

Phone: (925) 944-2899

Fax: (925) 944-2895

September 23, 2005

Mr. Jerry Wickham Alameda Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject:

October 2003 Investigation Report

807 75th Street Oakland, CA 94621 AEI Project No. 3190

Dear Jerry:

Enclosed is copy of the October 2003 investigation report for the above referenced site.

Please call me at (925) 944-2899 ext. 122 if you have any questions.

Sincerely,

Robert F. Flory, P.G. Senior Geologist

Alameda County

Environmental Health

November 13, 2003

SOIL & GROUNDWATER INVESTIGATION REPORT

807 - 75th Avenue Oakland, California

Project No. 6861

Prepared For

Omega Termite Control, Inc 807 - 75th Avenue Oakland, CA 94621

Prepared By

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

Phone: (925) 283-6000

Fax: (925) 944-2895

November 13, 2003

Omega Termite Control, Inc 807 - 75th Avenue Oakland, CA 94621

Subject:

Soil & Groundwater Investigation

807 - 75th Avenue Oakland, California Project No. 6861

Dear Mr. Kanady:

The following letter report describes the activities and results of the subsurface investigation performed by AEI Consultants at the above referenced property (Figure 1: Site Location Map). This investigation was carried out in response to a request by the Alameda County Health Care Services Agency (ACHCSA) for further site investigation in preparation for development of a formal Remedial Action Plan.

I Background

The site is located in an industrial area of the City of Oakland, on the northern corner of the intersection of 75th Avenue and Snell Street, just east of San Leandro Street. The property is approximately 10,000 square feet in size and currently developed with two buildings, occupied by Omega (Site Plan, Figure 2).

On September 15, 1996, AEI removed three gasoline underground storage tanks (USTs) from the subject property. The tanks consisted of one 8,000-gallon UST, one 1,000-gallon UST, and one 500-gallon UST. The former locations of the tanks are shown in Figure 2. Five soil samples and one groundwater sample collected during the tank removal activities revealed that a release had occurred from the tank system. Total petroleum hydrocarbons as gasoline (TPHg), benzene, and MTBE were detected up to 4,300 mg/kg, 13 mg/kg, and 25 mg/kg, respectively in soil samples. The excavation was not backfilled. Soil removed from the excavation was stockpiled on the northern portion of the property. In 1999 soil samples collected from the stockpiled soil contained non-detectable to minor concentrations of TPH as gasoline. Mr. Barney Chan of the ACHCSA approved the stockpiled soil for reuse in the excavation.

In October 1997, soil and groundwater samples were collected from six soil borings (BH-1 through BH-6). In June 1999, four groundwater monitoring wells (MW-1 through MW-4) were also installed by AEI. The locations of the borings and wells are shown on Figure 3. The well construction is summarized on Table 1 (Appendix A).

Under the direction of ACHCSA, additional soil was removed from the excavation in March 2000. The excavation was extended to 29 by 48 feet in size and 8 feet deep at the east end of the

excavation and 11.5 feet at the west end. During the excavation activities, an additional 500-gallon UST was discovered at the eastern end of the excavation. This tank was removed under the direction of Oakland Fire Services Agency (OFSA). Six (6) additional soil samples were collected from the sidewalls and bottom of the excavation. During backfilling of the excavation, a 4" PVC casing was installed within the backfill as well TW-5.

The resulting excavation was then backfilled with pea gravel to bridge the water table, with the remainder of the excavation being filled with the previously aerated soil and later with imported fill. The newly excavated soil was stockpiled on the northern portion of the property. A total of 7,400 gallons of hydrocarbon-impacted groundwater was pumped from the excavation, treated on-site, and discharged under EBMUD permit to the sanitary sewer system.

Historical soil and groundwater sample analytical data are presented in Table 2 and Table 3, respectively (Appendix A). Historical water table elevation data are presented in Table 3 (Appendix A).

Environmental setting

The site is located at approximately 5 feet above mean sea level (MSL). The site is flat and the regional topography slopes very gently to southwest (Figure 1). According to logs of soil borings advanced by AEI, the near surface sediments beneath the site consist generally of clayey soils. In the continuously logged borings, silty and gravelly sands were noted in the 3 to 6 feet below ground surface (bgs) range, below which stiff clays exist. Silty, sandy, and gravelly clays were noted below approximately 8 feet bgs to boring termination.

During the past 15 groundwater monitoring events, water table has been at a depth of approximately five feet bgs; however, during the February 2000 episode, the water table rose to approximately 2.5 feet bgs. Generally, water levels measurements reveal a flow direction ranging from southwest to east-southeast, with the predominant flow direction being to the southwest, which is consistent with the apparent orientation of the groundwater plume. The hydraulic gradient has generally been 10^{-3} ft/ft.

Problem Assessment

Soil and groundwater sample analytical data have revealed that a release of petroleum hydrocarbons occurred from the former USTs. Generally, the contaminants of concern are consistent with gasoline range hydrocarbons, including BTEX compounds. Locally, oil range hydrocarbons have been detected at the eastern corner of the former tank hold.

Although significant source material was removed during the excavation process, soil samples collected from the March 2000 excavation revealed that some source material might remain at the western and eastern ends of the former tank hold. Soil sample collection depths, in conjunction with water table elevations indicate that remaining source material exists below the water table. Groundwater sample analytical data since monitoring began has indicated fairly

stable concentrations of TPHg and BTEX over time; however, moderate seasonal fluctuations are evident. A significant spike in heavy range hydrocarbon concentrations was noted in well TW-5 in September 2001, with concentrations decreasing since that time. This spike corresponds approximately with final backfilling and compaction of the excavation, which may have liberated residual source material entrained in the soil matrix.

II Investigative Efforts

AEI performed a subsurface investigation at the property on October 9 and 10, 2003. Eight (8) soil borings (SB-7 through SB-14) were advanced. The locations of the borings were chosen to further assess the lateral and vertical extent of soil and groundwater contamination at the subject site. The locations of the soil borings are shown on Figure 2.

The investigation consisted advancing eight (8) temporary soil borings (labeled SB-7 through SB-14), as shown on Figure 2. The locations of borings SB-7 through SB-12 were selected to further defined extent of the dissolved phase plume. Boring SB-13 assessed the magnitude of residual source material remaining at the western end of the former tank hold and boring SB-14 assessed remaining source material at the eastern end of the former tank hold, adjacent to backfill well TW-5. In addition, SB-14 assessed the vertical extent of the release. A summary of the rationale for the boring locations is presented below.

Boring IDs	Rationale	Target Depth	Analyses
SB-7	Assess the up-gradient extent of the dissolved phase plume	10 –15 ft	TPHg, BTEX & MTBE
SB-8, SB-9, SB- 10, & SB-11	Assess the down-gradient extent of the plume	10 –15 ft	TPHg, BTEX & MTBE
SB-12	Assess the northeasterly extent of the plume	10 –15 ft	TPHg /d/mo, BTEX & MTBE,
SB-13	Assess source area at western end of tank hold	15 ft	TPHg, BTEX & MTBE
SB-14	Assess source area at eastern end of tank hold, vertical migration investigation	40 ft	TPHg/d/mo, POG, BTEX & MTBE

Sample Collection

The borings SB-7 through SB-11 were advanced using a Geoprobe[®] 5400 direct-push drilling rig and boring SB-12 through SB-14 were drilled using a Geoprobe[®] 6600 direct-push drilling rig. Soil borings SB-7 through SB-13 were drilled to depths of approximately 15 to 20 feet bgs, as needed to collect groundwater samples from the first groundwater aquifer. Borings SB-7 through SB-13 were advanced using a single tube (Macro-Core[®]) sampler that collects a 1.5-inch diameter soil core in an acetate liner. Soil boring SB-14 was drilled to a depth of 30 feet bgs to allow collection of water samples from the deeper aquifer. Boring SB-14 was advanced to a refusal depth of 23-feet bgs using DT32[®] dual-tube sampling equipment, which collects a 2-inch diameter core inside an acetate liner. Refusal was due to the presence of stiff sticky clay with

minimal water present. Boring SB-14 was advanced from 23-feet bgs to 30-feet bgs using single tube (Macro-Core®) sampler.

Soil cores were continuously collected in 2" diameter acrylic liners, from which a six-inch sample was cut at approximately 5' intervals and just above the water table. The soil samples were sealed with Teflon tape and plastic caps. The samples were entered on the chain-of-custody form and placed in a cooler with wet ice pending transportation to the laboratory.

The cores were described by an AEI geologist using the United Soil Classification System (USCS) and standard geologic practices. Copies of the borehole logs are attached as Appendix B.

Groundwater Sample Collection

Following completion of each boring \(^3\)/-inch PVC casing was inserted into the boring. Groundwater samples were collected using a drop tube with a foot valve that is inserted to the bottom of the casing rods. The water samples were collected in 40-mL VOA vials and 1-liter amber bottles. Groundwater samples collected in VOAs were capped so that there was no headspace or visible air bubbles within the vials. All water samples were labeled with at minimum project number, sample number, samplers name, time, and date of collection. The samples were entered on the chain-of-custody form and placed in a cooler with wet ice pending transportation to the laboratory.

Following sample collection, the temporary PVC casings were removed and each boring was backfilled with neat cement grout.

Laboratory Analysis

On October 9 and 10, 2003, soil and groundwater samples collected during each day were transported to McCampell Laboratories (Department of Health Services Certification # 1644) under chain-of-custody protocol for analysis. Analytical results and chain of custody documents are included as Attachment B.

One soil sample and one groundwater sample were selected for analysis from borings SB-7 through SB-14. A water sample was collected only from the deeper aquifer in boring SB-14, as the shallow aquifer did not yield water.

All samples selected for analysis were analyzed for TPH as gasoline, BTEX and MTBE by EPA method 8015M/8021. The samples from borings SB-12 and SB-14 were also analyzed for TPH as diesel and TPH as motor oil by EPA method 8015M.

Following receipt of analytical results an analysis for petroleum oil and grease was requested on water sample SB14-W-30. This sample contained a high level of TPHd. The laboratory reported a dilution factor of 100 (a detection level of 25,000 μ g/L for TPHmo) that might mask the presence of low oil range hydrocarbons. Copies of the laboratory reports are attached as Appendix C

III Findings

The near surface native soil encountered during the boring advancement consisted of primarily of stiff tacky clay with some Interbedded silt, sand and gravel layers. Refer to Attachment A for detailed logs of the borings.

No hydrocarbons were detected in soil or groundwater samples from borings SB-7, SB-9, SB-10 and SB-11. No MTBE was detected in any of the soil samples analyzed.

No hydrocarbons were detected in soil sample SB8-15, however moderate to low levels of TPHg, BTEX and MTBE were detected in groundwater sample SB8-W-20 from that boring.

No TPHg, TPHd, TPHmo, or BTEX were detected in soil sample SB12-15, however low levels of benzene, ethyl benzene and xylenes were detected. No TPHg, BTEX or MTBE were detected in water sample SB12-W-15, however low levels of TPHd and TPHmo range hydrocarbons were reported

No TPHg was detected in soil sample SB13-14, however low levels of benzene, ethyl benzene and xylenes were reported. The groundwater sample from boring SB-13 contained low levels of TPHg and BTEX. No MTBE was detected in groundwater from SB-13.

TPHg was present in the samples from boring SB-14 at levels ranging from 37 mg/kg to 800 mg/kg. TPHd was reported at levels ranging from 45 mg/kg to 240 mg/kg. 8.2 mg/kg of TPHmo was reported in sample SB14-9.5, which contained the highest levels of both TPHg and TPHd reported. Low levels of BTEX were reported in SB14-4.5 and SB14-9.5. No benzene, or toluene were reported in sample SB14-28, but low levels of ethyl benzene and xylenes were reported.

Significant levels of TPHg, TPHd, BTEX and MTBE were detected in the groundwater sample from the lower aquifer sample SB14-W-30. Light non-aqueous phase liquids (LNAPL) were observed both in the field and by the laboratory.

Soil sample analytical data is summarized in Table 1, and groundwater sample analytical data is summarized in Table 3. The distribution of soil contaminants reported from the current investigation is shown on Figure 3 and the distribution of contaminants detected in the groundwater is shown on Figure 3.

IV Conclusions

The results of chemical analyses of soil samples collected and analyzed during this investigation and earlier investigations have effectively defined the limits of impacted soil. Highly impacted soil appears to have been removed from the site except in the immediate vicinity of boring SB-14. The limits of soil contamination in the soil below the upper aquifer have not been defined.

The limits of impacted groundwater in the shallow aquifer have been delineated to north by boring SB-7, to the west by boring SB-9, to the south by borings SB-10 and SB-11. Boring SB-12 defines the eastern limit for TPHg/BTEX compounds. The limits for TPHd and TPHmo lie within the TPHg limit except to the east, where SB-12 contains low levels of TPHd and TPHmo.

Soil boring SB-14 found significant high levels of fuel hydrocarbons in the second aquifer at a depth of 28 feet bgs. The limits of impact in this aquifer have not been identified.

V Report Limitation

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the required information, but it cannot be assumed that they are representative of areas not sampled. All conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work.

If you have any questions regarding our investigation, please do not hesitate to contact me at (925) 283-6000 ext. 122.

Sincerely,

Robert F. Flory, RG

Project Manager

No. 5825

Peter J. McIntyre Program Manager

Figures

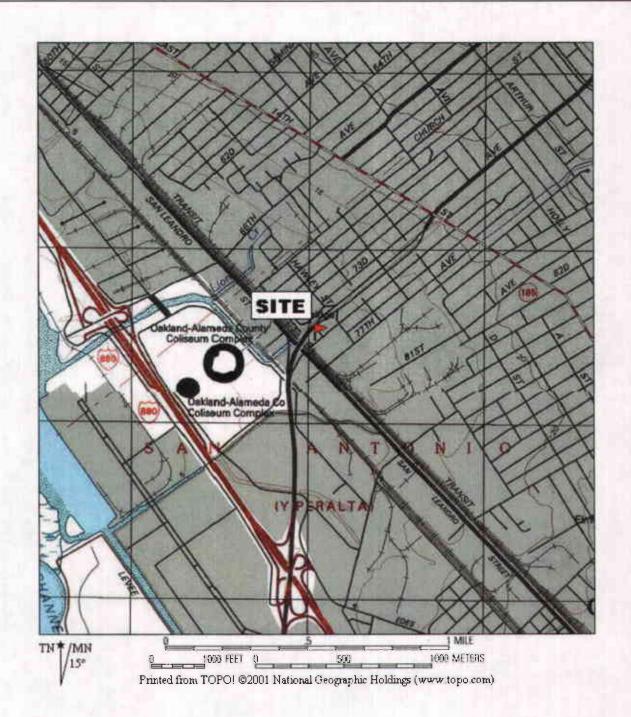
Figure 1: Site Map Figure 2: Site Plan

Figure 3: Soil Sample Analytical Data

Figure 4: Groundwater Sample Analytical Data

Appendix A Tables

Table 1: Well Construction details Table 2: Soil Sample Analytical Data

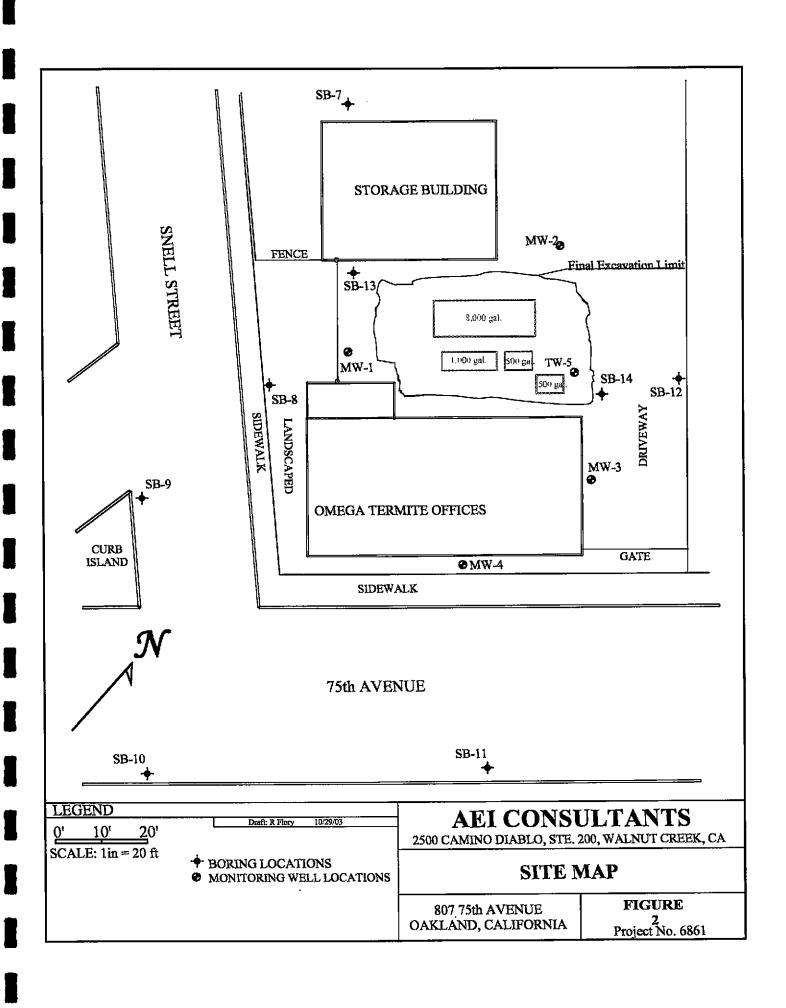

Table 3 Groundwater Sample Analytical Data

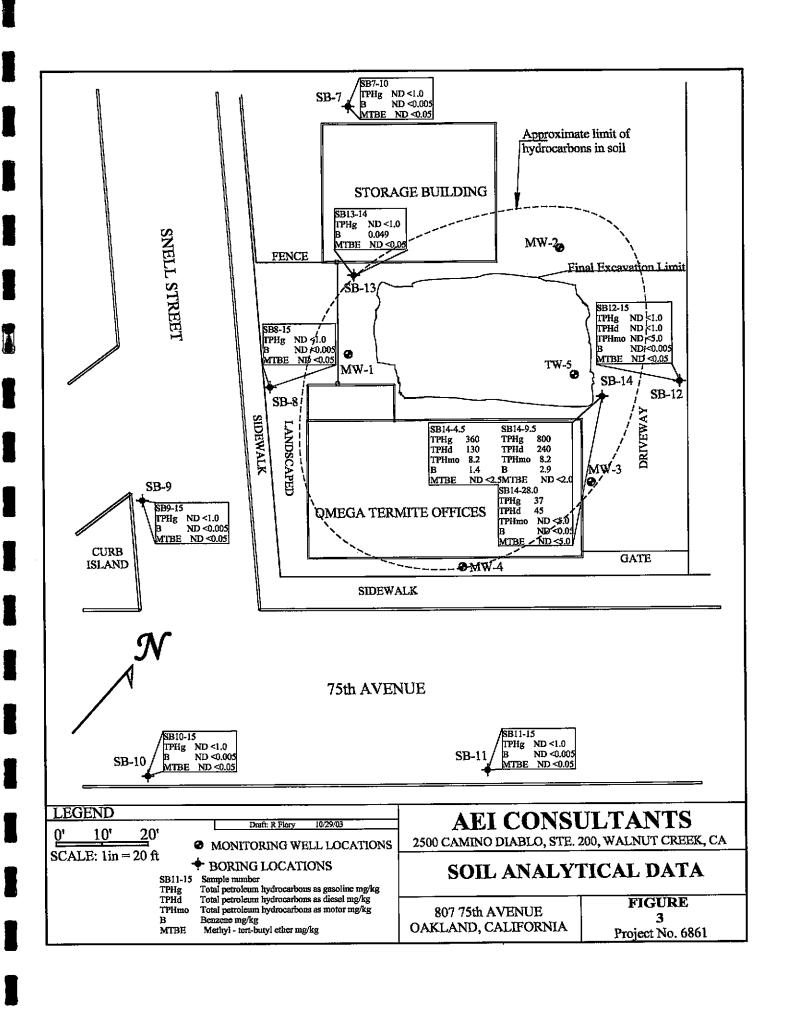
Appendix B

Soil Boring Logs

Appendix C

Sample Analytical Documentation




AEI CONSULTANTS

2500 Camino Diablo, Suite 100, Walnut Creek, CA

SITE LOCATION MAP

807 75th AVENUE OAKLAND, CALIFORNIA FIGURE 1 PROJECT NO. 6861

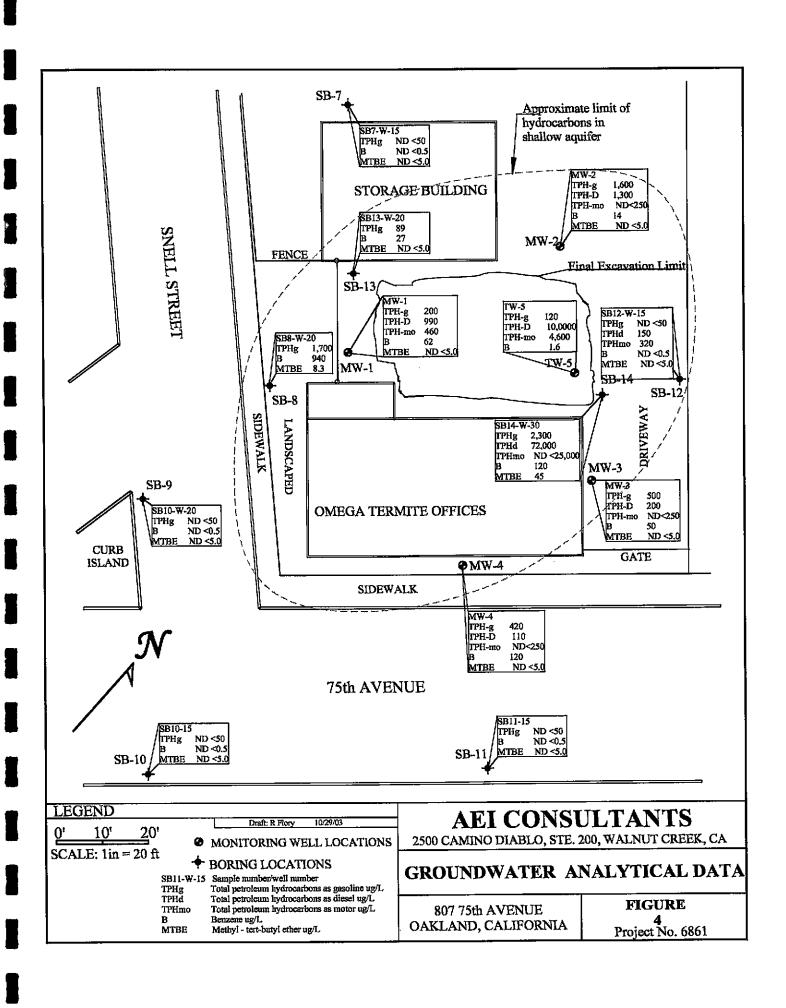


Table 1 Well Construction Details, Omega Termite, 807 75th Ave., Oakland, CA

Well ID	Date Installed	Top of Casing (feet)	Water Depth 10/14/03	Casing Material	Total Depth (feet)	Well Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Interval	Filter Pack Material (feet)	Bentonite Seal (feet)	Grout Seal (feet)
MW-1	06/25/99	5.00	5.03	PVC	20	20	8 1/4	2	20.0-5.0	0.02	0.5-4.5	#3 sand	4.5-3.5	3.5-0.5
MW-2	06/25/99	5.95	6.43	PVC	20	20	8 1/4	2	20.0-5.0	0.02	0.5-4.5	#3 sand	4.5-3.5	3.5-0.5
MW-3	06/25/99	4.66	5.16	PVC	20	20	8 1/4	2	20.0-5.0	0.02	0.5-4.5	#3 sand	4.5-3.5	3.5-0.5
MW-4	06/25/99	4.59	5.25	PVC	20	20	8 1/4	2	20.0-5.0	0.02	0.5-4.5	#3 sand	4.5-3.5	3.5-0.5
TW-5	Mar. 2000	NS	6.08	PVC	10	10	NA	4	10.0-5.0	drilled	NA	NA	NA	2.0

					T 4 4 4 4 5 5		nts 1	T-41 I	Valant	Lead
Sample	Date	TPHg	TPHd	TPHmo	MTBE	Benzene	Toluene	Ethyl- benzene	Xylenes	EPA 6010
ID		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SB7-10	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	
SB8-15	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	
SB9-15	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	
SB10-15	10/09/03	ND<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	
SB11-15	10/09/03	ND<1.0	ND<1.0		ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	
SB12-15	10/10/03	ND<1.0	ND<1.0	ND <5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	
SB13-14	10/10/03	ND<1.0			ND<0.05	0.049	ND<0.005	0.014	0.019	
SB14-4.5	10/10/03	360	1301,2	ND <5.0	ND<2.5	1.4	1.5	8.0	37	
SB14-9.5	10/10/03	800	2401, 2	8.2	ND<2.0	2.9	3.5	16	71	
SB14-28.0	10/10/03	37 ^{3, 4}	45 ⁵	ND <5.0	ND<0.05	ND<0.005	ND<0.005	0.015	0.11	
AEI SW South 8'	3/20/00	290			ND<0.5	0.84	2.0	6.3	1.3	9.1
AEI SW North 8'	3/20/00	1.8			ND<0.05	ND<0.005	ND<0.005	0.007	0.008	7.3
AEI SW East 8'	3/20/00	1800			ND<5.0	12	65	32	160	7.4
AEI EB 7'	3/20/00	560	220	100	ND<1.0	0.59	4.9	7.3	40	7.5
AEI EB West 11.5'	3/20/00	280			ND<0.21	2.7	6.6	5.2	23	5.9
MW-1 10'	6/25/99	<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	6.4
MW-1 15'	6/25/99	3.4			ND<0.05	0.092	0.022	0.054	0.14	4.8
MW-2 10'	6/25/99	420			<2	ND<0.1	2.7	4.8	8.2	6.6
MW-2 15'	6/25/99	<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	6.9
MW-3 10 ¹	6/25/99	14			ND<0.05	0.3	0.091	0.29	0.28	6.6
MW-3 15'	6/25/99	<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0,005	ND<0.005	8.5
MW-4 10'	6/25/99	3.6			ND<0.05	0.71	ND<0.005	0.19	ND<0.005	6.6
MW-4 15'	6/25/99	<1.0			ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	8.5
BH-1 10'	1/31/97	4.1			ND<5.0	0.078	0.009	0.11	0.17	5.6
BH-2 10'	1/31/97	23			0.13	0.46	0.05	0.089	0.061	7.7
BH-3 10'	1/31/97	280			1.8	3.2	3.0	3.8	12	6.6
BH-4 10'	1/31/97	4.6			ND<5.0	0.03	0.025	0.36	0.46	7.8
BH-5 10'	1/31/97	800			5.0	4.3	23	15	65	6.7
BH-6 10'	1/31/97	110			0.53	3.0	0.25	0.95	0.53	5.6
8KEW (10')	9/15/96	64			0.16	1.8	1.2	1.4	2.9	11
8KWW (10')	9/15/96	2600			25	2.8	15	37	120	24
8KNWW (10')	9/15/96	360			2.5	2.5	0.83	8.5	2.4	110
1KE (9')	9/15/96	41			ND<0.1	0.077	0.99	0.86	4.7	8.5
K (9')	9/15/96	4300			ND<10	13	83	71	310	9.8

Total petroleum hydrocarbons as gasoline TPHg Total petroleum hydrocarbons as diesel
Total petroleum hydrocarbons as motor oil
methyl tert-butyl ether TPHd **TPHmo** MTBE Sample not analyzed by this method

diesel range compounds are significant, no recognizeable pattern

gasoline range compounds are significant

strongly aged gasoline or diesel range are significant

no recognizable pattern 5 kerosene/kerosene range

Sample	Sample	Top of	Water	GW	TPHg	TPHd	TPHmo	MTBE	Benzene	Toluene	Ethyl	Xylenes
ID	Collection Date	casing	depth	elevation	μg/L	μg/L	μg/L_	μg/L	μg/L	μg/L	benzene μg/L	μg/L
SB7-W-15	10/09/03				ND <50			ND <5.0	ND <0.5	ND <0.5	ND <0.5	ND <0.5
SB8-W-20	10/09/03				1,700			8.3	940	2.7	0.58	2.2
SB9-W-20	10/09/03				ND <50			ND <5.0	ND <0.5	ND <0.5	ND <0.5	ND <0.5
SB10-W-15	10/09/03				ND <50			ND <5.0	ND <0.5	ND <0.5	ND <0.5	ND <0.5
SB11-W-15	10/09/03				ND <50			ND <5.0	ND <0.5	ND <0.5	ND <0.5	ND <0.5
SB12-W-15	10/09/03				ND <50	150	320	ND <5.0	ND <0.5	ND <0.5	ND <0.5	ND <0.5
SB13-W-20	10/10/03				89 ¹			ND <5.0	27	0.53	2.4	6.2
SB14-W-30	10/10/03				2,3001	72,000	ND <5	45	120	7.8	35	100
MW-1	07/30/99	5.00	5.82	-0.82	2,700			ND<10	920	5.5	18	130
	11/09/99	5.00	5.70	-0.70	1,800			ND<20	430	1.5	26	60
	02/23/00	5.00	2.84	2.16	3,800			ND<10	1,500	56	78	35
-	05/26/00	5.00	5.50	-0.50	7,100			ND<10	2,800	70	220	81
	10/10/00	5.00	5.70	-0.70	980			ND<5.0	260	2.9	10	11
	02/07/01	5.00	5.25	-0.25	570			ND<5.0	150	1.8	4.9	9.3
	05/25/01	5.00	5,25	-0.25	18,000			ND<100	3,800	350	550	620
	09/19/01	5.00	5.51	-0.51	840			ND<5.0	190	4.0	4.6	5.3
	02/06/02	NS	NS	NS						ļ 		
	05/17/02	5.00	5,30	-0.30	13,000	920		ND<50/<5.01	4,500	29	50	58
	08/20/02	5.00	5.39	-0.39	2,100	740	ND<5000 ²	ND<15	820	4.5	6.4	9.6
	01/10/03	5.00	4.11	0.89	95	260	ND<5000 ²	ND<5.0	23	0.66	3.9	6.5
	04/14/03	5.00	4.85	0.15	340	310		ND<5.0	87	1.3	4.3	5.6
	07/14/03	5.00	5.08	-0.08	750	700		ND<10	420	0.84	3.7	6.0
	10/14/03	5.00	5.63	-0.63	200	9903	460.0	ND<5.0	62	0.83	2.2	2.7
MW-2	07/30/99	5.95	6.64	-0.69	1,200			ND<10	29	2.5	51	100
11111 2	11/09/99	5.95	6.42	-0.47	1,300			ND<30	26	1.1	55	32
	02/23/00	5.95	3.31	2.64	5,000			ND<10	200	18	390	440
	05/26/00	5.95	6.34	-0.39	2,700			ND<10	69	13	83	68
	10/10/00	5.95	6.52	-0.57	810			ND<10	17	4.7	42	46
	02/07/01	5.95	5.90	0.05	2,600			ND<10	70	15	80	100
	05/25/01	5.95	6.08	-0.13	2,400			ND<5.0	75	16	85	100
	09/19/01	5.95	6.53	-0.58	1,200			ND<5.0	10	8.5	46	55
	02/06/02	5,95	5.72	0.23	1,800			ND<50	14	11	58	59
	05/17/02	5.95	6.17	-0.22	2,000	860		ND<20/8.1	19	1.1	0.75	88
	08/20/02	5.95	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS
	01/10/03	5.95	5.12	0.83	2,000	910	ND<5000 ²	ND<50	11	11	96	100
	04/14/03	5.95	4.98	0.97	2,400	800		ND<10	16	10	100	73
	07/14/03	5.95	5.99	-0.04	1,900	970	_	ND<15	18	4.8	79	78
	10/14/03	5.95	6,43	-0.48	16004,5	1,300	ND<250	ND<10	14	5.9	87	78

Sample	Sample	Top of	Water	GW	TPHg	TPHd	TPHmo	MTBE	Benzene	Toluene	Ethyl	Xylenes
ID	Collection Date	casing	depth	elevation	μg/L	μg/L	μg/L	μg/L	μg/L	μ g/L	benzene μg/L	μg/L
MW-3	07/30/99	4.66	5.35	-0.69	2,700			ND<10	220	15	130	230
	11/09/99	4.66	5.11	-0.45	3,100			15	440	8.8	150	96
	02/23/00	4.66	2.37	2.29	1,800			ND<15	180	11	82	79
	05/26/00	4.66	4.98	-0.32	1,600			6.4	140	10	69	63
	10/10/00	4.66	5.24	-0.58	1,100			ND<10	110	4.4	63	51
	02/07/01	4.66	4,73	-0.07	1,100			ND<10	130	5.1	68	65
	05/25/01	4.66	4.73	-0.07	1,200			ND<6.0	120	5.4	69	64
	09/19/01	4.66	5.07	-0.41	800			<5.0	78	3.5	52	37
	02/06/02	4.66	4.69	-0.03	1,100			ND<10	130	4.7	77	71
	05/17/02	4.66	4.80	-0.14	2,800	810		ND<50/2.01	410	23	160	210
	08/20/02	4.66	4.97	-0.31	780	270	ND<5000 ²	ND<10	110	2.8	63	41
	01/10/03	4.66	3.59	1.07	1,100	5 10	ND<5000 ²	ND<20	160	3.4	98	84
	04/14/03	4,66	5.40	-0.74	690	230	_	ND<5.0	60	2.3	44	34
	07/14/03	4.66	4.69	-0.03	900	380	_	ND<5.0	130	2.0	7 0	43
	10/14/03	4.66	5.16	-0.50	500	2004,3	ND<250	ND<10	50	2.3	37	18
MW-4	07/30/99	4.59	5.45	-0.86	340			ND<10	57	2.2	8.5	6.8
	11/09/99	4.59	5.31	-0.72	1,000			ND<10	220	<0.5	17	7.1
	02/23/00	4.59	2.72	1.87	980			ND<5.0	260	7	33	27
	05/26/00	4.59	5.07	-0.48	760			5.7	170	4.8	22	13
	10/10/00	4.59	5.32	-0.73	520			ND<10	130	2.3	22	10
	02/07/01	4,59	4.73	-0.14	680			ND<8.0	180	3.7	29	21
	05/25/01	4.59	4.90	-0.31	1,700			ND<10	510	9.6	44	46
	09/19/01	4.59	5.16	-0.57	680		. 	ND<10	200	2.6	33	12
	02/06/02	4.59	4.65	-0.06	710			ND<15	220	2.8	40	21
	05/17/02	4.59	4.90	-0.31	1,300	190		ND<5.0/3.31	330	5.6	61	51
	08/20/02	4.59	5.02	-0.43	580	120	ND<5000 ²	ND<5.0	160	1.7	34	13
	01/10/03	4.59	3.78	0.81	800	85	ND<5000 ²	ND<20	240	2.5	46	28
	04/14/03	4.59	4.11	0.48	850	120		ND<10	220	2.7	47	26
	07/14/03	4.59	4.75	-0.16	780	170		ND<20	220	1.4	44	23
	10/14/03	4.59	5.25	-0.66	420	1104,5	ND<250	ND<5.0	120	0.95	31	8.2
TW-5	10/10/00				5,800	2,900	ND<250 450	ND<50 ND<5.0	650 6.0	60 4.5	190 3.2	230 4.5
	02/07/01				720	650		ND<5.0		4.3	1.6	1.3
	05/25/01				370	420	ND<250	530	13.0 29	2.7	1.0	240
	09/19/01	ns	6.59	na	15,000	2,700,000	1,100,000	ND<5.0	2.3	0.74	ND<0.5	0.70
	02/06/02		(50		280	55,000	18,000	ND<5.0/<5.0 ¹	1.6	1.1	0.8	ND<0.5
	05/17/02	ns	6.56	na	480	41,000	ND =50004			1.1	1.1	0.54
	08/20/02	กร	6.62	na	240	21,000	ND<5000 ²	ND<5.0	8.0	0.58	ND<0.5	1.10
	01/10/03	ns	4.66	na	ND<50	1,300	ND<5000 ²	ND<5.0	5.4	5.7	5.9	1.10
	4/14/2003	ns	5.30	na	160	2,300		ND<5.0	18	0.77	0.63	1.2
	7/14/2003	ns	5.84 6.08	na na	100 120°	16,000 10,000°	4600	ND<5.0 ND<5.0	1.2 1.6	1.6	ND<0.5	1.2

.

Table 3	Historical G	roundwat	er Sample	Data, Om	ega Termit	e, 807 - 75t	h Street, Oa	ıkland, CA				
Sample ID	Sample Collection Date	Top of casing	Water depth	GW elevation	TPHg μg/L	TPHd µg/L	TPHmo μg/L	MTBE μg/L	Benzene μg/L	Toluene μg/L	Ethyl benzene µg/L	Xylenes μg/L
BH-1 BH-4 BH-6 GW	1/31/97 1/31/97 1/31/97 9/15/96				13,000 25,000 27,000 4,800	 	 	<60 <50 230 <130	770 1,300 5,000 4,100	67 110 410 3,500	530 1,200 1,100 21,000	1,800 2,400 2,400 6,400

	TPH-d		1 2 3 4 5 6 7	MTBE concentrations by methods 8021B/8260B analysis for total oil and grease by method 5520 fuel oil diesel range compounds are significant; no recognizable gasoline range compounds are significant lighter than water immiscible sheen/product is present analysis by EPA method 5520
--	-------	--	---------------------------------	--

Sheet: 1 of 1

Project Name: Omega Termite

Client: Omega Termite

Log of Geoprobe Corehole: SB7

Location: 807 - 75th Ave, Oakland, CA

Depth	Semple Label	Soil Symbol	Ground Surface	Boring Destruction Data	Remarks
0-		Service of	Ground Surface		
-		2700	Sandy Gravel - FILL yellowish brown 10YR 5/5, clayey, loose, dry		
2-			Gravelly Clay		Deduce control with
- 1			yellowish brown 10YR 5/5, clayey, loose, dry		Boring sealed with neat cement
4-	SB7-5		Sility Clay	- 1	
			black N 2.5/ - very dark gravish green 5G 2.5/2, hard, very	-2E	
6			slightly moist	100	standing water 7.5 ft.
8-				557.60	standing water 7.5 ft.
1		No. Test	Clayey Sand	1 2	
10-	SB7-10		pale brown - yellowish brown 10Y 8/3-5/8 mottled, firm, moist	177.5	
-					
12-			Clayey Sitt light olive brown 2.5Y 5/4, very clayey, firm, moist	1	
				-50	
14-	SB7-15		silty Clay olive brown 2.5Y 4/4 - olive 5Y 4/4 mottled, firm, moist	4 3	water sample S87-W-15
16-		1 1	End of Borehole		
1		1 1			
18-					
		1			
20-		1			
22-					
		1		1	
24-					
4					
26-					
-				1 1	
28-				1 1	
30-		1			
-00				1 1	
32-					

Drill Date: 10/10/03

Drill Method: Geoprobe

Total Depth: 20 Depth to Water: 15.0 + Reviewed by: JKR

Logged by: RFF

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

Sheet: 1 of 1

Project Name: Omega Termite

Client: Omega Termite

Log of Geoprobe Corehole: SB8

Location: 807 - 75th Ave, Oakland, CA

Depth	Sample	Soil Symbol	Ground Surface	Boring Destruction Data	Remarks
0-		2000	Ground Surface Sitty Clay - Clayey Sitt - FILL?	185 9	
2-		:0.5 2005	yellow brown 10YR 6/6, gravelly, rocks, firm, slightly moist		Boring sealed with neat cement
4-	S88-5		Silty clay	Ţģe.	
6-			light olive brown 2.5Y 5/4 Core jammed in sampler not recovered, clay is sticky, jaming sleeve accordian like into top of sampler		
8-			Sitty Clay light olive brown - olive brown 2.5Y 5/4-4/4 -yellowish brown		
10-	SB8-10		10YR 5/8 mottled, firm, moist	1600	
12			Silty Clay - Clayey Silt light yellowish brown 2.5 Y 6/4 - 10YR 6/4 w/s olive - pale olive		water 12.0 ft, not stablized
14-	SB8-15		5Y 6/4-5/4 mottling, firm, moist	1000	water sample SB8-W-15
16-			End of Borehole		
18-					
20-					
22-					
24-					
26-					
28-					
30-					
32-					

Drill Date: 10/9/03

Drill Method: Geoprobe

Total Depth: 15 Depth to Water: 12.0 - Reviewed by: JKR

Logged by: RFF

AEI Consultants 2500 Carnino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

Sheet: 1 of 1

Project Name: Omega Termite

Client: Omega Termite

Log of Geoprobe Corehole: SB9

Location: 807 - 75th Ave, Oakland, CA

Depth	Sample	Soil Symbol	Ground Surface	Boring Destruction Data	Remarks
0-		1001100000	Ground Surface		
		288	Asphalt 4" Base Rock		
2-		5000	Clayey Gravel - FILL	17.0	Boring sealed with neat cement
4		9000	light yellowish brown, sandy, hard, dry - slightly moist		near cement
-	S88-5		Silty Clay	100	
6-			dark greenish gray 10Y 3/1 - very dark gray 10Y 3/, firm, moist Asphalt 2", Baserock 4"	120	
_ =			Sitty clay	100	water stabilized 7.25 ft.
8-			black N 2.5/, firm, moist		
10-	SB8-10		Silty Clay greenish black 5G 2.5/1, firm, moist		
12-			Silty Clay olive brown 5 Y 4/4 - olive 2.5Y 4/4-5/4 mottled, firm, moist		
14-	SB8-15		Silty Clay w/s Clayey Silt light yellowish brown 2.5Y 6/4 - 10YR 6/4 w/s olive - pale olive 5Y 6/4-5/4 mottling, firm, moist		
16-			Silt	5.1	First water @16.0*
18-			olive 5Y 5/4-4/3, clayey, firm, wet		
	wasser)		Silty Clay	100	water sample SB9-W-20
20-	SB9-20		Silt a/a	Time	
+			Clay olive 5Y 5/4-4/3, silty, firm, moist		
22-			End of Borehole		
24-			AND THE STREET STREET		
26					
28-					
30-					
32-					

Drill Date: 10/9/03

Drill Method: Geoprobe

Total Depth: 20 Depth to Water: 16.0 Reviewed by: JKR

Logged by: RFF

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

Project Name: Omega Termite

Client: Omega Termite

Log of Geoprobe Corehole: SB10

Location: 807 - 75th Ave, Oakland, CA

Depth	Sample Label	Soll Symbol	Ground Surface	Boring Destruction Data	Remarks
0-		100000000	Ground Surface		
- 1		4444	Asphalt 4"	15-3	
2-			Base rock - FILL) 12 16 15 15 15 15 15 15 15
-			Sandy Gravel - FILL	- 3/4-	Boring sealed with neat cement
4-			dark grayish brown 10YR 4/2, clayey, rocks, hard, very slightly moist		
6-			Silty Clay	15.00	water state Was 4 @ 0 05
+			black N 2.5/, firm, moist	V. S	water stabilized @ 6.65
8-					
10	SB10-10		greenish black 10Y 2.5/1 at base Silty Clay		
12-			dark olive gray 5Y 3/2, locally gravelly, firm, moist Sitty Clay		
14	SB10-15	DOM P	ofive - ofive gray 5Y 5/4-5/2 - yellowish brown 10Y 5/8, firm, moist		First water @14.5 water sample SB10-W-15
16-			Clayey Sand greenish gray 5G 6/1 - olive - pale olive 5Y 5/3-6/3, silty, shell fragments, firm, very moist		The state of the s
18-			Gravel olive brown 2.5Y 4/4 - dark yellowish brown 10YR 4/6, silty		
20-			clayey, firm, wet		
+		1	End of Borehole		
22-					
24-					
26					
28-		8			
30-					
32					

Drill Date: 10/9/03

Drill Method: Geoprobe

Total Depth: 15 Depth to Water: 14.5 Reviewed by: JKR

Logged by: RFF

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

Sheet: 1 of 1

Sheet: 1 of 1

Project No: 6861

Project Name: Omega Termite

Client: Omega Termite

Log of Geoprobe Corehole: SB11

Location: 807 - 75th Ave, Oakland, CA

Depth	Sample	Soll Symbol	Ground Surface	Boring Destruction Data	Remarks
0-		1001000001	Ground Surface Asphalt 4*	1/10U =	
_		388	Base rock - FILL		
4-			Sandy Gravel - FILL yellowish brown 10YR 5/6-5/8, clayey, rocks, hard, slightly moist Sifty Clay		Boring sealed with neat cement
6-			black N 2.5/, firm, moist		water stabilized @ 5.50
8-			\	100	
10-	SB10-10		Sitty Clay black N 2.5/ w/s clive gray to clive 5Y 4/3-4/2 mottling		
12-			Sifty Clay olive brown 2.5Y 4/3, firm, moist		
14-	SB10-15	200	Clayey Sift olive brown 2.5Y 4/3, firm, moist		First water @14.0 water sample SB11-W-15
16-		1	Send		
18			dark grayish brown 2.5Y 4/2, fine grained, poorly graded, firm, wet		
20-					
22 -					
24-					
26-					
28-					
30-					
32-				1	

Drill Date: 10/9/03

Drill Method: Geoprobe

Total Depth: 15 Depth to Water: 14.5 Reviewed by: JKR

Logged by: RFF

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

Sheet: 1 of 1

Project No: 6861

Project Name: Omega Termite

Client: Omega Termite

Log of Geoprobe Corehole: SB12

Location: 807 - 75th Ave, Oakland, CA

Soil Symbol		Soil Symbol			Remarks	
0-		HHHH	Ground Surface Sandy Gravel		1	
2-			yellowish brown 10YR 5/5, clayey, loose dry Silty Clay		Boring sealed with neat cement	
4-	SB12-5		dark grayish brown 10YR 3/2 - dark brown 7.5YR 3/2, firm moist Silty Clay black N 2.5/, hard, very slightly moist		neat čement	
6-			Silty Clay		standing water 6.5 ft.	
8-			strong brown 7.5 YR 4/6 - dark olive gray 10YR 3/2 Silty Clay	es to		
10-	SB12-10		yellowish brown 10YR 4/6 - greenish gray 10GY 5/1 mottled, firm, moist		first water @ 6.5 ft.	
12-			Clayey Sand dark yellowish brown - yellowish brown 10YR 4/6-5/8, firm, moist			
14	SB12-15		Sand, slightly clayey Clayey Sand, as above		water sample SB12-W-15	
16-			Clay light yellowish brown - yellowish brown 10YR 6/4-5/6, moist			
18 -			End of Borehole			
20-						
22-						
24-						
26-					G	
28-	.1					
30-					Į.	
32-					V	

Drill Date: 10/10/03 Drill Method: Geoprobe

Total Depth: 15 Depth to Water: 10.5 Reviewed by: JKR

Logged by: RFF

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

Project Name: Omega Termite

Client: Omega Termite

Log of Geoprobe Corehole: SB13

Location: 807 - 75th Ave, Oakland, CA

		Soil Symbol			Remarks	
0-			Ground Surface	Boring Destruction Data		
1		2000	Sandy Gravel - FILL yellowish brown 10YR 5/5, clayey, loose dry	- 3		
2-			Silty Clay	100	Charles and advise	
+			very dark bluish gray 5PB 2.5/, hard, very slightly moist		Boring sealed with neat cement	
4-	SB13-5		Silty Clay	1		
_ †			black N 2.5/ - very dark gravish green 5G 2.5/2, hard, very	1000		
6-			slightly moist			
8-		HHHH	Silty Sand	114.00		
•		HHHHH	dark green gray 10Y 4/1 - olive 5Y 4/4 - yellowish brown 10YR			
0-	SB13-10		5/8 mottled, clayey, firm, moist	15.15		
-			Silty Clay	SUE:		
2			olive brown 2.5Y 4/4 - olive 5Y 4/4 mottled, firm, moist	3.3		
-				-		
14-	SB13-15		Clayey Silt	13-50		
	0015-15		light olive brown 2.5Y 5/4, very clayey, firm, moist	VO S	6 	
6-			Silty clay	100	standing water 16.20 ft.	
. 1			light olive brown 2.5Y 5/4	10.00		
8-			Core jammed in sampler not recovered, clay is sticky, jaming sleeve accordian like into top of sampler	100	water sample SB13-W-20	
20-			seere according the life top of sampler			
٠.			End of Borehole			
2-						
-						
4-						
4						
6-						
. 1						
8-						
0						
2-						

Drill Date: 10/10/03

Drill Method: Geoprobe

Total Depth: 20 Depth to Water: 15.0 + Reviewed by: JKR

Logged by: RFF

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

Sheet: 1 of 1

Sheet: 1 of 1

Project No: 6861

Project Name: Omega Termite

Client: Omega Termite

Log of Geoprobe Corehole: SB14

Location: 807 - 75th Ave, Oakland, CA

Soil Symbol		A CO. L. S.	Ground Surface	Boring Destruction Date	Remarks	
0-		947 E (S7)8973	Ground Surface			
		5000	Sandy Gravel - FILL	Sec.		
2-		min	gray N 5/-yellowish brown 10YR 5/5, clayey, loose dry		8	
					Boring sealed with neat cement	
			Silty Clay	1	hydrocarbon odor @ 4"	
24	SB14-4.5		very dark grayish brown 10YR 3/2, hard dry - slightly moist @ 4' Becoming	3.39	nyurocarbon odor @ 4	
			black N 2.5/, firm - hard, very slightly moist			
6-	1			HI -		
. 1			Sandy Clay	100		
8-			dark gray 5Y 3/1 - dark olive gray 5YR 3/2, firm moist	17.		
್ಷ	SB14-9.5		Clayey Sand	3 10		
10-		2327 ST	dark olive gray 5Y 3/2, firm, moist	45		
1		and the		12 -		
12-	1		Clayey Sitt - Sand yellowish brown 10YR 5/8 - olive brown 2.5Y 4/4 mottled, firm,			
	SB14-14		moist, very slight odor, silt grading downward to sand	- W -		
14-	0D14-14	777777	Silty Clay	12.0		
-		<i>HHH</i>	yellowish brown 10YR 5/8 with dark gray 10YR 4/1 root molds,	142		
16-			slightly moist, trace odor	634		
_	004440		Silty Clay			
18-	SB14-18		yellow brown 10YR 5/6-8 w/s dark gray - olive gray 5Y 4/1-2	100		
- 1			mottling around root molds, firm, moist	220		
20-				10	standing water 20.5 ft.	
			Clayey Sand	1		
22-		111111	dark greenish gray 5GY-10GY 4/1, mod firm, wet? sli odor	100	Refusal with dual-tube @ 22.5'	
			Sitty Clay	EVE		
24-	SB14 -	20111	olive - olive brown 5Y-2.5Y 4/1, firm-hard, moist	200	advanced with Macro-core to 30'	
17	24.5		nor the Them of 2 good Leasters Asset Leaving 11 Sept. (2007)	13.77		
26-	-5.07		Silty Clay	UE		
20 -			It. brownish yellow - brownish yellow 10YR 6/4-6, firm, moist	1200		
20	SB14-28			CE.		
28-			Silty Clay	1	0 1000 1	
220		5700	dark greenish gray 10Y4/1-5G 3/1, firm, moist	100	Gravel @ 29' wet	
30-		7.1-2	Gravel /			
- T			v. dk. green gray - v. dk. grayish green 5G 3/1-2, firm, wet			
32-			End of Borehole			

Drill Date: 10/10/03 Drill Method: Geoprobe

Total Depth: 30 Depth to Water: 20.5 Reviewed by: JKR

Logged by: RFF

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

APPENDIX C

Laboratory Analyses
With
Chain of Custody Documentation

Lacon and an area	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
McCampbell Analytical Inc.	Telephone: 925-798-1620 Fax: 925-798-1622
	http://www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID: #6861; Omega Termite	Date Sampled:	10/10/03
2500 Camino Diablo, Ste. #200		Date Received:	10/10/03
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported:	10/23/03
Thanks Groom, Or 19797	Client P.O.:	Date Completed:	10/23/03

WorkOrder: 0310181

October 23, 2003

Dear Robert:

Enclosed are:

- 1). the results of 8 analyzed samples from your #6861; Omega Termite project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

	McCampbell
--	------------

110 2nd Avenuc South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID: #6861; Omega Termite	Date Sampled:	10/10/03
2500 Camino Diablo, Ste. #200		Date Received:	10/10/03
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted:	10/12/03-10/16/03
Wanter Olook, Orl 94997	Client P.O.:	Date Analyzed:	10/12/03-10/16/03

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	method: SW5030B		,	-	methods: SW8021		III DI BA AILU		Order: 0	310181
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
002A	SB13-14	s	ND,a	ND	0.049	ND	0.014	0.019	1	112
005A	\$B12-15	s	ND	ND	ND	ND	ND	ND	1	111
006A	SB14-4.5	s	360,a	ND<2.5	1.4	1.5	8.0	37	50	126
007A	SB14-9.5	s	800,a	ND<2.0	2.9	3.5	16	71	40	#
010A	SB14-28.0	s	37,g,m	ND	ND	ND	0.015	0.11	1	95.4
012A	SB13-W-20	w	89,a,i	ND	27	0.53	2.4	6.2	1	97.5
013A	SB12-W-15	w	ND,i	ND	ND	ND	ND	ND	1	102
014A	SB14-W-30	w	2300,a,h,i	45	120	7.8	35	100	5	98.6
			····							
								_		
	Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
	e reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DHS Certification No. 1644

4

_Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	McCan
--	-------

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID: #6861; Omega Termite	Date Sampled: 10/10/03
2500 Camino Diablo, Ste. #200		Date Received: 10/10/03
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 10/10/03
317,37	Client P.O.:	Date Analyzed: 10/15/03-10/16/03

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

extraction method: SV	V3550C		Analytical methods: SW8015C	;	Work Or	der: 031018
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0310181-005A	SB12-15	s	ND	ND	1	106
0310181-006A	SB14-4.5	S	130,d,b	ND	ı	110
0310181-007A	SB14-9.5	S	240,d,b	8.2	1	111
0310181-010A	SB14-28.0	s	45,k	ND	1	109
0310181-013B	SB12-W-15	w	150,g,f,b,i	320	1	109
0310181-014B	SB14-W-30	w	72,000,k,h,i	ND<25,000	100	129
						:
			· · · · · · · · · · · · · · · · · · ·			

Reporting Limit for DF =1; ND means not detected at or	w	50	250	μg/L
above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in μg/L, wipe samples in μg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than -2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in cocluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

McC	ampbell Analyti	cal Inc.	Telepl	none: 925-798-1620 Fax noceampbell.com E-mail: n	: 925-798-16	.2					
All Environme	ental, Inc.	Client Project ID	: #6861; Omega Termite	Date Sampled:	10/10/03						
2500 Camino	Diablo, Ste. #200			Date Received:	10/10/03						
Walnut Creek	CA 04507	Client Contact: 1	Robert Flory	Date Extracted:	10/20/03						
wantat Creek	, CR 94391	Client P.O.:		Date Analyzed:	10/21/03						
Analytical methods:	SM5520B/F	Petroleum Oil &	Petroleum Oil & Grease with Silica Gel Clean-Up* Work Order: 0310								
Lab ID	Client ID	Matrix	POG			DF	% SS				
0310181-014C	SB14-W-30	w	ND,h,i			1	N/A				
 											
					·						
<u>-</u>											
											
	<u> </u>										
<u> </u>											
	Limit for DF =1; not detected at or	w	5.0			m	g/L				
	e reporting limit	S	NA NA	·	·=		IA				
DF = dilution facto # surrogate diluted	r (may be raised to dilute out of range or not appli	e target analyte or matri cable to this sample.	mg/kg, wipe samples in mg/wipe, p x interference). at IR result achieved; h) a lighter the								
liquid sample that o	contains greater than ~2	vol. % sediment.	wellered, il/ a lighter th	a. vooi millishidie sii	product	ra hrezen	i, i <i>j</i>				

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0310181

EPA Method: SW80	21B/8015Cm E	Extraction:	SW50308	W5030B BatchID: 8902				Spiked Sample ID: 0310181-012A					
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)			
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
TPH(btex) [£]	ND	60	122	116	5.22	107	104	3.01	70	130			
MTBE	ND	10	127	128	1.35	107	108	0.702	70	130			
Benzene	27.45	10	NR	NR	NR	107	102	4.55	70	130			
Toluene	0.53	10	90.4	81.3	10.1	98.2	91.1	7.58	70	130			
Ethylbenzene	2.42	10	84.1	80.8	3.13	85.3	108	23.5	70	130			
Xylenes	6.20	30	86	82.7	3.17	100	100	0	70	130			
%SS:	97.5	100	96.1	96.1	0	94.8	102	7.52	70	130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0310181

EPA Method: SW802	21B/8015Cm E	Extraction:	SW5030E	3	BatchID:	8905	Spiked Sample ID: 0310181-002A					
	Sample	Spiked	MS*	MSD*	MS-MSD	SD LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(btex) [£]	0.21	0.60	76.1	77.8	1.53	99.3	98.7	0.591	70	130		
MTBE	ND	0.10	101	104	2.49	103	103	0	70	130		
Benzene	0.05	0.10	59.5, F1	60.1, F1	0.604	98.6	97	1.60	70	130		
Toluene	ND	0.10	92.6	93.5	1.01	98	96.6	1.37	70	130		
Ethylbenzene	0.01	0.10	96.4	96.9	0.435	102	101	1,21	70	130		
Xylenes	0.02	0.30	93.7	93.7	0	103	103	0	70	130		
%\$\$:	112	100	99.6	101	1.40	106	101	4.83	70	130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

F1 = MS / MSD exceed acceptance criteria. LCS - LCSD validate prep batch.

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0310181

EPA Method: SW80	21B/8015Cm E	Extraction:	SW5030B	1	BatchID:	8909	Spiked Sample ID: 0310181-005A					
	Sample	Spiked	MS*	MSD*	MS-MSD	S-MSD LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(btex) [£]	ND	0.60	98.5	99.5	0.996	128	116	10.0	70	130		
MTBE	ND	0.10	102	97.4	4.71	120	108	10.4	70	130		
Benzene	ND	0.10	96.5	95.7	0.856	100	95.7	4.71	70	130		
Toluene	ND	0.10	96.3	96	0.307	93.7	86.9	7.53	70	130		
Ethylbenzene	ND	0.10	101	100	0.305	102	98	3.92	70	130		
Xylenes	ND	0.30	100	100	0	93	88.7	4.77	70	130		
%SS:	111	100	105	103	1.92	91.4	88.2	3.56	70	130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

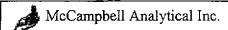
QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0310181

EPA Method: SW8015C	Extraction: SW3510C				BatchID: 8878			Spiked Sample ID: N/A			
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(d)	N/A	7500	N/A	N/A	N/A	89.1	89.7	0.729	70	130	
%SS:	N/A	100	N/A	N/A	N/A	102	102	0	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


MS = Matrix Spike; MSD = Metrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS – MSD) / (MS + MSD) * 2.

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0310181

EPA Method: SW8015C	Ε	Extraction: SW3550C			BatchID: 8906			Spiked Sample ID: 0310181-005A				
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(d)	ND	150	93.4	92.1	1.40	94.7	94.9	0.203	70	130		
%SS:	106	100	104	103	1.27	104	104	0	70	130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0310181

EPA Method: SW8015C	Extraction: SW3550C)	BatchID: 8910			Spiked Sample ID: 0310184-003A			
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(d)	2.71	150	91.5	91.8	0.314	96.6	94.1	2.60	70	130	
%SS:	99.1	100	104	105	1.01	106	103	2.50	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID: #6861; Omega Termite	Date Sampled: 10/09/03
2500 Camino Diablo, Ste. #200		Date Received: 10/09/03
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported: 10/16/03
	Client P.O.:	Date Completed: 10/16/03

WorkOrder: 0310149

October 16, 2003

Dear Robert:

Enclosed are:

- 1). the results of 10 analyzed samples from your #6861; Omega Termite project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly

Angela Rydelius, Lab Manager

	1
6.3	

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID: #6861; Omega Termite	Date Sampled: 10/09/03
2500 Camino Diablo, Ste. #200		Date Received: 10/09/03
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 10/09/03
Wanter Creek, CA 94397	Client P.O.:	Date Analyzed: 10/10/03-10/11/03

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction :	method: SW5030E	l		Analytical	methods: SW8021	B/8015Cm		Work (Order: 0:	310149
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
002A	SB10-15	S	ND	ND	ND	ND	ND	ND	1	96.4
004A	SB9-15	S	ND	ND	ND	ND	ND	ND	1	102
007A	SB8-15	s	ND	ND	ND	ND	ND	ND	1	95.7
009A	SB11-15	s	ND	ND	ND	ND	ND	ND	l	89.9
A010	SB7-10	S	ND	ND	ND	ND	ND	ND	1	90.0
				[i +		<u> </u>			<u>.</u>	
				; ; {	<u> </u>	<u> </u>	<u> </u>		٠	; ⊢
					ļ	<u> </u>				
į					1	<u> </u>	<u> </u>		1	
,										į
		; i							· <u>·</u>	1
				i	i					
	, , ,									
İ										
			· · · · · · · · · · · · · · · · ·	1					1	
Reporting	Limit for DF=1;	w	NA	NA	NA	NA	NA	NA	1	ug/l
	s not detected at or he reporting limit	s	1.0	0.05	0.005	0.005	0.005	0.005	i	mg/K

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DHS Certification No. 1644

-Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant: b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

Ĺ
4
7

110 2nd Avenue South, #D7, Pacheco. CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID: #6861; Omega Termite	Date Sampled: 10/09/03
2500 Camino Diablo, Ste. #200		Date Received: 10/09/03
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 10/13/03-10/15/03
Wanter Groom, Gri 5 1577	Client P.O.:	Date Analyzed: 10/13/03-10/15/03

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	method: SW5030B			Analytical	methods: SW80211	3/8015Cm		Work (Order: 0	310149
Lab ID	Client ID	Matrix	TPH(g)	МТВЕ	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
011A	SB10-W-15	w	ND i	ND	ND	ND	ND	МD	i	#
012A	SB9-W-20	w	ND,i	ND	ND	ND	ND	ND	J	100
013A	SB8-W-20	w	1700,a,i	8.3	940	2.7	0.58	2.2	1	106
014A	SB11-W-15	w	ND,i	ND	ND	ND	ND	ND	1	,#
015A	SB7-W-15	w	ND,i	ND	ND	ND	ND	ND	1	99.6
:										:
1					:				• •	Ì
!			·						· • · · · ·	 !
,	·· -		-	· ·· ·- · ·	1 · · ·		-		•	;
		i		. =					:	!
]	v	· ····································			+ · - · · - · - · · · · · · · · · · · ·		Ī	
i		T		·		-		····	Ť	i r
		1								
4		 			 					
Ī		 	** ** ** **	<u></u>	+		1		ļ- ·	!
		+			i	<u></u>			.ļ	! !
Reporting	g Limit for DF=1;	w	50	5.0	0.5	0.5	0.5	0.5	<u> </u>	μg/
	s not detected at or he reporting limit	S	NA	NA	NA NA	NA	NA -	NA	. المالية 1	mg/K

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?: e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0310149

EPA Method: SW80	21B/8015Cm E	Extraction:	SW5030B		BatchID:	888 3	Spiked Sample ID: 0310138-008A									
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)						
_	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High						
TPH(btex)€	ND	0.60	106	104	1.53	106	110	3.80	70	130						
МТВЕ	ND	0.10	97	100	3.36	108	91.1	17.1	70	130						
Benzene	ND	0.10	102	106	3.56	106	93.6	12.8	70	130						
Toluene	ND	0.10	87.3	88.9	1.81	95.6	86	10.6	70	130						
Ethylbenzene	ND	0.10	104	106	1.74	105	98.4	6.11	70	130						
Xylenes	ND	0.30	96	95	1.05	93.3	88.7	5.13	70	130						
%SS:	107	100	103	101	1.96	101	85.2	17.0	70	130						

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Dupilicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0310149

EPA Method: SW80	021B/8015Cm E	Extraction:	SW5030B		BatchID:	8876	S	Spiked Sample ID: 0310150-006A									
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)							
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High							
TPH(btex) [£]	ND	60	107	101	5.46	100	99.7	0.581	70	130							
МТВЕ	ND	10	101	100	0.592	105	102	2.85	70	130							
Benzene	ND	10	104	102	2.20	103	100	2.51	70	130							
Toluene	ND	10	105	103	1.58	103	101	1.92	70	130							
Ethylbenzene	ND	10	106	105	1.59	105	104	1.73	70	130							
Xylenes	ND	30	107	103	3.17	110	107	3.08	70	130							
%SS:	104	100	102	101	1,27	99.3	100	1.18	70	130							

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

KW.

	McCAMPBELL ANALYTICAL INC. 110 2 nd AVENUE SOUTH, #D7														(CH	A	IN	O	F	CU	S	ro	D	Y I	RE	C	OR	W						
ļ	1	10 2 ⁴⁶ A	venue so Co, ca 94)UTH,	# D7 KN									T	UF	N	AR	Ol	UNI	D T	ľIN	1E						ŀ			1			Æ	4 _
Telephor	ie: (925) 798		209 012 21	~~~		ax:	(925	79	98-1	622												72 HR	5 D	ÀΥ											
D	ا جمع منان			-TT 184										K.I) K 1	₹eq	uire	********	_		_			-	0	W	rite	On	ĻΨ				Τα		·
Report To: Kal	7621 111	200	<u> </u>	ill Te): 								\dashv		1				Ana	uys	18 19	eq1	Test		1				╆	꾸	ther	Τ-	LOB	ment	.8
Company: HE	I Con ye		2 2	.448					esp		7					E.F	İ		-		i								ł	İ	1				
Worlant			4597E		t.		ير	.	egsy.	٠٠ <u>ر</u>	•		\dashv	BE.		E							ļ	2							.		1		
Tele: 0 535			27/1-12 B			25	- 9	140	1-	23	89.	5	\neg	8015/MTBE		0 E&	(1.3	į	- {					/83			}								
Project#: 68	_	·		rojec									P	8015		(552)	418						ŀ	27					ŀ	-					
Project Location:		35th.	Oak	Ø17 d	}			1	, /			•		+ 03		386	SES		ğ		감			5/8]	ļ	5					1			
Sampler Signatur			1											27802		S	gar		8		õ	_		EPA 625 / 8270 / 8310			92						1		
			LING		E	MATRIX METHOD PRESERVED							Gas (602/8020	TPH as Diesel (8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)		BTEX ONLY (EPA 602 / 8020)		PCB's ONLY	EPA 624 / 8240 / 8260					Lead (7240/7421/239.2/6010)									
			I	E	i i		1			╁				8 Q	8) Je	ij		멸		8	8	40	8	's b	-S	縃	421	l					i		
SAMPLE ID (Field Point Name)	LOCATION			Containers	Type Containers			1		Ì			- {	BTEX & TPH as	Jies		g	EPA 601 / 8010		EPA 608 / 8080	EPA 608 / 8080	28.	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Motals	\$		l				-		
(F. sever a guite a surge).		Date	Time		2	Water		١,			إيرا	S	ē	49	818	2	i.P.	8	X	8	8	62	625	ľs/	1-1	T 3	E			1					
		i		#:	2	¥	Soil	₹ ₹	Sindge Other	뎚	HC	HINO,	Other	E	T.	Į.	컎	E		EPA	EPA	EPA	HP.	PAE	3	LUI	<u>3</u>	RCI		1					
3B10-10		Willer	C 549			Н		+		1				\dashv															Zo.	1.1	1	┢			
5310-11		77	0894	-				1		1				X									_		-					-		\vdash			
519-10			1020					+	1	忊				*		_	_	1	_										40	2/1	6	\vdash			
13/307 - 15	······································		1030				_	_	+	†				X			_	\exists		_					-				7	-	1-	⇈	 		
569-20		1-1-	1041					+		╁	 -			/			-	7	7		\dashv							_	14	1/1	1	\vdash	-		
505-10			1200	i				+		1							_	_	\neg		┪								Ko	11		 			
508-15			205		[П		+		1	-			X			~+		7	_	_							_	1.21		†				
468-15			- RZ	7				1	1	1										_		_							Z	16	بيساز	16	ļ		 -
9311 - 10			1325		7			Ť		T				\neg	-	_	\dashv		寸		\neg								H	1/6					\neg
5h11 -19			1332							Τ				X															144			\vdash		******	
JB7-10		1	141577	1						Ī				X															1/k	SIO	11				
7/37-15		<i>y</i>	1445	K	K-		-	1						X	<u>_</u>				Ţ																
The state of the s		<u>-</u>	· · · /	, ·	1			\top					Ţ				\dashv		寸		\neg									Ι_				*****	
	1 4								[Τ				T		1			1		7														
Rollingulahed Har	<i></i>	Dates	Time	Rece	lved B	y:	1	سب. ابر	7	<u> </u>			寸																-	1		<u> </u>		1	
1600 190	OC!	10/1/23	435	<u>حــــ</u>	··	_	س_ا	_	<i>ب</i>		8		_]	¥	CEA	,o						/	¥) (1) (1)	gri	.VA	TIC		OAS	C	D&G	N	METALS	OTI	TER
Relinquished By:		Date:	Time:	Rece	lved B	31							\exists				ON	БIТ	TON	i	<u> </u>		I	\PP	RO	PRI	ATE		/					ч.	
		<u> </u>				···	· ·										PAC							CON	ITA	INE	RS_	_	<u>/</u>	_					
Relinquished By:		Dates	Timer	Rece	Received By:					£	ЛEC	HL	ORU	\A'	CED	IV	LA]	- _		_PE	KS.	ER\	/ED	ΙΝ	LA)	R	—	_							
L.,		<u> </u>	<u> </u>																													1			

da: Mel:

	Telephor	McCAMPBELL ANALYTICAL INC. 110 2 st AVENUE SOUTH, #D7 PACHECO, CA 94553-5560 Telephone: (925) 798-1620 Fax: (925) 798-1622 Port To: Foliat Flora Bill To:																AR	OI	JN	D T	CIN	Œ		R	ST Ustra		D \	ķ	EC	CO:		I	HR	5 DAY
	Report To:	best 1	Tare		ill Te	o:												1		Ana					7						Oth	er E	Τ	Comi	nents
	Company: 4 E	I. Con.	ou Lto	# (=)					Ja.	47	مسلم						<u>.</u>														T				
	:2500 Ca	Mus Ochia	ala e	9471	-CZ		7		A 5 >				J		183 183		Greese (5520 E&F/B&F)								9						1		1		
	Telo: () 925	-253 W	alero	an IZZ	ar: (9.1		(H) (A)	LC. UU	<u> </u>	W//	777.	<u> </u>	SO15yMTBE		집	≘					1		183							Ì			
		861			rojec					7-1		1.4.A		_	8015		55.2	£ 18	ŀ	۲				,	270							1			
	Project Location:	80117	516	en 6	ak	Corn	6								#) A	STEE		202	-	À			25.7			ĕ	ļ						
	Sampler Signatur	e: field	7	THE	22	<i>y</i> T									12/180		5	OCZ		22	İ	ő	8		A 62			7,66					ł		
			SAMI	PLING -	, ,	823		MA	TRI	X	Pi	nigi USI	HOI		Cas (602/18020 +	00.5	ਲ	포		PA	- {		928/		JA K			733				- 1	۱		
i	SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Contniners	Water	Soii	Air	Other	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				BTEX & TPH as G	TPH as Diesal (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA 602 / 8020)	EP.A. 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240	EPA 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	RCI						
NS	5B10-W-15		10/4/02	0919	4	101	机	 	_	1	╁			7	X	7			-					-				-			1	- (
25	589-W-20		1/1/	1092		17	Y X		_ -	_	1	T		7	X				-									<u> </u>			1	+	7	14	
7	568-W-201			1230	1	\prod	T		1	1	İ	Ţ		7	X		-																- 1	1	han
5	51311-W-15		7	18,10	W.	17	X			1	1			\exists	X			一	•••													下		460-1	W.C.
10	587-W-15		\mathcal{I}	1455	4		X				1	1		7	X																	1	7		
•					718	-	1		_	1					*																		才	~	·
							-			-	<u> </u>	-						- 1	•			_			\neg						~				
											1		П									•									_				
							-		<u> </u>			ļ		7	7	-					7	****											+		
١									-		-	-			1		\neg			1						•	-	-	_			+	1		-
Į		•					7						П			7																			~
		"										Ī				- ''	_					7	` †						-				T		······································
Ì							1		$\neg \vdash$	1						·- : -	7						_						_						
Ì	77					1		П			7											7			_		_				-	\top			
	Relinquished By	Ly R	Date:	Time:	Rece	ived]	By:	<u>/\</u>		1		*************	1						,	l	<u></u>							****		VOAS	O.	&G	MO	ETALS	OTHER
9	Relinquished By!	1	Dates	Tlme: /	Rece	iver	нуғ				******			7	G	CE/U OO: IEAI	DO	ON!	Dri B A	TO!	T.Y	10.	*		LPP	RO	PRI	ATIC ATI	//7_ B	7			1		ļ
	Relinquished By:		Dates	Time:	Rece	lved l	Byt	•							Ū	ECI	HIL	ORI	NA'	CED	IN	LA	B	· `						ĹĀB	<u>. </u>				

I la: amal. If I work produced backon the Soll-W-15

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1 110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0310149

Client

All Environmental, Inc. 2500 Camino Diablo, Ste. #200 TEL:

PO:

(925) 283-6000

FAX: ProjectNo: Walnut Creek, CA 94597

(925) 283-6121 #6861; Omega Termite

Date Received: Date Printed:

10/9/03

10/9/03

	<u>-</u>			i		Reques	ited Tests	
Sample ID	CilentSampiD	Matrix	Collection Date	Hold	SW8021B/8015Cm			
				· —		<u></u>		
0310149-001	SB10-10	Soil	10/9/03 8:45:00	V	Α		ļ	
0310149-002	SB10-15	Soil	10/9/03 8:55:00		A		·	
0310149-003	SB9-10	Soil	10/9/03 10:20:00	✓ [A		<u></u>	
0310149-004	SB9-15	Soil	10/9/03 10:30:00		A			
0310149-005	SB9-20	Soll	10/9/03 10:40:00		A		i	
0310149-006	SB8-10	Soil	10/9/03 12:00:00		Α			
:0310149-007	SB8-15	Soil	10/9/03 12:05:00		Α			
0310149-008	SB11-10	Soil	10/9/03 1:25:00		A			
0310149-009	SB11-15	Soil	10/9/03 1:32:00		Α		·	
0310149-010	SB7-10	Soll	10/9/03 2:40:00		A			
0310149-011	SB10-W-15	Water	10/9/03 9:15:00		Α			
0310149-012	SB9-W-20	Water	10/9/03 10:50:00		A			
0310149-013	SB8-W-20	Water	10/9/03 12:30:00		Α .			
0310149-014	SB11-W-15	Water	10/9/03 1:49:00		A			
0310149-015	SB7-W-15	Water	10/9/03 2:55:00		Α			

Prepared by:	Melissa Valles
--------------	----------------

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.