July 29, 2003

Project No. 029.022

Mr. Barney Chan
Alameda County Health Care Services Agency
Environmental Protection
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502-6577

Groundwater Monitoring Report June 2003, and Site Closure Request June 2003 Pacific Supply Company 1735 24th Street Oakland, California

Dear Mr. Chan:

This correspondence has been prepared by Brunsing Associates, Inc. (BAI) to provide you with a report summarizing the fieldwork completed at the above-referenced site from June 5, 2003 through June 10, 2003, and the laboratory analyses of the groundwater samples collected. The fieldwork was completed in accordance with your letter dated May 6, 2003. Additional historical site information has been provided herein, per your request on August 6, 2001. This report also compares the results of the current groundwater monitoring event with the "Oakland Urban Land Redevelopment Program: Guidance Document", which provides Risk Based Corrective Action Levels (RBCAs) for qualifying sites in Oakland. Additionally, BAI requests that this site be reviewed for closure based on the results of the current groundwater monitoring, the historical removal of the tank source, and the anticipated soil concentrations after the implementation of the soil vapor extraction system.

Site Background

In May 1987, efforts were initiated to abandon a 1,000-gallon underground gasoline storage tank at Pacific Supply Company's West Oakland Site. Soil and associated vapor samples from exploratory boreholes at the site were analyzed by gas chromatography carried out by CHIPS Environmental Consultants and Anatec Laboratories (Plate 2 and Tables 3 and 4). The results indicated that soil in the vicinity of the tank was contaminated with gasoline and raised the possibility that gasoline may have reached

sples.

groundwater below the site. During subsequent removal of the tank by Erikson Industrial Services, substantial deterioration of the tank body was documented. Gasoline odors were also detected during tank removal operations.

In order to assess the extent of soil and groundwater quality below and immediately adjacent to the Pacific Supply Company site and the potential for migration of contaminants from off-site sources, BAI carried out a two-phase soil and groundwater investigation. Monitoring wells MW-1 through MW-5 were constructed in September 1988 as the first phase of a soil and groundwater investigation. Monitoring wells MW-6 and MW-7 were constructed on December 19, 1989 during Phase II of the same investigation. The soil analytical results for these monitoring events are presented in Table 3 and their locations are provided on Plate 2. The historical boring logs and historical well completion logs for these wells are presented in Appendices C and D, respectively. The construction and sampling of these wells are also documented in BAI's Report of Findings, dated March 23, 1990. The results of the Phase I and II investigations indicated that light petroleum hydrocarbons had migrated beyond the immediate vicinity of the former UST; however, it was concluded that hydrocarbons in the soil and groundwater had not extended beyond the limits of the property.

The Pacific Supply Company initiated quarterly groundwater monitoring at the request of the Alameda County Health Care Services Agency (ACHCSA) in May 1992. Initially, only on-site wells were monitored for total petroleum (TPH) as gasoline, benzene, toluene, ethylbenzene and xylenes (BTEX), and lead. Later, the five on-site and the two off-site wells were monitored quarterly.

A vapor extraction pilot study was performed in June 1992 to determine the feasibility of using vapor extraction technology as an insitu corrective action to remove volatile petroleum hydrocarbons from the shallow subsurface soils. A two-inch diameter vapor extraction well (VEW-1) was installed at the location indicated on Plate 2 to an approximate depth of eight feet below ground surface (bgs). The results of the 4-day pilot study indicated that the lithology at the site permitted the flow of air through the soils at a sufficient rate so as to volatilize hydrocarbon constituents in the soil. The radius of influence was determined in the field by measuring the relative pressure at several probe locations positioned at various radial distances away from the extraction well. The results indicated that the estimated radius of influence from a two-inch diameter extraction well was approximately 30 feet at a relatively low pressure of less than 50 inches of water, as discussed in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

In response to an ACHCSA December 1992 request, BAI also performed an investigation to delineate the zero line of contamination. Ten soil borings were drilled

as part of this investigation (B-1 through B-10) to a depth of approximately seven to ten feet bgs (Plate 2). From each boring, one soil sample was retained from a depth of approximately seven to eight feet bgs for analytical testing of TPH as gasoline and BTEX (Table 3). Further discussions of the zero line investigation is provided in BAI's report titled "Vapor Extraction Remedial Design Report and Specification," dated May 24, 1993.

Vapor recovery wells VRW-1 through VRW-9 were constructed in August 1993 as part of a vapor recovery system. During installation of the extraction wells, soil samples were collected for chemical analysis in the borings at the depth where first groundwater occurred, at approximately seven feet bgs. The results of these soil samples are presented in Table 3 and their locations are provided on Plate 2. Installation of these wells were documented in a February 7, 1994 report. A vapor extraction system was installed in the Fall of 1993 as an interim remedial action. The system began operation on December 26, 1993. The system consisted of an internal combustion engine with a spray aeration tank for treatment of groundwater, and an activated carbon treatment polishing step prior to groundwater discharge. The internal combustion unit and spray aeration unit was manufactured by Remediation Service International (RSI), under the trade name Spray Aeration Vapor Extraction (SAVE) system.

On June 28, 1996, the treatment system was shut down with the concurrence of Pacific Supply Company. Prior to shut down, the system had destroyed an estimated 6,550 pounds of petroleum hydrocarbons since start of operations on December 26, 1993. After shut down, the water in the water tank was treated and discharged to the sanitary sewer under the existing permit and the inside of the tank was cleaned on July 15, 1996.

The permit with the Bay Area Air Quality Management District (BAAQMD) expired on September 1, 1996, and was not renewed. The water discharge permit was discontinued on July 31, 1996. The total volume of water discharged to the sanitary sewer was 151,089 gallons. In December 1996, the shut down and decommissioning of the system was authorized by Jennifer Eberle of the Alameda County Department of Health Services.

Groundwater monitoring continued following the shut down of the vapor extraction system. In August 2000, BAI supervised the drilling of 3 soil borings in 24th Street, on the north side of the Pacific Supply Company building in a downgradient direction from the former UST location. Grab groundwater samples were collected to evaluate whether off-site migration of hydrocarbon contamination in groundwater was occurring. One of the three groundwater samples was reported to contain low levels of TPH as gasoline, BTEX, and petroleum oxygenates. The results of the field

investigation are presented in BAI's "Groundwater Investigation and Monitoring Report," dated December 14, 2000.

Table 1 presents a summary of groundwater analytical data and groundwater elevations for the monitoring wells, and Oakland Tier 1 Risk Based Screening Levels (RBSLs) for inhalation of indoor air vapors at a commercial/industrial site. Table 2 presents the groundwater concentrations and groundwater elevations for vapor recovery wells, and includes groundwater elevations and the Oakland Tier 1 RBSLs for inhalation of indoor air vapors at a commercial/industrial site. Table 3 presents a summary of historical soil analytical data and compares the results to the Oakland Tier 1 RBSLs and the Oakland Tier 2 site-specific target levels (SSTLs) for clayey silts. Table 4 presents a summary of historic vapor analytical data. Table 5 provides groundwater analytical results for the off-site borings drilled in August 2000. Plate 2 presents a site map that includes the historical boring and sampling locations. Groundwater elevations and flow direction for June 2003 are provided on Plate 3. Appendix A presents the monitoring well sampling protocol and field reports. Appendix B presents the analytical laboratory report for this sampling period. Appendices C and D present the historical boring logs and well completion details, respectively.

Scope of Work

The scope of work performed for this sampling event included collecting groundwater samples for laboratory analysis from monitoring wells MW-1 through MW-3, and vapor extraction wells VRW-1 through VRW-9. The groundwater sampling was completed from June 5, 2003 through June 10, 2003. Groundwater levels were also measured in all wells, except well VRW-1, on June 5, 2003, prior to sampling any wells. Groundwater level in well VRW-1 was measured on June 10, 2003 prior to sampling well VRW-1 due to access difficulties. The purpose of the sampling work was to further evaluate the effectiveness of the vapor extraction and remediation that was performed at the site between December 1993 and June 1996.

Groundwater Flow Direction

Groundwater wells and vapor recovery wells were surveyed to mean sea level by Phelps & Associates, a California-certified land surveyor, in June 2003. The groundwater elevations and flow directions are presented in Plate 3. The groundwater elevation is highest near vapor recovery well VRW-4, causing groundwater to flow primarily radially from this well. The groundwater gradient in the southern portion of the study area is relatively shallow, while the gradient in the northern corner of the study area is slightly steeper.

Groundwater Sampling and Analytical Results

Groundwater samples for laboratory analysis were collected from monitoring well MW-3 and vapor recovery well VRW-4 on June 5, 2003, from vapor recovery wells VRW-6, VRW-7, VRW-8 and VRW-9 on June 6, 2003, vapor recovery wells VRW-2, VRW-3 and VRW-5 on June 9, 2003, and from monitoring wells MW-1 and MW-2, and vapor recovery well VRW-1 on June 10, 2003. Groundwater sampling was performed in accordance with the sampling protocol presented in Appendix A. Groundwater samples were analyzed by BACE Analytical and Field Services (BAFS), a state-certified analytical laboratory, for TPH as gasoline by EPA Test Method 8015, and BTEX, petroleum oxygenates and lead scavengers by EPA Test Method 8260 (EPA 8260). A copy of the laboratory analytical report for this sampling event is presented in Appendix B.

Table 1 presents a summary of groundwater analytical results for the monitoring well sampling events at the site. The results of the June 2003 groundwater analyses for monitoring wells MW-1 through MW-3 are included in the summary.

The groundwater samples collected from monitoring well MW-1 and MW-3 were reported to contain no detectable TPH as gasoline, BTEX, petroleum oxygenates or lead scavengers (Table 1). Monitoring well MW-2 was reported to contain TPH as gasoline at 1.6 milligrams per liter (mg/l), benzene at 52 micrograms per liter (μ g/l), toluene at 2.3 μ g/l, ethylbenzene at 32 μ g/l, and xylenes at 9.1 μ g/l.

Table 2 presents a summary of the groundwater analytical results for vapor recovery wells VRW-1 through VRW-9 (Plate 2) for the three times the wells have been sampled, with the exception of well VRW-1 which has only been sampled twice. Wells VRW-2 through VRW-9 were first sampled after their installation in November 1993, and were re-sampled in May 2002 and June 2003.

For well VRW-1, the June 2003 sample contained TPH as gasoline at a concentration of 0.44 mg/l, benzene at 5.9 μg/l and xylenes at 1.9 μg/l. The groundwater sample collected from well VRW-2 during June 2003 reported TPH as gasoline at 0.47 mg/l, benzene at 38 μg/l, and toluene at 2.8 μg/l. The VRW-3 sample contained 0.061 mg/l of TPH as gasoline and 4.8 μg/l of benzene. The groundwater sample collected from vapor recovery well VRW-4 reported 2.2 mg/l of TPH as gasoline, 1,200 μg/l of benzene, 100 μg/l of toluene, 12 μg/l of ethylbenzene, and 89 μg/l of xylenes. TPH as gasoline, benzene, and ethylbenzene were reported in the groundwater sample from well VWR-5 at concentrations of 0.93 mg/l, 90 μg/l, and 14 μg/l, respectively. For well VRW-6, the June 2003 sample was reported to contain no detectable TPH as gasoline, BTEX, petroleum oxygenates or lead scavengers. The groundwater sample collected

from well VRW-7 during June 2003 contained 0.36 mg/l of TPH as gasoline, 19 μ g/l of benzene, 1.3 μ g/l of toluene, and 2.2 μ g/l of xylenes. For well VRW-8, the June 2003 sample reportedly contained 1.8 mg/l of TPH as gasoline, 70 μ g/l of benzene, 10 μ g/l of toluene, 11 μ g/l of ethylbenzene, and 6.1 μ g/l of xylenes. Groundwater collected from vapor recovery well VRW-9 was reported to contain TPH as gasoline at a concentration of 0.58 mg/l, benzene at 10 μ g/l, toluene at 4.4 μ g/l, and ethylbenzene at 4.9 μ g/l.

Discussion of Groundwater Analytical Results

The samples collected from monitoring well MW-1 showed a reduction of TPH as gasoline from 0.35 mg/l in May 2002 to below reporting limits in June 2003. Groundwater samples from monitoring well MW-2 indicate a 51% decrease in TPH as gasoline, but an increase in BTEX from May 2002 to June 2003. Monitoring well MW-3 continues to contain TPH as gasoline and BTEX concentrations below the laboratory reporting limits.

Vapor recovery well VRW-1 was not sampled in May 2002 due to access difficulties. However, it was sampled during the June 2003 sampling event. The concentrations reported during the June 2003 event show a significant decrease in all constituents. The TPH as gasoline concentration decreased from 3 mg/l in November 1993 to 0.44 mg/l in June 2003. The largest reduction was in the benzene concentration, which showed a 99% decrease in concentration from 1600 μ g/l in November 1993 to 5.9 μ g/l during the June 2003 monitoring event. Toluene and ethylbenzene in the June 2003 groundwater samples were both reported below reporting limits.

Vapor recovery well VRW-2 reported a 92% decrease in benzene concentration from May 2002 (471 mg/l) to June 2003 (38 mg/l). TPH as gasoline concentration in well VRW-2 decreased 83% from May 2002 to June 2003, while the toluene concentration increased from below the reporting limit to 2.8 µg/l. The vapor recovery well VRW-3 data also indicate a reduction in TPH as gasoline, benzene, and xylenes since the May 2002 sampling event. Ethylbenzene and toluene continue to be below the reporting limits.

The laboratory results for vapor recovery well VRW-4 indicate a significant decrease in all constituents. The concentrations for well VRW-4 decreased by 72% to 98% for TPH as gasoline and BTEX from May 2002 to June 2003. The VRW-4 TPH as gasoline concentrations decreased from 11 mg/l in May 2002 to 2.2 mg/l during the June 2003 monitoring event. Benzene concentrations decreased in well VRW-4 from 4,270 μ g/l in May 2002 to 1,200 μ g/l in June 2003. Toluene, ethylbenzene, and xylenes decreased in

groundwater for well VRW-4 from 741 μ g/l, 512 μ g/l, and 1,130 μ g/l in May 2002 to 100 μ g/l, 12 μ g/l, and 89 μ g/l in June 2003, respectively.

Vapor recovery well VRW-5 reported a slight increase in concentrations of TPH as gasoline, benzene, and ethylbenzene. The VRW-5 TPH as gasoline increased from 0.87 mg/l in May 2002 to 0.93 mg/l in June 2003. Benzene concentrations increased in well VRW-5 from 44.3 μ g/l during the May 2002 monitoring event to 90 μ g/l in June 2003. Ethylbenzene concentrations also increased from below the reporting limit (5.0 μ g/l) in May 2002 to 14 μ g/l during the June 2003 monitoring event.

Groundwater concentrations of TPH as gasoline and BTEX were all below the laboratory reporting limits for vapor recovery well VRW-6 during the June 2003 monitoring event. Benzene concentration reported the most significant decrease in concentration, from 178 μ g/l in May 2002 to below the reporting limit during the June 2003 sampling event. Vapor recovery well VRW-7 data indicate a decrease in concentrations for TPH as gasoline and benzene from May 2002 to June 2003, and a slight increase in concentrations for toluene and xylenes.

Vapor recovery well VRW-8 sample was observed to have a slight increase in ethylbenzene concentration from the May 2002 monitoring event to the June 2003 monitoring event. However, TPH as gasoline, benzene, and toluene decreased significantly from May 2002 to June 2003. Benzene had the most significant reduction, from 248 μ g/l in May 2002 to 70 μ g/l during the June 2003 monitoring event.

TPH as gasoline, benzene, toluene, and ethylbenzene concentrations increased in June 2003 for vapor recovery well VRW-9 compared to the May 2002 monitoring event. The most significant increase was in the benzene concentration, which increased from 0.99 $\mu g/l$ in May 2002 to 10 $\mu g/l$ in the June 2003 groundwater sample. TPH as gasoline increased from 0.08 m g/l in the May 2002 sample to 0.58 m g/l in the June 2003 sample. The toluene and ethylbenzene concentrations in groundwater increased from 2 $\mu g/l$ and below the reporting limit in May 2002 to 4.4 $\mu g/l$ and 4.9 $\mu g/l$ in June 2003, respectively. Ethylbenzene concentrations decreased in the VRW-9 samples from 5.93 $\mu g/l$ in May 2002 to below the reporting limit in June 2003.

Overall, the June 2003 monitoring results generally show a decrease in petroleum hydrocarbon concentrations for all wells, with the exception of monitoring well MW-2, and vapor recovery well VRW-9 and VRW-5 which increased slightly. Vapor recovery well VRW-1, which was not sampled in May 2002, contained significantly lower concentrations compared with the initial groundwater concentrations in November 1993, indicating that the SVE remedial system likely had a significant impact in this area. Vapor recovery well VRW-4, which had previously reported the highest

concentrations during the May 2002 monitoring event, decreased significantly during the June 2003 monitoring event.

Comparison of Site Analyses to Oakland Risk Based Screening Levels

The City of Oakland Public Works Agency published a guidance document providing risk based corrective action (RBCA) standards for the Oakland area titled, "Oakland Urban Land Redevelopment Program: Guidance Document" (Guidance) dated January 1, 2000. The Guidance document is based on the guidelines presented in the American Society for Testing and Materials (ASTM) Standard E-1739, which has been endorsed by the U.S. EPA. The ASTM standard has a three-tiered decision making process. Tier 1 provides the most conservative set of risk-based screening levels (RBSLs) and is generally used with sites with limited site investigation data. Tier 2 provides SSTLs, which are less conservative than the Tier 1 levels but are used at sites where more intensive site investigation work has been performed. Tier 3 SSTLs are based on a highly detailed site-specific assessment.

In order to qualify for the Oakland RBCA levels, Table 1 in the Guidance requires that eight criteria exist at the site. Based on the historical investigation of the site and the information obtained from representatives of Pacific Coast Supply, all eight of the criteria have been met at this location. The site is located in a highly industrial area of Oakland were groundwater levels have been observed at 7 to 8 feet bgs (Appendix C and D). The 1,000-gallon tank that was the source of the contamination was removed in 1987 and free-product has not been observed since the implementation of the remedial system. The contaminants of concern at the site are BTEX. Underground utilities have been observed along the adjacent 24th Street and the majority of the site is covered with an asphalt cap. There is no data that indicates that the chemicals of concern have been observed at a depth less than three feet.

The groundwater monitoring data collected historically and currently was compared with the Oakland Tier 1 RBSLs (Table 1), for the Indoor Air Vapor exposure route at a commercial/industrial site. During the 16 years that investigations and remediation have occurred on the site, the concentrations reported in the monitoring wells have not exceeded the Tier 1 levels (Table 1). In November 1993, groundwater sampling of the vapor extraction wells, indicate that only two of nine samples contained benzene concentrations greater than the Oakland Tier 1 RBSLs (Table 2). During the June 2003 groundwatermonitoring event, no samples contained concentrations that were greater than the Oakland Tier 1 RBSLs (Table 2).

Table 3 presents a comparison of the soil analytical data and Oakland Tier 1 RBSLs for the Indoor Air Vapor exposure route, and Oakland Tier 2 SSTLs for Clayey Silts. All

soil samples were collected prior to December 1993, when SVE was initiated at the site. The analytical results of the soil samples show that 12 of 29 samples exceeded the benzene Tier 1 RBSLs for the Indoor Air Vapor exposure route at a commercial/industrial site. Of these samples only one of the 29 samples collected exceeded the benzene Tier 2 SSTLs for the Clayey Silts, for the Indoor Air Vapor exposure route at a commercial/industrial site. It is projected that the current soil concentrations are significantly lower after soil vapor extraction remediation was implemented from December 1993 to June 1996. This analysis is further supported by the decrease in groundwater contaminant levels at the site, which have likely resulted from the remediation. In addition to the remediation, the site has been further supplemented by approximately seven additional years of natural attenuation and biodegradation.

Conclusion

After a review of both the historical and current analytical data, BAI recommends that the site be reviewed for closure based on the site attributes listed below.

- This site is in a highly industrial area of Oakland, and the majority of the site is capped with an asphalt pavement.
- The impacted groundwater is less than 10 feet, the soils are predominately clays and silts, and groundwater is not a source of drinking water.
- The 1,000-gallon gasoline tank source was removed in 1987.
- SVE remediation was implemented at the site from December 1993 to June 1996,
 which extracted approximately 6,550 pounds of petroleum hydrocarbons.
- Shut-down and dismantling of the system was approved in December 1996 by the ACHCSA, with the intent that natural attenuation would continue to remediate the site.
- Groundwater analyses of monitoring wells and vapor recovery wells collected in June 2003 indicate that all reported concentrations are below the Oakland Tier 1 RBSLs.

If you should have any questions regarding this report, please contact Michelle Floyd Frederick or Diana Dickerson at (707) 838-3027.

Sincerely,

Michelle Floyd Frederick

Project Engineer

Diana M. Dickerson, R.G., R.E.A.

Principal Geologist

Ms. Normita Callison, Pacific Coast Building Supply

LIST OF ATTACHMENTS

OF CALIFORN

TABLES	
Table 1.	Summary of Groundwater Analytical Data for Monitoring Wells
Table 2.	Summary of Groundwater Analytical Data for Vapor Extraction Wells
Table 3.	Summary of Soil Analytical Data
Table 4.	Summary of Vapor Analytical Data
Table 5.	Groundwater Analytical Results, 8/29/00

PLATES

Plate 1. Vicinity Map
Plate 2. Site Map

Plate 3. Groundwater Elevation Map, June 5, 2003

APPENDICES

Appendix A. Monitoring Well Sampling Protocol and Field Reports

Appendix B. Analytical Laboratory Report

Appendix C. Historical Boring Logs

Appendix D. Historical Well Completion Logs Appendix E. Surveyors Data Collected June 2003

		Depth to	Groundwater	TPH as						
Well	Sampling	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	MTBE
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
MW-1	10/14/1988	7.99	0.88	1.1	1.1	ND	-	ND	_	
MW-1	12/29/1989	7.74	1.13	ND	ND	ND	ND	ND	ND (1)	-
MW-1	5/28/1992	7.81	1.06	ND	ND	ND	ND	ND	0.003(2)	
MW-1	9/3/1992	7.90	0.97	ND	ND	ND	ND	ND	0.12 (2)	-
MW-1	11/24/1992	7.90	0.97	ND	ND	ND	ND	ND	0.017 (2)	-
MW-1	3/9/1993	7.38	1.49	ND	ND	ND	ND	ND	ND (1)	
MW-1	7/21/1993	7.68	1.19	'ND	ND	ND	ND	ND	ND (1)	-
MW-1	11/3/1993	7.83	1.04	ND	ND	ND	ND	ND	ND (1)	_
MW-1	2/1/1994	7.30	1.57	ND	ND	ND	ND	ND_	ND (1)	
MW-1	6/2/1994	7.43	1.44	ND	ND	ND	ND	ND	ND (1)	
MW-1	9/1/1994	<i>7.7</i> 0	1.17	ND	ND	ND	ND	ND	ND (1)	
MW-1	12/13/1994	6.90	1.97	ND	ND	ND	ND	ND	_	-
MW-1	3/7/1995	7.30	1.57	0.06	3.8	ND	ND	ND		
MW-1	6/9/1995	7.87	1.00	0.09	12	0.8	0.5	1.3		_
MW-1	9/21/1995	7.67	1.20	ND	4.1	ND	ND	ND		_
MW-1	.12/18/1995	7.15	1.72	ND	ND	ND	ND	ND		
MW-1	2/29/1996	6.74	2.13	0.09	1.4	0.5	ND	0.8		_
MW-1	7/15/1996	7.76	1.11		-		-	_		-
MW-1	1/7/1997	6.80	2.07	0.06	0.6	<0.5	<0.5	<0.5		
MW-1	7/12/1997	7.67	1.20	_			-			
MW-1	1/26/1998	6.93	1.94	< 0.05	<0.5	<0.5	<0.5	1.1	<u> </u>	
MW-1	7/3/1998	7.51	1.36	-		-		_		_
MW-1	1/13/1999	7.63	1.24	< 0.05	<0.5	<0.5	<0.5	<0.5		
MW-1	9/27/1999	7,77	1.10		_	_	_			
MW-1	1/28/2000	6.85	2.02	< 0.05	<0.5	<0.5	<0.5	<0.5		<5.0
MW-1	5/16/2002	7.45	1.42	0.35	<0.5	<0.5	<0.5	<0.5	-	<1.0
MW-1	6/10/2003	7.32	4.15	< 0.05	<0.5	<0.5	<0.5	<0.5		_
e and a second		akland Tier 1 R	BSLs		1,800	>Sol	>Sol	>Sol	NA	>Sol

Well	Complian	Depth to Groundwater	Groundwater Elevation	TPH as	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
	Sampling	(feet)	(feet, MSL)	(mg/L)	(μg/L)	, (µg/L)	(μg/L)	(μg/L)	(mg/L)	(µg/L)
Name	Date	7.29	0.85	11	23	20		16		
MW-2	10/14/1988	6.87	1.27	4	200	6.7	ND	ND	0.22 (1)	
MW-2	12/29/1989	6.92	1.22	8.9	550	48	ND	13	ND (2)	-
MW-2 MW-2	5/28/1992 9/3/1992	7.26	0.88	2.1	760	6.2	1.8	5.1	0.006 (2)	
	11/24/1992	7.28	0.86	4.2	370	15	3.4	9.5	ND (2)	
MW-2	3/9/1993	6.73	1.41	4.3	280	14	3.7	7.1	ND (1)	_
MW-2 MW-2	7/21/1993	7.02	1.12	3.4	250	9.6	2.5	11	ND(1)	
MW-2	11/4/1993	7.22	0.92	2.5	230	7.8	2.1	9.9	ND(1)	
MW-2	2/1/1994	6.93	1.21	3.4	240	17	ND	15	ND(1)	
MW-2	6/2/1994	6.86	1.28	3.0	150	9.8	3.0	10	ND(1)	
MW-2	9/1/1994	7.10	1.04	2.1	120	9.8	2.0	9.6	ND(1)	
MW-2	12/13/1994	6.58	1.56	2.0	200	10	2.7	11	_	
MW-2	3/7/1995	6.69	1.45	3.0	500	15	5.8	16		
MW-2	6/9/1995	7.00	1.14	2.1	300	14	5.8	13		
MW-2	9/21/1995	6.91	1.23	1.6	120	9.6	ND	15	_	
MW-2	12/18/1995	6.73	1.41	2.8	120	16	5.2	19	<u> </u>	-
MW-2	2/29/1996	6.36	1.78	1.7	170	. 15	2.9	17		
MW-2	7/15/1996	7.11	1.03	2.8	160	22	3.5	17		
MW-2	1/7/1997	6.40	1.74	3.0	350	25	8.1	24	· -	_
MW-2	7/12/1997	6.98	1.16	2.1	55	11	<2.5	18		
MW-2	1/26/1998	6.45	1.69	1.8	310	29	5.0	15		-
MW-2	7/3/1998	6.91	1,23	1.9	85	9.3	1.8	17		_
MW-2	1/13/1999	7.07	1.07	2.1	48	33	2.0	16		
MW-2	9/27/1999	7.22	0.92	1.5	20	6.8	2,6	11	<u> </u>	
MW-2	1/28/2000	6.61	1.53	1.3	22	6.4	1.5	11	-	<5.0
MW-2	5/17/2002	6.95	1.19	3.3	25.4	<5.0	<5.0	<5.0		<10
MW-2	6/10/2003	6.71	4.09	1.6	52	2.3	32	9.1	<u> </u>	
TATAL STREET,	0	akland Tier 1 I			1,800	>Sol	>Sol	>Sol	NA	>Sol

TABLE 1. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR MONITORING WELLS Pacific Supply Company, 1735 24th Street, Oakland, California

		Depth to	Groundwater	TPH as	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Well	Sampling	Groundwater	Elevation	gasoline			*	_		
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(mg/L)	(μg/L)
MW-3	10/14/1988	8.25	0.88	3.4	ND	ND		2.8		
MW-3	12/29/1989	7.79	1.34	ND	ND	ND_	ND	ND	0.205 (1)	
MW-3	5/28/1992	7.83	1.30	ND	0.8	0.5	ND ·	ND	0.016 (2)	
MW-3	9/3/1992	8,22	0.91	ND	ND	ND	ND	ND	0.033 (2)	
MW-3	11/24/1992	8.29	0.84	ND	ND	ND	ND	ND_	0.011 (2)	
MW-3	3/9/1993	7.30	1.83	0.1	1.8	ND	ND	ND	ND(1)	
MW-3	7/21/1993	7.87	1.26	ND	ND	ND	ND	ND	ND(1)	<u> </u>
MW-3	11/4/1993	8.23	0.90	0.07	0.6	0.5	ND	ND	ND(1)	
MW-3	2/1/1994	7.56	1.57	ND	ND	ND	ND	ND	ND(1)	
MW-3	6/2/1994	7.46	1.67	0.06	ND	ND	ND	ND	ND(1)	
MW-3	9/1/1994	7.83	1.30	0.07	1.7	0.9	ND	ND	ND(1)	
MW-3	12/13/1994	7.07	2.06	0.06	1.4	ND	ND	ND		
MW-3	3/8/1995	7.27	1.86	0.06	1.5	ND	ND	ND		
MW-3	6/9/1995	7.79	1.34	0.10	5.7	ND	ND	ND	_	
MW-3	9/21/1995	7.87	1.26	ND	1.5	ND	ND	ND	-	-
MW-3	12/18/1995	7.30	1.83	ND	1.3	ND	ND	ND	-	
MW-3	2/29/1996	6.84	2.29	ND	2.1	0.6	ND	0.7		
MW-3	7/15/1996	7.79	1.34	_	-	-	<u> </u>	_		
MW-3	1/7/1997	6.62	2.51	0.05	1.0	<0.5	<0.5	<0.5		
MW-3	7/12/1997	7.83	1.30	_	_	-	_			-
MW-3	1/26/1998	6.60	2.53	< 0.05	0.8	<0.5	<0.5	<0.5		_
MW-3	7/3/1998	7.48	1.65	-	_		_		_	_
MW-3	1/13/1999	7.63	1.50	<0.05	<0.5	<0.5	<0.5	<0.5	-	
MW-3	9/27/1999	7.94	1.19	-			-	_		
MW-3	1/28/2000	7,12	2.01	< 0.05	<0.5	<0.5	<0.5	<0.5		<5.0
MW-3	6/5/2003	7.53	4.23	< 0.05	<0.5	<0.5	<0.5	<0.5	-	-
		akland Tier 1 R	BSLs		1,800	>Sol	>Sol	>Sol	NA	>Sol

		Depth to	Groundwater	TPH as		T. 1	74111	Vulanaa	Lead	мтве
Well	Sampling	Groundwater	Elevation	gasoline	Benzene	Toluene	Ethylbenzene	Xylenes		
Name	Date	(feet)	(feet, MSL)	(mg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(mg/L)	(µg/L)
MW-4	10/14/1988	8.33	0.74	4.6	1.2	ND		2.2		-
MW-4	12/29/1989	8.08	0.99	0.5	0.7	ND	ND	ND	ND (1)	
MW-4	5/28/1992	8.19	0.88	0.27	8.8	1	ND	3.2	0.030 (2)	-
MW-4	9/3/1992	8.37	0.70	0.20	4.5	4.4	ND	1.9	0.022 (2)	_
MW-4	11/24/1992	8.28	0.79	0.14	3.2	3.2	ND	1.0	0.005 (2)	
MW-4	3/9/1993	7.98	1.09	0.47	10	ND	ND	2.5	ND (1)	
MW-4	7/21/1993	8.17	0.90	0.28	4.4	5.9	ND	ND	ND(1)	
MW-4	11/4/1993	8.14	0.93	0.08	1.3	1.6	ND	ND	ND(1)	
MW-4	2/1/1994	7.79	1,28	0.08	ND	ND	ND	ND	ND(1)	
MW-4	6/2/1994	7.53	1.54	0.30	3.1	2.9	ND	0.8	ND(1)	
MW-4	9/1/1994	7.69	1.38	0.12	1.6	ND	ND	ND	ND(1)	
MW-4	12/13/1994	6.70	2.37	ND	ND	ND	ND	ND	_	-
MW-4	3/8/1995	6.83	2.24	0.09	ND	ND	ND	ND	-	
MW-4	6/9/1995	7.66	1.41	0.19	ND	ND	ND	ND	-	
MW-4	9/21/1995	7.93	1.14	0.09	ND	ND	ND	ND	_	
MW-4	12/18/1995	6.98	2.09	-		-				-
MW-4	2/29/1996	6.54	2.53	0.14	1.6	1.0	ND	0.6		
MW-4	7/15/1996	7.74	1.33	-	-	. —			-	-
MW-4	1/7/1997	6.46	2.61	0.09	1.0	0.5	<0.5	<0.5		
MW-4	7/12/1997	7.82	1.25	-	_	-			_	
MW-4	1/26/1998	6.67	2.40	0.09	1.1	0.8	<0.5	<0.5		-
MW-4	7/3/1998	7.45	1.62				-		-	
MW-4	1/13/1999	7.51	1.56	0.12	1.1	0.62	<0.5	0.57		
MW-4	9/27/1999	7.88	1.19	-	_	-	-			
MW-4	1/28/2000	6.73	2.34	0.072	<0.5	<0.5	<0.5	<0.5		<5.0
		akland Tier 1 R	BSLs	COURT OF SERVE	1,800	>Sol	>Sol	>Sol	NA	>Sol

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
MW-5	10/14/1988	8.04	0.89	3.2	ND	ND	-	ND		_
MW-5	12/29/1989	7.40	1.53	ND	ND	ND	ND	ND	ND (1)	
MW-5	5/28/1992	7.53	1.40	ND	ND	, ND	ND	ND	0.008 (2)	-
MW-5	9/3/1992	8.02	0.91	ND	ND	ND	ND	ND	0.034 (2)	_
MW-5	11/24/1992	7.75	1.18	ND	ND	ND	ND	ND	0.011 (2)	_
MW-5	3/9/1993	6.91	2.02	ND	ND	ND	ND	ND	ND (1)	-
MW-5	7/21/1993	7.57	1.36	ND	ND	ND	ND	ND	ND(1)	-
MW-5	11/4/1993	7.77	1.16	ND	ND	ND	ND	ND	ND(1)	
MW-5	2/1/1994	7.05	1.88	ND	ND	ND	ND	ND	ND(1)	_
MW-5	6/2/1994	7.18	1.7 5	ND	ND	ND	ND	ND	ND(1)	_
MW-5	9/1/1994	7.53	1.40	ND	ND	ND	ND	ND		_
MW-5	3/8/1995	6.67	2.26	ND	ND	ND	ND	ND	<u> </u>	-
MW-5	6/9/1995	7.33	1.60	ND	ND	ND	ND	ND		-
MW-5	9/21/1995	7.67	1.26	ND	ND	ND	ND	ND		-
MW-5	12/18/1995	6.62	2.31	-		-		-	<u>-</u>	
MW-5	2/29/1996	6.16	2.77	ND	ND	ND	ND	ND		_
MW-5	7/15/1996	7.47	1.46	-	-	_	-			-
MW-5	1/7/1997	6.11	2.82	< 0.05	<0.5	<0.5	<0.5	<0.5		-
MW-5	7/12/1997	7.61	1.32	-	_	-				
MW-5	1/26/1998	6.17	2.76	<0.05	<0.5	<0.5	<0.5	<0.5	-	
MW-5	7/3/1998	7.23	1.70	-	-		_			
MW-5	1/13/1999	7.27	1.66	< 0.05	<0.5	<0.5	<0.5	< 0.5		
MW-5	9/27/1999	7.76	1.17		-	-	_			_
MW-5	1/28/2000	6.43	2.50	<0.05	<0.5	<0.5	<0.5	<0.5		<5.0
D-April	O:	akland Tier 1 R	BSLs	**************************************	1,800	>Sol	>Sol	>Sol	NA_	>Sol

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as gasoline	Benzene	Toluene	Ethylbenze ne	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)
MW-6	12/29/1989	5.02	1.11	1,1	5.4	4.5	ND _	ND	ND (1)	
MW-6	3/9/1993	5.10	1.03	2.3	2.3	2.8	ND	3.1	ND (1)	-
MW-6	7/21/1993	5.23	0.90	0.59	ND	7.6	ND	ND	ND(1)	
MW-6	11/4/1993	5.25	0.88	1.5	ND	1.2	ND	0.7	ND(1)	-
MW-6	2/1/1994	5.05	1.08	1.9	2.5	3.9	1.6	1.1	ND(1)	
MW-6	6/2/1994	4.49	1.64	1.3	ND	1	ND	ND	ND(1)	
MW-6	9/1/1994	4.53	1.60	2,2	ND	1.7	ND	ND	ND(1)	
MW-6	12/13/1994	4.27	1.86	0.66 (3)	ND	ND	ND	ND	_	
MW-6	3/8/1995	3.37	2.76	1.0 (3)	ND	ND	ND	ND		_
MW-6	6/9/1995	4.40	1.73	1.5	ND	3.3	ND	ND	· <u>-</u>	_
MW-6	9/21/1995	4.69	1.44	0.28	ND	ND	ND	ND		
MW-6	12/18/1995	4.42	1.71	_	_	-	-	_		
	Oz	kland Tier 1 R	BSLs		1,800	>Sol	>Sol	>Sol	NA	>Sol

Pacific Supply Company, 1735 24th Street, Oakland, California

Well	Sampling	Depth to Groundwater	Groundwater Elevation	TPH as	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	мтве
Name	Date	(feet)	(feet, MSL)	(mg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(mg/L)	(μg/L)
MW-7	12/29/1989	8.35	-3.32	ND	ND	ND	ND	ND	0.235 (1)	
MW-7	3/9/1993	13.60	-8.57	ND	ND	ND	ND	ND	ND (1)	
MW-7	7/21/1993	12.59	-7.56	ND	ND	ND	ND	ND	ND(1)	
MW-7	11/4/1993	9.84	-4.81	ND	ND	ND	ND	ND	ND(1)	-
MW-7	2/1/1994	10.38	-5.35	ND	ND	ND	ND	ND	ND(1)	
MW-7	6/2/1994	10.10	-5.07	ND	ND	ND	ND	ND	ND(1)	
MW-7	9/1/1994	9.63	-4.60	ND	ND	ND	ND	ND	ND(1)	_
MW-7	12/13/1994	11.27	-6.24	ND	ND	ND	ND	ND	_	
MW-7	3/7/1995	9.68	-4.65	ND	ND	ND	ND	ND		
MW-7	6/9/1995	9.37	-4.34	ND	ND	ND	ND	ND	-	_
MW-7	9/21/1995	9.43	-4.40	ND	ND	ND	ND	ND		-
MW-7	12/18/1995	13.28	-8.25	_	- "	_				
MW-7	2/29/1996	11.70	-6.67	ND	ND	, ND	ND	ND		
MW-7	7/15/1996	11.12	-6.09	-	-		-	-		_
MW-7	1/7/1997	14.35	-9.32	< 0.05	<0.5	<0.5	<0.5	<0.5		_
MW-7	7/12/1997	15.12	-10.09	-	_	-	-		-	
MW-7	1/26/1998	15.28	-10.25	<0.05	< 0.5	<0.5	<0.5	<0.5	_	
MW-7	7/3/1998	14.10	-9.07			-		-		
MW-7	1/13/1999	14.55	-9.52	< 0.05	<0.5	<0.5	<0.5	<0.5	-	
MW-7	9/27/1999	14.03	-9.00	_	-	-	-	-		_
MW-7	1/28/2000	10.91	-5.88	< 0.05	<0.5	<0.5	<0.5	<0.5		<5.0
		kland Tier 1 R	BSLs		1,800	>Sol	>Sol	>Sol	NA	>Sol

Notes:

MTBE = methyl tertiary butyl ether. TPH = total petroleum hydrocarbons.

(1)=Organic Lead, (2)=Total Lead, and (3)=chromatographic peak array does not match gasoline standard.

ND = not detected at laboratory reporting limit. <= less than given laboratory reporting limit.

 $\mu g/L = micrograms$ per liter. mg/l = milligrams per liter. - = not analyzed.

MSL = mean seal level.

Groundwater elevations prior to 2003 based on the following well casing elevations in feet above MSL:

MW-1 (8.87'), MW-2 (8.14'), MW-3 (9.13'), MW-4 (9.07'), MW-5 (8.93'), MW-6 (6.13') and MW-7 (5.03').

Oakland RBSLs are based on a groundwater media for inhalation of indoor air vapors risk scenerio at a commercial/industrial site.

New survey data was obtained on June 23, 2003 by Phelps and Associates Land Surveyors, Appendix E.

June 2003 water levels were measured on June 5, 2003.

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

<u> </u>	Sample	Depth to	10101	Groundwater	TPH as			Ethyl-			Other Oxygenates
Sample	Collection	Groundwater	Casing Elevation	Elevation	gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	& Lead Scavengers
ID .	Date	(feet)	(feet, MSL)	(feet, MSL)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)
VRW-1	11/3/1993		_		3	1600	19	1.1	16	na	na
VRW-1	6/10/2003	7.31	11.18	3.87	0.44	5.9	<0.5	<0.5	1.9	na C-1	na
Oakland Ti	er 1 RBSLs-In	halation of In	door Air Vapors,	Commerical/I	ndustrial Site	1800	>Sol	>Sol	>Sol	>Sol	
VRW-2	11/4/1993	_	_	-	7.2	3,300	600	2.4	870	na	na
VRW-2	5/17/2002			_	2.8	471	<10	<10	<10	<20	<10 to <20
VRW-2	6/9/2003	6.87	11.08	4.21	0.47	38	2.8	<1.0	<1.0	na	па
Oakland Ti	er 1 RBSLs-In	halation of In	door Air Vapors,	Commerical/I	ndustrial Site	1800	>Sol	>Sol	>Sol	>Sol	and the second s
VRW-3	11/4/1993		_	_	5.7	120	41	1.1	380	na	na
VRW-3	5/17/2002	_	-	_	0.42	10.9	<0.5	<0.5	1.07	<1.0	<0.50 to <1.0
VRW-3	6/9/2003	7.41	11,62	4.21	0.061	4.8	<0.5	<0.5	<0.5	na	na
		halation of In	door Air Vapors,	Commerical/I	ndustrial Site	1800	>Sol	>Sol	>Sol	>Sol	The second secon
VRW-4	11/4/1993	_	-	_	9.0	4,400	900	5.4	990	na	na
VRW-4	5/15/2002	_	~-	_	11	4,270	741	512	1,130	<50	<25 to <50
VRW-4	6/5/2003	7.01	11.33	4.32	2.2	1,200	100	12	89	na	na
Oakland Ti		halation of In	door Air Vapors,	Commerical/I	ndustrial Site	1800	>Sol	>Sol	>Sol	>Sol	7. The second se
VRW-5	11/4/1993	_			0.90	68	33	2.5	32	na	na
VRW-5	5/16/2002		~	_	0.87	44.3	<5.0	<5.0	<5.0	<10	<5.0 to <10
VRW-5	6/9/2003	7.33	11.56	4.23	0.93	90	<1.0	14	0.16	na	na
1	-, -,		door Air Vapors,	Commerical/I	ndustrial Site	1800	>Sol	>Sol	>Sol	>Sol	The State of the S
VRW-6	11/4/1993	_		_	0.41	6.6	1.0	ND	31	na	na
VRW-6	5/15/2002			_	0.73	178	4.58	1.41	6.10	<1.0	<0.50 to <1.0
VRW-6	6/6/2003	7,21	11.43	4.22	< 0.05	<0.5	<0.5	<0.5	<0.5	na	na
			door Air Vapors,		ndustrial Site	1800	>Sol	>Sol	>Sol	>Sol	and the second s
VRW-7	11/4/1993		_	-	0.10	ND	ND	ND	ND	na	na
VRW-7	5/16/2002	_	_	-	1.6	28.9	0.980	<0.50	<0.50	<1.0	<0.50 to <1.0
VRW-7	6/6/2003	7.47	11.70	4.23	0.36	19	1.3	<0.5	2.2	na	na na
			door Air Vapors,	Commerical/	Industrial Site	1800	>Sol	>Sol	>Sol	>Sol	

TABLE 2. SUMMARY OF GROUNDWATER ANALYTICAL DATA FOR VAPOR EXTRACTION WELLS

Pacific Supply Company, 1735 24th Street, Oakland, California

	Sample	Depth to	Top of	Groundwater	TPH as			Ethyl-			Other Oxygenates
Sample		Groundwater	Casing Elevation	Elevation	gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	& Lead Scavengers
ID	Date	(feet)	(feet, MSL)	(feet, MSL)	(mg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)
VRW-8	11/4/1993	•			5.9	460	54	ND	53	na	na
VRW-8	5/16/2002	_	_	_	3.3	248	16.0	<10	<10	<20	<10 to <20
VRW-8	6/6/2003	7.42	11.62	4.20	1.8	70	10	11	6.1	na	na
		halation of In	door Air Vapors,	Commerical/Ir	idustrial Site	1800	>Sol	>Sol	>Sol	>Sol	The second secon
VRW-9	11/4/1993		_	_	0.47	36	18	ND	1.0	na	na
VRW-9	5/16/2002	_	_	_	0.080	0.990	2.00	< 0.50	5.93	<1.0	<0.50 to <1.0
VRW-9	6/6/2003	7.67	11.87	4.20	0.58	10	4.4	4.9	<0.50	na	na
,			door Air Vapors,	Commerical/Ir	ndustrial Site	1800	>Sol	>Sol	>Sol	>Sol	with the state of Marie and State of the sta

mg/l = milligrams per kilogram which is generally equivalent to parts per million (ppm).

 $\mu g/l = micrograms$ per kilogram which is generally equivalent to parts per billion (ppb).

Oakland RBSLs are based on a groundwater media for inhalation of indoor air vapors risk scenerio at a commerical/industrial site.

There are no RBBSLs for Total Petroleum Hydrocarbons.

na = not analyzed.

ND = not detected above laboratory reporting limits.

>Sol = RBSL exceeds solubility of chemical in water.

TABLE 3. SUMMARY OF SOIL ANALYTICAL DATA

Pacific Supply Company, 1735 24th Street, Oakland, California

Sample Location	Sample Date	Soil Depth (feet)	TPH as Gasoline (mg/kg)	TPH as Diesel (mg/kg)	TPH as Motor Oil (mg/kg)	Benzene (ug/kg)	Toluene (µg/kg)	Ethylbenzene (ug/kg)	Organic Xylenes (ug/kg)	Lead (mg/kg)	MTBE (ug/kg)
V-3	5/11/1987	7	160			2,200	4,000	-	12,000	-	-
V-7	5/11/1987	7	8	_	=	410	250	-	810		-
MW-1	9/13/1988	8	26	_	2	<2.5	220	-	850	-	-
MW-2	9/13/1988	8	1,400	-	=	990	700	-	1,100	-	-
MW-3	9/13/1988	8	1,300	_	2	530	590	-	22,000	-	-
MW-4	9/13/1988	8	3,700	-		3,700	2,400	=	12,000	-	-
MW-6 ^(a)	12/19/1989	5.5	370			<500	<500	<500	<500	1.5	-
MW-7	12/19/1989	5.5	<2.5	<1.0	160	<5	<5	<5	<5	1.7	<u>-</u>
VEW-1	6/6/1992	4.5	100	-		9,100	830	1,300	21,000		32
VEW-1	6/6/1992	8	780	_		23,000	93,000	60,000	170,000	-	_
B1	3/5/1993	2.5	<1	-	_	<5	<5	<5	<5	-	
B2	3/5/1993	6.0	<1		_	<5	<5	<5	<5	-	-
B3	3/5/1993	8.0	<1		-	<5	<5	<5	<5	-	-
B4	3/5/1993	7.0	7,000	_	-	28,000	17,000	73,000	43,000	-	_
B5	3/5/1993	7.0	900	-	_	1,600	2,400	10,000	6,200	-	-
B6	3/5/1993	7.0	10	_	-	71	38	78	100	24	-
B7	3/5/1993	7.0	10	-	-	30	42	30	110		-
B8	3/5/1993	7.0	2,200	_	_	10,000	41,000	21,000	94,000	-	_
B9	3/5/1993	8.5	910	_	_	1,200	1,500	3,700	6,700	-	-
B10	3/5/1993	6.0	<1			<5	5	<5	<5	-	_
VRW-1	8/25/1993	7.5	1.5	-	-	14	<5	<5	<5	-	(
VRW-2	8/26/1993	7	27		-	110	200	46	190	1-	-
VRW-3	8/25/1993	7.5	15		-	700	90	16	60	-	-
VRW-4	8/26/1993	7	5.5	-	-	410	120	110	490	-	_
VRW-5	8/27/1993	7.5	700			7,300	3,000	5,300	3,600	-	
VRW-6	8/26/1993	7.5	3800	-		41,000	130,000	53,000	270,000	-	-
VRW-7	8/27/1993	7	1100	-	_	1,300	2,900	2,600	6,000	(+	-
VRW-8	8/26/1993	7.5	30			220	120	400	670	_	
VRW-9	8/27/1993	7	370			2,300	2,200	620	2,300	-	_
Page 1970		Soil Vap	or Extraction	System I	mplemente	d from Di	ecember I	993 to June 199	6		The Charles
	Oa	kland Tier				1,100	360,000	>Sat	>Sat		_
			s for Clayey	Silts		30,000	>Sat	>Sat	>Sat	_	-

⁽a) This sample was also analyzed for volatile organic compounds (VOCs) by Method 8010 and semi-volatile compounds (SVOCs) by Method 625.

There are no RBSLs for total petroleum hydrocarbons.

No compounds were detected above reporting limit of 250 µg/kg for VOCs and 50 µg/kg for SVOCs.

>Sat = RBSL exceeds saturation soil concentration of chemical.

TABLE 4. SUMMARY OF VAPOR ANALYTICAL DATA

Pacific Supply Company, 1735 24th Street, Oakland, California

Sample Location	Sample Date	TPH as gasoline (ppm)
Tank Area (West)	4/28/1987	1,400
Tank Area (East)	4/28/1987	2,000
V-1	5/11/1987	3,700
V-2	5/11/1987	2,200
V-3	5/11/1987	2,500
V-4	5/11/1987	1,800
V-5	5/11/1987	2,300

ppm = parts per million

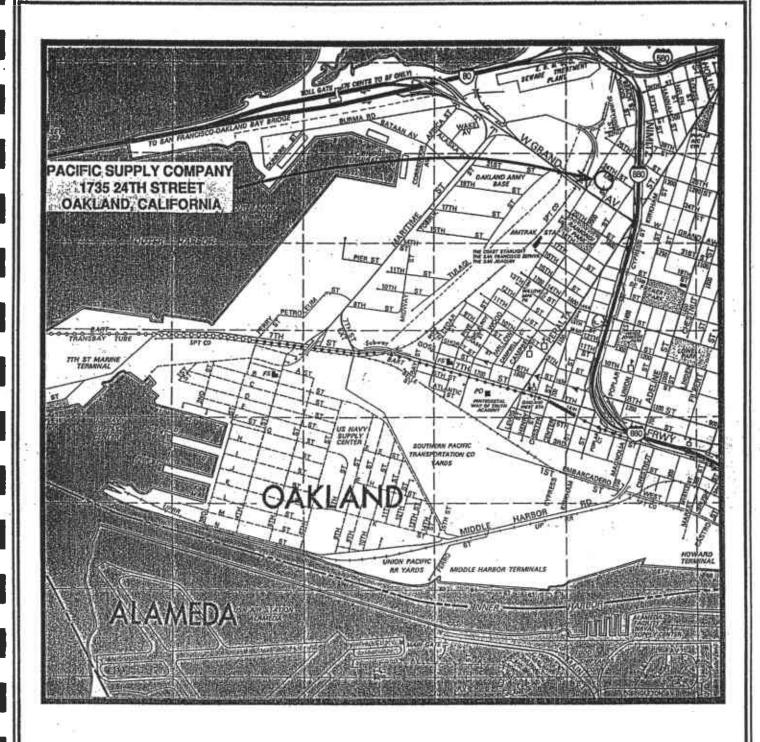
Shallow ESL's 400 ppm -p++g

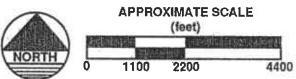
TABLE 5. GROUNDWATER ANALYTICAL RESULTS, 8/29/00

Pacific Supply Company, 1735 24th Street, Oakland, California

Sample ID	TPH as gasoline (mg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Xylenes (µg/l)	MTBE (µg/l)	TAME (µg/l)	TBA (μg/l)	Other Oxygenates & Scavengers (µg/l)
B-10W	0.060	1.4	1.4	ND	1.0	0.660	4.03	58.3	ND
B-11W	ND	ND	ND	ND	ND	<2.5	<10	<500	<10
B-12W	ND	ND	ND	ND	ND	<1.25	<5	<250	<5
MW-2	3.5	120	16	<5	28	5.09	ND	102	ND
Method	0.05	0.5	0.5	0.5	0.5	0.5	2.0	100	2.00
Reporting Limit	mg/1	ug/l	μg/l	ug/l	ug/l	ug/l	μg/l	μg/l	µg/l

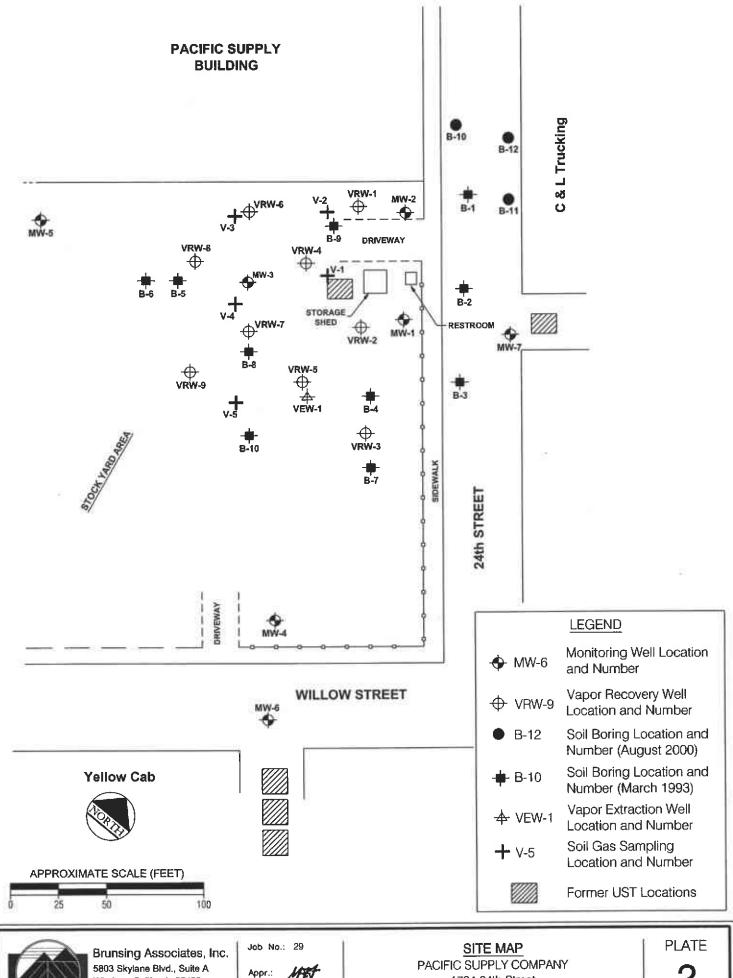
mg/l = milligrams per liter which is generally equivalent to parts per million (ppm).


 μ g/l = micrograms per liter which is generally equivalent to parts per billion (ppb).


ND = Not detected at the method reporting limit.

nr = Analysis not requested.

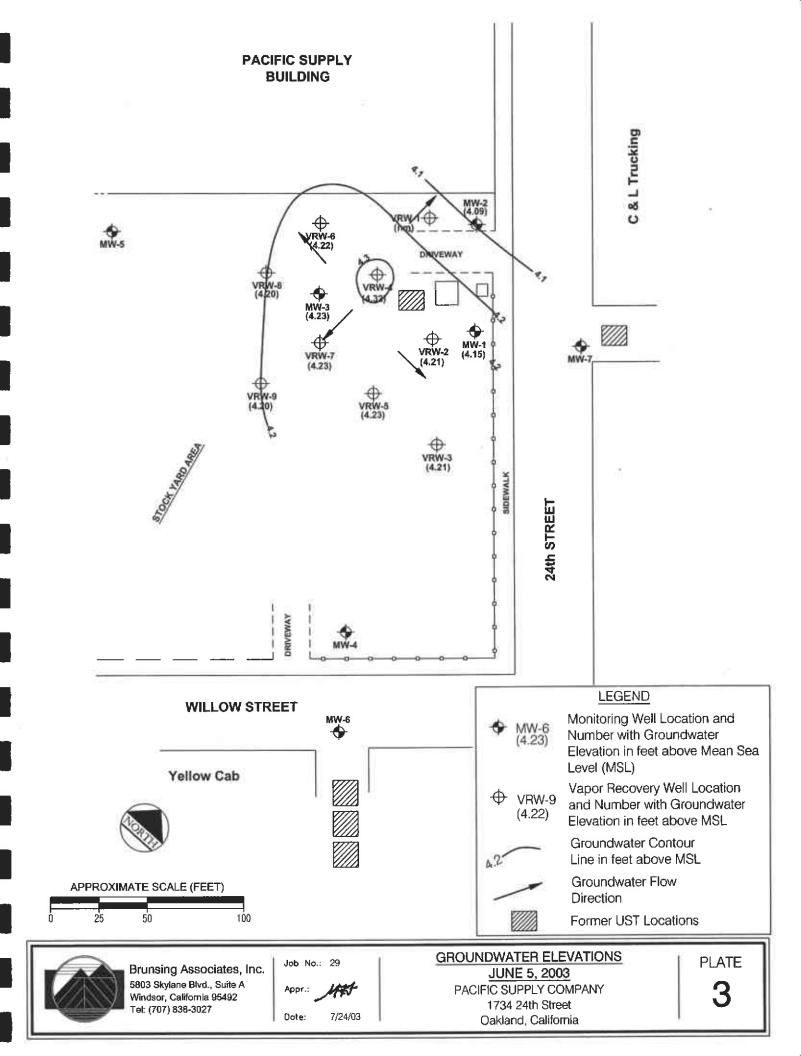
< = Not detected at the indicated reporting limit.



REFERENCE: Thomas Guide, Alameda Couty, 1989

PROJECT NO.: 029.5							
DRAWN BY:	JG	3/21/90					
CHECKED BY:	MEV	3/21/90					
APPROVED BY:	MEV	3/22/90					
REVISION NO.:	2	6/26/90					

BRUNSING ASSOCIATES, INC.


FIGURE 1 VICINITY MAP PACIFIC SUPPLY COMPANY OAKLAND, CALIFORNIA

Windsor, California 95492 Tel: (707) 838-3027

Dote: 7/24/03

1734 24th Street Oakland, California

APPENDIX A Monitoring Well Sampling Protocol and Field Reports

Groundwater Sampling Protocol

Monitoring Wells

Prior to purging a monitoring well, groundwater levels are measured with a Solinst electric depth measurement device, or an interface probe, in all wells that are to be measured. At sites where petroleum hydrocarbons are possible contaminants, the well is checked for floating product using a clear bailer, a steel tape with water/oil paste, or an interface probe, during the initial sampling round. If floating product is measured during the initial sampling round or noted during subsequent sampling rounds, floating product measurements are continued.

After the water level and floating product measurements are complete, the monitoring well is purged until a minimum of three casing volumes of water are removed, water is relatively clear of sediment, and pH, conductivity, and temperature measurements of the water become relatively stabile. If the well is purged dry, groundwater samples are collected after the water level in the well recovers to at least 80 percent of the original water column measured in the well prior to sampling, or following a maximum recovery period of two hours. The well is purged using a factory-sealed, disposable, polyethylene bailer, a four-inch diameter submersible Grundfos pump, a two-inch diameter ES-40 purge pump, or a peristaltic pump. The purge water is stored on-site in clean, 55-gallon drums.

A groundwater sample is collected from each monitoring well following reequilibration of the well after purging. The groundwater sample is collected using a factory-sealed disposable, polyethylene bailer with a sampling port, or a factory-sealed Teflon bailer. A factory provided attachment designed for use with volatile organic compounds (VOCs) is attached to the polyethylene bailer sampling port when collecting samples to be analyzed for VOCs. The groundwater sample is transferred from the bailer into sample container(s) that are obtained directly from the analytical laboratory.

The sample container(s) is labelled with a self-adhesive tag. The following information is included on the tag:

Project number Sample number Date and time sample is collected Initials of sample collector(s).

Individual log sheets are maintained throughout the sampling operations. The following information is recorded:

Sample number
Date and time well sampled and purged
Sampling location
Types of sampling equipment used
Name of sampler(s)
Volume of water purged.

Following collection of the groundwater sample, the sample is immediately stored on blue ice in an appropriate container. A chain-of-custody form is completed with the following information:

Date the sample was collected Sample number and the number of containers

Analyses required

Remarks including preservatives added and any special conditions.

The original copy of the chain-of-custody form accompanies the sample containers to a California-certified laboratory. A copy is retained by BAI and placed in company files.

Sampling equipment including thermometers, pH electrodes, and conductivity probes are cleaned both before and after their use at the site. The following cleaning procedures are used:

Scrub with a potable water and detergent solution or other solutions deemed appropriate using a hard bristle brush

Rinse with potable water

Double-rinse with organic-free or deionized water

Package and seal equipment in plastic bags or other appropriate containers to prevent contact with solvents, dust, or other contaminants.

In addition, the pumps are cleaned by pumping a potable water and detergent solution and deionized water through the system. Cleaning solutions are contained on-site in clean 55-gallon drums.

Domestic and Irrigation Wells

Groundwater samples collected from domestic or irrigation wells are collected from the spigot that is the closest to the well. Prior to collecting the sample, the spigot is allowed to flow for at least 5 minutes to purge the well. The sample is then collected directly into laboratory-supplied containers, sealed, labeled, and stored on blue ice in an appropriate container, as described above. A chain-of-custody form is completed and submitted with the samples to the analytical laboratory.

FIELD REPORT

JOB NO: 29

PROJECT: PACIFIC SUPPLY

PAGE 1 OF 4

INITIAL: LDS

SUBJECT: brownowater Sampunu

DATE: 6-5-03

PROJECT PHASE NUMBER: 04

DAIL.	VEHICLE USED: Ford F-150	TOTAL MILEAGE:
	VETITO EL OSEB. TOIGNATO	
TIME	DESCRIPTION OF WORK AND CONVERSATION RECORD	
0730	LOAD EQUIPMENT AND SUPPLIES.	
- Disper	LOTTO COUNTRIES PARA SOFFORES	
0945	TO S.TE	
1113	ARRIVE AT SITE, SET-UP FOR GROUNDWATER SAM	PLINCE
	MEASURED TWO ROUNDS OF DISTANCE TO WATER	ATWELL & MW-1 MW-2
	MW-3; Vew-2, vew-3, vew-4 vAW-5, vew-6, v	1RW-7, VRW-8 ANOVEW-9.
	PERFORMED SAMPLING AT WELLS MW-3 AND VRU	
	TELEPORMED SAMPLINIT AT WELLS MW - 3 AND VIZU	,, - 1
	STORED PURLEWATER IN DRUMS LOCATED IN THE FO	DRMER REMEDIATION
	SYSTEM COMPOUND AREA	
	Mark and Miles of Miles	
	CLOSED ALL WELLS AND MONUMENTS.	
	Direction of the control of the cont	
	DECON SAMOUNT EQUIPMENT	
	LOAD EQUIPMENT AND SUPPLIES.	
1100		
1658	LEAVE SITE, TRAVEL AND COMPLETED FIELD N	otes,
1726	FINISHED WITH WORK.	

WATER LEVELS

SHEET 2 OF 4

PROJECT:	PACIFIC S	UPPLY			PROJECT NUMBER: 29
INSTRUME	ENT TYPE: He	FON INTERF	ALE PROBE	INITIALS:	∠ÞS DATE: 6-5-03
WELL NUMBER	DEPTH TO PRODUCT	DISTANCE TO WATER	TIME (24 HOUR)	EQUILIBRATED (CHECK FOR YES)	NOTES
Mw-1		7.31	1233		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Mw-2	_	6.71	1237		
MW-3	_	7.53	1245		
Vew-1	_				UNDER BRICK PATIO
Vew-Z	_	6.87	1230		
VRW-3	_	7.40	1228		
Vaw-4		7.00	1234		-
vaw-5	-	7.83	1251		
VRW-6		7.21	1239		
VRW-7	-	7.47	1247	k.	*
VRW-8	-1	7.42	1242		
vew-9	2	7.66	1249		78
MW-1		1.32	1258	~	
MW-2		6.71	1303	~	
Mw-3	_	7.53	1310	V	
VRW-1					No Access.
VRW-Z	_	6.87	1256	1	At 1 / At 1
VRW-3		7.41	1254	~	
Vew-4	- 1	7.01	1300	~	V 4000
VRW-5		7.33	1318	V	
VRW-6		7.21	1305	V	
VRW-7	_	7.47	1312	~	
Vew-8		7.42	1308	~	2 3
VRW-9		7.67	1315	~	
					T. T

WELL SAMPLING

SHEET 3 OF 4

PROJECT: PALIFIC SUPPLY PROJECT NUMBER: 29										
WELL# N	(w-3	PRECIP. IN I	AST 5 DAYS:	_	WIND 🗸	DATE: 6-5-03				
STARTING	TIME: B	433	FINISHING '	TIME: 150	3	INITIALS: C 05				
CALCULATION OF PURGE VOLUME										
2" WELL	DEPTH:	16.00	,] - D.T.W.	1.53] = H20 COLUMN:	: 8.41 X 0.5 = 4.24 L				
4" WELL	4" WELL DEPTH: D.T.W = H20 COLUMN: X 2.0 = O									
THEREFORE TOTAL PURGE GALLONS EQUALS N S										
	FIELD MEASUREMENTS									
TIME	GALLONS REMOVED	рΗ	CONDUCTIVITY	TEMP.		OBSERVATIONS				
THYLL	KEWOVED	V.	CONDUCTIVITI	TEMP.	*	OBOLINATIONS				
1438	1	7:17	3.86 ms	22.4	CLOUDY GEEN	BROWN ORLANIC GOOR				
1441	2.5	7.04	3,57ms	21.8	TURBIOGREEN	- BROWN ORGANIC GOOR, SAUDY				
iqus	4	7.05	9: 44		e					
1445		7.03	3.45 ms	21.5	Samé	The state of the s				
SAMPLII	₩.	SAMPLE	ANALYSIS:	TAH GAS	EPA 8021					
		- 6			DID WELL G	O DRV2				
	*	SAI	VIPLE TIME.	1456] DID WEEE G	O DRY?				
WATER	LEVELS:	NOTES:								
TIME	D.T.W.									
1503	8-30					6				
						in the second se				
124					*					
- 5										

WELL SAMPLING

SHEET 4 OF 4

PROJECT:	Pacific S	inpply					PROJECT NUMBER: 29		
WELL # V	ew - 4	PRECIP. IN I	LAST 5 DAYS:	_	WIND	/	DATE: 6 -5-03		
STARTING	S TIME: 1	3। ९	FINISHING T	TME: 14	3 2		INITIALS: CDS		
CALCULAT	ION OF PUR	GE VOLUM	IE .					G	
2" WELL	DEPTH:	<u> </u>] - D.T.W. [] = H20 C	OLUMN	X 0.5 =	A L	
4" WELL	DEPTH:	20.00] - D.T.W. [7-01] = H20 C	OLUMN	: 12.99 X 2.0 = 25.98	O.	
4" WELL DEPTH: 20.00 - D.T.W. 7.01 = H20 COLUMN: 12.99 X 2.0 = 25.98 O N THEREFORE TOTAL PURGE GALLONS EQUALS									
FIELD MEASUREMENTS									
TIME	GALLONS REMOVED	рН	CONDUCTIVITY	TEMP.			<u>OBSERVATIONS</u>	7	
1327	ı	6.65	1019	22.6	CLEAR	Browy	, PHCODOR, SEDIMENT		
1336	13	6.45	2.67 mS	22,1-	TUQBID!	raey -(FREEN PHLODOR SEDIMENTS		
1405	26	7.17	1592	21.3	SAME				
						34			
SAMPLI	NG:	SAMPLI	E ANALYSIS:	TPH.GAS	EPA	8021			
1	1/.	SA	MPLE TIME:	1416] DID	WELL C	GO DRY? NO		
WATER	LEVELS:	NOTES	į.				× = ,,		
TIME	D.T.W.								
1432	14-08	SLOW REZOVERY							
								-	
				-					
	-			-					

FIELD REPORT

JOB NO: 29

PROJECT: PACIFIC SUPPLY

PAGE /

OF 5

INITIAL: 4D5 DATE: 6-6-03 SUBJECT: GOUNDWATER SAMPLING

PROJECT PHASE NUMBER: 04

	VEHICLE USED: Ford F-150	TOTAL MILEAGE:							
TIME	DESCRIPTION OF WORK AND CONVERSATION RECORD:								
0633	TO SITE.								
0650	ARRIVE AT SITE, SET-UP FOR GROUNDWATER SAM	יפרואף.							
	PERFORMED SAMPHNY AT WELLS VEW-6, VRW-7, VRL	u-8 ANO VRW-9.							
	StOCED PURCEWATER IN DRUMS AT THE FORMER SYST	EM COMPOUND AREA.							
	CLOSED ALLWELLS AND MONUMENTS.								
	DECON SAMOLING EQUIPMENT								
	LOAD FOLIPMENT AND SUPPLIES.								
1318	LEAVE SITE.								
1444	ARRIVE AT OFFICE, STORED SAMPLES AND COMPLE	TED FIELD NOTES.							
1522	FINISHED WITH WORK.								
		ik .							
		1.w							
-									

WELL SAMPLING

SHEET 2 OF 5

PROJECT:	PACIFIC	- SUPPL	.4			PROJECT NUMBER; 29	
WELL#	w-4	PRECIP. IN	LAST 5 DAYS:		WIND ✓	DATE: 6 - 6 - 6 3	
STARTING	TIME: 0	846	FINISHING T	IME: 10	20	INITIALS: CDS	25
CALCULAT	ON OF PUR	RGE VOLUM	<u>NE</u>	0.0		.,	
2" WELL	DEPTH:] - D.T.W. []- = H20 COLUM	IN: X 0.5 =	`
4" WELL	DEPTH:	20.00] - D.T.W. [7.21	- = H20 COLUM	IN: 12.79 X2.0 = 25.58	
THEREFO	•		ALLONS EQUA	LS		7.6	
		Ricer St.	FIE	LD ME	ASUREMEN	TS .	ř.
TIME	GALLONS REMOVED	рН.	US ,	TEMP.	*	OBSERVATIONS .	
1905	<u> </u>	6.89	1236ps	19.3	CLEAR GREE	N- BROWN PHEODOR, SEDIMENT	E 9
W			#	10.3			
0913	13	6.89	1372	19.3	TUEBIO BLAC	KPHEODOR, SHEEN, SEDIMENT	-
0945	26	7.15	:1499	19.5	SAME	· N	
		. 1	1		1	1 612	
٠						- Pag	
SAMPLI	NG:	SAMPL	E ANALYSIS:	TPHILA	S EPA 8021		
19	e Composition	SA	MPLE TIME:	6956	DID WELL	. GØ DRY? Nø	
WATER	LEVELS:	NOTES	: :	Ť.	×	6 D)(40)	
TIME	D.T.W.	Discouring Pro-	1)47	7:	* 8	· · · · · · · · · · · · · · · · · · ·	
1007	9.75	SLO	w RELOVER	4			
89.1 III.					8		10
Here t		2 · 1	1		*		1
			VII.		10.8		1
							-
							-
		W ×	V			4.4	-

WELL SAMPLING

SHEET 3 OF 5

PROJECT:	PACIFIC:	SUPPLY					PROJEC	CT NUMBER: 29			
WELL#V	Rw-7	PRECIP. IN	LAST 5 DAYS:	_	WIND	~	DATE	E: 6-6-03			
STARTING	TIME: 0	658	FINISHING 1	ΓIME: φq	41		INITIALS	S: CD3			
CALCULATION OF PURGE VOLUME G											
2" WELL	DEPTH:] - D.T.W.] = H20	COLUM	N:	X 0.5 =] A		
4" WELL											
THEREFORE TOTAL PURGE GALLONS EQUALS N S											
FIELD MEASUREMENTS											
TIME	GALLONS REMOVED	pН	CONDUCTIVITY	TEMP.			OBSERVA	<u>ations</u>			
0710	ı	7.01	4.04 ms	20.7	Tuna.	n lares	N-Anow	N PHEODOR SEDI	WENZ		
0719	7	6.95	4.08 ms	20.6	TUAS	o bac	7-BLACK	PHEODOR, SHEEN,	YOUAS		
0727	15	7.22	3.52ms	21.6	SA,	n¢ _			j.		
				5							
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH. &AS	EP	8021]		
		SA	MPLE TIME:	0935] DI	D WELL	GO DRY?	YES			
WATER	LEVEĽS:	NOTES							76		
TIME	D.T.W.		- X			74/11					
0727	18.81										
0827	11,23								-		
0927	9.67										
0941	10.04				-						
	1 1										

WELL SAMPLING

SHEET 4 OF 5

	PACIFIC	< o	i'		PROJECT NUMBER: 29.0					
					6 8 N N					
WELL#V	aw-8	PRECIP. IN	LAST 5 DAYS:	_	WIND / DATE: 6 - 6 - 03					
STARTING	TIME: I	021	FINISHING 7	TIME: 114	8 INITIALS: CAS					
CALCULAT	ION OF PUR	RGE VOLUM	1E		G					
2" WELL	DEPTH:] - D.T.W.] = H20 COLUMN: X 0.5 = L					
4" WELL	DEPTH:	20.00] - D.T.W.	7.42	= H20 COLUMN: X 0.5 =					
THEREFORE TOTAL PURGE GALLONS EQUALS S										
			FIE	LD ME	ASUREMENTS					
TIME	GALLONS REMOVED	pН	confluctivity	TEMP.	OBSERVATIONS					
1034	1	6,93	1894	19.4	CLEAR YELLOW BROWN SHUHT PITC ODER					
1045	13	6.86	1828	19.1	TURBIOLIEN - BROWN, ORLANGODER, SANDY					
1106	25	6.87	1401	19.3	SAME					
	23									
SAMPLI	NG:	SAMPLE	E ANALYSIS:	TPH GAS	EPA 8021					
-		SA	MPLE TIME:	1124	DID WELL GO DRY?					
WATER	LEVELS:	NOTES:								
TIME	D.T.W.									
1133	7.45									
	- 14									
		-								
\vdash	-			-						

WELL SAMPLING

SHEET 5 OF 5

PROJECT:	PACIFIC	SUPPL	1			PROJECT NUMBER: 29
WELL#	VRW-9	PRECIP. IN	LAST 5 DAYS:	_	WIND ✓	DATE: L-L-03
			FINISHING T			INITIALS: LDS
	ION OF PUR					G
2" WELL	COC 900 (100 COC) 111				= H20 COLUM	Α
4" WELL	DEPTH:	20,00] - D.T.W. [7.67	= H20 COLUM	N: 12.33 X 2.0 = 24.4C 0
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	LS		7.5 N S
Ġ	J.		FIE	LD ME	ASUREMEN	T S
TIME	GALLONS REMOVED	рН	CONDUCTIVITY	TEMP,	1	OBSERVATIONS
0751		7.07	2.85ms	20.1	Tuasiobas	TY-LATEN, DRUANIC DOOR, SAUDY
0759	13	7.14	2.39 ms	20.4	Trasiobace	N - BROWN DRUME ODOR SANOT, SCOIME
0824	28	7.19	105645	20,8	SAME	
SAMPLI	NG:			794. LA		GO DRY? No
WATER	LEVELS:	NOTES	S:			31 84
TIME	D.T.W.					
0945	7.73					- X-1 '
					1 1	
				187		

FIELD REPORT

JOB NO: 29

PROJECT: PACIFIC SUPPLY

PAGE 1

OF 5

INITIAL: CDS

SUBJECT: GROUNDWATERS AMPLING

DATE	6-9-03	PROJECT PHASE		TOTAL MILEAGE:
				transmississim tassatissimesimen suomen transmissimen ta
STIME	DESCRIPTIO	IN OF WORK AND C	ONVERSATION RECO	RD DESCRIPTION OF THE PROPERTY
0432	LOAD EQU	IPMENT AND SU	PPLIES,	
0455	TO SITE.			
0609	ARRIVE	ATSITE, SET-	UP FOR GROUNDW	ATER SAMPLING
	MEASURE	D Two-Pounds	F DISTANCE TO U	PATER AT WELLS MW-1, MW-2,
	VRW - 12	VAN -3 AND V	RW-5.	
	PER FORM	TR SAMPLING A	T WELLS VRW-Z	VEW-3 AND VRW-5,
	STORED PLO	WEWATER IN DR	UMS AT THE FOR	LMER SYSTEM COMPOUND AREA.
	closed A	LL WELLS AND MO	NUMENTS.	
	DELONS	AMPLING ÉQUIPA	NENT.	
	LOADEQU	IFMENT AND S	PPUES.	
1238	LEAVE SI	TE TRAVEL.		
	LOUGED.	SAMPLES ON CE	LAIN & F CUSTOD	1 AND COMPLETED FIELD NOTES.
1510	FILISHE	with work		
1		<u> </u>		
12				
			V	

WATER LEVELS

SHEET 2 OF 5

PROJECT: PACIFIC SUPPLY

PROJECT NUMBER: 29

WELL NUMBER	DEPTH TO PRODUCT	DISTANCE	TIME	EQUILIBRATED		NOTES
	PRODUCT	TOWATER	(24 HOUR)	(CHECK FOR YES)		NOTES
MW-1 MW-2	,	7.30	0740	 		
		6.75	0737	-		
Vew-2	27	7.34	0733	-		
10w-3	_	7.29	0735	-		
V 12-12		1,44	0 133	-		
Mw-l		7,30	0749	/		:6
MW-Z		6.75	0751			- 2" 6
V2111-2	~	6.82	0747			1 1
vru-3		7.34	0743		- 4	-
v RW-5		7.29	0745	/		*
				VE		
					(4)	
	- V	W.				
						11
			19			
		4				
			11.5	00		

WELL SAMPLING

SHEET 3 OF 5

PROJECT:	PARIFICSU	PPLY				PROJECT NUMBER: 29	
WELL#V	2w-2	PRECIP. IN	LAST 5 DAYS: -		WIND /	DATE: 6-9-03	
STARTING	TIME:/	033	FINISHING T	IME: 1150	,	INITIALS: CPS	
CALCULAT	ION OF PUR	RGE VOLUM	ΜE				G A
2" WELL	DEPTH:] - D.T.W. [] = H20 COLU	JMN: X 0.5 =	1
4" WELL	DEPTH:	20.00] - D.T.W. [6.75] = H20 COL	JMN: 13.25 X 2.0 = 26.50	ō
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	LS		27	N S
			FIE	LD ME	ASUREME	NTS	2
TIME	GALLONS REMOVED	рН	CONDUCTIVITY	TEMP.		OBSERVATIONS	
1050	1	6.80	925 NS	20.9	CLEAR YE	ELOW-BROWN, PHEODOR	
			1.2				
1059	14	6.93	1192	20.6	TURBIOLE	EY-BLACK, PHE ODOR, SEDIMENT	
1117	27	7.00	1116	20,4	SAME		
SAMPLI	NG:	SAMPL	E ANALYSIS:	TPHUAS	EPA 802	4	
		SA	MPLE TIME:	1127] DID WE	ELL GO DRY?	
WATER	LEVELS:	NOTES	8			et"	
TIME	D.T.W.		_8				
1135	7.69						
C 14	18						
				7			
					£(
					040	141	

WELL SAMPLING

SHEET 4 OF 5

PROJECT: F	PACIFICS	SUPPLY		,	PROJECT NUMBER: 29
WELL# VA	-u-3	PRECIP. IN	LAST 5 DAYS:	_	WIND ✓ DATE: 6-9-03
			FINISHING T		≥ INITIALS: < D3
CALCULATI	ON OF PUR	GE VOLUM	ME		G
2" WELL	DEPTH:] - D.T.W.: [] = H20 COLUMN: X 0.5 = L
4" WELL	DEPTH:	20.00] - D.T.W.	7.34	= H20 COLUMN: 12.66 X 2.0 = 25.32 O
					2.5 N
THEREFOR	RETOTAL	PURGE G	ALLONS EQUA	LS	23
			FIE	LD ME	ASUREMENTS
	GALLONS	500	DOSESTIFE DV22 AND GOLDO	7.0000000	-
TIME	REMOVED	pH	CONDUCTIVITY	TEMP.	OBSERVATIONS
0820	ı	6.61	577µS	18.8	CLEAR, ORGANICODOR, SEDIMENT
0,120			- Trips	1.0	t.
0831	13	6.77	1023	18.3	TUO 510 GREEN BEACK, PHE ODOR, SHEEN, SEDIMEN
			7	is too	
0843	26	7.01	951	18.3,	SAME
				87.	*
SAMPLIN	ıg:	SAMPL	E ANALYSIS:	TRH. GAS	EPA 8021
	13.		AMPLE TIME:	1014	DID WELL GO DRY? YES
WATER	LEVELS:	NOTES	::		•
TIME	D.T.W.				
0844	18.66		DEY AT 2	20 UAL	PURLET
0944	7.55				William III
1020	7.65				× 2
			7	3	
		25			
					The second secon
201			`		

WELL SAMPLING

SHEET 5 OF 5

PROJECT:	PALEIC	Su pola		Ter		PROJECT NUMBER: 29	
I A		-#	organical company is	1		- EU-ANAPARTAL BELLO CON CONTROL DO COMA DE CARA	5
WELL # V	LW-5	PRECIP. IN	LAST 5 DAYS: -		WIND	DATE: 6-9-03	
STARTING	TIME:09	857	FINISHING	TIME: 101	0	INITIALS: < p s	
CALCULAT	ION OF PUR	RGE VOLUM	1E				G A
2" WELL	DEPTH:] - D.T.W.] = H20 COI	_UMN: X 0.5 =	L
4" WELL	DEPTH:	20,00	- D.T.W.	7.29	= H20 CO	UMN: 12.71 X 2.0 = 25.42	0
THEREFO	RE TOTAL	PURGE G	ALLONS EQUA	LS		25	S
			FIE	LD ME	ASUREM	ENTS	,
TIME	GALLONS REMOVED	рН	CONDUCTIVITY	TEMP.		OBSERVATIONS	, ,
0916	1	6.77	1150	17.0	CLEARY	ELLOW - BROWN, PHEODOR	
0926	13	6.87	1342	18.9	TURBIOS	REY-BLACK, PHE ODER, SEDIMENT,	SHEEN
0948	25	6.83	1300	19.4	SAME	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
SAMPLI	NG:	SAMPL	E ANALYSIS:	TPH-GAS	EPA 80	2(
18		SA.	MPLE TIME:	0958	DID W	ELL GO DRY? No	
WATER	LEVELS:	NOTES	:				
TIME	D.T.W.						
1010	7.42			<u> </u>			-
				,			
					7		- 15
		IV.					
							117

FIELD REPORT

JOB NO: 29.016

PROJECT: PACIFIC SUPPLY

PAGE / OF 4

ا اااااا DATE: 4-40-03 SUBJECT: GROUND WATER SAMPHING PROJECT PHASE NUMBER: 04

DATE:	VEHICLE USED: Ford F-150 VEHICLE USED: Ford F-150 TOTAL MILEAGE:									
My Autom										
TIME	DESCRIPTION OF WORK AND CONVERSATION RECORD:									
0634	TOSITE									
0656	ARRIVE AT SITE, SET-UP FOR GROUNDWATER SAMPLING.									
	PERFORMED SAMPLING AT WELLS MW-1 AND MW-Z.									
	LOCATED VEW-1, MEASURED TWO-ROUNDS OF DISTANCE TO WATER									
	AND PERFORMED SAMPLING.									
	STORED PUNLEWATER IN DRUMS AT THE FORMER SYSTEM COMPOUND AREA.									
	CLOSED ALL WELLS AND MONUMENTS. LEFT BRICKWORK AWAY FROM									
	VRW-1 FOR ELEVATION SURVEY.									
	DECON SAMPLING EQUIPMENT.									
	LOAD EQUIPMENT AND SUPPLIES.									
1424	LEAVE SITE.									
1535	ARRIVE AT OFFICE. SUBMITTED ALL SAMPLES ON CHAIN OF CUSTOM									
	FOR ANALYSIS,									
	COMPLETED FIELD NOTES,									
	UNLOAD FOUIPMENT AND SUPPLIES.									
1641	FinishED WITH work.									
	The state of the s									

WELL SAMPLING SHEET 2 OF 4

PROJECT:	PAZIFIC S.	U PPLY	14				PROJECT NUMBER: 29	
WELL# M	1w-1	PRECIP. IN L	AST 5 DAYS:	_	WIND	-	DATE: 6-10-03	8 "
STARTING	TIME: 0	838	FINISHING 1	TIME: 69	22		INITIALS: COS	
CALCULAT	ON OF PUR	RGE VOLUM	E .					G A
2" WELL	DEPTH:	19.00	- D.T.W.	7.30] = H20	COLUM	N: 11.70 X 0.5 = 5,75] [
4" WELL	DEPTH:		- D.T.W.		= H20	COLUM	IN: X 2.0 =] 0
			ALLONS EQUA	LS			6	N S
			FIE	LD ME	ASURE	MEN	<u>T S</u>	*:
TIME	GALLONS	- 11	€ CONDUCTIVITY	75140			OBSERVATIONS	9
TIME	REMOVED	pН	CONDUCTIVITY	TEMP.			OBSERVATIONS	
4839	1	7.27	1453	17.6	Transio	basy	-BLACK, ORLANIC ODEO, SEDIN	TNAT
0844	3	7.05	1014	17.8	SAN	٠ ا	11	
							18	ž.
0854	6	7.03	996	18,2	SAA	nE		
		1.7					14.15.	
SAMPLII	<u>NG:</u>	SAMPLE	ANALYSIS:	TAH GAS	EPA	8021]
		SAN	MPLE TIME:	6905	ווס. [D WELL	GO DRY?	
WATER	LEVELS:	NOTES:						
TIME	D.T.W.]						
0911	8.79							
	9%		,					

WELL SAMPLING

SHEET 3 OF 4

PROJECT:	PaciFic Si	JPPL-1				PROJECT NUMBER: 29
WELL# N	w-2_	PRECIP. IN L	AST 5 DAYS:		WIND 🗸	DATE: 6-10-03
STARTING	TIME: 0	712	FINISHING 1	TIME: 683	7	INITIALS: 605
CALCULAT	ION OF PUR	RGE VOLUM	E			G
2" WELL	DEPTH:] - D.T.W.] = H20 COLUMN	X 0.5 ≃ L
4" WELL	DEPTH:	20.00] - D.T.W.	6.75] = H20 COLUMN	: 13.15 X 2.0 = 26.50 O
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS		27 S
-			FIE	LD ME	ASUREMENT	<u>s</u>
TIME	GALLONS REMOVED	рΗ	CONDUCTIVITY	TEMP.		OBSERVATIONS
d713 g	1	6,92	1501	17.7	CLEARTELLO	W-BROWN, ORVANIC ODOR
			51			
0747	14	6.88	1170	18.4	CLOUPYYELLO	W-BROWN, PHEODOR SEDIMENT
0807	27	6.90	881	18.7	SAME	
					- 4/4/2	
		(49)				
SAMPLI	NG;	SAMPLE	ANALYSIS:	TPH. GA	S EPA 8021	
		SAI	MPLE TIME:	6821	. DID WELL G	GO DRY? No
WATER	LEVELS:	NOTES:				
TIME	D.T.W.					
0830	6,93					
						((
<u> </u>						
	- %		T.			
	-	-				
1	I					

WELL SAMPLING SHEET 4

OF 4

PROJECT:	PARIFIC	SUPPLY				PROJECT NUMBER: 29
WELL# V	aw_[PRECIP. IN I	AST 5 DAYS:		WIND /	DATE: 6-10-03
STARTING	TIME: I	100	FINISHING	TIME: (40°	7	INITIALS: <>>5
CALCULAT	ION OF PUR	RGE VOLUM	E			G A
2" WELL	DEPTH:] - D.T.W.] = H20 COLUMN	
4" WELL	DEPTH:	20.00] - D.T.W.	7.31	= H20 COLUMN	l: 12.69 X 2.0 = Z 5.38 O
THEREFO	RE TOTAL	PURGE GA	ALLONS EQUA	LS		25 N S
			FIE	LD ME	ASUREMENT	<u>s</u>
TIME	GALLONS REMOVED	рΗ	UZ CONDUCTIVITY	TEMP,	0	OBSERVATIONS
	= -				***	ON-Clarify Cliffold and Calculate Contracts to
1319	ı	7.01	1413	20,4	CLEAR TELLO	W-BROWN PHOODE SECIMENT
1328	13	6,95	1722	26.0	CLEAR GREY-BL	Ack PHODOR SHEEN, SEDIMENT
66	23 	4				
1344	25	702	1813	19.9	TURBIOGREY-	BLACK, PHEGOOR, SHEEN, SEDIMENT
SAMPLII	NG:	SAMPLE	ANALYSIS:	TPH-GAS	EPA 8021	
		SAN	MPLE TIME:	1354] DID WELL G	GO DRY? No
WATER	LEVELS:	NOTES:				
TIME	D.T.W.					
1254	7.31	1100-	- 1252	· LOCATE	van-l Rei	HOUE ANGILLARIES AND PUMP
1300	7.31					
1407	13.55					101
			**			
		-				
				(g		

APPENDIX B Analytical Laboratory Report

Laboratory Report Project Overview

Laboratory:

Bace Analytical, Windsor, CA

Lab Report Number:

4094

Project Name:

PACIFIC SUPPLY

Work Order Number:

29.016

Control Sheet Number:

NA

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotcti	Run Sub
4094	MW-1	4094-1	W	CS	CATPH-G	SW5030B	06/10/200 3	06/19/200 3	06/19/200 3	06192003	3
1094	MVV-1	4094-1	W	cs	SW8021B	SW5030B	06/10/200 3	06/19/200 3	06/19/200 3	06192003	3
1094	MW-2	4094-2	W	¢\$	CATPH-G	SW5030B	06/10/200 3	06/19/200 3	06/19/200 3	06192003	5
1094	MW-2	4094-2	W	CS	SW8021B	SW5030B	06/10/200 3	06/19/200 3	06/19/200 3	06192003	5
1094	MW-3	4094-3	W	ÇS	CATPH-G	SW5030B	06/05/200 3	06/19/200 3	06/19/200 3	06192003	6
1094	MW-3	4094-3	w	CS	SW8021B	SW5030B	06/05/200 3	06/19/200 3	06/19/200 3	06192003	6
1094	VRW-1	4094-4	W	CS	CATPH-G	SW5030B	06/10/200 3	06/19/200 3	06/19/200 3	06192003	8
1094	VRW-1	4094-4	W	CS	SW8021B	SW5030B	06/10/200 3	06/19/200 3	06/19/200 3	06192003	8
1094	VRW-2	4094-5	W	cs	CATPH-G	SW5030B	06/09/200 3	06/19/200 3	06/19/200 3	06192003	17
4094	VRW-2	4094-5	W	cs	SW8021B	SW5030B	06/09/200	06/19/200 3	06/19/200 3	06192003	17
4094	VRW-3	4094-6	w	cs	CATPH-G	SW5030B	06/09/200 3	06/19/200 3	06/19/200 3	06192003	15
4094	VRW-3	4094-6	w	cs	\$W8021B	SW5030B	06/09/200 3	06/19/200 3	06/19/200 3	06192003	15
4094	VRW-4	4094-7	w	cs	CATPH-G	SW5030B	06/05/200 3	06/19/200 3		06192003	10
4094	VRW-4	4094-7	W	¢s	SW8021B	SW5030B	06/05/200	06/19/200	06/19/200	06192003	10
4094	VRW-5	4094-8	W	cs	CATPH-G	SW5030B	06/09/200 3	06/19/200 3	06/19/200 3	06192003	14
4094	VRW-5	4094-8	w	cs	SW8021B	SW5030B	06/09/200	06/19/200 3	06/19/200	06192003	14
4094	VRW-6	4094-9	W	cs	CATPH-G	SW5030B	06/06/200 3	06/19/200 3		06192003	13
4094	VRW-6	4094-9	W	cs	SW8021B	SW5030B	06/06/200	06/19/200 3		06192003	13
4094	VRW-7	4094-1 0	w	CS	CATPH-G	SW5030B	06/06/200	06/19/200 3	06/19/200 3	06192003	16
4094	VRW-7	4094-10	W	cs	SW8021B	SW5030B	06/06/200	06/19/200		06192003	16
					(*						

Report Summary

Labreport	Sampid	Labsampid	Mtrx	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotctl	Run Sub
							3	3	3		
4094	VRW-8	4094-11	W	CS	CATPH-G	SW5030B	06/06/200	06/19/200	06/19/200	06192003	12
							3	3	3		
4094	VRW-8	4094-11	W	CS	SW8021B	SW5030B	06/06/200	06/19/200	06/19/200	06192003	12
							3	3	3		
4094	VRW-9	4094-12	W	CS	CATPH-G	SW5030B	06/06/200	06/19/200	06/19/200	06192003	18
							3	3	3		
4094	VRW-9	4094-12	W	CS	SW8021B	SW5030B	06/06/200	06/19/200	06/19/200	06192003	18
							3	3	3		
		4094MB	W	LB1	CATPH-G	SW5030B	11	06/19/200	06/19/200	06192003	1
								3	3		
		4094MB	W	LB1	SW8021B	SW5030B	1.1	06/19/200	06/19/200	06192003	1
								3	3		620
		4094MS	W	MS1	CATPH-G	SW5030B	1.1	06/19/200	06/19/200	06192003	21
								3	3		GV.
		4094MS	W	MS1	SW8021B	SW5030B	1.1	06/19/200	06/19/200	06192003	19
								3	3		
		4094SD	W	SD1	CATPH-G	SW5030B	11	06/19/200	06/19/200	06192003	22
							J	3	3		244
		4094SD	W	SD1	SW8021B	SW5030B	1 1	06/19/200	06/19/200	06192003	20
								3	3		

Page: 1

Project Name:

PACIFIC SUPPLY

Project No:

29.016

Analysis:

CA LUFT Method for Gasoline Range Organics

Method:

CATPH-G

Prep Meth: SW5030B

Field ID:

MW-1

Descr/Location:

MW-1 06/10/2003

Sample Date: Sample Time:

0905

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 4094-1

Rec'd Date:

06/11/2003

Prep Date:

06/19/2003 Analysis Date: 06/19/2003

QC Batch:

06192003

Notes:

Analyte	Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline	0.020	0.050 PQL		ND	MG/L	1

Approved by:

Page: 2

Project Name:

PACIFIC SUPPLY

Project No:

29.016

Analysis:

CA LUFT Method for Gasoline Range Organics

Method:

CATPH-G

Prep Meth: SW5030B

Field ID:

MW-2

Descr/Location: Sample Date:

MW-2 06/10/2003

Sample Time:

0821

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 4094-2

Rec'd Date:

06/11/2003 06/19/2003

Prep Date:

Analysis Date: 06/19/2003

QC Batch:

06192003

Notes:

Analyte	Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline	0.020	0.050 PQL		1.6	MG/L	1

Approved by:

Page: 3

Project Name:

PACIFIC SUPPLY

Project No:

29.016

Analysis:

CA LUFT Method for Gasoline Range Organics

Method:

CATPH-G

Prep Meth: SW5030B

Field ID:

MW-3

Descr/Location:

MW-3 06/05/2003

Sample Date: Sample Time:

1456

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 4094-3

Rec'd Date:

Prep Date:

06/19/2003 Analysis Date: 06/19/2003

QC Batch:

06192003

06/11/2003

Notes:

Analyte	Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline	0.020	0.050 PQL		ND	MG/L	1

Approved by:

Page: 4

Project Name: Project No:

PACIFIC SUPPLY

29.016

Analysis:

CA LUFT Method for Gasoline Range Organics

Method:

CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-1

Descr/Location: Sample Date:

VRW-1 06/10/2003

Sample Time: Matrix:

1354

Basis:

Water

Not Filtered

Lab Samp ID: 4094-4

Rec'd Date:

Prep Date:

06/19/2003 Analysis Date: 06/19/2003

QC Batch:

06192003

06/11/2003

Notes:

Analyte	Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline	0.020	0.050 PQL		0.44	MG/L	1

Approved by: Z/SO

Page: 5

Project Name:

Project No:

PACIFIC SUPPLY

29.016

Analysis:

CA LUFT Method for Gasoline Range Organics

Method:

CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-2

Descr/Location: Sample Date:

VRW-2 06/09/2003

Sample Time: Matrix:

1127

Basis:

Water

Not Filtered

Lab Samp ID: 4094-5

Rec'd Date:

Prep Date:

06/11/2003 06/19/2003 Analysis Date: 06/19/2003

QC Batch:

06192003

Notes:

Analyte	Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline	0.040	0.100 PQL		0.47	MG/L	2

Approved by: Zelsto

Lab Report No.: 4094 Date: 07/04/2003

Page: 6

Project Name:

Project No:

PACIFIC SUPPLY

29.016

Analysis: CA LUFT Method for Gasoline Range Organics

Method: CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-3

Descr/Location: Sample Date:

VRW-3 06/09/2003

Sample Time: Matrix:

Water

1014

Basis:

Not Filtered

Lab Samp ID: 4094-6

Rec'd Date:

06/11/2003 06/19/2003

Prep Date:

Analysis Date: 06/19/2003 06192003

QC Batch:

Notes:

Units Analyte **Det Limit** Rep Limit Note Result Pvc Dil Gasoline 0.020 0.050 PQL 0.061 MG/L 1

Approved by: Zulsyly

Page: 7

Lab Report No.: 4094 Date: 07/04/2003

Project Name: PACIFIC SUPPLY Analysis: CA LUFT Method for Gasoline Range Organics

Project No: 29.016 Method: CATPH-G

Prep Meth: SW5030B

Field ID: VRW-4 Lab Samp ID: 4094-7

 Descr/Location:
 VRW-4
 Rec'd Date:
 06/11/2003

 Sample Date:
 06/05/2003
 Prep Date:
 06/19/2003

 Sample Time:
 1416
 Analysis Date:
 06/19/2003

Matrix: Water QC Batch: 06192003
Basis: Not Filtered Notes:

 Analyte
 Det Limit
 Rep Limit
 Note
 Result
 Units
 Pvc Dil

 Gasoline
 0.200
 0.500
 PQL
 2.2
 MG/L
 10

Approved by: 2/5/03 Date: 7/5/03

Page: 8

Project Name: Project No:

PACIFIC SUPPLY

29.016

Analysis:

CA LUFT Method for Gasoline Range Organics

Method:

CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-5

Descr/Location: Sample Date:

VRW-5 06/09/2003

Sample Time:

0958

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 4094-8

06/11/2003 Rec'd Date:

Prep Date:

06/19/2003 Analysis Date: 06/19/2003

QC Batch:

06192003

Notes:

Analyte	Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline	0.200	0.500 PQL		0.93	MG/L	10

Approved by: 248

Page: 9

Project Name: Project No:

PACIFIC SUPPLY

29.016

Analysis:

CA LUFT Method for Gasoline Range Organics

Method: CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-6

Descr/Location: Sample Date:

VRW-6 06/06/2003

Sample Time: Matrix:

0956

Basis:

Water

Not Filtered

Lab Samp ID: 4094-9

Rec'd Date: Prep Date:

06/11/2003 06/19/2003

Analysis Date: 06/19/2003 QC Batch:

06192003

Notes:

Result Units Pvc Dil Analyte **Det Limit** Rep Limit Note 0.050 PQL ND MG/L 1 Gasoline 0.020

Approved by: 2/48

Page: 10

Project Name: Project No:

PACIFIC SUPPLY

29.016

Analysis: Method:

CA LUFT Method for Gasoline Range Organics

CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-7

Descr/Location:

VRW-7

Sample Date: Sample Time: 06/06/2003 0935

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 4094-10

Rec'd Date:

06/11/2003

Prep Date:

06/19/2003 Analysis Date: 06/19/2003

QC Batch:

06192003

Notes:

Analyte	Det Limit	Rep Limit	Note	Result	Units	Pvc Dil
Gasoline	0.020	0.050 PQL		0.36	MG/L	1

Approved by:

Page: 11

Project Name:

PACIFIC SUPPLY

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.016

Method: CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-8

Descr/Location: Sample Date:

VRW-8 06/06/2003

Sample Time:

1124

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 4094-11

Rec'd Date:

06/11/2003 06/19/2003

Prep Date:

Analysis Date: 06/19/2003

QC Batch:

06192003

Notes:

Analyte	Det Limit	Rep Limit	Note	Result	Units-	Pvc Dil
Gasoline	0.200	0.500 PQL		1.8	MG/L	10

Approved by: Date:

Page: 12

Project Name:

PACIFIC SUPPLY

Analysis:

CA LUFT Method for Gasoline Range Organics

Project No:

29.016

Method: CATPH-G

Prep Meth: SW5030B

Field ID:

VRW-9

Descr/Location: VRW-9

Sample Date:

06/06/2003

Sample Time:

0831

Matrix: Basis:

Analyte

Water

Not Filtered

Lab Samp ID: 4094-12

Rec'd Date:

06/11/2003

Note

Prep Date:

06/19/2003

QC Batch:

Analysis Date: 06/19/2003 06192003

Rep Limit

Notes:

Result

Units

Pvc Dil

Gasoline 0.020 0.050 PQL MG/L 0.58 1

Det Limit

Approved by:

Page: 13

Project Name: PACIFIC SUPPLY Halogenated and Aromatic Volatiles by GC using Analysis:

Project No: 29.016 Method: SW8021B Prep Meth: SW5030B

Field ID: MW-1 Lab Samp ID: 4094-1

Descr/Location: MW-1 Rec'd Date: 06/11/2003 Sample Date: 06/10/2003 Prep Date: 06/19/2003 Sample Time: 0905 Analysis Date: 06/19/2003

Matrix: QC Batch: Water 06192003

Basis: Not Filtered Notes:

Analyte	Det Limit	Rep Limit	t	Note	Result	Units	Pvc Dil
Benzene	0.13	0.50	PQL		ND	UG/L	1
Ethylbenzene	0.11	0.50	PQL		ND	UG/L	1
Toluene	0.12	0.50	PQL		ND	UG/L	1
Xylenes	0.26	0.50	PQL		ND	UG/L	1
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:					

102% Trifluorotoluene 75-125 SMSA

Approved by:

Lab Report No.: 4094 Date: 07/04/2003

Page: 14

Project Name:

PACIFIC SUPPLY

Project No:

29.016

Analysis:

Halogenated and Aromatic Volatiles by GC using

Method: SW8021B

Prep Meth: SW5030B

Field ID:

MW-2

Descr/Location:

MW-2

Lab Samp ID: 4094-2

Sample Date:

06/10/2003

Rec'd Date:

06/11/2003

Sample Time:

0821

Prep Date:

QC Batch:

06/19/2003

Analysis Date: 06/19/2003

06192003

Matrix: Basis:

Water Not Filtered

Notes:

Rep Limit Note Units Pvc Dil Analyte **Det Limit** Result UG/L 52 0.50 1 Benzene 0.13 PQL 23 UG/L 0.11 0.50 **PQL** 1 Ethylbenzene UG/L Toluene 0.12 0.50 **PQL** 32 1 UG/L **Xylenes** 0.26 0.50 **PQL** 9.1 1

SURROGATE AND INTERNAL STANDARD RECOVERIES:

Trifluorotoluene

SMSA 75-125

117%

Lab Report No.: 4094 Date: 07/04/2003

Halogenated and Aromatic Volatiles by GC using

Page: 15

Project Name: Project No:

PACIFIC SUPPLY

29.016

Analysis:

Method: SW8021B

Prep Meth: SW5030B

Field ID:

MW-3

Lab Samp ID: 4094-3

Rec'd Date:

06/11/2003

Descr/Location: MW-3 Sample Date:

06/05/2003

Prep Date:

06/19/2003

Sample Time:

1456

Analysis Date: 06/19/2003

Matrix:

Water

QC Batch:

06192003

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	0.13	0.50	PQL		ND	UG/L	1
Ethylbenzene	0.11	0.50	PQL		ND	UG/L	1
Toluene	0.12	0.50	PQL		ND	UG/L	1
Xylenes	0.26	0.50	PQL		ND	UG/L	1
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:					
Trifluorotoluene		75-125	SMSA		102%		1

Approved by:

Lab Report No.: 4094 Date: 07/04/2003

Page: 16

Project Name:

PACIFIC SUPPLY

Project No:

29.016

Analysis:

Halogenated and Aromatic Volatiles by GC using

Method:

SW8021B

Prep Meth: SW5030B

Field ID:

VRW-1

Descr/Location:

VRW-1

Sample Date: Sample Time: 06/10/2003 1354

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 4094-4

Rec'd Date:

06/11/2003

Prep Date:

06/19/2003 Analysis Date: 06/19/2003

QC Batch:

06192003

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	0.13	0.50	PQL		5.9	UG/L	1	
Ethylbenzene	0.11	0.50	PQL		ND	UG/L	1	
Toluene	0.12	0.50	PQL		ND	UG/L	1	
Xylenes	0.26	0.50	PQL		1.9	UG/L	1	
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:						
Trifluorotoluene		75-125	SMSA	·	105%			1

Page: 17

Lab Report No.: 4094 Date: 07/04/2003

Trifluorotoluene

Project Name: PACIFIC SUPPLY Analysis: Halogenated and Aromatic Volatiles by GC using

Project No: Method: SW8021B 29.016

Prep Meth: SW5030B

Field ID: VRW-2 Lab Samp ID: 4094-5

Descr/Location: Rec'd Date: VRW-2 06/11/2003 Sample Date: 06/09/2003 Prep Date: 06/19/2003 Sample Time: 1127 Analysis Date: 06/19/2003

Matrix: QC Batch: 06192003 Water Basis: Not Filtered Notes:

Note Units Pvc Dil Analyte **Det Limit** Rep Limit Result UG/L 38. 2 Benzene 0.26 1.0 PQL UG/L 2 **PQL** ND Ethylbenzene 0.22 1.0 Toluene 0.20 1.0 PQL 28 UG/L 2 **Xylenes** 1.0 PQL ND UG/L 2 0.50 SURROGATE AND INTERNAL STANDARD RECOVERIES: 91% 75-125 **SMSA**

Approved by:

Lab Report No.: 4094 Date: 07/04/2003

Page: 18

Project Name:

PACIFIC SUPPLY

Project No:

29.016

Analysis:

Halogenated and Aromatic Volatiles by GC using

Method:

SW8021B

Prep Meth: SW5030B

Field ID:

VRW-3

Descr/Location:

VRW-3 06/09/2003

Sample Date: Sample Time:

1014

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 4094-6

Rec'd Date:

Prep Date:

06/11/2003 06/19/2003

Analysis Date: 06/19/2003

QC Batch:

06192003

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	0.13	0.50	PQL		4.8	UG/L	1
Ethylbenzene	0.11	0.50	PQL		ND	UG/L	1
Toluene	0.12	0.50	PQL		ND	UG/L	1
Xylenes	0.26	0.50	PQL		ND	UG/L	1
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:		e			
Trifluorotoluene		75-125	SMSA	\	105%		

Approved by: 2/3/3

Page: 19

Project Name:

Project No:

PACIFIC SUPPLY

29.016

Analysis:

Method:

Halogenated and Aromatic Volatiles by GC using

SW8021B

Prep Meth: SW5030B

Field ID:

VRW-4

Descr/Location:

VRW-4 06/05/2003

Sample Date: Sample Time:

1416

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 4094-7

Rec'd Date: Prep Date:

06/11/2003 06/19/2003

QC Batch:

Analysis Date: 06/19/2003 06192003

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Benzene	1.3	5.0	PQL		1200.	UG/L	10	
Ethylbenzene	1.1	5.0	PQL		12	UG/L	10	
Toluene	1.0	5.0	PQL		100.	UG/L	10	
Xylenes	2.5	5.0	PQL		89.	UG/L	10	
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:						
Trifluorotoluene		75-125	SMSA		120%			. 1

Approved by: 11/4/8

Lab Report No.: 4094 Date: 07/04/2003

Page: 20

Project Name:

PACIFIC SUPPLY

Project No:

29.016

Analysis:

Halogenated and Aromatic Volatiles by GC using

Method:

SW8021B

Prep Meth: SW5030B

Field ID:

VRW-5

Lab Samp ID: 4094-8

Descr/Location:

VRW-5

Rec'd Date:

06/11/2003

Sample Date:

06/09/2003 0958

Prep Date:

06/19/2003

Sample Time: Matrix:

Water

Analysis Date: 06/19/2003 QC Batch:

SMSA

06192003

Basis:

Not Filtered

Notes:

Pvc Dil Units **Det Limit** Note Result Analyte Rep Limit 90. UG/L 2 0.26 1.0 PQL Benzene PQL ND UG/L 2 Ethylbenzene 0.22 1.0 2 UG/L 14. Toluene 0.20 1.0 PQL 2 16 UG/L **Xylenes** 0.50 1.0 PQL

SURROGATE AND INTERNAL STANDARD RECOVERIES: 75-125

Trifluorotoluene

105%

Approved by: 2/40 Date: 7/5/03

Page: 21

Project Name:

PACIFIC SUPPLY

Project No:

29.016

Analysis:

Halogenated and Aromatic Volatiles by GC using

Method:

SW8021B

Prep Meth: SW5030B

Field ID:

VRW-6

VRW-6

Descr/Location: Sample Date: Sample Time:

06/06/2003 0956

Not Filtered

Matrix: Basis:

Water

Lab Samp ID: 4094-9

Rec'd Date:

06/11/2003

Prep Date:

06/19/2003 Analysis Date: 06/19/2003

QC Batch: Notes:

06192003

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	0.13	0.50	PQL		ND	UG/L	1
Ethylbenzene	0.11	0.50	PQL		ND	UG/L	1
Toluene	0.12	0.50	PQL		ND	UG/L	1
Xylenes	0.26	0.50	PQL		ND	UG/L	1
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:		•			

95% 75-125 SMSA Trifluorotoluene

Approved by: 2/28

Date: _

Page: 22

Project Name:

PACIFIC SUPPLY

Project No:

29.016

Analysis:

Halogenated and Aromatic Volatiles by GC using

Method:

SW8021B

Prep Meth: SW5030B

Field ID:

VRW-7

Descr/Location:

VRW-7 06/06/2003

Not Filtered

Sample Date: Sample Time:

0935

Matrix: Basis:

Water

Lab Samp ID: 4094-10

Rec'd Date: Prep Date:

06/11/2003

06/19/2003

Analysis Date: 06/19/2003

QC Batch:

06192003

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	0.13	0.50	PQL		19.	UG/L	1
Ethylbenzene	0.11	0.50	PQL		ND	UG/L	1
Toluene	0.12	0.50	PQL		1.3	UG/L	1
Xylenes	0.26	0.50	PQL		22	UG/L	1
SURROGATE AND INTERNAL STANDA Trifluorotoluene	ARD RECOV	ERIES: 75-125	SMSA		94%		

Approved by: 2/13

Lab Report No.: 4094 Date: 07/04/2003

Page: 23

Project Name:

PACIFIC SUPPLY

Project No:

29.016

Analysis:

Halogenated and Aromatic Volatiles by GC using

Method:

SW8021B

Prep Meth: SW5030B

Field ID:

VRW-8

Descr/Location: Sample Date:

VRW-8 06/06/2003

Sample Time:

1124

Matrix: Basis:

Water

Not Filtered

Lab Samp ID: 4094-11

Rec'd Date:

Prep Date:

06/11/2003 06/19/2003

Analysis Date: 06/19/2003 QC Batch:

06192003

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	1.3	5.0	PQL		70.	UG/L	10
Ethylbenzene	1.1	5.0	PQL		11.	UG/L	10
Toluene	1.0	5.0	PQL		10.	UG/L	10
Xylenes	2.5	5.0	PQL		61	UG/L	10
SURROGATE AND INTERNAL STAND	ARD RECOV	ERIES:		M			
Trifluorotoluene		75-125	SMSA	\	95%		

Approved by: 2418

Lab Report No.: 4094 Date: 07/04/2003

Page: 24

Project Name:

PACIFIC SUPPLY

Project No:

29.016

Analysis:

Halogenated and Aromatic Volatiles by GC using

Method:

SW8021B

Prep Meth: SW5030B

Field ID:

VRW-9

Descr/Location: Sample Date:

VRW-9 06/06/2003

Sample Time:

0831

Matrix: Basis:

Water Not Filtered Lab Samp ID: 4094-12

Rec'd Date:

06/11/2003 06/19/2003

Prep Date: Analysis Date: 06/19/2003 QC Batch:

06192003

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	0.13	0.50	PQL		10.	UG/L	1
Ethylbenzene	0.11	0.50	PQL		ND	UG/L	1
Toluene	0.12	0.50	PQL		4.4	UG/L	1
Xylenes	0.26	0.50	PQL	23	4.9	UG/L	1
SURROGATE AND INTERNAL	STANDARD RECOV	ERIES:					
Trifluorotoluene		75-125	SMSA	\	120%		

Approved by: 2/49

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4094 Date: 07/04/2003

Page: 25

QC Batch:

06192003

Analysis:

CA LUFT Method for Gasoline Range

Matrix:

Water

Method:

CATPH-G

Lab Samp ID: 4094MB Analysis Date: 06/19/2003

Prep Meth: SW5030B Prep Date: 06/19/2003

Basis:

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil	
Gasoline	0.020	0.050	PQL		ND	MG/L	1	

QA/QC Report Method Blank Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4094 Date: 07/04/2003

Page: 26

QC Batch:

06192003

Analysis:

Halogenated and Aromatic Volatiles by GC

Matrix:

Water

Method:

SW8021B

Lab Samp ID: 4094MB

Prep Meth: SW5030B

Analysis Date: 06/19/2003

Prep Date: 06/19/2003

Not Filtered

Notes:

Analyte	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Benzene	0.13	0.50	PQL		ND	UG/L	1
Ethylbenzene	0.11	0.50	PQL		ND	UG/L	1
Toluene	0.10	0.50	PQL		ND	UG/L	1
Xylenes	0.25	0.50	PQL		ND_	UG/L	1

Trifluorotoluene 75-125 SMSA

99%

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

Bace Analytical, Windsor, CA

Lab Report No.: 4094 Date: 07/04/2003

Page: 27

QC Batch:

06192003

Matrix:

Basis:

Water

Lab Samp ID: 4094MS

Not Filtered

Project Name: PACIFIC SUPPLY

Project No.: Field ID:

29.016 MW-1

4094-1

Lab Ref ID:

ıs	Units	2.000	ecover DMS I	0.00		Accept Crite ec	
)2	MG/L	114	102	11	130-70	MSA	20MSP
		400			405.75	MOA	201400

Method	1.10	100 mm - 100			Result		7.00	ecover	177		Criter	
TATE OF THE PARTY.	MS	DMS	Result	MS	DMS	Units	MS	DMS F	RPD	% R	ec	RPD
CATPH-G	1.00	1.00	ND	1.14	1.02	MG/L	114	102	11	130-70	MSA	20MSP
SW8021B	40.0	40.0	ND	41.9	37.9	UG/L	105	94.8	10	125-75	MSA	20MSP
SW8021B	40.0	40.0	ND	40.6	36.6	UG/L	102	91.5	11	125-75	MSA	20MSP
	40.0	40.0	ND	35.5	36.6	UG/L	88.8	91.5	3.0	125-75	MSA	20MSP
SW8021B	120.	120.	ND	122.	118.	UG/L	102	98.3	3.7	125-75	MSA	20MSP
SW8021B	100.	100.	102.	98.	93.	PERCENT	98.0	93.0	5.2	125-75	SMSA	20 SMSP
	SW8021B SW8021B SW8021B SW8021B	CATPH-G 1.00 SW8021B 40.0 SW8021B 40.0 SW8021B 40.0 SW8021B 120.	CATPH-G 1.00 1.00 SW8021B 40.0 40.0 SW8021B 40.0 40.0 SW8021B 40.0 40.0 SW8021B 120. 120.	CATPH-G 1.00 1.00 ND SW8021B 40.0 40.0 ND SW8021B 40.0 40.0 ND SW8021B 40.0 40.0 ND SW8021B 120. 120. ND	CATPH-G 1.00 1.00 ND 1.14 SW8021B 40.0 40.0 ND 41.9 SW8021B 40.0 40.0 ND 40.6 SW8021B 40.0 40.0 ND 35.5 SW8021B 120. 120. ND 122.	CATPH-G 1.00 1.00 ND 1.14 1.02 SW8021B 40.0 40.0 ND 41.9 37.9 SW8021B 40.0 40.0 ND 40.6 36.6 SW8021B 40.0 40.0 ND 35.5 36.6 SW8021B 120. 120. ND 122. 118.	CATPH-G 1.00 1.00 ND 1.14 1.02 MG/L SW8021B 40.0 40.0 ND 41.9 37.9 UG/L SW8021B 40.0 40.0 ND 40.6 36.6 UG/L SW8021B 40.0 40.0 ND 35.5 36.6 UG/L SW8021B 120. 120. ND 122. 118. UG/L	CATPH-G 1.00 1.00 ND 1.14 1.02 MG/L 114 SW8021B 40.0 40.0 ND 41.9 37.9 UG/L 105 SW8021B 40.0 40.0 ND 40.6 36.6 UG/L 102 SW8021B 40.0 40.0 ND 35.5 36.6 UG/L 88.8 SW8021B 120. 120. ND 122. 118. UG/L 102	CATPH-G 1.00 1.00 ND 1.14 1.02 MG/L 114 102 SW8021B 40.0 40.0 ND 41.9 37.9 UG/L 105 94.8 SW8021B 40.0 40.0 ND 40.6 36.6 UG/L 102 91.5 SW8021B 40.0 40.0 ND 35.5 36.6 UG/L 88.8 91.5 SW8021B 120. 120. ND 122. 118. UG/L 102 98.3	CATPH-G 1.00 1.00 ND 1.14 1.02 MG/L 114 102 11 SW8021B 40.0 40.0 ND 41.9 37.9 UG/L 105 94.8 10 SW8021B 40.0 40.0 ND 40.6 36.6 UG/L 102 91.5 11 SW8021B 40.0 40.0 ND 35.5 36.6 UG/L 88.8 91.5 3.0 SW8021B 120. 120. ND 122. 118. UG/L 102 98.3 3.7	CATPH-G 1.00 1.00 ND 1.14 1.02 MG/L 114 102 11 130-70 SW8021B 40.0 40.0 ND 41.9 37.9 UG/L 105 94.8 10 125-75 SW8021B 40.0 40.0 ND 40.6 36.6 UG/L 102 91.5 11 125-75 SW8021B 40.0 40.0 ND 35.5 36.6 UG/L 88.8 91.5 3.0 125-75 SW8021B 120. 120. ND 122. 118. UG/L 102 98.3 3.7 125-75	CATPH-G 1.00 1.00 ND 1.14 1.02 MG/L 114 102 11 130-70 MSA SW8021B 40.0 40.0 ND 41.9 37.9 UG/L 105 94.8 10 125-75 MSA SW8021B 40.0 40.0 ND 40.6 36.6 UG/L 102 91.5 11 125-75 MSA SW8021B 40.0 40.0 ND 35.5 36.6 UG/L 88.8 91.5 3.0 125-75 MSA SW8021B 120. 120. ND 122. 118. UG/L 102 98.3 3.7 125-75 MSA

Chain-of Custody Form

Project #	Project Name							Ana	lysis					
29.016	PACIFICSUPPLY													c.o.c, No. 10486
L.P. No.	Sampler's Signature Acus Acott	- E		No. of Con-	TRICAS	(170g) X								Remarks:
Date	Sample I.D.	Time (24 Hour)	Sample Type	tainers	tz	BTEX								
Sampled	, /			3	$\overline{\nabla}$	V	-+	\vdash		\neg		\neg	\neg	4094-1
6-10-03		0905	WATER	-	\Diamond									-2
6-10-03	MW- 2				\bigcirc	$\langle \cdot \rangle$		1	Н		_			-3 /
6-5-03	1	1456			\otimes	\Leftrightarrow		-		_				-4
6-10-03	le.	1354		\vdash	\otimes	1		+		-	_		_	-5
	12w-2	1127		\vdash	₩	₩		+		_	_			6 /
6-9-03	Vew-3 .	1014		Н-	K	K		+		-	_			
6.5-03	VRW-4	1416		Ц_	X	X		-		ш	_			-7 -
	Vew-5	0958		1	X	X		-						-8 -
	vew-6	6956			X	\mathbb{X}		_						
	Vew-7	0935			X	$1\times$								-10
	Vaw-8	1124			X	$\mathbb{I}X$								-11 /
	vaw-9	0831	4	1	X	$1\times$								-12
3000	VILW													
					Т	1								
					T									
					1									
		-	 		1				T					
		-	<u> </u>	1	+	+		+						· .
			-	-	\vdash	+		1						
Laboratory			1		Pres	servati	on: A - HCL: B -	H2SO4	1 C-1	NaOH	. D-	HNO3	<u> E - Ice:</u> F	- (specify)
Laborator	BAFS//										_			r
Relinquished (signed)	by Chic Scott	6/10/03	e/Time /62 6	Received (signed)	byl ·				Rema		RP.	TAT	-	Brunsing Associates, Inc.
Relinquished	by		e/Time	Received (signed)		lea	AN		+					P.O. Box 588 5803 Skylane Blvd.
(signed) Relinquished	hv	, Date	e/Time _	Received)	ATT		- (J)			Windsor, CA 95492
(signed)	uy.	6/11/03	e/Time	(signed)		_		,	Mie	Heru	€FL.	б у б-Е	RECERICIC	(707) 838-3027 (707) 838-4420 fax

APPENDIX C Historical Boring Logs

BRUNSING ASSOCIATES Consulting Engineers

Project Name	PACIFIC SUPPLY	

Project No. 029

Surface Elevation 9.11 feet Driller ASE Date 9/13/88

끂	SOIL DESCRIPTION	/390	U.S.C.S Soil Type	SF	th th		SA	MPLE			LOV	V IT	ery hes	Piezometer
Depth	AND REMARKS	Lithology	U.S. Soil 7	qu TSF	Contact Depth	No.	Type	Inte	_	0	6	12	Recovery In Inches	ozəi,
_			-	_	Ĭ		-	From	То	6	12	18	정근	
	asphali first 3 inches base aggregale	000												
		000				1	SS	3.0	4.5			_	18	_
	green loose silty sand with abundant quartz grains; moist; marsh gas odor?	000					- 00	0.0	4.0					
5		000	SW			2	SS SS	5,0 6.5	6.5 8.0	1	1	1	12 18	
	green soft day; very plastic; moist; strong SO4 odor		CL		6.0	3	55	0.5	0.0	-	-		10	
	black soft sifty clay; very moist to wet, very abundant grass, etc.		CL		7.5									
10	green, soft clay; very plastic, very moist abundant		CL		8.5	4	SS	10.0	11,5	2	3	1	18	
	grass, clams, etc.													
	0					-		_						
15				4										
15	brown-black; very soft, very plastic clay; very moist; abundant grass, roots, clamshells, etc. strong SO4 odor.				15.0	5	SS	15.0	16.5	2	3	3	18	
	strong SO4 odor.				4	7								
									-			_	-	
20	Bottom of Boring at 20 feet	11111111												
	Solion of Boiling at 20 1001													
25														
~									_					
										_				
30														
							-							-
35						-	-	-	_	-	-	-	\dashv	
	,													
	~										-	-		_
	-													
							-							

Field Log of Boring No.	MW-1	Ву:	G. Eiche	Page	_1_	of	_1_	_

BRUNSING ASSOCIATES Consulting Engineers

Project Name	PACIFIC SUPPLY	

			Project No.	029	
					* 22
Boring Location	MW-2	1735 24th Street, Oakla	and		

Surface Elevation 8.14 feet Driller **ASE** Date <u>9/13/88</u> **BLOW** U.S.C.S Soil Type **SAMPLE** Lithology qu TSF Depth Contact Depth COUNT SOIL DESCRIPTION Type AND REMARKS ŝ Interval 0 From To 6 asphalt first 3 inches 000 0000 green loose silty sand; predominantly quartz, well-rounded, well-sorted grains. Heavy "marsh gas" odor 0000 0000 SW SS 3,0 4,5 2 3 2 14 0000 0000 5 000 2 SS 5.0 6.5 2 18 light green, very pastic solt clay; abundant roots and miscellaneous organic material; very strong SO4 odor CL 6.0 3 SS 6,5 6.0 18 black soft silty day; very plastic; very wet abundant CL 7.5 55 8.0 9.5 3 3 4 debris: glass fragments, roots, etc.; v. strong SO4 10 green very plastic soft clay; wet; abundant clamshells, grasses, roots, etc. very strong SO4 odor 9.5 CL to 13.5 SS 5 13,5 15.0 18 15 brown very plastic soft clay; very moist; very abundant grassy material; strong SO4 odor CL. 18.5 6 SS 18.5 20.0 1 1 1 18 20 Bottom of Boring at 20 feet 25 30 35

Field Log of Boring No. MW-2 By: G. Eiche P	Page	1	of	_1	
---	------	---	----	----	--

Project Name	PACIFIC SUPPLY
Project No.	029

Boring Location	MW-3	1735 24th Street,	Oakland

Surface Elevation 9.49 feet Driller ASE Date 9/13/88

Ŧ.	CON DESCRIPTION		SOIL DESCRIPTION)gy	C.S lype	qu TSF	th to			MPLE			LOV	V T	ery hes	Piezometer
Depth	AND REMARKS	Lithology	Lithology U.S.C.S Soil Type		Contact Depth	No.	Type	Inter From	rval To	0 6	6 12	12 18	Recovery In Inches	Piezo		
	asphalt first 3 inches	0000														
	green, loose sand; moist; some organic material (i.e.	0000	sw			1	SS	3,0	4.5				12			
5	predominantly quartz, well-rounded grains black, soft slity clay; very moist; strong hydrocarbon odor; extreme abundant grasses, leaves, etc Major fraction = organic debrls. No hydrocarbon odor detected at greater than 9.0	0000	CL			2	SS	6.5 8.0	8.0 9.5				18	y		
10	No hydrocarbon odor detected at greater than 9.0 led				300			9.5	11.0				18			
"	·			:		4	SS	14.5	16.0				18			
15	green soft, very plastic clay; very moist; abundant clam shells, grasses, roots.		CL		14.5											
20	Bottom of Boring at 20 feet															
25																
30																
30																
35																

Field Log of Boring No.	MW-3	By: G. Eiche	Page	of	1

Project Name	PACIFIC SUPPLY	_
		_

Boring Location	MW-4	1735 24th Street, Oakland	

Project No.

029

Surface Elevation 9.30 feet Driller ASE Date 9/14/88

-		λ 36	S.S.	H	t 4		SA	MPLE			LOV		ery tes	neter		
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	ithology U.S.C.S Soil Type		U.S.C.S Soil Typ qu TSF		qu TSF Contact Depth		Туре	Interval From To		0	6 12	12 18	Recovery In Inches	Piezometer
								riont	10	0	12	10				
	3" asphalt cover															
5	green, line to medium grained, well-sorted sand; moist; abundant quartz; well-rounded; green color the result of chlorite? NO ODOR	0000	sw			1	SS	4,0	5,5	1	1	2	12			
	dark brown/black silty sandy clay; wet; very abundant organic debris (i.e. peachpit?, leaves, grass, etc.). NO ODOR		CL			2	SS	7.0	8.5	2	1	1	4			
10	dark brown/black extremely organic silt? (resembles spahnum moss, i.e. marsh deposit?). no odor wet		Pł			3	SS	9,5	11.0	1	2	1	4			
15	light green, soft clay; very plastic, wet; abundant organic debris - clam shells, grass, etc. SO4 odor.		CL			4	SS	14.5	16.0	1	3	2	18			
20						5	SS	19.5	21.0				18			
20	black soft clay; very plastic; wet, abundant grass. SO4 odor.		CL									F				
25	Bottom of Boring at 21.0 feet															
30																
35														13		

Field Log of Boring No.	MW-4	Ву:	Greg Eig	che	 . <u> </u>	Pag	e _	1	_ of	-	1	

Project Name	PACIFIC SUPPLY	

Project No. 029

Boring Location	MW-5	1735 24th Street, Oakland	
-			

Surface Elevation 9.31 feet Driller ASE Date 9/14/88

th th	SOIL DESCRIPTION	ogy C.S. Fype sct th		SAMPLE				C	LOV	V IT	ery hes	Piezometer		
Depth	AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No	Type	Inte From	rval To	6	6 12	12 18	Recovery In Inches	Piezo
	3" asphalt cover													
5	highly variable ਜ਼ਿੱਹ and base aggregate: sand, gravel, clay some organic debris					1	SS	4.0	5.5	_	_ 1	3	12	
	dark brown/black silt with very abundant organic material; wood, clamshells, grass; very wet; no odor		CL			2	\$\$ \$\$	6.5 8.0	8.0 9.5	1	1	1	12	
10	maieriar; wood, clamsnells, grass; very wei; no odor													
15	hlack-aray clay- very plactic, very wet					4	SS	14.5	16.0	1	1	1	18	
	black-gray clay; very plastic, very wet abundant organic debris (grass, shells, etc.)		CL		5.									
20	as above					5	SS	19.5	21				18	
20	Bottom of boring at 21 feet	11111111	CL											=
25	100													
30														
		- 4												
35														
						\dashv								
												-		

Field Log of Boring No.	MW-5	Ву:	G. Eiche	Page		1
-------------------------	------	-----	----------	------	--	---

Boring Location

BRUNSING ASSOCIATES, INC.

MW-6; Yellow Cab Co. Driveway, Willow Street

Project Name

PACIFIC SUPPLY COMPANY

1735 24TH STREET, OAKLAND, CALIFORNIA

Project No.

029.2

Surfac	e Elevation 6.13 feet D	riller —	Aqua Scl	ence En	gineers		Date	eD	ecembe	r 19, 1	989			
£	SOIL DESCRIPTION	y8y	C.S	SF	th th		SA	AMPLE	8		BLON	٧	ery	neter
Depth	AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Type	Inte	rval	6	6	12	Recovery In Inches	Piezometer
5.0	Asphalt Black/green/brown/grey mottled soft clayey sand and sandy clay; abundant brick, glass, and organic debris; moist; oily odor As above, but saturated with abundant water and oily substance; heavy hydrocarbon or solvent odor. Black clayey slurry; very abundant oily substance; heavy has or solvent odor; abundant debris		SC SC	< 0.5 < 0.5		1 2 3	SS SS	2.0	3.5	2 2	2	2 2	8	
10.0	Grey/green soft clayey silt; trace organic material; Hydrogen sulfide odor		ML	< 0.5		4	SS	10.0	11.5	2	3	3	18	
15.0	Grey/green/orpwm spft c;aueu so;t abundant mollusc fragments; hydrogen sulfide odor		ML	< 0.5		5	SS	15.0	16.5	1	1	1	18	
20.0	Sampled collected for chemical analysis MW-6/3.5 ft. MW-6/5.0 ft. MW-6/5.5 ft.													

Greg Eiche

Page

1_

MW-6

Field Log of Boring No.

By:

BRUNSING ASSOCIATES, INC. Project Name

MW-7

Field Log of Boring No.

PACIFIC SUPPLY COMPANY

1735 24TH STREET, OAKLAND, CALIFORNIA

Project No.

029.2

Page

1 of

Boring	Location	MW-7: C & L Truck	cing.	Inc. D	rivewa	y. 24ti	Stree	<u>t</u>								
Surface	e Elevation	5.03 feet	Dril	ller _	Aqua Scie	nce Eng	glneers	_	Date	De	cember	19, 1	989			
츂	SO	IL DESCRIPTION		ogy	U.S.C.S Soil Type	SF	act th			MPLE			SLOV OUN	1T ^	ery hes	Piezometer
Depth		AND REMARKS		Lithology	U.S. Soil	qu TSF	Contact Depth	No.	No. Type		rval To	6	6 12	12 18	Recovery In Inches	Piezo
	fingered with the organic clayey	dense quartz-rich sand inter- hin veins of black, highly material; moist; no odor			sc	*****		1	SS	2.0	3.5	7	7	6	12	
5.0	Black/grey mo abundant gras odor; wet	ttled soft clay; highly organic; ses and roots; hydrogen sulfide			CL	< 0.5		2	SS	4.5	6.0	2	2	2	18	
10.0	Grey/green sof grasses and ro	t clayey silt; some organic matt ots; wet	er;		ML	< 0.5	240	3	SS	10.0	11.5	2	5	7	18	
15.0	matter (grasses	clayey silt; some organic s and roots); trace of moist; hydrogen sulfide			ML	3.0		4	SS	15.0	16.5	7	7	8	18	
20,0	Tan/brown still mottled white/grodor	silty clay; no organic material; reen/lan zones; moist; no			CL	3.5		5	SS	18.0	19.5	5.	7	9	18	
	Sampled coll MW-7/3.5 ft MW-7/5.5 ft MW-7/11.5 MW-7/16.5	ected for chemical analysis														

Grea Eiche

Ву:

BRUNSING ASSOCIATES, INC.

Project Name

Pacific Supply Company

D	the same	B.T.	
Pro	CCT.	INO.	9
4 100	-	* ***	۰

65' northing and 185' westing of the north and east property lines

29.6

Page

	Location (65' northing and 185' ~10 feet	westing			rth and		Date		y iine					
		4	kS,	S.S.	H.	t.e		SA	MPLE			BLC			Recovery In Inches
Depth		DESCRIPTION OF THE REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Туре	Inter		0	$\overline{}$	_	18	lecov n Inc
ы			1	Ϋ́	.0		4	F.	From	То	6	12	18	24	154 144
0.0.	Asphalt surfa	ace cover				σ									
0'6"	Base rock	.3									_	\vdash	_	\vdash	
1'0"	Medium stif	f green clay, moist, pleum odor		CL	·2	1'	1	SS	1'0"	1'9"	6	6	6	-	9
	ong.s. pour					2					F				
1000000		Si in state						CC	2'6"	3'6"	4	5	7	-	12
2'6"	slight petro	f green clay, moist, pleum odor					2	SS	26	36	Ė	Ť			
		ec				3									
							-	-			\vdash				
4'0"	Medium stif	f green clay, moist,				4		F			F	\vdash			
		oleum odor		1		1	3	SS	4'6"	5'0"	5	16	14	-	16
5'0"	Very stiff bla slight petr	ack clay, moist, oleum odor				5	E	1			F	F	F	F	
5'6"	Loose greer	silty sand, moist,	00000	SM			4	SS	5'6"	66"	5	4	5	-	12
	slight pet	roleum odor	0000			6	E	t			F	=	F	F	
			0000								F	1		F	
7'0"	Loose green	silty sand, wet,	0000			7	\vdash	+			\pm	t	t	İ	二
	slight pet	roleum odor	0000				F	\vdash		-	+	+	+	+	
	2		0000			-8	5	55	8'0"	8'6"	2	2	2	-	2
8'4"	Soft black a	and green mottled clay,	blololo	CL		8'3"	É	Ŧ				F	E	F	
8'6"	saturated Bottom of	, strong petroleum odor				,	F	F			1	+	+	+	
	Note:	A					E	F	-	-	+	+	+	+	+
	Converted i	into action Well VEW-1												L	

Teff Stivers

VEW-1

Field Log of Boring No.

Project Name	Pacific Supply Company
R	1735 24th Street, Oakland, Ca
Project No.	029.9

Boring Location	21' North and 13' We	st of NW corner of dri	veway		
· ·				-	
Surface Elevation	5 feet MSL (approx.) Driller	Precision Sampling	Date	3-5-93	

4	SOIL DESCRIPTION SYNTHER SOUR TSF GO THE SOURCE STORY TSF GO TO SEE STORY TSF GO THE SE STORY TSF GO THE S				t s			MPLE		B C	LOV	T.	& ~ Recovery In Inches	Piezometer
Depth	AND REMARKS	Lithology	U.S. Soil 7	qu TSF	Contact Depth	No.	Туре	Inter From		0	6 12	12 18	Recor In Inc	Piezo
0,	Asphalt													
9"	Soft grey fine sand with gravel. Dry.		SP		1									
2'	Grades to medium stiff grey silty clay. Dry.		CL		2	1	CR	2.5	3.0					
3' 3.5'	Very soft black organic clay. Moist to wet. No Recovery		OH		5									
7	Note: Boring continuously cored with a driven double wall sampler				8									

Field Log of Boring No.	B-1	By:	Joel Bruxvoort	Page	_1	of <u>1</u>	
0 0	·	0.000					

Note: Boring continuously cored with a driven double wall sampler

Project Name	Pacific Supply Company 1735 24th Street, Oakland, Ca
Project No.	029.9

1/	Brunsing Associates, i	iic.		110,										_
Boring Location 21.5' North and 42.5' East of NW corner of driveway														
Surface Elevation 5 feet MSL (approx.) Driller Precision Sampling Date 3-5-93														
45	SOIL DESCRIPTION	/‰	C.S 「ype	SF	th ct		SA	MPLE			LOW	T	very	Piezometer
Depth	AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Type	Inter From	rval To	0 6	6 12	12 18	Recovery In Inches	Piezo
O,	Asphalt										=			
9"	Soft to medium stiff grey silty clay with some gravel. Dry.		CL		1									
2'	Very soft black organic clay. Moist.		ОН		2									
3'	No Recovery				3									
		$ \rangle \rangle$			5									
5.5'	Soft grey clay. Moist.		CL					- 10	-			Ε		
					6	1	CR	6.0	6.5	-				
7	Bottom of Boring	7///			7						E	E		
							-							
					8	F	F							
						F	F		-		F	F		
			1		9									

Field Log of Boring No. B-2 By: Joel Bruxvoort	Page	_1	of.	1
--	------	----	-----	---

Field Log of Boring No.

B-3

Project Name	Pacific Supply Company
	1735 24th Street, Oakland, Ca
Project No.	029.9

of <u>1</u>

Page 1

Boring	Boring Location 21' North and 88' East of NW corner of driveway													
Surface	Elevation 5 feet MSL (approx.) Dr	iller <u>F</u>	recisio	on Sa	mplin	g	Date	3	5-93					
括	SOIL DESCRIPTION) Sy	C.S Fype	R.	ı, t		SA	MPLE			LOW	/ T	rery thes	Piezometer
Depth	AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Туре	Inter From	rval To	0 6	6 12	12 18	Recovery In Inches	Piezo
0'	Asphalt													
6"	Soft to medium stiff dark grey silty clay with sand. Slightly moist. Gravel layer observed.		CL		1									
2'	Medium stiff dark grey clay and organic material. Slightly moist.		ОН		2									
3'	Very soft to soft grey clay. Moist.		CL		3									
4'	No Recovery				5 = 6									
6.5' 7'	Soft dark grey to black clay and organic material. Wet. No Recovery	X	OH		7									
8'	Soft to Medium stiff grey clay. Moist.		CL		8	1	CR	8.0	8.5		-			
9'	Bottom of Boring			1	9		F			-			-	-
	Note: Boring continuously cored with a driven double wall sampler					F	F							

By: <u>Joel Bruxvoort</u>

Project Name	Pacific Supply Company
	1735 24th Street, Oakland, Ca
Project No.	029.9

Boring	ing Location 27' South and 93' East of NW corner of driveway													
Surface	Elevation 8 feet MSL (approx.) Di	riller <u>I</u>	recisi	on Sa	mplir	ıg_	Date	3	5- <u>93</u>					
-5	COM DECOMPTION	æ,	C.S ype	H:	t 4		SA	MPLE			LOV	LI, A	erry	meter
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Type	Inter From	rval To	0 6	_	12 18	Recovery In Inches	Piezometer
O,	Asphalt													
6"	Medium stiff silty clay with trace gravel (base rock). Dry		CL		1									
2'	No Recovery. Gravel blocked				2									
	sampler.	\mathbb{V}) ta											
					3									
4'	Medium stiff to soft grey-green clay. Gravel at top of core. Mottled patches of silt and sand.		CL		4									
5	Slightly moist. Loose to medium dense green fine sand with HC odor (1,000 ppm		SP		5									
5.5'	PID). Slightly Moist. No Recovery	X			6	E								
7"	Soft grey-green clay with black silt and organic material at		CL		7	1	CR	7.0	7.5	E	=	E		
	bottom of core. Slightly moist.					_	\vdash							
8'	No Recovery	\bigvee			=8									
					9									
10'	Bottom of Boring	W \	VI		1									

By: <u>Joel Bruxvoort</u>

Page 1 of 1

Note: Boring continuously cored with a driven double wall sampler

Field Log of Boring No. B-4


Project Name	Pacific Supply Company
	1735 24th Street, Oakland, Ca
Project No.	029.9

Boring Location	99' South and 32' Eas	t of <u>NW corner of driv</u>	eway		
Surface Elevation	8 feet MSL (approx.) Driller	Precision Sampling	Date	3-5-93	

-s	SOIL DESCRIPTION	, KS	U.S.C.S Soil Type	长	t 4		SA	MPLE			LOV	V IT	Recovery In Inches	Piezometer
Depth	AND REMARKS	Lithology	U.S.O	qu TSF	Contact Depth	Š	Туре	Inte	rval	0	6	12	ecov Inc	[ezo]
		Ë	· s		0 -	4	Ę,	From	То	6	12	18	쩟뒫	<u>E</u>
Q	Asphalt													
6"	Medium stiff light grey sand with some gravel (base rock at top). Green mottling in places. Dry.	***	SP		1									
2.3'	No Recovery	\bigvee			2									
4' 4.3'	As above. No Recovery		SP	-	4									
7' 7.5'	Loose green-grey fine sand. Slightly moist. No Recovery		SP		7	1	CR	7.0	7.5					
,		\bigvee			=8									
10'	Bottom of Boring	/ \												

Note: Boring continuously cored with a driven double wall sampler

Field Log of Boring No.	<u>B-5</u>	Ву: _	Joel Bruxvoort	Page	1	of	[
-------------------------	------------	-------	----------------	------	---	----	---

Field Log of Boring No. B-6

Project Name	Pacific Supply Company
	1735 24th Street, Oakland, Ca
Project No.	029.9

Page <u>1</u> of <u>1</u>

Surface Elevation 8 feet MSL (approx.) Driller Precision Sampling Date 3-5-93 SOIL DESCRIPTION AND REMARKS O Asphalt Medium stiff brown saldy silt with some gravel (base rock at top). Dry Medium stiff grey-green silty sand and some mottled red clay. No FIC odor. Dry. When the color of	Boring	Location 125' South and 3	2' East	of NV	/ cor	ner of	driv	ewa	ay						
SOIL DESCRIPTION AND REMARKS Solution	Surface	e Elevation 8 feet MSL (approx.)	riller <u>I</u>	Precisi	on Sa	ımplir	ıg_	Date	3-	<u>5-93</u>			[4		
Asphalt Medium stiff brown sandy silt with some gravel (base rock at top). Dry Medium stiff grey-green silty sand and some mottled red clay. No HC odor. Dry. When the mottled red clay is an and some mottled red clay. No HC odor. Dry. The codor of t	45	CON DESCRIPTION	/8x	C.S ype	HS.	t .c		SA	MPLE					ery hes	meter
Medium stiff brown sandy silt with some gravel (base rock at top). Dry 2' Medium stiff grey-green silty sand and some mottled red clay. No HC odor. Dry. 4' HC odor. 6' No Recovery Soft green silty clay. Black silt and organic material at the bottom. HC odor (1,000 ppm PID). Wet. No Recovery 10' Bottom of Boring	Dep	AND REMARKS	Lithol	U.S.	qu T	Conta	No.	Туре			-	_		Recov In Inc	Piezo
top). Dry Medium stiff grey-green silty sand and some mottled red clay. No HC odor. Dry. 4' HC odor. No Recovery Soft green silty clay. Black silt and organic material at the bottom. HC odor (1,000 ppm PID). Wet. No Recovery To Bottom of Boring	O'	Asphalt													
Medium stiff grey-green silty sand and some mottled red clay. No HC odor. Dry. 4 HC odor. No Recovery Soft green silty clay. Black silt and organic material at the bottom. HC odor (1,000 ppm PID). Wet. No Recovery Soft green silty clay. Black silt and organic material at the bottom. HC odor (1,000 ppm PID). Wet. No Recovery Soft green silty clay. Black silt and organic material at the bottom. HC odor (1,000 ppm PID). Wet. No Recovery Soft green silty clay. Black silt and organic material at the bottom. HC odor (1,000 ppm PID). Wet.	6"	with some gravel (base rock at	0000	SM		1									
4 HC odor. No Recovery Soft green silty clay. Black silt and organic material at the bottom. HC odor (1,000 ppm PID). Wet. No Recovery Bottom of Boring	2'	and some mottled red clay. No HC	0000			2									
6 No Recovery 7 Soft green silty clay. Black silt and organic material at the bottom. HC odor (1,000 ppm PID). Wet. 7.8' No Recovery 9 10' Bottom of Boring			0000			3									
6 No Recovery 7 Soft green silty clay. Black silt and organic material at the bottom. HC odor (1,000 ppm PID). Wet. 7.8 No Recovery 8 9	4'	HC odor.	0000			4									
7 Soft green silty clay. Black silt and organic material at the bottom. HC odor (1,000 ppm PID). Wet. 7 No Recovery To Bottom of Boring						5									
organic material at the bottom. HC odor (1,000 ppm PID). Wet. No Recovery Bottom of Boring	6	No Recovery	X			6									
10' Bottom of Boring	7	organic material at the bottom. HC		CL		7	1	CR	7.0	7.5	=	Ξ	Ξ		
10' Bottom of Boring	7.8	MALE CONTROL OF THE C	\bigvee			=8									
						9									
		0	<u> </u>	<u></u>											

By: Joel Bruxvoort

Bottom of Boring

Note: Boring continuously cored with a driven double wall sampler

Project Name	Pacific Supply Company
	1735 24th Street. Oakland. Ca
Project No.	029.9

Boring	Location 27' South and 13)' East	of NV	/ cori	ner of	driv	rewa	ıy						
Surface	Elevation 8 feet MSL (approx.) Dr	iller <u>I</u>	recisi	on Sa	<u>mplir</u>	<u>ıg</u>	Date	3-	5-93					_
뜐	COH DECCRIPTION)&y	C.S ype	ř	ı, t		SA	MPLE			LOV	V IT	ery nes	neter
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	No.	Type	Inter From		0		12 18	Recovery In Inches	Piezometer
O	Asphalt													
6"	Medium stiff brown silty clay with some gravel (base rock). Dry		CL		1									
2'	Loose green fine sand. HC odor. Dry.		SP		2 3									
3.5'	No Recovery	X						-						
4'	Soft-medium stiff black silt, organic material. Wet at bottom.		ОН		4									
5.2'	No Recovery	Ŵ			5 6									
		\mathbb{N}			_ ů									
7'	Soft-medium stiff brown clayey silt with gravel. Wet.		ML		=7	1	CR	7.0	7.5	_				
8'	No recovery	\bigvee			8									
		Λ			9									

Field Log of Boring No. B-7 By: Joel Bruxvoort Page 1 of 1

Project Name	Pacific Supply Company
	1735 24th Street, Oakland, Ca
Project No.	029.9

Boring Location	71' South and 69' Eas	t of NW co	orner of driv	reway			
Surface Elevation	8 feet MSL (approx.) Driller	Precision	Sampling	Date	3-5-93		
						BLOW	l _{et}

£		<u> </u>	.s rpe	Er,	# -		SA	MPLE			LOV	V IT	£ 8	Piezometer
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Confact Depth	ó	8.	Inte	rval	0	6	12	Recovery In Inches	roza
Н	AIVD REMARKS	Tree.) S	<u>6</u>	용의	No.	Type	From	То	6		18	S H	Ä
O	Asphalt													
6"	Medium stiff brown silty clay with some gravel (base rock at top). Dry		CL		1									
2			*		3									
4'	Medium dense to loose green fine		SP		4									
	sand, HC odor (240 ppm PID). Dry.				5									
6	No Recovery	X			6									
7	As above with soft black silt, dry. Wet organic material at bottom.		SP		7	1	CR	7.0	7.5			Ξ		
8"	No Recovery		OH		= 8									
10'	Bottom of Boring	V \												

Note: Boring continuously cored with a driven double wall sampler

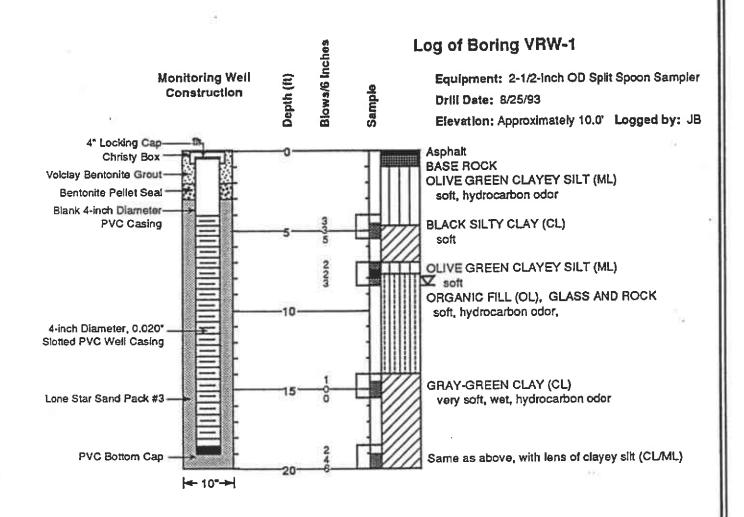
Field Log of Boring No.	B-8	Ву: _	Joel Bruxvoort	Page	<u>1</u> or	f <u>1</u>	

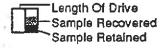
Project Name	Pacific Supply Company
N	1735 24th Street, Oakland, Ca
Project No.	029.9

~//	Dituising Associates,	AIC.		- 10)		_			32747					
<u> </u>	7 0 07 ELO 11 10	N F3 4	() 774			4 .	_			_	_	_		_
Boring	Location 37.5' South and 8	S' East	W V1 10	corn	er or	<u>arıv</u>	ewa	У						
Surface	Elevation 8 feet MSL (approx.) D	riller <u>I</u>	recisi	on Sa	mplii	ng	Date	3-	<u>5-93</u>					
_		<u>\$</u>	o ag	fr			SA	MPLE			SLOV	V	E 83	eter
Depth	SOIL DESCRIPTION AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	<u></u>	9.	Inte	rval	0		12	Recovery In Inches	Piezometer
н	AND REMARKS	当	2 os	Ę,	ცი	Š.	Туре	From	То	6	12	18	쭓된	Ä
0'	Asphalt					_				_				
6"	Medium stiff brown silt and sand	0000	SM											
	with some gravel (base rock at	0000			1	-		_	_			\vdash		_
	top). Dry	0000												
		0000				_			_					
		0000			2									
2.5'	No Recovery	A LINE OF THE PROPERTY OF THE				-			-	\vdash		-	-	
		$ \setminus / $												
		I X I			3	\vdash	\vdash	-		\vdash	\vdash			
		/												
4'	Soft grey clay with bands of	0000	OTT		4	-	\vdash	_				-		
	organic material with green		OH											
	mottling, HC odor at 6' (1,000 ppm PID). Slightly moist.					_	_		_		\vdash	_		-
					5									
						_	\vdash		-	H	Н	-		_
		1////												
6'	No Recovery				6	_		_			-	-	_	- 1
		IX.												
		2777			=7	\vdash		_				_		
ア	Soft grey organic clay, HC odor at 8' (350 ppm PID). Wet.		OH											
	T T T T T T T T T T T T T T T T T T T						\vdash					-		_
					8									
								0.7	0.0					
, 1						1	CR	8.5	9.0					
9'	Soft black organic clay, wet.				9									
9.5'	No Recovery	elelele				-	-					\vdash		_
10'	Bottom of Boring	\mathbb{N}												

Note: Boring continuously cored with a driven double wall sampler

Their bog of borning two by loet blux voort rage rage or	Field Log of Boring No.	B-9	Ву:	Joel Bruxvoort	Page	1	of .	1
--	-------------------------	-----	-----	----------------	------	---	------	---

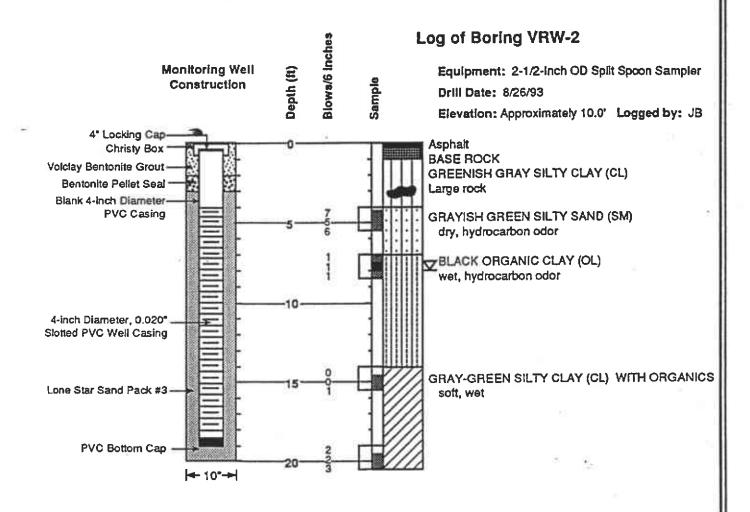


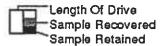

Project Name	Pacific Supply Company	
	1735 24th Street, Oakland, Ca	
Project No.	029.9	

Boring Location	71' South and 105.5'	East of <u>NW corner of d</u>	rivew	ay	
Surface Elevation	8 feet MSL (approx.) Driller	Precision Sampling	Date	3-5-93	

t)	SOIL DESCRIPTION	787	C.S ype	F.	ಕ್ಕ	SAMPLE			LOV		ery hes	Piezometer		
Depth	AND REMARKS	Lithology	U.S.C.S Soil Type	qu TSF	Contact Depth	ο̈́Ν	Type	Inte From	rval To	6	6 12	12 18	Recovery In Inches	Piezo
O	Asphalt									Ė				
6"	Soft to medium stiff grey-black silty clay with some gravel (base rock at top). Dry		CL		1									
					2									
					3									
3.8'	Medium dense green fine sand. HC odor. Dry.		SP		4									
4.5'	No Recovery	X			5									
6	Medium dense to loose green fine sand. Wet.		SP		6	1	CR	6.0	6.5	E	=	Ξ		
6.8' 7'	Soft black organic clay. Moist. No Recovery		OH		=7									
8'	Bottom of Boring				9									
	Note: Boring continuously cored with a driven double wall sampler													

Field Log of Boring No.	B-10	Ву:	<u> </u>	Page	_1	of	1
-------------------------	------	-----	----------	------	----	----	---

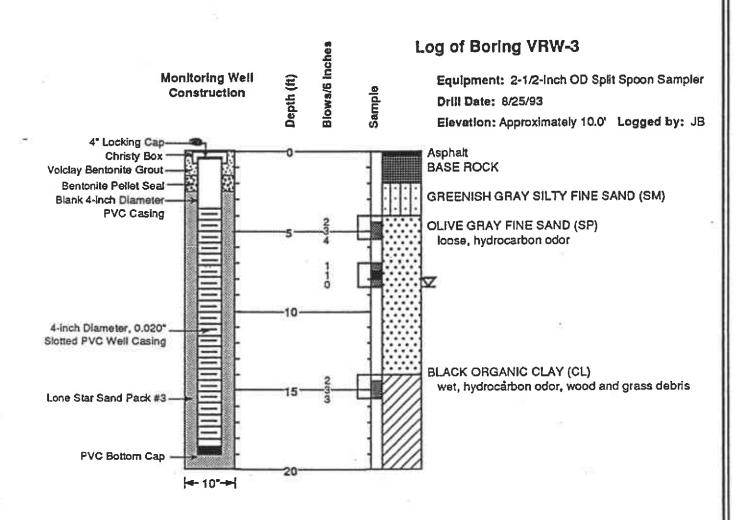


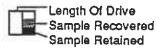

PROJECT NO .:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	JB	12/14/13
APPROVED BY:	38	12/11

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 1
LOG AND WELL
CONSTRUCTION DETAILS, VRW-1
Pacific Supply
1735 24th Street
Oakland, California

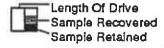

PROJECT NO.: 29.11		
DRAWN BY:	DD	11/15/93
APPROVED BY:	78	כאוועו


BACE Environmental

A Division Of

Brunsing Associates, Inc.

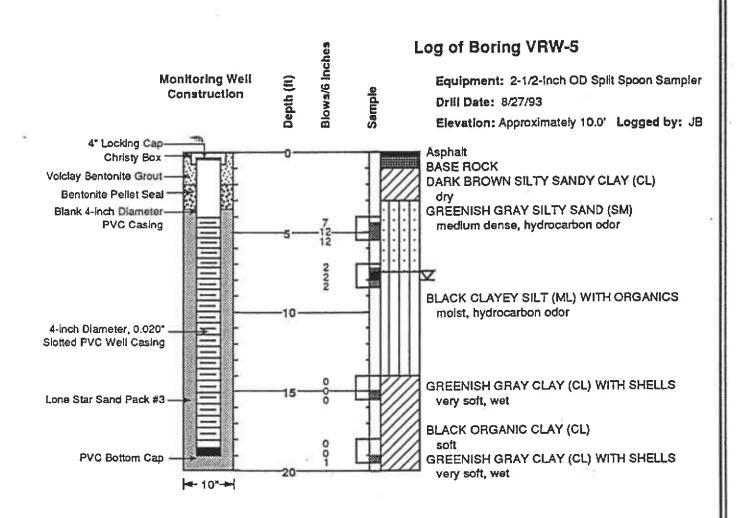
PLATE 2
LOG AND WELL
CONSTRUCTION DETAILS, VRW-2
Pacific Supply
1735 24th Street
Oakland, California



PROJECT NO.: 29.11		
DRAWN BY:	DD	11/15/93
APPROVED BY:	28	12/14/13

BACE Environmental
A Division Of
Brunsing Associates, Inc.

PLATE 3
LOG AND WELL
CONSTRUCTION DETAILS, VRW-3
Pacific Supply
1735 24th Street
Oakland, California

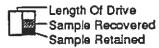


PROJECT NO.: 29.11		
DRAWN BY:	DD	11/15/93
APPROVED BY:	28	12/14/43

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 4
LOG AND WELL
CONSTRUCTION DETAILS, VRW-4
Pacific Supply
1735 24th Street
Oakland, California


PROJECT NO.: 29.11		
DRAWN BY:	DD	11/15/93
APPROVED BY:	28	12/14/43

BACE Environmental

A Division Of
Brunsing Associates, Inc.

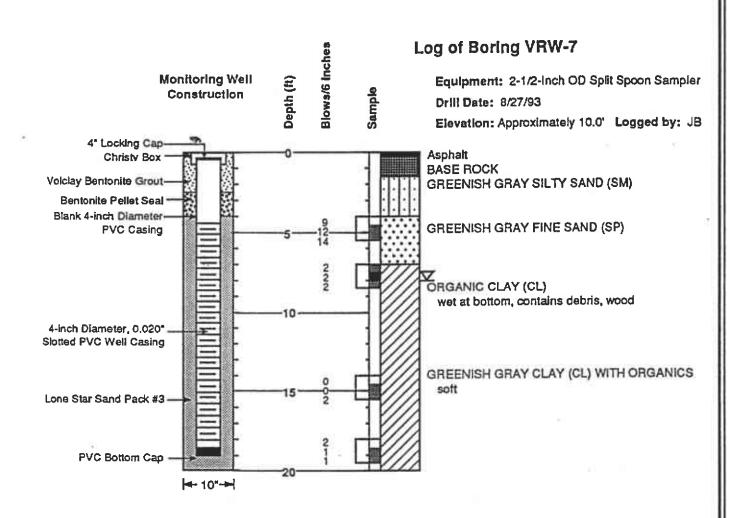
PLATE 5
LOG AND WELL
CONSTRUCTION DETAILS, VRW-5
Pacific Supply
1735 24th Street
Oakland, California

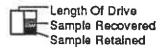
PROJECT NO.: 29.11		
DRAWN BY:	DD	11/15/93
APPROVED BY:	1 6	12/14/93

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 6

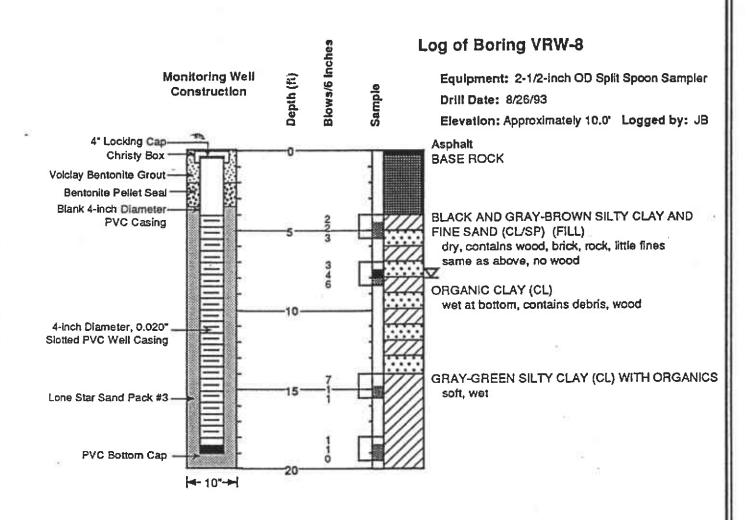

LOG AND WELL

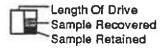

CONSTRUCTION DETAILS, VRW-6

Pacific Supply

1735 24th Street

Oakland, California

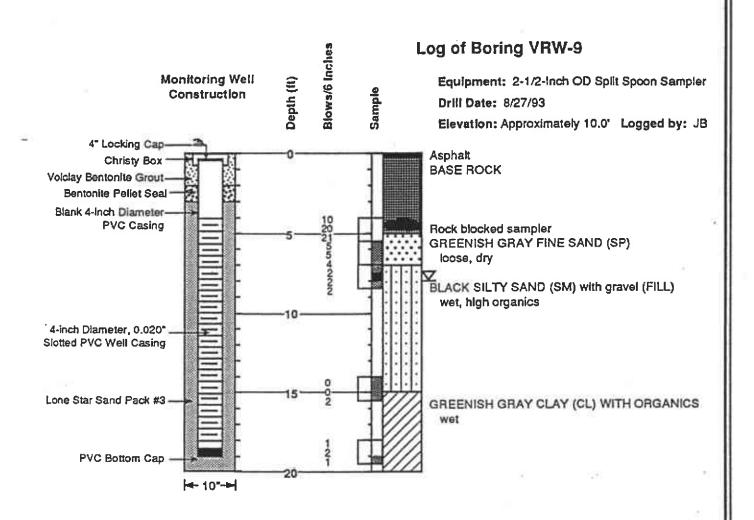


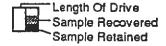

PROJECT NO.: 29.11		
DD	11/15/93	
48	12/14/93	

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 7
LOG AND WELL
CONSTRUCTION DETAILS, VRW-7
Pacific Supply
1735 24th Street
Oakland, California

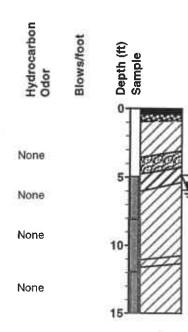



PROJECT NO.:	29.11	W.
DRAWN BY:	DD	11/15/93
APPROVED BY:	76	12/14/43

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 8
LOG AND WELL
CONSTRUCTION DETAILS, VRW-8
Pacific Supply
1735 24th Street
Oakland, California



PROJECT NO.:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	JB	12/14/43

BACE Environmental
A Division Of
Brunsing Associates, Inc.

PLATE 9
LOG AND WELL
CONSTRUCTION DETAILS, VRW-9
Pacific Supply
1735 24th Street
Oakland, California

Log of Boring B-10

Equipment: Power Probe 9600, Direct Push

Drill Date: 8/29/00

Elevation:

Logged By: CES

Asphalt
Baserock
Green Gray SANDY CLAY (CL)
moist, soft, no odor, grades to medium stiff
FILL, mixed debris and soil
Mottled Dark Gray and Brown CLAY (CH)
moist, soft, abundant organic debris
Green Gray SILTY CLAY (CL)
moist to wet, soft

Dark Gray SANDY CLAY (CL) wet, soft Green Gray SILTY CLAY (CL) wet, soft

NOTES:

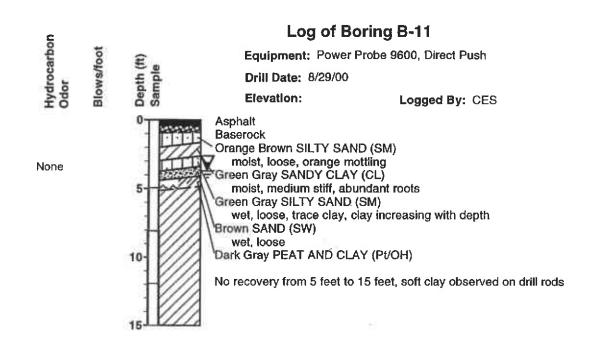
- 1) Hand auger through first five feet for utility clearance.
- 2) Water enters boring slowly.
- 3) Set temporary well casing before collecting groundwater sample.
- 4) Abandoned boring with bentonite chips and tremie grouting.

EGEND:

Equivalent "Standard Penetration" blow counts

Water encountered

DRAWN BY:	CES	10/24/00
HECKED BY:		10/2/00
APPROVED BY:		
REVISED BY:		


BACE Environmental

A Division Of

Brunsing Associates, Inc.

PLATE C2

Log of Boring B-10
Pacific Coast Building Products
1735 24th Street
Oakland, California

1) Hand auger through first five feet for utility clearance.

Set temporary well casing before collecting groundwater sample.
 Abandoned boring with bentonite chips and tremie grouting.

NOTES:

LEGEND:

* Equivalent "Standard Penetration" blow counts

 \mathbf{Y}

Water encountered

PROJECT NO.: 029		
DRAWN BY:	CES	10/24/00
CHECKED BY:		
APPROVED BY:		
REVISED BY:		

BACE Environmental

A Division Of

Brunsing Associates, Inc.

PLATE C3

Log of Boring B-11
Pacific Coast Building Products
1735 24th Street
Oakland, California

Hydrocarbon Odor Blows/foot

None

음

Log of Boring B-12

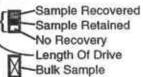
Equipment: Power Probe 9600, Direct Push

Drill Date: 8/29/00

Elevation:

Logged By: CES

Asphalt
Baserock
Dark Green Gray SILTY CLAY (CL)
molst, medium stiff
Dark Gray SILTY SAND (SM)
wet, medium dense, trace clay
Gray Green SANDY CLAY (CL)
moist, medium stiff, <10% sand
Dark Gray PEAT AND CLAY (Pt/OH)
'saturated, loose
Gray Green SILTY CLAY (CL)
moist, soft, abundant roots


No recovery from 8 to 15 feet, soft clay (Bay Mud) observed on drill rods

NOTES:

- 1) Hand auger through first five feet for utility clearance.
- 2) Set temporary well casing before collecting groundwater sample.

3) Abandoned boring with bentonite chips and tremie grouting.

EGEND:

Equivalent "Standard Penetration" blow counts

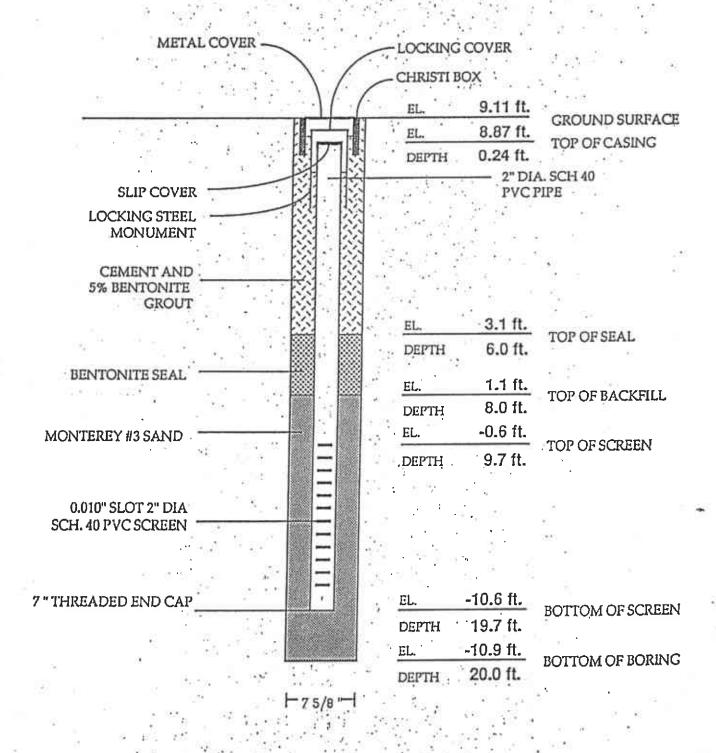
Water encountered

ROJECT NO.: 02	29	
DRAWN BY:	CES	10/24/00
HECKED BY:		
PPROVED BY:		
REVISED BY:		

BACE Environmental

A Division Of
Brunsing Associates, Inc.

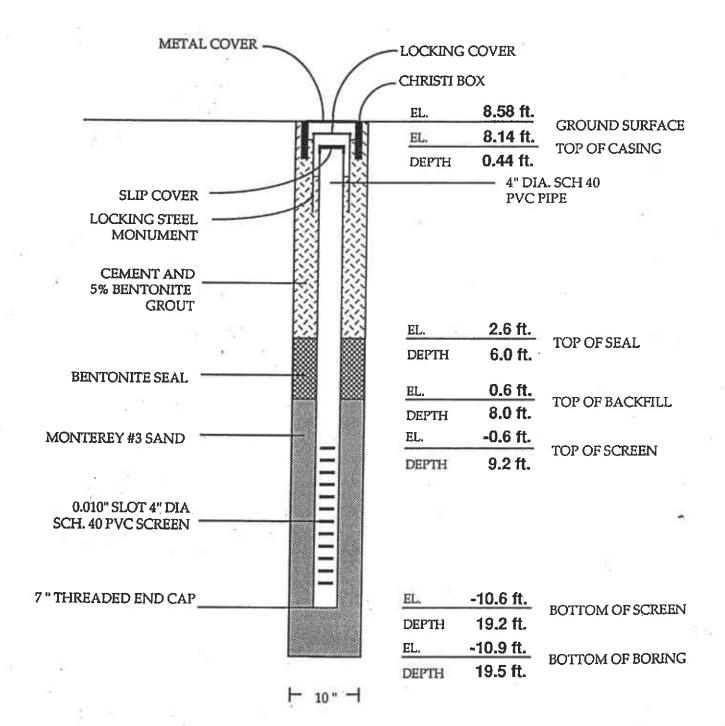
PLATE C4


Log of Boring B-12
Pacific Coast Building Products
1735 24th Street
Oakland, California

APPENDIX D Historical Well Completion Logs

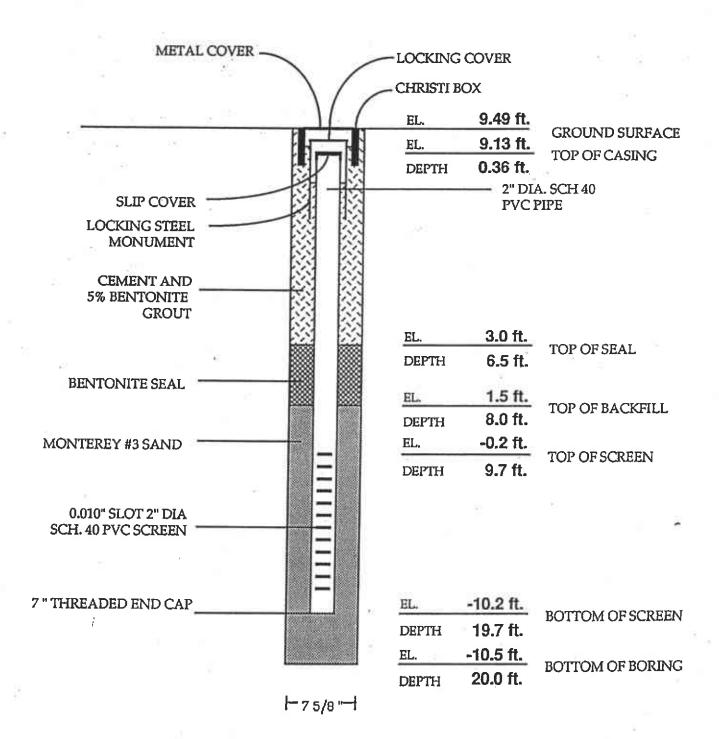
PROJECT NAME: PACIFIC SUPPLY COMPANY PROJECT NO. 029

BORING LOCATION: MW-1 DATE: 9/13/88 BY: GE

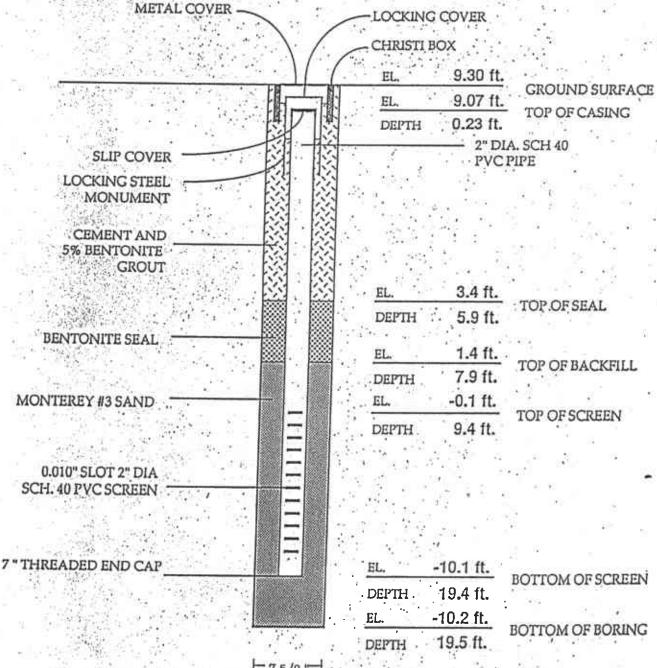

PROJECT NAME: PACIFIC SUPPLY COMPANY

PROJECT NO. 029

BORING LOCATION: MW-2


DATE: 9/13/88

BY: GE

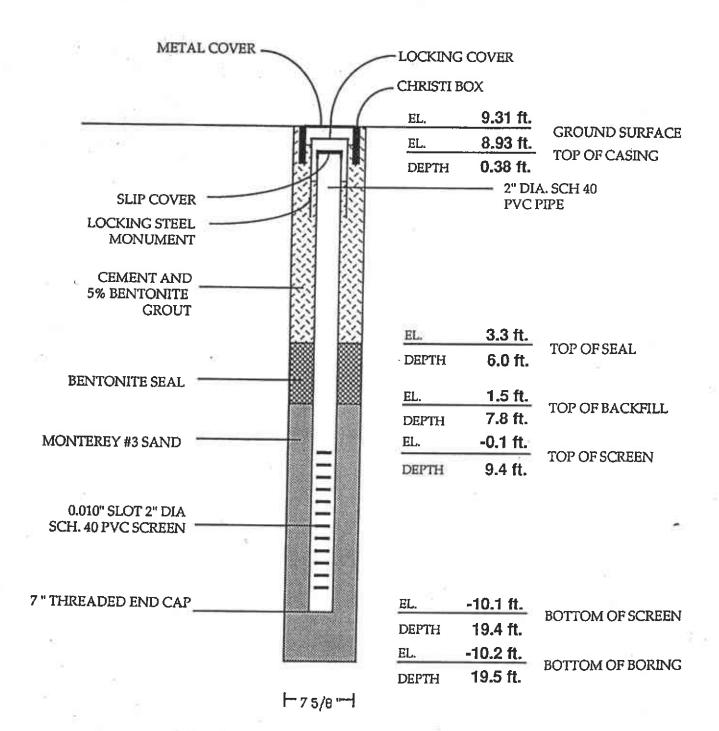

PROJECT NAME: PACIFIC SUPPLY COMPANY PROJECT NO. 029

BORING LOCATION: MW-3 DATE: 9/13/88 BY: GE

PROJECT NAME: PACIFIC SUPPLY COMPANY PROJECT NO. 029

BORING LOCATION: MW-4 DATE: '9/13/88 BY: GE

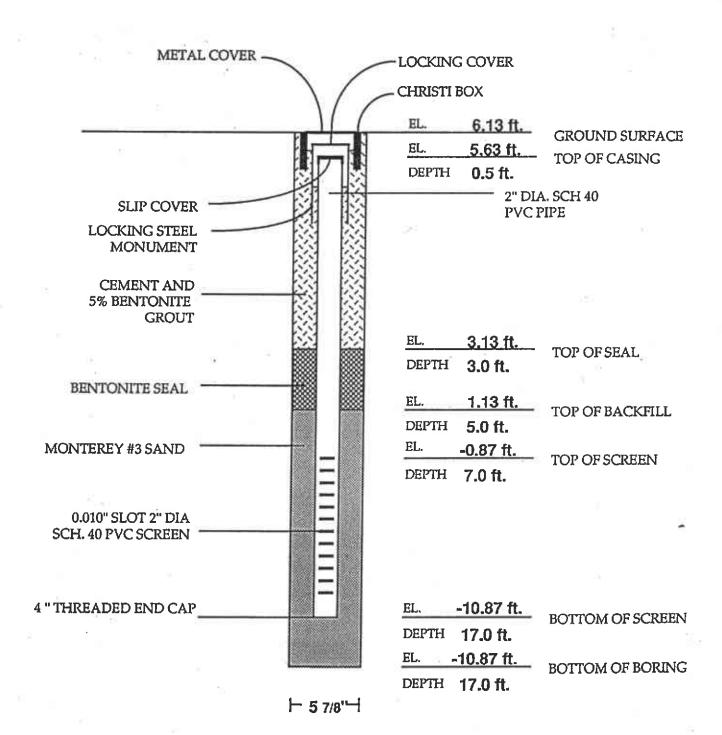
75/8


PROJECT NAME: PACIFIC SUPPLY COMPANY

PROJECT NO. 029

BORING LOCATION: MW-5

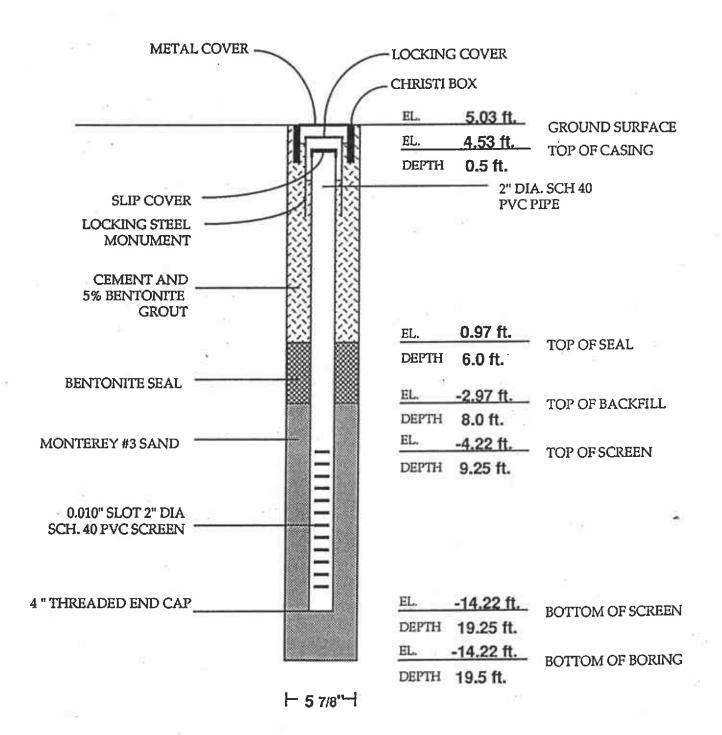
DATE: 9/13/88


BY: GE

PACIFIC SUPPLY CO. 1735 24th STREET,

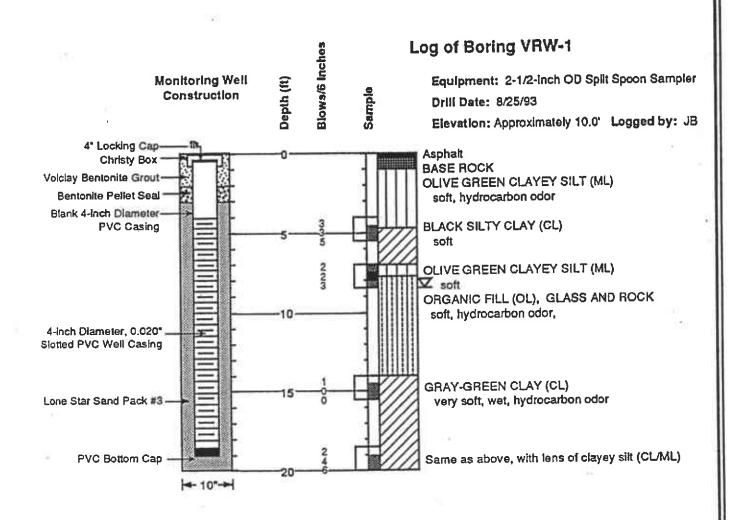
PROJECT NAME: OAKLAND, CALIFORNIA PROJECT NO. 029.2

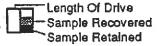
BORING LOCATION: MW-6 DATE: December 19,1989 BY: G. Eiche



PACIFIC SUPPLY CO.

PROJECT NAME: 1735 24th STREET,
OAKLAND, CALIFORNIA

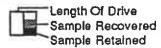

PROJECT NO. 029.2


BORING LOCATION: DATE: December 19,1989 BY: G. Eiche

PROJECT NAME: Pacific Supply Company PROJECT NO. 29.6 BORING LOCATION: 65' northing and 185' westing of the north & east property lines BY: Jeff Stivers DATE: 6/6/92 VEW-1 WELL NUMBER: METAL COVER -CHRISTY BOX EL. ~10 feet GROUND SURFACE EL. 9'8" TOP OF CASING **DEPTH 0'4"** 2" DIA. SCH 40 LOCKING CAP **PVC PIPE** 10 SACK GROUT EL. 7'6" TOP OF SEAL **DEPTH 2'6"** BENTONITE SEAL EL 6'6" TOP OF BACKFILL **DEPTH 3'6"** EL 6' MONTEREY #3 SAND TOP OF SCREEN DEPTH 4' 0.020" SLOT 2" DIA SCH. 40 PVC SCREEN EL. 2' **BOTTOM OF SCREEN** 2" DIAMETER THREADED END CAP-DEPTH 8' EL. 1'6" BOTTOM OF BORING

DEPTH 8'6"

PROJECT NO .:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	26	12/14/43

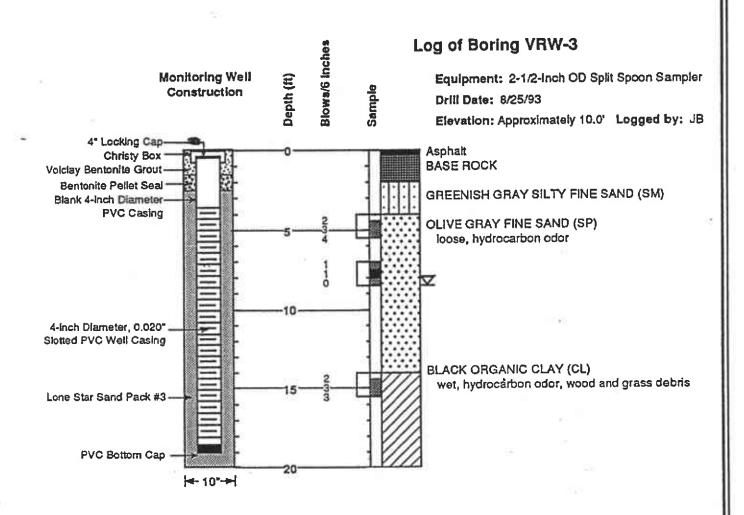

BACE Environmental

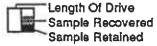
A Division Of
Brunsing Associates, Inc.

PLATE 1
LOG AND WELL
CONSTRUCTION DETAILS, VRW-1
Pacific Supply
1735 24th Street
Oakland, California

Log of Boring VRW-2 Blows/6 inches Monitoring Well Equipment: 2-1/2-inch OD Split Spoon Sampler Construction Drill Date: 8/26/93 Elevation: Approximately 10.0' Logged by: JB 4" Locking Cap-**Asphalt** Christy Box BASE ROCK Volciay Bentonite Grout-GREENISH GRAY SILTY CLAY (CL) Bentonite Pellet Seal Large rock Blank 4-Inch Diameter GRAYISH GREEN SILTY SAND (SM) **PVC Casing** dry, hydrocarbon odor BLACK ORGANIC CLAY (OL) wet, hydrocarbon odor 4-Inch Diameter, 0.020* Slotted PVC Well Casing GRAY-GREEN SILTY CLAY (CL) WITH ORGANICS Lone Star Sand Pack #3 soft, wet PVC Bottom Cap **← 10"→**

LEGEND:

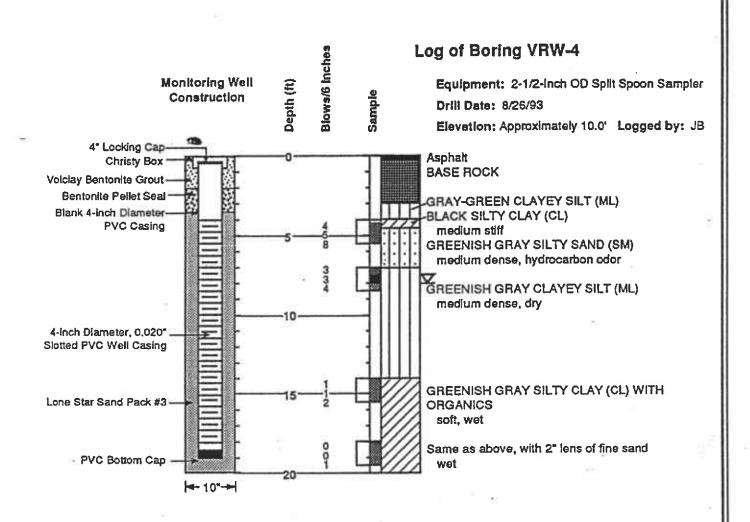


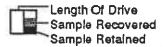

PROJECT NO.: 29.11		
DRAWN BY:	DD	11/15/93
APPROVED BY:	78	12/11/13

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 2
LOG AND WELL
CONSTRUCTION DETAILS, VRW-2
Pacific Supply
1735 24th Street
Oakland, California

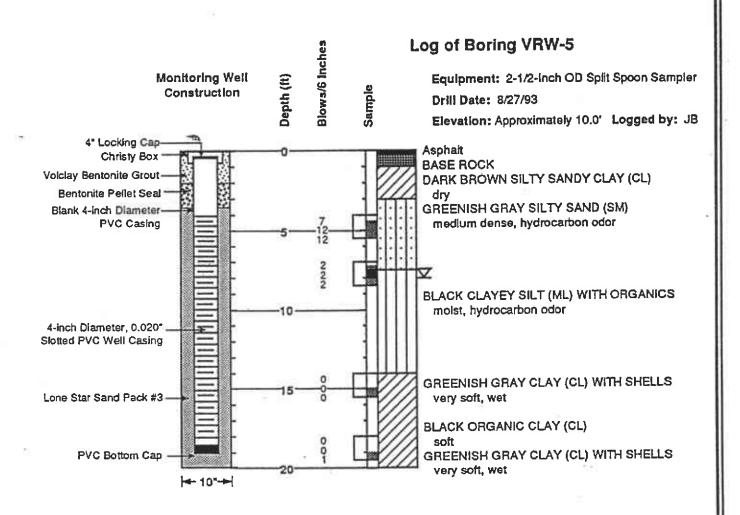



PROJECT NO.:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	38	12/14/13
APPHOVED BY:	10	1 12114113

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 3
LOG AND WELL
CONSTRUCTION DETAILS, VRW-3
Pacific Supply
1735 24th Street
Oakland, California

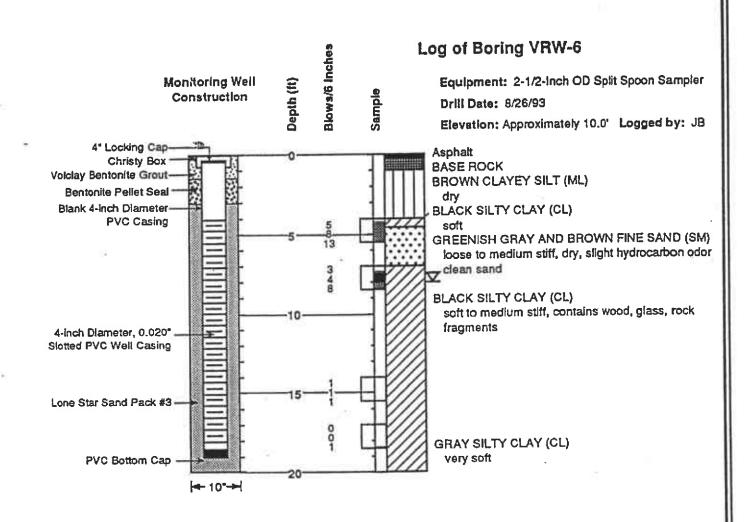


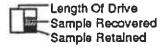
PROJECT NO .:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	28	12/14/43

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 4
LOG AND WELL
CONSTRUCTION DETAILS, VRW-4
Pacific Supply
1735 24th Street
Oakland, California




PROJECT NO.: 29.11		
DRAWN BY:	DD	11/15/93
APPROVED BY:	28	12/14/43

BACE Environmental

A Division Of
Brunsing Associates, Inc.

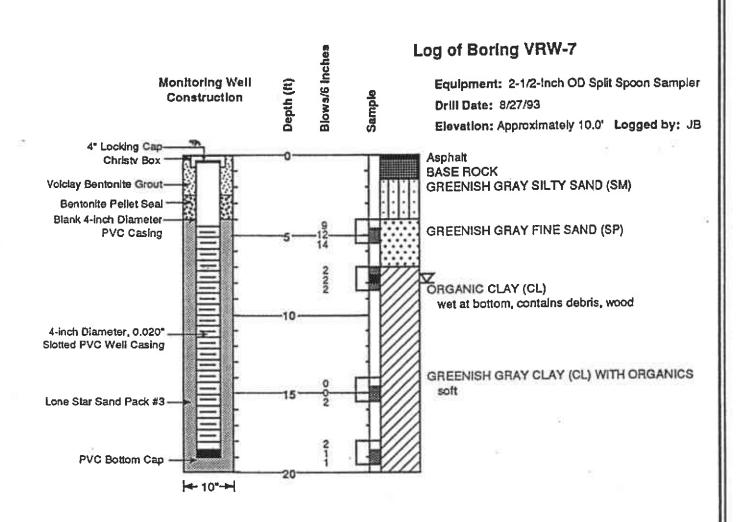
PLATE 5
LOG AND WELL
CONSTRUCTION DETAILS, VRW-5
Pacific Supply
1735 24th Street
Oakland, California

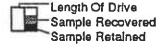
PROJECT NO .:	29.11	
DRAWN BY:	DD	11/15/93
APPROVED BY:	16	12/14/93

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 6

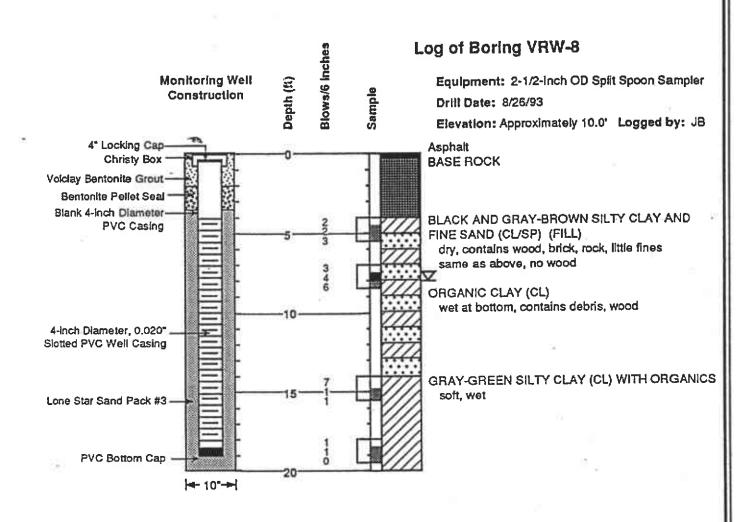

LOG AND WELL

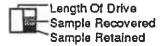

CONSTRUCTION DETAILS, VRW-6

Pacific Supply

1735 24th Street

Oakland, California

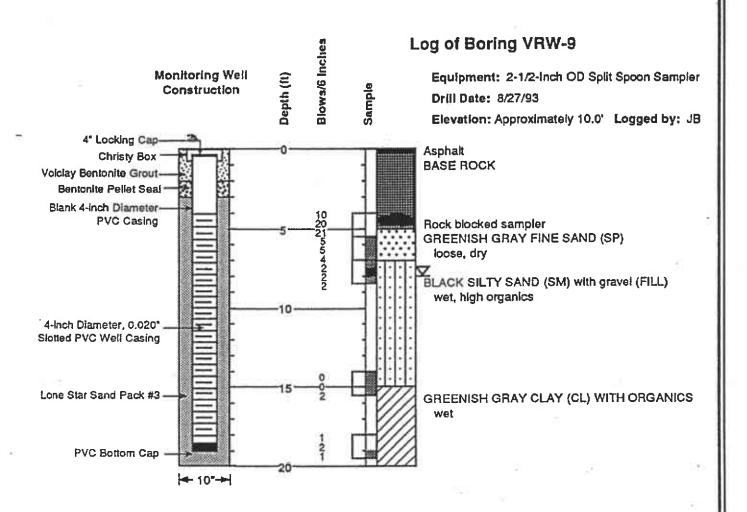


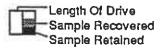


PROJECT NO.: 29.11		
DRAWN BY:	DD	11/15/93
APPROVED BY:	48	12/14/43

BACE Environmental
A Division Of
Brunsing Associates, Inc.

PLATE 7
LOG AND WELL
CONSTRUCTION DETAILS, VRW-7
Pacific Supply
1735 24th Street
Oakland, California




9.11	
DD	11/15/93
18	12/14/43

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 8
LOG AND WELL
CONSTRUCTION DETAILS, VRW-8
Pacific Supply
1735 24th Street
Oakland, California

PROJECT NO.: 29.11		
DRAWN BY:	DD	11/15/93
APPROVED BY:	76	12/14/53

BACE Environmental

A Division Of
Brunsing Associates, Inc.

PLATE 9
LOG AND WELL
CONSTRUCTION DETAILS, VRW-9
Pacific Supply
1735 24th Street
Oakland, California

APPENDIX E Surveyors Data Collected June 2003

632 PETALUMA AVENUE, SEBASTOPOL, CALIFORNIA 95472 / (707) 829-0400 / FAX (707) 829-0401

June 23, 2003

Michelle Frederick Brunsing Associates, Inc. P.O. Box 588 Windsor, California 95492

Re: Monitoring Well Locations -- 1735 24th Street / Oakland

Dear Michelle:

Below are the elevations of the monitoring wells and vapor recovery wells located at the above-referenced site. An elevation was taken on the North side of the PVC pipes (either 2" or 4", depending on which well), and one was taken on the Northerly rim of the Christy box or manhole (ditto).

For reference, we tied the Southeast and Southwest corners of the main shop building, which is at the back of sidewalk on 24th Street.

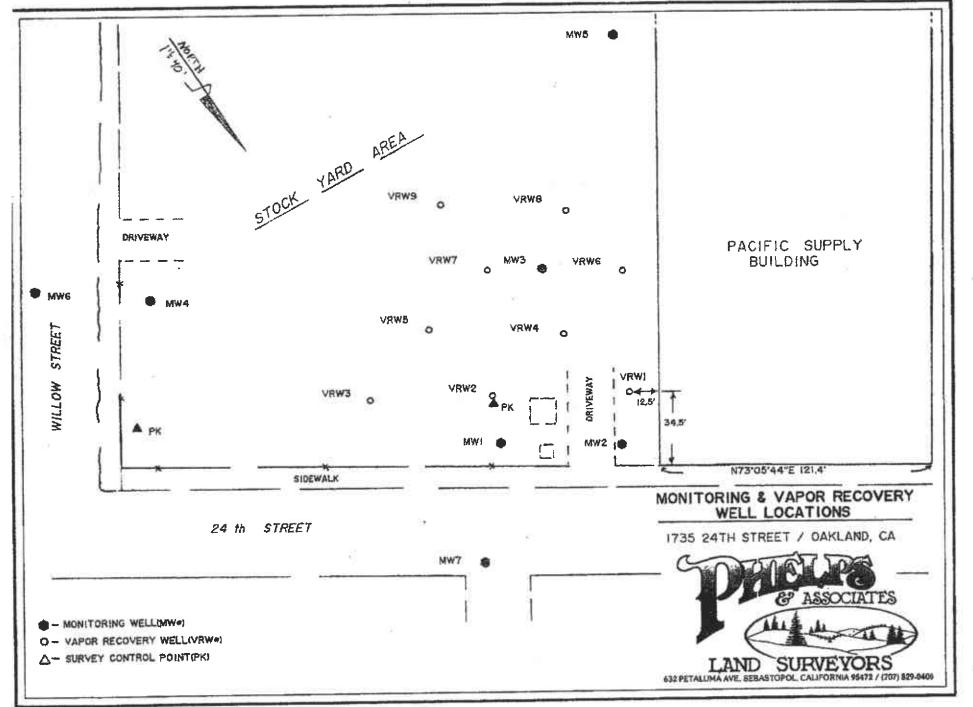
The locations of the wells are shown on the enclosed plat, and per your request VRW-1 is referenced to the Southeast corner of the main shop building.

Monitoring well	Elevation of 2" / 4" PVC pipe	North Rim Christy Box / Manhole
MG/ 1 OH	NAVD 88 Datum	NAVD 88 Datum
MW-1 = 2"	11.47	11.78
MW-2 = 4"	10.80	11.25
MW - 3 = 2"	11.76	12.13
MW-4 = 2"	11.69	11.96
MW-5 = 2"	11.54	12.00
MW-6 = 2"	8.82	9.36
MW-7 = 2"	7.72	8.01
VRW-1 = 4"	11.18	11.85
VRW-2 = 4"	11.08	12.02
VRW-3 = 4"	11.62	11.90
VRW-4 = 4"	11.33	12.08
VRW-5 = 4"	11.56	12.15
VRW-6 = 4"	11.43	12.08
VRW-7 = 4"	11.70	12.27
VRW-8 = 4"	11.62	12.23
VRW-9 = 4"	11.87	12.33

-2-(Brunsing Monitoring Wells continued)

MONITORING		
well	<u>Latitude</u>	<u>Longitude</u>
MW-1	37.819811	-122.291635
MW-2	37.819893	-122.291795
MW-3	37.819653	-122.291839
MW - 4	37.819425	-122.291297
MW-5	37.819451	-122.292134
MW-6	37.819340	-122.291155
MW-7	37.819929	-122.291510
VRW-1	37.819843	-122.291849
VRW-2	37.819756	-122.291666
VRW-3	37.819677	-122.291499
VRW-4	37.819735	-122.291813
VRW-5	37.819642	-122.291636
VRW-6	37.819707	-122.291944
VRW-7	37.819617	-122.291766
VRW-8	37.819605	-122.291919
VRW-9	37 819515	-122.291758

GPS reference points: 941 4777 B TIDAL (PID AE5211)


PORT 1 (PID HT0654)

Horizontal datum: CA SPC Zone 3, NAD 83 Vertical datum: NAVD 88

GPS date and time: 06-20-2003 / 10:54AM Type of GPS unit: RTK Topcon TPS Odyssey

Sincerely, Phelps & Associates, Inc.

Fred M. Phelps

