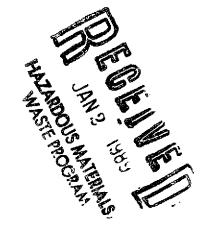


January 24, 1989 Job No. 211-71-11

Mr. Larry Seto Alameda County Health Care Services Department of Environmental Health 80 Swan Way, Room 200 Oakland, CA 94621

Subject: Two Additional Monitoring Wells

Jet Gas Station


44 Lewelling Boulevard San Lorenzo, California

Dear Mr. Seto:

Four ground-water monitoring wells and one deep exploratory boring were completed on December 2, 1988 at the subject site as proposed in the workplan by Alpha Consultants, Inc., dated August 30, 1988 (Alpha Consultants, Inc. is now associated with Du Pont Biosystems). The monitoring wells were developed and sampled on December 5, 1988. The purpose of these monitoring wells was to establish the lateral limits of gasoline contamination within the ground water beneath the site. During the drilling and sampling portions of the fieldwork, gasoline odors were noted in monitoring wells MW-4 and MW-7 (see Site Plan, Figure 1).

The laboratory analytical results from the most recent ground-water sampling are attached. Moderate levels of gasoline constituents were reported from monitoring wells MW-4 and MW-7. As a result, we do not have the lateral limits of the gasoline contaminant plume fully defined. We propose the installation of two additional ground-water monitoring wells at the approximate locations shown on Figure 1. These two additional monitoring wells are deemed necessary for full definition of the plume boundaries.

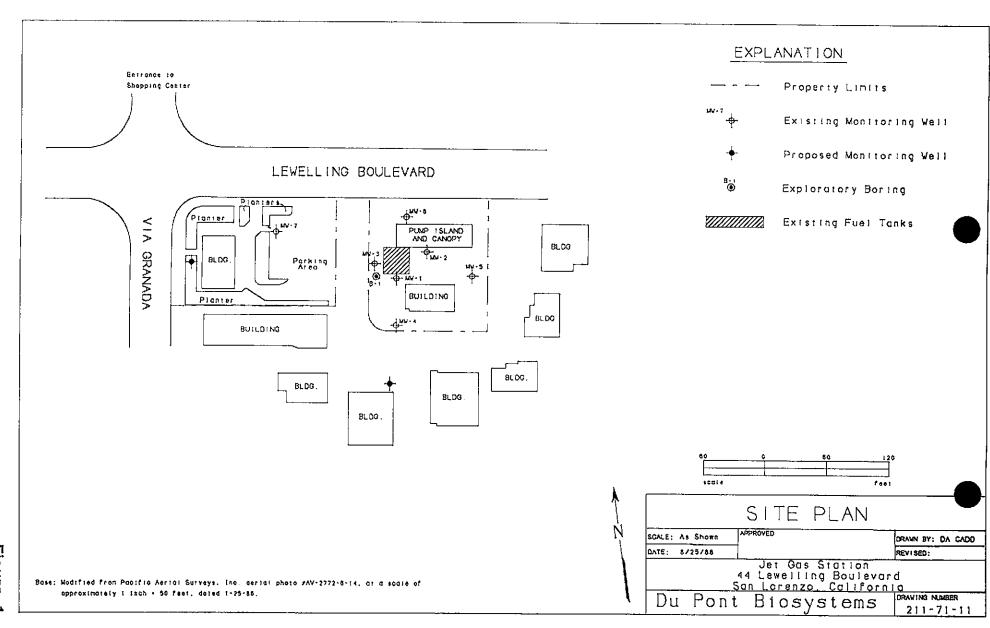
The monitoring wells will be constructed using 2-inch diameter, schedule 40 PVC and we anticipate the well screens will be placed from 10 to 30 feet below the existing grade. Additional construction details are shown on Figure 2, Typical Monitoring Well Construction. All drilling, sampling, and sample handling procedures and policies outlined in our workplan will be followed during the construction of the two wells.

Page 2 January 24, 1989 Job No. 211-71-11

Please do not hesitate to call if you have any questions or comments.

Respectfully submitted,

DU PONT BIOSYSTEMS


Darrell S. Klingman

Samuel S. Kling

Coordinator - Environmental Affairs

DSK:rw

WELL LOG MW-

JOB NUMBER:		DATE DRILLED:
JOB NAME:		SURFACE ELEVATION:
DRILL RIG:		DATUM:
SAMPLER TYPE:	DRIVE WEIGHT:	HEIGHT OF FALL:

		NOTE: Act	ual condi	tions may	differ	depend	ling upo	on conditions encountered
Depth feet	Well	Construction Concrete Apron	Lab * Analysis	Blows Per Foot	Sample Depth	Sample Type	USCS Symbol	Description
10		-Locking steel cover -PVC cap						
– 20		—14 Sack Cement/ bentonite grout						
– 30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Sch. 40 PVC Blank casing						
- 40		Bentonite Seal Centralizer Slotted Sch. 40						
– 5 0	-	PVC Screen, 0.01" or 0.02" Slots, Typical- ly 4 Slots per						
- 60		Inch —Sand Pack						
- 70								
- 80		Annular Space at least 2" but no greater than 6"				į		
- 9 0		- Sch. 40 PVC Blank Casing						
→ 10 0		Centralizer Bentonite Seal		:				
12 0								
– 14 0								! :
– 16 0								
	-			_				

Du	Pont	Biosystems
----	------	------------

Logged	ma.*	
Annew	od hve	

200

DATE:

1/5/89

LOG NO.:

6765

DATE SAMPLED:

12/5/88

DATE RECEIVED:

12/7/88

Sample Type: Water

5.6

0.3

1,000

CUSTOMER:

DuPont Biosystems

REQUESTER:

Ethyl Benzene

Curt Griffiths

PROJECT:

No. 211-Q6-11, San Lorenzo

ug/1

140

		MW1		MW2	MW3	
<u>Units</u>	Concen- tration	Detection Limit	Concen- tration	Detection Limit	Concen- tration	Detection Limit
ug/l	4,000	90	500	3	19,000	2,000
:						
ug/l	100	10	< 0.3	0.3	4,200	200
ug/l	16	10	1.3	0.3	2,400	200
ug/l	310	10	3.6	0.3	3,100	200
	ug/1 : ug/1 ug/1	Units Concentration ug/l 4,000 ug/l 100 ug/l 16	Units tration Limit ug/l 4,000 90 ug/l 100 10 ug/l 16 10	Units Concentation Detection Limit Concentration ug/l 4,000 90 500 ug/l 100 10 < 0.3	Units Concentration Detection tration Concentration Detection tration ug/l 4,000 90 500 3 ug/l 100 10 < 0.3	Units Concentration Detection Limit Concentration Detection Limit Concentration ug/l 4,000 90 500 3 19,000 ug/l 100 10 < 0.3

10

DATE: LOG NO.:

DATE SAMPLED: DATE RECEIVED: 6765 12/5/88 12/7/88 Two

1/5/89

PAGE:

	Sample Type: Water						
		MW4		MW5		MW6	
Method and Constituent	<u>Units</u>	Concen- tration	Detection Limit	Concen- tration	Detection Limit	Concen- tration	Detection Limit
DHS Method:			- -				
Total Petroleum Hydro- carbons as Gasoline	ug/l	4,500	20	3.9	2	190	2
Modified EPA Method 8020:							
Benzene	ug/l	< 2	2	< 0.2	0.2	4.0	0.2
Toluene	ug/l	< 2	2	0.78	0.2	1.3	0.2
Xylenes	ug/l	6.5	2	0.92	0.2	1.3	0.2
Ethyl Benzene	ug/l	2.3	2	0.23	0.2	0.63	0.2
		MW7		Dup. 1		Dup. 2	
DHS Method:							
Total Petroleum Hydro- carbons as Gasoline	ug/l	1,500	20	500	3	5.0	2
Modified EPA Method 8020:							
Benzene	ug/l	140	10	< 2	2	< 0.2	0.2
Toluene	ug/l	150	10	1.9	2	0.45	0.2
Xylenes	ug/l	370	10	< 2	2	1.6	0.2

10

ug/T

40

Hugh R. Mr. Lean

6.3

2

0.28

0.2

Hugh R. McLean Supervisory Chemist

Ethyl Benzene