TRANSMITTAL

FEB 2 6 2002

February 7, 2002 G-R #180022

4/04

TO:

Mr. David B. De Witt Phillips 66 Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 CC: Mr. Paul Blank

ERI, Inc.

73 Digital Drive, Suite 100 Novato, California 94949

RE:

Tosco(Unocal) Service Station

#7176

7850 Amador Valley Boulevard

Dublin, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	February 6, 2002	Groundwater Monitoring and Sampling Report First Quarter - Event of January 3, 2002

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by *February 21, 2002*, this report will be distributed to the following:

cc: Mr. Amir K. Gholami, REHS, Alameda County Health Care Services, 1131 Harbor Bay Pkwy., Alameda, CA 94502

Enclosure

February 6, 2002 G-R Job #180022

Mr. David B. De Witt Phillips 66 Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE: First Quarter Event of January 3, 2002

Groundwater Monitoring & Sampling Report Tosco (Unocal) Service Station #7176 7850 Amador Valley Boulevard Dublin, California

Dear Mr. De Witt:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in the wells. Static water level data and groundwater elevations are summarized in Table 1. Dissolved Oxygen Concentrations are summarized in Table 3. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

Sincerely

Deanna L. Harding

Project Coordinator

Hagop Kevork P.E. No. C55734

Figure 1:

Potentiometric Map

Figure 2:

Concentration Map

Table 1:

Groundwater Monitoring Data and Analytical Results

Table 2:

Groundwater Analytical Results - Oxygenate Compounds

Table 3:

Dissolved Oxygen Concentrations

Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

7176.qm)

Chain of Custody Document and Laboratory Analytical Reports

POTENTIOMETRIC MAP

Tosco (Unocal) Service Station #7176 7850 Amador Valley Boulevard Dublin, California

PROJECT NUMBER 180022

REVIEWED BY

DATE

January 3, 2002

REVISED DATE

PROJECT NUMBER 180022

REVIEWED BY

January 3, 2002

REVISED DATE

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/		DATE	DTW	S.I.	GWE	TPH-D♦	TPH-G	В	T	E	X	MTBE
TOC*(ft.)			(ft.)	(ft.bgs)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
TY 4											V-V-	-
U-1						•						
355.62		07/08/95	12.59	10.0-30.0	343.03	³ 9,400/	39,000	1,500	19	1,600	5,200	
		10/12/95	15.38		340.24	⁵ 4,200/	33,000	1,400	ND	1,400	3,100	7
		01/11/961	16.33		339.29	⁵ 8,200/	8,300	690	11	680	1,500	8
		04/11/96 ²	12.20		343.42	⁵ 630/	3,200	110	ND	180	290	790
		07/10/96	13.84		341.78	⁵ 2,200/	2,600	81	4.4	210	230	510
		10/30/96	15.85		339.77	⁵ 560/	2,200	67	19	140	-150	360
		01/27/97	12.20		343.42	⁵ 2,300/	4,600	98	ND	360	290	150
		04/08/97	13.46		342.16	⁵ 1,300/	2,800	50	ND	220	140	ND
		07/17/97	15.30		340.32	⁶ 460/	2,300	30	4.5	140	94	190
		10/1 7/ 97	16.33		339.29	⁶ 510/	1,500	31	6.7	110	88	220
		01/19/98	14.34		341.28	101,900/1,300 ¹⁰	3,100	46	3.4	310	200	170
355.59	NP	04/23/98	11.16		344.43	/1,700 ^{!1}	3,400	72	3.8	470	350	280
	NP	07/08/98	12.67		342.92	142,000/	4,500	51	ND ¹²	590	430	190
		10/05/98	14.57		341.02	/2,500 ¹⁰	7,500 ¹⁶	53	ND ¹²	680	350	190/180 ¹⁷
		01/04/99	15.35		340.24	112,700/2,50011	10,000 ¹⁹	ND^{12}	ND ¹²	1,200	540	ND ¹²
		04/05/99	13.64		341.95	10920/570 ¹⁰	4,900	34	ND ¹²	350	150	150/55 ¹⁷
		07/01/99	14.39		341.20	102,700/3,600 ²⁶	10,000	45	ND ¹²	850	420	260/110 ¹⁷
		09/30/99	15.32		340.27	102,360/1,680 ¹⁰	$7,150^{27}$	ND^{12}	ND ¹²	415	84.4	¹² ND/195 ¹⁷
		01/03/00	16.51		339.08	²⁶ 2,000/1,700 ²⁶	$5,400^{27}$	28	8.4	180	33	160/120 ¹⁷
		04/04/00	12.89		342.70	²⁶ 990/1,400 ²⁶	4,800 ²⁷	30	ND ¹²	210	93	170/160 ¹⁷
		07/14/00	14.56		341.03	²⁶ 2,800/1,200 ²⁶	6,200 ²⁷	41	16	170	32	170/120 ¹⁷
		10/27/00	15.96		339.63	²⁶ 1,400/1,300 ²⁶	3,830 ¹⁶	16.8	ND^{12}	68.6	7.99	55.2/38 ¹⁷
		01/08/01	15.72		339.87	/873 ²⁹	2,410 ¹⁶	14.7	4.30	30.5	5.04	34.5/9.33 ¹⁷
		04/03/01	14,46		341.13	²⁶ 1,500/830 ²⁶	3,330 ¹⁶	15.8	5.96	74.8	7.06	¹² ND/13.3 ¹⁷
		07/06/01	15.65		339.94	¹⁰ 1,600/1,200 ^{10,30}	4,30016	23	6.4	57	6.8	58/36 ¹⁷
		10/05/01	16.45		339.14	102,500/2,300 ¹⁰	3,800 ¹⁶	19	<5.0	19	<5.0	64/36 ¹⁷
		01/03/02	14.18		341.41	³¹ 2,200/2,200 ³¹	4,500 ¹⁶	25	<10	24	<10	<100/23 ¹⁷

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/		DATE	DTW	S.I.	GWE	TPH-D♦	TPH-G	В	T	Е	X	MTBE
TOC*(ft.)			(ft.)	(ft.bgs)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)		(ppb)	(pph)
U-2										•		
356.59		07/08/95	12.68	10.0-30.0	343.91	³ 4,700/	17,000	430	ND	2,200	590	
		10/12/95	16.01		340.58	⁵ 3,600/	24,000	310	60	1,900	190	7
		01/11/96 ¹	17.06		339.53	⁵ 8,600/	10,000	210	55	1,400	240	⁸
		04/11/96 ²	12.75		343.84	⁵ 1,900/	7,700	130	27	1,100	110	340
		07/10/96	14.42		342.17	⁵ 2,300/	5,600	59	15	610	42	250
		10/30/96	16.82		339.77	⁵ 1,800/	7,700	67	35	1,000	54	260
		01/27/97	12.91		343.68	⁵ 660/	1,600	14	ND	130	7.0	100
		04/08/97	14.07		342.52	⁵ 2,000/	4,300	35	ND	400	16	ND
		07/17/97	15.96		340.63	⁶ 1,300/	6,200	17	22	410	ND	130
		10/17/97	17.03		339.56	⁶ 1,400/	7,100	71	26	520	50	ND
		01/19/98	15.10		341.49	102,100/1,500 ¹⁰	5,300	46	11	350	16	110
56.55	NP	04/23/98	11.74		344.81	/1,200 ¹¹	3,200	23	11	210	38	160
	NP	07/08/98	13.27		343.28	¹⁴ 1,100/	1,600	34	8.5	100	7.4	190
		10/05/98	14.90		341.65	/1,300 ¹⁰	2,900 ^{t8}	37	8.4	110	7.3	78
		01/04/99	15.94		340.61	11670/250 ²⁰	$2,200^{21}$	35	ND ¹²	17	ND^{12}	86
		04/05/99	14.19		342.36	10660/490 ¹⁰	4,900	21	77	130	310	100/6.9 ¹⁷
		07/01/99	14.98		341.57	²⁴ 210/440 ²⁶	1,500 ²⁵	7.6	ND ¹²	ND ¹²	ND ¹²	¹² ND/35 ¹⁷
		09/30/99	16.00		340.55	10483/340 ¹⁰	256 ²⁷	1.85	ND^{12}	2.42	ND ¹²	26.3/29.8 ¹⁷
		01/03/00	17.20		339.35	²⁶ 2,400/1,900 ²⁶	3,400 ²⁷	23	13	ND^{12}	44	46/14 ¹⁷
		04/04/00	13.50		343.05	²⁶ 1,000/1,000 ²⁶	3,600 ²⁷	34	17	56	ND ¹²	59/25 ¹⁷
		07/14/00	15.23		341.32	²⁶ 1,000/350 ²⁶	$3,100^{27}$	16	13	15	10	100/19 ¹⁷
		10/27/00	16.74		339.81	26 2,000/1,900 26	4,180 ¹⁶	30.4	10.2	14.6	ND ¹²	55.5/15 ¹⁷
		01/08/01	16.68		339.87	/624 ²⁹	3,30016	33.5	7.32	3.49	ND^{12}	66.7/7.49 ¹⁷
		04/03/01	15.12		341.43	²⁶ 1,500/830 ²⁶	4,29016	32.4	9.91	20.1	ND^{12}	66.6/18.1 ¹⁷
•		07/06/01	16.32		340.23	101,400/1,100 ^{10,30}	4,700 ¹⁶	35	11	12	5.3	62/1917
		10/05/01	17.15		339.40	103,200/1,900 ¹⁰	3,600 ¹⁶	31	9.6	8.7	6.9	62/13 ¹⁷
		01/03/02	14.90		341.65	³¹ 2,300/2,100 ³¹	4,600 ¹⁶	34	11	15	5.8	62/7.5 ¹⁷

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/		DATE	DTW	S.I.	GWE	TPH-D♦	TOU A		2000	and the same and t		gganganaran senggan s
TOC*(ft.)			(ft.)				TPH-G	В	т	E	X	MTBE
	<u> </u>		U 14/	(ft.bgs)	(msl)	(ррь)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
U-3												
358.13		07/08/95	14.58	10.0-30.0	343.55	³ 710/	1,100 ⁴	0.57	2.1	1.7	2.4	
		10/12/95	17.60		340.53	⁶ 470/	560	ND	0.87	0.7	1.1	
		01/11/96 ¹	18.65		339.48	⁶ 260/	230	0.62	0.91	0.97	1.9	
		04/11/96	13.20		344.93	ND/	68 ⁹	ND	ND	ND	ND	ND
		07/10/96	15.98		342.15	ND/	ND	ND	ND	ND	ND	ND
		10/30/96	18.24		339.89	ND/	70	ND	ND	ND	ND	ND ND
		01/27/97	14.41		343.72	ND/	ND	ND	ND	ND	ND	ND ND
		04/08/97	15.73		342.40	ND/	ND	ND	ND	ND	ND ND	ND ND
		07/17/97	17.54		340.59	ND/	ND	ND	ND	ND	ND ND	ND ND
		10/17/97	18.64		339.49	⁶ 63/	ND	ND	. ND	ND	ND	ND ND
		01/19/98	16.67		341.46	¹⁰ 68/ND	ND	ND	ND	ND	ND	ND
358.09	NP	04/23/98	13.28		344.81	/ND	ND	ND	ND	ND	ND	ND ND
	NP	07/08/98	14.90		343.19	1580/	ND	ND	ND	ND	ND	ND
		10/05/98	16.50		341.59	/ND	ND	ND	ND	ND	ND	ND
		01/04/99	17.70		340.39	ND/	ND	ND	ND	ND	ND	ND
		04/05/99	15.67		342.42	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
		07/01/99	16.79		341.30	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
		09/30/99	17.60		340.49	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
		01/03/00	18.86		339.23	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
		04/04/00	15.10		342.99	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
		07/14/00	16.85		341.24	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
		10/27/00	18.35		339.74	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
		01/08/01	18.31		339.78	/ND	ND	ND	ND	ND	ND	ND/ND ¹⁷
		04/03/01	16.70		341.39	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
		07/06/01	17.90		340.19	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
		10/05/01	18.71		339.38	<50/	<50	<0.50	< 0.50	< 0.50	< 0.50	<5.0/<2.0 ¹⁷
		01/03/02	16.41		341.68	<52/	<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0/<1.0 ¹⁷

Table 1Groundwater Monitoring Data and Analytical Results

					,			55.65.00			
WELL ID/ TOC*(fL)	DATE	DTW	S.I.	GWE	TPH-D♦	TPH-G	В	T	E	X	MTBE
TOC (JL)		(ft.)	(ft.bgs)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ррв)
MW-4											
356.41	04/23/98	12.11	10.0-25.0	344.30	/1,400 ¹¹	2,500	5.9	6.4	16	31	ND ¹²
	07/08/98	13.70		342,71	¹¹ 1,400/	1,00013	ND^{12}	ND^{12}	ND ¹²	ND ¹²	ND ¹²
	10/05/98	15.18		341.23	/230 ¹⁰	890 ¹⁶	ND ¹²	ND^{12}	ND^{12}	14	ND ¹²
	01/04/99	16.39		340.02	¹⁰ 71/71 ¹⁰	230^{22}	0.56	1.3	1.4	1.8	10
	04/05/99	14.61		341.80	10340/210 ¹⁰	620^{23}	ND ¹²	1.8	2.1	ND ¹²	6.0/9.3 ¹⁷
	07/01/99	15.43		340.98	²⁴ 260/310 ²⁶	70019	2.1	ND ¹²	1.9	2,4	¹² ND/21 ¹⁷
	09/30/99	16.27		340.14	10420/220 ¹⁰	582 ²⁷	2.60	1.30	1.98	ND ¹²	23.1/22.5 ¹⁷
	01/03/00	17.50		338.91	²⁶ 250/260 ²⁶	800 ²⁷	4.2	4.6	3.3	11	31/17 ¹⁷
	04/04/00	13.91		342.50	10,15460/34026	710 ²⁷	2.0	1.3	4.4	2.0	21/2217
	07/14/00	15.58		340.83	²⁶ 220/76 ²⁶	490^{28}	0.89	1.3	0.85	1.8	21/1217
	10/27/00	16.96		339.45	²⁶ 160/120 ²⁶	598 ²¹	ND	1.56	4.65	ND	15.4/14 ¹⁷
	01/08/01	16.64		339.77	/202 ²⁹	522 ²⁷	4.09	1.69	2.53	1.26	17.2/14.3 ¹⁷
	04/03/01	15.46		340.95	²⁶ 180/ND	575 ²¹	ND ¹²	ND ¹²	ND ¹²	ND ¹²	14.0/11.6 ¹⁷
	07/06/01	16.63		339.78	10230/200 ^{10,30}	720 ¹⁶	4.7	1.5	2.5	0.74	10/7.117
	10/05/01	17.38		339.03	¹⁰ 180/140 ¹⁰	650 ²⁷	4.3	1.2	1.1	1.8	5.9/5.4 ¹⁷
	01/03/02	15.10		341.31	³¹ 390/360 ³¹	340 ¹⁶	2.9	1.4	1.7	<1.0	<10/3.117
MW-5											
355.03	04/23/98	11.15	10.0-25.0	343.88	/100 ¹¹	120	0.53	0.90	1.0	3.8	13
000100	07/08/98	12.63	20,0 2010	342.40	¹⁰ 1 70/	ND	ND	ND	ND	ND	12
	10/05/98	14.00		341.03	/100 ¹⁰	ND	ND	ND	ND	ND	12
	01/04/99	15.21		339.82	ND/	ND	ND	ND	ND	ND	ND
	04/05/99	13.76		341.27	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
	07/01/99	14.48		340.55	ND/	ND	ND	ND	ND	ND	¹² ND/2.3 ¹⁷
	09/30/99	15.15		339.88	¹⁰ 60.4/ND	50.8 ²⁷	ND	ND	ND	ND	ND/ND ¹⁷
	01/03/00	16.34		338.69	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
	04/04/00	12.90		342.13	¹⁵ 69/ND	ND	ND	ND	ND	ND	ND/ND ¹⁷
	07/14/00	14.48		340.55	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
	10/27/00	15.75		339.28	ND/	ND .	ND	ND	ND	ND	ND/ND ¹⁷
		15.75		339.78	/ND	ND	ND	ND	ND	ND	ND/ND ¹⁷
	01/08/01	15.25		229.10	/1×D	1117	1415	112	112		•

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	S.I.	GWE	TPH-D♦	TPH-G	В	Т	E	X	MTBE
TOC*(ft.)		(ft.)	(ft.bgs)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)

MW-5	04/03/01	14.41	10.0-25.0	340.62	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
(cont)	07/06/01	15.52		339.51	ND/	ND	ND	ND	ND	ND	ND/ND ¹⁷
	10/05/01	16.28		338.75	<50/	<50	< 0.50	< 0.50	< 0.50	<0.50	<5.0/<2.0 ¹⁷
	01/03/02	14.01		341.02	<51/	<50	<0.50	<0.50	<0.50	<0.50	<5.0/1.6 ¹⁷
Trip Blank											
B-LB	01/19/98					ND	ND	NID	A 175		
	04/23/98					ND	ND .	ND	ND	ND	ND
	07/08/98					ND		ND	ND	ND	ND
	10/05/98						ND	ND	ND	ND	ND
	01/04/99					ND	ND	0.70	ND	0.71	ND
	04/05/99					ND	ND	0.74	ND	0.92	ND
	07/01/99					ND	ND	ND	ND	ND	ND
						ND	ND	ND	ND	ND	ND .
	09/30/99					ND	ND	ND	ND	ND	ND
	01/03/00					ND	ND	ND	ND	ND	ND
	04/04/00		•			ND	ND	ND	ND	ND	ND
	07/14/00					ND	ND	ND	ND	ND	ND
	10/27/00					ND	ND	ND	ND	ND	ND
	01/08/01					ND	ND	ND	ND	ND	ND
	04/03/01					ND	ND	ND	ND	ND	ND
	07/06/01			. 		ND	ND	ND	ND	ND	ND
	10/05/01					<50	<0.50	< 0.50	< 0.50	< 0.50	<5.0
	01/03/02	••				<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #7176 7850 Amador Valley Boulevard Dublin, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to January 19, 1998, were compiled from reports prepared by MPDS Services, Inc.

TOC = Top of Casing

TPH-D = Total Petroleum Hydrocarbons as Diesel

(ppb) = Parts per billion

DTW = Depth to Water

TPH-G = Total Petroleum Hydrocarbons as Gasoline

ND = Not Detected

(ft.) = Feet

B = Benzene

-- = Not Measured/Not Analyzed

S.I. = Screen Interval

T = Toluene

NP = No purge

(ft.bgs) = Feet Below Ground Surface

E = Ethylbenzene

GWE = Groundwater Elevation

X = Xylenes

(msl) = Mean sea level

MTBE = Methyl tertiary butyl ether

- * TOC elevations were surveyed relative to msl, per the Benchmark AM-STW1977 located at the easterly return at the most easterly corner of intersection at Amador Valley Boulevard and Starward Street, (Elevation = 344.17 feet, msl).
- Analytical results reported as follows: TPH-D/TPH-D with silica gel cleanup.
- Polynuclear Aromatic Hydrocarbons (PNAs) compound naphthalene was detected in well U-1 at a concentration of 320 ppb and at a concentration of 310 ppb in well U-2. All other PNAs compounds were ND in both wells.
- PNAs compounds were ND.
- Laboratory report indicates unidentified hydrocarbons C9-C26.
- Laboratory report indicates gasoline and unidentified hydrocarbons >C12.
- 5 Laboratory report indicates the hydrocarbons detected appeared to be a diesel and non-diesel mixture.
- 6 Laboratory report indicates the hydrocarbons detected did not appear to be diesel.
- Laboratory has potentially identified the presence of MTBE at reportable levels in the groundwater sample collected from this well.
- Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of 40 ppb in the sample collected from this well.
- Laboratory report indicates the hydrocarbons detected did not appear to be gasoline.
- Laboratory report indicates unidentified hydrocarbons C9-C24.
- Laboratory report indicates diesel and unidentified hydrocarbons <C14.
- Detection limit raised. Refer to analytical reports.
- Laboratory report indicates unidentified hydrocarbons >C8.
- Laboratory report indicates unidentified hydrocarbons <C14.
- Laboratory report indicates discrete peaks.
- Laboratory report indicates weathered gasoline C6-C12.
- 17 MTBE by EPA Method 8260.
- Laboratory report indicates unidentified hydrocarbons <C8.
- Laboratory report indicates gasoline and unidentified hydrocarbons C6-C12.
- Laboratory report indicates diesel and unidentified hydrocarbons <C16.

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #7176 7850 Amador Valley Boulevard Dublin, California

EXPLANATIONS: (cont)

- Laboratory report indicates unidentified hydrocarbons C6-C12.
- Laboratory report indicates gasoline and unidentified hydrocarbons >C10.
- ²³ Laboratory report indicates gasoline and unidentified hydrocarbons < C7.
- Laboratory report indicates unidentified hydrocarbons C10-C24.
- Laboratory report indicates gasoline and unidentified hydrocarbons <C6.
- Laboratory report indicates unidentified hydrocarbons <C16.
- Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons C6-C12.
- Laboratory report indicates hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- Laboratory report indicates sample was generated out of hold time. The sample was originally run within hold time, but needed to be re-analyzed.
- 31 Laboratory report indicates unidentified hydrocarbons C10-C28.

Table 2
Groundwater Analytical Results - Oxygenate Compounds

					zamorma				
WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
U-1	04/05/99	ND^1	ND ¹	55	ND¹	ND^1	ND ¹	ND^1	ND ¹
	07/01/99	ND	ND	110	ND	ND	ND	ND	ND
	09/30/99	ND^1	ND^{1}	195	ND^{I}	ND ¹	ND ¹	ND ¹	ND ¹
	01/03/00	ND	ND	120	ND	ND	ND	ND	ND
	04/04/00	ND^{\dagger}	ND^1	160	ND ^t	ND ¹	ND ¹	ND ¹	ND ¹
	07/14/00	ND^1	ND^1	120	ND ¹	ND ¹	ND ¹	ND¹	ND ¹
	10/27/00	ND	ND	38	ND	ND	ND	ND	ND
	01/08/01	ND^{1}	ND^1	9.33	ND ¹	ND ¹	ND ¹	ND'	ND ^I
	04/03/01	ND ¹	NĐ¹	13.3	ND ¹	ND ¹	ND ¹	ND ¹	ND ¹
	07/06/01	ND	ND	36	ND	ND	ND	ND	ND
	10/05/01	<1,000	<100	36	<2.0	<2.0	<2.0	<2.0	<2.0
	01/03/02	<2,500	<100	23	<5.0	<5.0	<5.0	<5.0	<5.0
U-2	04/05/99	ND	ND¹	6.9	ND ¹	ND ¹	ND ¹	ND ¹	ND^{t}
	07/01/99	ND	ND	35	ND	ND	ND	ND	ND
	09/30/99	ND .	ND	29.8	ND	ND	ND	ND	ND
	01/03/00	ND	ND	14	ND	ND	ND	ND	ND
	04/04/00	ND ¹	ND ¹	25	ND^1	ND ¹	ND ¹	ND¹	ND!
	07/14/00	ND	ND	19	ND	ND	ND	ND	ND
	10/27/00	ND	ND	15	ND	ND	ND	ND	ND
	01/08/01	ND	ND ¹	7.49	ND ¹	ND ¹	NDI	ND ¹	ND'
	04/03/01	ND	ND	18.1	ND	ND	ND	ND	ND
	07/06/01	ND	ND	19	ND	ND	ND	ND	ND
	10/05/01	<1,000	<100	13	<2.0	<2.0	<2.0	<2.0	<2.0
	01/03/02	<2,500	<100	7.5	<5.0	<5.0	<5.0	<5.0	<5.0
U-3	04/05/99	ND	ND	NĎ	ND	ND	ND	ND	ND
	07/01/99	ND	ND	ND	ND	ND	ND	ND	ND
	09/30/99	ND	ND	ND	ND	ND	ND	ND	ND
	01/03/00	ND	ND	ND	ND	ND	ND	ND	ND

Table 2
Groundwater Analytical Results - Oxygenate Compounds
Tosco (Unocal) Service Station #7176

			Duoini, C	zamoma				
DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
	(pph)	(ppb)	(ppb)	(ррь)	(ppb)	(pph)	(ppb)	(ppb)
04/04/00	NID	ND) ID					
								ND
								ND
								ND
								ND
						ND	ND	ND
						ND	ND	ND
						<2.0	<2.0	<2.0
01/03/02	<500	<20	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
04/05/99	ND	ND	9.3	ND	ND	ND	ND	ND
07/01/99								ND
09/30/99								ND
								ND
								ND
								ND
								ND
								ND
								ND
								ND
								<2.0
01/03/02	<500	<20	3.1	<1.0	<1.0	<1.0	<1.0	<1.0
04/05/00	ND	ND	NID	NID	ND	ND	ND	ND
								ND
								ND
								ND
								ND ND
								ND ND
								ND
01/08/01	ND	ND	ND	ND	ND	ND	ND	ND
	04/04/00 07/14/00 10/27/00 01/08/01 04/03/01 07/06/01 10/05/01 01/03/02 04/05/99 07/01/99 09/30/99 01/03/00 04/04/00 07/14/00 10/27/00 01/08/01 04/03/01 07/06/01 10/05/01	(pph)	(pph) (pph) 04/04/00 ND ND 07/14/00 ND ND 10/27/00 ND ND 01/08/01 ND ND 04/03/01 ND ND 04/03/01 ND ND 07/06/01 ND ND 10/05/01 <1,000	DATE ETHANOL (pph) TBA (pph) MTBE (pph) 04/04/00 ND ND ND 07/14/00 ND ND ND 10/27/00 ND ND ND 01/08/01 ND ND ND 04/03/01 ND ND ND 04/03/01 ND ND ND 07/06/01 ND ND ND 10/05/01 <1,000	DATE ETHANOL TBA MTBE DIPE (pph) (pph)	DATE	(pph)	DATE

Table 2
Groundwater Analytical Results - Oxygenate Compounds
Tosco (Unocal) Service Station #7176

WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		<u>(ррв)</u>	(ppb)	(ppb)	(ррб)	(pph)	(ppb)	(ppb)	(ppb)
MW-5	04/03/01	ND	ND	ND	ND	ND	ND	ND	ND
cont)	07/06/01	ND	ND	ND	ND	ND	ND	ND	ND
	10/05/01	<1,000	<100	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
	01/03/02	<500	<20	1.6	<1.0	<1.0	<1.0	<1.0	<1.0

Table 2

Groundwater Analytical Results - Oxygenate Compounds

Tosco (Unocal) Service Station #7176 7850 Amador Valley Boulevard Dublin, California

EXPLANATIONS:

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromomethane

(ppb) = Parts per billion

ND = Not Detected

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

Detection limit raised. Refer to analytical reports.

Table 3

Dissolved Oxygen Concentrations

Tosco (Unocal) Service Station #7176 7850 Amador Valley Boulevard Dublin, California

WELLID	DATE	Before Purging	After Purging
		(mg/L)	(mg/L)
U-1	01/11/96	••	3.41
	04/11/96	3.77	3.78
	07/10/96 ¹	1.22	
	10/30/96 ¹	1.41	•
	01/2 7/ 97 ¹	1.34	
	04/08/97 ¹	2.09	
	07/17/97 ¹	2.00	
	10/1 7 /97 ¹	1.86	- -
	01/19/98 ¹	2.91	
	04/23/98 ¹	0.59	
	07/08/98 ¹	1.10	
U-2	01/11/96		3.99
	04/11/96	3.32	3.41
	07/10/96 ¹	1.01	·
	10/30/96 ¹	1.42	
	01/27/971	1.29	
	04/08/971	1.69	
•	0 7 /17/97 ¹	2.08	
	10/17/97	1.80	
	01/19/98 ¹	2.95	
	04/23/98 ¹	0.55	
	07/08/98 ¹	1.36	
U-3	01/11/96		5.05
	04/11/96	5.16	4.96
	07/10/96 ¹	3.44	
	10/30/96 ¹	2.18	
	01/27/971	2.61	
	04/08/971	3.73	
	07/17/97	2.65	
	10/17/97 ¹	2.44	
	01/19/98	6.51	
	04/23/981	4.72	
	07/08/98 ¹	4.35	
CC-1	10/02/95	2.83	

EXPLANATIONS:

Dissolved oxygen concentrations prior to January 19, 1998, were compiled from reports prepared by MPDS Services, Inc.

(mg/L) = Milligrams per liter

-- = Not Measured

CC-1 = Conductor casing in the underground storage tank backfill

The wells were not purged on this date.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Phillips 66 Company, the purge water and decontamination water generated during sampling activities is transported to Phillips 66 - San Francisco Refinery, located in Rodeo, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Idress: $\frac{72}{2}$	so Amader V	ally blip	Date: Sampl	<u>1/3/02</u> er: <u>Vaztto,</u>		
Well ID	u-1	Well Con	dition:	OK		
ell Diameter	2in.	Hydrocar Thicknes		Amount B		(gal_)
al Depth	2780 m	Volume Factor (V	2" = 0.			- 0:66
oth to Water	14.18 4		<u> </u>			
, .	13.62 x	1F @117 2.	31 × 3 (case	volume) = Estimated F	rurge Volume:	(gal.)
Purge quipment:	Disposable Bailer Bailer	•	Sampling Equipment:	Disposable B	aller	
, -	Stack Suction			Pressure Bai Grab Sample		
	Grundfos Other:			Other:	· ·	
	1805		ather Conditio	ne dia		
Starting Time:	1830		ter Color:	granish	Odor:	4
ampling Time: Purging Flow R		m. Sec	liment Descrip			1
id well de-wa	- Maria	lf y	es; Time: _	Volu	ıme:	<u>lgal.</u>
Time	Volume pH (gal.)	Conducti µmhos/c	m ·	erature D.O.		Alkalinity (ppm)
1810	2 7.37			1.8		
1817	$\frac{4.5}{2}$ $\frac{7.21}{2.16}$	116	7 68	7.7	<u> </u>	•
1065	7.10					·
				<i>#</i>		
·		LABORAT REFRIG. P	ORY INFORM RESERV. TYPE:	ATION LABORATORY		LYSES
SAMPLE ID	#) - CONTAINER	۱ ۲	Her	SEQUOIA	TPHG 8TE	X MTOE+
(1	1 Augu		NONE		TPH-D	<u> </u>
				<u> </u>		
		i		<u> </u>		

WELL MONITORING/SAMPLING FIELD DATA SHEET

inty # 70300 ility # 7176 dress: 7850 Amador Val y: Dublin, Ca.	Job#: 180022 Lley Bluel. Date: 1/3/02 Sampler: Varthey	
Well ID <u>U_2</u>	Well Condition:	
Diameter2in.	Hydrocarbon Amount Bailed Thickness: (product/water): (od)	
th to Water	Thickness:	
	Sampling Equipment: Disposable Bailer Bailer Pressure Bailer Grab Sample	
rting Time: 1730 npling Time: 1753 ging Flow Rate:	Weather Conditions: Water Color: Sediment Description: If yes; Time: Volume: (gel)	
Time Volume pH (gal.) 1736 2 7.45 1742 4 7.27 748 6 7.20	Conductivity Temperature D.O. ORP (mg/L) (mV) (ppm) 11 4 3 68.1 11 38 68.9	
	LABORATORY INFORMATION FRIG. PRESERV. TYPE LABORATORY ANALYSES	
U_ 2 5 x VDA VIAL Y	/	<u>ز</u> ز)د:
11 / Auctor -		
MMENTS:		

WELL MONITORING/SAMPLING FIELD DATA SHEET

Well ID	<u>u-3</u>	Wel	l Condition: .	OK	<u> </u>		
Il Diameter	2ia.		lrocarbon ckness:	00 _{in.}	Amount Bail		
al Depth	28.41 m	V		0.17 6" = 1	3" = 0.38 50	12" = 5.80	- 0.66
ptri to vvetei	 -	VF 0:13	2.04 x3 (ca	se volume) =	Estimated Pu	rge Volume:(6. 5 lost.)
urge uipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	_	Sampling Equipme	nt: Di Ba Pr	sposable Bai iler essure Baile ab Sample		
erting Time:	1650		Weather Condi	i.	clea		3
mpling Time:			Water Color: _ Sediment Desc		silt	Odor: N	
irging Flow Ri d well de-wat	_	——————————————————————————————————————	If yes; Time:		Volum	ne:	(pal.)
Time	Volume pH (gal.)	מע	nhos/cm	mperature •F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
1655	$\frac{2}{4} \frac{7.80}{3.6}$	F. T.	157	67.2 67.6 67.9			
1708	6.5 7.61			<u>67.1 —</u>	· · · · · · · · · · · · · · · · · · ·		
				<i>i</i> :	-		
	(#) - CONTAINER	LABO REFRIG.	RATORY INFOR	MATION	ORATORY	ANA	YSES
CAMPI F ID			HEL	SEQU	A IO	TPHG BTE	X /MTOE+
SAMPLE ID	5 x VDA VIAL	1 4	1 466				

WELL MONITORING/SAMPLING FIELD DATA SHEET

Well ID	M	w-4_	Well Condition	n: <u>ë</u>	TL		· · · · · · · · · · · · · · · · · · ·	
/ell Diameter		2 in	Hydrocarbon	<i>6</i> , c	-	mount Bail	—	3 (00)
otal Depth	20	5.40 m	Volume Factor (VF)	2* = 0.1		3" = 0.38		= 0.66
epth to Water		_ -	0.17-1.75	X 3 (case v	olinue) = 1	Estimated Pur	ge Volume: _S	
Purge quipment:	Dispos Bailer Stack Systio Grund Other:	a) fos		mpling uipment:	Bail Pres	posable Bailer er ssure Bailer b Sample		
Starting Time:		615	Weather	Condition		clear		71
Sampling Time	:	635	Water Co		<u> 671</u>	OH	Odor: Mil	<i>d</i>
•	late:		-	t Descrip	tion:	Volum	e:	
<u> </u>		no	. If yes;					
	ater?						ORP	44140
Purging Flow I Did well de-wa Time	Volume (gal.)	рН	Conductivity µmhos/cm	Tempe	i.	D.O. (mg/L)	(mV)	Alkalinity (ppm)
Did well de-wa	Volume	7.54	µmhos/cm	4	17_			
Did well de-water Time	Volume (gal.)	7.54	μmhos/cm 1089 1074	- 67 - 68	1.7 2.4			
Did well de-wa	Volume (gal.)	7.54	μmhos/cm 1089	- 67 - 68	17_			
Did well de-wi	Volume (gal.)	7.54	μmhos/cm 1089 1074	- 67 - 68	1.7 2.4			
Did well de-wi	Volume (gal.)	7.54	μmhos/cm 1089 1074	- 67 - 68	1.7 2.4			
Time 1670 1676	Volume (gal.)	7.54	umhos/cm 1089 1074 1070	68	1.7 1.4 1.5			
Time 1670 1676 1631	Volume (gal.) 2 4 5.5	7.54 7.38 7.35	// / / / / / / / / / / / / / / / / / /	67 68 68 68	7.7 7.7 	(mg/L)	(mV)	
Time /GTC /GTC /GTC /GTC /GTC	Volume (gal.) 2 4 5.5	7.54 7.38 7.35	LABORATORY	68 68 68 68 White	TION LABO	(mg/L)	(Vm)	(ppm)
Time 1670 1676 1631 SAMPLE ID	Volume (gal.) 2 4 5.5	7.54 7.38 7.35	/ 0 8 9 / 0 7 4 / 0 7 0	68 68 68 68 White	7.7 7.7 	(mg/L)	ANAI	(pps
Time 1670 1676 1631	Volume (gal.) 2 4 5.5	7.54 7.38 7.35 ONTAINER	LABORATORY REFRIG. PRESER	68 68 68 68 White	TION LABO	(mg/L)	(Vm)	(ppm)

WELL MONITORING/SAMPLING FIELD DATA SHEET

Well ID Well Condition: Well Condition: Well Condition: Diameter Diamet	7\$t	O Ange	der Va	Un B	Job#: lve/, Date:	1/3	102		
Well ID Mw-5	ess: <u>To -</u>	1 13 /	20.	7	Samo	ler: <u>Va</u> z	the.		
Depth 24.88 a. Hydrocarbon Thickness: Depth 24.88 a. Volume 2" = 0.17 3" = 0.38 4" = 0.66 Thickness: Depth 24.88 a. Volume 2" = 0.17 3" = 0.38 4" = 0.66 Thickness: Depth 24.88 a. Volume 2" = 0.17 3" = 0.38 4" = 0.66 Thickness: Depth 2" = 5.80 12" = 5.80 12" = 5.80 Thickness: Depth 2" = 0.17 3" = 0.38 4" = 0.66 Thickness: Depth 2" = 0.17 3" = 0.38 4" = 0.66 Thickness: Depth 2" = 0.17 3" = 0.38 4" = 0.66 Thickness: Depth 2" = 0.17 Thickness: Depth 2" = 0.17 Thickness: Depth 2" = 0.17 Thickness: Depth 2" = 0.18 Thickness: Depth 2" = 0.66 Thickness: Thickness: Depth 2" = 0.66 Thickness: Thic	<u> </u>	blip -							
Diameter Diameter	Well ID	HW	_5	Well C	Condition:	0 K	· 	· · · · · · · · · · · · · · · · · · ·	
th to Water 1987 X VF O P	Diameter			•				. 5	(gal.)
Tring Time: Volume PH Conductivity Temperature (mg/L) (mv/) (ppm)	I Depth	24.	88 n						0.66
Sampling ipment: Bailer Stack Michigh Grundfos Other: Oth	th to Water	14.0	01 1	Facto	or (VP)				
Injument: Bailer Stack Bailer Bailer Bailer Bailer Bailer Bailer Bailer Bailer Pressure Bailer Pressure Bailer Grab Sample		10.	82 x v	F O. 17		volume) = Estir	nated Purg	je Volume: <u>6</u>	Co (pal.)
Stack Stack Stack Pressure Bailer Grundfos Other:	orge ipment:		ie Bailer				àble Bail	er	•
Grundfos Other: Other		Stack)	•		Pressu			
Time Volume pH Conductivity Temperature D.O. ORP Alkalinity (gal.) 1545 2 7.70 924 674 1551 4 7.55 910 68.6 SAMPLE ID (5) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW- 5 5 x VOQ YIAL Y HALL SEQUICIA TPHG/BTEX /MTOE TO TPH-D		Grundfo					ample		
weather Color: brn. Odor: 10 Time: 1600 Water Color: brn. Odor: 10 Water Color: brn. Odor: 10 Water Color: brn. Odor: 10 If yes; Time: Volume: Gal. Odor: 10 Time: Volume (gal.) PH Conductivity Temperature D.O. ORP (mg/L) (mV) (ppm) 1545 2 770 924 674 1551 4 7.55 910 68.3 1550 6 7.52 912 68.6 SAMPLE ID (1) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW- 5 5 x voq vial Y Hel SEQUICIA TPHS ITEX /M 10 E TO TPH-D		Otner: _							•
Water Color: Water Color: Water Color: Water Color: Sediment Description: Sediment Description: Sedim	rtina Time:	150	10	_ '	Weather Condition		clear		· · · · ·
If yes; Time: Volume: Gallinity Time Volume pH Conductivity Temperature D.O. ORP Alkalinity (gal.) pmhos/cm F (mg/L) (mV) (ppm) (545 2 7.70 924 67.4 (551 7.55 910 68.6 ISSID 6 2.52 912 68.6 LABORATORY INFORMATION SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY MW- 5 5 x voq vial Y HCL SEQUOIA TPHG BTEX /MTOE T	_	_160	00					Odor: 10	·
Time Volume pH Conductivity Temperature D.O. ORP Alkalinity (gal.) 545 7 770 924 674						ption:	Volume	e:	(cal.)
Volume (gal) PH Conductivity Temperature (mg/L) (mV) (ppm) 1545 7 7.70 924 17.4 1551 7 7.55 910 68.3 1550 6 7.52 912 68.6 SAMPLE ID (1) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW- 5 5 X VOA VIAL Y HCL SEQUOIA TPHG BTEX MTOE 1	rging Flow Ra	ite:	• • • • • • • • • • • • • • • • • • • •		it ves: IIma: _				
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY MW- 5 5 x VDQ VIAL Y HCC SEQUOIA TPHG BTEx /MTDE TO // / Auchir ~ NONE ~ TPH-D			no	- .		•			
LABORATORY INFORMATION SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE: LABORATORY ANALYSES MW-5 5 x vdq vial Y HCL SEQUOIA TPHG 8TEX /MTDE TO TPH-D 11 / Audit - NONE - TPH-D	d well de-wat	er?	 -	Cond	uctivity Tem	F			Alkalinity (ppm)
LABORATORY INFORMATION SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-5 5 x VDA VIAL Y HCL SEQUOIA TPHG BTEX /MTDE T 11 / Auchir - NONE - TPH-D	d well de-wat	Volume (gal.)	р н	Cond µmh	uctivity Tem	F 7. √			
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-5 5 x VDA VIAL Y HOL SEQUOIA TPHG BTEX /MTDE T 11 / Auchir - NONE - TPH-D	Time	Volume (gal.)	р н	Cond µmh	10 6	F 7.1 <u>8.3</u> _			
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-5 5 x VDA VIAL Y HCL SEQUOIA TPHG BTEX /MTDE T 11 / Aublit - NONE - TPH-D	Time	Volume (gal.)	р н	Cond µmh	10 6	F 7.1 <u>8.3</u> _			
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-5 5 x VDA VIAL Y HOL SEQUOIA TPHG BTEX /MTDE T 11 / Auchir - NONE - TPH-D	Time	Volume (gal.)	р н	Cond µmh	10 6	F 7.1 <u>8.3</u> _			
MW-5 5 x VDA VIAL Y HEL SEQUOIA TPHG BTEX /MTDE T	Time	Volume (gal.)	р н	Cond µmh	10 6	7.1 — 8.3 — 8.6 —			
11 / Aubir ~ NONE ~ TPH-D	Time 1545 1551	Volume (gal.)	pH <u>7.70</u> <u>7.55</u> <u>7.52</u>	Cond µmh 9 9 9 LABOF	inctivity Tempos/cm 24 6 10 6 12 6 tatory inform	7	(mg/L)	(mV)	(ppm)
	t well de-water Time 15 45 1551 1550	Volume (gal.) 7 6	PH 7.70 7.55 2.52	Cond µmh 9 9 9 REFRIG.	ATORY INFORM	7. /	TORY	(mV)	(ppm)
	Time 1545 1551 1550 SAMPLE ID MW- 5	Volume (gal.) 7 6 (#) - co	PH 7.70 7.55 7.52	Cond µmh 9 9 1 1 LABOF REFRIG.	LATORY INFORM PRESERV. TYPE	7	TORY	ANAL	(ppm)
	Time 1545 1551 1550 SAMPLE ID MW- 5	Volume (gal.) 7 6 (#) - co	PH 7.70 7.55 7.52	Cond µmh 9 9 1 1 LABOF REFRIG.	LATORY INFORM PRESERV. TYPE	7	TORY	ANAL	(ppm)
COMMENTS:	Time 1545 1551 1550 SAMPLE ID MW- 5	Volume (gal.) 7 6 (#) - co	PH 7.70 7.55 7.52	Cond µmh 9 9 1 1 LABOF REFRIG.	LATORY INFORM PRESERV. TYPE	7/	TORY	ANAL	(ppm)

Tosa Marine 2001 Con Can Ban Flampa, C	CO	Con	Fooli sultant Fi sultant Hi Address.	lly Address roject Nur orne <u>Ge</u> 67	• 785 nber 121 47 SI ame) 0	OCAL SS# 50 Amador 180022:8 Ryan In ERRA COUR eanna L. 251551+75	Vallo 5 c. (G RT,SUI	R In TE J	c.) DUBL	IN, C	4 945	68	iaborata Samples Salleatloi	Contact Ty Hame Ty Relea Collecte Date	(Phone Ser Number Number	_MR) 92; uola	Da 5-27 Ans	ve_De 7-238	Witt 34 cal		ives indiv-kecold
J-LB	C Lob Somple Mumber	Humber of Contolners	Motors A K. Kr	Ope 6 w Gab	Time	Somple Preservation	load (Yea or No)	TH GA+ ETCX WAGTRE (**	(Sion)	Of end Green	Preventie Holocontone (9010)	Purpeoble Aromotice (8020)	Partechia Gramina (22,43)	Extractoble Organica of (82,70)	<u> </u>	80×7's 3					DO NOT BILL TB-LB ANALYSIS 8 Oxy's - ATTHE, TBA, DIPE, STBE TAME, 1,20CA EDR, Edward
1-1 1-3 y-4 y-5	07 03 04 05 06	6 \$ 6 6	4 4	и и ч	1830 1755 1713 1635 1600		٠	× × × × ×	X X X X							У У У У У У					Run Silica-Gel Clean-up On Any Diesil Nits.
ulehed By	(Signoture) (Signoture)		G-F Organ	nization lization		3/02 3/02 ate/Ilme	Recu	had By	7 (Signati	us)	(Signatu	on On	gonizatio X <i>qsu</i> X qsu ixatio	ଉଦ୍ଦ	Date/	/02 Time			Para Are	24 45 5 (ne (Circle Cholce) Hre. Hre. Daye Daye

22 January, 2002

Deanna Harding Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin, CA 94568

RE: Tosco(1)

Sequoia Report: L201016

Enclosed are the results of analyses for samples received by the laboratory on 01/03/02 19:30. If you have any questions concerning this report, please feel free to contact me.

smit 44[4]。1725年3月2日 新成學業等

Sincerely,

Sporya K. Pelt

Latonya Pelt Project Manager

CA ELAP Certificate #2360

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Project Manager: Deanna Harding

Reported:

01/22/02 14:30

ANALYTICAL REPORT FOR SAMPLES

Sample 1D	Laboratory ID	Matrix	Date Sampled	Date Received
TB-LB	L201016-01	Water	01/03/02 00:00	01/03/02 19:30
U-1	L201016-02	Water	01/03/02 18:30	01/03/02 19:30
U-2	L201016-03	Water	01/03/02 17:55	01/03/02 19:30
U-3	L201016-04	Water	01/03/02 17:13	01/03/02 19:30
MW-4	L201016-05	Water	01/03/02 16:35	01/03/02 19:30
MW-5	L201016-06	Water	01/03/02 16:00	01/03/02 19:30

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA Project Manager: Deanna Harding Reported: 01/22/02 14:30

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8021B

Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (L201016-01) Water Sampled:	01/03/02 00:00	Received: 0	1/03/02	19:30					
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	1	2010043	01/14/02	01/14/02	EPA 8021B	
Benzene	ND	0.50	Ħ	**	11	*	,,	Ħ	
Toluene	ND	0.50	Ŧř	"	И	Ħ	tr	T)	
Ethylbenzene	ND	0.50	11	"	n	Ħ	"	**	
Xylenes (total)	ND	0.50	n	**	н		#	11	
Methyl tert-butyl ether	ND	5.0	Ħ	*1	H	Ħ .	11	11	
Surrogate: a,a,a-Trifluorotoluene		103 %	70-	130	n	п	π	n	
U-1 (L201016-02) Water Sampled: 01/0	03/02 18:30 Re	ceived: 01/0	3/02 19:3	30					
Purgeable Hydrocarbons as	4500	1000	ug/l	20	2010044	01/14/02	01/14/02	EPA 8021B	P-02
Gasoline									
Benzene	25	10	ŧr	11	**	· n	**	11	
Toluene	ND	10	**	**	**	"	"	**	
Ethylbenzene	24	10	Ħ	**	11	Ħ	41	n	
Xylenes (total)	ND	10	***	11	II	II	11		
Methyl tert-butyl ether	ND	100	Ħ	II	n	h	н	H	
Surrogate: a,a,a-Trifluorotoluene		89.6 %	70-	130	n	"	"	"	• •
U-2 (L201016-03) Water Sampled: 01/6	03/02 17:55 Re	ceived: 01/0	<u>3/02 19:3</u>	30					
Purgeable Hydrocarbons as	4600	500	ug/l	10	2010044	01/14/02	01/14/02	EPA 8021B	P-03
Gasoline									
Benzene .	34	5.0	Ħ	**	*	11	**	11	
Toluene	11	5.0	tr	**	11	II	11	н	
Ethylbenzene	15	5.0	Ħ	11	n	n	II	н	
Xylenes (total)	5.8	5.0	r•	11	П	н	1+	м	
Methyl tert-butyl ether	62	50	н	Ħ	ц	17	"	"	
Surrogate: a,a,a-Trifluorotoluene		92.0 %	70-	-130	"	"	"	"	

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J

Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Reported:

Dublin CA, 94568 Project Manager: Deanna Harding

01/22/02 14:30

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8021B Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-3 (L201016-04) Water Sampled: 01/0	3/02 17:13 R	eceived: 01/0	3/02 19:3	0					
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	1	2010043	01/14/02	01/14/02	EPA 8021B	
Benzene	ND	0.50	11	11	11	11	n	u .	
Toluene	ND	0.50	**	n	"	п	н	ıı .	
Ethylbenzene	ND	0.50	n	**	*	ц	ti.	II	
Xylenes (total)	ND	0.50	Ħ	**	Ħ	н	n	Ħ	
Methyl tert-butyl ether	ND	5.0	n	н	*	н	H	tt .	
Surrogate: a,a,a-Trifluorotoluene		103 %	70-	130	"	"	"	"	
MW-4 (L201016-05) Water Sampled: 0	1/03/02 16:35	Received: 01	1/03/02 1	9:30					
Purgeable Hydrocarbons as	340	100	ug/l	2	2010044	01/14/02	01/14/02	EPA 8021B	P-02
Gasoline									
Веплепе	2.9	1.0	**	n	"	**	n	#	
Toluene	1.4	1.0	#	II		Ħ	n	*	
Ethylbenzene	1.7	1.0		II.	п	Ħ	**	77	
Xylenes (total)	ND	1.0	**	II	n	TF.	11	**	
Methyl tert-butyl ether	ND	10	tt	н	Ħ	11	н	н	
Surrogate: a,a,a-Trifluorotoluene		102 %	70-	130	"	"	n	"	\
MW-5 (L201016-06) Water Sampled: 0	1/03/02 16:00	Received: 01	/03/02 19	9:30		· · · · · · · · · · · · · · · · · · ·			
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	1	2010044	01/14/02	01/14/02	EPA 8021B	
Benzene	ND	0.50	"	**	,,	**	**	. 11	
Toluene	ND	0.50	**	**	n	n n	11	11	
Ethylbenzene	ND	0.50	31"	**	**	п	11	11	
Xylenes (total)	ND	0.50	**	н	n	II	Ш	11	
Methyl tert-butyl ether	ND	5.0	**	11	PI	U	II	п	
Surrogate: a,a,a-Trifluorotoluene		84.4 %	70	130	"	n	"	п	

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Project Manager: Deanna Harding

Reported: 01/22/02 14:30

Volatile Organic 8 Oxygenated Compounds by EPA Method 8260B

Sequoia Analytical - San Carlos

		Sequoia An	alytica	I - San C	arios				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-1 (L201016-02) Water	Sampled: 01/03/02 18:30	Received: 01/0	3/02 19:3	30					
Ethanol	ND	2500	ug/l	5	2010020	01/07/02	01/07/02	EPA 8260B	
1,2-Dibromoethane	ND	5.0	II	11	n	Ħ	11	'n	
1,2-Dichloroethane	ND	5.0	II	н	п	Ħ	п		
Di-isopropyl ether	ND	5.0	11	11	**	**	Ħ	tt	
Ethyl tert-butyl ether	ND	5.0	ii	11	**	11	H	#	
Methyl tert-butyl ether	23	5.0	11	п	11	11	"	11	
Tert-amyl methyl ether	ND	5.0	1)	μ		n	**	n	
Tert-butyl alcohol	ND ND	100	11	u	11	11	11	II .	
Surrogate: 1,2-Dichloroeth	nane-d4	91.9 %	70-	130	U	u	n	"	
Surrogate: Toluene-d8		98.9 %	70	-130	n	#	m .	"	
U-2 (L201016-03) Water	Sampled: 01/03/02 17:55	Received: 01/0	3/02 19:3	30					
Ethanol	ND	2500	ug/l	5	2010020	01/07/02	01/07/02	EPA 8260B	
1,2-Dibromoethane	ND	5.0	11	н	**	п	Ħ	n	
1,2-Dichloroethane	ND	5.0	II .	*	н	rr .	"	Ħ	
Di-isopropyl ether	ND	5.0	II	**	ŧī	"	11	H	
Ethyl tert-butyl ether	ND	5.0	11	"	**	11	И	••	
Methyl tert-butyl ether	7.5	5.0	II	**	"	W	II	**	
Tert-amyl methyl ether	ND	5.0	11	Ħ	*11	**	н	11	
Tert-butyl alcohol	ND	100	11	11	11	"	"		
Surrogate: 1,2-Dichloroeth	nane-d4	92.6 %	70-	-130		rr .	H	n	
Surrogate: Toluene-d8		97.8 %	70-	-130	#	"	n	rr	
U-3 (L201016-04) Water	Sampled: 01/03/02 17:13	Received: 01/0	3/02 19:3	30		 .			
Ethanol	ND	500	ug/l	1	2010018	01/07/02	01/07/02	EPA 8260B	
1,2-Dibromoethane	ND	1.0	п	п	**	Ħ	ŧi	u	
1,2-Dichloroethane	ND	1.0	п	п	11	**	H	n	
Di-isopropyl ether	ND	1.0	п	11	τι	Ħ	u	11	
Ethyl tert-butyl ether	ND	1.0	n	11	11	н	u	11	
Methyl tert-butyl ether	ND	1.0	**	11	**	11	"	II	
Tert-amyl methyl ether	ND	1.0	,,	11	**	n n	17	ļi	
Tert-butyl alcohol	ND	20	**	11	**	n	"	rı	
Surrogate: 1,2-Dichloroeth	nane-d4	103 %	70-	-130	FT	. п	"	"	
Surrogate: Toluene-d8		96.0%		-130	n	"	n	"	

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Project Manager: Deanna Harding

Reported: 01/22/02 14:30

Volatile Organic 8 Oxygenated Compounds by EPA Method 8260B Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-4 (L201016-05) Water	Sampled: 01/03/02 16:35	Received: 0	1/03/02 19):30					
Ethanol	ND	500	ug/l	1	2010018	01/07/02	01/07/02	EPA 8260B	
1,2-Dibromoethane	ND	1.0	11	,,	н	11	н	11	
1,2-Dichloroethane	ND	1.0	*1	11	Ħ	11	н	**	
Di-isopropyl ether	ND	1.0	**	Ħ	н	11	н	π	
Ethyl tert-butyl ether	ND	1.0	11	Ħ	11	11	Ħ	**	
Methyl tert-butyl ether	3.1	1.0	,,	91	н	**	"	tt .	
Tert-amyl methyl ether	ND	1.0	n	**	н	#		H	
Tert-butyl alcohol	ND	20	ii.	"	u		••	••	
Surrogate: 1,2-Dichloroethane-	d4	101 %	70-1	30	п	"	"	"	
Surrogate: Toluene-d8		99.6 %	70-1	30	n	"	"	n	
MW-5 (L201016-06) Water	Sampled: 01/03/02 16:00	Received: 01	1/03/02 19	:30					
Ethanol	ND	500	ug/l	1	2010018	01/07/02	01/07/02	EPA 8260B	
1,2-Dibromoethane	ND	1.0		н	u	11	Ħ	п	
1,2-Dichloroethane	ND	1.0	11	II	Ħ	11	11	II.	
Di-isopropyl ether	ND	1.0	91	п	н	11	n	н	
Ethyl tert-butyl ether	ND .	1.0	ēt .	11	u	II	Ħ	п	
Methyl tert-butyl ether	1.6	1.0	21	11	н	n	n	**	
Tert-amyl methyl ether	ND	1.0	н	11	н	П	**	tt	
Tert-butyl alcohol	ND	20	11	11	lı .		**	п	
Surrogate: 1,2-Dichloroethane-c	14	96.0 %	70-1	30	п	"	n	'n	
Surrogate: Toluene-d8		94.0 %	70-1	30	n	"	H	"	

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Project Manager: Deanna Harding

Reported: 01/22/02 14:30

Diesel Hydrocarbons (C10-C28) by 8015B modified

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-1 (L201016-02) Water Sampled: 01/03	/02 18:30 R	eceived: 01/0	3/02 19:30		··				HT-08
Diesel Range Organics (C10-C28)	2200	210	ug/l	4	2A14011	01/14/02	01/16/02	8015Bm	D-15
Surrogate: n-Octacosane		92.9 %	50-1.	50	- "	"	"	n	
U-2 (L201016-03) Water Sampled: 01/03	/02 17:55 R	eceived: 01/0	3/02 19:3 <u>0</u>						HT-08
Diesel Range Organics (C10-C28)	2300	210	ug/l	4	2A14011	01/14/02	01/16/02	8015Bm	D-15
Surrogate: n-Octacosane		89.7 %	50-1.	50	"	n	"	*	
U-3 (L201016-04) Water Sampled: 01/03	/02 17:13 R	eceived: 01/0	3/02 19:30						HT-08
Diesel Range Organics (C10-C28)	ND	52	ug/l	1	2A14011	01/14/02	01/15/02	8015Bm	
Surrogate: n-Octacosane		98.1 %	50-1.	50	"	п	n	"	
MW-4 (L201016-05) Water Sampled: 01	/03/02 16:35	Received: 01	I/03/02 19:	:30					HT-08
Diesel Range Organics (C10-C28)	390	. 52	. ug/l	1	2A14011	01/14/02	01/15/02	8015Bm	D-15
Surrogate: n-Octacosane		111 %	50-1.	50	#	n	н	n	
MW-5 (L201016-06) Water Sampled: 01	/03/02 16:00	Received: 01	1/03/02 19:	:30					HT-08
Diesel Range Organics (C10-C28)	ND	51	ug/l	1	2A14011	01/14/02	01/15/02	8015Bm	
Surrogate: n-Octacosane		99.2 %	50-1.	50	"	"	"	11	

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Project Manager: Deanna Harding

Reported: 01/22/02 14:30

Diesel Hydrocarbons (C10-C28) with Silica Gel Cleanup by 8015B modified

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-1 (L201016-02) Water Sampled: 01/03	/02 18:30 R	eceived: 01/0	3/02 19:30						
Diesel Range Organics (C10-C28)	2200	210	ug/l	4	2A16001	01/16/02	01/21/02	8015Bm	D-15
Surrogate: n-Octacosane		98.1 %	40-1	40	п	11	"	"	
U-2 (L201016-03) Water Sampled: 01/03	/02 17:55 R	eceived: 01/0.	3/02 19:30						
Diesel Range Organics (C10-C28)	2100	210	ug/l	4	2A16001	01/16/02	01/21/02	8015Bm	D-15
Surrogate: n-Octacosane		110 %	40-1	40	"	"	"	"	
MW-4 (L201016-05) Water Sampled: 01/	03/02 16:35	Received: 01	<u>//03/02 19:</u>	:30					_
Diesel Range Organics (C10-C28)	360	52	ug/l	1	2A16001	01/16/02	01/21/02	8015Bm	D-15
Surrogate: n-Octacosane		121 %	40-1	40	"	"	tr	"	

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J Dublin CA, 94568

Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA Project Manager: Deanna Harding

Reported:

01/22/02 14:30

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8021B - Quality Control Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2010043 - EPA 5030B (P/T)										
Blank (2010043-BLK1)				Prepared	& Analyze	ed: 01/14/0)2			
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l							
Benzene	ND	0.50	**							
Toluene	ND	0.50	H							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	0.50	11							
Methyl tert-butyl ether	ND	5.0	31							
Surrogate: a,a,a-Trifluorotoluene	8.21		#	10.0		82.1	70-130			
LCS (2010043-BS1)				Prepared	& Analyz	ed: 01/14/	02			
Benzene	11.4	0.50	ug/l	10.0		114	70-130			
Toluene	11.1	0.50	н	10.0		111	70-130			
Ethylbenzene	10.9	0.50	п	10.0		109	70-130			
Xylenes (total)	33.2	0.50	п	30.0	<u> </u>	111	70-130			
Surrogate: a,a,a-Trifluorotoluene	8.65		"	10.0		86.5	70-13 0			
LCS (2010043-BS2)				Prepared	& Analyz	ed: 01/14/	02			
Purgeable Hydrocarbons as Gasoline	270	50	ug/l	250	-	108	70-130			
Surrogate: a,a,a-Trifluorotoluene	9.16		п	10.0		91.6	70-130			
Matrix Spike (2010043-MS1)	So	urce: L20101	9-04	Prepared:	01/14/02	Analyzed	1: 01/15/02			
Purgeable Hydrocarbons as Gasoline	264	50	ug/l	250	ND	106	60-140			
Surrogate: a,a,a-Trifluorotoluene	9.73		"	10.0		97.3	70-130			
Matrix Spike Dup (2010043-MSD1)	So	urce: L20101	9-04	Prepared:	01/14/02	Analyzed	1: 01/15/02			
Purgeable Hydrocarbons as Gasoline	261	50	ug/l	250	ND	104	60-140	1.14	25	
Surrogate: a,a,a-Trifluorotoluene	9.23	· · · · · · · · · · · · · · · · · · ·	"	10.0		92.3	70-130			

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Project Manager: Deanna Harding

Reported: 01/22/02 14:30

Total Purgeable Hydrocarbon (C6-C12) by EPA 8015M and BTEX/MTBE by EPA 8021B - Quality Control Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2010044 - EPA 5030B (P/T)										110100
Blank (2010044-BLK1)		<u>"</u>		Prepared	& Analyze	ed: 01/14/0)2			
Purgeable Hydrocarbons as Gasoline	ND	50	ug/l	······································						
Benzene	ND	0.50	**							
Toluene	ND	0.50	11							
Ethylbenzene	ND	0.50	**			•				
Xylenes (total)	ND	0.50	н							
Methyl tert-butyl ether	ND	5.0	п							
Surrogate: a,a,a-Trifluorotoluene	7.63	•	μ	10.0		76.3	70-130			
LCS (2010044-BS1)				Prepared	& Analyze	ed: 01/14/0	02			
Benzene	8.17	0.50	ug/l	10.0		81.7	70-130			
Toluene	7.32	0.50	Ħ	10.0		73.2	70-130			
Ethylbenzene	7.11	0.50	**	10.0		71.1	70-130			
Xylenes (total)	21.0	0.50		30.0		70.0	70-130			
Surrogate: a,a,a-Trifluorotoluene	7.83		п	10.0		78.3	70-130			
LCS (2010044-BS2)		_		Prepared	& Analyze	ed: 01/14/0)2			
Purgeable Hydrocarbons as Gasoline	275	50	ug/l	250		110	70-130			
Surrogate: a,a,a-Trifluorotoluene	7.89		n	10.0		78.9	70-130	· · · · · · · · · · · · · · · · · · ·		
Matrix Spike (2010044-MS1)	Soi	urce: L20101	6-06	Prepared:	01/14/02	Analyzed	: 01/15/02			
Purgeable Hydrocarbons as Gasoline	263	50	ug/l	250	ND	105	60-140			
Surrogate: a,a,a-Trifluorotoluene	9.81	<u> </u>	n	10.0		98.1	70-130			
Matrix Spike Dup (2010044-MSD1)	Soi	rce: L20101	6-06	Prepared:	01/14/02	Analyzed	: 01/15/02			
Purgeable Hydrocarbons as Gasoline	246	50	ug/l	250	ND	98.4	60-140	6.68	25	
Surrogate: a,a,a-Trifluorotoluene	9.17		"	10.0	· -	91.7	70-130	··········		·

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Project Manager: Deanna Harding

Reported:

01/22/02 14:30

Volatile Organic 8 Oxygenated Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2010018 - EPA 5030B [P/T]										
Blank (2010018-BLK1)	 .			Prepared of	& Analyze	ed: 01/07/0)2			
	ND	500	ug/l	Troparea						
Ethanol	ND	1.0	11							
1,2-Dibromoethane 1,2-Dichloroethane	ND	1.0	11							
Di-isopropyl ether	ND	1.0	ш							
Ethyl tert-butyl ether	ND	1.0	"							
Methyl tert-butyl ether	ND	1.0	n							
Tert-amyl methyl ether	ND	1.0	R				•			
Tert-butyl alcohol	ND	20	**							
Surrogate: 1,2-Dichloroethane-d4	22.7	· ··	n	25.0		90.8	70-130			
Surrogate: 1,2-Diction demane-u+ Surrogate: Toluene-d8	23.1		"	25.0		92.4	70-130			
LCS (2010018-BS1)				Prepared	& Analyz	ed: 01/07/	02			
Methyl tert-butyl ether	49.0	1.0	ug/l	50.0		98.0	70-130			
Surrogate: 1,2-Dichloroethane-d4	23.9		"	25.0		95.6	70-130			
Surrogate: Toluene-d8	23.5		#	25.0		94.0	70-130			
Matrix Spike (2010018-MS1)	So	urce: L20101	14-03	Prepared	& Analyz	ed: 01/07/	02			
Methyl tert-butyl ether	43.0	1.0	ug/l	50.0	1.3	83.4	60-140			
Surrogate: 1,2-Dichloroethane-d4	21.8		"	25.0		87.2	70-130			
Surrogate: Toluene-d8	23.7		"	25.0		94.8	70-130			
Matrix Spike Dup (2010018-MSD1)	Sc	urce: L2010:	14-03	Prepared	& Analyz	zed: 01/07	/02			
Methyl tert-butyl ether	45.9	1.0	ug/l	50.0	1.3	89.2	60-140	6.72	25	
Surrogate: 1,2-Dichloroethane-d4	22.8		"	25.0		91.2	70-130			
Surrogate: Toluene-d8	24.0		"	25.0		96.0	70-130			
Batch 2010020 - EPA 5030B [P/T]		•								
Blank (2010020-BLK1)				Prepared	& Analy:	zed: 01/07	/02			
Ethanol	ND	500	ug/l							
1,2-Dibromoethane	ND	1.0	+1							
1,2-Dichloroethane	ND	1.0	11							
Di-isopropyl ether	ND	1.0	'n							
Ethyl tert-butyl ether	ND	1.0	tt							
Methyl tert-butyl ether	ND	1.0	••							
Tert-amyl methyl ether	ND	1.0	tt.							
Tert-butyl alcohol	ND	20	"							
Surrogate: 1,2-Dichloroethane-d4	9.78		"	10.0		97.8	70-130			

Sequoia Analytical - San Carlos

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin CA, 94568

Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Project Manager: Deanna Harding

Reported: 01/22/02 14:30

Volatile Organic 8 Oxygenated Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - San Carlos

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2010020 - EPA 5030B [P/T]										
Blank (2010020-BLK1)				Prepared	& Analyze	d: 01/07/	02			-
Surrogate: Toluene-d8	10.1		ug/l	10.0		101	70-130			
LCS (2010020-BS1)				Prepared	& Analyze	ed: 01/07/0	02			
Methyl tert-butyl ether	44.3	1.0	ug/l	50.0		88.6	70-130			
Surrogate: 1,2-Dichloroethane-d4	9.42		"	10.0		94.2	70-130		· · · · · · · · · · · · · · · · · · ·	
Surrogate: Toluene-d8	9.80		n	10.0		98.0	70-130			
Matrix Spike (2010020-MS1)	Sou	rce: L20101	5-09	Prepared .	& Analyze	ed: 01/07/0	02			
Methyl tert-butyl ether	42.3	1.0	ug/l	50.0	ND	84.6	60-140			
Surrogate: 1,2-Dichloroethane-d4	9.50		11	10.0		95.0	70-130			
Surrogate: Toluene-d8	9.75		п	10.0		97.5	70-130			
Matrix Spike Dup (2010020-MSD1)	Source: L201015-09			Prepared	& Analyze					
Methyl tert-butyl ether	41.0	1.0	ug/l	50.0	ND	82.0	60-140	3.12	25	
Surrogate: 1,2-Dichloroethane-d4	9.47		"	10.0		94.7	70-130			
Surrogate: Toluene-d8	9.77		"	10.0		97.7	70-130			

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Project Manager: Deanna Harding

Reported: 01/22/02 14:30

Diesel Hydrocarbons (C10-C28) by 8015B modified - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2A14011 - EPA 3510B										
Blank (2A14011-BLK1)				Prepared	& Analyz	ed: 01/14/0	02			
Diesel Range Organics (C10-C28)	ND	50	ug/i							
Surrogate: n-Octacosane	47.7		"	50.0		95.4	50-150			
LCS (2A14011-BS1)				Prepared	& Analyz	ed: 01/14/0	02			
Diesel Range Organics (C10-C28)	544	50	ug/l	500		109	60-140			
Surrogate: n-Octacosane	49.7		"	50.0		99.4	50-150			
LCS Dup (2A14011-BSD1)		··		Prepared	& Analyz	ed: 01/14/	02			
Diesel Range Organics (C10-C28)	534	50	ug/l	500		107	60-140	1.86	50	
Surrogate: n-Octacosane	44.4		"	50.0		88.8	50-150			

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J

Dublin CA, 94568

Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Project Manager: Deanna Harding

Reported:

01/22/02 14:30

Diesel Hydrocarbons (C10-C28) with Silica Gel Cleanup by 8015B modified - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2A16001 - EPA 3510B										
Blank (2A16001-BLK1)				Prepared:	01/16/02	Analyzed	: 01/20/02		· · · · · ·	
Diesel Range Organics (C10-C28)	ND	50	ug/l							
Surrogate: n-Octacosane	45.1		"	50.0		90.2	40-140			
LCS (2A16001-BS1)				Prepared:	01/16/02	Analyzed	: 01/20/02			
Diesel Range Organics (C10-C28)	657	50	ug/l	500		131	40-140			
Surrogate: n-Octacosane	61.4		"	50.0		123	40-140	· · · · · · · · · · · · · · · · · · ·		
LCS Dup (2A16001-BSD1)				Prepared:	01/16/02	Analyzed	: 01/20/02			
Diesel Range Organics (C10-C28)	594	50	ug/l	500		119	40-140	10.1	50	
Surrogate: n-Octacosane	55.4		n	50.0		111	40-140	· · · ·		

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite J Dublin CA, 94568 Project: Tosco(1)

Project Number: Unocal SS#7176, Dublin, CA

Reported: 01/22/02 14:30

Project Manager: Deanna Harding

Notes and Definitions

D-15 Chromatogram Pattern: Unidentified Hydrocarbons C10-C28

HT-08 EPA 8015B recommends a 7 day holding time. However, according to the 14 day holding time referenced in the California LUFT

manual, the results are valid and useful for their intended purpose.

P-02 Chromatogram Pattern: Weathered Gasoline C6-C12

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference