RO 514

March 14, 2005

Project No. 029.022

MAR 1 7 2005 Health

Mr. Don Hwang Alameda County Health Care Services Agency Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Groundwater Monitoring Report December 2004 Pacific Supply Company 1735 24th Street Oakland, California

Dear Mr. Hwang:

Site Background

In May 1987, efforts were initiated to abandon a 1,000-gallon underground gasoline storage tank at Pacific Supply Company's West Oakland site. Soil and associated vapor samples from exploratory boreholes at the site were analyzed by gas chromatography carried out by CHIPS Environmental Consultants and Anatec Laboratories (Plate 2). The results indicated that soil in the vicinity of the tank was contaminated with gasoline and raised the possibility that gasoline may have reached groundwater below the site. During subsequent removal of the tank by Erikson Industrial Services, substantial deterioration of the tank body was documented. Gasoline odors were also detected during tank removal operations.

In order to assess the extent of soil and groundwater quality beneath and immediately adjacent to the Pacific Supply Company site and the potential for migration of

Mr. Don Hwang March 14, 2005 Page 2

contaminants from off-site sources, BAI carried out a two-phase soil and groundwater investigation. Monitoring wells MW-1 through MW-5 (Plate 2) were constructed in September 1988 as the first phase of a soil and groundwater investigation. Monitoring wells MW-6 and MW-7 were constructed on December 19, 1989 during Phase II of the same investigation. The construction and sampling of these wells are also documented in BAI's Report of Findings, dated March 23, 1990. The results of the Phase I and II investigations indicated that light petroleum hydrocarbons had migrated beyond the immediate vicinity of the former UST; however, it was concluded that hydrocarbons in the soil and groundwater had not extended beyond the limits of the property.

The Pacific Supply Company initiated quarterly groundwater monitoring at the request of the ACHCSA in May 1992. Initially, only on-site wells were monitored for total petroleum hydrocarbons (TPH) as gasoline, benzene, toluene, ethylbenzene and xylenes (BTEX), and lead. Later, the five on-site and the two off-site wells were monitored quarterly.

A vapor extraction pilot study was performed in June 1992 to determine the feasibility of using vapor extraction technology as an in-situ corrective action to remove volatile petroleum hydrocarbons from the shallow subsurface soils. A two-inch diameter vapor extraction well (VEW-1) was installed at the location indicated on Plate 2 to an approximate depth of eight feet below ground surface (bgs). The results of the 4-day pilot study indicated that the lithology at the site permitted the flow of air through the soils at a sufficient rate so as to volatilize hydrocarbon constituents in the soil. The radius of influence was determined in the field by measuring the relative pressure at several probe locations positioned at various radial distances away from the extraction well. The results indicated that the estimated radius of influence from a two-inch diameter extraction well was approximately 30 feet at a relatively low pressure of less than 50 inches of water, as discussed in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

In response to an ACHCSA December 1992 request, BAI also performed an investigation to attempt to delineate the zero line of contamination. Ten soil borings were drilled as part of this investigation (B-1 through B-10) to a depth of approximately seven to ten feet bgs (Plate 2). From each boring, one soil sample was retained from a depth of approximately seven to eight feet bgs for analytical testing of TPH as gasoline and BTEX. Further discussions of this investigation are provided in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

Mr. Don Hwang March 14, 2005 Page 3

Vapor recovery wells VRW-1 through VRW-9 were constructed in August 1993 as part of a vapor recovery system. During installation of the extraction wells, soil samples were collected for chemical analysis in the borings at the depth where first groundwater occurred, at approximately seven feet bgs. Installations of these wells were documented in a February 7, 1994 report. A vapor extraction system was installed in the fall of 1993 as an interim remedial action. The system began operation on December 26, 1993. The system consisted of an internal combustion engine with a spray aeration tank for treatment of groundwater, and an activated carbon treatment polishing step prior to groundwater discharge. The internal combustion unit and spray aeration unit was manufactured by Remediation Service International (RSI), under the trade name Spray Aeration Vapor Extraction (SAVE) system.

On June 28, 1996, the treatment system was shut down with the concurrence of Pacific Supply Company. Prior to shut down, the system had destroyed an estimated 6,550 pounds of petroleum hydrocarbons since start of operations on December 26, 1993. After shut down, the water in the water tank was treated and discharged to the sanitary sewer under the existing permit and the inside of the tank was cleaned on July 15, 1996.

The permit with the Bay Area Air Quality Management District (BAAQMD) expired on September 1, 1996, and was not renewed. The water discharge permit was discontinued on July 31, 1996. The total volume of water discharged to the sanitary sewer was 151,089 gallons. In December 1996, the shut down and decommissioning of the system was authorized by Jennifer Eberle of the Alameda County Department of Health Services.

Groundwater monitoring continued following the shut down of the vapor extraction system. In August 2000, BAI supervised the drilling of 3 soil borings in 24th Street, on the north side of the Pacific Supply Company building in a downgradient direction from the former UST location. Grab groundwater samples were collected to evaluate whether off-site migration of hydrocarbon contamination in groundwater was occurring. One of the three groundwater samples was reported to contain low levels of TPH as gasoline, BTEX, and petroleum oxygenates. The results of the field investigation are presented in BAI's "Groundwater Investigation and Monitoring Report," dated December 14, 2000.

The drilling activities were performed on July 21, 2004 to determine the effectiveness of the vapor extraction system and to collect soil samples for geotechnical properties to aid in the evaluation of risk based cleanup scenarios. Soil borings CB-1 through CB-14 were

Mr. Don Hwang March 14, 2005 Page 4

drilled to depths ranging from 7 to 8.5 feet bgs. The soil samples selected for laboratory analyses were collected based on the elevation of the historical contamination in the vicinity of the boring, or direction from the ACHCS. The results of this investigation are presented in BAI's report titled "Soil Parameters and Confirmation Soil Sampling Investigation Report", dated January 31, 2005.

Table 1 presents a summary of groundwater analytical data and groundwater elevations for the monitoring wells. Table 2 presents the groundwater concentrations and groundwater elevations for vapor recovery wells. Plate 2 presents a site map that includes the historical boring and sampling locations. Groundwater elevations and flow direction for December 2004 are provided on Plate 3.

Scope of Work

The scope of work performed for this sampling event included collecting groundwater samples for laboratory analysis from monitoring wells MW-1 through MW-3, and vapor extraction wells VRW-1 through VRW-9. The groundwater sampling was completed on December 8, 9, and 10, 2004. Prior to sampling, groundwater levels were also measured in the 12 wells. The groundwater sampling protocol and field logs are included in Appendix A. BACE Analytical & Field Services, Inc. (BAFS) analyzed the groundwater samples for total petroleum hydrocarbons (TPH) as gasoline by Test Method CATPH-G and for benzene, toluene, ethylbenzene, and xylenes by EPA Test Method 8021. The groundwater analytical report for the samples collected in December 2004 is presented in Appendix B.

Groundwater Flow Direction

Groundwater elevations and flow directions are presented on Plate 3. The groundwater flow direction was predominately to the west with the highest elevation observed in well VRW-3. The groundwater elevation measured in well VRW-6 was slightly higher than the adjacent wells, causing a local mounding effect in this area and local northeasterly to southwesterly groundwater flows. The groundwater gradient was approximately 0.021 foot per foot (ft/ft).

Discussion of Groundwater Analytical Results

The December 2004 groundwater data show that petroleum hydrocarbon concentrations in groundwater generally increased slightly in the southern portion of

the site (wells VRW-9, VRW-5, and VRW-3) and at well MW-2, concentrations generally remained the same or decreased in the wells in the remaining area of the site (wells VRW-1, VRW-2, VRW-4, VRW-6, VRW-7 and VRW-8). Historically, petroleum hydrocarbon concentrations have been significantly higher in well VRW-4 than the other site wells. December 2004 petroleum hydrocarbon concentrations in the groundwater sample collected from well VRW-4 decreased significantly compared to the June 2004 data. The December 2004 water sample from well VRW-4 contained 2.7 milligrams per liter (mg/l) of TPH as gasoline, 780 micrograms per liter (μ g/l) of benzene, 68 μ g/l of toluene, 90 μ g/l of ethylbenzene, and 160 μ g/l of xylenes. Tables 1 and 2 present a summary of groundwater analytical data and groundwater elevations for the monitoring wells and vapor recovery wells, respectively.

Conclusion

BAI is currently waiting for the ACHCSA response to the January 31, 2005 report titled "Soil Parameters and Confirmation Soil Sampling Investigation Report". Groundwater sampling is currently scheduled for June 2005. A report summarizing the results of the June 2005 monitoring event will be provided after the analytical results have been obtained and reviewed by BAI.

If you should have any questions regarding this report, please contact Michelle Floyd Frederick or Diana Dickerson at (707) 838-3027.

Sincerely,

Michelle Floyd Frederick

Project Engineer

Diana M. Dickerson, R.G., R.E.A.

Hoyd Federick

Principal Geologist

cc: Ms. Normita Callison

LIST OF ATTACHMENTS

TABLES

Table 1. Summary of Groundwater Analytical Data for Monitoring Wells

Table 2. Summary of Groundwater Analytical Data for Vapor Extraction Wells

PLATES

Plate 1. Vicinity Map Plate 2. Site Map

Plate 2. Site Map
Plate 3. Groundwater Elevations, December 8, 2004

APPENDICES

Appendix A. Monitoring Well Sampling Protocol and Field Reports

Appendix B. Analytical Laboratory Report

		Depth to	Groundwater	TPH as						·
Well	Sampling	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
MW-1	10/14/1988	7.99	0.88	1.1	1.1	ND	<u></u>	ND	_	-
MW-1	12/29/1989	7.74	1.13	ND	ND	ND	ND	ND	ND (1)	-
MW-1	5/28/1992	7.81	1.06	ND	ND	ND	ND	ND	0.003(2)	
MW-1	9/3/1992	7.90	0.97	ND	ND	ND	ND	ND	0.12 (2)	
MW-1	11/24/1992	7.90	0.97	ND	ND	ND	ND	ND	0.017 (2)	
MW-1	3/9/1993	7.38	1.49	ND	ND	ND	ND	ND	ND (1)	_
MW-1	7/21/1993	7.68	1.19	ND	ND	ND	ND	ND	ND (1)	_
MW-1	11/3/1993	7.83	1.04	ND	ND	ND	ND	ND	ND (1)	_
MW-1	2/1/1994	7.30	1.57	ND	ND	ND	ND	ND	ND (1)	_
MW-1	6/2/1994	7.43	1.44	ND	ND	ND	ND_	ND	ND (1)	
MW-1	9/1/1994	7.70	1.17	ND	ND	ND	ND	ND	ND (1)	_
MW-1	12/13/1994	6.90	1.97	ND	ND	ND	ND	ND	<u> </u>	
MW-1	3/7/1995	7.30	1.57	0.06	3.8	ND	ND	ND	_	_
MW-1	6/9/1995	7.87	1.00	0.09	12	0.8	0.5	1.3		
MW-1	9/21/1995	7.67	1.20	ND	4.1	ND	ND	ND		<u> </u>
MW-1	12/18/1995	7.15	1.72	ND	ND	ND	ND	ND		
MW-1	2/29/1996	6.74	2.13	0.09	1.4	0.5	ND	0.8	_	_
MW-1	7/15/1996	7.76	1.11		-		-			_
MW-1	1/7/1997	6.80	2.07	0.06	0.6	<0.5	<0.5	<0.5	-	_
MW-1	7/12/1997	7.67	1.20	-	-	_	<u></u>		_	
MW-1	1/26/1998	6.93	1.94	<0.05	<0.5	<0.5	<0.5	1.1	_	_
MW-1	7/3/1998	7.51	1.36	_	-		_	-	_	
MW-1	1/13/1999	7.63	1.24	<0.05	<0.5	<0.5	<0.5	<0.5	-	
MW-1	9/27/1999	7.77	1.10	_			-		_	-
MW-1	1/28/2000	6.85	2.02	< 0.05	<0.5	<0.5	<0.5	<0.5		<5.0
MW-1	5/16/2002	7.45	1.42	0.35	<0.5	<0.5	<0.5	<0.5	-	<1.0
MW-1	6/10/2003	7.32	4.15	<0.05	<0.5	<0.5	<0.5	<0.5	_	<u> </u>
MW-1	11/19/2003	7.30	4.17	< 0.050	<0.30	<0.30	<0.50	<0.50		_
MW-1	6/23/2004	7.49	3.98	0.37	<1.0	<1.0	<1.0	<1.0	_	_
MW-1	12/10/2004	6.27	5.20	<0.050	<0.5	<0.5	<0.5	<0.5	_	

		Depth to	Groundwater	TPH as						
Well	Sampling	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(mg/L)	(µg/L)
MW-2	10/14/1988	7.29	0.85	11	23	20		16		_
MW-2	12/29/1989	6.87	1.27	4	200	6.7	ND	ND	0.22 (1)	_
MW-2	5/28/1992	6.92	1.22	8.9	550	48	ND	13	ND (2)	
MW-2	9/3/1992	7.26	0.88	2.1	760	6.2	1.8	5.1	0.006 (2)	_
MW-2	11/24/1992	7.28	0.86	4.2	370	15	3.4	9.5	ND (2)	
MW-2	3/9/1993	6.73	1.41	4.3	280	14	3.7	7.1	ND (1)	
MW-2	7/21/1993	7.02	1.12	3.4	250	9.6	2.5	11	ND(1)	_
MW-2	11/4/1993	7.22	0.92	2.5	230	7.8	2.1	9.9	ND(1)	-
MW-2	2/1/1994	6.93	1.21	3.4	240	17	ND	15	ND(1)	
MW-2	6/2/1994	6.86	1.28	3.0	150	9.8	3.0	10	ND(1)	_
MW-2	9/1/1994	7.10	1.04	2.1	120	9.8	2.0	9.6	ND(1)	
MW-2	12/13/1994	6.58	1.56	2.0	200	10	2.7	11		
MW-2	3/7/1995	6.69	1.45	3.0	500	15	5.8	16		
MW-2	6/9/1995	7.00	1.14	2.1	300	14	5.8	13		_
MW-2	9/21/1995	6.91	1.23	1.6	120	9.6	ND	15	_	
MW-2	12/18/1995	6.73	1.41	2.8	120	16	5.2	19		
MW-2	2/29/1996	6.36	1.78	1.7	170	15	2.9	17		
MW-2	7/15/1996	7.11	1.03	2.8	160	22	3.5	17		_
MW-2	1/7/1997	6.40	1.74	3.0	350	25	8.1	24	_	-
MW-2	7/12/1997	6.98	1.16	2.1	55	11	<2.5	18		
MW-2	1/26/1998	6.45	1.69	1.8	310	29	5.0	15	_	_
MW-2	7/3/1998	6.91	1.23	1.9	85	9.3	1.8	17	_	<u>-</u>
MW-2	1/13/1999	7.07	1.07	2.1	48	33	2.0	16	-	_
MW-2	9/27/1999	7.22	0.92	1.5	20	6,8	2.6	11	_	
MW-2	1/28/2000	6.61	1.53	1.3	22	6.4	1.5	11	_	<5.0
MW-2	5/17/2002	6.95	1.19	3.3	25.4	<5.0	<5.0	<5.0		<10
MW-2	6/10/2003	6.71	4.09	1.6	52	2.3	32	9.1	_	_
MW-2	11/19/2003	6.95	3.85	3.7	9.7	<1.1	<1.1	7.5	-	
MW-2	6/23/2004	6.96	3.84	1.1	6.30	2.36	<1.0	7.41	.	_
MW-2	12/9/2004	6.54	4.26	3.0	13.0	13.0	<0.5	24	_	

		Depth to	Groundwater	TPH as	D	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
Well	Sampling	Groundwater	Elevation	gasoline	Benzene		•	•		
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(mg/L)	(μg/L)
MW-3	10/14/1988	8.25	0.88	3.4	ND	ND		2.8		
MW-3	12/29/1989	7.79	1.34	ND	ND	ND	ND	ND	0.205 (1)	
MW-3	5/28/1992	7.83	1.30	ND	0.8	0.5	ND	ND	0.016 (2)	
MW-3	9/3/1992	8.22	0.91	ND_	ND	ND	ND	ND	0.033 (2)	
MW-3	11/24/1992	8.29	0.84	ND	ND	ND	ND	ND	0.011 (2)	
MW-3	3/9/1993	7.30	1.83	0.1	1.8	ND	ND	ND	ND(1)	
MW-3	7/21/1993	7.87	1.26	ND	ND	ND	ND	ND	ND(1)	
MW-3	11/4/1993	8.23	0.90	0.07	0.6	0.5	ND	ND	ND(1)	
MW-3	2/1/1994	7.56	1.57	ND	ND	ND	ND	ND	ND(1)	_
MW-3	6/2/1994	7.46	1.67	0.06	ND	ND	ND	ND	ND(1)	
MW-3	9/1/1994	7.83	1.30	0.07	1.7	0.9	ND	ND	ND(1)	
MW-3	12/13/1994	7.07	2.06	0.06	1.4	ND	ND	ND	_	_
MW-3	3/8/1995	7.27	1.86	0.06	1.5	ND	ND	ND	-	
MW-3	6/9/1995	7.79	1.34	0.10	5.7	ND	ND	ND		_
MW-3	9/21/1995	7.87	1.26	ND	1.5	ND	ND	ND		-
MW-3	12/18/1995	7.30	1.83	ND	1.3	ND	ND	ND	_	
MW-3	2/29/1996	6.84	2.29	ND	2.1	0.6	ND	0.7		_
MW-3	7/15/1996	7.79	1.34	_	_	-	_	-		_
MW-3	1/7/1997	6.62	2.51	0.05	1.0	<0.5	<0.5	<0.5	_	-
MW-3	7/12/1997	7.83	1.30	-	_	-	_	_		
MW-3	1/26/1998	6.60	2.53	< 0.05	0.8	<0.5	<0.5	<0.5		-
MW-3	7/3/1998	7.48	1.65	_	-		-	-	_	_
MW-3	1/13/1999	7.63	1.50	< 0.05	<0.5	<0.5	<0.5	<0.5	-	_
MW-3	9/27/1999	7.94	1.19	_	-	_	-	_		
MW-3	1/28/2000	7.12	2.01	< 0.05	<0.5	<0.5	<0.5	<0.5	NAME OF THE PERSON OF THE PERS	<5.0
MW-3	6/5/2003	7.53	4.23	< 0.05	<0.5	<0.5	<0.5	<0.5	_	-
MW-3	11/19/2003	7.83	3.93	0.16	< 0.54	< 0.54	<0.55	<1.6	_	
MW-3	6/23/2004	7.65	4.11	<0.05	<1.0	<1.0	<1.0	<1.0	_	-
MW-3	12/8/2004	7.53	4.23	< 0.050	<0.5	<0.5	<0.5	<0.5		

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(mg/L)	(μg/L)
MW-4	10/14/1988	8.33	0.74	4.6	1.2	ND	-	2.2	_	-
MW-4	12/29/1989	8.08	0.99	0.5	0.7	ND	ND	ND	ND (1)	
MW-4	5/28/1992	8.19	0.88	0.27	8.8	1	ND	3.2	0.030 (2)	-
MW-4	9/3/1992	8.37	0.70	0.20	4.5	4.4	ND	1.9	0.022 (2)	-
MW-4	11/24/1992	8.28	0.79	0.14	3.2	3.2	ND	1.0	0.005 (2)	-
MW-4	3/9/1993	7.98	1.09	0.47	10	ND	ND	2.5	ND (1)	_
MW-4	7/21/1993	8.17	0.90	0.28	4.4	5.9	ND	ND	ND(1)	_
MW-4	11/4/1993	8.14	0.93	0.08	1.3	1.6	ND	ND	ND(1)	-
MW-4	2/1/1994	7.79	1.28	0.08	ND	ND	ND	ND	ND(1)	-
MW-4	6/2/1994	7.53	1.54	0.30	3.1	2.9	ND	0.8	ND(1)	
MW-4	9/1/1994	7.69	1.38	0.12	1.6	ND	ND	ND	ND(1)	
MW-4	12/13/1994	6.70	2.37	ND	ND	ND	ND	ND		-
MW-4	3/8/1995	6.83	2.24	0.09	ND	ND	ND	ND		-
MW-4	6/9/1995	7.66	1,41	0.19	ND	ND	ND	ND	_	
MW-4	9/21/1995	7.93	1.14	0.09	ND	ND	ND	ND		
MW-4	12/18/1995	6.98	2.09	_		_	_			
MW-4	2/29/1996	6.54	2.53	0.14	1.6	1.0	ND	0.6	-	_
MW-4	7/15/1996	7.74	1.33		-				-	
MW-4	1/7/1997	6.46	2.61	0.09	1.0	0.5	<0.5	<0.5		-
MW-4	7/12/1997	7.82	1.25	-	-	_	-			
MW-4	1/26/1998	6.67	2.40	0.09	1.1	0.8	<0.5	<0.5		
MW-4	7/3/1998	7.45	1.62	-	-				-	
MW-4	1/13/1999	7.51	1.56	0.12	1.1	0.62	<0.5	0.57		_
MW-4	9/27/1999	7.88	1.19							
MW-4	1/28/2000	6.73	2.34	0.072	<0.5	<0.5	<0.5	<0.5		<5.0

TAT 11	C	Depth to Groundwater	Groundwater Elevation	TPH as	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
Well	Sampling		(feet, MSL)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(µg/L)
Name	Date	(feet)	0.89	3.2	ND	ND	(Fg/-/	ND		_
MW-5	10/14/1988	8.04 7.40	1.53	ND	ND	ND	ND	ND	ND (1)	_
MW-5	12/29/1989	7.53	1.40	ND	ND	ND	ND	ND	0.008 (2)	_
MW-5	5/28/1992	8.02	0.91	ND	ND	ND	ND	ND	0.034 (2)	_
MW-5	9/3/1992	7.75	1.18	ND	ND	ND	ND	ND	0.011 (2)	
MW-5	11/24/1992	6.91	2.02	ND	ND	ND	ND	ND	ND (1)	_
MW-5	3/9/1993	7.57	1.36	ND	ND	ND	ND	ND	ND(1)	_
MW-5	7/21/1993	7.77	1.16	ND	ND	ND	ND	ND	ND(1)	_
MW-5	11/4/1993	7.05	1.88	ND	ND	ND	ND	ND	ND(1)	
MW-5	2/1/1994	7.18	1.75	ND	ND ND	ND	ND	ND	ND(1)	-
MW-5	6/2/1994		1.40	ND	ND ND	ND	ND	ND	-	_
MW-5	9/1/1994	7.53	2.26	ND ND	ND	ND ND	ND	ND		
MW-5	3/8/1995	6.67		ND ND	ND ND	ND ND	ND	ND		
MW-5	6/9/1995	7.33	1.60	ND ND	ND ND	ND	ND	ND		
MW-5	9/21/1995	7.67	1.26					ND	<u></u> -	
MW-5	12/18/1995	6.62	2.31					ND		
MW-5	2/29/1996	6.16	2.77	ND	ND_	ND	ND			_
MW-5	7/15/1996	7.47	1.46	-						
MW-5	1/7/1997	6.11	2.82	< 0.05	<0.5	<0.5	<0.5	<0.5	-	
MW-5	7/12/1997	7.61	1.32			-			_	
MW-5	1/26/1998	6.17	2.76	<0.05	<0.5	<0.5	<0.5	<0.5	-	-
MW-5	7/3/1998	7.23	1.70				<u> </u>		-	
MW-5	1/13/1999	7.27	1.66	<0.05	<0.5	<0.5	<0.5	<0.5	<u> </u>	- -
MW-5	9/27/1999	7.76	1.17					-		
MW-5	1/28/2000	6.43	2.50	< 0.05	<0.5	<0.5	<0.5	<0.5	_	<5.0

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(μg/L)	(µg/L)	(μ g/L)	(mg/L)	(µg/L)
MW-6	12/29/1989	5.02	1.11	1.1	5.4	4,5	ND	ND	ND (1)	-
MW-6	3/9/1993	5.10	1.03	2.3	2.3	2.8	ND	3.1	ND (1)	-
MW-6	7/21/1993	5.23	0.90	0.59	ND	7.6	ND	ND	ND(1)	
MW-6	11/4/1993	5.25	0.88	1.5	ND	1.2	ND	0.7	ND(1)	_
MW-6	2/1/1994	5.05	1.08	1.9	2.5	3.9	1.6	1.1	ND(1)	
MW-6	6/2/1994	4.49	1.64	1.3	ND	1	ND	ND	ND(1)	_
MW-6	9/1/1994	4.53	1.60	2,2	ND	1.7	ND	ND	ND(1)	_
MW-6	12/13/1994	4.27	1.86	0.66 (3)	ND	ND	ND	ND	-	_
MW-6	3/8/1995	3.37	2.76	1.0 (3)	ND	ND	ND	ND		
MW-6	6/9/1995	4.40	1.73	1.5	ND	3.3	ND	ND		_
MW-6	9/21/1995	4.69	1.44	0.28	ND	ND	ND	ND	-	
MW-6	12/18/1995	4.42	1.71			_		_		

Pacific Supply Company, 1735 24th Street, Oakland, California

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	МТВЕ
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(mg/L)	(µg/L)
MW-7	12/29/1989	8.35	-3.32	ND	ND	ND	ND	ND	0.235 (1)	
MW-7	3/9/1993	13.60	-8.57	ND	ND	ND	ND	ND	ND (1)	_
MW-7	7/21/1993	12.59	-7.56	ND	ND	ND	ND	ND	ND(1)	_
MW-7	11/4/1993	9.84	-4.81	ND	ND	ND	ND	ND	ND(1)	-
MW-7	2/1/1994	10.38	-5.35	ND	ND	ND	ND	ND	ND(1)	
MW-7	6/2/1994	10.10	-5.07	ND	ND	ND	ND	ND	ND(1)	
MW-7	9/1/1994	9.63	-4.60	ND	ND	ND	ND	ND	ND(1)	
MW-7	12/13/1994	11.27	-6.24	ND	ND	ND	ND	ND	-	-
MW-7	3/7/1995	9.68	-4.65	ND	ND	ND	ND	ND		
MW-7	6/9/1995	9.37	-4.34	ND	ND	ND	ND	ND	_	_
MW-7	9/21/1995	9.43	-4.40	ND	ND	ND	ND	ND		
MW-7	12/18/1995	13.28	-8.25	_	_	_	1	_		_
MW-7	2/29/1996	11.70	-6.67	ND	ND	ND	ND	ND		-
MW-7	7/15/1996	11.12	-6.09	_			_			+
MW-7	1/7/1997	14.35	-9.32	< 0.05	<0.5	<0.5	<0.5	<0.5		_
MW-7	7/12/1997	15.12	-10.09	_	_	-			<u> </u>	_
MW-7	1/26/1998	15.28	-10.25	< 0.05	<0.5	<0.5	<0.5	<0.5		_
MW-7	7/3/1998	14.10	-9.07	-	-	_	=	_		
MW-7	1/13/1999	14.55	-9.52	< 0.05	<0.5	<0.5	<0.5	<0.5		
MW-7	9/27/1999	14.03	-9.00						_	_
MW-7	1/28/2000	10.91	-5.88	<0.05	<0.5	<0.5	<0.5	<0.5		<5.0

 $MTBE = methyl \ tertiary \ butyl \ ether. \ TPH \ = total \ petroleum \ hydrocarbons.$

(1)=Organic Lead, (2)=Total Lead, and (3)=chromatographic peak array does not match gasoline standard.

ND = not detected at laboratory reporting limit. <= less than given laboratory reporting limit.

 $\mu g/L$ = micrograms per liter. mg/L = milligrams per liter. – = not requested.

MSL = mean seal level.

Groundwater elevations prior to 2003 based on the following well casing elevations in feet above MSL:

MW-1 (8.87'), MW-2 (8.14'), MW-3 (9.13'), MW-4 (9.07'), MW-5 (8.93'), MW-6 (6.13') and MW-7 (5.03').

New survey data was obtained on June 23, 2003 by Phelps and Associates Land Surveyors.

June 2003 water levels were measured on June 5, 2003.

June 2004 water levels were measured on June 22, 2004.

December 2004 water levels were measured on December 8, 2004.

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Sample ID	Sample Collection Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (μg/L)	MTBE (µg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-1	11/3/1993	_	-		3	1600	19	1.1	16	-	-
VRW-1	6/10/2003	7.31	11.18	3.87	0.44	5.9	<0.5	<0.5	1.9		-
VRW-1	11/19/2003	7.33	11.18	3.85	1.2	19	< 0.54	< 0.55	6.3	-	-
VRW-1	6/22/2004	7.32	11.18	3.86	0.32	3.23	<1.0	<1.0	3.36	-	•
VRW-1	12/9/2004	6.93	11.18	4.25	0.32	8.0	<3	<3	3.7	-	
VRW-2	11/4/1993	_		-	7.2	3,300	600	2.4	870		-
VRW-2	5/17/2002	-		_	2,8	471	<10	<10	<10	<20	<10 to <20
VRW-2	6/9/2003	6.87	11.08	4.21	0.47	38	2.8	<1.0	<1.0	-	<u>-</u>
VRW-2	11/19/2003	7.00	11.08	4.08	1.3	51	< 0.54	< 0.55	4.0	-	-
VRW-2	6/25/2004	7.00	11.08	4.08	0.24	274	4.10	4.11	8.22		-
VRW-2	12/9/2004	6.45	11.08	4.63	< 0.050	9.6	4.2	2.5	4.3		-
VRW-3	11/4/1993	_	_		5.7	120	41	1.1	380	-	•
VRW-3	5/17/2002	-	anthren	_	0.42	10.9	<0.5	<0.5	1.07	<1.0	<0.50 to <1.0
VRW-3	6/9/2003	7.41	11.62	4.21	0.061	4.8	<0.5	<0.5	<0.5	-	<u> </u>
VRW-3	11/19/2003	7.48	11.62	4.14	0.16	1.7	<0.54	<0.55	2.7	-	<u>-</u>
VRW-3	6/25/2004	7.58	11.62	4.04	0.12	2.00	<0.50	<0.50	1.00	-	-
VRW-3	12/10/2004	6.34	11.62	5.28	0.22	27	3.7	1.0	3.1		
VRW-4	11/4/1993	_		_	9.0	4,400	900	5.4	990	-	-
VRW-4	5/15/2002	_	444	_	11	4,270	741	512	1,130	<50	<25 to <50
VRW-4	6/5/2003	7.01	11.33	4.32	2.2	1,200	100	12	89	-	-
VRW-4	11/19/2003	7.44	11.33	3.89	1.7	210	2.4	<2.2	36	- '	-
VRW-4	6/22/2004	7.20	11.33	4.13	14	4,540	611	739	1,170	-	
VRW-4	12/8/2004	6.99	11.33	4.34	2.7	780	68	90	160	-	-
VRW-5	11/4/1993	_	_	_	0.90	68	33	2.5	32	-	-
VRW-5	5/16/2002		_	_	0.87	44.3	<5.0	<5.0	<5.0	<10	<5.0 to <10
VRW-5	6/9/2003	7.33	11.56	4.23	0.93	90	<1.0	14	0.16	-	•
VRW-5	11/19/2003	7.53	11.56	4.03	2.9	250	<1.1	24	41		
VRW-5	6/23/2004	7.47	11.56	4.09	0.72	40.5	<1.0	1.17	8.04	-	-
VRW-5	12/10/2004	7.11	11.56	4.45	0.72	60	10	<3	33		

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Pacific Supply Company, 1735 24th Street, Oakland, California

Sample ID	Sample Collection Date	Depth to Groundwater (feet)	Top of Casing Elevation (feet, MSL)	Groundwater Elevation (feet, MSL)	TPH as gasoline (mg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	MTBE (µg/L)	Other Oxygenates & Lead Scavengers (µg/L)
VRW-6	11/4/1993	_	-	_	0.41	6.6	1.0	ND	31	-	-
VRW-6	5/15/2002	-	-	_	0.73	178	4.58	1.41	6.10	<1.0	<0.50 to <1.0
VRW-6	6/6/2003	7.21	11.43	4.22	< 0.05	<0.5	<0.5	< 0.5	< 0.5	-	
VRW-6	11/19/2003	7.39	11.43	4.04	0.21	13	<0.54	1.0	2.5	-	<u>-</u>
VRW-6	6/23/2004	7.36	11.43	4,07	0.42	43.4	3.60	1.69	13.0	-	
VRW-6	12/9/2004	6.71	11.43	4.72	0.14	8.0	21	<0.5	3.6	-	-
VRW-7	11/4/1993	_		_	0.10	ND	ND	ND	ND	-	-
VRW-7	5/16/2002	_	_	_	1.6	28.9	0.980	< 0.50	< 0.50	<1.0	<0.50 to <1.0
VRW-7	6/6/2003	7.47	11.70	4.23	0.36	19	1.3	<0.5	2.2	-	-
VRW-7	11/19/2003	7.78	11.70	3.92	1.1	14	<0.54	1.7	5.6	-	<u>.</u>
VRW-7	6/22/2004	7.61	11.70	4.09	1.3	130	8.06	9.81	15.9	-	-
VRW-7	12/9/2004	7.54	11.7	4.16	0.34	28	<3	<3	5.0	-	-
VRW-8	11/4/1993		_	_	5.9	460	54	ND	53	-	-
VRW-8	5/16/2002	_	***	_	3.3	248	16.0	<10	<10	<20	<10 to <20
VRW-8	6/6/2003	7.42	11.62	4.20	1,8	70	10	11	6.1	-	-
VRW-8	11/19/2003	7.85	11.62	3.77	3.6	36	<2.7	<2.7	4.3	-	
VRW-8	6/23/2004	7.56	11.62	4.06	2.1	115	11.8	<5.0	18.2	-	
VRW-8	12/9/2004	7,41	11.62	4.21	1.3	30	9.0	<3	7.6	_	-
VRW-9	11/4/1993	_	<u> </u>		0.47	36	18	ND	1.0	-	-
VRW-9	5/16/2002	_	_	_	0.080	0.990	2.00	<0.50	5.93	<1.0	<0.50 to <1.0
VRW-9	6/6/2003	7.67	11.87	4.20	0.58	10	4.4	4.9	< 0.50	-	-
VRW-9	11/19/2003	8.01	11.87	3.86	0.86	<1.1	<1.1	<1.1	5,5	-	<u>-</u>
VRW-9	6/22/2004	7.76	11.87	4.11	0.61	<1.0	1.35	<1.0	5.55	-	
VRW-9	12/9/2004	7.51	11.87	4.36	0.57	8.8	10	<0.5	5.5	-	

mg/L = milligrams per liter

 $\mu g/L = micrograms per liter$

 $na = not \ analyzed.$

ND = not detected above laboratory reporting limits.

MSL = Mean Sea Level

< = less than the specified laboratory reporting limit

June 2004 groundwater elevations were collected on June 22, 2004.

December 2004 groundwater elevations were collected on December 8, 2004.

Source Date: USGS

- 700 ft Scale: 1 : 24,000 Detail: 13-0 Datum: NAD27

Brunsing Associates, Inc. 5803 Skylane Blvd., Suite A Windsor, California 95492 Tel: (707) 838-3027

Job No.: 029.2

Appr :

Date: 1/8/04

VICINITY MAP PACIFIC SUPPLY COMPANY Oakland, California

PLATE

5803 Skylane Blvd., Suite A Windsor, California 95492 Tel: (707) 838-3027

Appr.:

Date 12/7/04 PACIFIC SUPPLY COMPANY 1734 24th Street Oakland, California

2

APPENDIX A
Monitoring Well Sampling Protocol and Field Reports

Groundwater Sampling Protocol

Monitoring Wells

Prior to purging a monitoring well, groundwater levels are measured with a Solinst electric depth measurement device, or an interface probe, in all wells that are to be measured. At sites where petroleum hydrocarbons are possible contaminants, the well is checked for floating product using a clear bailer, a steel tape with water/oil paste, or an interface probe, during the initial sampling round. If floating product is measured during the initial sampling round or noted during subsequent sampling rounds, floating product measurements are continued.

After the water level and floating product measurements are complete, the monitoring well is purged until a minimum of three casing volumes of water are removed, water is relatively clear of sediment, and pH, conductivity, and temperature measurements of the water become relatively stabile. If the well is purged dry, groundwater samples are collected after the water level in the well recovers to at least 80 percent of the original water column measured in the well prior to sampling, or following a maximum recovery period of two hours. The well is purged using a factory-sealed, disposable, polyethylene bailer, a four-inch diameter submersible Grundfos pump, a two-inch diameter ES-40 purge pump, or a peristaltic pump. The purge water is stored on-site in clean, 55-gallon drums.

A groundwater sample is collected from each monitoring well following reequilibration of the well after purging. The groundwater sample is collected using a factory-sealed disposable, polyethylene bailer with a sampling port, or a factory-sealed Teflon bailer. A factory provided attachment designed for use with volatile organic compounds (VOCs) is attached to the polyethylene bailer sampling port when collecting samples to be analyzed for VOCs. The groundwater sample is transferred from the bailer into sample container(s) that are obtained directly from the analytical laboratory.

The sample container(s) is labelled with a self-adhesive tag. The following information is included on the tag:

Project number Sample number Date and time sample is collected Initials of sample collector(s).

Individual log sheets are maintained throughout the sampling operations. The following information is recorded:

Sample number
Date and time well sampled and purged
Sampling location
Types of sampling equipment used
Name of sampler(s)
Volume of water purged.

Following collection of the groundwater sample, the sample is immediately stored on blue ice in an appropriate container. A chain-of-custody form is completed with the following information:

Date the sample was collected Sample number and the number of containers Analyses required Remarks including preservatives added and any special conditions.

The original copy of the chain-of-custody form accompanies the sample containers to a California-certified laboratory. A copy is retained by BAI and placed in company files.

Sampling equipment including thermometers, pH electrodes, and conductivity probes are cleaned both before and after their use at the site. The following cleaning procedures are used:

Scrub with a potable water and detergent solution or other solutions deemed appropriate using a hard bristle brush

Rinse with potable water

Double-rinse with organic-free or deionized water

Package and seal equipment in plastic bags or other appropriate containers to prevent contact with solvents, dust, or other contaminants.

In addition, the pumps are cleaned by pumping a potable water and detergent solution and deionized water through the system. Cleaning solutions are contained on-site in clean 55-gallon drums.

Domestic and Irrigation Wells

Groundwater samples collected from domestic or irrigation wells are collected from the spigot that is the closest to the well. Prior to collecting the sample, the spigot is allowed to flow for at least 5 minutes to purge the well. The sample is then collected directly into laboratory-supplied containers, sealed, labeled, and stored on blue ice in an appropriate container, as described above. A chain-of-custody form is completed and submitted with the samples to the analytical laboratory.

FILE COPY

UST Fund Site:

FIELD REPORT

JOB NO: 29.027

PROJECT: 1785 24TH STREET, OAKLAND, CA

INITIAL: CDS

SUBJECT: GEOUND WATER SAMPLINE

DATE: 12-8-0+ PROJECT PHASE NUMBER: 04

VEHICLE USED: ≤ -1 0

PAGE 1 OF 4

Total Time: 10.75

End. Mileage: 7737

Beg. Mlleage: 7675

WORLD THE REAL PROPERTY.		TOTAL MILEA	GE: 64
0539	LOAD EQUIPMENT AND SUPPLIES		
0623	TO SITE		
0845	ARRIVE AT SITE.		
	SET-UP FOR GROUNDWATER SAMPLING		
	ALLESSED ALL WELLS		
	MEASURED TWO . LOUNDS OF DISTANCE TO WATER !	AT WALLS I	uw-1,
	MW-Z MW-3: VRW-1 VRW-2, VRW-3 VRW-4, V	ew-S yew	-6,
	Vew-7 vew-8 AND Vew-9		
	PERFORMED SAMPLING AT WELLS MW-3 AND VRW.	- ¥.	
	STERFO PLANEWATER IN DRUMS LOCATED IN THE FOR	MER REMED	NOTTAL
	SYSTEM COMPOUND AREA.		
	CLOSED ALLWEIS AND MONUMENTS		
	DELON SAMPLING EQUIPMENT.		
	LAANFOUIDMENT AND SUPPLIES.		
1537.	LEAVE SITE.		
	TENTEL AND COMPLETED FIELD NOTES		
1624	FINISHED WITH WORLE.		
		-	
		DRUM COUNT:	
		Water≃ Devi	pmt Water =
			on Water =
	tion to the second of the seco		

WATER LEVELS

SHEET 2 OF 4

PROJECT: PACIFIC SUPPLY

PROJECT NUMBER: 29.027

INSTRUME	NT TYPE: &	T (WLP)		INITIALS:	c05	DATE: 12-8-04
WELL NUMBER	DEPTH TO PRODUCT	DISTANCE TO WATER	TIME (24 HOUR)	EQUILIBRATED (CHECK FOR YES)		NOTES
Mw-1	0	6.26	1105			
Mw-2	-0-	6.53	1102			
MW-3	0	7.53	1146			
vrw-1	-0-	6,94	1049			
VRW-2	-0-	6.45	1032			
VRW-3	4	6.35	1012			
vew-4	-0-	7,00	1100			
vew-s	0	7.10	1206	A		
VRW-6	-0 -	6.71	1200			
VRW-7	-0-	7.55	1142			
vrw-8	-0-	7.40	1145			
VRW-9	0	7.51	1144			
Mw-l	-6-	.6.27	1110	/		
MW-Z	-0-	6.54	1107	~		
MW-3	→	17.53	1151	~		
vew-1	-0-	6.93	1054	V		
VRW-Z	-0-	6.45	1038	V		
VRW-3	-0-	6.34	1021	V		
vew-4	-0-	6.99	1106	V		
vew-s	0	7.11	12-12	~		
vew-6	-0-	6,71	1214	~		
vew-7	-0-	7,54	1147	~		74
VRW-8	-0-	7.41	1150	~		
1/RW-9	-0-	7.51	1149	~		

WELL SAMPLING

SHEET 3 OF 4

PROJECT:	PACIFICS	UPPLY					PROJECT NUMBER: 29.027	
WELL # M	w-3	PRECIP. IN L	AST 5 DAYS:		WIND >		DATE: 12-8-04	
STARTING	TIME: {4	112	FINISHING T	TIME: 150	8		INITIALS: CPS	
CALCULAT	ION OF PUR	GE VOLUM	E					G
2" WELL	DEPTH: [16.00] - p.t.w. [7.53] = H20 CO	LUMN:	8,47 X 0.5 = 4.24	A L L
4" WELL	DEPTH: [] - D.T.W. [] = H20 CO	LUMN:	X 2.0 =	O N
THEREFO	RE TOTAL	PURGE G/	ALLONS EQUA	LS			4	s
-			FIE	LD ME	ASUREM	ENTS	3	
TIME	GALLONS REMOVED	pН	S CONDUCTIVITY	TEMP.			OBSERVATIONS	10
1425	(8.99	3.93mS	18.4	CLEAR OR	ANGE.	-BROWN, ORGANICODOR	
1428	2.5	9.06	3.94 mS	18.4	CLEAR OF	LANGE	- BROWN, ORVANIC ODOR	
1432	4	9.00	3,96 MS	18.6	CLEARLO	ZANL	E-BROWN ORGANIC ODOR	
SAMPLII	NG:		20	TOH-6-AS	-1	τε⊁ /ELL G	O DRY? No	
WATER	LEVELS:	NOTES:						e e
TIME	D.T.W.							
1453	8.29							
			M					
					*>			
	15							

WELL SAMPLING

SHEET 4 OF 4

PROJECT:	PACIFIC +	SUPPLY					PROJEC	CT NUMBER: 29.	027	
WELL# V	2w-4	PRECIP. IN I	LAST 5 DAYS:	/	WIND	/	DATI	E:12-8-04		
STARTING	TIME: 12	.20	FINISHING	TIME: 141	· Y		INITIAL	S: CDS		
CALCULAT	ION OF PUR	GE VOLUM	1E						G	
2" WELL	DEPTH:] - p.T.W.] = H20	COLUI	MN:	X 0.5 =	L A	
4" WELL	DEPTH: [20.00] - D.T.W.	6.99] = H20	COLUI	MN: 13.0	X 2.0 = 2.6,		
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	LS				26	N S	
	FIELD MEASUREMENTS									
TIME	GALLONS REMOVED	<u>р.Н</u>	CONBUCTIVITY	TEMP.			OBSERV/	ATIONS	10	
1319	,	8,09	863	16.0	(10.0)		1 001-01-10	and surel s	FOLMONT	
12.1		0,04	862	16.0	CLOUVE	(Beow)	DILUMNIE	OBOR SHEEN S	EDIMEN)	
1324	13	8,16	1938	17.2	CLOUD	y Bac	WH OCUA	NICODOR, SEDI	MENT	
1334	26	8,50	3,53mS	16.4	CLOVO	7 Bao	UN ORGAN	icopor, sedim	ENT	
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH-G-AS		Brex				
		SAI	MPLE TIME:	1344] D	ID WEL	L GO DRY?	No	ě	
WATER	LEVELS:	NOTES:							F .	
TIME	D.T.W.									
1353	11,97			2						
						_				
				3	•)					

UST Fund Site:

Yes

FIELD REPORT

PROJECT: 1735 24TH STREET, OAKLAND, CA.

PAGE __!_ OF_ 8

INITIAL: CPS

SUBJECT: U-ROUNDWATER SAMPLING

Total Time: 10.00

DATE: 12-9-04

JOB NO: 29,027

PROJECT PHASE NUMBER: 04:

End. Mileage: 7747

VEHICLE USED: Ş→(o

Beg. Mlleage: 1737

		TOTAL MIL	EAGE:	10							
	。 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]										
多数性等的	The action continues at a control property by the action and a second	in the beauti									
0630	LOAD EQUIPMENT AND SUPPLIES.		_								
26.49											
0648	To Site										
0714	ARRIVE AT SITE.										
	SET-UP FOR GROUNDWATER SAMPLING.										
	PERFORMED SAMPUNGAT WELLS MW-2, VRW-1	VEW-2 V	Rw-6								
	VRW-7, VRW-8 AND VRW-9,										
	STORED PLANEWATER IN DRUMS LOCATED AT THE F	ormer 54	ISTEM								
	COMPOUND ARE A.										
	CLOSED ALL WELLS AND MONUMENTS.										
	DECONSAMPLING EQUIPMENT.										
	LOAD FOUIDMENT AND SUPPLIES!										
1609	LEAVESITE.										
	TRAVEL AND COMPLETED FIELD NOTES.										
1644	FINISHED WITH WOOK										
16 17	TINISHED BUTA WOOLE										
3											
	THE PARTY OF THE P										
		N 1	-								
		DRUM COUNT:									
		Water = 1	Devipmt Wate	r=							
		Soil =	Decon Water	=							

WELL SAMPLING

SHEET 2 OF 8

PROJECT:	PACIFICS	SUPPLY					PROJECT NUMBER: 29.027			
WELL# M	14-2	PRECIP. IN	LAST 5 DAYS:	/	WIND	/	DATE: (2-9-04			
STARTING	S TIME: 1	216	FINISHING	TIME: 132	-4		INITIALS: COS			
CALCULAT	TON OF PUR	RGE VOLUM	IE .				G			
2" WELL	DEPTH:] - D.T.W.] = H20	COLUMN:	X 0.5 = L			
4" WELL	4" WELL DEPTH: 20,00 - D.T.W. 6.54 = H20 COLUMN: 13.46 X 2.0 = 26.92 O									
THEREFORE TOTAL PURGE GALLONS EQUALS 2.7 S										
FIELD MEASUREMENTS										
TIME	GALLONS REMOVED	pН	CONDUCTIVITY	TEMP.			OBSERVATIONS	-		
1231	- (9 49	100 -	10 2	20			-01		
122		8.48	1.90 ms	18.3	CLEAR	LORANGE	· Brown, ORGANIC ODOR	-		
1237	14	8.00	1499	18.4	CLEAR	ORANGE	· BROWN , ORLANIC ODOR			
124-		7.01	1.4 4.2	- /			1103 2			
1245	27	7,95	1462	18.6	Crons.	1 ORANGE	BROWN ORVANICODOR, SEDIMENT			
SAMPLII	NG:	SAMPLE	ANALYSIS:	TPH - GAS		BTEX				
				1254		D WELL G	O DRY? No			
WATER	LEVELS:	NOTES:	=							
TIME	D.T.W.		4							
1305	6.63									
						-				
								_		
			9					_		
								_		
								-		

WELL SAMPLING

SHEET 3 OF 8

PROJECT:	PACIFIC S	UPPLY				PROJECT NUMBER: 29.027
WELL # V	RW-1	PRECIP. IN I	LAST 5 DAYS:	V	WIND 🗸	DATE: 12-9-04
STARTING	TIME: (325	FINISHING	TIME: 141	-0	INITIALS: COS
CALCULAT	ION OF PUR	GE VOLUM	IE.			G
2" WELL	DEPTH:] - D.T.W.] = H20 CO	.UMN: X 0.5 = L
4" WELL	DEPTH:	20.00] - D.T.W.	6.93	= H20 CO	LUMN: 13.07 X 2.0 = 26.14 0
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	LS		Z6 N S
			FIE	LD ME	ASUREM	ENTS
TIME	GALLONS JS TIME REMOVED DH CONDUCTIVE			TEMP.		OBSERVATIONS
1337	ı	8,76	3.47 ms	19.3	CLOUDY GRE	Y-BLACK, ORGANIC ODOR, SEDIMENT
				22 70/32		
1343	13	8.37	1981	18.0	CLOUDTORA	WE BROWN ORGANIC GOOR, SEDIMENT
1350	26	8.17	1997.	18.9	CLOUDY OR	ANGE, BROWN ORGANIC ODOR
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH-GAS	Вт	EX-
		SAI	MPLE TIME:	1404] DID W	ELL GO DRY? No
WATER	LEVELS:	NOTES:				5.6
TIME	D.T.W.					
1406	9.43					
				-		
			- 6			
-						
				=		

WELL SAMPLING SHEET 4 OF 8

PROJECT	PACIFIC S	SUPPLY				PROJECT NUMBER: 29,027	
WELL#V	2w-2	PRECIP. IN	LAST 5 DAYS:	/	WIND 🗸	DATE: 12-9-04	
			FINISHING	TIME: \$53	9	INITIALS: CD'S	
CALCULA.	TION OF PUR	RGE VOLUI	ME				3
2" WELL	DEPTH:] - D.T.W.		☐ ≈ H20 COLUM	MN: X 0.5 = 1	A L
4" WELL	DEPTH:	20.00] - D.T.W.	6,45	= H20 COLUM	MN: [3.55] X 2.0 = 27.10	L D
THEREFO	RE TOTAL	PURGE G	BALLONS EQUA	LS			N S
			FIE	LD ME	ASUREMEN	TS	
TIME	GALLONS REMOVED	рН	CONDUCTIVITY	IEMP.		OBSERVATIONS	
1441	1	8.78	2.47 mS	(7,7	CLOUDY ORDINGE	BROWN ORGANIC ODOR, SEDIMENT	
					- Telephore	GEOGRAPHIC BOOK, SEDIMENT	
1448	13	8.31	1612	18.6	CLOUDY GRANG	E-BROWN, ORGANICODOR, SEDIMENT	
14-1	2.2						
1456	27	8,13	1336	19,3	CLOUSY ORANG	DE BROWN, ORGANIC ODOR, SEDIME	NT
SAMPLI	NG:	SAMPLI	E ANALYSIS:	TPH, 6AS	BTEX		
		SA	MPLE TIME:	1510] DID WELL	GO DRY? No	
WATER	LEVELS:	NOTES	:				
TIME	D.T.W.						
1517	6,85						
				12			

WELL SAMPLING

SHEET 5 OF 8

PROJECT:	PACIFIC	SUPPLY				PROJECT NUMBER: 29.027
WELL # V	rw-6	PRECIP. IN	LAST 5 DAYS:	~	WIND 🗸	DATE: 12-9-04
STARTIN	G TIME: 0	725	FINISHING	TIME: 08	46	INITIALS: CPS
CALCULA'	TION OF PUR	RGE VOLUM	<u>/E</u>			G
2" WELL	DEPTH:] - p.t.w.] = H20 COLUM	1N: X 0.5 = L
4" WELL	DEPTH:	20.00] - D.T.W.	6.71	= H20 COLUM	IN: 13.29 X 2.0 = 26.58 O
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	LS		27 N S
			FIE	LD ME	ASUREMEN	<u>TS</u>
TIME	GALLONS REMOVED	<u>р.Н</u>	CONDUCTIVITY	TEMP,		OBSERVATIONS
		4	20200		-	*)
0802	t	6.65	843	18.8	CLEAR, ORL	ANICODOR, SEDIMENT
0808	13	7.28	1699	18.9	TURBIO FREEN	-BROWN, DALANICODOR, SEDIMENT
0815	27	7.36	3.15 ms	19.5	TURBIDGREEN	-BROWN, ORGANICODOR, SEDIMENT
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH. LAS	Brex	
		SAI	MPLE TIME:	0829] DID WELL	GO DRY? No
WATER	LEVELS:	NOTES:				180 180
TIME	D.T.W.					3
0833	17.85	SLO	W RECOVER	-Y		
				-3		
				9		
1.0 0 10	7					ON THE PERSON NAMED IN COLUMN

WELL SAMPLING

SHEET & OF 8

PROJECT:	PACIFIC S	UPPLY				PROJECT NUMBER: 29.027				
WELL # Y	ew-7	PRECIP. IN L	AST 5 DAYS: 🗸	•	WIND ~	DATE: 12-9-04				
STARTING	TIME: (113	FINISHING 7	ΓΙΜΕ: 121	5	INITIALS: COS				
CALCULAT	ION OF PUR	RGE VOLUM	E			G				
2" WELL	DEPTH:		- D.T.W.] = H20 COLUMI	N: X 0.5 = L				
4" WELL	DEPTH:	20,00	- D.T.W.	7.54	= H20 COLUMI					
THEREFO	THEREFORE TOTAL PURGE GALLONS EQUALS S									
	FIELD MEASUREMENTS									
TIME	GALLONS REMOVED	pН	CONDUCTIVITY	TEMP.	A F	OBSERVATIONS				
						1 1 1				
1124	1	7.84	2.69 ms	20,4	CLEAR ORANGE	- BROWN ORLANK ODOR				
· 20				33						
1130	12	7,88	3.78ms	20.7	TURBIDGEEN.	BROWN, NOCOOR SHEEN, SEDIMENT				
1135	25	8,00	3,59 ms	20.8	Trans Reason L	DRLANLODOR SANDY CEDIMENT				
		0705	3/3/16/3	20.0	TOESING WAY	SEPANCE DOC SANDT LEDINGA				
SAMPLI	NG:	SAMPLE	ANALYSIS:	TAL LAS	BTEX					
		SAI	MPLE TIME:	1150] DID WELL	GO DRY? No				
WATER	LEVELS:	NOTES:								
TIME	D.T.W.				- N					
1157	14.25	SLOW	RECOVER	1						
			-							
-										

WELL SAMPLING

SHEET 7 OF 8

PROJECT: PACIFIC SUPPLY PROJECT NUMBER: 29.027
WELL# VAW-8 PRECIP. IN LAST 5 DAYS: WIND DATE: 12-9-04
STARTING TIME: 0847 FINISHING TIME: 0959 INITIALS: 665
CALCULATION OF PURGE VOLUME G
2" WELL DEPTH: D.T.W = H20 COLUMN: X 0.5 = L
4" WELL DEPTH: 20.00 - D.T.W. 7.41 = H20 COLUMN: 12.59 X2.0 = 25.18 0
THEREFORE TOTAL PURGE GALLONS EQUALS N S
FIELD MEASUREMENTS
TIME REMOVED PH CONDUCTIVITY TEMP. OBSERVATIONS
0905 1 7.56 2.76mS 18.5 CLEARYELLOW, ORLANIC ODOR, SEDIMENT
CANAL PELOSON, PROUNTE OF DOTE, SEDIMENT
0911 12 7.39 2.41 ms 18.5 TURBIOGREEN BROWN, ORGANICODOR, SEDIMENT.
09.19 25 7.43 3.03ms 18.8 TURBIDGAETH BROWN ORGANICODOR SANDY.
SAMPLING: SAMPLE ANALYSIS: TPH-GAS BTEX SAMPLE TIME: 0934 DID WELL GO DRY? No
WATER LEVELS: NOTES:
TIME D.T.W.
0946 7.38

WELL SAMPLING

SHEET 8 OF 8

PROJECT: P	PACIFIC S	UPPLT				PROJECT NUMBER: 29.027
WELL # V@	w-9	PRECIP. IN L	AST 5 DAYS:	~	WIND /	DATE: 12-9-04
STARTING	TIME: 1	000	FINISHING T	TME: 1112		INITIALS: CDS
CALCULATIO	ON OF PUR	GE VOLUM	E			G
2" WELL	DEPTH: [- D.T.W.		= H20 COLU	MN: X 0.5 = L
4" WELL	DEPTH:	20,00	- D.T.W. [7.51	= H20 COLUM	MN: 12.49 X 2.0 = 24.98 O
THEREFOR	RE TOTAL	PURGE GA	ALLONS EQUA	LS		2.5 S
			FIE	LD MEA	ASUREMEN	ITS
	GALLONS REMOVED	рН	S CONDUCTIVITY	TEMP.		OBSERVATIONS
		32				
1018		7.86	2.68 mS	20.0	CLEARYEL	LOW BELANIC ODOR
-				+:		
1026	12.	7,80	2.65 ms	20.7	TUZRIDBEOW	N NOODOR SHEEN SANDY
1034	25	7.79	2,48 ms	21,2	0	Annual Page Carlo School Tall
1054	23	1, 11	2710 IMS	21,2	IVERIDORDUN	ORLANGODOR SANDY, SEDIMENT
SAMPLIN	G·	SAMPI F	ANALYSIS:	TPH. GAS	BIEX	
OPAIN EIN	<u>o.</u>					
		SAN	MPLE TIME:	1041] DID WEL	L GO DRY? No
WATER L	EVELS:	NOTES:				
TIME	D.T.W.					
1052	7.49					
				†		
	0					- Walland Walland

UST Fund Site:

FIELD REPORT

PROJECT: 1735 24TH STREET, OAKLAND, CA.

JOB NO: 29.027 INITIAL: CDS SUBJECT: beaund WATER SAMPLING

DATE: 12-10-04 PROJECT PHASE NUMBER: 04

VEHICLE USED: 5-10

PAGE OF 4

Total Time: 8,25

End. Mileage: 7829

Beg. Mlleage: 7747

		TUTAL MILEAGE: 1 82								
		The state of the s								
0639	to 5,16.									
0700	ARRIVE AT SITE.									
	SET- UP FOR GROUNDWATER SAMPLING.									
	PERFORMED SAMPLING AT WELLS MW-1, VRW-3 A	NO VEW-S.								
	STORED PURCEUNIER IN DRUMS LOCATED IN THE FORM	TER SYSTEM								
	COMPOUND AGEA.									
	CLOSED ALL WELLS AND MONUMENTS.	7//								
	DECON SAMPLING EQUIPMENT.									
	DAD EQUIPMENT AND SUPPLIES									
1123 .	LEAVE SITE,									
1242	ADDIVE AT OFFICE.	4								
	SUBMITTED ALL SAMPLES ON A CHAIN OF CUSTODY F	OR AUALISIS								
	COMPLETED FIELD NOTES									
	UNLOAD EQUIPMENT AND SUPPLIES									
1457.	FINISHED WITH WORK,									
A 12										
		DRUM COUNT:								
		6 p								
		Water = 6 Devipmt Water =								
	i.	Soil = Decon Water =								

WELL SAMPLING

SHEET 2 OF 4

PROJECT:	PACIFIC	SUPPLY				PROJECT NUMBER: 29.027				
WELL# 5	rw-l	PRECIP. IN L	AST 5 DAYS:	/	WIND 🗸	DATE: 12-10-04				
STARTING	S TIME: c	9936	FINISHING	ΓΙΜΕ: 104	ło	INITIALS: CPS				
CALCULAT	ION OF PUR	RGE VOLUM	E			G				
2" WELL	DEPTH:	19.00] - D.T.W.	6.27] = H20 COLUMN:	A L L L				
4" WELL	4" WELL DEPTH: D.T.W = H20 COLUMN: X 2.0 = O									
THEREFORE TOTAL PURGE GALLONS EQUALS 6 8										
	FIELD MEASUREMENTS									
TIME	GALLONS REMOVED	Нq	CONDUCTIVITY	TEMP.		<u>OBSERVATIONS</u>				
0956	1	7.80	1806	17.2						
	,	1780	7 70 0	11.6	I VRBIDGREY, DLACK	C, ORGANICODER, SEDIMENT				
1003	3	7.58	1450	17.8	TURBIOGREY-BLAC	k orcanic oder, sediment				
						,				
1010	6	7.50	1115	17.9	TURBIO GREY. BI	LACK, ORGANIC ODDR, SEPIMENT				
SAMPLII	NG:	SAMPLE	ANALYSIS:	TOHILAS	Втех					
		SAN	MPLE TIME:	1022	DID WELL GO	D DRY? N6				
WATER	LEVELS:	NOTES:								
TIME	D.T.W.	÷								
0938	6.28			·						
0944	6.27									
1031	7.82				·					
					 	,				
		·		-						
			· · · · · · · · · · · · · · · · · · ·							

WELL SAMPLING

SHEET 3 OF 4

PROJECT:	Pacific S	UPPLY				PROJEC*	T NUMBER: 29	.027	
WELL # V	LW-3	PRECIP. IN L	AST 5 DAYS:	/	WIND 🗸	DATE	12-10-04		
STARTING	TIME: 4	0881	FINISHING 1	TIME: 09:	35	INITIALS:	205		
CALCULAT	ION OF PUR	GE VOLUM	<u>E</u>						G
2" WELL	DEPTH:		- D.T.W.] = H20 COLU	JMN:	X 0.5 =		A L
4" WELL	DEPTH:	20.00	- D.T.W.	8.35] = H20 COLU	JMN: /3.65	X 2.0 = 2	7.30	C L
			LLONS EQUA		•		27		N S
			FIE	LD ME	ASUREME	NTS	·		
TIME	GALLONS REMOVED	pН	PS CONDUCTIVITY	TEMP.		OBSERVAT	TIONS		
0849	1	7,53	1122	17.7	CLOUDY ORAN	OE BROWN, OI	24 ANICODOR SI	132, k 33 4	Diment
0856	13	7,39	1534	18.8	TURBIOGREY	BROWN, ORGAN	ucopoe, se	DIMENT	
			<u></u>						
0903	27	7.41	1620	18.9	CLOUDYGREE	4. Brown, or 60	INICODOR, SHEE	H, SEPIM	ENT
									-
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH.GAS	βπε	~			
			MPLE TIME:	0908		LL GO DRY?	NO		
					·				
WATER	LEVELS:	NOTES:							
TIME	D.T.W.								
0833	6.36	540	w REcove	ry					
0838	6.35								
0919	16,30				······································				
			<u> </u>		 -	<u>.</u>			-
									.
 				·					
L	<u> </u>	<u> </u>							

BRUNSING ASSOCIATES, INC. ENVIRONMENTAL DIVISION

WELL SAMPLING

SHEET 4 OF 4

PROJECT:	PACIFIC S	Supply					PROJECT N	NUMBER:	29.027	
WELL # V	2W-5	PRECIP. IN L	AST 5 DAYS:	/	WIND 🗸	·	DATE: (2-10-0	4	
STARTING	TIME: 0	722	FINISHING	ГIME: 083	0		INITIALS:	>D &		
CALCULAT	ION OF PUR	RGE VOLUM	E							G
2" WELL	DEPTH:		- D.T.W.		= H20 C	DLUMN:		X 0.5 =[A L
4" WELL	DEPTH:	20,00	- D.T.W.	7,12	= H20 C0	OLUMN:	12.88	X 2.0 =[25.76	L 0
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS				26		N S
			FIE	LD MEA	ASUREM	IENTS				
<u>TIME</u>	GALLONS REMOVED	<u>p H</u>	کیر CONDUCTIVITY	TEMP.			OBSERVATIO	NS		
			<u>-</u>							
0751		7.22	1360	16.2	CLEARORA	NOE. BU	BUN, ORGE	INKODOR	SEDIME	THE
	. ~			. ~						
0757	13	7,12	1315	17.0	CLOUDY GR	EENOBRO	CHN, OCLAN	CODOR 1	EDIMEN	~
0806	26	7.09	1229	18,0	crowyo	REEN B	seewn, orc	anic odo	R SEDIN	LENT
									<u>.</u>	
SAMPLI	NG:	SAMPLE	ANALYSIS:	TPH. GAS	<u> </u> 8	TEX				
		SAM	MPLE TIME:	9818] DID \	WELL GO	DRY? [No		
WATER	LEVELS:	NOTES:								
TIME	D.T.W.				<u></u>					
0724	7.11			·						
0730	7.12				·····					
0821	6,92									·
			 .							-
					·					·
		<u> </u>					· · 	-:		

Chain-of Custody Form

Project#	Project Name		_		ļ · · · ·				Ana	lysis	-						· · · · · · · · · · · · · · · · · · ·	1
29.027	PACIFIC SUPPLY 1735 24TH STREET, OA	KLANO,C	Α,													C.O.C. No.	11615	5
L.P. No.	Sampler's Signature			No.	ļ	14		,					İ			Remarks:		
	Chies Acott			of Con-	TPH. GAS	BIEK (EPA 8021												
Date Sampled	Sample I.D.	Time (24 Hour)	Sample Type	tainers	厚	BIE)												
12-10-04	Mw-l	1022	WATER	6	X	X												
124-04	MW-2	1254	1		X	\boxtimes												
12-8-04	MW-3	1446			\times	\times												
12.4-04	vew-1	1404			\boxtimes	\boxtimes							~					
12-9-04	VRW-2	1510			\boxtimes	\boxtimes												
12-10-04	Vew-3	0908	·		\geq	\bowtie												
12-8-04	VRW-4	1344			\boxtimes	\geq												-
12-10-04	vrw-5	0816			\geq	X												
12.9.04	VRW-6	0829			\geq	\times												
12-9-04	VRW-7	1150			\times	\boxtimes												
12.9.04	vrw-8	0934			X	\times												
12.9.04	vew-9	1041	*	V	\boxtimes	\searrow					i							
			-															
							,								_			
	·																	
																	·	
Laboratory:	BAFS				Pres	ervatio	n: A - HC	.: B - F	2SO4	: C-N	laOH:	: D - I	INO3	E - lce	: F	- (specify)		
Relinquished	ov:// /	12/10/04		Received I	by:		,			Rema						Brunsing A	ecociatos	Inc
(signed) Relinquished b		1410194 Date/	1341 Time	(signed) Received I	71/2					STA	NPA	rd -	TAT			_	133001a1 0 3). Box 588	, 1110.
(signed)	·y.	Date/	IIIIE	(signed)	Jy.												ne Blvd., Suite	a I
Relinquished b	ny:	Date/	Time	Received 1	or Labo	ratory by	':		• • •	ATI	ı : M	icHe	للق			Winds	or, CA 95492	J
(signed)				(signed)) 838-3027 838-4420 fax	

APPENDIX B Analytical Laboratory Report

Laboratory Report Project Overview

Laboratory:

Bace Analytical, Windsor, CA

Lab Report Number:

4495

Project Name:

1735 24TH STREET

Work Order Number:

29.027

Control Sheet Number:

NA

Report Summary

Labreport	Sam pid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotcti	Run Sub
4495	MW-1	4495-1	W	CS	CATPH-G	SW5030B	12/10/200 4	12/15/200 4	12/15/200 4	12152004	5
4495	MW-1	4495-1	W	ÇS	SW8021F	SW5030B	12/10/200 4	12/15/200	•	12152004	5
4495	MW-2	4495-2	W	cs	CATPH-G	SW5030B	12/09/200	12/15/200	12/15/200	12152004	6
4495	MW-2	4495-2	W	cs	SW8021F	SW5030B	4 12/09/200	4 12/15/200		12152004	6
4495	MW-3	4495-3	W	cs	CATPH-G	SW5030B	4 12/08/200	4 12/15/200		12152004	7
4495	MW-3	4495-3	W	CS	SW8021F	SW5030B	4 12/08/200	4 12/15/200	4 12/15/200	12152004	7
4495	VRW-1	4495-4	W	cs	CATPH-G	SW5030B	4 12/09/200	4 12/15/200	4 12/15/200	12152004	8
4495	VRW-1	, 4495-4	W	cs	SW8021F	SW5030B	4 12/09/200	4 12/15/200	4 12/15/200	12152004	8
` 4495	VRW-2	4495-5	w	cs	CATPH-G	SW5030B	4 12/09/200	4 12/15/200	4 12/15/200	12152004	10
4495	VRW-2	4495-5	w	cs	SW8021F	SW5030B	4 12/09/200	4 12/15/200	4 12/15/200	12152004	10
4495	VRW-3	4495-6	W	cs	CATPH-G	SW5030B	4 12/10/200	4 12/15/200	4 12/15/200	12152004	11
4495	VRW-3	4495-6	w	cs	SW8021F	SW5030B	4 12/10/200	4 12/15/200	4 12/15/200	12152004	11
4495	VRW-4	4495-7	w	cs	CATPH-G	SW5030B	4 12/08/200	4 12/15/200	4	12152004	12
4495	VRW-4	4495-7	w	cs	SW8021F	SW5030B	4 12/08/200	4 12/15/200	4 12/15/200		12
	VRW-5	4495-8	w	cs	CATPH-G	SW5030B	4 12/10/200	4	4		
4495							4	12/15/200	4	12152004	14
4495	VRW -5	4495-8	W	cs	SW8021F	SW5030B	12/10/200	12/15/200	4	12152004	14
4495	VRW-6	4495-9	W	cs	CATPH-G	SW5030B	12/09/200 4	12/15/200 4	12/15/200 4		15
4495	VRW-6	4495-9	W	cs	SW8021F	SW5030B	12/09/200 4	12/15/200 4	12/15/200 4	12152004	15
4495	VRW-7	4495-10	W	CS	CATPH-G	SW5030B	12/09/200 4	12/15/200 4	12/15/200 4	12152004	16
4495	VRW-7	4495-10	W	CS	SW8021F	SW5030B	12/09/200	12/15/200	12/15/200	12152004	16

Report Summary

.abreport	Sam pid	Labsampid	Mtrx	QC	Anmoode	Exmcode	Logdate	Extdate	Anadate	Lablotcti	Run Sub
•		•					4	4	4		
495	VRW-8	4495-11	W	CS	CATPH-G	SW5030B	12/09/200	12/15/200	12/15/200	12152004	17
							4	4	4		
495	VRW-8	4495-11	W	cs	SW8021F	SW5030B	12/09/200	12/15/200	12/15/200	12152004	17
							4	4	4		
495	VRW-9	4495-12	W	CS	CATPH-G	SW5030B	12/09/200	12/15/200	12/15/200	12152004	18
							4	4	4		
495	VRW-9	4495-12	W	CS	SW8021F	SW5030B	12/09/200	12/15/200	12/15/200	12152004	18
							4	4	4		
		4495MB	W	LB1	SW8021F	SW5030B	11	12/15/200	12/15/200	12152004	3
			•					4	4		
		4595MB	W	LB1	CATPH-G	SW5030B	11	12/15/200	12/15/200	12152004	1
								4	4		
		4495MS	W	MS1	SW8021F	SW5030B	11	12/15/200	12/15/200	12152004	22
								4	4		
		4595MS	W	M51	CATPH-G	SW5030B	11	12/15/200	12/15/200	12152004	19
			147	004	6) W0004E	ĠI LI GOOD		4	4		
		4495SD	W	SUT	SW8021F	SW5030B	11	12/15/200	12/15/200	12152004	23
		4505CD	Mr	CD4	CATRILO	CMCOORE		4	4	40450004	
		4595SD	W	5U1	CATPH-G	SW5030B	11	12/15/200 4	12/15/200 4	12152004	20

Page: 1

Project Name:

1735 24TH STREET

0.020

CA LUFT Method for Gasoline Range Organics Analysis:

Project No:

29.027

Method: CATPH-G

Prep Meth: SW5030B

Field ID:

MW-1

Descr/Location: MW-1

Gasoline Range Organics (C5-C12)

Rec'd Date:

Lab Samp ID: 4495-1

Sample Date:

12/10/2004

12/10/2004

Sample Time:

1022

Prep Date:

12/15/2004 Analysis Date: 12/15/2004

Matrix:

Water

QC Batch:

12152004

Basis:

Analyte

Not Filtered

Notes:

0.050

Note Result Units Pvc Dil **Det Limit** Rep Limit

SURROGATE AND INTERNAL STANDARD RECOVERIES:

Trifluorotoluene

70-130 SLSA

PQL

91%

ND

1

MG/L

Walliam H

Page: 2

Project Name:

1735 24TH STREET

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.027

Method: CATPH-G

Prep Meth: SW5030B

Field ID:

MW-2

Lab Samp ID: 4495-2

Descr/Location:

MW-2

Rec'd Date:

12/10/2004

Sample Date:

12/09/2004

Prep Date:

12/15/2004 Analysis Date: 12/15/2004

Sample Time: Matrix:

1254 Water

QC Batch:

12152004

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Gasoline Range Organics (C5-C12)	0.400	1.00	PQL		3.0	MG/L	20	
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:		•				

Trifluorotoluene

70-130 SLSA

92%

Walliam & Got Approved by:

Date: 2/22/05

Page: 3

Project Name:

1735 24TH STREET

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.027

Method: CATPH-G

Prep Meth: SW5030B

Field ID:

Descr/Location:

Sample Date:

MW-3 MW-3

12/08/2004

Sample Time: Matrix:

Basis:

Water

1446

Not Filtered

Lab Samp ID: 4495-3

Rec'd Date:

12/10/2004

Prep Date:

12/15/2004 Analysis Date: 12/15/2004

QC Batch:

12152004

Notes:

Units Pvc Dil Result Note Det Limit Rep Limit Analyte MG/L 1 ND 0.020 0.050 DX PQL Gasoline Range Organics (C5-C12) SURROGATE AND INTERNAL STANDARD RECOVERIES: 117% 70-130 SLSA Trifluorotoluene

DX: Value < lowest standard (MQL), but > than MDL

William & Approved by:

Page: 4

Project Name:

1735 24TH STREET

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.027

CATPH-G Method:

Prep Meth: SW5030B

Field ID:

VRW-1

Lab Samp ID: 4495-4

Descr/Location:

VRW-1

Rec'd Date:

12/10/2004

Sample Date:

12/09/2004

Prep Date:

12/15/2004

Sample Time: Matrix:

1404 Water Analysis Date: 12/15/2004 QC Batch:

12152004

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline Range Organics (C5-C12)	0.100	0.250 PQL		0.32	MG/L	5
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:		,		;

Trifluorotoluene

70-130 SLSA

98%

William

Page: 5

Project Name:

1735 24TH STREET

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.027

Method: CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-2

Lab Samp ID: 4495-5

Note

Descr/Location:

VRW-2

Rec'd Date:

12/10/2004

Sample Date:

12/09/2004

Prep Date:

12/15/2004

Sample Time: Matrix:

1510 Water Analysis Date: 12/15/2004 QC Batch:

12152004

Basis:

Not Filtered

Notes:

Analyte

Det Limit

Rep Limit

Pvc Dil Result Units ND 1

Gasoline Range Organics (C5-C12)

0.020

0.050 PQL

MG/L

SURROGATE AND INTERNAL STANDARD RECOVERIES: Trifluorotoluene

70-130 SLSA

114%

William

Page: 6

Project Name:

1735 24TH STREET

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.027

Method: CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-3

Descr/Location: Sample Date:

VRW-3

12/10/2004

Sample Time: Matrix:

0908

Water

Lab Samp ID: 4495-6

Rec'd Date:

12/10/2004 12/15/2004

Prep Date:

Analysis Date: 12/15/2004

QC Batch:

12152004

Basis:

Not Filtered

Notes:

Analyte Gasoline Range Organics (C5-C12)

Det Limit 0.020

Rep Limit 0.050 PQL Note

Result Units 0.22

Pvc Dil MG/L 1

SURROGATE AND INTERNAL STANDARD RECOVERIES:

Trifluorotoluene

70-130 SLSA

102%

Page: 7

Project Name:

1735 24TH STREET

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.027

Method: CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-4

Descr/Location: Sample Date:

VRW-4 12/08/2004

Sample Time: Matrix:

1344

Water

Lab Samp ID: 4495-7

Rec'd Date: Prep Date:

12/10/2004 12/15/2004 Analysis Date: 12/15/2004

QC Batch:

12152004

Basis: Not Filtered

Notes:

Det Limit Rep Limit Note Result Units Pvc Dil Analyte 0.400 1.00 27 MG/L 20 Gasoline Range Organics (C5-C12) **PQL**

SURROGATE AND INTERNAL STANDARD RECOVERIES:

Trifluorotoluene

70-130 SLSA

102%

Welliam

Page: 8

Project Name: Project No:	1735 24TH STREET 29.027		•	A LUFT Method of ATPH-G W5030B	for Gasoline	Range	Organics	·
Field ID:	VRW-5		Lab Samp ID:	4495-8				
Descr/Location:	VRW-5		Rec'd Date:	12/10/2004				
Sample Date:	12/10/2004		Prep Date:	12/15/2004				
Sample Time:	0816		Analysis Date:	12/15/2004				
Matrix:	Water		QC Batch:	12152004				
Basis:	Not Filtered		Notes:					
Analyte		Det Limit	Rep Limit	Note	Result	Units	Pvc Dil	
Gasoline Range	Organics (C5-C12)	0.100	0.250 PQL		0.72	MG/L	5	
SURROGATE A Trifluorotoluene	ND INTERNAL STAND	ARD RECOV	ERIES: 70-130 SLSA		97%			1

Approved by: Walliam & Vota

Date: 2/22/05

Lab Report No.: 4495

Date: 02/21/2005

Page: 9

Project Name:

1735 24TH STREET

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.027

Method: CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-6

VRW-6

Rec'd Date:

Lab Samp ID: 4495-9

Descr/Location: Sample Date:

12/09/2004

Prep Date:

12/10/2004 12/15/2004

Sample Time:

0829

Analysis Date: 12/15/2004

Matrix:

Water

QC Batch:

12152004

Basis:

Not Filtered

Notes:

Note Result Units Pvc Dil Analyte **Det Limit** Rep Limit Gasoline Range Organics (C5-C12) MG/L 0.020 0.050 PQL 0.14

SURROGATE AND INTERNAL STANDARD RECOVERIES:

Trifluorotoluene

70-130

SLSA

83%

1

Project Name: **1735 24TH STREET**

Project No: 29.027 Analysis:

CA LUFT Method for Gasoline Range Organics

87%

Page: 10

Method: CATPH-G

Prep Meth: SW5030B

Field ID: Descr/Location: VRW-7

VRW-7

12/09/2004

Sample Date: Sample Time: Matrix:

1150 Water Rec'd Date:

Lab Samp ID: 4495-10

Prep Date:

12/10/2004 12/15/2004

Analysis Date: 12/15/2004

QC Batch:

12152004

Basis:

Not Filtered

Notes:

Units Pvc Dil Result Rep Limit Note **Det Limit** Analyte 0.34 MG/L 5 0.250 0.100 **PQL** Gasoline Range Organics (C5-C12)

SURROGATE AND INTERNAL STANDARD RECOVERIES:

70-130 SLSA Trifluorotoluene

Approved by:

Wallson

Page: 11

Project Name:

1735 24TH STREET

Analysis:

CA LUFT Method for Gasoline Range Organics .

Project No:

29.027

CATPH-G Method:

Prep Meth: SW5030B

Field ID:

VRW-8

VRW-8

Rec'd Date:

Lab Samp ID: 4495-11

Descr/Location: Sample Date:

12/09/2004

12/10/2004 12/15/2004

Sample Time:

0934

Prep Date:

Matrix:

Water

Analysis Date: 12/15/2004 QC Batch:

12152004

Basis:

Not Filtered

Notes:

Note Result Units Pvc Dil Analyte **Det Limit** Rep Limit MG/L Gasoline Range Organics (C5-C12) 0.100 0.250 PQL 1.3 5

SURROGATE AND INTERNAL STANDARD RECOVERIES:

Trifluorotoluene

70-130 SLSA 87%

Walliam Approved by:

Page: 12

Project Name:

Project No:

1735 24TH STREET

29.027

Analysis:

CA LUFT Method for Gasoline Range Organics

Method: CATPH-G Prep Meth: SW5030B

Field ID:

VRW-9

Descr/Location: Sample Date:

VRW-9 12/09/2004

Sample Time: Matrix:

1041

Water

Lab Samp ID: 4495-12

Rec'd Date:

12/10/2004

Prep Date:

12/15/2004 Analysis Date: 12/15/2004

QC Batch:

12152004

Basis:

Not Filtered

Notes:

Units Pvc Dil Result **Det Limit** Rep Limit Note Analyte 0.57 MG/L 1 0.020 0.050 PQL Gasoline Range Organics (C5-C12)

SURROGATE AND INTERNAL STANDARD RECOVERIES:

Trifluorotoluene

70-130 SLSA

87%

Walliam

Page: 13

Project Name:

Project No:

1735 24TH STREET

29.027

Analysis:

Volatiles by GC/Gasoline Range Organics

Method:

SW8021F

Prep Meth: SW5030B

Field ID:

MW-1

Descr/Location: MW-1

12/10/2004

Sample Date: Sample Time:

1022

Matrix:

Water

Lab Samp ID: 4495-1

Rec'd Date:

12/10/2004

Prep Date:

12/15/2004

QC Batch:

Analysis Date: 12/15/2004 12152004

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	0.2	0.5	PQL		ND	UG/L	1	
Toluene	0.2	0.5	PQL		ND	UG/L	1	
Ethylbenzene	0.2	0.5	PQL		ND	UG/L	1	
Xylenes	0.2	0.5	PQL		ND	UG/L	1	
SURROGATE AND INTERNAL STA	NDARD RECOV	ERIES:						
4-Bromofluorobenzene		70-130	SLSA		90%			

William Approved by:

Page: 14

Project Name: Project No:

1735 24TH STREET

29.027

Analysis:

Volatiles by GC/Gasoline Range Organics

Method:

SW8021F

Prep Meth: SW5030B

Field ID:

Basis:

MW-2

Descr/Location: Sample Date:

MW-2

Sample Time: Matrix:

1254

12/09/2004

Water

Not Filtered

Lab Samp ID: 4495-2

Rec'd Date:

12/10/2004

Prep Date:

12/15/2004 Analysis Date: 12/15/2004

QC Batch:

12152004

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	0.2	0.5	PQL		130	UG/L	1
Foluene	0.2	0.5	PQL		13.0	UG/L	1
Ethylbenzene	0.2	0.5	PQL		ND	.UG/L	1
Kylenes	0.2	0.5	PQL		24.	UG/L	1

William Approved by: _

Page: 15

Project Name:

1735 24TH STREET

Analysis:

Volatiles by GC/Gasoline Range Organics

Project No:

29.027

Method: SW8021F

Prep Meth: SW5030B

Field ID:

MW-3

Lab Samp ID: 4495-3

Descr/Location:

MW-3 12/08/2004 Rec'd Date:

12/10/2004

Sample Date: Sample Time:

1446

Prep Date:

12/15/2004 Analysis Date: 12/15/2004

Matrix:

Water

QC Batch:

12152004

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	0.2	0.5	PQL	-i	ND	UG/L	1
Toluene	0.2	0.5	PQL		ND	UG/L	1
Ethylbenzene	0.2	0.5	PQL		ND	UG/L	1
Xvlenes	0.2	0.5	PQL		ND	UG/L	1

William Approved by:

Page: 16

1735 24TH STREET

Analysis:

Volatiles by GC/Gasoline Range Organics

Project No:

Project Name:

29.027

Method: SW8021F

Prep Meth: SW5030B

Field ID:

VRW-1

Lab Samp ID: 4495-4

Descr/Location:

VRW-1

Rec'd Date:

12/10/2004

Sample Date:

12/09/2004

Prep Date:

12/15/2004

Sample Time: Matrix:

1404 Water Analysis Date: 12/15/2004 QC Batch:

12152004

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit	<u>.</u>	Note	Result	Units	Pvc Dil
Benzene	1.	3,	PQL		80	UG/L	5
Toluene	1.	3.	PQL	DX .	ND	UG/L	5
Ethylbenzene	1.	3.	PQL		ND	UG/L	5
Xylenes	1.	3.	PQL		37	UG/L	5
SURROGATE AND INTERNAL	STANDARD RECOV	ERIES:					
4-Bromofluorobenzene		70-130	SLSA		98%		

DX: Value < lowest standard (MQL), but > than MDL

Wallany. Approved by:

Page: 17

Project Name:

Project No:

1735 24TH STREET

29.027

Analysis:

Volatiles by GC/Gasoline Range Organics

Method:

SW8021F

Prep Meth: SW5030B

Field ID:

VRW-2

Descr/Location:

VRW-2 12/09/2004

Sample Date: Sample Time:

1510

Matrix: Basis:

Water Not Filtered Lab Samp ID: 4495-5

Rec'd Date:

Prep Date:

12/10/2004 12/15/2004

Analysis Date: 12/15/2004

QC Batch:

12152004

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	0.2	0.5	PQL		9.6	UG/L	1
Toluene	0.2	0.5	PQL		4.2	UG/L	1
Ethylbenzene	0.2	0.5	PQL	*	25	UG/L	1
Xylenes	0.2	0.5	PQL	:	4.3	UG/L	1
SURROGATE AND INTERNAL STAN	DARD RECOV	ERIES:					
4-Bromofluorobenzene		70-130	SLSA		114%		

William.

Page: 18

Project Name:

1735 24TH STREET

Analysis:

Volatiles by GC/Gasoline Range Organics

Project No:

29.027

Method:

SW8021F

Prep Meth: SW5030B

Field ID:

VRW-3

Lab Samp ID: 4495-6

Descr/Location:

VRW-3

Rec'd Date:

12/10/2004

Sample Date: Sample Time: 12/10/2004

Prep Date:

12/15/2004

Matrix:

0908 Water Analysis Date: 12/15/2004 QC Batch:

12152004

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit	:	Note	Result	Units	Pvc Dil
Benzene	0.2	0.5	PQL	-	27.	UG/L	1
Toluene	0.2	0.5	PQL		3.7	UG/L	1
Ethylbenzene	0.2	0.5	PQL		1.0	UG/L	1
Xylenes	0.2	0.5	PQL		3.1	UG/L	1

Walliam

Page: 19

1735 24TH STREET Project Name:

Project No:

29.027

Analysis:

Volatiles by GC/Gasoline Range Organics

Method:

SW8021F

Prep Meth: SW5030B

Field ID:

VRW-4

Descr/Location:

VRW-4 12/08/2004

Sample Date: Sample Time:

1344

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 4495-7

Rec'd Date:

12/10/2004 12/15/2004

Prep Date:

Analysis Date: 12/15/2004

QC Batch:

12152004

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	4.	10.	PQL		780.	UG/L	20
Toluene	4.	10.	PQL		68.	UG/L	20
Ethylbenzene	4.	10.	PQL	ļ	90.	UG/L	20
Xylenes	4.	10.	PQL		160.	UG/L	20
SURROGATE AND INTERNAL S	TANDARD RECOV	ERIES:					
4-Bromofluorobenzene		70-130	SLSA		94%		

Wallvan

Page: 20

Project Name: Project No:

1735 24TH STREET

29.027

Analysis:

Volatiles by GC/Gasoline Range Organics

Method:

Prep Meth: SW5030B

SW8021F

Field ID:

Basis:

VRW-5

Descr/Location: Sample Date:

VRW-5 12/10/2004

Not Filtered

Sample Time: Matrix:

0816

Water

Lab Samp ID: 4495-8

Rec'd Date:

12/10/2004

Prep Date:

12/15/2004

QC Batch:

Analysis Date: 12/15/2004 12152004

Notes:

Analyte	Det Limit	Rep Limit	t -	Note	Result	Units	Pvc Dil
Benzene	1.	3.	PQL		60.	UG/L	5
Toluene	1.	3.	PQL		10.	UG/L	5
Ethylbenzene	1.	3.	PQL		ND	UG/L	5
Xylenes	1.	3.	PQL		33.	UG/L	5
SURROGATE AND INTERNAL STAN	NDARD RECOV	ERIES:					
4-Bromofluorobenzene		70-130	SLSA		101%	•	

Walliam Approved by:

Page: 21

Volatiles by GC/Gasoline Range Organics Analysis: **1735 24TH STREET** Project Name: Method: SW8021F Project No: 29.027

Prep Meth: SW5030B

VRW-6 Lab Samp ID: 4495-9 Field ID: Rec'd Date: 12/10/2004 VRW-6 Descr/Location: 12/09/2004 Prep Date: 12/15/2004 Sample Date:

Analysis Date: 12/15/2004 Sample Time: 0829 12152004 Water QC Batch: Matrix: Notes: Basis: Not Filtered

Note Result Units Pvc Dil Det Limit Rep Limit Analyte 8.0 UG/L 1 0.2 0.5 **PQL** Benzene **PQL** 21. UG/L 1 0.2 0.5 Toluene ND UG/L 1 Ethylbenzene 0.2 0.5 PQL 3.6 UG/L 1 **PQL** 0.2 0.5 **Xylenes**

SURROGATE AND INTERNAL STANDARD RECOVERIES: 92% 70-130 SLSA 4-Bromofluorobenzene

Walliam &

Approved by:

Page: 22

Project Name: Project No:

1735 24TH STREET

29.027

Analysis:

Volatiles by GC/Gasoline Range Organics

Method: SW8021F

Prep Meth: SW5030B

Field ID:

VRW-7

VRW-7

Rec'd Date:

Lab Samp ID: 4495-10

Descr/Location: Sample Date:

12/10/2004

Sample Time:

12/09/2004 1150

Prep Date:

12/15/2004 Analysis Date: 12/15/2004

Matrix:

Water

QC Batch:

12152004

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limi	it	Note	Result	Units	Pvc Dil
Benzene	1.	3.	PQL		28.	UG/L	5
Toluene	1.	3.	PQL		ND	UG/L	5
Ethylbenzene	1.	3.	PQL		ND	UG/L	5
Xvlenes	1.	3.	PQL		5.0	UG/L	5

Walliam & Approved by:

Page: 23

Project Name: Project No:

1735 24TH STREET

29.027

Volatiles by GC/Gasoline Range Organics Analysis:

Method: SW8021F

Prep Meth: SW5030B

Field ID:

VRW-8

Descr/Location: VRW-8

Sample Date:

12/09/2004

Sample Time:

0934

Rec'd Date:

Lab Samp ID: 4495-11 12/10/2004

Prep Date:

12/15/2004

Analysis Date: 12/15/2004 QC Batch:

12152004

Matrix: Basis:

Water Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	1.	3.	PQL		30.	UG/L	5	
Toluene	1.	3.	PQL		9.0	UG/L	5	
Ethylbenzene	1.	3.	PQL		ND	UG/L	5	
Xylenes	1.	3.	PQL		7.6	UG/L	5	
SURROGATE AND INTERNAL STAN	IDARD RECOV	ERIES:						
4-Bromofluorobenzene		70-130	SLSA		95%			1

William Approved by:

Page: 24

Project Name: **1735 24TH STREET** Volatiles by GC/Gasoline Range Organics Analysis:

Project No: 29.027 Method: SW8021F

Prep Meth: SW5030B

Field ID: VRW-9 Lab Samp ID: 4495-12 Descr/Location: VRW-9 Rec'd Date: 12/10/2004 Sample Date: 12/09/2004 Prep Date: 12/15/2004 Sample Time: 1041 Analysis Date: 12/15/2004 Matrix: Water QC Batch: 12152004

Basis: Not Filtered . Notes:

Analyte Det Limit Rep Limit Note Result Units Pvc Dil Benzene 0.2 0.5 **PQL** 8.8 UG/L 1 Toluene 0.2 0.5 **PQL** 10. UG/L 1 Ethylbenzene 0.2 0.5 PQL ND UG/L 1 **Xylenes** 0.2 0.5 **PQL** 5.5 UG/L 1 SURROGATE AND INTERNAL STANDARD RECOVERIES: 4-Bromofluorobenzene 70-130 SLSA 120%

William Approved by:

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4495 Date: 02/21/2005

Page: 25

QC Batch:

Matrix:

12152004

Water

Lab Samp ID: 4595MB

Analysis Date: 12/15/2004

Not Filtered

Analysis:

CA LUFT Method for Gasoline Range

Method:

CATPH-G

Prep Meth: SW5030B

Prep Date: 12/15/2004

Notes:

Analyte

Basis:

Det Limit

Rep Limit

Note

Result Units ND

Pvc Dil MG/L 1

Gasoline Range Organics (C5-C12)

0.020

0.050 **PQL**

SURROGATE AND INTERNAL STANDARD RECOVERIES: Trifluorotoluene

70-130 SLSA

99%

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4495 Date: 02/21/2005

Page: 26

QC Batch:

12152004

Analysis:

Volatiles by GC/Gasoline Range Organics

Matrix:

Water

Method:

SW8021F

Lab Samp ID: 4495MB

Prep Meth: SW5030B

Analysis Date: 12/15/2004

Prep Date: 12/15/2004

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	0.2	0.5	PQL	,	ND	UG/L	1	
Toluene	0.2	0.5	PQL		ND	UG/L	1	
Ethylbenzene	0.2	0.5	PQL		ND	UG/L	1	
Xylenes	0.2	0.5	PQL		ND	UG/L	1	
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:	•					
4-Bromofluorobenzene		70-130	SLSA		98%			

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4495 Date: 02/21/2005

Page: 27

QC Batch: Matrix: **12**152004

Matrix: Water Lab Samp ID: 4495MS

Basis:

Not Filtered

Project Name: 1735 24TH STREET

Project No.: 2

29.027

Field ID:

MW-3

Lab Ref ID:

4495-3

	Analysis	Analysis Spike Level		Sample	Spike	e Result		% R	ecove	ries	Acceptan Criteria		
Analyte	Method	MS	DMS .	Result	MS	DMS	Units	MS	DMS	RPD	% R	.ec	RPD
Benzene	SW8021F	40.0	40.0	ND	36.7	35.2	UG/L	91.8	88.0	4.2	125-75	MSA	20MSP
Ethylbenzene	SW8021F	40.0	40.0	ND	41,9	35.5	UG/L	105	88.8	17	125-75	MSA	20MSP
Toluene	SW8021F	40.0	40.0	ND	39.6	35.4	UG/L	99.0	88.5	11	125-75	MSA	20MSP
Xylenes	SW8021F	120.	120.	ND ND	140.	124.	UG/L	117	103	13	125-75	MSA	20MSP
4-Bromofluorobenzene	SW8021F	100.	100.	118.	92.	94.	PERCENT	92.0	94.0	2.2	130-70	SLSA	20 SLSP

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4495 Date: 02/21/2005

Page: 28

QC Batch:

12152004

Matrix:

Water

Lab Samp ID: 4595MS

Basis:

Not Filtered

Project Name: 1735 24TH STREET

Project No.:

29.027

Field ID:

MW-3

Lab Ref ID:

4495-3

	Analysis	Spike	e Level	Sample	Spike Result		% Recoveries		coveries	Acceptance Criteria		
Analyte	Method	MS	DMS	Result	MS	DMS	Units	MS E	DMS RPD	% F	tec	RPD
Gasoline Range Organics (C5-C12)	CATPH-G	1.00	1.00	ND	0.87	0.78	MG/L	83.1	74.1 11	130-70	MSA	20MSP
Trifluorotoluene	CATPH-G	100.	100.	117.	115.	120.	PERCENT	115	120 4.3	130-70	ŞLŞA	20 SLSP

Chain-of Custody Form

Project#	Project Name PACIFIC SUPPLY								Anal	ysis					
29.027	1735 24TH STREET, OA	KLANO,C	LA.												C.O.C. No. 11615
	Sampler's Signature			No.	١.,	9				ŀ					Remarks:
	Chris Acut			of Con-	TPH. GAS	BTEX (EPA 8011)									,
Date Sampled	Sample I.D.	Time (24 Hour)	Sample Type	tainers	14	STE (EP							ļ		
12.10.04	Mu-l	1022	WATER	6	X	X									4495-1
124.0+		1254	,		X	Ź		1							-2-
12.8.04	,	1446			X	X									-3
12.9-04	, p.	1404			\boxtimes	X									-4
12-9-04		1510			X	\boxtimes									-5
12-10-04	Vew-3	0908			\geq	\times									-6
12-8-04		1344			\times	\times									-7
12-10-04	VRW-5	0816			\geq	X									-8
12.9-04	Vew-6	0829			X	\times							<u> </u>	<u> </u>	-9
12-9-04	VPW-7	1150			$\langle \rangle$	X,		1							-10
12-9-04	VRW-8	0934			X	\times									- []
12.9-04	vew-9	1041	4	¥	\times	\times									-12
			<u> </u>			ļ		 							
	·														
					_	ļ <u>.</u>		+ +		\dashv					
ļi			<u> </u>	· · ·	-	<u> </u>		1						 .	
				 	-					+					
								 	$\overline{}$	+		-			
Laboratory:	BAFS		<u> </u>		Pres	ı ervatio			2504:	C - N	aOH:	D - F	INO3:	E - Ice:	F - (specify)
Relinquished	ne // /	12/10/04	/Time /341	Received (y: • ν	2/12	און וו	15		Remar			-^ T-		Brunsing Associates, Inc.
Relinquished t	· · · · · · · · · · · · · · · · · · ·		/Time	Received I	oy: 🖊	710	<u> </u>			ΣTA	NUPI	-D	TAT		P.O. Box 588
(signed)				(signed)	عنيب	ol -	4-41			Arth): M	ردبلة	uE		5803 Skylane Blvd., Suite A Windsor, CA 95492
Relinquished to (signed)	ру:	Date	/Time	Received f (signed)	or Labo	oratory b	,	· /	I						(707) 838-3027
		<u></u>												-	(707) 838-4420 fax