

Atlantic Richfield Company (a BP affiliated company)

P.O. Box 6549 Moraga, California 94570 Phone: (925) 299-8891 Fax: (925) 299-8872

March 31, 2005

Re: First Quarter 2005 Groundwater Monitoring Report

ARCO Service Station #2111

1156 Davis Street

San Leandro, California File #: STID 744/R0-494

I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by:

Paul Supple 1

Environmental Business Manager

March 31, 2005

Mr. Robert Schultz Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: First Quarter 2005 Groundwater Monitoring Report

ARCO Service Station #2111

1156 Davis Street

San Leandro, California File #: STID 744/R0-494

Dear Mr. Schultz:

On behalf of Atlantic Richfield Company (RM), a BP affiliated company, URS Corporation (URS) is submitting the First Quarter 2005 Groundwater Monitoring Report for ARCO Service Station #2111, located at 1156 Davis Street, San Leandro, California.

Environmental No

If you have any questions regarding this submission, please call (510) 874-3280.

Sincerely,

URS CORPORATION

Scott Robinson

Project Manager

Enclosure:

cc:

First Quarter 2005 Groundwater Monitoring Report

Mr. Paul Supple, Atlantic Richfield Company (RM), electronic copy uploaded to ENFOS

Senior Geologist

URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612-1924 Tel: 510 893 3600 Fax: 510.874.3268

FIRST QUARTER 2005 GROUNDWATER MONITORING REPORT

ARCO SERVICE STATION #2111 1156 DAVIS STREET SAN LEANDRO, CALIFORNIA

Prepared for RM

March 31, 2005

1333 Broadway, Suite 800 Oakland, California 94612

Date: March 31, 2005

Quarter: 1Q 05

RM QUARTERLY GROUNDWATER MONITORING REPORT

Facility No.:	2111	Address:	1156 Davis Street, San Leandro, California	
RM Environmental B	susiness Manager:		Paul Supple	
Consulting Co./Conta	ict Person:		URS Corporation / Scott Robinson	
Primary Agency:			Alameda County Environmental Health (ACEH)	
File/Case #:			STID 744/R0-494	

WORK PERFORMED THIS QUARTER (First – 2005):

- 1. Prepared and submitted Fourth Quarter 2004 Groundwater Monitoring Report.
- 2. Performed first quarter 2005 groundwater monitoring event on January 20, 2005.
- 3. Performed monthly free product bailing at well MW-2.
- 4. Prepared and submitted this First Quarter 2005 Groundwater Monitoring Report
- 5. Prepared and submitted DPE system design and workplan for bidding.

WORK PROPOSED FOR NEXT QUARTER (Second – 2005):

- 1. Perform second quarter 2005 groundwater monitoring event.
- 2. Prepare and submit Second Quarter 2005 Groundwater Monitoring Report.
- 3. Check MW-2 monthly for free product.

SITE SUMMARY

Current Phase of Project:	Groundwater monitoring/sampling/interim remediation
Frequency of Groundwater Sampling:	Quarterly: Wells MW-1 through MW-5 and MW-8
	Annually (3 rd Quarter): MW-6
Frequency of Groundwater Monitoring:	Quarterly
Is Free Product (FP) Present On-Site:	Sheen
FP recovered this quarter (to 3/23/05):	0 gallons
Cumulative FP Recovered from	
6/28/99 to 3/23/05:	1.44 gallons
Current Remediation Techniques:	Bailing free product as needed from MW-2
Approximate Depth to Groundwater:	12.57 (MW-6) to 15.50 (MW-1) feet
Groundwater Gradient (direction):	West
Groundwater Gradient (magnitude):	0 009 feet per foot

DISCUSSION:

Gasoline range organics (GRO) were detected at or above the laboratory reporting limits in six of the seven wells sampled this quarter at concentrations ranging from 65 μ g/L (MW-4) to 34,000 μ g/L (MW-7). Methyl tert-butyl ether (MTBE) was detected at or above the laboratory reporting limit in all seven wells at concentrations ranging from 18 μ g/L (MW-4) to 36,000 μ g/L (MW-7). Tert-amyl methyl ether (TAME) was detected at or above the laboratory reporting limit in three wells at concentrations ranging from 2.6 μ g/L (MW-3) to 17 μ g/L (MW-1). Benzene was detected at or above the laboratory reporting limits in one well at a concentration of 450 μ g/L (MW-2). Ethylbenzene was detected at or above the laboratory reporting limits in one well at a concentration of 1,300 μ g/L (MW-2). Xylenes were detected at or above the laboratory reporting limits in one well at a concentration of 3,300 μ g/L (MW-2). No other fuel additives were detected at or above the laboratory reporting limits in wells sampled this quarter.

Free product monitoring events were conducted at well MW-2 on January 20, February 4, and March 23, 2005. No free product was recovered from well MW-2 during this quarter.

ATTACHMENTS:

- Figure 1 Groundwater Elevation Contour and Analytical Summary Map January 20, 2005
- Table 1 Groundwater Elevation and Analytical Data
- Table 2 Fuel Additive Analytical Data
- Table 3 –Groundwater Flow Direction and Gradient
- Table 4 Approximate Cumulative Floating Product Recovered (1999 Present)
- Attachment A Field Procedures and Field Data Sheets
- Attachment B Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records
- Attachment C Error Check Reports and EDF/Geowell Submittal Confirmations

ARCO Service Station #2111

1156 Davis Street

San Leandro, California

URS

AND ANALYTICAL SUMMARY MAP
First Quarter 2005 (January 20, 2005)

311-5-5000 52**4**7)

Table 1
Groundwater Elevation and Analytical Data

					Top of	Bottom			GRO/	_		Ethyl-	Total			
Well No.	Date	P/ NP	Footnotes/ Comments	(ft MSL)	Screen (ft bgs)	of Screen (ft bgs)	DTW (ft bgs)	GWE (ft MSL)	TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	benzene (µg/L)	Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	рН
MW-1	6/26/2000			39.6	12.50	26.00	16.46	23.14								-
	7/20/2000			39.6	12.50	26.00	16.89	22.71	360	110	<0.5	<0.5	2.7	2,100	_	1 -
	9/19/2000			39.6	12.50	26.00	17.62	21.98	290	76	<0.5	<0.5	2.3	1,500	-	
	12/21/2000			39.6	12.50	26.00	17.39	22.21	257	64	2.89	1.31	4.57	1,080/1,060		
	3/13/2001			39.6	12.50	26.00	15.70	23.90	<500	52.5	<5.0	<5.0	<5.0	1,430/1,370	_	
	9/18/2001			39.6	12.50	26.00	18.24	21.36	<500	64	7.3	<5.0	52	810/1,100		
	12/28/2001			39.6	12.50	26.00	15.95	23.65	<500	<5.0	<5.0	5	22	1,200/1,100		
	3/14/2002			39.6	12.50	26.00	16.01	23.59	<50	<0.5	<0.5	<0.5	<0.5	34/40		
	4/23/2002			39.6	12.50	26.00	15.43	24.17	<50	<0.5	<0.5	<0.5	<0.5	30		
	7/17/2002	NP		39.6	12.50	26.00	17.50	22.10	<50	1.2	<0.50	<0.50	<0.50	29	6.9	6.9
	10/9/2002		C	39.6	12.50	26.00	18.27	21.33	240	4.9	<1.0	4.1	7.0	290	6.5	6.5
	1/13/2003		C	39.6	12.50	26.00	15.37	24.23	760	34	11	17	56	300	6.8	6.8
	04/07/03			39.6	12.50	26.00	16.61	22.99	<50	<0.50	<0.50	<0.50	<0.50	22	6.8	6.8
	7/9/2003			39.6	12.50	26.00	17.27	22.33	<2,500	<25	<25	<25	<25	690	6.7	6.7
	02/05/2004	NP	m	39.49	12.50	26.00	16.28	23.21	2,800	31	<25	<25	<25	1,100	0.9	6.5
	04/05/2004	NP		39.49	12.50	26.00	16.25	23.24	5,800	46	<25	<25	<25	1,700	1.0	
	07/13/2004	NP	<u></u>	39.49	12.50	26.00	17.57	21.92	<1,000	<10	<10	<10	<10	730	0.5	6.6
	11/04/2004	NP		39.49	12.50	26.00	17.78	21.71	560	<5.0	<5.0	<5.0	<5.0	380	0.8	6.5
	01/20/2005	NP		39.49	12.50	26.00	15.50	23.99	670	<5.0	<5.0	<5.0	<5.0	570	0.6	6.0
MW-2	6/26/2000	"	а	37.99	12.00	26.00	14.60	23.39								T
	7/20/2000			37.99	12.00	26.00	15.14	22.85	95,000	2,300	18,000	2,500	19,000	13,000		
	9/19/2000			37.99	12.00	26.00	15.95	22.04	63,000	1,200	6,300	2,000	14,000	19,000		-
	12/21/00		b.	37.99	12.00	26.00			5,010	360	189	213	626	54,300/89,2 00		
	12/21/2000		MANAMATAN PERMENTENTE EL MESSON PETER (ESPER)	37.99	12.00	26.00	15.60	22.39	45,900	_	2,130	1,160	9,460	22,400/24,7 00		
	3/13/2001		b	37.99	12.00	26.00	-		<20,000	525	466	408	1,460	91,700/76,0 00		
	3/13/2001			37.99	12.00	26.00	13.77	23.90	3,650	98.1	<5.0	<5.0	6.42	3,590/3,260	**	
	9/18/2001		a	37.99	12.00	26.00	16.86	21.13				-	_			
	12/28/2001			37.99	12.00	26.00	14.28	23.71	31,000	1,500	3,800	1,300	4,800	9,300/8,800		Ī
	3/14/2002			37.99	12.00	26.00	14.15	23.84	1,800	25	43	43	270	990/960		
	4/23/2002	-		37.99	12.00	26.00	13.60	24.39	9,000	220	110	470	2,500	8,500		
	7/17/2002	NΡ	a, c	37.99	12.00	26.00	15.75		74,000	280	290	820	10,000	19,000/0.4	6.8	6.8

Table 1
Groundwater Elevation and Analytical Data

Well No.	Date	P/ NP	Footnotes/ Comments	TOC (ft MSL)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	DTW (ft bgs)	GWE (ft MSL)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Нq
MW-2	10/9/02	NP	g	37.99	12.00	26.00	16.69									
	1/13/03	-	g, h	37.99	12.00	26.00	13.59	24.61						-		
	04/07/03	_	g, h	37.99	12.00	26.00	14.70	23.69						-	_	
	07/09/03		g, h	37.99	12.00	26.00	15.48	22.57						-	_	
	02/05/2004	NP	g,m	37.86	12.00	26.00	14.43	23.53	_						-	
	04/05/2004	NP		37.86	12.00	26.00	14.35	23.51	2,300	33	<5.0	<5.0	200	750	0.6	
	07/13/2004	NP		37.86	12.00	26.00	15.79	22.07	59,000	380	<50	2,100	7,900	5,800	0.3	6.4
	08/31/2004	-		37.86	12.00	26.00	15.89	21.97						-	-	_
	11/04/2004		g, h	37.86	12.00	26.00	15.92	21.94							_	
	01/20/2005	NP	0	37.86	12.00	26.00	13.71	24.15	30,000	450	<50	1,300	3,300	7,000	0.7	6.2
MW-3	6/26/2000			39.32	12.00	26.00	15.96	23.36			==					NA
	7/20/2000			39.32	12.00	26.00	16.42	22.90	<50	<0.5	<0.5	<0.5	<1.0	130		
	9/19/2000	_		39.32	12.00	26.00	17.18	22.14	190	17	<0.5	1.4	2.4	160		
	12/21/2000			39.32	12.00	26.00	16.97	22.35	187	17.8	<0.5	2.47	2.5	143/125	_	_
	3/13/2001	_		39.32	12.00	26.00	15.17	24.15	72.4	2.83	<0.5	<0.5	<0.5	126/122		
	9/18/2001			39.32	12.00	26.00	17.81	21.51	140	6.4	<0.5	3.5	1.6	110/75		
	12/28/2001			39.32	12.00	26.00	15.44	23.88	130	5.9	<0.5	0.99	0.55	90/63	_	-
	3/14/2002			39.32	12.00	26.00	15.50	23.82	<50	<0.5	<0.5	<0.5	<0.5	100/88	-	
	4/23/2002			39.32	12.00	26.00	14.96	24.36	<50	<0.5	<0.5	<0.5	<0.5	77		
	7/17/2002	NP		39.32	12.00	26.00	17.09	22.23	<50	<0.50	<0.50	<0.50	<0.50	47	7.2	7.2
	10/9/2002	NP	All and the second seco	39.32	12.00	26.00	17.87	21.45	<50	<0.50	<0.50	<0.50	<0.50	26/29	7.2	7.2
	1/13/2003	NP	I (Toluene and MTBE)	39.32	12.00	26.00	14.78	24.54	<50	<0.50	<0.50	<0.50	<0.50	59	6.8	6.8
	04/07/03	NP		39.32	12.00	26.00	16.15	23.17	88	<0.50	<0.50	<0.50	<0.50	75	7.0	7.0
	7/9/2003		171 WILLIAM 777 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 177 - 17	39.32	12.00	26.00	16.79	22.53	100	<0.50	<0.50	<0.50	<0.50	52	6.5	6.5
	02/05/2004	NP	m	39.19	11.90	26.00	15.66	23.53	240	<0.50	<0.50	<0.50	<0.50	37	0.5	
	04/05/2004	NP		39.19	11.90	26.00	15.78	23.41	140	<0.50	<0.50	<0.50	0.60	53	1.0	6.6
	07/13/2004	NP		39.19	11.90	26.00	17.20	21.99	120	<0.50	<0.50	<0.50	<0.50	35	0.8	6.7
	11/04/2004	NP		39.19	11.90	26.00	17.32	21.87	160	<0.50	<0.50	<0.50	<0.50	25	0.8	6.5
	01/20/2005	NP		39.19	11.90	26.00	15.07	24.12	160	<0.50	<0.50	<0.50	<0.50	27	0.6	6.1
MW-4	6/26/2000			38.1	10.00	24.00	14.59	23.51			==		T			NA
	7/20/2000			38.1	10.00	24.00	15.04	23.06	97	7.9	<0.5	<0.5	1.1	51		
	9/19/2000			38.1	10.00	24.00	15.83	22.27	110	7	<0.5	<0.5	<1.0	60		
	12/21/2000		A continues a consistent father commentered to the state of the state	38.1	10.00	24.00	15.59	22.51	120	5.6	<0.5	1.72	<0.5	46.3/48.6		†

Table 1
Groundwater Elevation and Analytical Data

Well No.	Date	P/ NP	Footnotes/ Comments	TOC (ft MSL)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	DTW (ft bgs)	GWE (ft MSL)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	рН
MW-4	3/13/2001			38.1	10.00	24.00	13.73	24.37	76	0.796	<0.5	<0.5	<0.5	53.7/50		
	9/18/2001	_		38.1	10.00	24.00	16.50	21.60	<50	<0.5	<0.5	<0.5	<0.5	25/26		
	12/28/2001			38.1	10.00	24.00	14.03	24.07	<50	<0.5	<0.5	<0.5	<0.5	15/11		-
	3/14/2002			38.1	10.00	24.00	14.10	24.00	<50	<0.5	<0.5	<0.5	<0.5	31/28		-
	4/23/2002	_		38.1	10.00	24.00	13.57	24.53	<50	2.8	<0.5	<0.5	<0.5	42		
	7/17/2002	NP	· · · · ·	38.1	10.00	24.00	15.76	22.34	<50	<0.50	<0.50	<0.50	<0.50	16	7.1	7.1
	10/9/2002	NP		38.1	10.00	24.00	16.59	21.51	<50	2.2	<0.50	<0.50	<0.50	20/23	7.1	7.1
	1/13/2003	NP	d	38.1	10.00	24.00	13.43	24.67	52	<0.50	1.6	<0.50	<0.50	22	6.6	6.6
	04/07/03	NP		38.1	10.00	24.00	14.74	23.36	65	<0.50	<0.50	<0.50	<0.50	24	6.6	6.6
	7/9/2003		VA. A. C.	38.1	10.00	24.00	15.44	22.66	120	<0.50	<0.50	<0.50	<0.50	34	6.6	6.6
	02/05/2004	NP	m	37.99	10.00	24.00	14.39	23.60	120	<0.50	<0.50	<0.50	<0.50	22	0.5	6.6
	04/05/2004	NP		37.99	10.00	24.00	14.37	23.62	110	<0.50	<0.50	<0.50	<0.50	27	1.1	6.5
	07/13/2004	NP		37.99	10.00	24.00	15.96	22.03	77	<0.50	<0.50	<0.50	<0.50	27	0.6	6.6
	11/04/2004	NP		37.99	10.00	24.00	16.02	21.97	<50	<0.50	<0.50	<0.50	<0.50	19	1.2	6.7
	01/20/2005	NP		37.99	10.00	24.00	13.72	24.27	65	<0.50	<0.50	<0.50	<0.50	18	0.6	6.1
MW-5	6/26/2000			37.21	9.50	23.50	14.27	22.94		-						
	7/20/2000			37.21	9.50	23.50	14.69	22.52	55	<0.5	<0.5	<0.5	<1.0	14,000	_	-
	9/19/2000	_		37.21	9.50	23.50	15.36	21.85	54	<0.5	<0.5	<0.5	<1.0	13,000	-	-
	12/21/2000			37.21	9.50	23.50	15.15	22.06	72.9	2.51	<0.5	<0.5	0.961	19,200/21,2 00		
	3/13/2001			37.21	9.50	23.50	13.50	23.71	<500	<5	< 5	<5	<5	15,900/20,0 00		
	9/18/2001	-		37.21	9.50	23.50	15.94	21.27	<10,000	<100	<100	<100	<1,000	22,000/20,0 00		
	12/28/2001			37.21	9.50	23.50	13.45	23.76	<10,000	<100	<100	<100	<100	10,000/10,0 00		
	3/14/2002			37.21	9.50	23.50	13.82	23.39	<5,000	<50	<50	<50	<50	7,100/7,700		
	4/23/2002			37.21	9.50	23.50	13.25	23.96	<5,000	<50	<50	<50	<50	8,900		
	7/17/2002	NP	d	37.21	9.50	23.50	15.27	21.94	7,900	<50	<50	<50	<50	13,000	7.5	7.5
	10/9/2002	NP	e	37.21	9.50	23.50	16.02	21.19	2,400	<20	<20	<20	<20	7,300/7,500	6.7	6.7
	1/13/2003	NP	e, k, j (benzene and total xylenes)	37.21	9.50	23.50	13.20	24.01	6,400	<50	<50	<50	<50	8,900	6.8	6.8
	04/07/03	NP		37.21	9.50	23.50	14.42	22.79	<10,000	<100	<100	<100	<100	3,700	6.8	6.8
	7/9/2003			37.21	9.50	23.50	15.01	22.20	11,000	<50	<50	<50	<50	6,500	6.9	6.9
	02/05/2004	NP	m	37.12	9.00	23.50	14.10	23.02	8,100	<50	<50	<50	<50	7,900	1.5	T

Table 1
Groundwater Elevation and Analytical Data

					Top of	Bottom			GRO/	_		Ethyl-	Total	MIDE		
Well No.	Date	P/ NP	Footnotes/ Comments	(ft MSL)	Screen (ft bgs)	of Screen (ft bgs)	DTW (ft bgs)	GWE (ft MSL)	TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	benzene (µg/L)	Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	рН
MW-5	04/05/2004	NP		37.12	9.00	23.50	14.14	22.98	4,000	<25	<25	<25	<25	2,000	1.0	6.6
	07/13/2004	NP		37.12	9.00	23.50	15.37	21.75	<5,000	<50	<50	<50	<50	4,000	8.0	6.7
	11/04/2004	NP		37.12	9.00	23.50	15.53	21.59	7,400	<50	<50	<50	<50	6,300	3.5	6.7
	01/20/2005	NP	n	37.12	9.00	23.50	13.51	23.61	6,500	<50	<50	<50	<50	6,900	0.7	6.5
MW-6	6/26/2000			37.11	10.00	25.00	13.46	23.65								NA
	7/20/2000		I ALL II ALGU UMAUN WAREN	37.11	10.00	25.00	13.94	23.17	<50	<0.5	<0.5	<0.5	<1.0	<3.0	_	
	9/19/2000	_		37.11	10.00	25.00	14.41	22.70	<50	<0.5	<0.5	<0.5	<1.0	<3.0		
	12/21/2000	-		37.11	10.00	25.00	14.53	22.58	<50	<0.5	<0.5	<0.5	<0.5	<2.5		
	3/13/2001	-		37.11	10.00	25.00	12.67	24.44	<50	<0.5	<0.5	<0.5	<0.5	<2.5		
	9/18/2001			37.11	10.00	25.00	15.42	21.69	<50	<0.5	<0.5	<0.5	<0.5	<2.5/<2.0		
	12/28/2001			37.11	10.00	25.00	12.96	24.15	<50	<0.5	<0.5	<0.5	<0.5	12/<0.5		
	3/14/2002	_		37.11	10.00	25.00	12.98	24.13	<50	<0.5	<0.5	<0.5	<0.5	<2.5		
	4/23/2002			37.11	10.00	25.00	12.44	24.67	<50	<0.5	<0.5	<0.5	<0.5	3.1		
	7/17/2002	NP		37.11	10.00	25.00	14.65	22.46	<50	<0.50	<0.50	<0.50	<0.50	<2.5	7.3	7.3
	10/9/2002	NP		37.11	10.00	25.00	15.51	21.60	<50	<0.50	<0.50	<0.50	<0.50	<2.5	7.1	7.1
	1/13/2003	NP		37.11	10.00	25.00	12.27	24.84	<50	<0.50	<0.50	<0.50	<0.50	<2.5	6.8	6.8
	04/07/03	NP		37.11	10.00	25.00	13.61	23.50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	6.6	6.6
	7/9/2003			37.11	10.00	25.00	14.34	22.77	<50	<0.50	<0.50	<0.50	<0.50	<0.50	7	7.0
	02/05/2004		m	37.11	10.00	25.00	13.38	23.73	_					44		
	04/05/2004			37.11	10.00	25.00	13.31	23.80	_	••						
	07/13/2004	NP		37.11	10.00	25.00	14.65	22.46	<50	<0.50	<0.50	<0.50	<0.50	<0.50	2.7	6.8
	11/04/2004			37.11	10.00	25.00	14.95	22.16	-	-						
	01/20/2005			37.11	10.00	25.00	12.57	24.54			-					
MW-7	6/26/2000	-		38.68	12.00	27.00	14.34	24.34		-				-	-	
	7/20/2000			38.68	12.00	27.00	15.26	23.42	14,000	5.4	<0.5	2.8	5.9	71,000		-
	9/19/2000			38.68	12.00	27.00	15.70	22.98	8,400	420	38	470	220	5,600		
	12/21/2000			38.68	12.00	27.00	16.02	22.66				+-				
	3/13/2001	-		38.68	12.00	27.00	14.18	24.50	<2,000	154	63	46.3	127	175,000/160 ,000		
	9/18/2001			38.68	12.00	27.00	17.02	21.66	<100,000	1,900	<1,000	<1,000	2,800	190,000/370		
	12/28/2001			38.68	12.00	27.00	14.81	23.87	<20,000	<200	<200	<200	<200	84,000/72,0 00		

Table 1
Groundwater Elevation and Analytical Data

Well No.	Date	P/ NP	Footnotes/ Comments	TOC (ft MSL)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	DTW (ft bgs)	GWE (ft MSL)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	рН
MW-7	3/14/2002	_	·	38.68	12.00	27.00	14.60	24.08	<50,000	<500	<500	<500	<500	85,000/85,0 00	-	-
	4/23/2002	-		38.68	12.00	27.00	13.94	24.74	<20,000	530	200	220	800	67,000		
	7/17/2002	NΡ	d	38.68	12.00	27.00	16.27	22.41	26,000	720	<250	<250	860	120,000	6.9	6.9
	10/9/2002	NP	d	38.68	12.00	27.00	17.16	21.52	110,000	1,500	4,400	820	5,400	97,000/120, 000	6.8	6.8
A STATE OF THE STA	1/13/2003	NP	f (TPH-g, BTEX, MTBE)	38.68	12.00	27.00	13.82	24.86	<50,000	<500	<500	<500	2,200	33,000	6.6	6.6
	04/07/03	NΡ		38.68	12.00	27.00	14.52	24.16	<2,500	30	<25	<25	<25	710	7.0	7.0
-	7/9/2003			38.68	12.00	27.00	15.97	22.71	66,000	<500	<500	<500	<500	36,000	6.7	6.7
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	02/05/2004	NP	m	38.54	12.00	27.00	14.75	23.79	55,000	300	<250	<250	<250	34,000	1.0	6.7
	04/05/2004	NΡ		38.54	12.00	27.00	14.63	23.91	62,000	520	<250	<250	380	37,000	1.0	6.7
	07/13/2004	NΡ		38.54	12.00	27.00	16.31	22.23	<100,000	<1,000	<1,000	<1,000	<1,000	56,000	0.7	6.7
	11/04/2004	-		38.54	12.00	27.00	16.46	22.08	70,000	<500	<500	<500	<500	71,000	2.0	6.6
	01/20/2005	NP	n	38.54	12.00	27.00	14.05	24.49	34,000	<250	<250	<250	<250	36,000	0.6	6.3
MW-8	02/05/2004	Р	m	38.91	18.00	38.00	15.61	23.30	3,600	<25	<25	<25	<25	1,900	6.9	6.8
	04/05/2004	Р		38.91	18.00	38.00	15.64	23.27	1,900	<10	<10	<10	<10	1,200	3.2	6.7
	07/13/2004	P		38.91	18.00	38.00	17.22	21.69	<1,000	<10	<10	<10	<10	760	1.6	6.7
	11/04/2004	Р		38.91	18.00	38.00	17.19	21.72	960	<5.0	<5.0	<5.0	<5.0	820	1.8	6.7
	01/20/2005	Р		38.91	18.00	38.00	15.25	23.66	<2,500	<25	<25	<25	<25	1,400	1.5	6.4

Table 1

Groundwater Elevation and Analytical Data

ARCO Service Station #2111 1156 Davis St, San Leandro, CA

ABBREVIATIONS:

- -- = Not analyzed/applicable/measured/available
- < = Not detected at or above laboratory reporting limit

DO = Dissolved oxygen

DTW = Depth to water in feet below ground surface

ft bgs = feet below ground surface

ft MSL = feet above mean sea level

GRO = Gasoline Range Organics, range C4-C12

GWE = Groundwater elevation measured in feet above mean sea level

mg/L = Milligrams per liter

MTBE = Methyl tert butyl ether

NP = Not Purged

P = Purge

TOC = Top of casing measured in feet above mean sea level

TPH-g = Total petroleum hydrocarbons as gasoline

ug/L = Micrograms per liter

FOOTNOTES:

- a = Product sheen noted
- b = Well was sampled after batch extraction event.
- c = Chromatogram Pattern: Gasoline C6-C10 for GRO/TPH-g.
- d = Hydrocarbon pattern is present in the requested fuel guantitation range but does not resemble the pattern of the requested fuel for GRO/TPH-g.
- e = Discrete peak @C6-C7 for GRO/TPH-g.
- f = This sample was analyzed beyond the EPA recommended holding time. The results may still be useful for their intended purpose.
- g = Well not sampled due to the detection of free product.
- h = Groundwater elevation adjusted for free product: (thickness of free product x 0.8) + measured groundwater elevation
- j = The closing calibration was outside acceptance limits by 1%. This should be considered in evaluating the result. The average % difference for all analytes met the 15% requirement and the QC suggests that calibration linearity is not a factor.
- k = The closing calibration was outside acceptance limits by 6%. This should be considered in evaluating the result. The average % difference for all analytes met the 15% requirement and the QC suggests that calibration linearity is not a factor.
- I = This analyte was not confirmed using a secondary column in accordance to client contract.
- m = TOC elevations re-surveyed to NAVD '88 on February 23, 2004.
- n = Hydrocarbon result partly due to indiv. peak(s) in quant. range.
- o = Light to moderate sheen

NOTES

Beginning with the second quarter 2003 sampling event (04/07/03), TPH-g, BTEX, and MTBE analyzed by EPA method 8260B. Prior to 04/07/03, TPH-g was analyzed by EPA methods 8020/ 8260B.

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. Total petroleum hydrocarbons as gasoline (TPHg) has been changed to gasoline range organics (GRO). The resulting data may be impacted by the potential of non-TPHg analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second guarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

Values for dissolved oxygen (DO) and pH were obtained through field measurements.

Source: The data within this table collected prior to August 2002 was provided to URS by RM and their previous consultants. URS has not verified the accuracy of this information.

Table 2

Fuel Additives Analytical Data

Well Number	Date Sampled	Ethanol (μg/L)	TBA (µg/L)	MTBE (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)	Footnotes/ Comments
MW-1	4/7/2003	<100	<20	1,100	<0.50	<0.50	<0.50			
	7/9/2003	<5,000	<1,000	690	<25	<25	<25			
	02/05/2004	<5,000	<1,000	1,100	<25	<25	32	<25	<25	
	04/05/2004	<5,000	<1,000	1,700	<25	<25	38	<25	<25	a
	07/13/2004	<2,000	780	730	<10	<10	19	<10	<10	а
	11/04/2004	<1,000	<200	380	<5.0	<5.0	12	<5.0	<5.0	
	01/20/2005	<1,000	<200	570	<5.0	<5.0	17	<5.0	<5.0	а
MW-2	04/05/2004	<1,000	<200	750	<5.0	<5.0	<5.0	<5.0	<5.0	
	07/13/2004	<10,000	12,000	5,800	<50	<50	<50	<50	<50	a
	01/20/2005	<10,000	<2,000	7,000	<50	<50	<50	<50	<50	a
MW-3	4/7/2003	<100	<20	75	<0.50	<0.50	6.5	-		
	7/9/2003	<100	<20	52	<0.50	<0.50	4.2			
	02/05/2004	<100	<20	37	<0.50	<0.50	3.1	<0.50	<0.50	
	04/05/2004	<100	<20	53	<0.50	<0.50	3.7	<0.50	<0.50	a
	07/13/2004	<100	44	35	<0.50	<0.50	3.2	<0.50	<0.50	
	11/04/2004	<100	<20	25	<0.50	<0.50	2.2	<0.50	<0.50	
	01/20/2005	<100	<20	27	<0.50	<0.50	2.6	<0.50	<0.50	
MW-4	4/7/2003	<100	<20	24	<0.50	<0.50	7.3			
	7/9/2003	<100	<20	34	<0.50	<0.50	9.8			
	02/05/2004	<100	<20	22	<0.50	<0.50	6.2	<0.50	<0.50	
	04/05/2004	<100	<20	27	<0.50	<0.50	7.2	<0.50	<0.50	a
	07/13/2004	<100	26	27	<0.50	<0.50	7.4	<0.50	<0.50	а
	11/04/2004	<100	<20	19	<0.50	<0.50	5.1	<0.50	<0.50	
	01/20/2005	<100	<20	18	<0.50	<0.50	5.2	<0.50	<0.50	
MW-5	4/7/2003	<20,000	<4,000	3,700	<100	<100	<100			
	7/9/2003	<10,000	<2,000	6,500	<50	<50	<50		**	
	02/05/2004	<10,000	<2,000	7,900	<50	<50	<50	<50	<50	а
	04/05/2004	<5,000	<1,000	2,000	<25	<25	<25	<25	<25	9
	07/13/2004	<10,000	3,200	4,000	<50	<50	<50	<50	<50	а
	11/04/2004	<10,000	<2,000	6,300	<50	<50	<50	<50	<50	
	01/20/2005	<10,000	<2,000	6,900	<50	<50	<50	<50	<50	a
MW-6	4/7/2003	<100	<20	<0.50	<0.50	<0.50	<0.50		_	

Table 2

Fuel Additives Analytical Data

Well Number	Date Sampled	Ethanol (µg/L)	TBA (µg/L)	MTBE (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)	Footnotes/ Comments
MW-6	7/9/2003	<100	<20	<0.50	<0.50	<0.50	<0.50		-	
	07/13/2004	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	а
MW-7	4/7/2003	<5,000	<1,000	710	<25	<25	<25		-	
	7/9/2003	<100,000	<20,000	36,000	<500	<500	<500			
	02/05/2004	<50,000	<10,000	34,000	<250	<250	<250	<250	<250	
	04/05/2004	<50,000	<10,000	37,000	<250	<250	<250	<250	<250	
	07/13/2004	<200,000	<40,000	56,000	<1,000	<1,000	1,300	<1,000	<1,000	
	11/04/2004	<100,000	<20,000	71,000	<500	<500	<500	<500	<500	
	01/20/2005	<50,000	<10,000	36,000	<250	<250	<250	<250	<250	a
MW-8	02/05/2004	<5,000	<1,000	1,900	<25	<25	<25	<25	<25	
	04/05/2004	<2,000	<400	1,200	<10	<10	12	<10	<10	а
	07/13/2004	<2,000	770	760	<10	<10	<10	<10	<10	а
	11/04/2004	<1,000	<200	820	<5.0	<5.0	9.6	<5.0	<5.0	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01/20/2005	<5,000	<1,000	1,400	<25	<25	<25	<25	<25	a

Table 2

Fuel Additives Analytical Data

ARCO Service Station #2111 1156 Davis St, San Leandro, CA

ABBREVIATIONS:

-- = Not analyzed/applicable/measured/available

< = Not detected at or above the laboratory reporting limit.

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

EDB = 1.2-Dibromoethane

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

TAME = tert-Amyl methyl ether

SURRESPONDED FOR THE PROPERTY AND A FULL CONTROL OF THE PROPERTY OF THE PROPER

TBA = tert-Butyl alcohol

ug/L = Micrograms per Liter

FOOTNOTES:

a = The continuing calibration verification for ethanol was outside of client contractual acceptance limits. However, it was within method aceptance limits. The data should still be useful for its intended purpose.

NOTES:

All volatile organic compounds (Ethanol, TBA, MTBE, DIPE, ETBE, and TAME) analyzed using EPA Method 8260B.

Source: The data within this table collected prior to August 2002 was provided to URS by RM and their previous consultants. URS has not verified the accuracy of this information.

Table 3

Groundwater Gradient Data

ARCO Service Station #2111 1156 Davis St, San Leandro, CA

Date Sampled	Approximate Flow Direction	Approximate Hydraulic Gradient
7/20/2000	West-Northwest	0.006
9/19/2000	West-Northwest	0.004
12/21/2000	West-Northwest	0.004
3/13/2001	West-Northwest	0.005
5/30/2001	West-Northwest	0.004
9/18/2001	West-Northwest	0.003
12/28/2001	West-Northwest	0.003
3/14/2002	West	0.004
4/23/2002	West	0.006
7/17/2002	West	0.003
10/9/2002	West	0.002
1/13/2003	Southwest	0.0043
4/7/2003	. West-Northwest	0.009-0.011
7/9/2003	West-Northwest	0.004
10/1/2003	West	0.002
2/5/2004	West	0.004
4/5/2004	West-Southwest	0.004
7/13/2004	West-Southwest	0.003
11/4/2004	West	0.003
1/20/2005	West	0.009

Note: The data within this table collected prior to July 2002 was provided to URS by RM and their previous consultants. URS has not verified the accuracy of this information.

Table 4 Approximate Cumulative Floating Product Recovered (1999 - present)

ARCO Service Station #2111 1156 Davis Street, San Leandro California

	Product	Floating	Floating
Well	Recovery	Product	Product
Designation	Field Date	Thickness	Recovered
		(feet)	(gallons)
MW-2	06/28/99	0.45	0.30
MW-2	06/30/99	0.015	0.01
MW-2	07/07/99	0.06	0.04
MW-2	07/23/99	0.008	0.01
MW-2	08/25/99	0.02	0.01
MW-2	09/21/99	0.02	0.01
MW-2	11/10/99	ND	0.00
MW-2	02/09/00	ND ND	0.00
MW-2	04/23/02	ND ND	0.00
MW-2	07/17/02	Sheen	0.00
MW-2	10/9/2002 (1)	NA	0.00
MW-2	01/13/03	0.26	0.13
MW-2	02/14/03	ND	0.00
MW-2	03/24/03	ND ND	0.00
MW-2	04/07/03	0.05	0.00
		ND	0.00
MW-2	05/23/03		0.00
MW-2	06/24/03	0.03	0.03
MW-2	07/09/03	0.07	0.03
MW-2	07/31/03	0.05	
MW-2	09/04/03	0.02	0.01
MW-2	10/01/03	0.07	0.02
MW-2	11/12/03	0.59	0.36
MW-2	12/11/03	0.05	0.07
MW-2	02/05/04	0.13	0.02
MW-2	02/16/04	0.02	0.01
MW-2	03/11/04	ND NB	0.00
MW-2	03/30/04	ND NB	0.00
MW-2	04/05/04	ND ND	0.00
MW-2	07/13/04	ND ND	0.00
MW-2	08/31/04	ND ND	0.00
MW-2	09/07/04	ND	0.00
MW-2	11/04/04	0.22	0.14
MW-2	11/29/04	0.02	0.05
MW-2	12/15/04	0.24	0.16
MW-2	01/20/05	ND	0.00
MW-2	02/04/05	Sheen	0.00
MW-2	03/23/05	Sheen	0.00

Approximate Cumulative Floating Product:

1.44

FOOTNOTES:

1) Free product encountered, but unable to gauge.

ATTACHMENT A FIELD PROCEDURES AND FIELD DATA SHEETS

FIELD PROCEDURES

Sampling Procedures

The sampling procedure for each well consists first of measuring the water level and depth to bottom, and checking for the presence of free phase petroleum product (free product), using either an electronic indicator and a clear TeflonTM bailer or an oil-water interface probe. Wells not containing free product are purged approximately three casing volumes of water (or until dewatered) using a centrifugal pump, gas displacement pump, or bailer. Equipment and purging method used for the current sampling event is noted on the attached field data sheets. During purging, temperature, pH, and electrical conductivity are monitored to document that these parameters are stable prior to collecting samples. After purging, water levels are allowed to partially (approximately 80%) recover. Groundwater samples (both purge and no purge) are collected using a Teflon bailer, placed into appropriate Environmental Protection Agency- (EPA) approved containers, labeled, logged onto chain-of-custody records, and transported on ice to a California State-certified laboratory. Wells with free product are not sampled and free product is removed according to California Code of Regulation, Title 23, Div. 3, Chap. 16, Section 2655, UST Regulations.

WELL GAUGING DATA

Project #_	OSCIZO-3A1 Date	1/20/05	Client _	#2111	
Site	1156 Davis 5	an Leandra			

	Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	
25	MW-)	4	<u>.</u>				15.50	26.22	Toc	
25 1504 12	MW-Z	4		No SPH	Detect	ed	13.71			
	MW3	4					15.07	26.66		
10]	Mw-4	4					13.72	21.66		
9.4	MW.5	2					13.51	23.81		
7.0	MW-6	2					12.57	25,00		
	MWT	4					14.05	27.19		
	Musig	2_					15.25	39.75		
•										
			·							
		<i>a</i>			<u> </u>					
									-	
						·				
						,		·		

												-
BTS#:	05017	Zc -BA1		Station #	2	(1)						
Sampler:	·			Date:	1 /	120/	05					
Well I.D.:				Well Dia				<u>4</u>	6	8 _		
Total Wel	ll Depth:	26.27	 'ب	Depth to	Water	r: /5	5.50	1				
Depth to				Thicknes	s of F	ree Pr	oduct	(feet);	· ·		
Reference		(PVC)) Grade	D.O. Me	ter (if	req'd)	:	Ý	Si)	ŀ	IACH	
<u> </u>	Well Diame			Vell Dinmeter		Jultiplier						
	-1" 2"		0.04	4" 68		0.65						
	3"		0.16 0.37	6" Other		1.47 1s ²	ı					
There Admin		0.51										
Purge Metho		Bailer isposable Bpit	e	Sampling N	4emoa:		Bailer sable Be					
		ve Air Displac					action P					
		ctrie Submers			Other	DAIL						
		xtraction Pun			Omer.							
			ιţ									
Top of Scree	:n:		If well is listed as a					l is bel	low the	e top		
No 1			of screen. Otherwi	ise, the well	must be	purged	l.					
Purse												
	101/ 1	(0.1.)	X	 = .		1	Ga	ıls.				
@ 12.5'	1 Case vol	ume (Gals.)	Specified Vo	lumes	Cale	culated \	volume		·			
	_		Conductivity									
Time	Temp (°F)	pН	(mS or (13)	Gals, Ren	noved	Obs	ervatio	ns	· · · · · · · · · · · · · · · ·	•		
0905	62.4	6.0	\$88			ele	<u>a/</u>					
	-											
								•				
					•							
Did well o	dewater?	Yes	No	Gallons a	ctuall	y eva	cuated	 1:				• dead
Sampling	Time: و	—— 705	Sampling	g Date	: 1/	20/	05					
Sample I.I				Laborato	ry:	Pace	Seque	$\overline{}$	Oth	er		
Analyzed	for: GR	O BTEX	MTBE DRO	Other:		····-						
D.O. (if re	eq'd):		Pre-purge:		$^{ m mg}/_{ m L}$	(F	ost-pu	rge:	0.6	o o		mg/L
O.R.P. (if	req'd):		Pre-purge:		mV	P	Post-pu	rge:				mV

BTS#:	05013	10 BAI		Station #	21						
Sampler:	Brian		Date:	1/2	20/0	5					
Well I.D.	: MW-2			Well Dian	ieter:	2	3	4	6	8	
Total We	ll Depth:			Depth to V	Vater	: 13	3.71				
Depth to	Free Produ	ct:		Thickness	of F	ree Pr	oduc	t (feet	t):		
Reference		(PVC _) Grade	D.O. Mete	r (if	req'd)	:	•	/SI	ŀ	IACH
	Well Diamet 1" 2" 3"		Multiplier V 0.04 0.16 0.37	/ell Diameter 4" 6" Other	<u>M</u> 0 1 radiu	lultiplier 1.65 1.47 1.47 s ² = 0.163			······································		
Purge Metho	Di Positiv Elec	Bailer sposable Baj e Air Djaplac etric Submers straction Pun	cement sible	Sampling Mo		Itispo	Bailer_sable Baction I	Port			
Top of Screen	I Case Vole	If well is listed as a of screen. Otherwing X Specified Vo	se, the well m	ust be		l. 	als.	low th	he top		
Time	Temp (°F)	Hq	Conductivity (mS or us)	Gals. Rem	oved	Obs	crvati	ons		-	•
1015	61.8	6.2	638	-,4		cle	<u>a,</u>	ligh tom	t 1001. <u>s</u>	sheen	strong, odos
	No S	PH Do	tected								
Did well	dewater?	Yes	No	Gallons ac	ctuall	y eva	cuate	:d:			
Sampling	Time:	1015		Sampling	Date	: l/	1201	65			F/
Sample I.	D.: Mu	J-2		Laborator	y:	Pace	Seq.	ioia	Ot	her	
Analyzed	for: GR	O BTEX	MTBE DRO	Other:	ħ			<u>-</u>			
D.O. (if r	eq'd):		Pre-purge:		™g/ _L	(ost-p	urga:	<u>ئ</u>	ገ	mg/ ₁
O.R.P. (if	f req'd):		Pre-purge:		mV]	Post-p	urge:			mV

BTS #:	05012	c=A1		Station # 2	n \		
Sampler:	+/20°E	Sion A	lcom	Date: 1/2	2/05		
Well I.D.	: Mus	3		Well Diameter	: 2 3 4	6 8 _	
Total We	ll Depth:	26.64	3	Depth to Wate	r: 15.07		
Depth to	Free Produ	ıct:		Thickness of F	ree Product (fee	t):	
Reference	ed to:	(vc) Grade	D.O. Meter (if	req'd):	Ŷsi 🔾 h	IACH
	Well Diame 1" 2" 3"		Multiplier \(\frac{\frac}\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f{\frac{\frac{\fra	4" 6" Other radi	Multiplier 0.65 1.47 us ¹ * 0.163		
Purge Metho	D Positi Ele	Bailer isposable Bai ve Air Displa ctric Submer extraction Pur	cement sible	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port		
Top of Scree	en:				that water level is be	elow the top	
No Purse C 119'	I Case Vol	ume (Gals.)	X Specified Vo	e lumes Cal	g purged. Gals. culated Volume		
Time	Temp (°F)	рН	Conductivity (mS or uS)	Gals, Removed	Observations		
0855	63.1	6.1	926		clear		
	·		·				
Did well	dewater?	Yes	No	Gallons actual	ly evacuated:		
Sampling	Time:	>855		Sampling Date	: 1/20/05	-	
Sample I.	_	lw-3		Laboratory:	Pace (Sequoia)	Other	
Analyzed	for: GR	о втех	MTBE DRO	Other:			
D.O. (if re	eq'd):		Pre-purge:	^{mg} /L	(Post-purge)	.0.6	mg/L
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:		mV

Station# 201
Date: 1/20/05
Well Diameter: 2 3 4 6 8
Depth to Water: 13.72
Thickness of Free Product (feet):
D.O. Meter (if req'd): VSI HACH
Well Diameter Multiplier 4" 0.65 6" 1.47 Other radius ² * 0.163 Sampling Method: Bailer Disposable Bailer Extraction Port Other:
a no-purge, confirm that water level is below the top rise, the well must be purged. Gals. Calculated Volume
Gals. Removed Observations
clear
Gallons actually evacuated: —
Sampling Date: 1/20/05
Laboratory: Pace Sequoia Other
Other:
: rost-purge o.6 mg/L
: mV Post-purge: mV

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					·			
BTS#:	050120	-3A1		Station# Z	111					
	Bran			Date: 1	120/05	****				
Well I.D.:	MW-5	 		Well Diameter	: 2)3 4	6 8				
Total We	ll Depth:	23.81		Depth to Water	r: 3,51					
Depth to l	Free Produ	ct:		Thickness of F	ree Product (fee	et):				
Reference	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	$\widehat{\mathbf{Y}}\widehat{\mathbf{S}}\mathbf{I}$	HACH			
	Well Diamete				dultiplier					
	["		0.04	4 ⁿ	0.65					
	2"		0.16		1,47					
	3"		0.37	Other radio	ıs² * 0.163					
Purge Metho	od:	Bailer	/	Sampling Method:	Bailer					
_	Di	sposable Bail	er		Disposable Bailer					
	Positiv	e Air Displac	ement	Extraction Port						
	Elec	etric Submers	ible	Other:						
	E:	xtraction Pum	ıp							
	Other:		•							
	<i>,</i>			_						
Top of Scree	en:				that water level is b	elow the top				
10			of screen. Otherwi	se, the well must be	e purged.					
0 -00										
No Purse Q9.4'		.	Х	#	Gals.					
69.4	1 Case Voli	ume (Gals.)	Specified Vo	lumes Cal	culated Volume					
		.,	Conductivity							
Time	Temp (°F)	pН	(mS or (S)	Gals. Removed	Observations					
0955	60.9	6.5	657		Clear in	ild doc				
0,730					7					
						·····				
	:					<u> </u>				
						<u></u>				
Did well	dewater?	Yes	No	Gallons actual	ly evacuated:					
Sampling	Time: o	955		Sampling Date	1/20/05					
Sample I.	.D.: <u>ռ</u> և	5-5		Laboratory:	Pace Sequoia	Other_				
Analyzec	for: GR	O BTEX	MTBE DRO	Other:		<u> </u>				
D.O. (if r	eq'd):		Pre-purge:	mg _{/[}	L Post-purge:	0.7	^{mg} / _I			
O.R.P. (i	f req'd):	-	Pre-purge:	mV	Post-purge:		mV			

BTS #:	05012	10-BAI		Station #	2111			
	Brian			Date:	1/2	0/05		
	MW-7			Well Diam	eter: 2	2 3 4) 6 8	
Total Wel	ll Depth:	27.19		Depth to W	ater:	14.05		
Depth to	Free Produ	ct:		Thickness of	of Free	Product (fee	et):	
Reference	ed to:	(PVC)	Grade	D.O. Meter	(if req	'd): (ŶSI)	НАСН
Purge Metho	Di Positiv Elec	Bailer sposable Baile e Air Displac etric Submersi	0.04 0.16 0.37 er ement bic	'ell Diameter 4" 6" Other Sampling Met	D _e			
	Otker:	Straction Pum	þ					
Top of Screen	en:		If well is listed as a of screen. Otherwi	se, the well mu	ist be pur		oelow the to	p
C 12	1 Case Volu	ime (Gals.)	Specified Vo Conductivity	iumes	Catculat	ed volume		
Time	Temp (°F)	рН	(mS or (S)	Gals. Remo	ved C	Observations		
6940	60.6	6.3	882		c	lear, del	oris, od	6.
		.,						.=
							·····	
						<u> </u>	- 	
Did well	dewater?	Yes	No	Gallons act	tually e	vacuated:		
Sampling	; Time: o	940		Sampling I	Date:	1/20/05		
Sample I.	.D.: M	w-7		Laboratory	': Pac	ce Sequoia	Other_	
Analyzed	l for: GR	O BTEX	MTBE DRO	Other:				
D.O. (if r	eq'd):		Pre-purge:		mg/L	Post-purge:	0.6	^{mg} /ॄ
O.R.P. (ii	f req'd):		Pre-purge:		mV	Post-purge:		mV
Blaine T	ech Serv	ices, Inc	. 1680 Rogers	s Ave., Sai	n Jose	, CA 95112	2 (408) 5	73-0555

BTS#:	65017	20-BAI		Station #	211	1	···				
Sampler:	Brian	Alcor	<u>1</u>	Date:	1/20						
Well I.D.:	MW-8	3		Well Diam	neter: (2 3	4 6	8			
Total Wel	ll Depth:	39.75	•	Depth to V	Vater:	15.25	<u>-</u>				
	Free Produ			Thickness	of Fre	e Product (feet):				
Reference	ed to:	(PVC)	Grade	D.O. Mete	r (if re	q'd):	YSI	HAC	CH		
	Well Diamet 1" 2" 3"	er f	Multiplier <u>V</u> 0.04 0.16 0.37	Vell Diameter 4" 6" Other	<u>Mul</u> 0.65 1.47 radius ² '	7					
Purge Method: Bailer Sampling Method: Bailer Positive Air Displacement Electric Submersible Extraction Pump Other: Top of Screen: If well is listed as a no-purge, confirm that water level is below the top											
Top of Scree	en:		If well is listed as a of screen. Otherwi				is below th	e top			
•	니. I Case Voli	D	x Specified Vo		12		•				
			Conductivity								
Time	Temp (°F)	рН	(mS or MS)	Gals, Reme	oved	Observations	S				
(034	63.1	6.4	619	4.0		gray_					
(040	64.1	6.4	614	8.0	>	11					
1045.	63.6	6.4	618	12.0	>	/1					
Did well	dewater?	Yes (No)	Gallons ac	ctually	evacuated:	72	-0	·		
Sampling	Sampling Time: 1048 Sampling Date: 1/20/05										
Sample I.	D.: Mi	N-8		Laborator	y: P	ace Sequoi	n) Otl	ner			
Analyzed	for: GR	O BTEX	MTBE DRO	Other:							
D.O. (if re	eq'd):		Pre-purge:		^{πg} /L	Post-purg	3e. 1.5)	^{mg} /∟		
O.R.P. (if	req'd):		Pre-purge:		mV	Post-purg	ge:		mV		
Blaine T	ech Serv	ices, Inc	. 1680 Roger:	s Ave., Sa	n Jos	e, CA 951	12 (408) 573-	0555		

BP GEM OIL COMPANY TYPE A BILL OF LADING

BILL OF LADING FOR NON-SOURCE RECORD **HAZARDOUS** PURGEWATER RECOVERED FROM GROUNDWATER WELLS AT BP GEM OIL COMPANY FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY DILLARD ENVIRONMENTAL TO THE ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY IN LIVERMORE, CALIFORNIA.

The contractor performing this work is PLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Avenue, San Jose, CA 95112 (phone [408] 573-0555). Blaine Tech Services, Inc. is authorized by BP GEM OIL COMPANY to recover, collect, apportion into loads the Non-Hazardous Well Purgewater that is drawn from wells at the BP GEM Oil Company facility indicated below and deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one BP GEM facility to the designated destination point; from one BP GEM facility; from a BP GEM facility to the designated destination point via another BP GEM facility; from a BP GEM facility, or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of BP GEM Oil Company.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the BP GEM Oil Company facility described below:

2111	
Station #	
1156 Davis, S	an Leandro
Station Address	
Total Gallons Collected From C	Groundwater Monitoring Wells:
added equip.	any other
rinse water	adjustments
TOTAL GALS. RECOVERED 12	loaded onto BTS vehicle #58
BTS event#	time date
050120-BAI	1100 1120105
signature	
*******	**********
REC'D AT	time date
unloaded by	
signature	

WELL GAUGING DATA

Projec	t#_ <i>05</i>	0204-0	144	Date _	214/05		Client _	Arcozni	
Site	1156	Davis	St.	San Le	andro; c	Ą			

	Well ID	Well Size (in.)	Sheen / Odor		Thickness of Immiscible Liquid (ft.)			Depth to well bottom (ft.)	Survey Point: TOB or TOC	
*	MW-2	Ĺ	5/o				14.00		Toc	
	* cly	wed	for si	ret w/	nterfa	ce prob	e	, , ,		
į										
									-	

BTS #: 05	50204-DA	M		Station # Arco	2111		
Sampler:	OA			Date: 2/4/	05		
Well I.D.:	Mn -2			Well Diameter:	2 3 4	68_	
Total Well	Depth:			Depth to Water	: 14.00		
Depth to F	ree Produ	ct:		Thickness of Fi	ee Product (fee	et):	
Reference	rl to:	PVC	Grade	D.O. Meter (if	rea'd):	YSI F	IACH
REFERENCE	Well Diamete				ultiplier		
	1"	<u>.</u>	0.04	4" 0	.65	Ì	
	2"		0.16		.47		
	3"		0.37	Other radio	s ² * 0.163		
Purge Metho	d:	Bailer		Sampling Method:	Bailer		
6- //	•	sposable Bail	ler		Qisposable Bailer		
		e Air Displac			Exaction Port		
		e Air Dispina stric Submers		Othor	*		
				Omer.			
		xtraction Pun	np				
	Other:			•		`	
T	···		If well is listed as	n no-purge, confirm	that water level is h	elow the ton	
Top of Scree	11:					clow are top	
,			of screen. Otherw	ise, the well must be	purgea.		
			x BailsPA)	Gals.		
	I Case Volu	me (Cale)	Specified Vo		ulated Volume		
	1 Case Voit	mic (Odia-)		Tunica Can			
	1		Conductivity				
Time	Temp (°F)	Нq	(mS or µS)	Gals. Removed	Observations		
			No SPH d	In also I			
ļ			1 3 1 F A	JECTEO			
[]							
Did well o	lewater2	Yes	No	Gallons actuall	v evacuated:		
Did Wolf o							
Sampling	Time:			Sampling Date	•		
Sample I.l	D.:			Laboratory:	Pace Sequoia	Other	
Analyzed	for: gr	O BTEX	MTBE DRO	Other:		r	
D.O. (if re	eq'd):		Pre-purge	: """ Ing/L	Post-purge:		' ^{ing} /L
O.R.P. (if	req'd):		Pre-purge	: mV	Post-purge:		mV

WELL GAUGING DATA

Projec	at# <u>050</u>	<u> 323 - Ou</u>	<u>/-4</u> Date	3-23-05	Client Acco 2111	
Site_	1156	Davis	St.	Son Leandro	•	•

Well ID Well Size (in.) Sheen / Odor Depth to bimaniscible of immiscible (in.) Aut - 2 Hell No Sheen / Odor Charlest Liquid (ft.) Liquid (ft.) Charlest	r		T		T=: . :		····			
Well ID Size (in.) Odor Cody Cody		*** 44	ł							
Well ID (in.) Odor Liquid (ft.) Liquid (ft.) (ml) (ft.) bottom (ft.) or TOC MW-2 4 Hell Vo Stik Little to 1									Survey	
Well ID (in.) Odor Liquid (ft.) Liquid (ft.) (ml) (ft.) bottom (ft.) or TOC MW-2 4 How No Gett Letter 1 12.61 — Toe				Immiscible	Immiscible	Removed	Depth to water	Depth to well	Point: TOB	
				Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	or TOC	
	MV-2	4	the No	SPH Lete	rcted		12.61		Toc	
						·				
		,								
				,					-	
										· · · · · · · · · · · · · · · · · · ·
						:	,			
			<i>"</i>							

		- 								
									· — ·	
										•
		•			d de la companya de l					

BTS #: 050523- Dw-Y			Station	# 21	(
<u>, </u>					Date: 3-23-05					
Well I.D.: ww. 2					iameter:	2	3 4	6	8	
Total Well Depth: — I					Depth to Water: (2.6/					
Depth to F	ree Produc	t:		Thickn	Thickness of Free Product (feet):					
Referenced	l to:	(VC)	Grade	D.O. M	leter (if r			YSI	НАСН	
Purge Method	Dis Positive Electr Ext	Bailer posable Bail Air Displac ric Submers raction Pur	0.04 0.16 0.37 er eement ible	Well Diameter 4" 6" Other Sampling	O. 1.	Dispo Extra	Bailer suble Bailer action Port			
Top of Screen	_		If well is listed as of screen. Otherw X	vise, the we	ell must be	purgeo	1.	elow 1	the top	
Time	Temp (°F)	_{рн} Д о	Conductivity (mS or µS)		Lemoved	Obs	ervations			
Did well d	ewater?	7es	No	Gallon	s actuall	y eva	cuated:			
Sampling				Sampl	ing Date	;				
Sample I.I	\			Labora	/	Pace	Sequoia		Other	
Analyzed		втех	MTBE DRO	Other:	_					
D.O. (if re			Pre-purge		mg		Post-purge:		ıng	
O.R.P. (if req'd): Pre-purge:					mV	/	Post-purge:		m'	

ATTACHMENT B

LABORATORY PROCEDURES, CERTIFIED ANALYTICAL REPORTS, AND CHAIN-OF-CUSTODY RECORDS

LABORATORY PROCEDURES

Laboratory Procedures

The groundwater samples were analyzed for the presence of the chemicals mentioned in the chain of custody using standard EPA methods. The methods of analysis for the groundwater samples are documented in the certified analytical report. The certified analytical reports and chain-of-custody record are presented in this attachment. The analytical data provided by the laboratory approved by RM have been reviewed and verified by that laboratory.

2 February, 2005

Scott Robinson URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland, CA 94612

RE: ARCO #2111, San Leandro, CA

Work Order: MOA0588

Enclosed are the results of analyses for samples received by the laboratory on 01/20/05 16:25. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lisa Race

Senior Project Manager

CA ELAP Certificate #1210

URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland CA, 94612 Project:ARCO #2111, San Leandro, CA Project Number:G09JZ-0169 Project Manager:Scott Robinson MOA0588 Reported: 02/02/05 17:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-I	MOA0588-01	Water	01/20/05 09:05	01/20/05 16:25
MW-2	MOA0588-02	Water	01/20/05 10:15	01/20/05 16:25
MW-3	MOA0588-03	Water	01/20/05 08:55	01/20/05 16:25
MW-4	MOA0588-04	Water	01/20/05 09:20	01/20/05 16:25
MW-7	MOA0588-05	Water	01/20/05 09:40	01/20/05 16:25
MW-8	MOA0588-06	Water	01/20/05 10:48	01/20/05 16:25
TB-2111-01202005	MOA0588-07	Water	01/20/05 10:50	01/20/05 16:25
MW-5	MOA0588-08	Water	01/20/05 09:55	01/20/05 16:25

The carbon range for the TPH-GRO has been changed from C6-C10 to C4-C12. The carbon range for TPH-DRO has been changed from C10-C28 to C10-C36. EPA 8015B has been modified to better meet the requirements of California regulatory agencies. These samples were received with no custody seals.

Project:ARCO #2111, San Leandro, CA Project Number:G09JZ-0169 Project Manager:Scott Robinson MOA0588 Reported: 02/02/05 17:23

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 (MOA0588-01) Water	Sampled: 01/20/05 09:05	Received:	01/20/0	5 16:25					
tert-Amyl methyl ether	17	5.0	ug/l	10	5A31018	01/31/05	01/31/05	EPA 8260B	
Benzene	ND	5.0	II .	п	п	n	Ш	11	
tert-Butyl alcohol	ND	200	u	II	II	11	fi .	Ħ	
Di-isopropyl ether	ND	5.0	"	II .	II	11	п	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	II .	II .	"	"	11	
1,2-Dichloroethane	ND	5.0	u	II	11	п	ш	II	
Ethanol	ND	1000	"	ji .	11	II	Ш	п	IC
Ethyl tert-butyl ether	ND	5.0	11	II .	u	11	Ш	II	
Ethylbenzene	ND	5.0	II .	II	"	"	ш	II	
Methyl tert-butyl ether	570	5.0	u	II .	II .	D	u	II	
Toluene	ND	5.0	u	II	II	II	u	n	
Xylenes (total)	ND	5.0	u	μ	и	п	н	II .	
Gasoline Range Organics (C4-C	670	500	II .	11	II	n	п	n	
Surrogate: 1,2-Dichloroethane-d4	4	97 %	78-	129	u	"	n	u	
MW-2 (MOA0588-02) Water	Sampled: 01/20/05 10:15	Received:	01/20/0	5 16:25					
tert-Amyl methyl ether	ND	50	ug/l	100	5A31018	01/31/05	01/31/05	EPA 8260B	
Benzene	450	50	"	II	u	II .	H	II	
tert-Butyl alcohol	ND	2000	н	11	u	11	н	II .	
Di-isopropyl ether	ND	50	11	II	"	II	tt	II	
1,2-Dibromoethane (EDB)	ND	50	**	II	1t	п	н	п	
1,2-Dichloroethane	ND	50	**	u	II .	II .	***	11	
Ethanol	ND	10000	**	"	It	II	**	н	IC
Ethyl tert-butyl ether	ND	50	"	"	11	U	Ħ	n .	
Ethylbenzene	1300	50	**	II.	tt	II	ŧŧ	п	
Methyl tert-butyl ether	7000	50	**	II .	**	п	**	II	
Toluene	ND	50	••	II.	**	п	tt	II .	
Xylenes (total)	3300	50	**	u	**	п	**	ч	
Gasoline Range Organics (C4-C	30000	5000	"	**	*	u	**		
Surrogate: 1,2-Dichloroethane-d4		95 %	78-	129	#	"	rr	n	

Project:ARCO #2111, San Leandro, CA Project Number:G09JZ-0169 Project Manager:Scott Robinson MOA0588 Reported: 02/02/05 17:23

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

	БСЧи	oia Ana	ijucai	- Midig	411 11111				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-3 (MOA0588-03) Water	Sampled: 01/20/05 08:55	Received:	01/20/05	5 16:25					
tert-Amyl methyl ether	2.6	0.50	ug/l	1	5B01001	02/01/05	02/02/05	EPA 8260B	
Benzene	ND	0.50	17	**	**	"	п	n	
tert-Butyl alcohol	ND	20	н	н	**,	IJ	п	II	
Di-isopropyl ether	ND	0.50	11	**	**	Ü	u	II	
1,2-Dibromoethane (EDB)	ND	0.50	v	**	**	"	**	U	
1,2-Dichloroethane	ND	0.50	"	**	**	"	n	11	
Ethanol	ND	100		"	**	D	n	II .	
Ethyl tert-butyl ether	ND	0.50	11	**	**	fi	п	п	
Ethylbenzene	ND	0.50	11	**	**	II .	н	п	
Methyl tert-butyl ether	27	0.50	**	**	"	Ü	**	II .	
Toluene	ND	0.50	**	•	71	II .	**	II	
Xylenes (total)	ND	0.50	**	**	11	II .	**	11	
Gasoline Range Organics (C4-0	C12) 160	50	**	n	11	ø	**	II .	
Surrogate: 1,2-Dichloroethane-d		98 %	78-	129	"	"	"	,,	
MW-4 (MOA0588-04) Water	Sampled: 01/20/05 09:20	Received:	01/20/05	5 16:25					
tert-Amyl methyl ether	5.2	0.50	ug/l	1	5B01001	02/01/05	02/02/05	EPA 8260B	
Benzene	ND	0.50	"	11	Ħ	н	n	П	
tert-Butyl alcohol	ND	20	"	***	**	**	ш	п	
Di-isopropyl ether	ND	0.50	II .	**	"	**	n	II .	
1,2-Dibromoethane (EDB)	ND	0.50	II .	**	**	**	II	н	
1,2-Dichloroethane	ND	0.50	II	**	*	**	H	H	
Ethanol	ND	100	11	**		"	Ħ	#	
Ethyl tert-butyl ether	ND	0.50	n	**	**	11	"		
Ethylbenzene	ND	0.50	п	"	**	II .	**	**	
Methyl tert-butyl ether	18	0.50	п	**	**	н	**	*	
Toluene	ND	0.50	п	11	11	Ħ	**	11	
Xylenes (total)	ND	0.50	п	п	n	u	**	81	
Gasoline Range Organics (C4-0		50	ıı		п	"	"	U	
Surrogate: 1,2-Dichloroethane-d	1	93 %	70	129	"	"	"	"	

Project:ARCO #2111, San Leandro, CA

Project Number:G09JZ-0169
Project Manager:Scott Robinson

MOA0588 Reported: 02/02/05 17:23

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 (MOA0588-05) Water	Sampled: 01/20/05 09:40	Received:	01/20/0	5 16:25					
tert-Amyl methyl ether	ND	250	ug/l	500	5A31018	01/31/05	01/31/05	EPA 8260B	
Benzene	ND	250	**	II .	II .	**	11	н	
tert-Butyl alcohol	NĐ	10000	**	п	u	**	11	II .	
Di-isopropyl ether	ND	250	**	п	ш	**	**	II	
1,2-Dibromoethane (EDB)	ND	250	**	11	0	"	n	tt	
1,2-Dichloroethane	ND	250	••	п	"	**	ш	**	
Ethanol	ND	50000	**	п	n	**	u	Ħ	IC
Ethyl tert-butyl ether	ND	250	**	11	H	"	ц	Ħ	
Ethylbenzene	ND	250	**	1f	**	"	u	H	
Methyl tert-butyl ether	36000	250	"	**	••	11	"	**	
Toluene	ND	250	n	**	**	11	**	**	
Xylenes (total)	ND	250		"	**	**	**	**	
Gasoline Range Organics (C4-C	12) 34000	25000	n .	**	**	11	Ħ	•	PV
Surrogate: 1,2-Dichloroethane-d4		101 %	<i>78-</i>	129	"	"	"	"	
MW-8 (MOA0588-06) Water	Sampled: 01/20/05 10:48	Received:	: 01/20/0:	5 16:25					
tert-Amyl methyl ether	ND	25	ug/l	50	5A31018	01/31/05	01/31/05	EPA 8260B	
Benzene	ND	25	п	*1	"	11	"	"	
tert-Butyl alcohol	ND	1000		II .	"	"	**	11	
Di-isopropyl ether	ND	25		"	"	**	**	n	
1,2-Dibromoethane (EDB)	ND	25	11	"	"	•	n	н	
1,2-Dichloroethane	ND	25	u	ш	II .	**	D	**	
Ethanol	ND	5000	п	п	п	н	ш	*	IC
Ethyl tert-butyl ether	ND	25	н	11	11	II .	ш	"	
Ethylbenzene	ND	25	**	II .	u	11	II .	n	
Methyl tert-butyl ether	1400	25	**	п	п	II	ш	II .	
Toluene	ND	25	**	п	ш	п	u	II .	
Xylenes (total)	ND	25	**	п	Ħ	п	a	п	
Gasoline Range Organics (C4-C1)		2500	**	"	11	п	н	II	
Surrogate: 1,2-Dichloroethane-d4	i	99 %	78-	-129	п	ų	п	u	

Project:ARCO #2111, San Leandro, CA Project Number:G09JZ-0169 Project Manager:Scott Robinson MOA0588 Reported: 02/02/05 17:23

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

	1		•						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-5 (MOA0588-08) Water	Sampled: 01/20/05 09:55	Received	01/20/0	5 16:25					
tert-Amyl methyl ether	ND	50	ug/l	100	5A31018	01/31/05	01/31/05	EPA 8260B	
Benzene	ND	50	**	"	н	**	11	((
tert-Butyl alcohol	ND	2000	"		"	**	II	**	
Di-isopropyl ether	ND	50	U	**	**	"	H	**	
1,2-Dibromoethane (EDB)	ND	50	п	"	**	II	**	"	
1,2-Dichloroethane	ND	50	II .	"	**	II .	"	11	
Ethanol	ND	10000	п	п	D	**	11	н	IC
Ethyl tert-butyl ether	ND	50	п	п	II .	**	п	**	
Ethylbenzene	ND	50	u	п	II .	11	ш	"	
Methyl tert-butyl ether	6900	50	11	U	ji .	11	IJ	"	
Toluene	ND	50	11	II .	Ц	ıı	ш	**	
Xylenes (total)	ND	50	**	u	п	11	ш	n	
Gasoline Range Organics (C4-C	6500	5000	**			ıı .		11	PV
Surrogate: 1,2-Dichloroethane-d-	1	98 %	78	3-129	"	'n	11	y.	

Project:ARCO #2111, San Leandro, CA Project Number:G09JZ-0169

Project Manager:Scott Robinson

MOA0588 Reported: 02/02/05 17:23

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC_	%REC Limits	RPD	RPD Limit	Notes
Batch 5A31018 - EPA 5030B P/T /	EPA 8260B									
Blank (5A31018-BLK1)				Prepared	& Analyzo	ed: 01/31/0	05			_ ,
tert-Amyl methyl ether	ND	0.50	ug/l							
Benzene	ND	0.50	II .							
tert-Butyl alcohol	ND	5.0	II .							
Di-isopropyl ether	ND	0.50	II .							
1,2-Dibromoethane (EDB)	ND	0.50	n							
1,2-Dichloroethane	ND	0.50	n							
Ethanol	ND	100	11							10
Ethyl tert-butyl ether	ND	0.50	п							
Ethylbenzene	ND	0.50	п							
Methyl tert-butyl ether	ND	0.50	**							
Toluene	ND	0.50	**							
Xylenes (total)	ND	0.50	n							
Gasoline Range Organics (C4-C12)	ND	50	n							
Surrogate: 1,2-Dichloroethane-d4	5.00		n	5.00		100	78-129			
Laboratory Control Sample (5A31018-	·BS1)			Prepared	& Analyz	ed: 01/31/	05			
tert-Amyl methyl ether	11,4	0.50	ug/l	10.0		114	56-140			
Benzene	10.3	0.50	u	10.0		103	78-124			
tert-Butyl alcohol	51.2	20	Ħ	50.0		102	0-206			
Di-isopropyl ether	10.8	0.50	**	10.0		108	76-130			
1,2-Dibromoethane (EDB)	11.4	0.50	"	10.0		114	77-132			
1,2-Dichloroethane	11.4	0.50	**	10.0		114	77-136			
Ethanol	118	100	u	200		59	31-186			10
Ethyl tert-butyl ether	11.1	0.50	**	10.0		111	61-141			
Ethylbenzene	11.0	0.50	**	10.0		110	84-117			
Methyl tert-butyl ether	11.8	0.50	**	10.0		118	63-137			
Toluene	10.0	0.50	II .	10.0		100	78-129			
Xylenes (total)	32.1	0.50	n	30.0		107	83-125			
Surrogate: 1,2-Dichloroethane-d4	4.94		n	5.00	· -	99	78-129			

Project:ARCO #2111, San Leandro, CA Project Number: G09JZ-0169 Project Manager:Scott Robinson

MOA0588 Reported: 02/02/05 17:23

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A31018 - EPA 5030B P/T /		men, n.t.								
				Downson	P. Auglera	J. 01/21/	06			
Laboratory Control Sample (5A31018-	- BS2) 5.07	0.60		Prepared 6.08	& Analyze	83	78-124			
Benzene Ethylbenzene	3.07 8.82	0.50 0.50	ug/l	7.84		112	84-117			
Methyl tert-butyl ether	8.92	0.50	**	9.60		93	63-137			
Toluene	32.3	0.50	**	32.9		98	78-129			
Yylenes (total)	42.4	0.50	**	38.5		110	83-125			
Gasoline Range Organics (C4-C12)	407	50	**	440		92	70-124			
Surrogate: 1,2-Dichloroethane-d4	4.80		"	5.00		96	78-129			
~				Prepared of	Pr. Amalum					
Laboratory Control Sample Dup (5A3 tert-Amyl methyl ether	10.1	0.50	ug/l	10.0	& Allatyze	101	56-140	12	12	
Benzene	9.76	0.50	ug/i	10.0		98	78-124	5	12	
tert-Butyl alcohol	50.1	20	17	50.0		100	0-206	2	22	
Di-isopropyl ether	10.1	0.50	п	10.0		101	76-130	7	9	
1,2-Dibromoethane (EDB)	10.5	0.50		10.0		105	77-132	8	9	
1,2-Dichloroethane	10.2	0.50	**	10.0		102	77-136	11	13	
Ethanol	188	100	а	200		94	31-186	46	37	RI
Ethyl tert-butyl ether	10.1	0.50	н	10.0		101	61-141	9	9	
Ethylbenzene	10.4	0.50	11	10.0		104	84-117	6	10	
Methyl tert-butyl ether	10.4	0.50	"	10.0		104	63-137	13	13	
Toluene	9.46	0.50		10.0		95	78-129	6	10	
Xylenes (total)	30.8	0.50	•	30.0		103	83-125	4	11	
Surrogate: 1,2-Dichloroethane-d4	4.30		"	5.00		86	78-129			
Matrix Spike (5A31018-MS1)	Source: M	IOA0588-02		Prepared .	& Analyze	ed: 01/31/	05			
Benzene	914	50	ug/l	608	450	76	78-124			LN
Ethylbenzene	2060	50	н	784	1300	97	84-117			
Methyl tert-butyl ether	6860	50	n	960	7000	NR	63-137			BB,LN
Toluene	3150	50	11	3290	26	95	78-129			
Xylenes (total)	7200	50	н	3850	3300	101	83-125			
Gasoline Range Organics (C4-C12)	67200	5000	IJ	44000	30000	85	70-124			
Surrogate: 1,2-Dichloroethane-d4	4.29		n	5.00		86	78-129			

Project:ARCO #2111, San Leandro, CA Project Number:G09JZ-0169 Project Manager:Scott Robinson MOA0588 Reported: 02/02/05 17:23

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Lund	OHRS	- LEVEI	resun	/ortic	Limits	NI D	Little	11000
Batch 5A31018 - EPA 5030B P/T / E	PA 8260B								···	
Matrix Spike Dup (5A31018-MSD1)	Source: M	OA0588-02		Prepared	& Analyz	ed: 01/31/	05			
Benzene	948	50	ug/l	608	450	82	78-124	4	12	
Ethylbenzene	2160	50	п	784	1300	110	84-117	5	10	
Methyl tert-butyl ether	7450	50	11	960	7000	47	63-137	8	13	BB,L1
Toluene	3290	50	II .	3290	26	99	78-129	4	10	
Xylenes (total)	7390	50	п	3850	3300	106	83-125	3	11	
Gasoline Range Organics (C4-C12)	69400	5000	11	44000	30000	90	70-124	3	20	
Surrogate: 1,2-Dichloroethane-d4	4.94		n	5.00		99	78-129			
Batch 5B01001 - EPA 5030B P/T / E	PA 8260B									
Blank (5B01001-BLK1)				Prepared	& Analyze	ed: 02/01/	05			
tert-Amyl methyl ether	ND	0.50	ug/l							
Benzene	ND	0.50	n							
tert-Butyl alcohol	ND	20	"							
Di-isopropyl ether	ND	0.50	II .							
1,2-Dibromoethane (EDB)	ND	0.50	п							
1,2-Dichloroethane	ND	0.50	п							
Ethanol	ND	100	п							
Ethyl tert-butyl ether	ND	0.50	п							
Ethylbenzene	ND	0.50	u							
Methyl tert-butyl ether	ND	0.50								
Toluene	ND	0.50	п							
Xylenes (total)	ND	0.50	п							
Gasoline Range Organics (C4-C12)	ND	50	11							
Surrogate: 1,2-Dichloroethane-d4	4.93		ř1	5.00		99	78-129			
Laboratory Control Sample (5B01001-B					& Analyze					
tert-Amyl methyl ether	10.1	0.50	ug/l	10.0		101	56-140			
Benzene	9.59	0.50		10.0		96	78-124			
tert-Butyl alcohol	48.0	20	ш	50.0		96	0-206			
Di-isopropyl ether	9.81	0.50	**	10.0		98	76-130			
1,2-Dibromoethane (EDB)	11.0	0.50	"	10.0		110	77-132			
1,2-Dichloroethane	10.7	0.50	17	10.0		107	77-136			
Ethanol	188	100	**	200		94	31-186			
Ethyl tert-butyl ether	10.2	0.50	**	10.0		102	61-141			
Ethylbenzene	10.1	0.50	**	10.0		101	84-117			
Methyl tert-butyl ether	10.4	0.50	**	10.0		104	63-137			

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Project:ARCO #2111, San Leandro, CA Project Number:G09JZ-0169 Project Manager:Scott Robinson MOA0588 Reported: 02/02/05 17:23

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5B01001 - EPA 5030B P/T /	EPA 8260B									
Laboratory Control Sample (5B01001	-BS1)			Prepared	& Analyz	ed: 02/01/	05			
Toluene	9.63	0.50	ug/l	10.0		96	78-129			
Xylenes (total)	30.0	0.50	**	30.0		100	83-125			
Surrogate: 1,2-Dichloroethane-d4	4.77		rr .	5.00		95	78-129			
Laboratory Control Sample (5B01001	-BS2)			Prepared	& Analyz	ed: 02/01/	05			
Benzene	5.01	0.50	ug/l	6.08		82	78-124			
Ethylbenzene	8.75	0.50	II	7.84		112	84-117			
Methyl tert-butyl ether	7.96	0.50	"	9.60		83	63-137			
Toluene	33.9	0.50	H	32.9		103	78-129			
Xylenes (total)	42.7	0.50	**	38.5		111	83-125			
Gasoline Range Organics (C4-C12)	402	50	**	440		91	70-124			
Surrogate: 1,2-Dichloroethane-d4	4.91		"	5.00		98	78-129			
Laboratory Control Sample Dup (5B0	1001-BSD1)			Prepared	& Analyz	ed: 02/01/	05			
tert-Amyl methyl ether	10.8	0.50	ug/l	10.0		108	56-140	7	12	
Benzene	10.3	0.50	ii	10.0		103	78-124	7	12	
tert-Butyl alcohol	50.7	20	II .	50.0		101	0-206	5	22	
Di-isopropyl ether	10.0	0.50	II	10.0		100	76-130	2	9	
1,2-Dibromoethane (EDB)	12.2	0.50	u	10.0		122	77-132	10	9	I
1,2-Dichloroethane	11.5	0.50	II	10.0		115	77-136	7	13	
Ethanol	177	100	п	200		88	31-186	6	37	
Ethyl tert-butyl ether	10.4	0.50	u	10.0		104	61-141	2	9	
Ethylbenzene	10.7	0.50	н	10.0		107	84-117	6	10	
Methyl tert-butyl ether	11.1	0.50	**	10.0		111	63-137	7	13	
Toluene	10.3	0.50	**	10.0		103	78-129	7	10	
Xylenes (total)	31.5	0.50	**	30.0		105	83-125	5	11	
Surrogate: 1,2-Dichloroethane-d4	4.86		"	5.00		97	78-129			

Project:ARCO #2111, San Leandro, CA Project Number:G09JZ-0169 Project Manager:Scott Robinson MOA0588 Reported: 02/02/05 17:23

A == 1.4 =	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	- Edille	Cillis		20001				-	
Batch 5B01001 - EPA 5030B P/T / E	PA 8260B									
Matrix Spike (5B01001-MS1)	Source: M	OA0611-12		Prepared	& Analyze	d: 02/01/	05			
Benzene	677	50	ug/l	608	160	85	78-124			
Ethylbenzene	2780	50	**	784	1800	125	84-117			LM
Methyl tert-butyl ether	767	50	n	960	ND	80	63-137			
Toluene	8550	50	II.	3290	5100	105	78-129			
Xylenes (total)	15100	50	**	3850	11000	106	83-125			
Gasoline Range Organics (C4-C12)	96800	5000	**	44000	56000	93	70-124			
Surrogate: 1,2-Dichloroethane-d4	4.54		"	5.00		91	78-129			
Matrix Spike Dup (5B01001-MSD1)	Source: M	IOA0611-12		Prepared	& Analyze	ed: 02/01/	05			
Benzene	633	50	ug/l	608	160	78	78-124	7	12	
Ethylbenzene	2610	50	n n	784	1800	103	84-117	6	10	
Methyl tert-butyl ether	836	50		960	ND	87	63-137	9	13	
Toluene	8000	50	**	3290	5100	88	78-129	7	10	
Xylenes (total)	14500	50	**	3850	11000	91	83-125	4	11	
Gasoline Range Organics (C4-C12)	92100	5000	**	44000	56000	82	70-124	5	20	
Surrogate: 1,2-Dichloroethane-d4	4.85		н	5.00		97	78-129			

Project:ARCO #2111, San Leandro, CA

Project Number: G09JZ-0169
Project Manager: Scott Robinson

MOA0588 Reported: 02/02/05 17:23

Notes and Definitions

RB RPD exceeded method control limit; % recoveries within limits.

PV Hydrocarbon result partly due to individ. peak(s) in quant. range

LN MS and/or MSD below acceptance limits. See Blank Spike(LCS).

LM MS and/or MSD above acceptance limits. See Blank Spike(LCS).

IC Calib. verif. is within method limits but outside contract limits

BB,LN Sample > 4x spike concentration.

BA Relative percent difference out of control

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

ATTACHMENT C

ERROR CHECK REPORTS AND EDF/GEOWELL SUBMITTAL CONFIRMATIONS

Main Menu | View/Add Facilities | Upload EDD | Check EDD

SUCCESSFUL GEO_WELL CHECK - NO ERRORS

ORGANIZATION NAME:

URS Corporation-Oakland Office

USER NAME:

URSCORP-OAKLAND

DATE CHECKED:

2/9/2005 12:51:43 PM

Processing is complete. No errors were found! You may now proceed to the <u>upload</u> page.

Back to Main Menu

Logged in as URSCORP-OAKLAND (CONTRACTOR)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

1Q 2005 geowell 2111

Submittal Date/Time:

2/9/2005 12:52:41 PM

Confirmation Number:

8228774845

Back to Main Menu

Logged in as URSCORP-OAKLAND (CONTRACTOR)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

SUCCESSFUL EDF CHECK - NO ERRORS

ORGANIZATION NAME:

URS Corporation-Oakland

Office

USER NAME:

URSCORP-OAKLAND

DATE CHECKED:

2/9/2005 12:53:57 PM

GLOBAL ID:

T0600101764

FILE UPLOADED:

ARCO#2111-EDF-MOA0588.zip

No errors were found in your EDF upload file.

If you want to submit this file to the SWRCB, choose the "Upload EDD" option in the above menu and follow the instructions.

When you complete the submittal process, you will be given a confirmation number for your submittal.

Click here to view the detections report for this upload.

ARCO # 02111 Regional Board - Case #: 01-1903

1156 DAVIS ST SAN FRANCISCO BAY RWQCB (REGION

SAN 2) - (RDB)

LEANDRO, CA 94577 Local Agency (lead agency) - Case #: 744

ALAMEDA COUNTY LOP - (AG)

SAMPLE DETECTIONS REPORT

- # FIELD POINTS SAMPLED # FIELD POINTS WITH DETECTIONS 7 # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL 6
- SAMPLE MATRIX TYPES

WATER

METHOD QA/QC REPORT

METHODS USED 8260FA TESTED FOR REQUIRED ANALYTES?

MISSING PARAMETERS NOT TESTED:

- 8260FA REQUIRES DBFM TO BE TESTED - 8260FA REQUIRES BR4FBZ TO BE TESTED
- 8260FA REQUIRES BZMED8 TO BE TESTED

LAB NOTE DATA QUALIFIERS

Υ

Υ

Υ

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS 0 METHOD HOLDING TIME VIOLATIONS 0 LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT 0 0 LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?

- LAB METHOD BLANK

- MATRIX SPIKE - MATRIX SPIKE DUPLICATE

- BLANK SPIKE - SURROGATE SPIKE

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX 135%	X SPIKE DUPLICATE(S) % REC	OVERY BETWEEN 65-	Υ
	X SPIKE DUPLICATE(S) RPD LE	5S THAN 30%	Υ
·	RECOVERY BETWEEN 85-1159		Υ
BLANK SPIKE / BLANK S	SPIKE DUPLICATES % RECOVE	RY BETWEEN 70-130%	Υ
SOIL SAMPLES FO	R 8021/8260 SERIES		
MATRIX SPIKE / MATRIX	X SPIKE DUPLICATE(S) % REC	OVERY BETWEEN 65-	n/a
135%			11,0
MATRIX SPIKE / MATRIX	X SPIKE DUPLICATE(S) RPD LE	55 THAN 30%	n/a
) <u>/_</u>	- /-
SURROGATE SPIKES %	RECOVERY BETWEEN 70-1259	70	n/a
BLANK SPIKE / BLANK S	RECOVERY BETWEEN 70-1259 SPIKE DUPLICATES % RECOVE		•
••••••			n/a
BLANK SPIKE / BLANK S 130% FIELD QC SAMPLE	SPIKE DUPLICATES % RECOVE	RY BETWEEN 70-	n/a
BLANK SPIKE / BLANK S 130% FIELD QC SAMPLE SAMPLE	S COLLECTED		n/a
BLANK SPIKE / BLANK S 130% FIELD QC SAMPLE	S COLLECTED	RY BETWEEN 70-	n/a
BLANK SPIKE / BLANK S 130% FIELD QC SAMPLE SAMPLE	S COLLECTED	RY BETWEEN 70-	n/a

Logged in as URSCORP-OAKLAND (CONTRACTOR)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 4011555314

Date/Time of Submittal: 2/9/2005 12:55:22 PM

Facility Global ID: T0600101764 Facility Name: ARCO # 02111

Submittal Title: 1005 GW Monitoring Report

Submittal Type: GW Monitoring Report

Click here to view the detections report for this upload.

ARCO # 02111 Regional Board - Case #: 01-1903

SAN FRANCISCO BAY RWQCB (REGION 2) - (RDB) 1156 DAVIS ST

SAN LEANDRO, CA 94577 Local Agency (lead agency) - Case #: 744

ALAMEDA COUNTY LOP - (AG)

QUARTER CONF# Q1 2005 4011555314 1Q05 GW Monitoring Report

SUBMITTED BY SUBMIT DATE **STATUS**

Srijesh Thapa 2/9/2005 PENDING REVIEW

SAMPLE DETECTIONS REPORT

7 # FIELD POINTS SAMPLED 7 # FIELD POINTS WITH DETECTIONS # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL WATER SAMPLE MATRIX TYPES

METHOD QA/QC REPORT

METHODS USED 8260FA **TESTED FOR REQUIRED ANALYTES?** N

MISSING PARAMETERS NOT TESTED:

- 8260FA REQUIRES DBFM TO BE TESTED
- 8260FA REQUIRES BR4FBZ TO BE TESTED
- 8260FA REQUIRES BZMED8 TO BE TESTED

LAB NOTE DATA QUALIFIERS

QA/QC FOR 8021/8260 SERIES SAMPLES TECHNICAL HOLDING TIME VIOLATIONS

METHOD HOLDING TIME VIOLATIONS 0 LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT 0 0 LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK - MATRIX SPIKE - MATRIX SPIKE DUPLICATE - BLANK SPIKE - SURROGATE SPIKE

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%

0

MAIRIX SPINE / MAIRIX SP	PIKE DUPLICATE(S) RPD LESS THAI	N 30%	Υ
SURROGATE SPIKES % REC	COVERY BETWEEN 85-115%		Υ
BLANK SPIKE / BLANK SPIK	E DUPLICATES % RECOVERY BETV	VEEN 70-130%	Υ
SOIL SAMPLES FOR 8	021/8260 SERIES		
MATRIX SPIKE / MATRIX SP	PIKE DUPLICATE(S) % RECOVERY E	BETWEEN 65-135%	n/a
MATRIX SPIKE / MATRIX SP	PIKE DUPLICATE(S) RPD LESS THAI	N 30%	n/a
SURROGATE SPIKES % REC	OVERY BETWEEN 70-125%		n/a
BLANK SPIKE / BLANK SPIK	E DUPLICATES % RECOVERY BETV	VEEN 70-130%	n/a
FIELD QC SAMPLES		DETECTIONS	· DEBOL
FIELD QC SAMPLES SAMPLE	COLLECTED	DETECTIONS	> KEPUL
	<u>COLLECTED</u> N	DETECTIONS 0	> KEPUL
SAMPLE		DETECTIONS 0 0	> KEYUL

Logged in as URSCORP-OAKLAND (CONTRACTOR)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_REPORT FILE

YOUR DOCUMENT UPLOAD WAS SUCCESSFUL!

Facility Name:

ARCO # 02111

Global ID:

T0600101764

Title:

1Q 2005 QMR Site 2111

Document Type:

Monitoring Report - Quarterly

Submittal Type:

GEO_REPORT

Submittal Date/Time:

3/30/2005 12:43:36 PM

Confirmation Number: 4513532340

Click here to view the document.

Back to Main Menu

Logged in as URSCORP-OAKLAND (CONTRACTOR)

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_REPORT FILE

YOUR DOCUMENT UPLOAD WAS SUCCESSFUL!

Facility Name:

ARCO # 02111

Global ID:

T0600101764

Title:

1Q 2005 QMR Site 2111

Document Type:

Monitoring Report - Quarterly

Submittal Type:

GEO_REPORT

Submittal Date/Time:

3/30/2005 12:43:36 PM

Confirmation Number: 4513532340

Click here to view the document.

Back to Main Menu

Logged in as URSCORP-OAKLAND (CONTRACTOR)