: SW5030B

Field ID: Descr/Location:

Sample Date:

Sample Time:

VRW-4 VRW-4

1037

Lab Samp ID: 4740-7

Rec'd Date:

01/20/2006

Prep Date:

01/31/2006

QC Batch:

Analysis Date: 01/31/2006

20060131B

Matrix: Basis:

Water Not Filtered

01/19/2006

Notes:

Analyte	Det Limit	Rep Limit	:	Note	Result	Units	Pvc Dil	
Benzene	14.	25.	PQL		1670.	UG/L	50	
Toluene	13.	25.	PQL		196.	UG/L	50	
Ethylbenzene	13.	25.	PQL		270.	UG/L	50	
Xylenes	13.	25.	PQL		324	UG/L	50	
SURROGATE AND INTERNAL S 4-Bromofluorobenzene	STANDARD RECOV	ERIES: 86-118	SLSA		98%			
Toluene-d8		88-110	SLSA		100%			1
Dibromofluoromethane		86-115	SLSA		97%			

William &

Page: 8

Project Name:

1735 24TH STREET

VOCs by GC/MS Fuel Additives Plus BTEX Analysis:

29.027

Method: 8260FAB

Project No:

Prep Meth: SW5030B

Lab Samp iD: 4740-8

Field ID: Descr/Location:

VRW-5 VRW-5 01/19/2006

Rec'd Date: Prep Date:

01/20/2006 01/31/2006

Sample Date: Sample Time:

1136

Analysis Date: 01/31/2006

Matrix: Basis:

Water Not Filtered QC Batch:

20060131B

Notes:

Dasis. Not i illered		110100.						
Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	1.4	2.5	PQL		65.4	UG/L	5	
Toluene	1.3	2.5	PQL		ND	UG/L	5	
Ethylbenzene	1.3	2.5	PQL		31.4	UG/L	5	
Xylenes	1.3	2.5	PQL		33.4	UG/L	5	
SURROGATE AND INTERNAL S 4-Bromofluorobenzene	TANDARD RECOV	ERIES: 86-118	SLSA		99%	•		
Toluene-d8		88-110	SLSA		100%			
Dibromofluoromethane		86-115	SLSA		97%		· · · · · · · · · · · · · · · · · · ·	

Page: 9

Project Name:

1735 24TH STREET

VOCs by GC/MS Fuel Additives Plus BTEX Analysis:

Project No:

29.027

Method: 8260FAB

Prep Meth: SW5030B

Field ID:

VRW-6

VRW-6

Lab Samp ID: 4740-9

Descr/Location: Sample Date:

01/19/2006

Rec'd Date: 01/20/2006

Sample Time:

Prep Date: 01/31/2006

1637

Analysis Date: 01/31/2006 20060131B

Matrix:

Water

QC Batch:

Basis:	Not Filtered		Notes:	.O.1.	200001012				
Analyte		Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene		0.27	0.50	PQL		3.96	UG/L	1	
Toluene		0.25	0.50	PQL		ND	UG/L	1	
Ethylbenzene		0.25	0.50	PQL		ND	UG/L	1	
Xylenes		0.25	0.50	PQL		1.25	UG/L	1	
SURROGATE 4-Bromofluoro	AND INTERNAL STA	NDARD RECOV	ERIES: 86-118	SLSA		98%			1
Toluene-d8			88-110	SLSA		99%			1
Dibromofluoro	omethane		86-115	SLSA		96%			1

Wallvan & G. Approved by: _

Page: 10

VOCs by GC/MS Fuel Additives Plus BTEX Analysis: Project Name: **1735 24TH STREET**

Method: 8260FAB Project No: 29.027 Prep Meth: SW5030B

Lab Samp ID: 4740-10 Field ID: VRW-7 Rec'd Date: 01/20/2006 VRW-7 Descr/Location: Prep Date: 02/01/2006 Sample Date: 01/19/2006

Analysis Date: 02/01/2006 1404 Sample Time: QC Batch: 20060131B Matrix: Water

Notes: Not Filtered Basis:

Analyte	Det Limit	Rep Limit	:	Note	Result	Units	Pvc Dil	
Benzene	0.54	1.0	PQL		86.8	UG/L	2	
Toluene	0.50	1.0	PQL		3.63	UG/L	2	
Ethylbenzene	0.50	1.0	PQL		6.89	UG/L	2	
Xylenes	0.50	1.0	PQL		9.04	UG/L	2	
SURROGATE AND INTERNAL STANI 4-Bromofluorobenzene	DARD RECOV	ERIES: 86-118	SLSA		100%			1
Toluene-d8		88-110	SLSA		107%			1
Dibromofluoromethane		86-115	SLSA		98%			1

Approved by: Wallson &

Date: __2/y/o 6

Page: 11

VOCs by GC/MS Fuel Additives Plus BTEX Analysis: **1735 24TH STREET** Project Name: 8260FAB Method: Project No: 29.027 Prep Meth: SW5030B Lab Samp ID: 4740-11 VRW-8 Field ID: Rec'd Date: 01/20/2006 Descr/Location: VRW-8 Prep Date: 02/01/2006 Sample Date: 01/19/2006 Analysis Date: 02/01/2006 1241 Sample Time: QC Batch: 20060131B Matrix: Water Notes: Basis: Not Filtered

Dasis. Retritered								
Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	1.4	2.5	PQL		18.1	UG/L	5	
Toluene	1.3	2.5	PQL		4.26	UG/L	5	
Ethylbenzene	1.3	2.5	PQL		ND	UG/L	5	
Xylenes	1.3	2.5	PQL		8.30_	UG/L	5	
SURROGATE AND INTERNAL STAN 4-Bromofluorobenzene	DARD RECOV	ERIES: 86-118	SLSA		98%			
Toluene-d8		88-110	SLSA		100%			
Dibromofluoromethane		86-115	SLSA	·	96%		<u></u>	

Approved by: William & Got

Page: 12

Project Name:

1735 24TH STREET

Analysis:

VOCs by GC/MS Fuel Additives Plus BTEX

Project No:

29.027

Method: 8260FAB

Prep Meth: SW5030B

Field ID:

VRW-9

Lab Samp ID: 4740-12

Descr/Location:

VRW-9

Rec'd Date:

01/20/2006

Sample Date:

01/19/2006

02/01/2006

Sample Time:

Prep Date:

Matrix:

1540 Water

Analysis Date: 02/01/2006 QC Batch:

20060131B

Basis:

Not Filtered

Notes:

basis. Not i illered		140100.						
Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	0.54	1.0	PQL		204	UG/L	2	
Toluene	0.50	1.0	PQL		ND	UG/L	. 2	
Ethylbenzene	0.50	1.0	PQL	-	ND	UG/L	÷ 2	
Xylenes	0.50	1.0	PQL		4.91	UG/L	2	
SURROGATE AND INTERNAL STA 4-Bromofluorobenzene	ANDARD RECOV	ERIES: 86-118	SLSA	-	102%			1
Toluene-d8		88-110	SLSA		99%			1
Dibromofluoromethane		86-115	SLSA		98%			1

William &

Total Petroleum Hydrocarbons (TPH) by GC/MS Analysis:

Page: 13

Project Name: **1735 24TH STREET** Project No: Method: 8260TPH 29.027

Prep Meth: SW5030B

Lab Samp ID: 4740-1 Field ID: MW-1

Rec'd Date: Descr/Location: MW-1 01/20/2006 Prep Date: 01/31/2006 Sample Date: 01/18/2006 Analysis Date: 01/31/2006 Sample Time: 1356 QC Batch: 20060131B Matrix: Water

Notes: Not Filtered Basis:

Note Result Units Pvc Dil **Det Limit** Rep Limit Analyte ND MG/L 1 Gasoline Range Organics (C5-C12) 0.04 0.05 **PQL**

SURROGATE AND INTERNAL STANDARD RECOVERIES: 102% 70-130 SLSA 4-Bromofluorobenzene

William A

Page: 14

Project Name:

1735 24TH STREET

Analysis:

Total Petroleum Hydrocarbons (TPH) by GC/MS

Project No:

29.027

Method: 8260TPH

Prep Meth: SW5030B

Field ID:

MW-2 MW-2

Descr/Location: Sample Date:

01/19/2006

Sample Time: Matrix:

4-Bromofluorobenzene

Basis:

8080

Water Not Filtered Lab Samp ID: 4740-2

Rec'd Date:

01/20/2006

Prep Date: Analysis Date: 01/31/2006

01/31/2006

QC Batch:

70-130 SLSA

20060131B

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Gasoline Range Organics (C5-C12)	0.20	0.25	PQL		3.6	MG/L	5	
SURROGATE AND INTERNAL STAND	ARD RECOV	'ERIES: 70-130	SLSA		102%			1

Walliam &

Page: 15

Project Name: Project No:

1735 24TH STREET

29.027

Total Petroleum Hydrocarbons (TPH) by GC/MS Analysis:

Method:

8260TPH

Prep Meth: SW5030B

Field ID:

MW-3

Lab Samp ID: 4740-3

Descr/Location: Sample Date:

MW-3 01/19/2006 Rec'd Date:

01/20/2006

Sample Time:

Prep Date:

01/31/2006 Analysis Date: 01/31/2006

Matrix:

1448 Water

QC Batch:

20060131B

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit	1	Note	Result	Units	Pvc Dil	
Gasoline Range Organics (C5-C12)	0.04	0.05	PQL		ND ND	MG/L	1	
SUPPOGATE AND INTERNAL STAND	ARD RECOV	FRIFS:						

98% 70-130 SLSA 4-Bromofluorobenzene

Approved by: William &

Page: 16

Project Name:

1735 24TH STREET

29.027

Total Petroleum Hydrocarbons (TPH) by GC/MS Analysis:

Method: 8260TPH

Prep Meth: SW5030B

Field ID: Descr/Location:

Project No:

VRW-1 VRW-1

Sample Date:

01/19/2006

Sample Time:

0903

Matrix: Basis:

Water

Lab Samp ID: 4740-4

Rec'd Date:

01/20/2006 01/31/2006

Prep Date:

Analysis Date: 01/31/2006

QC Batch:

20060131B

Notes:

Not Filtered Pvc Dil Result Units Det Limit Rep Limit Note Analyte 0.53 MG/L 1 0.05 **PQL** 0.04 Gasoline Range Organics (C5-C12) 1

SURROGATE AND INTERNAL STANDARD RECOVERIES:

70-130 4-Bromofluorobenzene

SLSA

99%

Approved by: William & G

Page: 17

Project Name:

1735 24TH STREET

Analysis:

Total Petroleum Hydrocarbons (TPH) by GC/MS

Project No:

29.027

8260TPH Method:

Prep Meth: SW5030B

Lab Samp ID: 4740-5

Field ID: Descr/Location:

Sample Date:

VRW-2 VRW-2

01/18/2006

Sample Time: Matrix:

1531 Water Rec'd Date: Prep Date:

01/20/2006

Analysis Date: 01/31/2006

01/31/2006

QC Batch:

20060131B

Basis:

Not Filtered

Notes:

Pvc Dil Units Note Result **Det Limit** Rep Limit Analyte MG/L 5 38 0.25 **PQL** 0.20 Gasoline Range Organics (C5-C12)

SURROGATE AND INTERNAL STANDARD RECOVERIES:

100% 70-130 SLSA 4-Bromofluorobenzene

Approved by: Walliam of G

Page: 18

Project Name:

1735 24TH STREET

Analysis:

Total Petroleum Hydrocarbons (TPH) by GC/MS

98%

Project No:

29.027

Method: 8260TPH

Prep Meth: SW5030B

Field ID:

VRW-3

Rec'd Date:

Lab Samp ID: 4740-6

Descr/Location:

VRW-3

01/20/2006

Sample Date:

01/18/2006

01/31/2006

Sample Time:

1449

Prep Date:

Matrix:

Water

Analysis Date: 01/31/2006 QC Batch:

20060131B

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil	
Gasoline Range Organics (C5-C12)	0.04	0.05	PQL		0.18	MG/L	1	
SUPPOCATE AND INTERNAL STAND	ARD RECOV	ERIES:						

70-130 SLSA 4-Bromofluorobenzene

Approved by:

____ Date: __2/8/06

4-Bromofluorobenzene

Page: 19

98%

Total Petroleum Hydrocarbons (TPH) by GC/MS Analysis: **1735 24TH STREET** Project Name: Method: 8260TPH Project No: 29.027 Prep Meth: SW5030B Lab Samp ID: 4740-7 VRW-4 Field ID: Rec'd Date: 01/20/2006 Descr/Location: VRW-4 Prep Date: 01/31/2006 Sample Date: 01/19/2006 Analysis Date: 01/31/2006 Sample Time: 1037 QC Batch: 20060131B Matrix: Water Notes: Basis: Not Filtered Note Result Units Pvc Dil Rep Limit **Det Limit** Analyte MG/L 50 7.8 2.0 2.5 **PQL** Gasoline Range Organics (C5-C12) SURROGATE AND INTERNAL STANDARD RECOVERIES:

70-130

SLSA

Approved by: Walliam & Gots

Page: 20

Project Name: Project No:

1735 24TH STREET

29.027

Total Petroleum Hydrocarbons (TPH) by GC/MS Analysis: 8260TPH

Lab Samp ID: 4740-8

Method:

Prep Meth: SW5030B

Field ID:

VRW-5

Descr/Location: Sample Date:

VRW-5 01/19/2006

Not Filtered

Sample Time: Matrix:

1136 Water

Rec'd Date: Prep Date:

QC Batch:

01/31/2006 Analysis Date: 01/31/2006

20060131B

01/20/2006

Notes:

Basis: Pvc Dil Units Note Result **Det Limit** Rep Limit Analyte 0.25 PQL 1.8 MG/L 5 Gasoline Range Organics (C5-C12) 0.20 SURROGATE AND INTERNAL STANDARD RECOVERIES: 99% 1 70-130 **SLSA** 4-Bromofluorobenzene

Approved by: Wallang &

4-Bromofluorobenzene

Total Petroleum Hydrocarbons (TPH) by GC/MS

Page: 21

Analysis: Project Name: **1735 24TH STREET** 8260TPH

Project No: Method: 29.027 Prep Meth: SW5030B

Lab Samp ID: 4740-9 Field ID: VRW-6 Rec'd Date: 01/20/2006 VRW-6 Descr/Location: 01/19/2006 Prep Date: 01/31/2006 Sample Date: Analysis Date: 01/31/2006 Sample Time: 1637

QC Batch: 20060131B Matrix: Water

Notes: Not Filtered Basis:

Note Result Units Pvc Dil Det Limit Rep Limit Analyte MG/L 0.13 1 0.04 0.05 **PQL** Gasoline Range Organics (C5-C12) SURROGATE AND INTERNAL STANDARD RECOVERIES: 98%

70-130

SLSA

Wreen & G. Approved by: .

Page: 22

Project Name:

1735 24TH STREET

Analysis: Method:

Total Petroleum Hydrocarbons (TPH) by GC/MS

Project No:

29.027

8260TPH

Prep Meth: SW5030B

Field ID:

VRW-7

VRW-7

Rec'd Date:

Lab Samp ID: 4740-10 01/20/2006

Descr/Location: Sample Date:

01/19/2006

02/01/2006

Sample Time:

1404

Prep Date:

Analysis Date: 02/01/2006

Matrix:

Water

QC Batch:

20060131B

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil	
Gasoline Range Organics (C5-C12)	0.08	0.10	PQL		1.6	MG/L	2	
CURROLATE AND INTERNAL CTAND	ADD DECOM	COICO.						

SURROGATE AND INTERNAL STANDARD RECOVERIES:

100% 70-130 SLSA 4-Bromofluorobenzene

Approved by: Allegan & G

_____ Date: <u>2/3/01</u>

Lab Report No.: 4740 Date: 02/07/2006 Page: 23

Total Petroleum Hydrocarbons (TPH) by GC/MS Project Name: **1735 24TH STREET** Analysis: Method: 8260TPH Project No: 29.027 Prep Meth: SW5030B Field ID: VRW-8 Lab Samp ID: 4740-11 Rec'd Date: 01/20/2006 Descr/Location: VRW-8 Prep Date: 02/01/2006 Sample Date: 01/19/2006 Sample Time: Analysis Date: 02/01/2006 1241 QC Batch: 20060131B Matrix: Water Basis: Not Filtered Notes:

Note Result Units Pvc Dil **Det Limit** Rep Limit Analyte MG/L 5 0.25 **PQL** 4.8 0.20 Gasoline Range Organics (C5-C12) SURROGATE AND INTERNAL STANDARD RECOVERIES: 70-130 SLSA 98% 4-Bromofluorobenzene

Approved by: Walley H Pots

Total Petroleum Hydrocarbons (TPH) by GC/MS Analysis:

Page: 24

Project Name: **1735 24TH STREET** Project No: 29.027 Method: 8260TPH

Prep Meth: SW5030B

Field ID: VRW-9 Lab Samp ID: 4740-12

Descr/Location: Rec'd Date: VRW-9 01/20/2006 Sample Date: Prep Date: 01/19/2006 02/01/2006 Sample Time: 1540 Analysis Date: 02/01/2006 Matrix: Water QC Batch: 20060131B

Not Filtered Notes: Basis:

Det Limit Note Pvc Dil Analyte Rep Limit Result Units Gasoline Range Organics (C5-C12) 0.08 0.10 **PQL** 1.0 MG/L 2

SURROGATE AND INTERNAL STANDARD RECOVERIES: 102% 4-Bromofluorobenzene 70-130 **SLSA**

Approved by: Walley &

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4740 Date: 02/07/2006

Page: 25

QC Batch:

20060131B

Analysis:

VOCs by GC/MS Fuel Additives Plus BTEX

Matrix:

Water

Method:

8260FAB

Lab Samp ID: 4740MB

Prep Meth: SW5030B Prep Date: 01/31/2006

Basis:

Analysis Date: 01/31/2006 Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	0.27	0.50	PQL	· · · · · · · · · · · · · · · · · · ·	ND	UG/L	1	
Toluene	0.25	0.50	PQL		ND	UG/L	1	,
Ethylbenzene	0.25	0.50	PQL		ND	UG/L	1	
Xylenes	0.25	0.50	PQL		ND	UG/L	1	
SURROGATE AND INTERNAL S	TANDARD RECOV	ERIES:						
4-Bromofluorobenzene		86-118	SLSA		103%			1
Toluene-d8		88-110	SLSA		100%			1
Dibromofluoromethane		86-115	SLSA		100%			1

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4740 Date: 02/07/2006

Page: 26

QC Batch:

20060131B

Analysis:

Total Petroleum Hydrocarbons (TPH) by

8260TPH

Matrix: Water Lab Samp ID: 4740MB Method:

Analysis Date: 01/31/2006

Prep Meth: SW5030B Prep Date: 01/31/2006

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Gasoline Range Organics (C5-C12)	0.04	0.05	PQL		ND	MG/L	1	
CUDDOCATE AND INTERNAL CTAND		CDICO:						

SURROGATE AND INTERNAL STANDARD RECOVERIES:

103% 4-Bromofluorobenzene 70-130 SLSA

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4740 Date: 02/07/2006

Page: 27

QC Batch:

20060131B

Matrix:

Water Lab Samp ID: 4740MS

Basis:

Not Filtered

Project Name: Lab Generated or Non COE Sample

Project No.:

Lab Generated or Non COE Sample

Field ID:

Lab Generated or Non COE Sample

Lab Ref ID:

060131MS

	Analysis	Spik	e Level	Sample	Spike	Result		% Recove	ries		Accept Crite	ria
Analyte	Method	MS	DMS	Result	MS	DMS	Units	MS DMS	RPD	% R	ec	RPD
Gasoline Range Organics (C5-C12)	8260TPH	0.40	0.40	ND	0.39	0.33	MG/L	97.5 82.5	17	130-70	MSA	20MSP
4-Bromofluorobenzene	8260TPH	100.	100.	103.	98.	96.	PERCENT	98.0 96.0	2.1	130-70	SLSA	20 SLSP

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4740 Date: 02/07/2006

Page: 28

QC Batch: Matrix: 20060131B

ix: Water

Lab Samp ID: 4740MS

Basis:

Not Filtered

Project Name: 1735 24TH STREET

Project No.: 29.027

Field ID: MW-1

IVIVV-1

Lab Ref ID: 4740-1

	Analysis Spike Level Sample Spike Result		Result		% R	ecove	ries	Acceptance Criteria					
Analyte	Method	MS	DMS	Result	MS	DMS	Units	MS	DMS	RPD	% R	ec	RPD
Benzene	8260FAB	10.0	10.0	ND	9.33	8.97	UG/L	93.3	89.7	3.9	127-76	MSA	20MSP
Ethylbenzene	8260FAB	10.0	10.0	ND	9.04	9.02	UG/L	90.4	90.2	0.22	130-70	MSA	20MSP
Toluene	8260FAB	10.0	10.0	ND	9.18	8.90	UG/L	91.8	89.0	3.1	125-76	MSA	20MSP
Xylenes	8260FAB	30.0	30.0	ND	27.1	26.8	UG/L	90.3	89.3	1.1	130-70	MSA	20MSP
4-Bromofluorobenzene	8260FAB	100.	100.	102	97.	97.	PERCENT	97.0	97.0	0.00	118-86	SLSA	20SLSP
Dibromofluoromethane	8260FAB	100.	100.	101.	98.	98.	PERCENT	98.0	98.0	0.00	115-86	SLSA	20 SLSP
Toluene-d8	8260FAB	100.	100.	102.	99.	100.	PERCENT	99.0	100	1.0	110-88	SLSA	20 SLSP

Chain-of Custody Form

Project #	Project Name TACITIC	<u> </u>	<u> </u>	Ι	Π					Ana	lysis						
25.00	1735 24TH 5T	- FI															C.O.C. No. 11886
L.P. No.	Sampler's Signature	2. W	1	No. af	± \$ \$	15 (EZW 1821)											Remarks:
Date Sampled	Sample I.D.	Time (24 Hour)	Sample	Con- tainers	(d. -	13 (E ?											
1/18/04	Mw-1 /	1356	H20	4	X	X											4740-1
119/04	mu-2	0808	-	4	×	Х											-2
1/19/06	MW-3 8	1448		4	×	X									_		-3
1/19/02	VRW-1	0903		4	×	X											-4
1/19/02 1/19/02 1/19/02 1/19/02 1/19/02 1/19/02	VRW-1 /	1531		4	×	X											-5
1/8/00	1RW-3 /			4	Х	X											4
1/19/06	リアルータン			4	X	Х											-7
1/9/06	VRN-5-	1130		4	×	X											-8
1/19/06	V72W-6	1637	Ц	4	×	X									,		-9
1/19/06	VRW-7 -	1404		4	×	×											-10
1/9/00	VRW-7 /	1241		4	×	X											- 11
1/9/06	VRW-S /	1540		4	X	Y											-12
			`														
		<u> </u>															
Laboratory:	lennex				Pres	ervatio	ın:(A -	HCD	B - H2				: D-H	HNO3:	€-1	ce) F	- (specify)
Relinquished b	Jan L. Vy		/Time 0952	Received	by:	20	06	91	2	رر	Rema		Jah	人「	(a)	_	Brunsing Associates, Inc.
Relinquished b		/ /**	/Time	Received (signed)	by:	<u>, , , , , , , , , , , , , , , , , , , </u>	. رمید		· 65	l-	Щ.	اریء		To			P.O. Box 588 5803 Skylane Blvd., Suite A
Relinquished b	ру:	Date	/Time	Received (signed)	for Labo	oratory b	у: (<u> </u>	8	1~	îa~	æ	<u>: </u>	د احذ ، د	~	Windsor, CA 95492 (707) 838-3027 (707) 838-4420 fax