

21 Ringwood Avenue • San Jose, California 95131-1721 • **(408) 453-7300** • Fax (408) 437-9526

June 10, 1997 Project 20805-127.004

Ms. Medula Logan Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda California 94502 Addingted to #744
BO

Re: Response to comments on Tier 1, Tier 2 Risk-Based Corrective Action Evaluation for ARCO Service Station No. 2111

Dear Ms. Logan:

This letter documents EMCON's response to comments you raised during our June 9, 1997 telephone conversation regarding the Tier 1, Tier 2 Risk-Based Corrective Action Evaluation for ARCO Service Station No. 2111, 1156 Davis Street, San Leandro, California (RBCA report) dated September 27, 1996.

The first comment was a request to verify the duration of potential exposure at the First Christian Church and Community Center located to the west of the ARCO Service Station 2111 (the Site). I spoke by phone with the assistant to the pastor of the church on June 10, 1997. She informed me that she and the pastor are generally at the church from 8 AM until 4 PM on weekdays, and that the pastor sometimes stays later the 4 PM. The church is also available for 2 to 3 hours in the evenings on weekdays for special classes, and on Sunday for morning and afternoon services. Day-care services are no longer offered at this location. This information substantiates the assumption used in the RBCA report that the potential exposure of the occupants of the church and community center is conservatively represented by the 40-hour per week commercial/industrial worker exposure scenario.

The second comment was a request to clarify the difference between the site-specific threshold level (SSTL) for the on-site and off-site receptors presented in Table 2 of the RBCA report. Although the commercial/industrial exposure scenario was used to represent both groups of potential receptors, a target risk level of 1 x 10⁻⁵ (consistent with worker exposure limits contained in Proposition 65) was used for the on-site workers, while a risk level of 1 x 10⁻⁶ was used for the off-site receptors to reflect the fact the latter group was not composed of workers, as detailed above. These differences are noted in the footnotes in Table 2.

The third comment pertained to why the potential risk from impacted soils was not quantitatively evaluated. As discussed on page 3 of the RBCA report, the maximum concentration of benzene in soil remaining at the site was very low (0.3 milligrams per kilogram). More importantly, these levels were detected within the water table fluctuation zone, and thus do not represent unsaturated zone soil as modeled in the RBCA chemical transport equations. The impact to residual soil at the Site appears to be from contact with impacted groundwater, and thus the evaluation evaluated groundwater as the potential source to both indoor and ambient air.

Hopefully the information presented above addresses your concerns regarding our RBCA evaluation of ARCO Station 2111. If you have any additional questions or concerns, please do not hesitate to call.

Sincerely,

EMCON

Dr. Ray Kaminsky

Environmental Chemist

cc: Paul Supple, ARCO

Valli Vouriganti, EMCON

September 27, 1996 Project 20805-127.004

Mr. Paul Supple ARCO Products Company PO Box 6549 Moraga, California 94570

Re: Tier 1, Tier 2 Risk-Based Corrective Action Evaluation for ARCO Service Station 2111, 1156 Davis Street, San Leandro, California

Dear Mr. Supple:

This report presents the results of the Tier 1, Tier 2 risk-based corrective action (RBCA) evaluation prepared for ARCO Products Company (ARCO) Service Station 2111, 1156 Davis Street, San Leandro, California (Figures 1 and 2). This report addresses potential exposures to current and future workers on the commercial property and to visitors to the First Christian Church/Community Center. The RBCA evaluation results indicate that no acceptable levels of risk are exceeded at this site.

Based on the results of investigations performed to date, the site qualifies as a "low risk" site as defined in the Regional Water Quality Control Board's (RWQCB) January 1996 Supplemental Instructions. The RWQCB's requirements are bulleted as follows:

· Source must be removed

The waste oil tank and petroleum impacted soils to the north of the service station building were removed in August 1994, and no petroleum hydrocarbons have been detected in the two monitoring wells downgradient of the former tank. Although source removal has not been performed to address the impacted groundwater associated with the fuel tanks, the declining levels of petroleum hydrocarbons in groundwater monitoring wells downgradient of the tanks suggests the presence of a temporary or diminishing source which is, in effect, equivalent to source removal.

• Site is adequately characterized

Soil and groundwater investigations have been performed at the site and have investigated the lateral and vertical extent of gasoline hydrocarbons in soil and groundwater (Soil and Groundwater Assessment Report, Arco Service Station 2111, San Leandro, California, EMCON, September 1996).

Plume is stable or receding

Concentrations of gasoline and its constituents (i.e., benzene, toluene, ethylbenzene, and xylenes [BTEX]) dissolved in groundwater have been decreasing in groundwater monitoring wells since the monitoring program was initiated in the third quarter of 1995 (Table 1).

• No threat to surface water or deep aquifers

Groundwater investigations have defined the vertical extent of the dissolved gasoline plume to be contained within the shallow water bearing zone (EMCON, September 1996). No deep aquifers or surface waters are impacted or threatened.

• No threat to human health

Based on the results of this evaluation, no threat to human health exists.

• No threat to the environment

No ecological receptors have been identified as threatened.

This RBCA evaluation was prepared in accordance with the guidelines contained in Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites (American Society of Testing Materials [ASTM] E-1739-95, November, 1995). In general, the tiered approach recommended in the ASTM guidelines is designed as a step-wise process to evaluate the potential risk posed by a chemical release, determine what corrective action, if any, is needed, and tailor that action to those risks.

The steps that make up the tiered RBCA approach are summarized in Figure 3. This report will follow these steps, and refer to information summarized in tables, figures, and Tier 2 RBCA Tool Kit worksheets contained in Attachment A. This report should be read in conjunction with reviewing these worksheets.

INITIAL SITE ASSESSMENT AND SITE CLASSIFICATION

Steps 1 and 2 of RBCA are designed to screen for the possibility that the site presents an imminent threat to public health and the environment. This refers, for example, to sites where an unconfined release to the surface has taken place in which direct contact to product is a possibility, or where a release presents a potential for an explosion to occur. Chemical impact to soil and groundwater at this site has been characterized (EMCON, September 1996) and summarized in Worksheet 4.2. No surface releases have taken place at this site which have not been immediately contained and cleaned. Although gasoline has been detected in the subsurface, these hydrocarbons do not present a potential risk of direct contact. A comparison of site-measured soil and groundwater data

The emission and air dispersion models, and the default modeling values used in the ASTM guidelines to generate the RBSLs are suitable to generate conservative RBSLs for the following reasons:

- Losses due to biodegradation and adsorption onto soil during volatilization from the unsaturated zone are not accounted for by the models.
- Volatilization of BTEX to ambient air was considered a complete pathway for the purposes of this assessment. This assumption is extremely conservative because the site is covered by concrete and asphalt, which although not completely impermeable, limits vapor diffusion to a much greater degree than accounted for by the vapor emission model.
- The RBSLs for volatilization from soil and groundwater to ambient air are based on the assumption that volatilization takes place through a sandy material. In fact, the soils at this site are clays with gravelly lenses. The RBSLs, therefore, are based on significantly higher rates of volatilization than are expected at this site.

The assumptions used to develop RBSLs for the pertinent potential exposure pathways are judged to be appropriate for the purposes of screening. The only modification necessary to the RBSLs presented in Table X2.1 of the ASTM guidelines is to adjust the RBSLs for benzene by multiplying them by 0.29 (California Regional Water Quality Control Board, San Francisco Bay Region, memorandum, January 5, 1996). For example, the adjusted RBSL from Table X2.1 for exposure to benzene through volatilization from groundwater to ambient air is presented below.

For Commercial/Industrial Receptor Scenario:

Vapor intrusion from groundwater into indoor air

Target Levels from Lookup Table X2.1 for Benzene (mg/l)

• 10^{-6} risk - (i.e., 1E-06) = 7.39E-02

Selected a RBSL corresponding to a on-site 10⁻⁵ risk

• 1E-05 risk = 7.39E-01 or 0.074 mg/l

RWQCB benzene correction

• $0.074 \text{ mg/l} \times 0.29 = 0.021 \text{ mg/l}$

RBSL = 0.021 mg/l

As shown in Worksheet 4.4, comparing the appropriate groundwater concentrations of benzene, toluene, ethylbenzene and xylenes to the RBSLs for each respective pathway, the RBSLs for groundwater-to-ambient air pathway was not exceeded. In accordance with ASTM guidelines, no further evaluation is necessary for the ambient air pathway, or for toluene, ethylbenzene or xylenes via the groundwater-to-indoor air pathway.

The results in Worksheet 4.4, however, show that the RBSLs for benzene in the groundwater-to-indoor air scenario for both the service station and the church were exceeded. Although these results do not necessarily indicate a risk to public health (because they are only screening levels), they indicate that further evaluation is needed to determine if a risk to public health is present at this site. The next step (Step 5) in the RBCA procedure is a Tier 2 evaluation of benzene for the indoor pathways from groundwater to the service station and the church.

TIER 2 EVALUATION

In accordance with the ASTM guidelines, the same conservative volatilization models used in the Tier 1 evaluation were used to evaluate the presence of benzene in the groundwater-to-indoor air potential exposure pathway to the service station and the church. The Tier 2 evaluation, however, incorporates greater site-specificity in the values used for the model parameters. Greater site-specificity was achieved in two main areas.

- Accounting for the type of soil present at the site, and the thickness of the unsaturated zone.
- Accounting for the fact that the BTEX concentrations used in the Tier 1 assessment were from a well that is about 40 feet upgradient from the center of the church, and thus the concentrations were probably significantly greater than those beneath the church.

Soil parameter values for soil water content, bulk density and total organic carbon were not measured at this site. Conservative values for some of these parameters were estimated by using values measured at another site. The second site is located on clayey sand; therefore, the water content and bulk density of the unsaturated zone soil from the second site would tend to be less than that expected for a site, such as ARCO 2111, located on clay with gravelly lenses (EMCON, September 1996). Soil porosity was also

reduced from the default value of 0.38 (representing a clean sand) to 0.30 to reflect the presence of the heavier soil at this site. Similarly, capillary thickness was increased from 5 to 30.5 centimeters to account for the heavier soils. The default for bulk density (1.7 grams per cubic centimeter) and total organic carbon (1 percent) were used for this evaluation. The foundation at the site was found to be competent, based on an observation made by EMCON, during a site inspection in September 1996. As a result, the fraction of the foundation areas for the service station and church assumed to be cracked were reduced from 1 to 0.5 percent, to represent a more accurate but still conservative estimate of this parameter. Additional information (e.g., minimum depth to water) used for the site-specific Tier 2 evaluation is presented in Worksheets 5.1 and 5.3, and in Figure 4.

The parameters described above were used to calculate risk-based, site-specific threshold levels (SSTLs) for the service station and church groundwater-to-indoor air pathway. The results of this evaluation are summarized in Table 2. These results show that the concentration of benzene representing the source of the groundwater impact (i.e., the average concentration detected in wells MW-7 and MW-2; 0.34 mg/l) is about 4-times less than the SSTL (1.54 mg/l).

In the Tier 1 evaluation of the potential risk to occupants of the church, the data for the nearest upgradient well (MW-2) was used to estimate the strength of the source. This estimate, however, probably over-estimates the concentration beneath the church because benzene was not detected in monitoring well MW-5 less than 20 feet downgradient of the church. To better estimate the sources strength for the Tier 2 evaluation, we used a feature in the ASTM RBCA software that uses site-specific groundwater results to interpolate between two measured points. The calculation of a dilution attenuation factor (DAF) can be used if data are available from wells that are positioned roughly along the center of the axis of migration of the groundwater plume. Wells MW-7, MW-2, and MW-5 are reasonably well-positioned for this purpose. The saturated zone transport model recommended in the ASTM guidelines was essentially calibrated to this site using actual site data to estimate the benzene concentration beneath the center of the church. The concentration determined in this manner (0.0049 mg/l) was compared to the SSTL (0.15 mg/l) calculated for the groundwater-to-indoor air pathway. The estimated groundwater benzene concentration is about 31-times less than the SSTL.

While more representative of actual site conditions than the Tier 1 results, the Tier 2 results are still conservative for several reasons, the most important of which are:

 As previously discussed for the Tier 1 evaluation, the source of the petroleum to the groundwater is diminishing. Because the models used to estimate emission rates of BTEX from groundwater and transport within the groundwater assume a

constant source of chemicals, and no losses due to biodegradation, the resulting cleanup levels (i.e. SSTLs) will be significantly over-estimated.

• The model used to estimate the benzene concentration in indoor air is likely to overestimate these values because it assumes air exchange rates more appropriate for a modern business building with a controlled rate of makeup air rather than a service station with rollup doors or a church with windows that open. In both cases, the indoor air is likely to be exchanged with outdoor air at a much higher rate than a modern business building.

SUMMARY AND CONCLUSION

At ARCO Station 2111, the former waste oil tank and impacted soil were removed from the site. The BTEX in the soil and groundwater associated with the current underground fuel storage tanks was evaluated to determine what risk, if any, it might present to current and future on-site and off-site receptors. This evaluation was conducted using the ASTM RBCA guidelines. The results show concentrations of BTEX detected at this site do not exceed levels that correspond to an acceptable level of risk. These results indicate that no additional remedial measures are necessary to protect the health of current or future on-site and off-site receptors.

Based on the results of this evaluation, and the designation of this property as a "low risk" site, we propose that future work at this site consist of groundwater monitoring to verify that BTEX levels continue to decrease.

Senior Project/Geolog

Sincerely,

EMCON

Dr. Ray Kaminsky

Environmental Chemist

Attachments: Table 1 - Historical Groundwater Elevation and Analytical Data

Table 2 - Tier 2 Results, Groundwater to Indoor Air Pathway

Figure 1 - Site Location Figure 2 - Site Plan

Figure 3 - Risk-Based Corrective Action Process Flowchart

Figure 4 - Groundwater Data, Third Quarter of 1996

Attachment A - ASTM RBCA Worksheets

cc: Mr. Dale Klettke, ACHCSA

Mr. Kevin Graves, RWQCB

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents

ARCO Service Station 2111 1156 Davis Street, San Leandro, California

Date: 09-17-96

Well Designation	Water Level Field Date	Top of Casing	teet Depth to Water	Groundwater Sevation	Floating Product	Groundwater Flow Direction	Hydraulic sp.p. Gradient	Water Sample Field Date	TPHG	Benzene en Benzene en Benzene	Toluene	Ethylbenzene	Total Xylenes EPA 8020	표 MTBE 를 EPA 8020	т крн р/ ЕРА 418.1	TPHD √an LUFT Method
								-								
MW-1	08-01-95	39.60	17.45	22.15	ND	NR	NR	08-01-95	<50	< 0.5	< 0.5	<0.5	<0.5			
MW-1	12-14-95	39.60	17.09	22.51	ND	w	0.002	12-14-95	<50	< 0.5	< 0.5	<0.5	< 0.5	<3		
MW-1	03-21-96	39.60	14.72	24.88	ND	WSW	0.005	03-21-96	<50	< 0.5	< 0.5	< 0.5	<0.5	<3		
MW-1	05-24-96	39.60	15.94	23.66	ND	W	0.003	05-24-96	<50	<0.5	< 0.5	< 0.5	<0.5	<3		
MW-1	08-09-96	39.60	17.89	21.71	ND	WNW	0.01	08-09-96	<50	< 0.5	< 0.5	<0.5	< 0.5	<3		
												500	2400			
MW-2	08-01-95	37.99	15.67	22.32	ND	NR	NR	08-01-95	23000	1300	310	500	3500			
MW-2	12-14-95	37.99	15.36	22.63	ND	W	0.002	12-14-95	7300	900	25	180	1000	<200*		
MW-2	03-21-96	37.99	12.84	25.15	ND	WSW	0.005	03-21-96	9600	850	30	280	1400	250		
MW-2	05-24-96	37.99	14.03	23.96	ND	W	0.003	05-24-96	2300	300	<5*	73	310	<25*		
MW-2	08-09-96	37.99	16.10	21.89	ND	WNW	0.01	08-09-96	2800	290	6	75	320	50		
1,007.0	08-01-95	39.32	17.00	22,32	ND	NR	NR	08-01-95	<50	<0.5	<0.5	<0.5	<0.5		600	76^
MW-3	12-14-95	39.32	16.70	22.62	ND	W	0.002	12-14-95	<50	<0.5	<0.5	<0.5	<0.5	<3	<500	<50
MW-3 MW-3	03-21-96	39.32	14.17	25.15	ND	wsw	0.005	03-21-96	<50	<0.5	<0.5	<0.5	< 0.5	<3	<500	<50
MW-3 MW-3	05-21-96	39.32	15.30	24.02	ND	W	0.003	05-24-96	<50	<0.5	<0.5	<0.5	<0.5	<3	<500	<50
		39.32	17.58	21.74	ND	WNW	0.003	08-09-96	<50	<0.5	<0.5	<0.5	<0.5	<3	<0.5	
MW-3	08-09-96	39.32	17.30	21.74	ND	711771	0.01	00-07-70	230	νο.5	40.5	40.5	40.0	1.5	1010	
MW-4	08-01-95	38.10	15.65	22.45	ND	NR	NR	08-01-95	<50	<0.5	< 0.5	< 0.5	< 0.5	• •		
MW-4	12-14-95	38.10	15.35	22,75	ND	W	0.002	12-14-95	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
MW-4	03-21-96	38.10	12.74	25.36	ND	wsw	0.005	03-21-96	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
MW-4	05-24-96	38.10	14.03	24.07	ND	W	0.003	05-24-96	<50	<0.5	< 0.5	< 0.5	< 0.5	<3		
MW-4	08-09-96	38.10	16,10	22.00	ND	WNW	0.01	08-09-96	<50	<0.5	<0.5	< 0.5	< 0.5	<3		
172.77	00 03 30															
MW-5	03-21-96	37.21	12.60	24.61	ND	WSW	0.005	03-22-96	<50	<0.5	< 0.5	<0.5	< 0.5	82		
MW-5	05-24-96	37.21	13.71	23.50	ND	w	0.003	05-24-96	<50	<0.5	< 0.5	< 0.5	< 0.5	7		
MW-5	08-09-96	37.21	15.60	21.61	ND	WNW	0.01	08-09-96	<50	< 0.5	< 0.5	< 0.5	< 0.5	8		

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents

ARCO Service Station 2111 1156 Davis Street, San Leandro, California

Date: 09-17-96

Well Designation	Water Level Field Date	-ty Ty Of Casing Ty Elevation	के Depth to Water	-th Groundwater	Floating Product	Groundwater Flow Direction	Hydraulic R Gradient	Water Sample Field Date	TPHG	는 Benzene 한 EPA 8020	五 Toluene 石 EPA 8020	Ethylbenzene	ਜ Total Xylenes ਨੋਂ EPA 8020	± MTB€ % EPA 8020	7/8н ТКРН	TPHD
MW-6	03-21-96	37.11	11.55	25.56	ND	wsw	0.005	03-22-96	<50	<0.5	1.9	<0.5	<0.5	<3		
MW-6	05-24-96	37.11	12.80	24.31	ND	w	0.003	05-24-96	<50	< 0.5	< 0.5	< 0.5	< 0.5	6		
MW-6	08-09-96	37.11 No	t surveyed:	Car parked or	well			08-09-96	Not sampled: C	Car parked on	well					
MW-7	03-21-96	38.68	13.32	25.36	ND	wsw	0.005	03-22-96	32000	870	450	970	4900	280		
MW-7	05-24-96	38.68	14.58	24.10	ND	w	0.003	05-24-96	22000	570	40	42	1900	<200*		
MW-7	08-09-96	38.68	15.33	23.35	ND	WNW	0.01	08-09-96	14000	390	<10*	180	470	<200*		- *

ft-MSL; elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

μg/L: micrograms per liter

EPA: United States Environmental Protection Agency

MTBE: Methyl-tert-butyl ether

TRPH: total recoverable petroleum hydrocarbons

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

NR; not reported; data not available or not measurable

ND: none detected

W: west

WSW: west-southwest

NW: northwest

^{^;} chromatogram fingerprint is not characteristic of diesel

^{*:} method reporting limit was raised due to: (1) high analyte concentration requiring sample dilution, or (2) matrix interference

^{--:} not available

Table 2 Tier 2 Results Groundwater to Indoor Air Pathway ARCO Service Station 2111

	Compound	Concentration at Point of Exposure (mg/L)	Site-Specific Threshold Level (mg/L)
Onsite	Benzene	0.34	1.54 ¹
Offsite	Benzene	0.0049	0.15 2

1 Based on 1.00E-05 risk

2 Based on 1.00E-06 risk

SITE LOCATION

FIGURE

1

PROJECT NO. 805-127.04

SITE PLAN

FIGURE

PROJECT NO.

805-127.04

RISK-BASED CORRECTIVE ACTION PLAN PROCESS FLOWCHART FIGURE

3

PROJECT NO. 805-127.04

> GROUNDWATER DATA THIRD QUARTER 1996

FIGURE

4

PROJECT NO. 805-127.04

ATTACHMENT A ASTM RBCA WORKSHEETS

ARCO 2111

Date Completed:

9-11-96

VISUAL HISTORICAL ASSESSMENT Site size (acres) Site setting Site access Visual evidence of environmental impact Current site land use Contaminant sources Affected environmental media Types of compounds likely to be present FASELINE RECEPTOR IDENTIFICATION		TO SELI <1 undeveloped none undeveloped tanks/spills	d	□ <10 ■ industria □ fenced-ii □ limited ■ indust./c		>10	
Site setting Site access Visual evidence of environmental impact Current site land use Contaminant sources Affected environmental media Types of compounds likely to be present BASELINE RECEPTOR IDENTIFICATION		undevelope capped none undevelope		fenced-in			
Visual evidence of environmental impact Durrent site land use Contaminant sources Affected environmental media Types of compounds likely to be present BASELINE RECEPTOR IDENTIFICATION		capped none undevelope		limited	n/		П
Visual evidence of environmental impact Current site land use Contaminant sources Affected environmental media Types of compounds likely to be present BASELINE RECEPTOR IDENTIFICATION	0	none undevelope	sd	limited		open	
Current site land use Contaminant sources Affected environmental media Types of compounds likely to be present BASELINE RECEPTOR IDENTIFICATION		undevelope	sd			extensive	t.
Contaminant sources Affected environmental media Types of compounds likely to be present BASELINE RECEPTOR IDENTIFICATION			77.	moust./C	omm.	□ residentia	ıl
Affected environmental media Types of compounds likely to be present BASELINE RECEPTOR IDENTIFICATION		The state of the s		☐ trench/d	rums	□ ponds/pit	s
Types of compounds likely to be present BASELINE RECEPTOR IDENTIFICATION		soil (>3 ft]		groundy	vater	surficial s	soil (≤3 ft BGS)
BASELINE RECEPTOR IDENTIFICATION			hydrocarbons		metals	3	
		inorganic (other:	(pesticides)	
		Hann					
teasonable potential receptors (greatest concern)		none		ecolog	rical	human	
Distance from fenceline to nearest off-site receptor (ft)		>500		☐ 100 - :	500	<100	
ravel time to closest groundwater receptor (yr)		>10		2 - 10		■ <2	
Depth to first encountered groundwater (ft)		>150		□ 50 - I		< 50	
Complete exposure pathways	_	none		ingest		inhalati	
		ecological		☐ derma	1	absorpt	ion
TIER 1 TASKS COMPLETED		History			01	inicarios (ales	-aification
■ Visual / historical assessment		•) site assessn		_	ritization / clas	
■ Detailed site characterization ■	RBS	L comparis	o ก		I midai ec	ological assess	atticut
Corrective action planned or implemented							
3 Dissolved BTEX in groundwa	<u>-n</u>			d Interim	Action		
Potential exposure via volatiliz groundwater to indoor and an	ter. zation fro	m	<u>Prescribe</u> 2 evaluation		Action		nplemented 9-6-96
groundwater to indoor and an	ter. zation fro	om r.	2 evaluation			Ş	
groundwater to Indoor and an	ter. zation fro	om r.	2 evaluation			Ş	3-6-96
groundwater to indoor and an	ter. zatlon fro nbient ali	Sc. Other	2 evaluation reening Leve Others:			Ş	None
groundwater to indoor and an TIER 1 CORRECTIVE ACTION CRITERIA Affected Medium	ter. zatlon fro nbient ain Risk- Based	Sc. Other (MCL)	2 evaluation reening Leve Others: (specify)	Criteria Ex	ceeded?(■	if yes)	3-6-96
groundwater to indoor and an arrange of the state of the	ter. zatlon fro nbient ali	Sc. Other (MCL)	2 evaluation reening Leve Others: (specify)	Criteria Ex	ceeded?(■	Ş	None
groundwater to indoor and an arrangement of the state of	ter. zatlon fro nbient ain Risk- Based	Scoother (MCL)	evaluation reening Leve Others: (specify)	Criteria Ex	cceeded? (■	if yes)	None Exceeded
groundwater to Indoor and an TIER 1 CORRECTIVE ACTION CRITERIA	ter. zatlon fro nbient ain Risk- Based	Sc. Other (MCL)	2 evaluation reening Leve Others: (specify)	Criteria Ex	ceeded?(■	if yes)	None

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By:

EMCON

Page 1 of 1

	IICH Z	KECUTIV	E SUMMARY CI	HECKLIST	
TIER 2 SSTL C	ALCULATION METHO	00	(OR O TO SELECT)		
STL Calculation	Option	100000000000000000000000000000000000000	NAF Calcu	lation Method	
Option 1:	Site-Specific Screening	Levels	■ Fate an	d Transport Modeling	3;
Option 2:	Individual Constituent S	SSTL Values	_	CA Spreadsheet Syste	m
Option 3:	Cumulative Constituent	SSTL Values	_	er Model(s)	
			L Empiric	al NAF Calculation	
SITE DATA INV	ENTORY				
Source Zone Inve	stigation Complete:	Екро	sure Pathway Information (Compiled:	
Surface Soil	(e.g., 23 ft BGS)		Air Pathway	Surface Wat	,
	oil (e.g., > 3 ft BGS)		Groundwater Pathway	Land Use Cl	assification nd off-site)
Groundwater			Soil Pathway		int on-site)
TIER 1 WORKSHEE	TS 1.3 - 4.2 AND 5.2 - 5.6 H	IAVE BEEN UPDA	ATED TO INCLUDE NEW TIER 2 I	NFORMATION.	
TASKS COMPL	ETED				
Tier I Evalua	ation n	Tier 2 Evaluati	ion 🔲 Tie	er 2 Final Corrective	Action
Tier I Interin		Tier 2 Interim	Corrective Action 🔲 Ti	er 3 Evaluation	
Corrective .	Action				
Classification No	5.		Prescribed Intel	rim Action	Date Implemented
		t to human sensitive	Prescribed Intel Continue monitoring	rim Action	Date Implemented
Classification No 4	No long-term threat health or safety or s	t to human sensitive ptors.		rim Action	Date Implemented
Classification No 4	No long-term threat health or safety or senvironmental recent threat health or safety or s	t to human sensitive ptors.			Other Applicable
Classification No. 4	No long-term threat health or safety or senvironmental recent threat health or safety or s	t to human sensitive ptors.	Continue monitoring licable Excess Risk Limits (s	specify value) Hazard	Other Applicable Exposure Limit
Classification No. 4	No long-term threat health or safety or senvironmental recent threat health or safety or s	t to human sensitive optors.	Continue monitoring	specify value)	Other Applicable
Classification No. 4 TIER 2 CORRE	Scenario Des No long-term threat health or safety or s environmental rece CTIVE ACTION CRITE Tier 2 SSTL Exceeded ? Yes No	t to human sensitive optors. ERIA Appl	Continue monitoring licable Excess Risk Limits (s	specify value) Hazard	Other Applicable Exposure Limit
Classification No. 4 TIER 2 CORRECT Affected Med	Scenario Des No long-term threat health or safety or s environmental rece CTIVE ACTION CRITE Tier 2 SSTL imm Yes No Sft BGS)	t to human sensitive optors. ERIA Appl	Continue monitoring licable Excess Risk Limits (s	specify value) Hazard	Other Applicable Exposure Limit
Classification No. 4 TIER 2 CORRECT Affected Med Surface Soil (< 3	Scenario Des No long-term threat health or safety or s environmental rece CTIVE ACTION CRITE Tier 2 SSTL ium Yes No Sit BGS	t to human sensitive optors. ERIA Appl Indiv. Risk	Continue monitoring licable Excess Risk Limits (s	specify value) Hazard	Other Applicable Exposure Limit
Classification No. 4	Scenario Des No long-term threat health or safety or s environmental rece CTIVE ACTION CRITE Tier 2 SSTL ium Yes No Sit BGS	t to human sensitive optors. ERIA Appl	Continue monitoring licable Excess Risk Limits (s	specify value) Hazard	Other Applicable Exposure Limit
Classification No. 4 TIER 2 CORRECT Affected Med Surface Soil (< 3	Scenario Des No long-term threat health or safety or s environmental rece CTIVE ACTION CRITE Tier 2 SSTL ium Yes No Sit BGS	t to human sensitive optors. ERIA Appl Indiv. Risk	Continue monitoring licable Excess Risk Limits (s	specify value) Hazard	Other Applicable Exposure Limit
Classification No. 4 TIER 2 CORRES Affected Med Surface Soil (< 3) Subsurface Soil Groundwater	Scenario Des No long-term threat health or safety or s environmental rece CTIVE ACTION CRITE Tier 2 SSTL ium Yes No Sft BGS	t to human sensitive optors. ERIA Appl Indiv. Risk	Continue monitoring licable Excess Risk Limits (s	specify value) Hazard	Other Applicable Exposure Limit
Classification No. 4 TIER 2 CORREL Affected Med Surface Soil (< 3 Subsurface Soil Groundwater	Scenario Des No long-term threat health or safety or s environmental rece CTIVE ACTION CRITE Tier 2 SSTL Exceeded ? Yes No Sit BGS	t to human sensitive aptors. ERIA Appl Indiv. Risk 1.0E-05	Continue monitoring licable Excess Risk Limits (s Total Hazard Risk Index	specify value) Hazard	Other Applicable Exposure Limit
Classification No. 4 TIER 2 CORREL Affected Med Surface Soil (< 3 Subsurface Soil Groundwater PHOPOSED AC No Action:	Scenario Des No long-term threat health or safety or senvironmental rece CTIVE ACTION CRITE Tier 2 SSTL ium Yes No Sft BGS	ERIA Appl Indiv. Risk 1.0E-05	Continue monitoring licable Excess Risk Limits (s Total Hazard Risk Index	specify value) Hazard Quotent 1	Other Applicable Exposure Limit
Classification No. 4 TIER 2 CORRECT Affected Med Surface Soil (< 3 Subsurface Soil Groundwater PHOPOSED AG No Action: Interim Cor	Scenario Des No long-term threat health or safety or s environmental rece Tier 2 SSTL ium Yes No Sft BGS (>3ft BGS Tier 2 SSTLs not ex rective Action: Add	to human sensitive sphors. ERIA Appl Indiv. Risk 1.0E-05	Continue monitoring licable Excess Risk Limits (s Total Hazard Risk Index y for closure. l, near-term risks sources	specify value) Hazard Quotent 1	Other Applicable Exposure Limit (specify, if any)
Classification No. 4 TIER 2 CORRECT Affected Med Surface Soil (< 3: Subsurface Soil Groundwater PROPOSED ACION: Interim Correct Final Correct	Scenario Des No long-term threat health or safety or s environmental rece Tier 2 SSTL ium Yes No Sft BGS (>3ft BGS Tier 2 SSTLs not ex rective Action: Add	t to human sensitive optors. EHIA Appl Indiv. Risk 1.0E-05 ceeded. Appl dress principa diate/control	Continue monitoring licable Excess Risk Limits (s Total Hazard Risk Index y for closure. I, near-term risks sources site to meet Tier 2 criteria	specify value) Hazard Quotent 1 NOTE: a. Rationale for	Other Applicable Exposure Limit

ARCO 2111

Date Completed

9-11-96

Site Location: 1156 Davis Street, San Leandro, CA

Completed By: EMCON

Page 1 of 1

EXPOSURE CONTROL FLOWCHART

Instructions: Identify remedial measures to be implemented to prevent exposure, as follows:

• Step 1 - Baseline Exposure: Identify applicable sources, transport mechanisms, and receptors as shown on Worksheet 4.2 (m = applicable to site).

• Step 2 - Remedial Measures: Fill in shut-off valves () to indicate removal / treatment action, containment measure, or institutional controls to be used to "shut off" exposure pathway.

• Step 3 - Remedial Technology Options: For each complete pathway, identify category of corrective measure to be applied and list possible technology options in space provided (see options list in RBCA Guidance Manual).

RBCA SUMMARY REPORT

Worksheet 2.1

Site Name:

ARCO 2111

Date Completed:

9-11-96

Site Location: 1156 Davis Street, San Leandro, CA

Completed By:

EMCON

Page I of I

	SITE DESCRIPTION
ocation Descri	ption (see Figure 1)
Address:	1156 Davis Street
Cross-Street:	Preda Street
City:	San Leandro
County:	Alameda
State:	California
Notes:	
Regulatory Age	
	authorities and regulatory / legal status of site.
1) Agency:	Alameda County Health Care Services Agency
Contact:	Dale Klettike
Agency:	Regioual Water Quality Control Board, San Francisco Bay Region
Contact:	Kevin Graves
3) Other Invo	Ived Parties:
(TO SEL	ECT) Consent order Lawsuit
Local Land Use	(See Figure 2) Other Comments: (■ TO SELECT) Discuss options for listed items (including anticipated future use)
On-Site Use	Current Potential Prior
Commercial	
Residential Industrial	
Sensitive Habit	-
Other: (below)	
Topography (S	se Figures 1 and 3) Other Comments:
High Pt. 25. Average Grou	It Steep Variable Interval (ft-MSL) 36 Low Pt. 21.71 Ind Surface Slope est Grade (ft/ft) 0.003
Local Climate	Other Comments:
Average Annua Annual Averag	al Rainfall (in):20

RBCA SUMMARY REPORT

Site Name:

ARCO 2111

Date Completed: 9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed by: EMCON

Page 1 of 1

BASELINE EXPOSURE FLOWCHART

Instructions: To characterize baseline exposure conditions, check boxes to identify applicable primary sources, secondary sources (affected media), potential transport mechanisms, and current or potential exposure pathways and receptors (= applicable to site). Identify types(s) of both on-site and off-site receptors, if applicable. Provide detailed information on complete pathways, exposure factors, and risk goals on Worksheets 4.3 - 4.5.

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By:

EMCON

Page I of I

EXPOSURE FACTOR CHECKLIST

Instructions: • <u>Tier I Evaluation</u>: Indicate use of either residential or commercial / industrial Reasonable Maximum Exposure (RME) factors at on-site points of exposure (POEs) for complete exposure pathways. • <u>Tier 2 Evaluation</u>: Indicate use of either 1 Reasonable Maximum Exposure (RME) factor or a site-specific exposure factor for both residential and commercial / industrial points of exposure (POEs), as appropriate for each exposure pathway. For Tier 2, data is required for Global Factors and for complete pathways only (see Worksheet 4.4).

		RESID	ENTIAL POE	COMMERCIAL	/ INDUSTRIAL POE
		RME	Site-Specific	RME	Site-Specific
GLO	BAL FACTORS	(TO SELECT)		
	Averaging time for carcinogens	□ 70 yrs	0	■ 70 yrs	
_	Averaging time for non-carcinogens	□ = ED	0	■ = ED	
3W	Body weight -Adult	□ 70 kg		■ 70 kg	
	-Child (1-6 yrs)	☐ 15 kg	D	□ NA	
ED :	Exposure duration	☐ 30 yrs	0	■ 25 yrs	
	EXPOSURE FACTORS		COMPLETE (provide	data) D NOT CO	MPLETE (skip)
EF	Exposure frequency (inhalation)	☐ 350 dy/yr	0	■ 250 dy/yr	
Rai	Daily indoor inhalation rate	15 m ³ /dy (24-hr/dy)	0	20 m ³ /dy (8-hr/dy)	0
R _{ao}	Daily outdoor inhalation rate	20 m³/dy (24-hr/dy)		20 m ³ /dy (8-hr/dy)	
POT	ABLE WATER USE EXPOSURE FAC	And in case of the last of the	COMPLETE (provide	The second secon	ETE (skip)
EF	Exposure frequency				
	(ingestion/showering)	☐ 350 dy/yr	o	☐ 250 dy/yr	<u> </u>
Rw	Daily water ingestion rate	☐ 2 L/dy		□ 1 L/dy	
**	arms signature same	(24-hr/dy)		(8-hr/dy)	
EP _{sh}	Exposure period (showering)	☐ 12 min/dy	<u> </u>	☐ 12 min/day	
_	Skin surface area (showering) -Adult (70 kg)	□ 0.86 m ²	0	□ 0.86 m ²	
SOIL	EXPOSURE FACTORS		GOMPLETE (provide	data) M NOT COMPL	.ETE (skip)
EF	Exposure Frequency	☐ 350 dy/yr		☐ 40 dy/yr	0
	-Dermal Contact -Soil ingestion	350 dy/yr	<u> </u>	250 dy/yr	
SAs	Skin surface area (soil contact)	www. SSO.uyiyi			
omę	-Adult (18 to 31 yrs, 70 kg)	□ 0.58 m ²	-	□ 0.58 m ²	
	-Child (1 - 17 yrs, 35 kg)	□ 0.20 m ²	0	□ NA	
М	Soil to skin adherance factor	☐ 1.0 mg/cm ²		☐ 1.0 mg/cm ²	
IR _s	Soil ingestion rate		771.44		
0.50	- Age-adjusted average	☐ 114 mg-yr /kg-dy	0	o NA	
	-Adult (7 to 31 yrs, 70 kg)	☐ 100 mg/dy	D	□ 50 mg/dy	
	-Child (1 - 6 yrs, 15 kg)	(24-hr/dy)	TO COLUMN	(8-hr/dy)	П
	(1 0) 10, 10 mg/	□ 200 mg/dy	<u> </u>	□ NA	<u> </u>
_		(24-hr/dy)			Mary Callet
SUR	FACE WATER EXPOSURE FACTOR	S	COMPLETE (provide	data) M NOT COMPI	LETE (SKIP)
EF	Exposure Frequency	D acc		D NA	
	-Fish consumption	☐ 350 dy/yr	<u> </u>	□ NA □ NA	<u> </u>
_	-Swimming	☐ 7 dy/yr	8.02	- PA	
IR_f	Daily fish intake rate	☐ 10 g/dy		□ NA	
	-Freshwater	☐ 10 g/dy	5	□ NA	ō
-	-Saltwater	- Ligity			
SAW	, Skin surface area (swimming) -Adult (70 kg)	□ 0.86 m ²		□ NA	
ED	Exposure period (swimming)	☐ 2.6 hrs/dy	0	□ NA	
EF SW	Exposure perior (awninimis)	La Zomstdy			

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By:

EMCON

Page 1 of 2

		TIER 2 E	XPOSURE	PATHWAY SCRE	ENING		
designated pathway. 2) Transport Mechaco constituent transport Mediu. 3) Exposure Mediu. applicable Tier 1 e. federal water qualit.	Compare maximi inism: Transport i port from source to m: For pathways u xposure limit for ai y criteria.	um constituent concer s active at site if: a) re receptor could occur us nder steady-state trans ir, groundwater, or so	ntration in relevant levant source media nder current or antic sport conditions (e.g. il. Surface water c	t source medium to applicab um is affected, b) exposure med	dium or receptor exists, and OC concentration at POE to oared to applicable state or	POE = Point Expo COC = Cons Conc	ening Level t of sure tituent of
	A) SOURCE	MEDIUM	B) TRANS	SPORT MECHANISM	C) EXPOSURE M	EDIUM	COMPLETE PATHWAY?
PATHWAY	Type	Pathway Tier 1 RBSL Exceeded?	Type	Active at Site?	Type Exceeder	e Limit i at POE?	(Check if yes & specify status)
AIR EXPOSURE PAT	HWAYS	(TO SELECT)					
Surface Soils: Vapor Inhalation and Dust Ingention	Surface Soil	☐ Yes ■ No	Volatilization /Dust Transport	No Ves - Current Ves - Future	Ambient Air NM	No ☐ Yes	Current Potential
Subsurface Soils: Volatilization to Arnbient Air	Subsurface Soil	Yes No	Volatilization	■ No ☐ Yes - Current ☐ Yes - Future	Ambient Air NM	No 🗆 Yes	Current Potential
Subsurface Soils: Velanilization to Enclosed Space	Subsurface Soil	☐ Yes ■ No	Volatilization	■ No □ Yes - Current □ Yes - Future	Indoor Air NM	No 🚨 Yes	Current Potential
4) Groundwater: Volatilization to Ambient Air	Groundwater	☐ Yes ■ No	Volatilization	□ No ■ Yes - Current ■ Yes - Future	Ambient Air NM [No □ Yes	Current Potential
5) Groundwater: Volatilization to Enclosed Space	Groundwater	Yes* No	Volatilization	□ No ■ Yes - Current ■ Yes - Future	Indoor Air NM	□ No □ Yes	Current Potential
GROUNDWATER EX	POSURE PATHW	AYS		(- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
6) Soil: Leaching to Groundwater: Ingestion	Surface or Subsurface Soils	☐ Yes ■ No	Leaching /Groundwater Flow	No Yes - Current Yes - Future	Groundwater NM [□ No □ Yes	Current Potential
7) Dissolved or Free- Phase Groundwater Plume: Ingestion	Groundwater	☐ Yes ■ No	Groundwater Flov	No Ves - Current Ves - Future	Groundwater ■ NM [No Yes	Current Potential
SOIL EXPOSURE PA	THWAY						
8) Surface Soils: Dermal Contact /Ingestion	Surface Soil	☐ Yes ■ No	Direct Contact	No Yes - Current Yes - Future	Soil ■ NM [□ No □ Yes	Current Potential

Site Name: ARCO 2111

Date Completed: 9-11-96

Site Location: 1156 Davis Street, San Leandro, CA

Completed By: EMCON

Page 2 of 2

		A) SOURCE	E MEDIUM Pathway	Saltitation (Salt)	B) TRA	NSPORT M	ECHA	NISM	C) EX	POSURE	MEDIUN re Limi		- PA	MPLET THWAY
PATHWAY		Type	RBSL Ex		Type	Active 1	rt Site	.7	Type		ed at PC		2.00	cify state
SURFACE W	ATER DA		ALISTIC ALIS	THE PERSON NAMED IN		111111111111		AUSTINIA		alident.	1111111		1111111	
SUMPACE W	ALEMPA	INWATS	********	4444710722	1111121111111111	*********	11541	2221122212222	***************		1111111	22772		
Soil: Leaching Groundwater /Discharge to Surface Water Recreation or) E	Surface or Subsurface Soils	☐ Yes	■ No	Leaching /Groundwater Flow	■ No	_	Yes - Current Yes - Future	Surface Water	■ мм	□ No	☐ Ye	120	Current
10) Groundwater Discharge to Surface Water Recreation of	ri.	Groundwater	☐ Yes	■ No	Groundwater Flow	■ No		Yes - Current Yes - Future	Surface Water	■ NM	□ No	☐ Ye		Current Potenti
11) Sail : Leachir Stormwater / Discharge to		Surface Soils	☐ Yes	■ No	Overland Flow	■ No		Yes - Current Yes - Future	Surface Water	■ NM	□ No	□ Ye		Potent
elevant source i	rmation: P	rovide necessary ansport mechanis	backgrour m, exposu	nd discussio re medium,	on for data provide, and receptor type	d above. Al: helow.	so, if	ecological expo	sure pathway ideni	tified on \	Vorkshe	et 3.5, i	identify	
Recreation or dditional Info	rmation: P	rovide necessary ansport mechanisi	n, exposu	re medium,	and receptor type	d above. Al: below.	so, if	ecological expo	sure pathway ideni	tified on \	Vorkshe	et 3.5, i	identify	
Recreation or additional Info elevant source ier 1 Results:	rmation: P medium, tro	insport mechanisi	m, exposu	re medium,	and receptor type	d above. Al: below.	so, if	ecologic al exp o	sure pathway ideni	tified on \	Vorkshe	et 3.5, i	identify	
Recreation or dditional Info devant source for 1 Results:	rmation: P medium, tro ABSL ater to -inc	insport mechanisi	site C	re medium, oncentration ell MW-2)	and receptor type	d above. Als	so, if	ecologic al exp o	sure pathway ideni	tified on 1	Vorkshe	et 3.5, i	identify	
dditional Inforderant source of the Property o	rmation: P medium, tro	insport mechanisi	n, exposu Site C (W	re medium,	and receptor type	d above. Al: below.	so, if	ecologic al exp o	sure pathway ideni	tified on \	Vorkshe	et 3.5, i	identify	
dditional Information of the source of the s	rmation: P medium, tro ABSL ater to -Inc (mg/L)	ansport mechanisi door Air	Site Co	re medium, oncentratio ell MW-2) (mg/L)	and receptor type	d above. Al: below.	so, if	ecologic al exp o	sure pathway ideni	tified on \	Vorkshe	et 3.5, i	identify	
Recreation or dditional Info elevant source of ier 1 Results: Groundw enzene foluene	rmation: P medium, tro RBSL ater to -Inc (mg/L) 2.14E-01	ansport mechanisi door Air	Site C	oncentration (mg/L) (mg/L) 2.9E-01 5.0E-03 7.5E-02	and receptor type	d above. Al: below.	so, if	ecologic al exp o	sure pathway ideni	tified on V	Vorkshe	et 3.5, i	identify	
Recreation or additional Info elevant source ier 1 Results:	rmation: P medium, tro RBSL rater to -Inc (mg/L) 2.14E-01 8.50E+01	ansport mechanisi door Air	Site C	oncentration (ell MW-2) (mg/L) 2.9E-01 6.0E-03	and receptor type	d above. Als	so, if	ecological expo	sure pathway ideni	tified on V	Vorkshe	et 3.5, i	identify	
Recreation or dditional Infor- levant source of ler 1 Results: Groundw enzene oluene thyl benzene	RBSL rater to -inc (mg/L) 2.14E-01 >1.61E+01	insport mechanisi door Air 02	Site C	re medium, oncentration ell MW-2) (mg/L) 2.9E-01 5.0E-03 7.5E-02 3.2E-01	, and receptor type	d above. Al:	so, if	Notes:						
Recreation or dditional Infor levant source of er 1 Results: Groundw enzene oluene thyl benzene ylenes	RBSL rater to -Inc (mg/L) 2.14E-01 8.50E+01 >2.00E+0	insport mechanisi door Air 02	Site C	re medium, oncentration ell MW-2) (mg/L) 2.9E-01 5.0E-03 7.5E-02 3.2E-01 oncentration	, and receptor type	d above. Al:	so, if	Notes:	s for benzene are	for 1x10°	ⁱ risk lev	el, and	d have be	
Recreation or dditional Infor levant source of er 1 Results: Groundw enzene bluene thyl benzene ylenes Groundw	RBSL rater to -Inc (mg/L) 2.14E-01 8.50E+01 >2.00E+0 RBSL rater to -An (mg/L)	insport mechants door Air 02 02 nbient Air (Ave	Site C	re medium, oncentration ell MW-2) (mg/L) 2.9E-01 5.0E-03 7.5E-02 3.2E-01 oncentration vells MW-2 (mg/L)	, and receptor type	d above. Al:	so, if	Notes: 1. RBSL multip	s for benzene are lied by 0.29 to acc	for 1x10°	ⁱ risk lev	el, and	d have be	
Recreation or dditional Infor levant source of er 1 Results: Groundw enzene bluene thyl benzene ylenes Groundw enzene	RBSL rater to -Inc (mg/L) 2.14E-01 8.50E+01 >2.00E+0 RBSL rater to -An (mg/L) 5.34E+01	insport mechants door Air 02 02 nbient Air (Ave	Site C	oncentration (mg/L) 2.9E-01 5.0E-03 7.5E-02 3.2E-01 oncentration (mg/L) 3.4E-01	, and receptor type	d above. Al:	so, if	Notes: 1. RBSL multip benze	s for benzene are lied by 0.29 to acc	for 1x10°	risk lév Californi	el, and	d have be e factor f	or
Recreation or dditional Infor- elevant source of ier 1 Results: Groundw enzene oluene thyl benzene ylenes	RBSL rater to -Inc (mg/L) 2.14E-01 8.50E+01 >2.00E+0 RBSL rater to -An (mg/L)	insport mechanisi door Air 02 02 nbient Air (Ave	Site C (W Site C	re medium, oncentration ell MW-2) (mg/L) 2.9E-01 5.0E-03 7.5E-02 3.2E-01 oncentration vells MW-2 (mg/L)	, and receptor type	d above. Al:	so, if	Notes: 1. RBSL multip benze 2. Conce	s for benzene are lied by 0.29 to acc	for 1x10° count for (risk lev Californi ere use	el, and	d have be e factor f	or

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By:

EMCON

Page I of 1

TIER 2 EXPOSURE SCENARIOS AND RISK GOALS

Instructions: For each exposure pathway, indicate i) Point of Exposure (POE) location (on-site, off-site, or both), ii) applicable exposure scenario at each POE (residential or commercial/industrial), and iii) applicable risk goals. Distance from source corresponds to shortest lateral distance to applicable POE from point of maximum COC concentration in source medium along possible migration pathway. Provide exposure limit information if applicable (e.g., OSHA Limits, MCLs, etc.). (TO SELECT)

				-	TAR	GET RKSK	S AT POI	
	DISTANCE			Cons	vidual uituent fects	Cumul: Constit Effec	uent	Other Exposure Limit
EXPOSURE PATHWAY	SOURCE		OSURE NO AT POE	Indiv. <u>Risk</u>	<u>H</u> Q	Additive <u>Risk</u>	<u>HI</u>	(specify if applicable)
AIR EXPOSURE P	ATHWAYS		COMPLETE (pro	vide data)	□ NOT	COMPLETE	(akip to no	ext pathway)
On-Site POE:	ft	Residential	Commercial	1.0E-05	1	_		□ PEL/TLV
Off-Site POE	: <u>15</u> ft	Residential	Commercial /Industrial	1.0E-05	1	_		PEL/TLV
GROUNDWATER	EXPOSURE PA	THWAYS C	COMPLETE (pr	ovide data)	M NO	COMPLETE	(aldp to r	ext pathway)
□ On-Site POE	: ft	☐ Residential	Commercial /Industrial		-	-		☐ MCL
Off-Site POE	ft	☐ Residential	☐ Commercial /Industrial			=====		□ MCL
SOIL EXPOSURE	PATHWAY		COMPLETE (pr	ovide data)	M NO	COMPLETE	(skip to r	ext pathway)
On-Site POE	:(at source)	☐ Residential	☐ Commercial		-		==	0
Off-Site POE	(at source)	Residential	☐ Commercial /Industrial			-		·
SURFACE WATER	R EXPOSURE P	ATHWAYS [COMPLETE (pr	ovide data)	Q NO	T COMPLET	E (akip to	next pathway)
On-Site POE	: ft	☐ Recreational	☐ Ecological (specify exp limit only)					<u> </u>
Off-Site POE	£ft	☐ Recreational	☐ Ecological (specify exp. limit only)		-			<u></u>
ADDITIONAL INFO	DRMATION:						Hillian .	
If exposure lim limits, water qu	_	provide referen etc.):	ce for concentra	ation limits	to be ap	plied to eac	ch COC (i	e.g., OSHA

Site Name: Site Location: ARCO 2111

1156 Davis Street, San Leandro, CA

Date Completed: 9-11-96

Completed By: **EMCON**

Page 1 of 1

SITE PARAMETER CHECKLIST FOR RISK-BASED SCREENING LEVELS

Instructions: For Tier 1 evaluation (generic screening levels), review specified default parameters (*) to ensure values are conservative for site. For Tier 2 Option 1 SSTL calculation (site-specific screening levels), provide site-specific values for sensitive parameters (§). Indicate parameter value used in evaluation by completing check box (\blacksquare).

* Confirm conservatism of these values for Tier 1 evaluation.

8	Provide site-specific	measurement	or estimate fo	or Tier	2 evaluation.
---	-----------------------	-------------	----------------	---------	---------------

Soil Para	nmeters	Defe	rult Value Used	Site-Specific Value	
	soil type		sandy soil	■ clayey sand	_ *§
Θ_T	Soil porosity		0.38 (dim)	0.30	_ §
Θ _{ws}	water content - vadose zone		0.12 (dim)	<u>0.17</u>	_ §
Θas	air content - vadose zone $(=\Theta_T - \Theta_{WS})$		0.26 (dim)	<u>0.13</u>	-
⊖ _{wcap}	water content - capillary fringe		0.342 (dim)	■ <u>0.25</u>	-
Θ _{acap}	air content - capillary fringe $(=\Theta_T - \Theta_{wcap})$	Q	0.038 (dim)	0.05	-
ρς	Soil density		1.7 g/cm ³		
foc	mass fraction of organic carbon in soil		0.01 (dim)		_
Ls	Depth to contaminated soil		100 cm		
Lgw	Depth to groundwater		300 cm	366	_ 9
h _{cap}	capillary zone thickness		5 cm	30.5	_
hv	vadose zone thickness (= Lgw - hc)		295 cm	■ <u>335</u>	_
рΗ	Soil/water pH		6.5	o	
Groundy	water Parameters			_	
I	Water infiltration rate		30 cm/yr		
V _{gw}	groundwater velocity		82.0 ft/yr	O	
δ_{gw}	groundwater mixing zone depth		200 cm		*\$
DF	aquifer dilution factor (= 1 + $V_{gw} \delta_{gw} / (IW)$)		12.1	O	
Surface l	Parameters				
Uair	Amb, air velocity in mixing zone		225 cm/s	o	
δ _{air}	Mixing zone height		200 cm		*\$
A	Contaminated Area		2250000 cm ²		
w	Width of Contaminated Area		1500 cm	·	_ §
d	Thickness of Surficial Soils		100 cm	O	_ §
Pe	Particulate areal emission rate		2_17E-10 g/cm ² -s	o	_ {
Building	Parameters				
Lcrack	Foundation crack thickness		15 cm	<u> </u>	-
η	Foundation crack fraction		0.01 (dim)	0.005	
Lbr	Building Volume/Foundation Area Ratio (res.)		200 cm		_
Lbc	Building Volume/Foundation Area Ratio (com./ind.)		300 cm	Q	
ER _r	Building vapor volume exchange rate (res.)		12 dy ⁻¹	o	-
ER _C	Building vapor volume exchange rate (com./ind.)		20 dy ⁻¹		

Discussion: Provide rationale for default parameter revision; discuss additional site-specific features of note; etc.

(continue on next page (f needed)

ARCO 2111

Date Completed:

9-11-96

Site Location: 1156 Davis Street, San Leandro, CA

Completed By:

EMCON

Page I of I

				Sit	e M	edia A	naly	yzed (1	TO	SEL	CT)	
		Grou	11111		ace	Subst Soi	ırf.		A		t Su	
1	Applicable?)							
	Sampled?				1						ı	
Chemical Analysis	EPA Analysis Method	•ana	L = C	hemi	cal a	nalyze	d;	•det. =	che	nical	detect	ted
Organic Chemicals			det.					ana./de		ia./de		./det
Volatile Organics	8240 / 624			0						<u> </u>	10	
Semi-Volatile Organics	8270 / 625					_	믜		- 1		_	_
Polynuclear Aromatic Hydrocarbons	8310 / 8270					_			- 1	ם כ	_	_
Purgeable Aromatics	5030/8020					_			- 1	<u> </u>	_	_
Total Petroleum Hydrocarbons (GC)	5030/8020					0			1	<u> </u>		
Halogenated Organic Chemicals		ana.	/det.	ana.	det.	ana./c	let.	ana./de	t. a	na./de	. ana	./de
Halogenated Volatile Organics	8010 / 601								וןנ			
Organochlorine & PCBs	8080								ו נ	-		
Inorganic Chemicals	1	ono.	/det	ana.	det	ana./c	let.	ana /de	et a	a /de	ana	/de
Metals	6010 / 7xxx series											
Others		ana.	/det.	ana.	det.	ana./c	let.	ana./de	et. a	ıa./de	. ana	/de
CHORDE:									3 1			
7							a۱		וונ			
<u> </u>									ر ا د	5 0	ıla	
•		-	_	-		l			,	 		

tems for discussion include:	•Selection of sampled media	•Selected analysis methods	•Planned additional sampling		
ltems					
1					

RBCA SUMMARY REPORT

Worksheet 5.3

Site Name:

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By:

EMCON

Page 1 of 1

SUMMARY OF SOURCE ZONE CHARACTERISTICS

Instructions: Provide information regarding presence and dimensions of affected soil and groundwater zones. For each affected medium, list constituents of concern (COCs) and representative concentration data on Worksheets 5.4 - 5.6. Describe source area histories on Worksheets 2.2 and 2.3 and show locations on Figures 3 through 7. (Under RBCA, the affected soil or groundwater zone is defined as the area or volume containing COC concentrations in excess of Tier 1 screening levels.)

AFFECTED SURFA	CE SOILS (≤ 3 ft BGS) (■ TO SELECT)		
☐ Present	If present, complete the following:		
■ Not Present	• Maximum areal extent (ft ²):		5
☐ Not Measured	Width of affected zone (ft):		(Provide COC date
	Length of affected zone (ft):		on Worksheet 5.4)
<u> </u>	Depth interval (ft,BGS):		6
AFFECTED SUBSU	IRFACE SOILS (> 3 ff BGS)		
☐ Present	If present, complete the following:		
■ Not Present	Depth to top of affected soil (ft)		
☐ Not Measured	(min. 3 ft, BGS):		(Provide COC date
	Depth to base of affected soil (ft, BGS):		on Worksheet 5.5)
	• Maximum areal extent (ft ²):		
AFFECTED GROU			
■ Present □ Not Present □ Not Measured	If present, complete the following: • Maximum areal extent (ft ²): • Length of plume (ft): • Width of plume (ft): • Depth to top of affected	15,080 160 (maximum) 120 (estimate)	(Provide COC date on Worksheet 5.6)
■ Present □ Not Present	If present, complete the following: • Maximum areal extent (ft ²): • Length of plume (ft): • Width of plume (ft):	160 (maximum) 120 (estimate)	

REPORT RBCA SUMMARY

Worksheet 5.6

Site Name:

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By: **EMCON**

Page 1 of 1

GROUNDWATER CONCENTRATION DATA SUMMARY

Instructions: Indicate type and concentrations of hazardous constituents detected in groundwater. Provide statistical data (maximum value, mean value, upper 90% confidence limit on mean) on detectable concentrations only. Do not include non-detects from outside of source zone. Select "representative concentration" value for comparison to cleanup standard (SSTL or RBSL) and calculation of baseline risk. Provide detailed lab data table(s) as Appendix A to this report.

		ANALYTICAL METHOD		SAMPLE POPULATION		DETECTED CONCENTRATIONS		SELECTED REPRESEN-	
CAS No. Name		Method No.	Typical Detection Limit (mg/L)	No. of Samples	No. of Detects	Max Conc. (mg/L)	Mean Conc. (mg/L)	Upper 90%CL Conc. (mg/L)	CONC. (mg/L)
	Volatilization from Groundwater to Indoor Air								
	Benzene	5030/8020	0.0005	28	8	1.30	0,196		0.290
	Toluene	5030/8020	0.0005	28	7	0.450	0.031		0.006
	Ethyl benzene	5030/8020	0.0005	28	8	0.970	0.082		0,075
	Xylenes	5030/8020	0.0005	28	8	4.90	0.493		0.032
	Volatilization from Groundwater to Ambient Air								
	Benzene	5030/8020	0.0005	28	8	1.30	0.196		0.340
	Toluene	5030/8020	0.0005	28	7	0.450	0.031		0.006
	Ethyl benzene	5030/8020	0.0005	28	8	0.970	0.082		0.128
	Xylenes	5030/8020	0.0005	28	8	4.90	0.493		0.395

ARCO 2111

Date Completed:

Site Location: 1156 Davis Street, San Leandro, CA

Completed By: EMCON

9-11-96

Page 1 of 2

TIER 2 EXPOSURE PATHWAY TRANSPORT PARAMETERS

Instructions: For complete exposure pathways, provide site-specific values for transport parameters. In absence of direct measurements, default values may be selected for some parameters, as shown below. If no default value shown, site-specific value must be provided.

rans)	PORT PARAMETER	SITE-SPECIFIC VALUE (INPUT VALUE BELOW)	DEFAULT VALUE (■ TO SELECT)
AIR PAR	AMETERS		
δ_{air}	Air mixing zone height (cm)		■ 200
Uair	Ambient air velocity in mixing zone (cm/sec)		225
Pe	Soil particulate areal emission rate (g/cm ² -sec)		□ 2.17E-10
σ_{v}	Transverse air dispersion coeff. (m)		1 00
σ_z	Vertical air dispersion coeff. (m)		1 0
	DWATER PARAMETERS		
δ_{gw}	Groundwater mixing zone depth (cm)		□ 200
Í	Water infiltration rate (cm/yr)		□ 30
Vgw	Groundwater Darcy velocity (ft/yr)		-
K	Saturated hydraulic conductivity (cm/sec)		
igrad	Lateral groundwater flow gradient (dim)		
(BC) _i	Available biodegradation capacity of electron acceptors for constituent <i>i</i>		
X. E.	Distance to POE from point of maximum COC concentration in groundwater (ft)		7
αx	Longitudinal groundwater dispersion coeff, (cm)		□ 10% of x
α_{y}	Transverse groundwater dispersion coeff. (cm)	-//	□ 33% of α _x
αχ	Vertical groundwater dispersion coeff. (cm)		\square 5% of α_z
SOIL PA	RAMETERS		
h _{cap}	Capillary zone thickness (cm)		5
h_V	Vadose zone thickness (cm)		
ρ_{s}	Soil bulk density (g/cm ³)		□ 1.7
focs	Fraction organic carbon in soil leaching zone (dim)		□ 0.01
focgw	Fraction organic carbon in water-bearing unit (dim)		□ 0.001
Lgw	Depth to groundwater (cm)		
Θ_T	Soil porosity (dim)		□ 0.38
	Soil volumetric waterr content (dim)		
Θ _{wcap}	Capillary zone		□ 0.342
Θws	Vadose zone		□ 0.12
Θ _{wcrac}	Foundation crack		□ 0.12

RBCA SUMMARY REPORT

Worksheet 5.7

Site Name:

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By:

EMCON

Page 2 of 2

RANSF	PORT PARAMETER	SITE-SPECIFIC VALUE (INPUT VALUE BELOW)	DEFAULT VALU (■ TO SELECT)
SOIL PAI	RAMETERS (Continued)		
	Soil volumetric air content (dim)		
Θ _{acap}	•Capillary zone		0.038
Θ _{as}	•Vadose zone		□ 0.26
⊖ _{acrack}	•Foundation crack		□ 0.26
d	Thickness of surficial soil zone (cm)		□ 100 cm
BUILDING	3 PARAMETERS		Comm/
			Resid. Ind.
Lb	Building volume/area ratio (cm)		□ 200 ■ 300
ER	Building air exchange rate (dy-1)		□ 12 ■ 20
Lcrack	Foundation crack thickness (cm)		■ 15
η	Foundation crack fraction		0.005

Additional Information:	
	