

1921 Ringwood Avenue • San Jose, California 95131-1721 • (408) 453-7300 • Fax (408) 437-9526

ENVIRONMENTAL PROTECTION

96 NOY 12 AM 9: 18

Date Project November 7, 1996 20805-127.004

To:

Ms. Medula Logan Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502

57 July

•

Copies		Desc	ription		
1	_	Revis	sed copies of pages	6 and 7, Table	e 2, and Workshee
		<u>5.1 o</u>	<u>f Tier 1, Tier 2 Risk</u>	k-Based Corre	ective Action
		<u>Eval</u>	uation for ARCO Se	ervice Station	2111, 1156 Davis
	-	<u>Stree</u>	t, San Leandro, Ca	<u>lifornia</u>	- · · · · · · · · · · · · · · · · · · ·
For your:	X	Use	Sent by:	X	Regular Mail
	4.14.11.	Approval			Standard Air
		Review			Courier
		Information			Other

Comments:

Please replace the corresponding pages in the original submittal with these pages. The changes reflected in these pages result from the use, at your request, of default values for soil water and air content proportioned to correspond to a total porosity of 0.30. Please note that these changes did not alter the conclusions of the report.

Ray Kaminsky

Senior Environmental Chemist

cc: Dala Klassic AcidCSA

Kevin Graves, RWQCB - SFBR
Paul Supple, ARCO Products Company
File

RWQCB benzene correction

• $0.074 \text{ mg/l} \times 0.29 = 0.021 \text{ mg/l}$

RBSL = 0.021 mg/l

As shown in Worksheet 4.4, comparing the appropriate groundwater concentrations of benzene, toluene, ethylbenzene and xylenes to the RBSLs for each respective pathway, the RBSLs for groundwater-to-ambient air pathway was not exceeded. In accordance with ASTM guidelines, no further evaluation is necessary for the ambient air pathway, or for toluene, ethylbenzene or xylenes via the groundwater-to-indoor air pathway.

The results in Worksheet 4.4, however, show that the RBSLs for benzene in the groundwater-to-indoor air scenario for both the service station and the church were exceeded. Although these results do not necessarily indicate a risk to public health (because they are only screening levels), they indicate that further evaluation is needed to determine if a risk to public health is present at this site. The next step (Step 5) in the RBCA procedure is a Tier 2 evaluation of benzene for the indoor pathways from groundwater to the service station and the church.

TIER 2 EVALUATION

In accordance with the ASTM guidelines, the same conservative volatilization models used in the Tier 1 evaluation were used to evaluate the presence of benzene in the groundwater-to-indoor air potential exposure pathway to the service station and the church. The Tier 2 evaluation, however, incorporates greater site-specificity in the values used for the model parameters. Greater site-specificity was achieved in two main areas.

- Accounting for the type of soil present at the site, and the thickness of the unsaturated zone.
- Accounting for the fact that the BTEX concentrations used in the Tier 1 assessment were from a well that is about 40 feet upgradient from the center of the church, and thus the concentrations were probably significantly greater than those beneath the church.

Soil parameter values for soil water content, bulk density and total organic carbon were not measured at this site. Conservative values for some of these parameters were estimated based on our knowledge of the type of soil present at this site. For example, oil porosity was reduced from the default value of 0.38 (representing a clean sand) to 0.30 to reflect the presence of the heavier soil at this site. Soil water and air content were sealed down from the default values to total 0.30. The values used for soil water and air content

RBCA SUMMARY REPORT

1156 Davis Street, San Leandro, CA

Worksheet 5.1

Site Name: Site Location:

ARCO 2111

D 2111 Date Completed:

Completed By:

9-11-96 EMCON

Page 1 of 1

SITE PARAMETER CHECKLIST FOR RISK-BASED SCREENING LEVELS

Instructions: For Tier 1 evaluation (generic screening levels), review specified default parameters (*) to ensure values are conservative for site. For Tier 2 Option 1 SSTL calculation (site-specific screening levels), provide site-specific values for sensitive parameters (§). Indicate parameter value used in evaluation by completing check box ().

Note: * Confirm conservatism of these values for Tier 1 evaluation.

§	Provide site-specific mea	surement or estimat	e for	Tier 2	evaluation.
---	---------------------------	---------------------	-------	--------	-------------

1 Site-Specific Value Used
■ clayey sand *§
■ <u>0.30</u> §
■ 0.09 §
0.21
■ <u>0.25</u>
■ 0.05
□ §
§
■ <u>366</u> §
■ <u>30.5</u>
■ 335

□*§
□ *§
-
□ *§
□ *§
<u> </u>
□ §
□ §
² -s □ §

0.005
<u> </u>

0

Discussion: Provide rationale for default parameter revision; discuss additional site-specific features of note; etc.

ı	continue	on	next	page	if need	led)

Table 2
Tier 2 Results
ARCO Service Station 2111

	Compound	Concentration at Point of Exposure (mg/L)	Site-Specific Threshold Level (mg/L)
Onsite			
0.55	Benzene	0.34	0.52 1
Offsite			
	Benzene	0.0049	0.05 2

¹ Based on 1.00E-05 risk

² Based on 1.00E-06 risk

were 0.09 and 0.21, respectively. Similarly, capillary thickness was increased from 5 to 30.5 centimeters to account for the heavier soils. The default for bulk density (1.7 grams per cubic centimeter) and total organic carbon (1 percent) were used for this evaluation. The foundation at the site was found to be competent, based on an observation made by EMCON, during a site inspection in September 1996. As a result, the fraction of the foundation areas for the service station and church assumed to be cracked were reduced from 1 to 0.5 percent, to represent a more accurate but still conservative estimate of this parameter. Additional information (e.g., minimum depth to water) used for the site-specific Tier 2 evaluation is presented in Worksheets 5.1 and 5.3, and in Figure 4.

The parameters described above were used to calculate risk-based, site-specific threshold levels (SSTLs) for the service station and church groundwater-to-indoor air pathway. The results of this evaluation are summarized in Table 2. These results show that the concentration of benzene representing the source of the groundwater impact (i.e., the average concentration detected in wells MW-7 and MW-2; 0.34 mg/l) is times less than the SSTL (0.52 mg/l).

In the Tier 1 evaluation of the potential risk to occupants of the church, the data for the nearest upgradient well (MW-2) was used to estimate the strength of the source. This estimate, however, probably over-estimates the concentration beneath the church because benzene was not detected in monitoring well MW-5 less than 20 feet downgradient of the church. To better estimate the sources strength for the Tier 2 evaluation, we used a feature in the ASTM RBCA software that uses site-specific groundwater results to interpolate between two measured points. The calculation of a dilution attenuation factor (DAF) can be used if data are available from wells that are positioned roughly along the center of the axis of migration of the groundwater plume. Wells MW-7, MW-2, and MW-5 are reasonably well-positioned for this purpose. The saturated zone transport model recommended in the ASTM guidelines was essentially calibrated to this site using actual site data to estimate the benzene concentration beneath the center of the church. The concentration determined in this manner (0.0049 mg/l) was compared to the SSTL (0.05 mg/l) calculated for the groundwater-to-indoor air pathway. The estimated groundwater benzene concentration is about 11-times less than the SSTL.

While more representative of actual site conditions than the Tier 1 results, the Tier 2 results are still conservative for several reasons, the most important of which are:

 As previously discussed for the Tier 1 evaluation, the source of the petroleum to the groundwater is diminishing. Because the models used to estimate emission rates of BTEX from groundwater and transport within the groundwater assume a

1921 Ringwood Avenue • San Jose, California 95131-1721 • **(408) 453-7300** • Fax (408) 437-9526

	Project		05-127.004		
To:					
Mr. Dale Klettke Alameda County Health Care Services Agen Department of Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502 We are enclosing:	су			96 OCT -1 AM 9: 23	PROTECTION AT
Copies Description					
1Tier 1, Tier 2 Ris	k-Based Correct	ctive Act	ion Evaluation for	<u>r</u>	
ARCO Service St	ation 2111, 11	56 Davis	Street, San Leane	dro,	
California					
					
For your: X Use	Sent by:	X	Regular Mail		
Approval	-		Standard Air		
Review			Courier		
Information	-		Other:		
Comments: The enclosed risk-based corrective action request of ARCO Products Company comments.		_	• •		/

John C. Young Project Manager

cc: Kevin Graves, RWQCB - SFBR Paul Supple, ARCO Products Company File

STAN STAN

September 10, 1996 Project 20805-127.003

Mr. Dale Klettke
Alameda County Health Care Services Agency
Department of Environmental Health
1131 Harbor Bay Parkway
Alameda, California 94502

Re: Submittal of Tier 2 Risk-Based Corrective Action (RBCA) evaluation, for ARCO service station 2111, 1156 Davis Street, San Leandro, California

Dear Mr. Klettke:

EMCON, on behalf of ARCO Products Company (ARCO), requested the submittal date for the Tier 2 RBCA evaluation for ARCO service station 2111 be postponed from September 11, 1996 to September 27, 1996. This letter documents your verbal approval for submitting the Tier 2 evaluation on September 27, 1996, based on a phone message to John Young of EMCON on September 10, 1996.

Sincerely,

EMCON

Ivy Inouye

Project Coordinator

cc: Paul Supple, ARCO Products Company

September 27, 1996 Project 20805-127.004

Mr. Paul Supple ARCO Products Company PO Box 6549 Moraga, California 94570

Re: Tier 1, Tier 2 Risk-Based Corrective Action Evaluation for ARCO Service Station 2111, 1156 Davis Street, San Leandro, California

Dear Mr. Supple:

This report presents the results of the Tier 1, Tier 2 risk-based corrective action (RBCA) evaluation prepared for ARCO Products Company (ARCO) Service Station 2111, 1156 Davis Street, San Leandro, California (Figures 1 and 2). This report addresses potential exposures to current and future workers on the commercial property and to visitors to the First Christian Church/Community Center. The RBCA evaluation results indicate that no acceptable levels of risk are exceeded at this site.

Based on the results of investigations performed to date, the site qualifies as a "low risk" site as defined in the Regional Water Quality Control Board's (RWQCB) January 1996 Supplemental Instructions. The RWQCB's requirements are bulleted follows:

• Source must be removed

The waste oil tank and petroleum impacted soils to the north of the service station building were removed in August 1994, and no petroleum hydrocarbons have been detected in the two monitoring wells downgradient of the former tank. Although source removal has not been performed to address the impacted groundwater associated with the fuel tanks, the declining levels of petroleum hydrocarbons in groundwater monitoring wells downgradient of the tanks suggests the presence of a temporary or diminishing source which is, in effect, equivalent to source removal.

Site is adequately characterized

Soil and groundwater investigations have been performed at the site and have investigated the lateral and vertical extent of gasoline hydrocarbons in soil and groundwater (Soil and Groundwater Assessment Report, Arco Service Station 2111, San Leandro, California, EMCON, September 1996).

Plume is stable or receding

Mr. Paul Supple September 23, 1996 Page 2

Concentrations of gasoline and its constituents (i.e., benzene, toluene, ethylbenzene, and xylenes [BTEX]) dissolved in groundwater have been decreasing in groundwater monitoring wells since the monitoring program was initiated in the third quarter of 1995 (Table 1).

No threat to surface water or deep aquifers

Groundwater investigations have defined the vertical extent of the dissolved gasoline plume to be contained within the shallow water bearing zone (EMCON, September 1996). No deep aquifers or surface waters are impacted or threatened.

No threat to human health

Based on the results of this evaluation, no threat to human health exists.

• No threat to the environment

No ecological receptors have been identified as threatened.

This RBCA evaluation was prepared in accordance with the guidelines contained in Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites (American Society of Testing Materials [ASTM] E-1739-95, November, 1995). In general, the tiered approach recommended in the ASTM guidelines is designed as a step-wise process to evaluate the potential risk posed by a chemical release, determine what corrective action, if any, is needed, and tailor that action to those risks.

The steps that make up the tiered RBCA approach are summarized in Figure 3. This report will follow these steps, and refer to information summarized in tables, figures, and Tier 2 RBCA Tool Kit worksheets contained in Attachment A. This report should be read in conjunction with reviewing these worksheets.

INITIAL SITE ASSESSMENT AND SITE CLASSIFICATION

Steps 1 and 2 of RBCA are designed to screen for the possibility that the site presents an imminent threat to public health and the environment. This refers, for example, to sites where an unconfined release to the surface has taken place in which direct contact to product is a possibility, or where a release presents a potential for an explosion to occur. Chemical impact to soil and groundwater at this site has been characterized (EMCON, September 1996) and summarized in Worksheet 4.2. No surface releases have taken place at this site which have not been immediately contained and cleaned. Although gasoline has been detected in the subsurface, these hydrocarbons do not present a potential risk of direct contact. A comparison of site-measured soil and groundwater data

Mr. Paul Supple September 23, 1996 Page 3

to conservative, onsite-specific, health-based screening levels, in accordance with the ASTM RBCA guidelines, was undertaken. This is referred to in the ASTM guidelines as a Tier 1 evaluation.

TIER 1 EVALUATION

The first step in a Tier 1 evaluation is to determine the chemical nature of the release, and to characterize the extent of the impact. Definition of the on-site and off-site impact has been established, and is documented in the site assessment and quarterly monitoring reports, and is summarized in Worksheet 1.1. Current benzene concentrations dissolved in groundwater are summarized in Figure 4. Soil and additional analytical information is summarized in Worksheets 5.2, 5.3, and 5.6.

The next step in a Tier 1 evaluation is to identify potentially significant environmental transport pathways by which receptors may be exposed to site-related chemicals in order to identify complete exposure pathways. For a potential exposure pathway to be considered complete, it must contain the following three elements:

- a source of specific chemicals (i.e., benzene, toluene, ethylbenzene, and, xylenes [BTEX])
- a transport mechanism (e.g., groundwater migration)
- a potential receptor (e.g., groundwater must be considered potable for a groundwater ingestion exposure pathway to be considered complete)

First encountered groundwater at this site is not considered potable due to the sites location within a regional solvent plume, and for this reason potential exposure pathways involving groundwater (e.g., infiltration from subsurface soil to groundwater and direct groundwater ingestion) were not evaluated further. Similarly, direct exposure to surface and subsurface soil at this site is not considered a complete exposure pathway because this site is covered by asphalt and a concrete slab structure. In addition, although subsurface soil sampled during the installation of monitoring wells MW-5, MW-6 and MW-7 and vapor extraction wells V-1 through V-4 was found to contain relatively low concentrations of petroleum hydrocarbons (a maximum of 0.3 milligram per kilogram [mg/kg] benzene), these were detected exclusively within the groundwater fluctuation zone (EMCON, September 1996). These results indicate that the impacted soil does not represent a significant source, but rather the groundwater is the only potential source of hydrocarbons to both the soil and possible receptors. For this reason, potential exposure routes involving subsurface soil were not considered significant for the purpose of this investigation.

Page 4

As summarized in Worksheet 1.4, the only complete potential exposure pathways at this site are:

- volatilization of chemicals in groundwater through the unsaturated zone to ambient air
- volatilization of chemicals in groundwater through the unsaturated zone to indoor air

Quarterly groundwater monitoring events have shown a decreasing trend in BTEX levels in the groundwater. As a result of this trend, the most recent groundwater concentrations were used to represent the magnitude of the chemical source. Benzene, toluene, ethylbenzene and total xylene (BTEX) concentrations from the well nearest the service station and the church (i.e., well MW-2) were used to represent the source of BTEX to which hypothetical indoor receptors may be exposed. For exposure through volatilization of chemicals in groundwater to ambient air, the average groundwater concentrations detected in wells MW-2 and MW-7 were used to represent the concentration of dissolved constituents over the area of groundwater impact. This is a conservative approach because these are the only wells for which petroleum hydrocarbons have been detected.

The site is currently operated as a service station, and is assumed to remain a service station for the purpose of this evaluation. People using the church are expected to occupy the structure less than either the 24 hour/day, 7 day/week for 30 years assumed for the residential exposure scenario or the 8 hour /day, 5 days/week for 25 years assumed for the commercial/industrial exposure scenario. For the purpose of this evaluation, however, the commercial/industrial exposure assumptions were conservatively assumed for the potential receptors in both these indoor spaces. The values for the exposure parameters used in this evaluation are summarized in Worksheet 4.3.

For on-site receptors, acceptable risk-based soil and groundwater levels were calculated based on a 1×10^{-5} (i.e., 1 in 100,000) probability of developing cancer from cancercausing substances, and a hazard quotient of 1 for noncancer-causing substances. For off-site receptors, which include workers and children at the daycare center as well as visitors to the church and community center, acceptable risk-based soil and groundwater levels were calculated based on a 1×10^{-6} (i.e., 1 in 100,000) probability of developing cancer from cancer-causing substances, and a hazard quotient of 1 for noncancer-causing substances

The next step in this Tier 1 evaluation is to review the assumptions used to derive the risk-based screening levels (RBSLs) for contaminated media (i.e., groundwater) and potential exposure routes (i.e., inhalation of indoor and ambient air), and determine whether they are likely to be conservative for this site.

Mr. Paul Supple September 23, 1996 Page 5

The emission and air dispersion models, and the default modeling values used in the ASTM guidelines to generate the RBSLs are suitable to generate conservative RBSLs for the following reasons:

- Losses due to biodegradation and adsorption onto soil during volatilization from the unsaturated zone are not accounted for by the models.
- Volatilization of BTEX to ambient air was considered a complete pathway for the purposes of this assessment. This assumption is extremely conservative because the site is covered by concrete and asphalt, which although not completely impermeable, limits vapor diffusion to a much greater degree than accounted for by the vapor emission model.
- The RBSLs for volatilization from soil and groundwater to ambient air are based on the assumption that volatilization takes place through a sandy material. In fact, the soils at this site are clays with gravelly lenses. The RBSLs, therefore, are based on significantly higher rates of volatilization than are expected at this site.

The assumptions used to develop RBSLs for the pertinent potential exposure pathways are judged to be appropriate for the purposes of screening. The only modification necessary to the RBSLs presented in Table X2.1 of the ASTM guidelines is to adjust the RBSLs for benzene by multiplying them by 0.29 (California Regional Water Quality Control Board, San Francisco Bay Region, memorandum, January 5, 1996). For example, the adjusted RBSL from Table X2.1 for exposure to benzene through volatilization from groundwater to ambient air is presented below.

For Commercial/Industrial Receptor Scenario:

Vapor intrusion from groundwater into indoor air

Target Levels from Lookup Table X2.1 for Benzene (mg/l)

• 10^{-6} risk - (i.e., 1E-06) = 7.39E-02

Selected a RBSL corresponding to a on-site 10⁻⁵ risk

• 1E-05 risk = 7.39E-01 or 0.074 mg/l

Mr. Paul Supple November 6, 1996 Page 6

RWQCB benzene correction

• $0.074 \text{ mg/l} \times 0.29 = 0.021 \text{ mg/l}$

horas Ap

RBSL = 0.021 mg/l

As shown in Worksheet 4.4, comparing the appropriate groundwater concentrations of benzene, toluene, ethylbenzene and xylenes to the RBSLs for each respective pathway, the RBSLs for groundwater-to-ambient air pathway was not exceeded. In accordance with ASTM guidelines, no further evaluation is necessary for the ambient air pathway, or for toluene, ethylbenzene or xylenes via the groundwater-to-indoor air pathway.

The results in Worksheet 4.4, however, show that the RBSLs for benzene in the groundwater-to-indoor air scenario for both the service station and the church were exceeded. Although these results do not necessarily indicate a risk to public health (because they are only screening levels), they indicate that further evaluation is needed to determine if a risk to public health is present at this site. The next step (Step 5) in the RBCA procedure is a Tier 2 evaluation of benzene for the indoor pathways from groundwater to the service station and the church.

TIER 2 EVALUATION

In accordance with the ASTM guidelines, the same conservative volatilization models used in the Tier 1 evaluation were used to evaluate the presence of benzene in the groundwater-to-indoor air potential exposure pathway to the service station and the church. The Tier 2 evaluation, however, incorporates greater site-specificity in the values used for the model parameters. Greater site-specificity was achieved in two main areas.

- Accounting for the type of soil present at the site, and the thickness of the unsaturated zone.
- Accounting for the fact that the BTEX concentrations used in the Tier 1 assessment were from a well that is about 40 feet upgradient from the center of the church, and thus the concentrations were probably significantly greater than those beneath the church.

Soil parameter values for soil water content, bulk density and total organic carbon were not measured at this site. Conservative values for some of these parameters were estimated based on our knowledge of the type of soil present at this site. For example, oil porosity was reduced from the default value of 0.38 (representing a clean sand) to 0.30 to reflect the presence of the heavier soil at this site. Soil water and air content were sealed down from the default values to total 0.30. The values used for soil water and air content

Project 20805-127.004

Mr. Paul Supple September 23, 1996 Page 6

RWQCB benzene correction

• $0.074 \text{ mg/l} \times 0.29 = 0.021 \text{ mg/l}$

RBSL = 0.021 mg/l

As shown in Worksheet 4.4, comparing the appropriate groundwater concentrations of benzene, toluene, ethylbenzene and xylenes to the RBSLs for each respective pathway, the RBSLs for groundwater-to-ambient air pathway was not exceeded. In accordance with ASTM guidelines, no further evaluation is necessary for the ambient air pathway, or for toluene, ethylbenzene or xylenes via the groundwater-to-indoor air pathway.

The results in Worksheet 4.4, however, show that the RBSLs for benzene in the groundwater-to-indoor air scenario for both the service station and the church were exceeded. Although these results do not necessarily indicate a risk to public health (because they are only screening levels), they indicate that further evaluation is needed to determine if a risk to public health is present at this site. The next step (Step 5) in the RBCA procedure is a Tier 2 evaluation of benzene for the indoor pathways from groundwater to the service station and the church.

TIER 2 EVALUATION

In accordance with the ASTM guidelines, the same conservative volatilization models used in the Tier 1 evaluation were used to evaluate the presence of benzene in the groundwater-to-indoor air potential exposure pathway to the service station and the church. The Tier 2 evaluation, however, incorporates greater site-specificity in the values used for the model parameters. Greater site-specificity was achieved in two main areas.

- Accounting for the type of soil present at the site, and the thickness of the unsaturated zone.
- Accounting for the fact that the BTEX concentrations used in the Tier 1
 assessment were from a well that is about 40 feet upgradient from the center of the
 church, and thus the concentrations were probably significantly greater than those
 beneath the church.

Soil parameter values for soil water content, bulk density and total organic carbon were not measured at this site. Conservative values for some of these parameters were estimated by using values measured at another site. The second site is located on clayey sand; therefore, the water content and bulk density of the unsaturated zone soil from the second site would tend to be less than that expected for a site, such as ARCO 2111, located on clay with gravelly lenses (EMCON, September 1996). Soil porosity was also

Mr. Paul Supple
November 6, 1996
Page 7

were 0.09 and 0.21, respectively. Similarly, capillary thickness was increased from 5 to 30.5 centimeters to account for the heavier soils. The default for bulk density (1.7 grams per cubic centimeter) and total organic carbon (1 percent) were used for this evaluation. The foundation at the site was found to be competent, based on an observation made by EMCON, during a site inspection in September 1996. As a result, the fraction of the foundation areas for the service station and church assumed to be cracked were reduced from 1 to 0.5 percent, to represent a more accurate but still conservative estimate of this parameter. Additional information (e.g., minimum depth to water) used for the site-specific Tier 2 evaluation is presented in Worksheets 5.1 and 5.3, and in Figure 4.

The parameters described above were used to calculate risk-based, site-specific threshold levels (SSTLs) for the service station and church groundwater-to-indoor air pathway. The results of this evaluation are summarized in Table 2. These results show that the concentration of benzene representing the source of the groundwater impact (i.e., the average concentration detected in wells MW-7 and MW-2; 0.34 mg/l) is times less than the SSTL (0.52 mg/l).

In the Tier 1 evaluation of the potential risk to occupants of the church, the data for the nearest upgradient well (MW-2) was used to estimate the strength of the source. This estimate, however, probably over-estimates the concentration beneath the church because benzene was not detected in monitoring well MW-5 less than 20 feet downgradient of the church. To better estimate the sources strength for the Tier 2 evaluation, we used a feature in the ASTM RBCA software that uses site-specific groundwater results to interpolate between two measured points. The calculation of a dilution attenuation factor (DAF) can be used if data are available from wells that are positioned roughly along the center of the axis of migration of the groundwater plume. Wells MW-7, MW-2, and MW-5 are reasonably well-positioned for this purpose. The saturated zone transport model recommended in the ASTM guidelines was essentially calibrated to this site using actual site data to estimate the benzene concentration beneath the center of the church. The concentration determined in this manner (0.0049 mg/l) was compared to the SSTL (0.05 mg/l) calculated for the groundwater-to-indoor air pathway. The estimated groundwater benzene concentration is about 11-times less than the SSTL.

While more representative of actual site conditions than the Tier 1 results, the Tier 2 results are still conservative for several reasons, the most important of which are:

 As previously discussed for the Tier 1 evaluation, the source of the petroleum to the groundwater is diminishing. Because the models used to estimate emission rates of BTEX from groundwater and transport within the groundwater assume a Mr. Paul Supple September 23, 1996 Page 7

reduced from the default value of 0.38 (representing a clean sand) to 0.30 to reflect the presence of the heavier soil at this site. Similarly, capillary thickness was increased from 5 to 30.5 centimeters to account for the heavier soils. The default for bulk density (1.7 grams per cubic centimeter) and total organic carbon (1 percent) were used for this evaluation. The foundation at the site was found to be competent, based on an observation made by EMCON, during a site inspection in September 1996. As a result, the fraction of the foundation areas for the service station and church assumed to be cracked were reduced from 1 to 0.5 percent, to represent a more accurate but still conservative estimate of this parameter. Additional information (e.g., minimum depth to water) used for the site-specific Tier 2 evaluation is presented in Worksheets 5.1 and 5.3, and in Figure 4.

The parameters described above were used to calculate risk-based, site-specific threshold levels (SSTLs) for the service station and church groundwater-to-indoor air pathway. The results of this evaluation are summarized in Table 2. These results show that the concentration of benzene representing the source of the groundwater impact (i.e., the average concentration detected in wells MW-7 and MW-2; 0.34 mg/l) is about 4-times less than the SSTL (1.54 mg/l).

In the Tier 1 evaluation of the potential risk to occupants of the church, the data for the nearest upgradient well (MW-2) was used to estimate the strength of the source. This estimate, however, probably over-estimates the concentration beneath the church because benzene was not detected in monitoring well MW-5 less than 20 feet downgradient of the church. To better estimate the sources strength for the Tier 2 evaluation, we used a feature in the ASTM RBCA software that uses site-specific groundwater results to interpolate between two measured points. The calculation of a dilution attenuation factor (DAF) can be used if data are available from wells that are positioned roughly along the center of the axis of migration of the groundwater plume. Wells MW-7, MW-2, and MW-5 are reasonably well-positioned for this purpose. The saturated zone transport model recommended in the ASTM guidelines was essentially calibrated to this site using actual site data to estimate the benzene concentration beneath the center of the church. The concentration determined in this manner (0.0049 mg/l) was compared to the SSTL (0.15 mg/l) calculated for the groundwater-to-indoor air pathway. The estimated groundwater benzene concentration is about 31-times less than the SSTL.

While more representative of actual site conditions than the Tier 1 results, the Tier 2 results are still conservative for several reasons, the most important of which are:

 As previously discussed for the Tier 1 evaluation, the source of the petroleum to the groundwater is diminishing. Because the models used to estimate emission rates of BTEX from groundwater and transport within the groundwater assume a constant source of chemicals, and no losses due to biodegradation, the resulting cleanup levels (i.e. SSTLs) will be significantly over-estimated.

• The model used to estimate the benzene concentration in indoor air is likely to overestimate these values because it assumes air exchange rates more appropriate for a modern business building with a controlled rate of makeup air rather than a service station with rollup doors or a church with windows that open. In both cases, the indoor air is likely to be exchanged with outdoor air at a much higher rate than a modern business building.

SUMMARY AND CONCLUSION

At ARCO Station 2111, the former waste oil tank and impacted soil were removed from the site. The BTEX in the soil and groundwater associated with the current underground fuel storage tanks was evaluated to determine what risk, if any, it might present to current and future on-site and off-site receptors. This evaluation was conducted using the ASTM RBCA guidelines. The results show concentrations of BTEX detected at this site do not exceed levels that correspond to an acceptable level of risk. These results indicate that no additional remedial measures are necessary to protect the health of current or future on-site and off-site receptors.

Based on the results of this evaluation, and the designation of this property as a "low risk" site, we propose that future work at this site consist of groundwater monitoring to verify that BTEX levels continue to decrease.

Senior Project(Geolo

Sincerely,

EMCON

Dr. Ray Kaminsky Environmental Chemist

1:\ARCO\2111\IMI01687.DOC-96 ljt:1

Attachments: Table 1 - Historical Groundwater Elevation and Analytical Data

Table 2 - Tier 2 Results, Groundwater to Indoor Air Pathway

Figure 1 - Site Location Figure 2 - Site Plan

Figure 3 - Risk-Based Corrective Action Process Flowchart

Figure 4 - Groundwater Data, Third Quarter of 1996

Attachment A - ASTM RBCA Worksheets

cc: Mr. Dale Klettke, ACHCSA

Mr. Kevin Graves, RWQCB

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents

ARCO Service Station 2111
1156 Davis Street, San Leandro, California

Date: 09-17-96

Well Designation	Water Lovel Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	TRPH EPA 418.1	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ft		μg/L	μg/L	μg/L	μg/L	µg/L	µg/L	μg/L. 	μg/L
MW-1	08-01-95	39.60	17.45	22.15	ND	NR	NR	08-01-95	<50	<0.5	<0.5	<0.5	<0.5			
MW-1	12-14-95	39.60	17.09	22.51	ND	w	0.002	12-14-95	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
MW-1	03-21-96	39.60	14.72	24.88	ND	wsw	0.005	03-21-96	<50	<0.5	<0.5	< 0.5	< 0.5	<3		
MW-1	05-24-96	39.60	15.94	23.66	ND	W	0.003	05-24-96	<50	< 0.5	<0.5	< 0.5	< 0.5	<3		
MW-1	08-09-96	39.60	17.89	21.71	ND	WNW	0.01	08-09-96	<50	<0.5	<0.5	<0.5	<0.5	<3		
MW-2	08-01-95	37.99	15.67	22.32	ND	NR	NR	08-01-95	23000	1300	310	500	3500			
MW-2	12-14-95	37.99	15.36	22.63	ND	w	0.002	12-14-95	7300	900	25	180	1000	<200*		
MW-2	03-21-96	37.99	12.84	25.15	ND	wsw	0.005	03-21-96	9600	850	30	280	1400	250		
MW-2	05-24-96	37.99	14.03	23.96	ND	W	0.003	05-24-96	2300	300	<5*	73	310	<25*		
MW-2	08-09-96	37.99	16.10	21.89	ND	WNW	0.01	08-09-96	2800	290	6	75	320	50		•
MW-3	08-01-95	39.32	17.00	22.32	ND	NR	NR	08-01-95	-50	.n.e	.n.e	-0.5	-0.5		***	
MW-3	12-14-95	39.32	16.70	22.62	ND ND	W	0.002	12-14-95	<50 <50	<0.5 <0.5	<0.5	<0.5	<0.5		600	76^
MW-3	03-21-96	39.32	14.17	25.15	ND ND	wsw	0.002	03-21-96	<50 <50	<0.5	<0.5 <0.5	<0.5	<0.5	<3	<500	<50
MW-3	05-21-96	39,32	15.30	24.02	ND	wsw W	0.003	05-21-96	<50	<0.5 <0.5	<0.5	<0.5	<0.5	<3	<500	<50
MW-3 MW-3	03-24-96	39.32	17.58	21.74	ND	WNW	0.003	08-09-96	<50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<3	<500 <0.5	<50
MM-2	00-03-70	37.36	17.56	21.14	ND	44 14 34	0.01	08-09-70	<50	C.U.	CO. 3	< 0.5	<0.3	<3	<0.3	• •
MW-4	08-01-95	38.10	15.65	22.45	ND	NR	NR	08-01-95	<50	< 0.5	< 0.5	< 0.5	< 0.5			
MW-4	12-14- 9 5	38.10	15.35	22.75	ND	w	0.002	12-14-95	<50	<0.5	< 0.5	< 0.5	< 0.5	<3		
MW-4	03-21-96	38.10	12.74	25.36	ND	wsw	0.005	03-21-96	<50	<0.5	< 0.5	< 0.5	< 0.5	<3		
MW-4	05-24-96	38.10	14.03	24.07	ND	w	0.003	05-24-96	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		
MW-4	08-09-96	38.10	16.10	22.00	ND	WNW	0.01	08-09-96	<50	<0.5	<0.5	< 0.5	<0.5	<3		
MW-5	03-21-96	37.21	12.60	24.61	ND	wsw	0.005	03-22-96	<50	<0,5	<0.5	<0.5	<0.5	82		
MW-5	05-24-96	37.21	13.71	23.50	ND	w	0.003	05-24-96	<50	<0.5	<0.5	<0.5	<0.5	7		
MW-5	08-09-96	37.21	15.60	21.61	ND	WNW	10.0	08-09-96	<50	<0.5	<0.5	<0.5	<0.5	8		
100 00 - 3	30 07 70	51.51	15.00	21.01	.12	,,,,,,,	0.01	50 07 70	1.50	~0. 2	~0. 5	~0.5	~V.J	G		

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents

ARCO Service Station 2111 1156 Davis Street, San Leandro, California

Date: 09-17-96

Well Designation	Water Level Field Date	Top of Casing	ਨੂੰ Depth to Water	TS Groundwater	Floating Product	G Groundwater Flow Direction	Hydraulic	Water Sample Field Date	표 TPHG 함 LUFT Method	т Benzene 7. EPA 8020	ਸ Toluene ਤੋਂ EPA 8020	EPA 8020	Total Xylenes EPA 8020	하 전 EPA 8020	ਦ TRPH ਲੋ EPA418.1	TPHD CLUFT Method
MW-6	03-21-96	37.11	11.55	25.56	ND	wsw	0.005	03-22-96	<50	<0.5	1.9	<0.5	<0.5	<3		
MW-6	05-24-96	37.11	12.80	24.31	ND	w	0.003	05-24-96	<50	<0.5	<0.5	<0.5	<0.5	6 -		
MW-6	08-09-96	37.11 No	ot surveyed:	Car parked or	well			08- 09 -96	Not sampled: C			10.2	40.5	ŭ		
MW-7	03-21-96	38.68	13.32	25.36	ND	wsw	0.005	03-22-96	32000	870	450	970	4900	280		
MW-7	05-24-96	38.68	14.58	24.10	ND	W	0.003	05-24-96	22000	570	40	42	1900	<200*		
MW-7	08-09-96	38,68	15.33	23.35	ND	WNW	0.01	08-09-96	14000	390	<10*	180	470	<200*		

ft-MSL: elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

µg/L: micrograms per liter

EPA: United States Environmental Protection Agency

MTBE: Methyl-tert-butyl ether

TRPH: total recoverable petroleum hydrocarbons

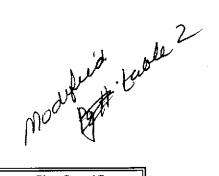
TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

NR: not reported; data not available or not measurable

ND: none detected

W: west

WSW: west-southwest


NW: northwest

A: chromatogram fingerprint is not characteristic of diesel

^{*:} method reporting limit was raised due to: (1) high analyte concentration requiring sample dilution, or (2) matrix interference

^{--:} not available

Table 2
Tier 2 Results
ARCO Service Station 2111

	Compound	Concentration at Point of Exposure (mg/L)	Site-Specific Threshold Level (mg/L)
Onsite			
	Benzene	0.34	0.52 1
Offsite			
	Benzene	0.0049	0.05 2

¹ Based on 1.00E-05 risk

² Based on 1.00E-06 risk

Table 2
Tier 2 Results
Groundwater to Indoor Air Pathway
ARCO Service Station 2111

	Compound	Concentration at Point of Exposure (mg/L)	Site-Specific Threshold Level (mg/L)
Onsite			
	Benzene	0.34	1.54 1
Offsite			
	Benzene	0.0049	0.15 ²

¹ Based on 1.00E-05 risk

² Based on 1.00E-06 risk

ATTACHMENT A ASTM RBCA WORKSHEETS

ARCO 2111

Date Completed:

9-11-96

ial e ial its soil (<3 ft BGS)
e ial its soil (<3 ft BGS)
e ial its soil (<3 ft BGS)
e ial its soil (<3 ft BGS)
ial its Soil (<3 ft BGS)
ial its Soil (<3 ft BGS)
soil (<3 ft BGS)
soil (<3 ft BGS)
1
<u> </u>
1
•
tion
otion
ssification
sment
official
mplemented 9-6-96
None
Exceeded
_
-
•
2 S

1156 Davis Street, San Leandro, CA

Site Name: Site Location: ARCO 2111

Date Completed:

Completed By:

9-11-96 **EMCON**

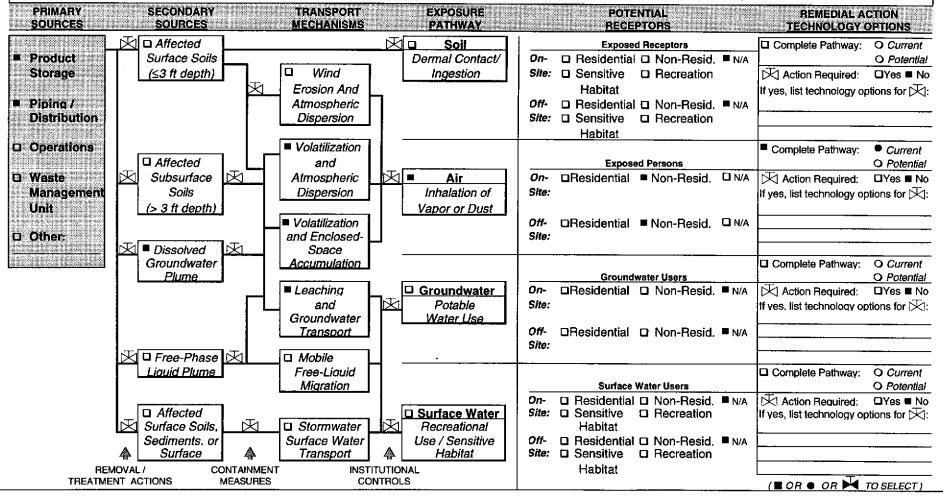
Page I of I

	ER 2 EXEC	OLIVE SOME	AART CHI	ECKLIS!	
TIER 2 SSTL CALCULA	TION METHOD	(■ oa ● T	O SELECT)		
SSTL Calculation Option			NAF Calcula	tion Method	
■ Option 1: Site-Spe	cific Screening Levels		■ Fate and 7	ransport Modeling	; .
	al Constituent SSTL V		_	Spreadsheet System	m
Option 3: Cumulat	ive Constituent SSTL	Values	O Other I	Model(s) NAF Calculation	
			e Empiricar	VAI Calculation	
SITE DATA INVENTORY				****	
Source Zone Investigation	Complete:	Exposure Pathway	Information Cor	npiled:	
☐ Surface Soil (e.g., ² 3 ft		☐ Air Pathway		☐ Surface Wat	er Pathway
■ Subsurface Soil (e.g., >	3 ft BGS)	■ Groundwater P	athway	■ Land Use Cl	
■ Groundwater		Soil Pathway		(on-site a	nd off-site)
TIER 1 WORKSHEETS 1.3 - 4.	2 AND 5.2 - 5.6 HAVE BE	EN UPDATED TO INCLUL	DE NEW TIER 2 INFO	ORMATION.	
TASKS COMPLETED					
■ Tier 1 Evaluation	■ Tier 2	Evaluation	☐ Tier 2	2 Final Corrective	Action
☐ Tier 1 Interim	☐ Tier 2	Interim Corrective Acti	on 🔲 Tier :	3 Evaluation	
Corrective Action					
CURRENT SITE CLASSI		1			
Classification No. No lo	Scenario Description		escribed Interim	Action	Date Implemented
1	ng-term threat to hun h or safety or sensitiv		monitoring		
	onmental receptors.				
TIER 2 CORRECTIVE A	CTION CRITERIA Tier 2 SSTL				Other
Affected Medium	Exceeded?	Applicable Excess	Risk Limits (spe	cify value)	Applicable
	Indiv	. Total	Hazard	Hazard	Exposure Limit
	Yes No Risk		Index	Quotent	(specify, if any)
• Surface Soil (≤ 3ft BGS)	.				
Subsurface Soil (> 3ft BG	S D D				
Groundwater	□ ■ <u>1.0E-0</u>	<u> </u>		l	
PROPOSED ACTION	-				
■ No Action: Tier 2 S	STI s not avceeded	Apply for closure			
_				NOTE:	
☐ Interim Corrective A	-	_		ŀ	r grapaged action
☐ Final Corrective Act					r proposed action I on Worksheets 1.3
☐ Tier 3 Evaluation:	Improve baseline ri	isk and SSTL estim	ates.	and 10.1-10	

ARCO 2111

Date Completed: 9-11-96 Completed By:

Site Location:


1156 Davis Street, San Leandro, CA

EMCON

Page I of 1

EXPOSURE CONTROL FLOWCHART

Instructions: Identify remedial measures to be implemented to prevent exposure, as follows: • Step 1 - Baseline Exposure: Identify applicable sources, transport mechanisms, and receptors as shown on Worksheet 4.2 (= applicable to site). • Step 2 - Remedial Measures: Fill in shut-off valves () to indicate removal / treatment action, containment measure, or institutional controls to be used to "shut off" exposure pathway. • Step 3 - Remedial Technology Options: For each complete pathway, identify category of corrective measure to be applied and list possible technology options in space provided (see options list in RBCA Guidance Manual).

RBCA SUMMARY REPORT Worksheet 2.1

Site Name:

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By:

EMCON

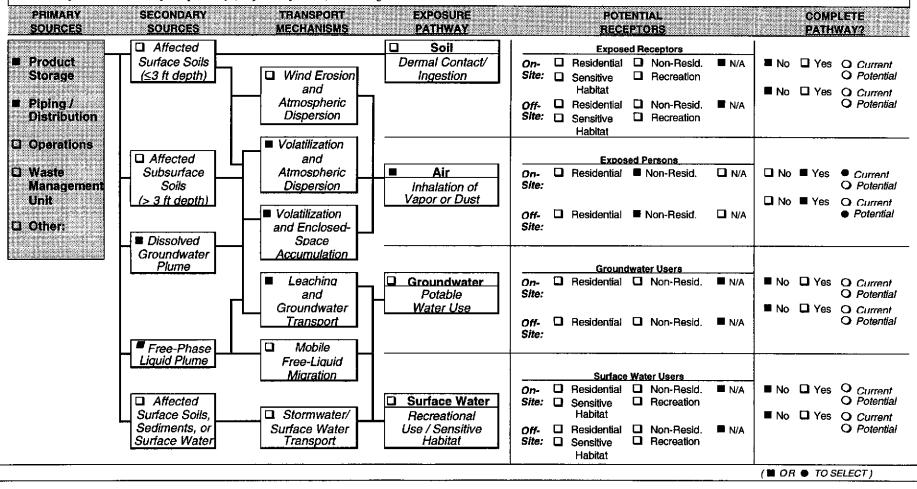
Page 1 of I

	SITE DESCRIPTION
Location Descri	ption (see Figure 1)
Address:	1156 Davis Street
Cross-Street:	Preda Street
City:	San Leandro
County:	Alameda
State:	California
Notes:	
Regulatory Ager	ncies
Identify regulatory	authorities and regulatory / legal status of site.
1) Agency:	Alameda County Health Care Services Agency
Contact:	Dale Klettke
Agency:	Regioual Water Quality Control Board, San Francisco Bay Region
Contact:	Kevin Graves
3) Other Invol	ved Parties:
(TO SEL	ECT)
	(See Figure 2) (■ TO SELECT) Discuss options for listed items (including anticipated future use)
	Current Potential Prior
Commercial Residential	
Industrial	
Sensitive Habita	·· — — — — —
Other: (below)	
Topography (Se	e Figures 1 and 3) Other Comments:
High Pt. 25.3 Average Groun	☐ Steep ☐ Variable [nterval (ft-MSL) 16 Low Pt. 21.71 d Surface Slope st. Grade (ft/ft) 0.003
Local Climate	Other Comments:
Annual Average Evapotranspir Within 100 Year Summer Tempe	

ARCO 2111

Date Completed: 9-11-96

Site Location:


1156 Davis Street, San Leandro, CA

Completed by: EMCON

Page 1 of 1

BASELINE EXPOSURE FLOWCHART

Instructions: To characterize baseline exposure conditions, check boxes to identify applicable primary sources, secondary sources (affected media), potential transport mechanisms, and current or potential exposure pathways and receptors (= applicable to site). Identify types(s) of both on-site and off-site receptors, if applicable. Provide detailed information on complete pathways, exposure factors, and risk goals on Worksheets 4.3 - 4.5.

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By:

EMCON

Page 1 of 2

		TIER 2 E	XPOSURE	PATHWAY SCRE	ENING		
Instructions: Exposure pathways screening involves the following steps: 1) Source Medium: Compare maximum constituent concentration in relevant source medium to applicable Tier 1 RBSL value for designated pathway.							-Based ening Level
2) Transport Mechaeco c) constituent transp	POE = Poin Expe	nt of osure					
	xposure limit for a			g., air), compare measured CO concentrations should be comp		Con	
4) Complete Pathwa	ay: For screening, j	pathway considered con	nplete if "Yes" repo	orted in Column A and either Co	olumn B or C.	NM = Not	Measured
	A) SOURCE		B) TRAN	SPORT MECHANISM	C) EXPOSURE MI		COMPLETE PATHWAY?
PATHWAY	Туре	Pathway Tier 1 RBSL Exceeded?	Type	Active at Site?	Exposure Type Exceeded		(Check if yes & specify status)
AIR EXPOSURE PAT	THWAYS	(■ TO SELECT)				and the second	
Surface Soils: Vapor Inhalation and Dust Ingestion	Surface Soil	☐ Yes ■ No	Volatilization /Dust Transport	No Yes - Current Yes - Future	Ambient Air NM	No 🛭 Yes	Current Potential
2) Subsurface Soils: Volatilization to Ambient Air	Subsurface Soil	☐ Yes ■ No	Volatilization	■ No □ Yes - Current □ Yes - Future	Ambient Air	No 🛘 Yes	Current Potential
3) Subsurface Soils: Volatilization to Enclosed Space	Subsurface Soil	☐ Yes ■ No	Volatilization	■ No □ Yes - Current □ Yes - Future	Indoor Air NM 🗖	No 🚨 Yes	Current Potential
4) <i>Groundwater:</i> Volatilization to Ambient Air	Groundwater	☐ Yes ■ No	Volatilization	No Ses - Current Ses - Future	Ambient Air ■ NM □	No 🚨 Yes	Current Potential
5) Groundwater: Volatilization to Enclosed Space	Groundwater	Yes* No	Volatilization	□ No □ Yes - Current □ Yes - Future	Indoor Air NM	No 🗖 Yes	Current Potential
GROUNDWATER EX	POSURE PATHW	'AYS					
5) Soil: Leaching to Groundwater: Ingestion	Surface or Subsurface Soils	☐ Yes ■ No	Leaching /Groundwater Flow	■ No □ Yes - Current □ Yes - Future	Groundwater ■ _{NM} □	No 🗆 Yes	Current Potential
7) Dissolved or Free- Phase Groundwater Plume: Ingestion	Groundwater	Yes No	Groundwater Flow	v ■ No □ Yes - Current □ Yes - Future	Groundwater ■ NM □	No 🛚 Yes	Current Potential
SOIL EXPOSURE PA	THWAY						
B) Surface Soils: Dermal Contact /Ingestion	Surface Soil	☐ Yes ■ No	Direct Contact	No Yes - Current Yes - Future	Soil ■ NM □	No 🗖 Yes	Current Potential

ARCO 2111

Date Completed:

Site Location:

1156 Davis Street, San Leandro, CA

Completed By:

9-11-96 **EMCON**

Site Location.	1100 00	ivis Street, San Le	andio, on		Опре	ied by.								Page 2 of 2
			TIE	R 2 EXF	OSURE PATH	IWAY SO	CREE	NING CON	TINUED					
PATHWAY		A) SOURCE MEDIUM Pathway Tier 1 Type RBSL Exceeded?			B) TRANSPORT MECHANISM Type Active at Site?			C) EXPOSURE MEDIUM Exposure Limit			COMPLETE PATHWAY? (Check if yes &			
Exception of the control of the cont	nico in construction and construction	Type	RBSL EX	ceeaea?	Type	Active	at Site	<u> </u>	Type	Exceed	ed at PO	<u> </u>	spec	ify status)
SURFACE Y	AIEH PA	THWAYS			1				1					
9) Soil: Leachin Groundwater /Discharge to Surface Wate Recreation o	o er;	Surface or Subsurface Soils	☐ Yes	■ No	Leaching /Groundwater Flow	■ No		Yes - Current Yes - Future	Surface Water	■ nm	□ No	☐ Yes		Current Potential
10) Groundwate Discharge to Surface Wate Recreation of	er:	Groundwater	☐ Yes	■ No	Groundwater Flow	■ No		Yes - Current Yes - Future	Surface Water	■ NM	□ No	☐ Yes		Current Potential
11) Soil: Leachi Stormwater / Discharge to Surface Wate Recreation of	o er:	Surface Soils	☐ Yes	■ No	Overland Flow	■ No		Yes - Current Yes - Future	Surface Water	■ NM	□ No	☐ Yes	00	Current Potential
relevant source Tier 1 Results:		ansport mechanisi door Air 02	site Co (We (2 6.		n for data provided and receptor type i		so, if e	cological exposu	re pathway ident	ified on W	orksheet	3.5, iden	tify	
Groundw Benzene Toluene Ethyl benzene Xylenes	RBSL rater to -An (mg/L) 5.34E+01 >5.35E+ >1.61E+1 >2.00E+1) 02 02	rage of we (r 6	ncentration ills MW-2 ang/L) 3.4E-01 .0E-03 .3E-01 .0E-01	n and MW-7)			multiplied benzense 2. Concentrof BTEX 3. Concentron	or benzene are f d by 0.29 to acco e. ations from well from groundwat ations from wells t the source of E	ount for C MW-2 we er to indo s MW-2 a	alifornia ere used or air. nd MW-7	slope factories were av	ctor for sent th verage	e source

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By: E

EMCON

Page 1 of 1

TIER 2 EXPOSURE SCENARIOS AND RISK GOALS

Instructions: For each exposure pathway, indicate i) Point of Exposure (POE) location (on-site, off-site, or both), ii) applicable exposure scenario at each POE (residential or commercial / industrial), and iii) applicable risk goals. Distance from source corresponds to shortest lateral distance to applicable POE from point of maximum COC concentration in source medium along possible migration pathway. Provide exposure limit information if applicable (e.g., OSHA Limits, MCLs, etc.).

exposure timit is						GET RKSK		
				Indi	vidual	Cumul		Other
				Cons	stituent	Consti	tuent	Exposure
	DISTANCE			Ef	fects	Effe	cts	Limit
EXPOSURE	FROM	EXP	OSURE	Indiv.		Additive		(specify if
PATHWAY	SOURCE	SCENAF	NO AT POE	<u>Risk</u>	<u>H</u> Q	Risk	<u>HI</u>	applicable)
				_	-			
AIR EXPOSURE PA	AIHWAYS		GOMPLETE (pro	vide data)	LI NOT	COMPLETE	(skip to ne.	kt pathway)
On-Site POE:	ft	☐ Residential	Commercial /Industrial	1.0E-05	_1	<u></u>		☐ PEL/TLV
■ Off-Site POE:	<u>15</u> ft	☐ Residential	■ Commercial /Industrial	1.0E-05	_1			PEL/TLV
GROUNDWATER E	XPOSURE PA	THWAYS [COMPLETE (pr	ovide data)	■ NOT	COMPLETE	(aldp to ne	xt pathway)
On-Site POE:	ft	☐ Residential	☐ Commercial			<u> </u>		☐ MCL
C Off Cir. DOE		□ pu						
□ Off-Site POE	ft	☐ Residential	☐ Commercial /Industrial					□ MCL
SOIL EXPOSURE F	PATHWAY	Ţ	COMPLETE (pr	ovide data)	■ NOT	COMPLETE	E (skip to ne	xt pathway)
CI O- Cir. BOE.	(=+======)	D Decidential						
On-Site POE:	(at source)	Residential	☐ Commercial /Industrial					
☐ Off-Site POE	(at source)	☐ Residential	☐ Commercial	<u> </u>				
- on one rob	(at source)	— Residenția	/Industrial	<u> </u>				
SURFACE WATER	EXPOSURE PA	THWAYS [COMPLETE (pr	ovide data)	□ NOT	COMPLET	E (skip to n	ext pathway)
_		_	_					_
☐ On-Site POE:	ft	□ Recreational	☐ Ecological	<u> </u>		<u> </u>		ط
			(specify exp.					
O 000 011 707	_		limit only)					٦
Off-Site POE	ft	☐ Recreational	Ecological (specify exp.	<u> </u>		<u> </u>		
			(specty exp. limit only)					
				•		 	Mary Control of the same of th	
ADDITIONAL INFO								
If exposure limit			ce for concentra	tion limits	to be app	lied to eac	h COC (e.	g., OSHA
limits, water qua	lity criteria,	etc.):						

ARCO 2111

Date Completed:

9-11-96

Site Location: 1156 Davis Street, San Leandro, CA Completed By:

EMCON

Page 1 of 1

				Si	te M	edia .	Anal	yzed	(🔳	TOS	ELE(77)	
		Gro	und-			Sub		So		Amb			ac
		wa	ter	So		Se		Var		Var		Wa	***
	Applicable?	_											_
	Sampled?		I])]]	C]
Chemical Analysis	EPA Analysis Method	•ana	ı. = c	hemi	cal a	nalyz	ed;	•det	. = c	hemic	cal d	etecte	:d
Organic Chemicals		ana.	/det.	ana./	det.	ana.	/det.	ana./	det.	ana./	det.	ana./	de
Volatile Organics	8240 / 624												E
Semi-Volatile Organics	8270 / 625												Ū
Polynuclear Aromatic Hydrocarbons	8310 / 8270												C
Purgeable Aromatics	5030/8020	▮■											C
Total Petroleum Hydrocarbons (GC)	5030/8020							0					Ç
Halogenated Organic Chemicals		ana.	det.	ana.	det.	апа.	det.	ana./	det.	ana./	det.	ana./	de
Halogenated Volatile Organics	8010 / 601												
Organochlorine & PCBs	8080												٥
Inorganic Chemicals		ana	/det.	ana.	det.	ana.	/det.	ana./	det.	ana./	/det.	ana./	de
Metals	6010 / 7xxx series												0
Others		ana	/det.	ana.	det.	ana.	det.	ana./	det.	ana.	det.	ana./	de
•	}												C
													Ę
		-	_	_					_		_	_	_
•		_		—		_	_	_	_	-	_	-	_
•													Ç

•Selection of sampled media	•Selected analysis methods	•Planned additional sampling
	•Selection of sampled media	Selection of sampled media Selected analysis methods

RBCA SUMMARY REPORT

Worksheet 5.3

Site Name:

ARCO 2111

4400 8 -- 1- 60-----

Date Completed:

9-11-96

Site Location: 1156 Davis Street, San Leandro, CA

Completed By:

EMCON

Page 1 of I

zones. For each a on Worksheets 5.4 Figures 3 through	vide information regarding presence and di ffected medium, list constituents of concern (- 5.6. Describe source area histories on Wo 7. (Under RBCA, the affected soil or ground ncentrations in excess of Tier 1 screening leve	COCs) and represen orksheets 2.2 and 2.3 lwater zone is define	tative concentration data I and show locations on
AFFECTED SURFA	CE SOILS (≤3 ti BGS) (■ TO SELECT)	optice en
☐ Present	If present, complete the following:		
■ Not Present	• Maximum areal extent (ft ²):		_
■ Not Measured	Width of affected zone (ft):		(Provide COC data
	Length of affected zone (ft):		on Worksheet 5.4)
	Depth interval (ft,BGS):	• • • • • • • • • • • • • • • • • • • •	_
AFFECTED SUBSE	IRFACE SOILS (> 3 ft BGS)		
☐ Present	If present, complete the following:		
■ Not Present	Depth to top of affected soil (ft)		
■ Not Measured	(min. 3 ft, BGS):		(Provide COC data
	• Depth to base of affected soil (ft, BGS):		on Worksheet 5.5)
	• Maximum areal extent (ft ²):	-	- -
AFFECTED GROU	NDWATER		
■ Present	If present, complete the following:		
☐ Not Present	Maximum areal extent (ft ²):	15,080	
☐ Not Measured	• Length of plume (ft):	160 (maximum)	- (Provide COC data
	Width of plume (ft):	120 (estimate)	on Worksheet 5.6)
	Depth to top of affected	12	•
	water-bearing unit (ft, BGS):		_
	Depth to base of plume (ft, BGS):		-
OTHER SOURCE I	AEDIUM		
☐ Present	If present, describe nature of material and a	<u>dimensions</u> :	
■ Not Present			
			(Provide COC data
	· · · · · · · · · · · · · · · · · · ·		on separate table)

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By:

EMCON

Page 1 of 1

GROUNDWATER CONCENTRATION DATA SUMMARY

Instructions: Indicate type and concentrations of hazardous constituents detected in groundwater. Provide statistical data (maximum value, mean value, upper 90% confidence limit on mean) on detectable concentrations only. Do not include non-detects from outside of source zone. Select "representative concentration" value for comparison to cleanup standard (SSTL or RBSL) and calculation of baseline risk. Provide detailed lab data table(s) as Appendix A to this report.

			SAMPLE ANALYTICAL METHOD POPULATION		DETECTED CONCENTRATIONS			SELECTED REPRESEN-	
CONSTITUE	NTS DETECTED		Typical Detection	No. of	No. of	Max Conc.	Mean Conc.	Upper 90%CL Conc.	CONC.
CAS No.	Name	Method No.	Limit (mg/L)	Samples	Detects	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	Volatilization from Groundwater to Indoor Air								
	Benzene	5030/8020	0.0005	28	8	1.30	0.196		0.290
	Toluene	5030/8020	0.0005	28	7	0.450	0.031		0.006
	Ethyl benzene	5030/8020	0.0005	28	8	0.970	0.082		0.075
	Xylenes	5030/8020	0.0005	28	8	4.90	0.493		0.032
	Volatilization from Groundwater to Ambient Air								
	Benzene	5030/8020	0.0005	28	8	1.30	0.196		0.340
	Toluene	5030/8020	0.0005	28	7	0.450	0.031		0.006
	Ethyl benzene	5030/8020	0.0005	28	8	0.970	0.082		0.128
	Xylenes	5030/8020	0.0005	28	8	4.90	0.493		0.395

2 1.300

ARCO 2111

Date Completed:

Site Location:

1156 Davis Street, San Leandro, CA

Completed By:

9-11-96 EMCON

Page 1 of 2

TIER 2 EXPOSURE PATHWAY TRANSPORT PARAMETERS

Instructions: For complete exposure pathways, provide site-specific values for transport parameters. In absence of direct measurements, default values may be selected for some parameters, as shown below. If no default value shown, site-specific value must be provided.

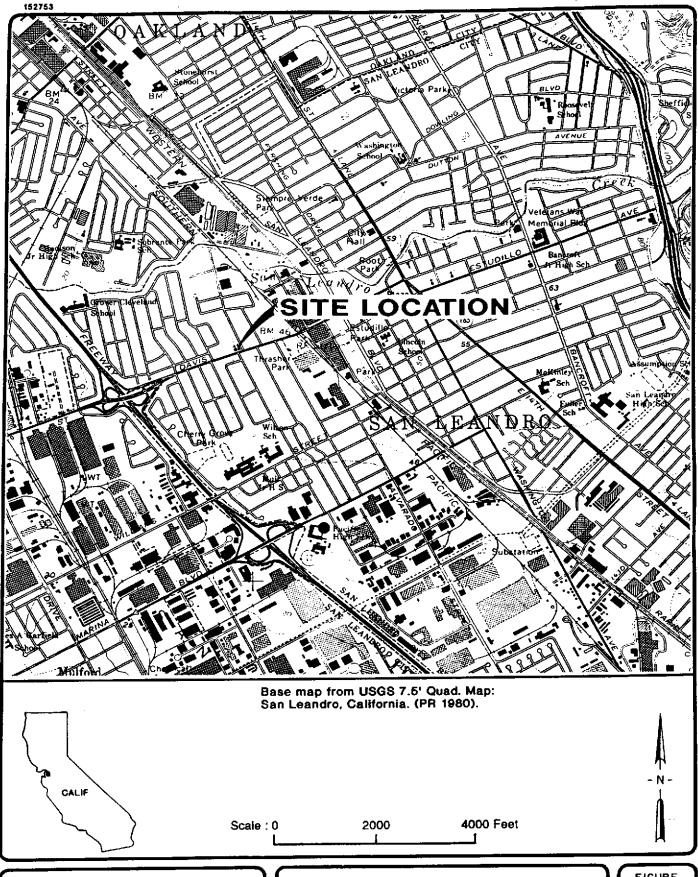
TRANS	PORT PARAMETER	SITE-SPECIFIC VALUE	DEFAULT VALUE
AIR PAR	AMETERS	es, con de la legar a combinar de la marco de la m	
δ_{air}	Air mixing zone height (cm)		■ 200
U_{air}	Ambient air velocity in mixing zone (cm/sec)	-	■ 225
Pe	Soil particulate areal emission rate (g/cm ² -sec)		□ 2.17E-10
σ_{y}	Transverse air dispersion coeff. (m)		1 00
σ_{z}	Vertical air dispersion coeff. (m)		■ 10
GROUNI	OWATER PARAMETERS		
δ_{gw}	Groundwater mixing zone depth (cm)		□ 200
I	Water infiltration rate (cm/yr)		□ 30
V_{gw}	Groundwater Darcy velocity (ft/yr)		
K	Saturated hydraulic conductivity (cm/sec)		
ⁱ grad	Lateral groundwater flow gradient (dim)		
$(BC)_i$	Available biodegradation capacity of electron		
	acceptors for constituent i		
х	Distance to POE from point of maximum COC concentration in groundwater (ft)		
$\alpha_{\mathbf{x}}$	Longitudinal groundwater dispersion coeff. (cm)		□ 10% of x
α_{y}	Transverse groundwater dispersion coeff. (cm)		□ 33% of α _χ
α_z	Vertical groundwater dispersion coeff. (cm)		□ 5% of α _z
SOIL PAI	RAMETERS		
hcap	Capillary zone thickness (cm)		<u></u> 5
h _V _	Vadose zone thickness (cm)		
ρ_s	Soil bulk density (g/cm ³)		□ 1.7
foc _s	Fraction organic carbon in soil leaching zone (dim)		□ 0.01
focgw	Fraction organic carbon in water-bearing unit (dim)		□ 0.001
Lgw	Depth to groundwater (cm)		
Θ_T	Soil porosity (dim)		(0.38)
	Soil volumetric water content (dim)		
Θ _{wcap}	Capillary zone		□ 0.342
$\Theta_{ m ws}$	Vadose zone		□ 0.12
Θwcracl	Foundation crack		□ 0.12

RBCA SUMMARY REPORT

Worksheet 5.7

Site Name:

ARCO 2111

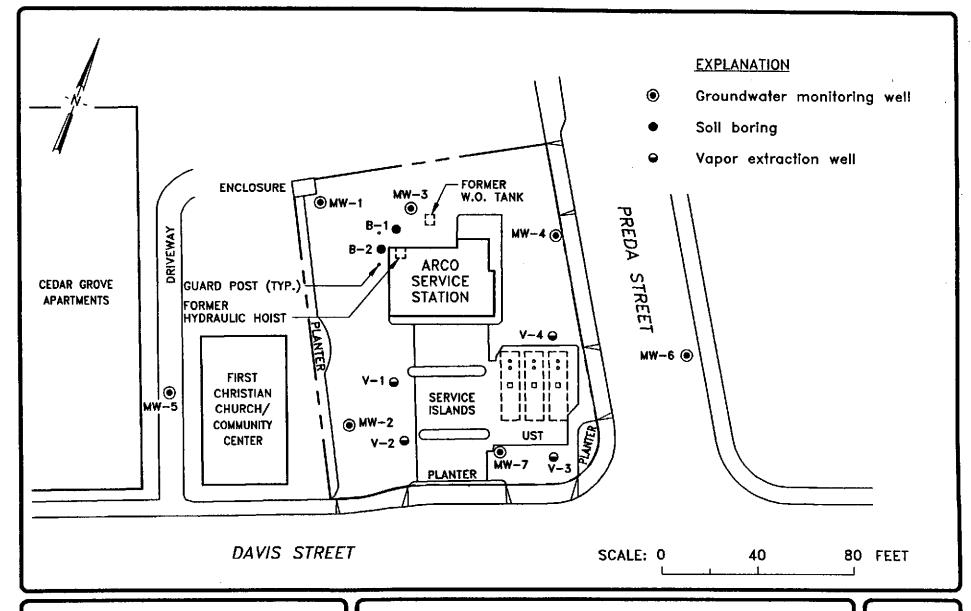

Date Completed: 9-11-96

1156 Davie Str

Completed Die FMCON

RANSPORT PARAMETER		SITE-SPECIFIC VALUE (INPUT VALUE BELOW)	DEFAULT VALU (■ TO SELECT)
SOIL PAI	RAMETERS (Continued)		The state of the s
	Soil volumetric air content (dim)		
Θ _{acap}	Capillary zone		□ 0.038
Θ _{as}	•Vadose zone		□ 0.26
Θ _{acrack}	•Foundation crack		□ 0.26
d	Thickness of surficial soil zone (cm)		□ 100 cm
BUILDIN	G PARAMETERS		Comm
			Resid. Ind.
L _b	Building volume/area ratio (cm)		□ 200 ■ 300
ER	Building air exchange rate (dy-1)		□ 12 ■ 20
Lcrack	Foundation crack thickness (cm)		■ 15
η	Foundation crack fraction		■ 0.005

	-
VERSION:	1.0

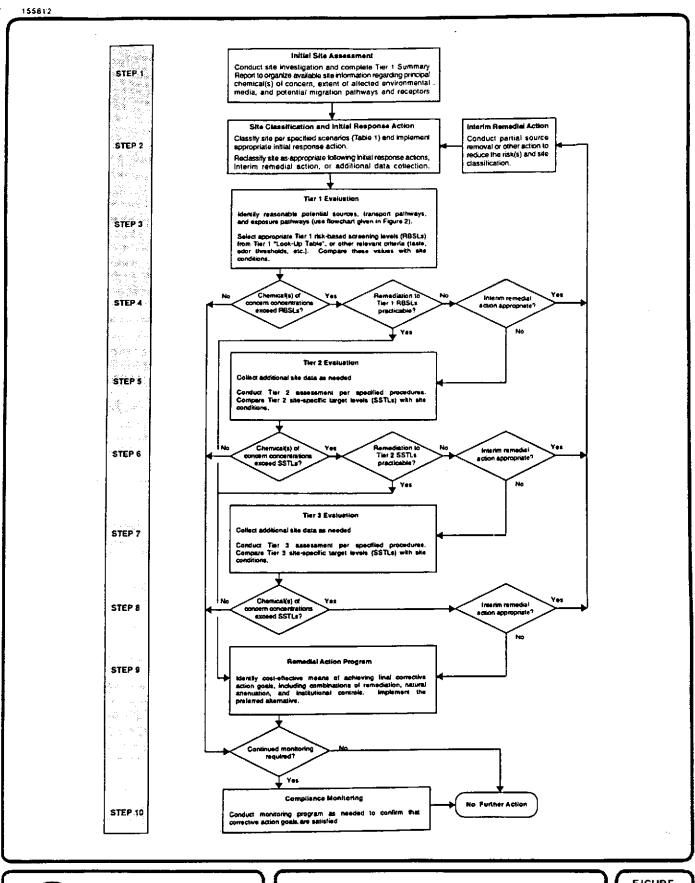


ARCO PRODUCTS COMPANY SERVICE STATION 2111, 1156 DAVIS STREET SAN LEANDRO, CALIFORNIA

SITE LOCATION

FIGURE

PROJECT NO. 805-127.04

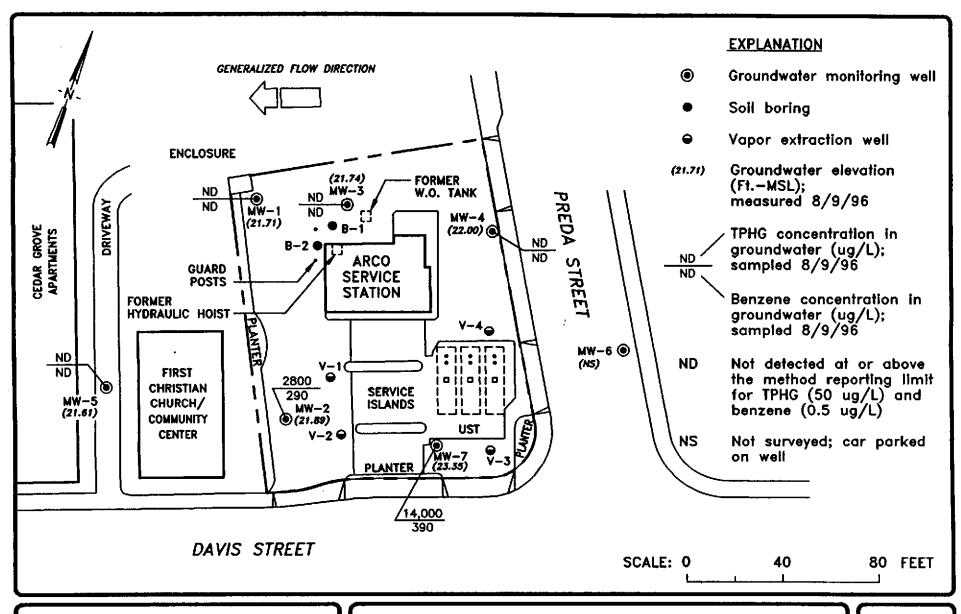


ARCO PRODUCTS COMPANY SERVICE STATION 2111, 1156 DAVIS STREET SAN LEANDRO, CALIFORNIA

SITE PLAN

FIGURE

PROJECT NO. 805-127.04



ARCO PRODUCTS COMPANY SERVICE STATION 2111, 1156 DAVIS STREET SAN LEANDRO, CALIFORNIA

RISK-BASED CORRECTIVE ACTION PLAN PROCESS FLOWCHART FIGURE

3

PROJECT NO. 805-127.04

ARCO PRODUCTS COMPANY SERVICE STATION 2111, 1156 DAVIS STREET SAN LEANDRO, CALIFORNIA

> GROUNDWATER DATA THIRD QUARTER 1996

FIGURE

RDJECT

PROJECT NO. 805-127.04

ARCO 2111

Date Completed:

9-11-96

Site Location:

1156 Davis Street, San Leandro, CA

Completed By: EMCON

Page 1 of 1

EXPOSURE FACTOR CHECKLIST

Instructions: • <u>Tier 1 Evaluation</u>: Indicate use of either residential or commercial / industrial Reasonable Maximum Exposure (RME) factors at on-site points of exposure (POEs) for complete exposure pathways. • <u>Tier 2 Evaluation</u>: Indicate use of either 1 Reasonable Maximum Exposure (RME) factor or a site-specific exposure factor for both residential and commercial / industrial points of exposure (POEs), as appropriate for each exposure pathway. For Tier 2, data is required for Global Factors and for complete pathways only (see Worksheet 4.4).

			RESIDENTIAL POE		COMMERCIA	COMMERCIAL/ INDUSTRIAL POE		
			RME	Site-Specific	RME_	Site-Specific		
GLC	BAL FACTORS	(■	TO SELECT)				
AT_c	Averaging time for carcinogens		70 yrs		■ 70 yrs	-		
AT_n	Averaging time for							
	non-carcinogens		= ED		■ = ED	<u> </u>		
BW	Body weight -Adult		70 kg	<u> </u>	■ 70 kg	<u> </u>		
	-Child (1-6 yrs)		15 kg		□NA			
ED	Exposure duration		30 yrs		■ 25 yrs			
	EXPOSURE FACTORS			COMPLETE (provide d	ata) 🔲 NOT Co	MPLETE (skip)		
EF	Exposure frequency (inhalation)		350 dy/yr	<u> </u>	■ 250 dy/yr	<u> </u>		
[Rai	Daily indoor inhalation rate		15 m ³ /dy		■ 20 m ³ /dy			
			(24-hr/dy)		(8-hr/dy)			
[R _{ao}	Daily outdoor inhalation rate	•	20 m ³ /dy		■ 20 m ³ /dy			
		00.7455077400000	(24-hr/dy)		(8-hr/dy)			
	ABLE WATER USE EXPOSURE FACT	ORS.	C	COMPLETE (provide o	iata) MOT COMPL	ETE (skip)		
EF	Exposure frequency (ingestion/showering)		250 1 4	П	D 250 1 1			
IR _w			350 dy/yr	<u> </u>	□ 250 dy/yr			
II.W	Daily water ingestion rate		2 L/dy	<u> </u>	□ 1 L/dy	<u> </u>		
EPoh	Exposure period (showering)		(24-hr/dy) 12 min/dy		(8-hr/dy) ☐ 12 min/day			
	Skin surface area (showering)	_	12 milety		12 null/day	<u> </u>		
JAW	-Adult (70 kg)		0.86 m ²		□ 0.86 m ²	ם		
SOIL	EXPOSURE FACTORS							
EF	Exposure Frequency	_						
	-Dermal Contact		350 dy/yr	<u></u>	☐ 40 dy/yr	<u></u>		
C A	-Soil ingestion		350 dy/yr		□ 250 dy/yr			
SAs	Skin surface area (soil contact) -Adult (18 to 31 yrs, 70 kg)		$0.58 m^2$		□ 0.58 m ²			
	-Child (1 - 17 yrs, 35 kg)		0.20 m ²	<u> </u>	□ NA	<u> </u>		
M	Soil to skin adherance factor		1.0 mg/cm ²	0	□ 1.0 mg/cm ²			
ĪR _s	Soil ingestion rate		***************************************		_ 1.5 mg/cm			
	- Age-adjusted average		114 mg-yr	.	o NA	<u> </u>		
			/kg-dy					
	-Adult (7 to 31 yrs, 70 kg)		100 mg/dy	_	□ 50 mg/dy	-		
	-Child (1 - 6 yrs, 15 kg)		(24-hr/dy)	_	(8-hr/dy)	_		
		:	200 mg/dy	-	□ NA	□		
A 35 TO 100			(24-hr/dy)					
	FACE WATER EXPOSURE FACTORS			COMPLETE (provide d	lata) MOT COMPL	ETE (ekip)		
EF	Exposure Frequency -Fish consumption		250 4(<u> </u>	D 33			
	•		350 dy/yr		□ NA □ NA			
ID -	-Swimming		7 dy/yr	-	UNA			
IRf	Daily fish intake rate -Freshwater	П	10 g/dy		□ NA			
	-Saltwater		15 g/dy	<u> </u>	□ NA	<u> </u>		
SAw	···	_	g)		- 11/4			
-Jrw	-Adult (70 kg)		0.86 m^2		□ NA			
EPen	Exposure period (swimming)		2.6 hrs/dy		□ NA			
314	, F		mauj		- L1/1			

RBCA SUMMARY REPORT

Worksheet 5.1

Site Name:

ARCO 2111

Date Completed:

Completed: 9-11-96

Site Location: 1156 Davis Street, San Leandro, CA

Completed By: EMCON

Page 1 of 1

SITE PARAMETER CHECKLIST FOR RISK-BASED SCREENING LEVELS

Instructions: For Tier 1 evaluation (generic screening levels), review specified default parameters (*) to ensure values are conservative for site. For Tier 2 Option 1 SSTL calculation (site-specific screening levels), provide site-specific values for sensitive parameters (§). Indicate parameter value used in evaluation by completing check box (■).

Note: * Confirm conservatism of these values for Tier 1 evaluation.

Soil Parameters		Default Value Used		Site-Specific Value Used	
	soil type		sandy soil	■ clayey sand	_ *{
Θ_T	Soil porosity		0.38 (dim)	. 0.30	_ {
) ws	water content - vadose zone		0.12 (dim)	■ 0.09	_ {
as	air content - vadose zone $(=\Theta_T - \Theta_{WS})$		0.26 (dim)	■ 0.21	_
wcap	water content - capillary fringe		0.342 (dim)	■ 0.25	_
acap	air content - capillary fringe $(=\Theta_T - \Theta_{WCap})$		0.038 (dim)	■ 0.05	
's	Soil density		1.7 g/cm ³	<u> </u>	_
00	mass fraction of organic carbon in soil		0.01 (dim)		
S	Depth to contaminated soil		100 cm	<u> </u>	_
gw	Depth to groundwater		300 cm	■ 366	{
сар	capillary zone thickness		5 cm	30.5	
IV	vadose zone thickness (= Lgw - hc)		295 cm	335	_
Н	Soil/water pH		6.5	<u> </u>	_
Groundy	vater Parameters				
	Water infiltration rate		30 cm/yr	_	
V _{gw}	groundwater velocity		82.0 ft/yr	<u> </u>	_ *:
S_{gw}	groundwater mixing zone depth		200 cm	<u> </u>	*
DF	aquifer dilution factor (= 1 + $V_{gw} \delta_{gw} / (IW)$)		12.1	<u> </u>	_
surface l	Parameters				
U _{air}	Amb. air velocity in mixing zone		225 cm/s	<u> </u>	
5 _{air}	Mixing zone height		200 cm	<u> </u>	_ *
4	Contaminated Area		2250000 cm ²	<u> </u>	_
N	Width of Contaminated Area		1500 cm		
i	Thickness of Surficial Soils		100 cm	o	_ ·
Pe	Particulate areal emission rate		2.17E-10 g/cm ² -s		_
Building	Parameters				
Lcrack	Foundation crack thickness		15 cm	<u> </u>	
η	Foundation crack fraction		0.01 (dim)	■ <u>0.005</u>	_
Lb _r	Building Volume/Foundation Area Ratio (res.)		200 cm	<u> </u>	_
Lb _c	Building Volume/Foundation Area Ratio (com./ind.)		300 cm		_
er _r	Building vapor volume exchange rate (res.)		12 dy ⁻¹	<u> </u>	_
ER _c	Building vapor volume exchange rate (com./ind.)		$20 ext{ dy}^{-1}$	<u> </u>	_

(continue on next page if needed)

Worksheet 5.1

Site Name:

ARCO 2111

Date Completed:

Site Location: 1156 Davis Street, San Leandro, CA Completed By:

EMCON

9-11-96

Page 1 of 1

SITE PARAMETER CHECKLIST FOR RISK-BASED SCREENING LEVELS

Instructions: For Tier 1 evaluation (generic screening levels), review specified default parameters (*) to ensure values are conservative for site. For Tier 2 Option 1 SSTL calculation (site-specific screening levels), provide site-specific values for sensitive parameters (§). Indicate parameter value used in evaluation by completing check box (■).

Note: * Confirm conservatism of these values for Tier 1 evaluation.

ş	Provide site-s	pecific me	easurement o	or estimate for	r Tier 2	evaluation.
---	----------------	------------	--------------	-----------------	----------	-------------

Soil Para	ameters	Def	ault Value Used	Site-Specific Value Use
	soil type		sandy soil	clayey sand
Θ_T	Soil porosity		0.38 (dim)	■ 0.30
$\Theta_{\mathbf{ws}}$	water content - vadose zone		0.12 (dim)	■ <u>0.17</u> 1
Э _{as}	air content - vadose zone $(=\Theta_T - \Theta_{ws})$		0.26 (dim)	■ <u>0.13</u>
9 _{wcap}	water content - capillary fringe		0.342 (dim)	■ _0.25
⊖ _{acap}	air content - capillary fringe $(=\Theta_T - \Theta_{\text{wcap}})$		0.038 (dim)	■ _0.05
) _e	Soil density		1.7 g/cm ³	.
Foc	mass fraction of organic carbon in soil		0.01 (dim)	-
Ĺs	Depth to contaminated soil		100 cm	o
Lgw	Depth to groundwater		300 cm	■ 366
h _{cap}	capillary zone thickness		5 cm	■ 30.5
hv	vadose zone thickness (= Lgw - hc)		295 cm	■ 335
Н	Soil/water pH		6.5	<u> </u>
	water Parameters			
	Water infiltration rate		30 cm/yr	<u> </u>
V _{gw}	groundwater velocity		82.0 ft/yr	· '
S _{gw}	groundwater mixing zone depth		200 cm	· :
)F	aquifer dilution factor (= 1 + $V_{gw} \delta_{gw} / (IW)$)		12.1	O
Surface l	Parameters			
J _{air}	Amb. air velocity in mixing zone		225 cm/s	·
5 _{air}	Mixing zone height		200 cm	o :
A	Contaminated Area		2250000 cm ²	o <u> </u>
N	Width of Contaminated Area		1500 cm	<u> </u>
•	Thickness of Surficial Soils		100 cm	-
Pe	Particulate areal emission rate		2.17E-10 g/cm ² -s	
Building	Parameters			
-crack	Foundation crack thickness		15 cm	-
η	Foundation crack fraction		0.01 (dim)	■ _0.005
.b _r	Building Volume/Foundation Area Ratio (res.)		200 cm	
.b _c	Building Volume/Foundation Area Ratio (com./ind.)		300 cm	-
R _r	Building vapor volume exchange rate (res.)		$12~\mathrm{dy}^{-1}$	
ER _c	Building vapor volume exchange rate (com./ind.)		20 dy ⁻¹	

(continue on next page if needed)