

November 14, 1994

Alameda County Health Care Services 1131 Harbor Bay Parkway Alameda, California 94501

Unocal Service Station #6419 RE: 6401 Dublin Boulevard Dublin, California

Per the request of the Unocal Corporation Project Manager, Mr. Edward C. Ralston, enclosed please find our report (MPDS-UN6419-01) dated September 23, 1994 for the above referenced site.

Should you have any questions regarding the reporting of data, please feel free to call our office at (510) 602-5120. Any other questions may be directed to the Project Manager at (510) 277-2311.

Sincerely,

MPDS Services, Inc.

Marrel F. Crider

/jfc

Enclosure

Mr. Edward C. Ralston

Need to put another MW further DG from MW.) Need to do monthly BW elevation

MPDS-UN6419-01 September 23, 1994

Unocal Corporation 2000 Crow Canyon Place, Suite 400 P.O. Box 5155 San Ramon, California 94583

Attention: Mr. Edward C. Ralston

RE: Quarterly Data Report

Unocal Service Station #6419

6401 Dublin Boulevard Dublin, California

Dear Mr. Ralston:

This data report presents the results of the most recent quarter of monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

RECENT FIELD ACTIVITIES

The monitoring wells that were monitored and sampled during this quarter are indicated in Table 1. Prior to sampling, the wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations are summarized in Table 1. The ground water flow direction during the most recent quarter is shown on the attached Figure 1.

Ground water samples were collected on August 25, 1994. Prior to sampling, the wells were each purged of between 7 and 8 gallons of water. During purging operations, the field parameters pH, temperature, and electrical conductivity were recorded and are presented in Table 2. Once the field parameters were observed to stabilize, and where possible, a minimum of approximately four casing volumes had been removed from each well, samples were then collected using a clean Teflon bailer. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory. MPDS Services, Inc. transported the purged ground water to the Unocal Refinery located in Rodeo, California, for treatment and discharge to San Pablo Bay under NPDES permit.

ANALYTICAL RESULTS

The ground water samples were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples

MPDS-UN6419-01 September 23, 1994 Page 2

collected to date are summarized in Tables 3 and 4. The concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline, TPH as diesel, and benzene detected in the ground water samples collected this quarter are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation are attached to this report.

LIMITATIONS

Environmental changes, either naturally-occurring or artificially-induced, may cause changes in ground water levels and flow paths, thereby changing the extent and concentration of any contaminants.

DISTRIBUTION

A copy of this report should be sent to the Alameda County Health Care Services.

If you have any questions regarding this report, please do not hesitate to call at (510) 602-5120.

Sincerely,

MPDS Services, Inc.

Talin Kaloustian Staff Engineer

Joel G. Greger, C.E.G. Senior Engineering Geologist

License No. EG 1633 Exp. Date 8/31/96

/bp

Attachments: Tables 1 through 4

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation

cc: Mr. Timothy R. Ross, Kaprealian Engineering, Inc.

TABLE 1
SUMMARY OF MONITORING DATA

Well #	Ground Water Elevation (feet)	Depth to Water <u>(feet)</u> ◆		Product Thickness (feet)	<u>Sheen</u>	Water Purged (gallons)
	(Mon	itored and S	ampled on Aug	gust 25, 19	94)	
MW1	321.88	8.57	19.34	0	No	8
MW2	321.99	8.41	19.81	0	No	8
ММЗ	321.91	9.20	19.02	0	No	7
	(Mor	nitored and S	Sampled on Ma	rch 14, 19	94)	
MW1	323.18	7.27	19.38	0	No	10
MW2	323.17	7.23	19.85	0	No	10
KWM3	323.18	7.93	19.06	0	No	10

Well #	Well Casing Elevation (feet)*
MW1	330.45
MW2	330.40
MW3	331.11

- The depth to water level and total well depth measurements were taken from the top of the well casings.
- * The elevations of the top of the well casings have been surveyed relative to Mean Sea Level, per the benchmark on the northwest corner of Dougherty Road and Sierra Way (elevation = 331.728 feet MSL).

Note: Monitoring data prior to August 25, 1994, were provided by Kaprealian Engineering, Inc.

TABLE 2

RECORD OF THE TEMPERATURE, CONDUCTIVITY, AND PH VALUES
IN THE MONITORING WELLS DURING PURGING AND PRIOR TO SAMPLING

(Measured on August 25, 1994)

<u>Well #</u>	Gallons per Casing Volume	<u>Time</u>	Gallons <u>Purged</u>	Casing Volumes <u>Purged</u>	Temper- ature (°F)	Conductivity ([µmhos/cm] x1000)	<u>pH</u>
MW1	1.83	11:40 am	0	0	79.7	3.45	7.64
			2	1.09	76.1	2.94	7.45
			4	2.19	75.9	2.84	7.30
			6	3.28	74.7	2.87	7.27
		11:45 am	. 8	4.37	73.9	2.87	7.22
MW2	1.94	10:00 am	0	0	66.4	4.50	7.19
			2	1.03	70.5	4.93	7.06
			4	2.06	72.6	5.22	7.04
			6	3.09	72.8	5.48	7.03
		10:05 am	ı 8	4.12	72.7	5.52	7.01
MW3	1.67	10:40 am	ı 0	0	78.4	4.91	7.28
			1.5	0.90	75.2	4.02	7.25
			3	1.80	74.3	3.94	7.20
			4.5	2.69	73.5	3.86	7.11
		10:47 am	n 7	4.19	73.2	3.82	7.09

TABLE 3
SUMMARY OF LABORATORY ANALYSES
WATER

<u>Date</u>	<u>Well #</u>	TPH as <u>Diesel</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>benzene</u>	Xylenes
8/25/94	MW1 MW2 MW3	910 ♦ ♦ 	9,200* ND 130**	48 ND ND	ND ND ND	540 ND ND	ND ND
3/14/94	MW1 MW2 MW3	810 	1,800* ND 150**	17 ND ND	ND 2.8 ND	ND 1.1 ND	ND 8.0 ND

- Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.
- ♦♦ Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be diesel.
- * Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.
- ** Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.
- ND = Non-detectable.
- -- Indicates analysis was not performed.

Results are in micrograms per liter ($\mu g/L$), unless otherwise indicated.

Note: Laboratory analyses data prior to August 25, 1994, were provided by Kaprealian Engineering, Inc.

TABLE 4

SUMMARY OF LABORATORY ANALYSES WATER

<u>Date</u>	Well #	<u>Cadmium</u>	Chromium	<u>Lead</u>		Zinc
8/25/94	MW1	ND	ND	0.024	ND	ND
3/14/94	MW1	ND	0.012	NĎ	0.030	0.039

ND = Non-detectable.

Results are in micrograms per liter (mg/L), unless otherwise indicated.

Note: Laboratory analyses data prior to August 25, 1994, were provided by Kaprealian Engineering, Inc.

Base modified from 7.5 minute U.S.G.S. Dublin Quadrangle (photorevised 1980)

UNOCAL SERVICE STATION #6419 6401 DUBLIN BOULEVARD DUBLIN, CALIFORNIA LOCATION MAP

LEGEND

Monitoring well

() Ground water elevation in feet above Mean Sea Level
Direction of ground water flow with approximate hydraulic gradient

GROUND WATER FLOW DIRECTION MAP FOR THE AUGUST 25, 1994 MONITORING EVENT

UNOCAL SERVICE STATION #6419 6401 DUBLIN BOULEVARD DUBLIN, CALIFORNIA FIGURE

1

DUBLIN BOULEVARD

LEGEND

- → Monitoring well
- () Concentration of TPH as gasoline in $\mu g/L$
- [] Concentration of benzene in µg/L
- < > Concentration of TPH as diesel in µg/L
- ND = Non-detectable, NA = Not analyzed
 - * The lab reported that the hydrocarbons detected did not appear to be gasoline.
 - ** The lab reported that the hydrocarbons detected did not appear to be diesel.

PETROLEUM HYDROCARBON CONCENTRATIONS IN GROUND WATER ON AUGUST 25, 1994

UNOCAL SERVICE STATION #6419 6401 DUBLIN BOULEVARD DUBLIN, CALIFORNIA **FIGURE**

2

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 400 Concord, CA 94520

Client Project ID: Matrix Descript:

Unocal #6419, 6401 Dublin Blvd, Dublin

Sampled:

Aug 25, 1994 Aug 25, 1994

Attention: Avo Avedessian

Analysis Method:

EPA 5030/8015/8020

Received: Reported:

Sep 8, 1994

First Sample #:

408-1650

Water

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Sample Number	Sample Description	Purgeable Hydrocarbons μg/L	Benzene μg/L	Toluene μg/L	Ethyl Benzene μg/L	Total Xylenes μg/L
408-1650	MW1	9,200^	48	ND	540	ND
408-1651	MW2	ND	ND	ND	ND	ND
408-1652	MW3	130*	ND	ND	ND	ND

[^] Hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.

Detection Limits:	50	0.50	0.50	0.50	0.50	

Total Purgeable Petroleum Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as ND were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

^{*} Hydrocarbons detected did not appear to be gasoline.

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 400

Client Project ID: Unocal #6419, 6401 Dublin Blvd, Dublin Sampled:

Aug 25, 1994

Concord, CA 94520 Attention: Avo Avedessian Matrix Descript: Analysis Method: Water EPA 5030/8015/8020 Received: Reported: Aug 25, 1994

First Sample #:

408-1650

Sep 8, 1994

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Sample Number	Sample Description	Chromatogram Pattern	DL Mult. Factor	Date Analyzed	Instrument ID	Surrogate Recovery, % QC Limits: 70-130
408-1650	MW1	Gasoline and Discrete Peak [*]	100	9/1/94	HP-4	94
408-1651	MW2		1.0	8/31/94	HP-4	91
408-1652	MW3	Discrete Peak*	1.0	8/31/94	HP-4	97

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp **Project Manager** Please Note:

* "Discrete Peak" refers to an unidentified peak in the MTBE range.

680 Chesapeake Drive 1900 Bates Avenue, Suite L Concord, CA 94520 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 400

Client Project ID:

Unocal #6419, 6401 Dublin Blvd, Dublin

ivd, Dublin **Sampled**:

Aug 25, 1994

Concord, CA 94520 Attention: Avo Avedessian Sample Matrix: Analysis Method:

Water EPA 3510/3520/8015 Received: Reported: Aug 25, 1994

First Sample #:

Sep 8, 1994

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

408-1650

Analyte	Reporting Limit μg/L	Sample I.D. 408-1650 MW1*	
Extractable Hydrocarbons	50	910	
Chromatogram Pa	ttern:	Unidentified	

Quality Control Data

Report Limit Multiplication Factor:

1.0

Hydrocarbons <C14

Date Extracted:

8/30/94

Date Analyzed:

9/2/94

Instrument Identification:

HP-3A

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Please Note:

* This sample does not appear to contain diesel. "Unidentified Hydrocarbons < C14" are probably gasoline.

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 400 Concord, CA 94520

Attention: Avo Avedessian

Sample Descript:

Client Project ID: Unocal #6419, 6401 Dublin Blvd, Dublin Water, MW1

Sampled: Received: Aug 25, 1994 Aug 25, 1994

Analyzed:

Sep 1, 1994

Lab Number:

408-1650

Reported: Sep 8, 1994

LABORATORY ANALYSIS

Analyte	Detection Limit mg/L	Sample Results mg/L
CadmiumChromium	0.010 0.010	 N.D. N.D.
Lead	0.020	 0.024
Nickel	0.020	 N.D.
Zinc	0.020	 N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp **Project Manager**

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedessian Client Project ID:

Unocal #6419, 6401 Dublin Blvd, Dublin

Matrix: Liquid

QC Sample Group: 4081650-652

Reported:

Sep 9, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	A. Tuzon	A. Tuzon	A. Tuzon	A. Tuzon	
MS/MSD					
Batch#:	4081651	4081651	4081651	4081651	
Date Prepared:	8/31/94	8/31/94	8/31/94	8/31/94	
Date Analyzed:	8/31/94	8/31/94	8/31/94	8/31/94	
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	
Matrix Spike					
% Recovery:	70	85	85	90	
Matrix Spike					
Duplicate %					
Recovery:	75	90	95	97	
Relative %					
Difference:	6.9	5.6	11	7.7	

2LC\$083194	2LCS083194	2LCS083194	2LCS083194
8/31/94	8/31/94	8/31/94	8/31/94
8/31/94	8/31/94	8/31/94	8/31/94
HP-4	HP-4	HP-4	HP-4
78	90	93	96
71-133	72-128	72-130	71-120
•	8/31/94 8/31/94 HP-4 78	8/31/94 8/31/94 8/31/94 8/31/94 HP-4 HP-4	8/31/94 8/31/94 8/31/94 8/31/94 8/31/94 8/31/94 HP-4 HP-4 HP-4

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedessian Client Project ID: Unocal #6419, 6401 Dublin Blvd, Dublin

Matrix: Liquid

QC Sample Group: 4081650-652

Reported:

Sep 9, 1994

QUALITY CONTROL DATA REPORT

Benzene	Toluene	Ethyl	Xylenes	Diesel	
	•	Benzene			
EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015 Mod	
J. Fontecha	J. Fontecha	J. Fontecha	J. Fontecha	K.V.S.	
4081642	4081642	4081642	4081642	BLK083094	
9/1/94	9/1/94	9/1/94	9/1/94	8/30/94	
			• •		•
HP-4	HP-4	HP-4	HP-4	HP-3A	
20 μg/L	20 μg/L	20 μg/L	60 µg/L	300 μg/L	
80	95	95	102	94	
85	95	95	102	96	
6.1	0.0	0.0	0.0	2.1	
2LC\$090194	2LCS090194	2LC\$090194	2LCS090194	BLK083094	
9/1/94	9/1/94	9/1/94	9/1/94	8/30/94	
9/1/94	9/1/94	9/1/94	9/1/94	9/1/94	
HP-4	HP-4	HP-4	HP-4	HP-3A	
80	95	100	102	94	
	EPA 8020 J. Fontecha 4081642 9/1/94 9/1/94 HP-4 20 μg/L 80 85 6.1 2LCS090194 9/1/94 9/1/94	EPA 8020 J. Fontecha 4081642 4081642 9/1/94 9/1/94 9/1/94 HP-4 20 μg/L 80 95 6.1 0.0 2LCS090194 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94	EPA 8020 EPA 8020 EPA 8020 J. Fontecha J. Fontecha 4081642 4081642 4081642 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 HP-4 HP-4 HP-4 20 μg/L 20 μg/L 20 μg/L 80 95 95 6.1 0.0 0.0 2LCS090194 2LCS090194 2LCS090194 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94	EPA 8020 EPA 8020 EPA 8020 EPA 8020 J. Fontecha J. Fontecha J. Fontecha J. Fontecha 4081642 4081642 4081642 4081642 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 10.0 95 95 102 85 95 102 102 10.0 0.0 0.0 0.0 10.0 10.0 10.0	EPA 8020 J. Fontecha EPA 8020 J. Fontecha EPA 8020 J. Fontecha EPA 8020 J. Fontecha EPA 8020 K.V.S. EPA 8020 K.V.S. 4081642 4081642 4081642 4081642 BLK083094 9/1/94 9/1/94 9/1/94 9/1/94 8/30/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 HP-4 HP-4 HP-4 HP-3A 400 μg/L 300 μg/L 80 95 95 102 94 85 95 95 102 94 85 95 95 102 96 6.1 0.0 0.0 0.0 2.1 2LCS090194 2LCS090194 2LCS090194 2LCS090194 BLK083094 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94 9/1/94

The

SEQUOIA ANALYTICAL, #1271

71-133

Signature on File

Control Limits:

Alan B. Kemp Project Manager

Please Note:

72-128

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

28-122

71-120

72-130

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 400 Concord, CA 94520

Client Project ID:

Unocal #6419, 6401 Dublin Blvd, Dublin

Matrix: Water

Attention: Avo Avedessian QC Sample Group: 408-1650

Reported:

Sep 9, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Cadmium	Chromium	Lead	Nickel	Zinc	
Method:	EPA 200.7					
Analyst:	J. Dinsay					
MS/MSD						
Batch#:	4081650	4081650	4081650	4081650	4081650	
ate Prepared:	9/1/94	9/1/94	9/1/94	9/1/94	9/1/94	
ate Analyzed:	9/1/94	9/1/94	9/1/94	9/1/94	9/1/94	
rument I.D.#:	Liberty-100	Liberty-100	Liberty-100	Liberty-100	Liberty-100	
onc. Spiked:	1.0 mg/L					
Matrix Spike						
% Recovery:	100	114	92	100	100	
Matrix Spike						
Duplicate %						
Recovery:	102	97	91	91	97	
Relative %	•					
Difference:	2.0	16	1.1	9.4	3.1	
CS Batch#:	BLK090194	BLK090194	BLK090194	BLK090194	BLK090194	
ate Prepared:	9/1/94	9/1/94	9/1/94	9/1/94	9/1/94	
ate Analyzed:	9/1/94	9/1/94	9/1/94	9/1/94	9/1/94	
rument I.D.#:	Liberty-100	Liberty-100	Liberty-100	Liberty-100	Liberty-100	
LCS %						
Recovery:	104	102	98	96	99	
% Recovery						

The

SEQUOIA ANALYTICAL, #1271

75-125

Signature on File

Control Limits:

Alan B. Kemp Project Manager Please Note:

75-125

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

75-125

75-125

75-125

M P D S Services, Inc.

2401 Stanwell Drive, Suite 400, Concord, CA 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

CHAIN OF CUSTODY

RAY MARANGOSIAN WITNESSING AGENCY			UNOCAL S/S # <u>6419</u> CITY: <u>BUBLIN</u>					ANALYSES REQUESTED								TURN AROUND TIME:
			UNOCAL S/S # <u>64/9</u> CITY: <u>DUBLIN</u> ADDRESS: <u>6401 DUBLIN</u> BUI				TPH-GAS BTEX	TPH-DIESEL	9	8010	5 Metal				REGULAR	
SAMPLE ID NO.	DATE	TIME	WATER	GRAB	СОМР	NO. OF CONT.	SAMPLING LOCATION	TP# BTE	ТРН	TOG	80	S				REMARKS
MW1	8/2-/94	1200	火	٧'		4	well	×	人			¥				4081650 A
	///	10.17	R	K		2	- 4	х_								4081651
MW Z MW 3	47	10:59	~	<i>~</i>		2	4	×								4081652
		7														
					<u>.</u>										- · · · - · - · · ·	
											*				· · <u>-</u>	
	···															
					,,	· · · · · · · · · · · · · · · · · · ·									 -	
							. <i>'</i>					<u></u>			· · · · · · · · · · · · · · · · · ·	÷.
							. :									
Pay Marguerrian 8/2/79			ие 74	RECEIV	THE FOLLOWING MUST BE COMPLETED BY THE LABORATORY ACCEPTING SAMPLES FOR ANALYSES: 1. HAVE ALL SAMPLES RECEIVED FOR ANALYSIS BEEN STORED ON ICE? 2. WILL SAMPLES REMAIN REFRIGERATED UNTIL ANALYZED?											
(SIGNATURE)			8/21/34 0740			110%										
ISIGNATURE)		8-29 (SIGNATURE)			3. DID ANY SAMPLES RECEIVED FOR ANALYSIS HAVE HEAD SPACE? /↑ -											
(SIGNATURE)				.		(SIGNATURE)			4. WERE SAMPLES IN APPROPRIATE CONTAINERS AND PROPERLY PACKAGED?							
ISIGNATURE) 725 194 USIGNATURE)						SIGNATURE: TITLE: DATE:										

Dead NA 1 AP. Apolat a son