TRANSMITTAL

TO: Ms. Juliet Shin

Alameda County Health Services Agency

Division of Environmental Protection

1131 Harbor Bay Parkway, 2nd Floor

Alameda, California 94502

CC: David B. DeWitt, Tosco Barbara Bee, Property Owner DATE:

February 25, 1999

PROJ. #:

140165.05

SUBJECT:

RBCA Evaluation

Unocal Station No. 1871

Oakland, California

FROM:

David J. Vossler Project Manager Gettler-Ryan Inc. 7100 Redwood Blvd., Suite 104 Novato, California 94945

WE ARE SENDING YOU:

COPIES	DATED	DESCRIPTION
1	February 25, 1999	RBCA Evaluation
1	February 25, 1999	Site Status Report

THESE ARE TRANSMITTED as checked below:

[X]	For review and comment	[] Approved as submitted	[] Resubmit_	_copies for approva

[X] As requested [] Approved as noted [] Submit _ copies for distribution

[X] For Your Files

COMMENTS:

As requested, we are forwarding you a copy of RBCA Evaluation for the Tosco SS No. 1871 located at 96 MacAurthur Blvd, in Oakland California. This evaluation is based on the current site conditions and subsurface data collected to date. Also attached is a Site Status Report on the progress of the proposed off-site investigation. If you have any questions, please call me at (415) 893-1515.

February 25, 1999

Ms. Juliet Shin Alameda County Health Agency Division of Environmental Protections 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Re: Status Report for Former Tosco/76 Products Service Station No. 1871 96 MacArthur Boulevard, Oakland.

Dear Ms. Shin:

This letter is written to update you on the status of planned environmental work to be conducted at the site. In May 1998, all underground tanks and surface improvements were removed from the site. Additional contaminated soil was removed to the limits feasible. Four monitor wells (MW-2 through MW-5) were destroyed for the purposes of anticipated redevelopment of the property, but these wells will be replaced by three ACHCS approved wells in the City of Oakland right-of-way along MacArthur Boulevard. These wells are part of the approved Work Plan, which call for additional off-site wells/geoprobe locations as well as a Risk-Based Corrective Action (RBCA) evaluation of the site.

At the present time, Tosco, through its consultant, Gettler-Ryan, Inc. (GR) is in the process of completing the off-site access process and obtaining encroachment permits for the offsite work. At your suggestion, we propose to complete the tasks in phases in the following manner:

- The initial RBCA evaluation dated February 25, 1999 has been completed and submitted for your review. This evaluation includes several "scenarios" intended to test the sensitivity of input parameters.
- Installation of the replacement wells and geoprobe test borings in those areas under the jurisdiction of the City of Oakland. At present, the encroachment permit applications have been filed and the fees paid. We are in the process of obtaining the additional required information (Owner's permission, insurance and legal description of property) for the City of Oakland. Tosco requested the required information from Ms. Barbara Bee, which her attorney completed and sent to the Office of Public Works. We anticipate securing the remaining required information within a month, to be followed by the actual well installation and summary report. Target completion date: May 30, 1999.

Installation of GeoProbe installation in areas administered by California Department
of Transportation (CalTrans). Although GR received information that our application
has been accepted, we have not received a permit. We intend to complete this process
and install the necessary wells, Geoprobes and prepare reports within three months of
obtaining the necessary encroachment permits. Target completion date: May 30,
1999.

In the event these off-site access processes take longer than planned, we will request your help in expediting the necessary permits. If you have any questions or need further details on the site status, please call me at (415) 893-1515.

Sincerely,

Gettler-Ryan Inc.

David J. Vossler Project Manager

Cc: Mr. David B. DeWitt, Tosco marketing Company, San Ramon, Ca.

Ms. Barbara Bee, Property Owner, Piedmont, California

415-893-1515

No. 5577

FOF CALL

RISK-BASED CORRECTIVE ACTION EVALUATION

at
Former Tosco 76 Branded Facility No. 1871
96 MacArthur Boulevard
Oakland, California

Report No. 140165.05-01

Prepared for:

Mr. David B. DeWitt Tosco Marketing Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

Prepared by:

Gettler-Ryan Inc.
7100 Redwood Boulevard, Suite 104
Novato, California 94945

David J. Vossler

Project Manager

Stephen J. Carter Senior Geologist

R.G. No. 5577

February 25, 1999

(Ship)

TABLE OF CONTENTS

INTRODUCTION	1
SITE DESCRIPTION	1
2.3 Previous Environmental Work	2
RISK-BASED CORRECTIVE ACTION (RBCA)	5
3.1 Site Parameters	5
3.2 Results of RBCA Analyses	6
DISCUSSION AND CONCLUSIONS	7
REFERENCES	7
	INTRODUCTION SITE DESCRIPTION 2.1 General 2.2 Geology and Hydrogeology 2.3 Previous Environmental Work RISK-BASED CORRECTIVE ACTION (RBCA) 3.1 Site Parameters 3.2 Results of RBCA Analyses DISCUSSION AND CONCLUSIONS REFERENCES

FIGURES

Figure 1. Vicinity Map Figure 2. Site Plan

APPENDICES

Appendix A: UST Soil Sample Location Maps and Analytical Results

Appendix B: Boring and Well Soil Sample Analytical Results and Location Maps

Appendix C: Historical Groundwater Data and Potentiometric Map

Appendix D: RBCA Input and Output Data Files

RISK-BASED CORRECTIVE ACTION EVALUATION

at
Former Tosco 76 Branded Facility No. 1871
96 MacArthur Boulevard
Oakland, California

Report No. 140165.05-01

1.0 INTRODUCTION

At the request of Tosco Marketing Company (Tosco), Gettler-Ryan Inc. (GR) is submitting this report to document the results of implementation of the Risk-Based Corrective Action (RBCA) planning process, as described in ASTM E-1739 "Standard Guide for Risk-Based Corrective Action Applied at Petroleum Sites". This RBCA was conducted on the Tosco/76 Branded site located at 96 MacArthur Boulevard, Oakland, California. The purpose of this work was evaluate whether the known petroleum impacted groundwater and soil poses a risk to human health and to complete the required evaluation for the construction of the planned service station by the property owner at the site. Based on Risk-Based Screening Levels (RBSL) as remediation target levels, the implementation of further environmental investigation and/or remediation related to soil and groundwater may be applied. This report describes site conditions and the RBCA model results for the site.

2.0 SITE DESCRIPTION

2.1 General

The subject site (formerly a service station with two gasoline USTs and one waste oil UST) is located on the north corner of the intersection of MacArthur Boulevard and Harrison Street in Oakland, California (Figure 1). The underground and above ground facilities, including the station building and two product dispenser islands, were demolished and removed from the site. The site is currently a vacant lot. Pertinent site features and the existing groundwater monitoring well are shown on Figure 2. The topography in the vicinity of the site is sloping to the west-southwest at an elevation of approximately 100 feet above mean sea level (MSL). The nearest surface water down gradient is Lake Merit located approximately 1 mile south-southwest of the site.

2.2 Geology and Hydrogeology

The site is located on the western flank of the Oakland Hills. This area is underlain by Late Pleistocene age alluvium. These deposits are composed of weakly consolidated slightly weathered poorly

sorted irregularly interbedded clay, silt, sand, and gravel. The northwest-southeast trending Hayward Fault is located approximately 2.3 miles northeast of the site (Helley, 1979).

Based on subsurface investigations at the site (KEI, 1996), the site is underlain by clay to approximately 5 to 7 feet below ground surface (bgs). The clay is underlain by silt, silty sand, and poorly graded fine sand to 16 feet bgs. Clay was encountered beneath these sediments to a total explored depth of 25.5 feet bgs. Groundwater was measured at approximately 10 to 15 feet bgs during the July 1998 groundwater monitoring event (GR, 1998). This shallow groundwater at the site appears to be unconfined. Historical monitoring data indicate the groundwater flow direction has ranged from southwest to south-southwest with an average gradient of 0.03 (Gettler-Ryan Inc. 1998).

2.3 Previous Environmental Work

A dispenser and product piping modification project was performed at the site in May 1992. Four soil samples were collected from beneath the dispensers by Roux Associates (Roux) at depths ranging from 2 to 5 feet bgs. Petroleum hydrocarbon concentrations reported in the samples ranged from not detected to 58 parts per million (ppm) of Total Petroleum Hydrocarbons as Gasoline (TPHg), and not detected to 0.20 ppm of benzene. An additional sample was collected below the south end of the east island at 8 feet bgs. The sample contained 1,700 ppm of TPHg and 3.1 ppm of benzene (KEI, 1996). A sample location map and analytical results are presented in Appendix A.

Three 4-inch diameter on-site groundwater monitoring wells designated MW-1, MW-2, and MW-3 were installed by Roux in October 1992 (Figure 2). The wells were completed to total depths of 24 to 25 feet bgs. Groundwater was encountered at depths of 14 to 15 feet bgs. Soil samples collected from well borings MW-1 and MW-2 were reported as not detected for TPHg and benzene, toluene, ethylbenzene, and xylenes (BTEX). Soil samples collected from MW-3 at depths of 12-13.5 feet bgs and 13.5-15 feet bgs contained 4.2 ppm of TPHg and 0.079 ppm of benzene, and 10 ppm of TPHg and 0.040 ppm of benzene, respectively. Groundwater samples collected from the wells contained petroleum hydrocarbon concentrations ranging from 140 to 260,000 parts per billion (ppb) of TPHg and 2.2 to 2,300 ppb of benzene. Quarterly groundwater monitoring and sampling was initiated upon receipt of the initial groundwater sample results. In February 1996, Alameda County Health Care Services Agency (ACHCSA) approved Unocal's request to reduce the groundwater monitoring and sampling program from quarterly to semiannually (KEI, 1996). Analytical results and a well boring location map from this investigation is presented in Appendix B

A 280-gallon single-wall steel waste oil UST was replaced with a 550-gallon double-wall fiberglass UST in August 1994. One soil sample was collected from below the UST at a depth of 9 feet bgs by KEI. The excavation was deepened to 14 feet bgs and another soil sample was collected due to

Lanes moderal

ale 30

the obvious presence of petroleum hydrocarbons in the soil. Four sidewall soil samples were also collected at 9 feet bgs.

The bottom sample collected at 9 feet bgs contained 46 ppm of TPHg, 0.12 ppm of benzene, 97 ppm of Total Petroleum Hydrocarbons as Diesel (TPHd), 1,400 ppm of Oil and Grease (O&G), and elevated concentrations of various semi-volatile organic (EPA Method 8270) compounds. One sidewall sample contained 960 ppm of TPHg, 2.2 ppm of benzene, 1,400 ppm of TPHg, 17,000 ppm of TOG, and elevated concentrations of semi-volatile compounds. The three other sidewall samples contained O&G concentrations ranging from 160 to 2,400 ppm. The soil sample collected at the bottom of the excavation at 14 feet bgs was reported as not detected for O&G and semi-volatile compounds (KEI, 1994). A sample location map and analytical results are presented in Appendix A.

In March 1996, KEI drilled two soil borings (EB-1, EB-2) and installation of two additional monitoring wells (MW-4, MW-5) at the site (Figure 2). Soil borings EB-1 and EB-2 were advanced to depths of 13.5 and 14 feet bgs, respectively. Wells MW-4 and MW-5 were installed to a total depth of 20 feet bgs. Soil samples collected from boring EB-1 were reported as not detected for TPHg, BTEX, TPHd, O&G, semi-volatile compounds, and volatile organic (EPA Method 8010) compounds, except for 6.6 ppb of 1,1-dichloroethene detected in the sample collected at 5 feet bgs. The soil sample collected at 5 feet bgs in boring EB-2 was reported as not detected for all analytes. The soil sample collected at 10 feet bgs in boring EB-2 contained 5.7 ppm of TPHg, 73 ppm of TPHd, 540 ppm of O&G, and elevated concentrations of semi-volatile compounds, and was reported as not detected for benzene and volatile organic compounds. The soil sample collected at 5 feet bgs from well boring MW-4 was reported as not detected for TPHg, benzene, O&G, and semi-volatile compounds and contained 1.1 ppm of TPHd and elevated concentrations of volatile organic compounds. The soil sample collected at 9.5 feet bgs from well boring MW-4 contained 24 ppm of TPHg, 350 ppm of TPHd, 1,000 ppm of O&G, and elevated concentrations of semi-volatile and volatile organic compounds, but was reported as not detected for benzene. The soil samples collected from well boring MW-5 were reported as not detected for TPHg and BTEX, except for 0.023 ppm of benzene detected in the sample collected at 9 feet bgs (KEI, 1996). Analytical results and a boring location map is presented in Appendix B.

Grab groundwater samples were collected from both soil borings. Groundwater sample EB-1 was reported as not detected for all analytes except for 1.3 ppb xylenes and 0.54 ppb 1,1-dichloroethane. Groundwater EB-2 was reported as not detected for O&G and volatile organic compounds, but contained 1,400 ppb of TPHg, 690 ppb of benzene, 410 ppb of TPHd, and elevated concentrations of semi-volatile compounds. A groundwater sample collected from well MW-4 was reported as not detected for TPHg and contained 630 ppb of benzene, 110 ppb of TPHd and 18,000 ppb of methyl tertiary butyl ether (MTBE). A groundwater sample collected from MW-5 contained 31,000 ppb of TPHg, 5,500 ppb of benzene, and 66,000 ppb MTBE (KEI, 1996). Analytical results are presented in Appendix C.

56-1 56-2 56-2 all survey

In May 1998, all underground and aboveground equipment and facilities were removed by John's Excavating of Santa Rosa, California. Removed from the site were two 12,000-gallon double-wall steel gasoline USTs, one 550-gallon double-wall steel waste oil UST, two hydraulic lifts, two dispenser islands and related single-wall product piping, and one service station building. GR personnel performed soil and groundwater sampling activities in conjunction with the station demolition.

Soil samples were collected beneath or near the USTs, hydraulic lifts, and dispenser islands/product piping. Four soil samples were collected from the sidewalls of the gasoline UST excavation at a depth of 11.5 feet bgs. Petroleum hydrocarbon concentrations in the samples ranged between not detected to 2,000 ppm of TPHg, not detected to 9.7 ppm of benzene, and 1.9 to 16 ppm of MTBE. The areas south and west of the excavation were over excavated to groundwater and two confirmation samples were collected at 11 feet bgs. Three samples contained petroleum hydrocarbon concentrations of not detected and 5.0 ppm of TPHg, 0.049 and 0.080 ppm of benzene, and 6.6 and 12 ppm of MTBE.

One soil sample was collected beneath each of the dispenser islands at a depth of 4 feet bgs. The sample collected beneath the north dispenser island was reported as not detected for TPHg and BTEX and contained 0.74 ppm of MTBE. The sample collected from beneath the south dispenser island was reported as not detected for benzene and MTBE and contained 15 ppm of TPHg. One soil sample was collected from the bottom of the waste oil UST excavation at a depth of 11 feet bgs. The sample was reported as not detected for all analytes except for 140 ppm of O&G. One soil sample was collected beneath each of the hydraulic lifts at a depth of 8 feet bgs. Both of these samples were reported as not detected for Total Petroleum Hydrocarbons as hydraulic fluid (TPHhf). A sample location map and analytical results are presented in Appendix A.

Grab groundwater samples were collected from the gasoline and waste oil UST excavations. The sample collected from the gasoline UST excavation was reported as not detected for benzene and MTBE and contained 620,000 ppb of TPHg. The groundwater sample collected from the waste oil UST excavation was reported as not detected for BTEX, MTBE, O&G and semi-volatile compounds, and contained 90 ppb of TPHg, 890 ppb of TPHd, and elevated concentrations of volatile organic compounds.

A total of 1,252.78 tons of soil was removed from the site during demolition activities and transported to Forward Landfill for disposal (GR, 1998A).

Groundwater monitoring and sampling has been performed at the site since January 1993. Depth to groundwater has ranged from 7.70 to 15.50 feet from top of casing. Groundwater flow direction has ranged from southwest to south-southwest with an average hydraulic gradient of 0.03.

(A)

Mysonson

Petroleum hydrocarbon concentrations have ranged from not detected to 260,000 ppb of TPHg, not detected to 8,700 ppb of benzene, and 270 to 120,000 ppb of MTBE (GR, 1998). Historical groundwater data is presented in Appendix C.

The tops of casings on monitoring wells MW-2 through MW-5 were damaged during site demolition activities. On September 14, 1998, these wells were drilled out and the borehole backfilled with neat cement to grade. In addition, one soil boring (EB-3) was advanced on-site to a total depth of 16.5 feet bgs (Figure 2). Groundwater was encountered at approximately 10.5 feet bgs. Soil and groundwater samples were collected for use in this RBCA analysis. Documentation of the well destruction will be included with the findings of the off-site subsurface investigation described in the GR Work Plan dated October 30, 1998.

3.0 RISK-BASED CORRECTIVE ACTION (RBCA)

Tier 1 of the RBCA process involves comparison of the site constituent concentrations to generic Risk-Based Screening Levels (RBSL) to evaluate whether further evaluation and/or active remediation is warranted. RBSL values are derived from standard exposure equations and reasonable maximum exposure (RME) estimates per U.S. EPA guidelines. RBSL concentrations are designed to be protective of human health even if exposure occurs directly within the on-site area of affective soil or groundwater and inherently provide conservative estimates of potential threats to human health and the environment. According to the RBCA process, if Tier 1 limits are not exceeded, the user may proceed directly to compliance monitoring and/or no further action. However, if these generic screening levels are exceeded, the affected media may be addressed by 1) remediating to the generic Tier 1 limits, if practicable, 2) conducting Tier 2 evaluation to develop site-specific remediation goals, or 3) implement an interim action to abate risk "hot spots".

3.1 Site Parameters

Complete exposure pathways are those that could pose a reasonable potential for contaminant contact with a human or environmental receptor. Under Tier 1 RBCA, only on-site receptors apply. Based on the current and future site usage (a petroleum fuel dispensing facility), a commercial type of exposure pathway was evaluated for the site. There are no water supply wells within the dissolved groundwater plume, therefore, groundwater ingestion or subsurface soil leaching to groundwater (ingestion) exposure pathways are not complete. Surface soils (<3 feet bgs) at the site are not impacted, therefore, are not a risk factor. The only complete exposure pathways identified for the subject site are volatilization to outdoor and indoor air from subsurface soils (>3 feet bgs) and from groundwater, and these exposure pathways were evaluated during this RBCA analysis.

Site specific physical data was used in this RBCA evaluation. These parameters included soil pH (6.93), contaminated soil area (400 ft²), depth to top of affected soil (9 ft), length of affected soil

5

parallel to wind (20ft), length of affected soil parallel to groundwater (20 ft), and most conservative values for groundwater mixing zone depth (11.25 ft), hydraulic conductivity (0.00174 ft/day), gradient (0.03), vadose zone thickness (11.086 ft), depth to groundwater (11.25 ft), and thickness of affected subsurface soils (6 ft). Where appropriate and consistent with site conditions, default values were used. Maximum contaminant constituent concentrations (BTEX and MTBE) detected in soil and groundwater at the subject site were used for this RBCA analysis. Since the planned site use is for the construction and operation of a new gasoline facility, provisions for construction worker were also evaluated.

GR also prepared and evaluated additional RBCA "scenarios" with various changes to the input parameters to test the sensitivity of the results. These additional "scenarios" included Tier 2 evaluations with respect to residential air exposure pathways at 40 feet and at 100 feet from the source and no groundwater receptor; and, residential air Exposure pathways of 40 and 100 feet from the source with a groundwater receptor (groundwater pathway) within 1,250 feet down-gradient of the source.

3.2 Results of RBCA Analysis

Based on the current information from the previous site investigations, GR evaluated the complete exposure pathways identified at the site; subsurface soil and groundwater volatilization to outdoor air, and indoor air exposures. With the planned land use and commercial risk factor, the RBSLs, site conditions were determined to be below generic Tier 1 screening levels and, according to the RBCA decision making process, no further work is warranted to protect against exposure via these pathways. The individual risk for indoor air exposure was identified for the Chemical of Concern (COC) benzene at an individual carcinogenic risk of 3.2E-6, just above the acceptable 1.0E-6 risk factor. In most cases, a risk factor of 1.0E-5 has been excepted for a commercial site. Since the planned land use is for the construction and operation of a new gasoline station, the 1.0E-5 risk \oslash \nwarrow factor seems appropriate for the site. Pertinent input and output data including site specific parameters used in the analysis are presented in Appendix D.

The additional "scenarios" of the RBCA program evaluating Tier 2 scenarios, also indicated that the complete pathways were primarily indoor air exposure (on-site) with respect to Tier 2 evaluations with no groundwater receptor. A Tier 2 evaluation with a groundwater receptor 1,250feet from the source also identified an indoor air exposure (on-site) and in addition, a dissolved benzene concentration (2.1E-1 ppm) above the Site Specific Target Level (SSTL) of 7.2E-2 ppm. The exposure risk (indoor air exposure on site) remained the same as the Tier 1 evaluation presented in this report.

The planned land use for the subject property, as mentioned, is for the construction and operation of a new service station dispensing gasoline products. Construction workers most likely will be in contact with impacted soils and possibly groundwater during the excavation and installation of the

new UST's and related site work. These construction workers associated with the UST installations are required to be OSHA 40-hour safety trained and are experienced working in these conditions. The exposure will be minimal. Site Safety Plans for the site should include provisions for soil and groundwater exposure during the construction activities, and a plan for containment of any groundwater removed from the subsurface, prior to its' appropriate disposal. As a precautionary measure, it is recommended that a vapor barrier be installed beneath any buildings planned for the site.

4.0 DISCUSSION AND CONCLUSIONS

GR performed the RBCA evaluation for the assessment and response to petroleum hydrocarbons in the soil and groundwater beneath the subject site. Site conditions consist of petroleum impacted soil and groundwater. Hydrocarbon impacted soil extends from a depth of approximately 9 feet bgs to shallow groundwater at 11.25 feet bgs. The lateral extents of hydrocarbon impacted soil and groundwater have not been delineated off-site. Off-site delineation of the impacted groundwater is currently in the permitting stage. Analytical data used in this RBCA evaluation is limited to the boundaries of the subject site. The gradient of the dissolved groundwater plume appears to be stable at 0.03 to the south-southwest. There are no water supply wells within 1/4-mile radius of the site, therefore, impacted groundwater present beneath the subject site is not a concern for groundwater ingestion.

Impacted subsurface soils remaining in-place are a concern for dermal contact for the construction workers that will install the new UST's at the site. Low permeability asphalt and concrete cover the surface area over the hydrocarbon plume limiting the infiltration of precipitation and release of volatile compounds to outdoor and indoor air. The planned land use will also have the site covered with asphalt and concrete. Concentrations of hydrocarbons volatilizing to outdoor air and into enclosed spaces (3.2E-6) do not exceed RBSLs based on a risk factor of 1.0E-5. Planned future use for the subject site is for a new service station. With the current understanding of the site conditions, the primary and secondary source areas removed and no groundwater receptors with in 1/4-mile radius of the site (GR 1999, unreleased information), the potential threat to public health and environment is not of significant concern. Therefore, no remediation related to soil and groundwater on the subject site is warranted at this time. Tosco will however, proceed with an off-

site investigation to delineate the impacted groundwater.

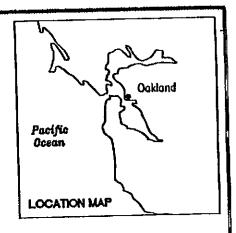
5.0 REFERENCES

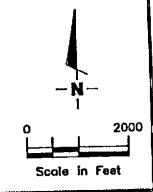
ROUX Associates 1992; Soil Sampling Below Removed Fuel Dispensers, Unocal, 96 MacArthur

Deligional California: dated June 18, 1992.

7

ROUX Associates 1992; Site Assessment Report, Unocal, 96 MacArthur Boulevard, Oakland, California; dated December 17, 1992.


Kapreailian Engineering Inc., 1994; Soil Sampling Report, Unocal Corporation, 96 MacArthur Boulevard, California, dated September 13, 1994.


Kapreailian Engineering Inc., 1996; Continuing Soil and Groundwater Investigation, Unocal Corporation, 96 MacArthur Boulevard, California, dated May 17, 1996.

Gettler-Ryan Inc., 1998; Soil Sampling During Underground Storage Tank and Piping Removal, Tosco Marketing Company, 96 MacArthur Boulevard, California;, dated August 10, 1998.

Gettler-Ryan Inc., 1998; Semi-Annual 1998 Groundwater & Sampling Report, Tosco Marketing Company, 96 MacArthur Boulevard, California;, dated August 31, 1998.

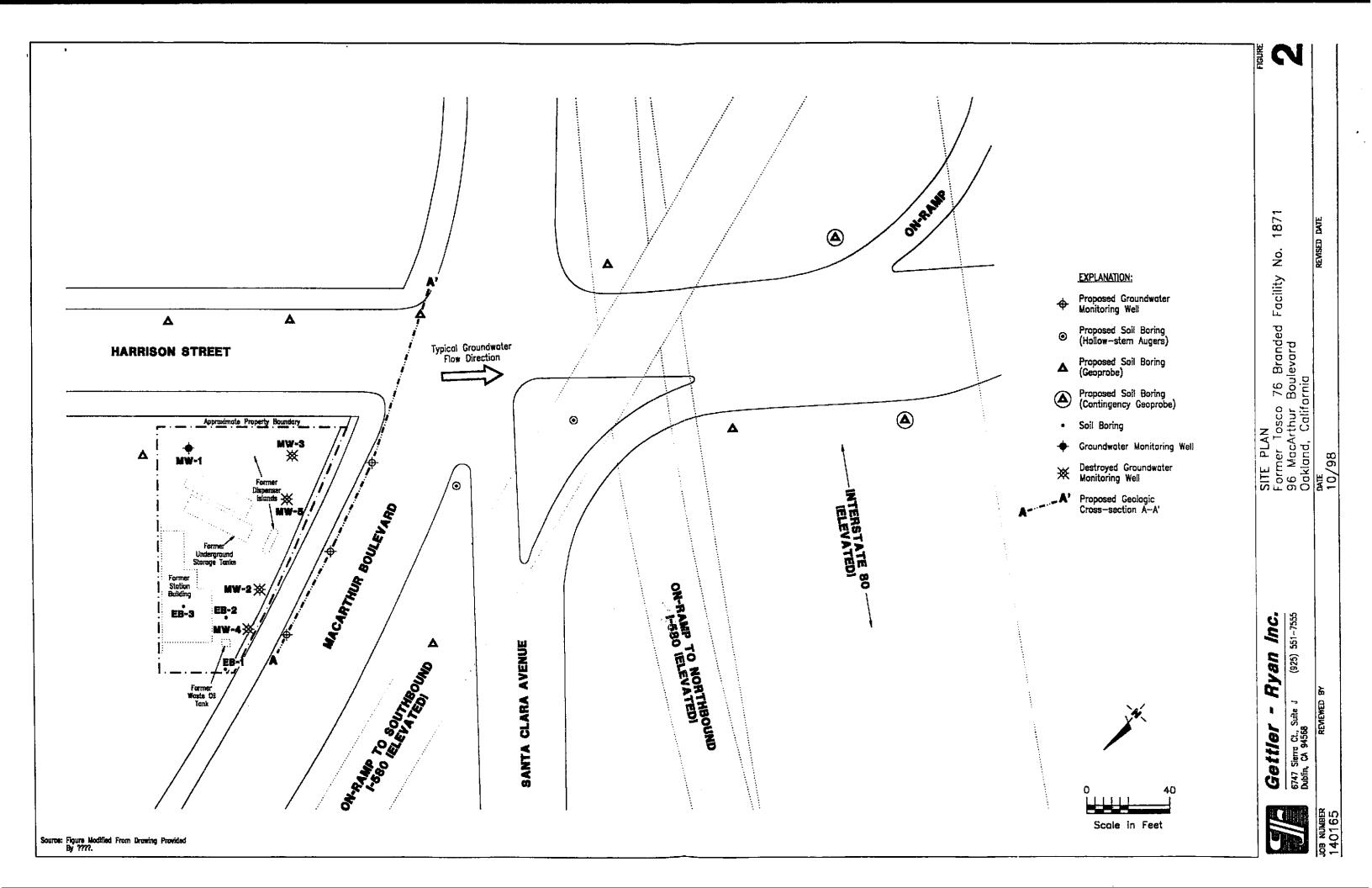
Base Map: USGS Topographic Map

JOB NUMBER

140165

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568


(925) 551-7555

VICINITY MAP Former Tosco 76 Branded Facility No. 1871 96 MacArthur Boulevard Oakland, California

REVIEWED BY

DATE July, 1998 REVISED DATE

FIGURE

APPENDIX A

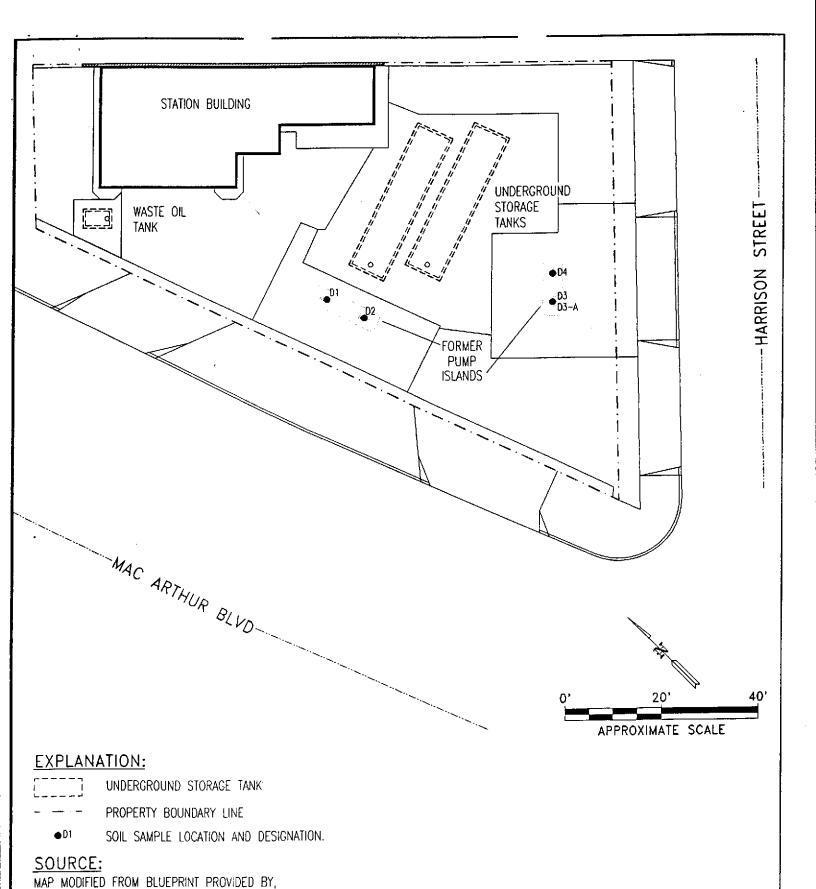
UST SOIL SAMPLE LOCATION MAPS AND ANALYTICAL RESULTS

TABLE 1: Summary of Soil Analyses: Below Removed Fuel Dispensers UNOCAL Service Station No. 1871, Oakland, California

Sample		Depth						
Designation	Date	(feet bgs)	TPH- G (1)	Benzene	Toluene	Ethylbenzene	Xylenes	Lead (1)
D:	5/13/92	2	ND	ND	ND	ND	ND	2.4
D1 D2	5/13/92	2	ND	ND	ND	ND	ND	2.6
D3	5/13/92	. 4	58	0.20	0.087	0.52	0.97	23
D4	5/13/92	5	2.9	ND	ND	ND	0.0070	4.8
D3-A	5/18/92	8	1,700	3.1	1.0	11	5.4	18

FOOTNOTES

(1) = Concentrations reported in mg/kg (ppm)


TPH-G = Total Petroleum Fuel Hydrocarbons As Low/Medium Boiling Point Hydrocarbons (USEPA Method 8015)

BTEX Distinction (USEPA Method 8020)

Lead = Total Lead (USEPA Method 7421)

ND = None Detected

bgs = Below ground surface

ROUX

UNOCAL 76, 04/92.

ROUX ASSOCIATES, INC.

EMPRONMENTAL CONSULTING
& MANAGEMENT

	COMPILED BY:	P.S.	PREPARED FOR:	UNOCAL	FIGURE	
	PREPARED BY:	R.P.				
	PROJECT MNGR.	P.S.	TITLE:		7	
C.	DATE:	05/92		SOIL SAMPLE LOCATIONS	.5	
Ç.	SCALE:	AS SHOWN		SOIL SAMPLE LOCATIONS	_	
	PROJECT NO.	27001W		UNOCAL FACILITY NO. 1871		
	FILE NAME:	UM1871YY		UNUCAL FACILITY NO. 1071		

KEI-P94-0601.R1 September 13, 1994

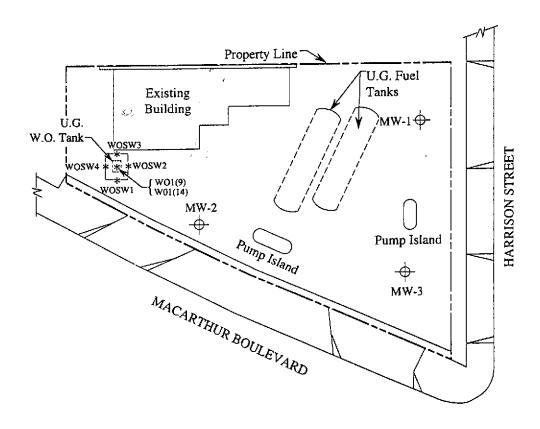
TABLE 1
SUMMARY OF LABORATORY ANALYSES
SOIL

<u>Date</u>	<u>Sample</u>	Depth (feet)	TPH as <u>Diesel</u>	TPH as <u>Gasoline</u>	Benzene	<u>Toluene</u>	Ethylbenze	ene <u>Xylenes</u>	TOG
8/03/94	WO1(9) WO1(14)* WOSW1 WOSW2 WOSW3 WOSW4	9 14 9 9 9	97 \ 1,400 \	46 960 	0.12 2.2 	0.11 2.6 	0.12 9.5 	0.47 22 	1,400 ND 160 17,000 2,200 2,400
<u>Date</u>	Sample	Bromof	orm <u>1,2</u>	-Dichlorob	<u>enzene</u>	1,3-Dichlor	obenze <u>ne</u> 1,	.4-dichloroben	·
8/03/94	WO1(9)** WOSW2**	ND 220		22 1,800		ND 63		ND 540	
		<u>Acenap</u>	<u>hthene A</u>	nthracene	Benzo(a)	anthracene	Benzo(b)fluo	<u>oranthene</u>	
	WO1(9) WOSW2	6,5 3,3	00	9,900 6,100	4,	300 000	5,000 3,300	0	
			<u>a)pyrene</u>	<u>Chrysen</u>		nzofuran	Fluoranthene		
	WO1(9) WOSW2		300 900	7,500 4,800	3	,400 ND	25,000 15,000	6,600 3,800	
		2-Meth	ylnaphtha	<u>alene</u> Na	phthalene	<u>Phenant</u>	threne Pyro	<u>ene</u>	
	WO1(9) WOSW2		8,500 28,000		4,700 10,000	38,0 22,0	•		

KEI-P94-0601.R1 September 13, 1994

54-1

TABLE 1 (Continued)


SUMMARY OF LABORATORY ANALYSES SOIL

<u>Date</u>	<u>Sample</u>	Cadmium	Chromium	<u>Lead</u>	<u>Nickel</u>	<u>Zinc</u>
8/03/94	WO1(9)	ND	28	21	31	34
	WOSW2	1.2	33	39	35	42

- * All EPA method 8270 constituents were non-detectable.
- ** All other EPA methods 8010 and 8270 constituents were non-detectable.
- Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.
- -- Indicates analysis was not performed.

ND = Non-detectable.

Results are in milligrams per kilogram (mg/kg), except for EPA methods 8010 and 8270 constituents, which were reported in micrograms per kilogram (μ g/kg).

LEGEND

→ Monitoring well

* Sample point location

SITE PLAN

UNOCAL SERVICE STATION # 1871 96 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA FIGURE

1

Table 1 - Chemical Analytical Data

Former Tosco 76 Branded Facility No. 1871 96 Mac Arthur Boulevard Oakland, California

Sample	Date	Sample	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE	TPHd	O&G	HVOCs	SVOCs
m	Collected	Depth (feet)	(ppm)	(ppm)	(ppm)	Benzene (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)_
···-		(1001)	(PP7	(FF/	G F - 2	<u> </u>						
GASOLINE UST	PIT EXCAVA	TION (SOII	<u>.)</u>									
SW1	5/11/98	11.5	<1.0	< 0.0050	<0.0050	<0.0050	<0.0050	1.9	NR	NR	NR	NR
SW2	5/11/98	11.5	<1.0	0.031	<0.0050	<0.0050	0.015	3.8	NR	NR	NR	NR
SW3	5/11/98	11.5	2,000	9.7	29	38	150	16	NR	NR	NR	NR
SW4	5/11/98	11.5	1,800	5.5	82	49	290	15	NR	NR	NR	NR
SW3-5	5/12/98	11.0	5.0 ⁴	0.049	0.051	0.050	0.20	6.6	NR	NR	NR	NR
SW4-5	5/12/98	11.0	<1.0	0.080	<0.0050	<0.0050	0.039	12	NR	NR	NR	NR
GASOLINE UST	PIT EXCAVA	TION (WA	TER)									
Water-FT	5/11/98	NA	620	<0.0005	18	13	83	<0.0025	NR	NR	NR	NR
WASTE OIL UST	PIT EXCAV	ATION (SO	<u>(L)</u>									
WO1	5/11/98	11.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<1.0	140	ND	ND
WASTE OIL UST	PIT EXCAV	ATION (WA	TER)								•	
Water-WO	5/11/98	NA	0.0904	<0.0005	<0.0005	< 0.0005	<0.0005	<0.0025	0.8907	<1.0	ND ²	ND
PRODUCT PUN	1P ISLANDS (SOIL)										
P1	5/11/98	4.0	<1.0	< 0.0050	<0.0050	<0.0050	<0.0050	0.74	NR	NR	NR	NR
P2	5/11/98	4.0	15 ³	<0.0050	0.056	0.10	0.19	<0.050	NR	NR	NR	NR
HOIST EXCAVA	ATIONS (SOI	<u>L)</u>										
H-1 ¹	5/12/98	8.0	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
H-2 ¹	5/12/98	8.0	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
DISPOSAL CHA	RACTERIZA	TION SAM	PLE (SOIL	FROM WAS	TE OIL US	T PIT)					•	_
WO SP1	5/12/98	NA	<1.0	<0.0050	<0.0050	<0.0050	0.014	NR	6.85	110	ND	ND ⁶

Table 1 - Chemical Analytical Data

Former Tosco 76 Branded Facility No. 1871 96 Mac Arthur Boulevard Oakland, California

Sample ID	Date Collected	ТРНд	Benzene	Toluene	Ethyl- Benzene	Xylenes	Total Lead (ppm)	
		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppia)	
SPOSAL CHAR	<u>ACTERIZAT</u>	ION SAMI	PLES					
SP1 (A-D)	5/12/98	<1.0	< 0.0050	<0.0050	< 0.0050	0.015	19	
SP1 (E-H)	5/12/98	170^{3}	2.9	0.74	0.78	3.2	2.2	
SP1 (I-L)	5/12/98	60	1.5	5.5	6.6	27	5.9	
SP1 (M-P)	5/12/98	380	1.6	5.6	7.5	34	4.6	
SP1 (Q-T)	5/12/98	50	0.32	0.90	0.81	3.5	4.9	
SP1 (U-X)	5/12/98	1,200	9.0	26	28	100	2.1	
SP1 (Y,Z,1,2)	5/12/98	130	0.94	2.8	2.3	12	3.5	
SP1 (3,4,5,6)	5/12/98	13 ⁴	0.36	0.57	0.22	0.92	1.9	

Sample	Date	Lead	Chromium	Nickel	Zinc	Cadmium
ID	Collected	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
WO1	5/11/98	1.0	18	21	61	<0.50
WO SP1	5/12/98	3.0	30	56	57	<0.50
Water-WO	5/11/98	< 0.020	0.053	0.055	0.065	< 0.010

EXPLANATION:

ND = none detected

NA = not applicable

ppm = parts per million

NR = analysis not requested

MTBE = methyl tert-butyl ether

ANALYTICAL LABORATORY; Sequoia Analytical (ELAP # 1271)

Table 1 - Chemical Analytical Data

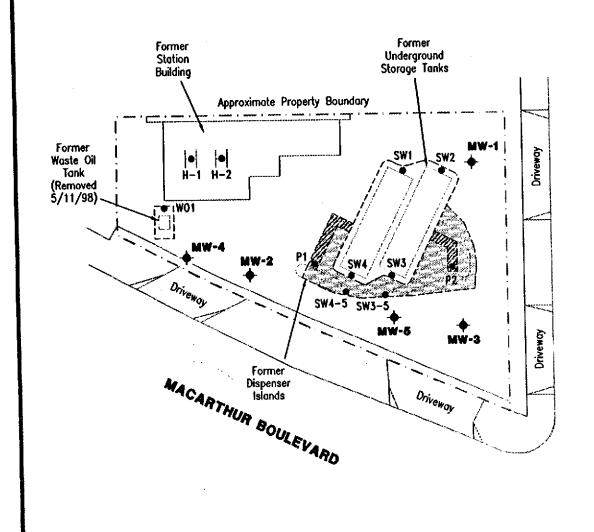
Former Tosco 76 Branded Facility No. 1871 96 Mac Arthur Boulevard Oakland, California

NOTES:

- 1 = TPH as hydraulic fluid was non-detectable.
- ² = None of the analytes detected except bromodichloromethane (0.0058 ppm), chloroform (0.014 ppm), dibromochloromethane (0.0019 ppm), 1,4-dichlorobenzene (0.00089 ppm 1,2-dichlorobenzene (0.0028 ppm), and tetrachloroethene (0.0017 ppm).
- ³ = Laboratory reports indicates gasoline and unidentified hydrocarbons >C8
- ⁴ = Laboratory reports indicates gasoline and discrete peaks
- ⁵ = Laboratory reports indicates unidentified hydrocarbons >C16
- ⁶ = Non of the analytes detected except for phenanthrene (0.350 ppm), pyrene (0.380 ppm), and fluoranthene (0380 ppm).
- ⁷ = Laboratory reports indicates unidentified hydrocarbons < C14

ANALYTICAL METHODS;

TPHg = Total Petroleum Hydrocarbons as gasoline according to EPA Method 8015 Modified.


TPHd = Total Petroleum Hydrocarbons as diesel according to EPA Method 8015 Modified.

O&G = Total recoverable petroleum oil according to Standard Methods 5520 E&F(Gravimetric).

HVOCs = Halogenated volatile organic compounds according to EPA Method 8010.

SVOCs = Semi-volatile organic compounds according to EPA Method 8270.

Metals = EPA Method 6010.

EXPLANATION

- Groundwater monitoring well
- Soil sample location

Product piping trench

Tank excavation

HARRISON STREET

Over excavation

Scale in Feet

Source: Figure Modified From Drawing Provided By MPDS Services, Inc.

Gettler - Ryan Inc.

REVIEWED BY

6747 Sierra Cl., Suite J Dublin, CA 94568

(925) 551-7555

SITE PLAN/SOIL SAMPLE LOCATION MAP Former Tosco 76 Branded Facility No. 1871 96 MacArthur Boulevard Oakland, California

DATE

REVISED DATE

FIGURE

JOB NUMBER 140165.02

July, 1998

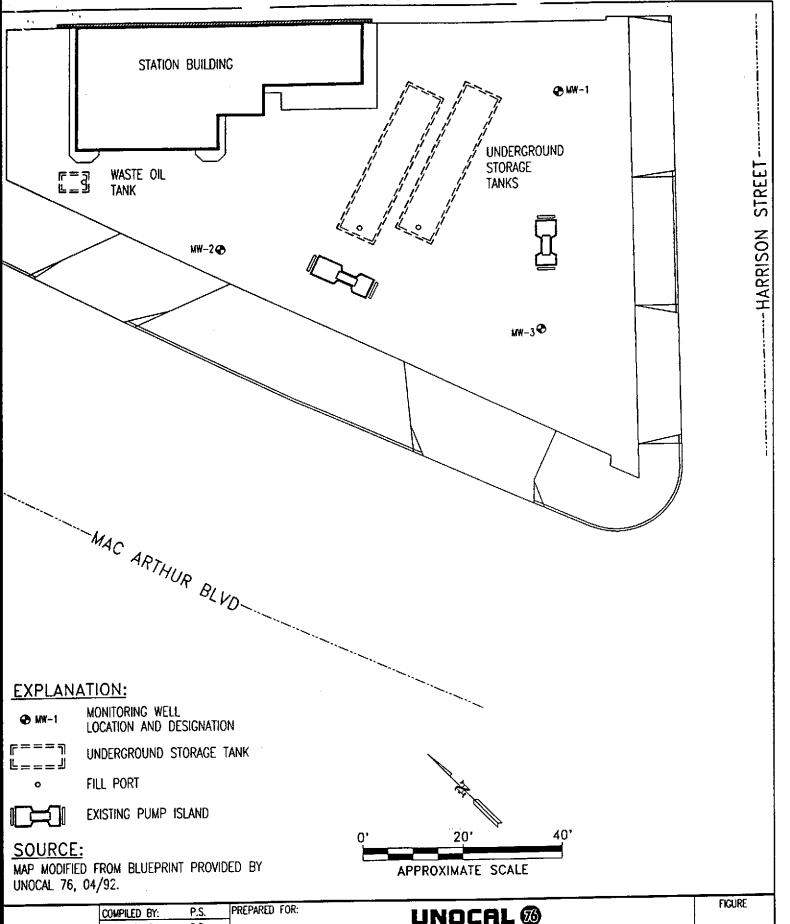
APPENDIX B

BORING AND WELL SOIL SAMPLE ANALYTICAL RESULTS AND LOCATION MAPS

TABLE 3: Summary of Soil Analyses: Monitoring Wells
UNOCAL Service Station No. 1871, Oakland, California

Sample	Date	Depth			BTEX	Distinction	
Designation	Sampled	(feet bgs)	TPH-G	Benzene	Toluene	Ethylbenzene	Xylenes
MW-1(5-6.5')	10/5/92	5-6.5	ND	ND	ND	ND	ND
MW-1(8.5-10')	10/5/92	8.5-10	ND	ND	ND	ND	ND
MW-1(13.5-15')	10/5/92	13.5-15	ND	ND	ND	ND	ND
MW-2(3.5-5')	10/5/92	3.5-5	ND	ND	ND	ND	ND
MW-2(8.5-10')	10/5/92	8.5-10	ND	ND	ND	ND	ND
MW-3(4-5.5')	10/6/92	4-5.5	ND	ND	ND	ND	ND
MW-3(9-10.5')	10/6/92	9-10.5	ND	ND	0.0088	ND	0.0060
MW-3(12-13.5')	10/6/92	12-13.5	4.2	0.079	0.010	0.16	0.26
MW-3(13.5-15')	10/6/92	13.5-15	10	0.040	0.013	0.40	0.73

FOOTNOTES


All concentrations reported in mg/kg (ppm)

TPH-G = Total Purgeable Petroleum Hydrocarbons (USEPA Method 8015)

BTEX Distinction (USEPA Method 8020)

ND = Not Detected (for detection limits see laboratory reports in Appendix C)

bgs = Below ground surface

	PREPARED BY: P.S.	UNOCAL ®	
ROUX		TITLE:	1
ROUX ASSOCIATES	DATE: 12/92 SCALE: AS SHOWN	LOCATION OF MONITORING WELLS	4
& MANAGEMENT	PROJECT NO. 27003W FILE NAME: UN1871XX	UNOCAL SERVICE STATION NO. 1871	

KEI-P94-0601.R4 May 17, 1996

TABLE 4
SUMMARY OF LABORATORY ANALYSES
SOIL

(Collected by KEI on March 20, 1996)

Sample <u>Number</u>	TPH as <u>Diesel</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>benzene</u>	Xylenes	TOG	EPA Method 8010 Constituents	EPA Method 8270 Constituents
EB1(5)	ND	ND	ND	ND	ND	ND	ND	ND(S)	ND
EB1(10)	ND	ND	ND	ИD	ND	ND	ND	ND	ND
EB2(5)	ND	ND	ND	ND	ND	ND	ND	ND	ND
EB2(10)	73 ⁽¹⁾	5.7	ND	0.0094	ND	0.035	540	ND	ND ⁽⁵⁾
MW4 (5)	1.1(1)	ND	ND	ND	0.0052	0.019	ND	ND ⁽³⁾	ND
MW4 (9.5)	350 ⁽¹⁾	24	ND	0.74	0.15	0.48	1,000	ND ⁽⁴⁾	ND ⁽⁶⁾
MW5 (5)		ND	ND	ND	ND	ND			
MW5 (9)		ND	0.023	ND	ND	ND			

NOTE: The soil samples were collected at the depths below grade indicated in the () of the respective sample number.

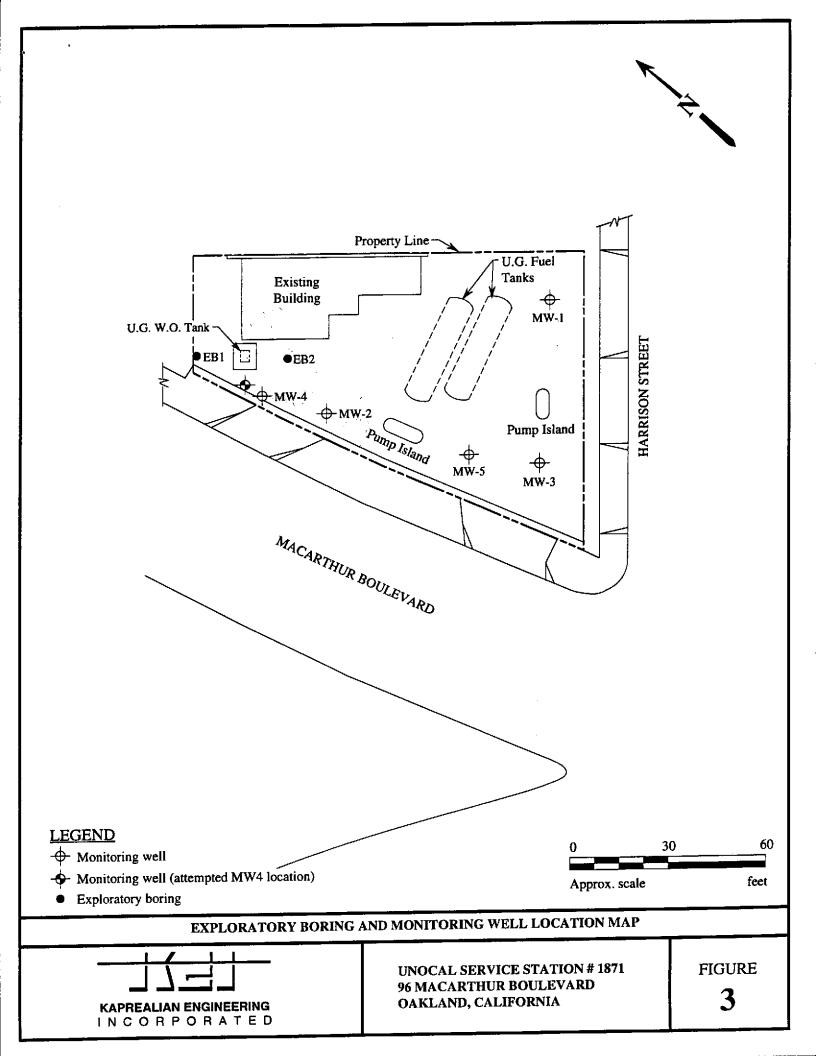
ND = Non-detectable.

-- Indicates analysis was not performed.

Results are in milligrams per kilogram (mg/kg), unless otherwise indicated.

TABLE 4 (Continued)

SUMMARY OF LABORATORY ANALYSES SOIL


FOOTNOTES

- (1) Sequoia Analytical Laboratory reported that the extractable hydrocarbons detected were "unidentified hydrocarbons."
- (2) 1,1-dichloroethene was detected at a concentration of 6.0 micrograms per kilogram $(\mu g/kg)$.
- (3) 1,1-dichloroethene and tetrachloroethene were detected at concentrations of 11 and 8.7 μ g/kg, respectively.
- (4) 1,2-dichlorobenzene and 1,4-dichlorobenzene were detected at concentrations of 37 and $12 \mu g/kg$, respectively.
- (5) All EPA method 8270 constituents were non-detectable, except for the following five compounds:

Compound	Concentration (µg/kg)				
Benzo(k)fluoranthene	190				
Chrysene	180				
Fluoranthene	610				
Phenanthrene	100				
Pyrene	690				
=					

(6) All EPA method 8270 constituents were non-detectable, except for the following 11 compounds:

Compound	Concentration (µg/kg)	Compound	Concentration (µg/kg)
Acenaphthene	170	Fluoranthene	860
Anthracene	350	Fluorene	190
Benzo(a)anthracene	260	Naphthalene	150
Benzo(b)fluoranthene	240	Phenanthrene	1,300
Benzo(a)pyrene	160	Pyrene	960
Chrysene	290	-	

APPENDIX C

HISTORICAL GROUNDWATER DATA POTENIOMETRIC MAP

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco (Former Unocal) Service Station #1871 96 MacArthur Boulevard Oakland, California

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(msl)	<			<i>ppb</i>		<u>></u>
					- 400	4.600	3,700	17,000	
MW-1	11/03/92		apin silli	260,000	2,300	4,600	3,700 4,900	22,000	
	01/25/93			120,000	2,100	4,600		19,000	
81.18	04/29/93	13.71	67.47	100,000	850	2,000	4,300		
	07/16/93	14.51	66.67	29,000	590	560	980	4,200	
	10/19/93	15.20	65.98	67,000	1,400	2,600	2,900	5,000	
	01/20/94	15.17	66.01	92,000	1,200	3,000	3,400	17,000	
	04/13/94	14.44	66.74	51,000	1,000	2,600	3,200	15,000	
	07/13/94	14.88	66.30	35,000	550	150	1,400	5,700	_
	10/10/94	15.55	65.63	52,000	1,000	810	3,300	12,000	
	01/10/95	12.44	68.74	810	16	18	59	250	
	04/17/95	12.68	68.50	48,000	880	530	2,500	11,000	
	07/24/95	13.97	67.21	48,000	1,500	420	2,700	9,700	
	10/23/95	14.85	66.33	47,000	780	210	2,100	11,000	270
	01/18/96	14.21	66.97	30,000	1,500	500	3,500	13,000	2,400
86.24	04/18/96	13.40	72.84	66,000	2,700	2,200	3,100	13,000	57,000
00.21	07/24/96	14.15	72.09	5,600	2,100	ND	160	160	24,000
	10/24/96	14.85	71.39	110,000	7,500	8,000	3,300	14,000	58,000
	01/28/97	11.25	74.99	94,000	7,700	19,000	3,100	15,000	120,000
	07/29/97	14.67	71.57	ND	ND	ND	ND	ND	70,000
	01/14/98	12.27	73.97	85,000	6,100	10,000	3,000	17,000	110,000
	07/01/98	14.32	71.92	110,000	8,700	12,000	2,700	15,000	110,000
				140	2.2	ND	ND	2.0	
MW-2	11/03/92			2,100	56	1.1	90	140	
	01/25/93			2,100 1,500	290	ND	33	11	
76.61	04/29/93	9.73	66.88	1,300 510 ¹		0.60	3.2	2.5	
	07/16/93	10.17	66.44		17		7.7	23	
	10/19/93	11.18	65.43	670	24	1.1	12	ND	
	01/20/94	11.12	65.49	820	97	ND ND	5.1	1.3	
	04/13/94	10.12	66.49	550	71	ND	3.1 17	1.3	
	07/13/94	10.86	65.75	2,000	490	ND	25	ND	
	10/10/94	11.48	65.13	2,300	340	ND		1.3	••
	01/10/95	8.71	67.90	850	3.8	ND	8.5	1.3	
	04/17/95	8.90	67.71	1,300	4.7	ND	8.3 4.2	6.2	
	07/24/95	9.94	66.67	960	20	ИD	4.2	0.2	

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco (Former Unocal) Service Station #1871 96 MacArthur Boulevard Oakland, California

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(msl)	<u> </u>			<i>ррb</i>		>
MW-2	10/23/95	10.70	65.91	ND	ND	ND	ND	ND	19
(cont)	01/18/96	10.11	66.50	900	300	86	7.6	18	4,300
81.66	04/18/96	9.27	72.39	18,000	3,600	680	890	4,100	19,000
01.00	07/24/96	10.02	71.64	100,000	13,000	21,000	2,700	16,000	120,000
	10/24/96	10.78	70.88	800	110	17	11	20	20,000
	01/28/97	7.70	73.96	45,000	2,400	2,900	2,000	7,600	29,000
	07/29/97	10.28	71.38	ND	1.2	0.72	0.63	0.62	17,000
	01/14/98	8.63	73.03	14,000	1,000	150	790	3,300	23,000
	07/01/98	9.53	72.13	2,700	100	ND ³	180	78	7,100
10U 1	11/03/92			2,100	120	15	38	200	
MW-3	01/25/93			2,300	80	1	55	52	-
77.48	04/29/93	11.37	66.11	4,500	1,700	ND	200	140	
//.40	07/16/93	12.09	65.39	4,000 ¹	1,100	28	52	70	
	10/19/93	12.69	64.79	3,800	42	ND	50	56	
	01/20/94	12.65	64.83	4,200	11	ND	21	15	
	04/13/94	12.02	65.46	4,200	210	ND	36	53	
	07/13/94	12.46	65.02	1,800 ²	16	16	ND	21	
	10/10/94	12.48	64.50	4,300	11	ND	12	ND	
	01/10/95	10.42	67.06	310	4.6	ND	3.5	2.1	
	04/17/95	10.42	67.06	7,800	ND	4.6	300	450	
	07/24/95	11.76	65.72	3,200	170	ND	22	16	
	10/23/95	12.50	64.98	3,900	55	ND	19	11	4,500
	01/18/96	11.79	65.69	2,200	270	33	26	18	5,500
82.55	04/18/96	11.30	71.25	6,000	1,800	ND	100	230	48,000
82.33	07/24/96	12.17	70.38	ND	2,500	ND	ND	ND	71,000
	10/24/96	12.65	69.90	3,800	660	ND	15	ND	65,000
	01/28/97	9.50	73.05	4,400	250	13	87	47	54,000
	07/29/97	11.99	70.56	ND	3,500	ND	220	ND	75,000
	01/14/98	10.30	72.25	ND^3	430	ND ³	100	380	37,000
	07/01/98	11.70	70.85	ND ³	430	ND^3	ND^3	ND ³	45,000

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco (Former Unocal) Service Station #1871 96 MacArthur Boulevard Oakland, California

Well ID/	Date .	DTW	GWE (msl)	TPH(G)	В	T	Eppb	X	
TOC*	And the second s	(ft.)	(IIISI)			TO DE 10 10 10 10 10 10 10 10 10 10 10 10 10		***************************************	
MW-4									10.000
82.04	04/18/96	9.83	72.21	ND	630	ND	ND	ND	18,000
	07/24/96	10.47	71.57	ND	ND	ND	ND	5.2	3,900
	10/24/96	11.14	70.90	ND	ND	ND	ND	ND	6,300
	01/28/97	7.94	74.10	1,200	490	ND	17	6.8	16,000
	07/29/97	10.86	71.18	50	1.5	0.61	0.73	0.78	15,000
	01/14/98	8.73	73.31	ND^3	ND^3	ND^3	ND ³	ND ³	5,200
	07/01/98	10.51	71.53	ND	ND	ND	ND	ND	640
MW-5								- 400	<< 000
81.80	04/18/96	9.65	72.15	31,000	5,500	1,400	1,700	8,100	66,000
	07/24/96	10.80	71.00	32,000	6,400	ND	1,600	6,100	120,000
	10/24/96	11.40	70.40	17,000	6,900	ND	970	130	84,000
	01/28/97	7.76	74.04	19,000	6,100	62	82	310	160,000
	07/29/97	11.58	70.22	ND	ND	ND	ND	ND	71,000
	01/14/98	9.08	72.72	ND^3	3,600	ND3	ND ³	ND ³	80,000
	07/01/98	11.25	70.55	6,400	2,100	21	120	330	61,000
Trip Blanl	k								
TB-LB	01/14/98			ND	ND	ND	ND	ND	ND
	07/01/98		,	ND	ND	ND	ND	ND	ND

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco (Former Unocal) Service Station #1871 96 MacArthur Boulevard Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to January 14, 1998, were compiled from reports prepared by MPDS Services, Inc.

TOC = Top of Casing elevation

B = Benzene

ppb = Parts per billion

DTW = Depth to Water

T = Toluene

ND = Not Detected

(ft.) = Feet

E = Ethylbenzene

-- = Not Measured/Not Analyzed

GWE = Groundwater Elevation

X = Xylenes

(msl) = Referenced relative to mean sea level

MTBE = Methyl tertiary butyl ether

TPH(G) = Total Petroleum Hydrocarbons as Gasoline

- * TOC elevations were re-surveyed by Kier & Wright in May, 1996, per City of Oakland Benchmark No. 2310, a cut square in concrete curb at mid point of return at the northeast corner of El Dorado and Fairmont Street. (Elevation = 77.53 feet msl).
- Laboratory report indicates the presence of discrete peaks not indicative of gasoline.
- Laboratory report indicates the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.
- Detection limit raised. Refer to analytical results.

Table 2

Groundwater Analytical Results

Tosco (Former Unocal) Service Station #1871 96 MacArthur Boulevard Oakland, California

feli O	Date	<		b	>
FOU 4	04/18/96	110 ¹	ND	ND	-
ſW-4	07/24/96	ND	ND	ND	ND
	10/24/96	ND	ND	ND	ND^2
	01/28/97	210 ³	ND	ND	ND ⁴
	07/29/97	ND	ND	ND	ND
	01/14/98	ND	ND	ND	ND
	07/01/98	ND	ND	ND	ND

EXPLANATIONS:

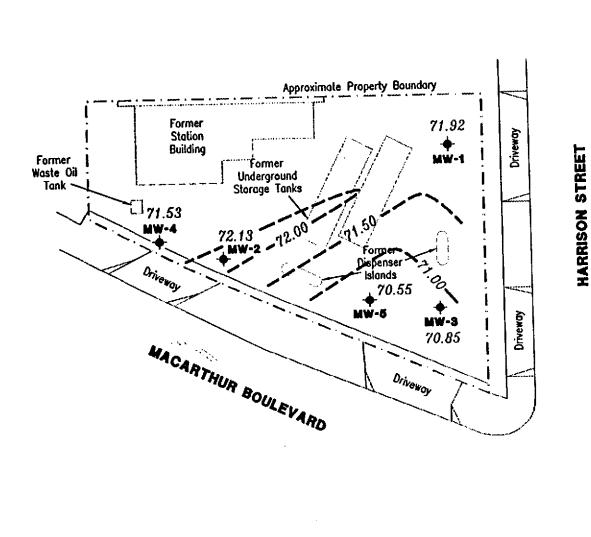
Groundwater analytical results prior to January 14, 1998, were compiled from reports prepared by MPDS Services, Inc.

TPH(D) = Total Petroleum Hydrocarbons as Diesel

TOG = Total Oil and Grease

VOC = Volatile Organic Compounds by EPA Method 8010

SVOC = Semi-Volatile Organic Compounds by EPA Method 8270


ppb = Parts per billion

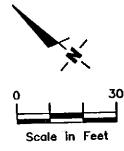
- = Not Analyzed

ND = Not Detected

- Laboratory report indicates the hydrocarbons detected did not appear to contain diesel.
- ² Bis (2-ethylhexyl) phthalate was detected at a concentration of 14 ppb.
- Laboratory report indicates the hydrocarbons detected appeared to be a diesel and non-diesel mixture.
- Naphthalene was detected at a concentration of 17 ppb.

All EPA Method 8010 and 8270 constituents were ND, unless noted.

EXPLANATION


Groundwater monitoring well

Groundwater elevation in feet 99.99 referenced to Mean Sea Level (MSL)

-99.99 Groundwater elevation contour, dashed where inferred.

Approximate groundwater flow direction at a gradient of 0.03 Ft./Ft.

REVISED DATE

Source: Figure Modified From Drawing Provided By MPOS Services, Inc.

Gettier - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

POTENTIOMETRIC MAP

. .

Tosco (Former Unocal) Service Station No. 1871 96 MacArthur Boulevard Oakland, California

DATE

FIGURE

JOB NUMBER 180068

REVIEWED BY

July 1, 1998

APPENDIX D RBCA INPUT AND OUTPUT DATA FILES

RBCA

SUMMARY REPORT

■ TIER 1 / □ TIER 2 RBCA SITE EVALUATION

PREPARED FOR

Tosco Marketing Company

SITE NAME

96 MacArthur Boulevard, Oakland, California

LOCATION

Gettler-Ryan, Inc. 6747 Sierra Court, Suite J, Dublin, California

PREPARED BY

February 23, 1999

DATE ISSUED

REVIEWED BY Stephen J. Carter, RG 5577

DATE February 23, 1999

Site Name:

Former Tosco SS No. 1871

Date Completed: February 23, 1999

Site Location:	Location: 96 MacAurthur Blvd., Oakland, Ca.		Ca.	a. Completed By:				Ryan Inc.		Page 1 of 1
		TIER 1 EXEC	CUTIV	/ES	UMN	IARY	CHEC	KLIST		
VISUAL/F	IISTORI	CAL ASSESSMENT			SELEC					
Site size (ac				■ <1			□ <10		□>10	
Site setting				Undev	eloped		industrial		■ reside	ential
Site access		•		Сарре	d		🗖 fenced-in		open 🗆	
Visual evide	ence of er	vironmental impact		none			limited		exten	sive
Current site	land use			□undey	eloped		■ indust/con		neside	ential
Contaminar				tanks	spills		☐ trench/dr	ums	pond pond	
Affected en	vironmen	tal media			3 ft BG		■ groundwa		surfic	cial soil (≤3 ft BGS)
Types of co	mpounds	likely to be present		-	-	irocarbon	S	metals		- \
				⊔ norga	nic (nit	rates)		other:(j	pesticides	S)
		PTOR IDENTIFICATION					O coclos	ical	■ hu	man
		receptors (greatest concern)	- (A)	☐ none ☐ >50			□ ecolog □ 100 - 5			.00
		ine to nearest off-site receptor t groundwater receptor (yr)	r (11.)	■ >i0			2 - 10	,00		
		it groundwater (ft)		■ >10 □ >15			□ 50 - 15	50	■ <5	-
Complete e		•		none	_		ingesti			halation
Complete o.	Aposare p	men nay 5		□ ecol			■ derma		🔲 ab	sorption
TIER 1 T	ASKS C	OMPLETED			Ŭ					
		rical assessment	■ Ini	tial (scr	eening)	site asses:	sment =	Site prior	ritization	/ classification
■ Deta	iled site c	haracterization	■ RI	SSL cor	nparison	ı		Initial ec	ological	assessment
☐ Corr	ective act	ion planned or implemented								
TIEDIA	i a celel	CATION EVALUATION								
			4.			Duccerib	ed Interim	t etion	Do	te Implemented
<u>Classificat</u> 4		Scenario Descrip 4.1 Non-potable aquifer v local use impacted		ting	effect dissolv barrier	or ground of natura ved plum	water and of attenuation e. Require talled bene	evaluate n on vapor		2/23/99
TIER 1 C	ORREC	TIVE ACTION CRITERIA								
		-				_	l Criteria Ex	ceeded? (=	if yes)	
	A ffoote	ed Medium	Risk-	_	ther	Others:				None Exceeded
. Comfort C			Based	•	(CL) □	(specify)	' 			
Surface S	,	•								
• Subsurfac	•		=		_				_	_
	•	ble/nonpotable)								
Surface w			_			_	_		_	•
PROPOS	EO TIE	discuss chemicals for which H. I. ACTION ite does not exceed Tier 1 cm						(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	3 () () () ()	
correct Final action	ctive action I Correction In to achie	ctive Action: Site exceeds son and reprioritize site. ive Action: Site exceeds son ove Tier 1 criteria.	ne Tier 1	criteria.	- Propos	se correcti	ive	docum	ale for pro	oposed action Worksheets 1.3
goals	per Tier	tion: Site exceeds some Tier 2 risk assessment.								
ALL WORK	SHEETS E	NCLOSED IN THIS REPORT ARE	IVENTIFIE	UN IT	E IMPLE	OF CONT	en rorum.			

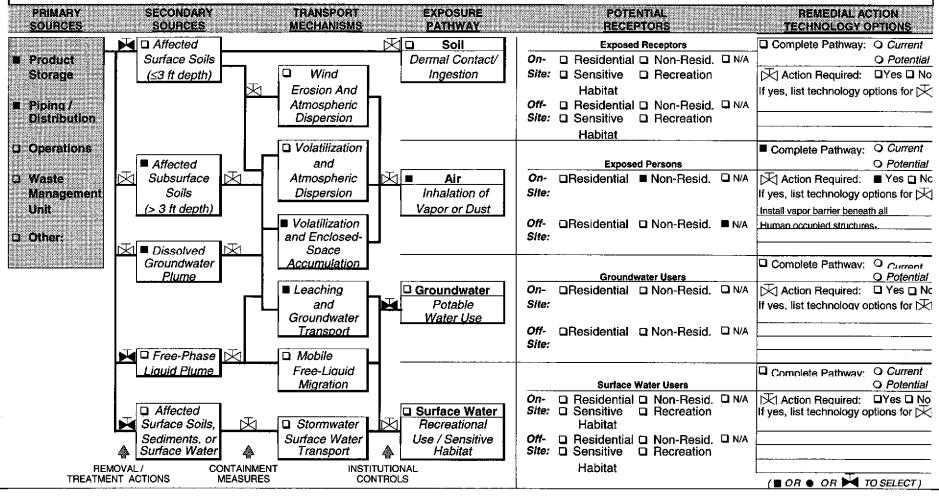
Page I of I

Site Name:

Former Tosco SS No. 1871

Date Completed:

February 23, 1999


Site Location:

96 MacArthur Blvd., Oakland, California

Completed By: Gettler-Ryan, Inc.

EXPOSURE CONTROL FLOWCHART

Instructions: Identify remedial measures to be implemented to prevent exposure, as follows: • Step 1 - Baseline Exposure: Identify applicable sources, transport mechanisms, and receptors as shown on Worksheet 4.2 (= applicable to site). • Step 2 - Remedial Measures: Fill in shut-off valves (| to indicate removal / treatment action, containment measure, or institutional controls to be used to "shut off" exposure pathway. • Step 3 - Remedial Technology Options: For each complete pathway, identify category of corrective measure to be applied and list possible technology options in space provided (see options list in RBCA Guidance Manual).

RBCA TIER 1/TIER 2 EVALUATION

Output Table 1

Site Name: Former Tosco (former Unocal) 🐠 Identification: 140165.05 Site Location: 96 MacArthur Blvd., Oakland, @ate Completed: 11/23/98

Completed By: David J. Vossler

Version: 1.0.1

Software: GSI RBCA Spreadsheet

NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined.

Exposure			Residential		Commerci	al/Industrial	Surface				
Parameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn	Parameters	Definition (Units)	Residential	Constrctn	
To	Averaging time for carcinogens (yr)	70	(, ,,,,,,	(1.10)			A	Contaminated soil area (cm^2)	5.6E+05		
.Tn	Averaging time for non-carcinogens (yr)	30	6	16	25	1	w	Length of affect, soil parallel to wind (cm)	6.1E+02		
w	Body Weight (kg)	70	15	35	70		W.gw	Length of affect, soil parallel to groundwater (cm)	6.1E+02		
D	Exposure Duration (yr)	30	6	16	25 .	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
D		30	0	10	25	1	delta	Air mixing zone height (cm)	2.0E+02		
F	Averaging time for vapor flux (yr)	350			250	180					
•	Exposure Frequency (days/yr)					180	Lss	Thickness of affected surface soils (cm)	1.0E+02		
F.Derm	Exposure Frequency for dermal exposure	350			250		Pe	Particulate areal emission rate (g/cm^2/s)	6.9E-14		
łgw	Ingestion Rate of Water (L/day)	2			1						
Rs .	Ingestion Rate of Soil (mg/day)	100	200		50	100					
ładj	Adjusted soil ing. rate (mg-yr/kg-d)	1.1E+02			9.4E+01		Groundwater	r Definition (Units)	Value	_	
ła.in	Inhalation rate indoor (m^3/day)	15			20		delta.gw	Groundwater mixing zone depth (cm)	2.0E+02		
Pa.out	Inhalation rate outdoor (m^3/day)	20			20	10	l	Groundwater infiltration rate (cm/yr)	3.0E+01		
Α	Skin surface area (dermal) (cm/2)	5.8E+03		2.0E+03	5.8E+03	5.8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	5.8E-01		
Aadi	Adjusted dermal area (cm^2-yr/kg)	2.1E+03			1.7E+03		Ugw.tr	Groundwater seepage velocity (cm/yr)	1.5E+00		
1	Soil to Skin adherence factor	1					Kš	Saturated hydraulic conductivity(cm/s)	6.1E-07		
AF8	Age adjustment on soil ingestion	FALSE			FALSE		grad	Groundwater gradient (cm/cm)	3.0E-02		
AF¢	Age adjustment on skin surface area	FALSE			FALSE		Sw	Width of groundwater source zone (cm)			
X	Use EPA tox data for air (or PEL based)?	FALSE					Sd	Depth of groundwater source zone (cm)			
wMCL?	Use MCL as exposure limit in groundwater?	TRUE					phi.eff	Effective porosity in water-bearing unit	3.8E-01		
WIVICE	Use WICE as exposure in it in groundwater:	THOL					foc.sat	Fraction organic carbon in water-bearing unit	1.0E-03		
							BIO?	Is bioattenuation considered?	TRUE		
							BC		INUE		
		D144-4			0	_ (ВС	Biodegradation Capacity (mg/L)			
•	osed Persons to	Residential				al/industrial					
	posure Pathways				Chronic	Constrctn	Soil	Definition (Units)	Yalue	_	
utdoor Air F	•						hc	Capillary zone thickness (cm)	5.0E+00		
S.v	Votatiles and Particulates from Surface Soils	FALSE			FALSE	FALSE	hv	Vadose zone thickness (cm)	3.4E+02		
3.v	Volatilization from Subsurface Soils	FALSE			TRUE		rho	Soil density (g/cm^3)	1.7		
iW.v	Volatilization from Groundwater	FALSE			TRUE		foc	Fraction of organic carbon in vadose zone	0.01		
idoor Air Pa	thways:						phi	Soil porosity in vadose zone	<u>0.41</u>		
.b	Vapors from Subsurface Soils	FALSE			TRUE		Lgw	Depth to groundwater (cm)	3.4E+02		
iW.b	Vapors from Groundwater	FALSE			TRUE		Ls	Depth to top of affected subsurface soil (cm)	2.7E+02		
oil Pathway	8:						Lsubs	Thickness of affected subsurface soils (cm)	6.9E+01		
S.d	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	рH	Soil/groundwater pH	6.93		
roundwater							•		capillary	vadose	foundat
i.Wa	Groundwater Ingestion	FALSE			FALSE		phi.w	Volumetric water content	0.369	0.13	0.12
3.1 3.1	Leaching to Groundwater from all Soils	FALSE			FALSE		phi.a	Volumetric air content	0.041	<u>0.28</u>	0.26
·-I	Leadshing to Groundwater normal bons	IALVE			17202		prince	FOIDITE IN CONTROL	0.041	<u>D.LO</u>	0.20
							Building	Definition (Units)	Residential	Commercial	
							Lb		2.0E+02	3.0E+02	
		B1-			C	المسامين المام		Building volume/area ratio (cm)			
	eptor Distance		lential			al/Industrial	ER	Building air exchange rate (s^-1)	1.4E-04	2.3E-04	
	On- or Off-Site	Distance	On-Site		Distance	On-Site	Lcrk	Foundation crack thickness (cm)	1.5E+01		
ew.	Groundwater receptor (cm)		TRUĒ			TRUE	eta	Foundation crack fraction	0.01		
;	Inhalation receptor (cm)		TRUE			TRUE					
							_				
							Transport				
latrix of								Definition (Units)	Residential	Commercial	
arget Risks		Individual	Cumulative				Groundwater	<u></u>			
Rab	Target Risk (class A&B carcinogens)	1.0E-06	•	•			ax	Longitudinal dispersivity (cm)			
Rc	Target Risk (class C carcinogens)	1.0E-05					ay	Transverse dispersivity (cm)			
HQ	Target Hazard Quotient	1.0E+00					az	Vertical dispersivity (cm)			
opt	Calculation Option (1, 2, or 3)	1					Vapor				
ier	RBCA Tier	1					dcy	Transverse dispersion coefficient (cm)			

RBCA CHEMICAL DATABASE

Physical Property Data

CAS		Molect Weig (g/mo	ht		oeff	usion icients in wat (cm2/s		log (Kod log(Kd (@ 20 - 2 log(l/k	d) 25 C)	•	_aw Consta :0 - 25 C)	nt	Vapor Pressure (@ 20 - 25 (mm Hg)	C)	Solubility (@ 20 - 25 ((mg/L)		acid	base	
Number Constituent	type	MW	ref		ref	Dwat	ref	•	ref	mol	(unitless)	ref		ref		ref	pKa	pKb	r
71-43-2 Benzene	Α	78.1	5	9.30E-02	Α	1.10E-05	Α	1.58	Α	5.29E-03	2.20E-01	Α	9.52E+01	4	1.75E+03	Α			
100-41-4 Ethylbenzene	Α	106.2	5	7.60E-02	Α	8.50 E- 06	Α	1.98	Α	7.69E-03	3.20E-01	Α	1.00E+01	4	1.52E+02	5			
1634-04-4 Methyl t-Butyl Ether	0	88.146	5	7.92E-02	6	9.41E-05	7	1.08	Α	5.77E-04	2.40E-02		2.49E+02		4.80E+04	Α			
108-88-3 Toluene	Ā	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Α	6.25E-03	2.60E-01	Α	3.00E+01	4	5.15E+02	29			
1330-20-7 Xylene (mixed isomers)	A	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Α	6.97E-03	2.90E-01	Α	7.00E+00	4	1.98E+02	5			

Site Name: Former Tosco (former Unocal) SS Site Location: 96 MacArthur Blvd., Oakl Completed By: David J. Vossler

Date Completed: 11/23/1998

Software version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

J	$^{\prime}$		AI C	Y A T	0
	3 V II	IEMIC		JAII	135

Toxicity Data

	Reference Dose (mg/kg/day)					Slope Factors ng/kg/c	\$		EPA Weight	ls
CAS	Oral		Inhalation		Oral		Inhalation		of	Constituent
Number Constituent	RfD_oral	ref l	RfD_inhal	ref	SF_oral	ref	SF_inhal	ref	Evidence	Carcinogenic?
71-43-2 Benzene	-		1.70E-03	R	2.90E-02	Α	2.90E-02	Α	Α	TRUE
100-41-4 Ethylbenzene	1.00E-01	Α	2.86E-01	Α	-		-		D	FALSE
1634-04-4 Methyl t-Butyl Ether	5.00E-03	R	8.57E-01	R	-		-			FALSE
108-88-3 Toluene	2.00E-01	A,R	1.14E-01	A,R	-		-		D	FALSE
1330-20-7 Xylene (mixed isomers)	2.00E+00	A,R	2.00E+00	Α	-		-		D	FALSE

Site Name: Former Tosco (former UnocaSite Location: 96 MacArthur Blvd., Oa Completed By: David J. Vossler

Date Completed: 11/23/1998

Software version: 1.0.1

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Miscellaneous Chemical Data

CAS			Maximum taminant Level	Permiss Expos Limit PEI	ure	Abs	elative corption actors	Dete Groundw (mg/L	rater	Limits Soi (mg/l		(First-O	lf Life der Decay) lays)	
Number	Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermal		ref		ref	Saturated	Unsaturated	ref
71-43-2	Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002	С	0.005	s	720	720	Н
100-41-4	Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.002	С	0.005	S	228	228	Н
1634-04-4	Methyl t-Butyl Ether	1		1.44E+02	ACGIH	1	0.5					360	180	Н
108-88-3	Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	1	0.5	0.002	С	0.005	S	28	28	Н
1330-20-7	Xylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.005	С	0.005	S	360	360	Н
1000 =0 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,											

Site Name: Former Tosco (former UnocaSite Location: 96 MacArthur Blvd., Oakland, Ca.

Completed By: David J. Vossler Date Completed: 11/23/1998

Software version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

Representative COC Concentration in Subsurface Soil CONSTITUENT in Groundwater in Surface Soil value (mg/kg) note value (mg/L) note value (mg/kg) note 6.4E-2 UCL Benzene 2.1E-1 mean UCL Ethylbenzene 2.7E-2 mean 3.5E-2 1.1E+1 UCL Methyl t-Butyl Ether 4.5E+1 mean 9.5E-2 2.7E-2 UCL Toluene mean 8.4E-2 8.7E-2 UCL Xylene (mixed isomers) mean

Site Name: Former Tosco (former Unocal) SS # 1871 Completed By: David J. Vossler Site Location: 96 MacArthur Blvd., Oakland, Ca. Date Completed: 11/23/1998

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT

EXPOSURE LIMITS IN GROUNDWATER AND AIR

Exposure Limits
Applied to Receptors

	Ubbiied (o neceptora
CONSTITUENT	Groundwater	Air (Comm. only)
	(MCL) (mg/L)	(PEL/TLV) (mg/m^3)
Benzene	5.0E-3	3.2E+0
Ethylbenzene	7.0E-1	4.3E+2
Methyl t-Butyl Ether		1.4E+2
Toluene	1.0E+0	1.5E+2
Xylene (mixed isomers)	1.0E+1	4.3E+2

Site Name: Former Tosco (former Unocal) SS # 1871 Site Location: 96 MacArthur Blvd., Oakland, Ca. Completed By: David J. Vossler Date Completed: 11/23/1998

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

ı	-		_	488	5	I.U.	Ī	

Tier 1 Worksheet 8.1

Site Name: Former Tosco (former Unocal) SS # 1871 Site Location: 96 MacArthur Blvd., Oakland, Ca. Completed By; David J. Vossler Date Completed: 11/23/1998

4 OF 9

<u> </u>	TIER 1 EXPOSURE CONCENTRATION AND INTAKE CALCULATION										
INDOOR AIR EXPOSURE PATHWA	INDOOR AIR EXPUSURE PATHWAYS										
SUBSURFACE SOLS:	Exposure Concentration										
VAPOR INTRUSION TO BUILDINGS	1) <u>Source Medium</u>	2) <u>NAF Value (m^3/kg)</u> Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m^3) (1) / (2)	4) Exposure Multiplier (IRxEFxED)/(BWxAT) (m^3/kg-day)	5) <u>Average Daily Intake Rate</u> (mg/kg-day) (3) X (4)						
Constituents of Concern	Subsurface Soil Conc. (mg/kg)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial						
Benzene	6.4E-2	4.7E+2	1.4E-4	7.0E-2	9.6E-6						
Ethylbenzene	3.5E-2	4.7E+2	7.5E-5	2.0E-1	1.5E-5						
Methyl t-Butyl Ether	1.1E+1	4.7E+2	2.4E-2	2.0E-1	4.7E-3						
Toluene	2.7E-2	4.7E+2	5.9E-5	2.0E-1	1.2E-5						
Xylene (mixed isomers)	8.7E-2	4.7E+2	1.9E-4	2.0E-1	3.7E-5						

NOTE: ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
---	---	--	---

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-225-ZRX-486

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT

Tier 1 Worksheet 8.1

Site Name: Former Tosco (former Unocal) SS # 1871 Site Location: 96 MacArthur Blvd., Oakland, Completed By: David J. Vossler

Date Completed: 11/23/1998

5 OF 9

TIED 1	EXPOSURE CONCENTRATION AND INTAKE CALCULATION	١N

GROUNDWATER:	Exposure Concentration					TOTAL PATHWAY INTAKE (mg/kg-da		
VAPOR INTRUSION TO BUILDINGS	1) <u>Source Medium</u>	Source Medium NAF Value (m^3/L) Receptor		4) Exposure Multiplier (IRxEFxED)/(BWxAT) (m^3/kg-day)	5) Average Daily Intake Rate (mg/kg-dey) (3) X (4)	(Sum intake values from subsurface & groundwater routes.)		
Constituents of Concern	Groundwater Conc. (mg/L)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Comme		
Benzene	2.1E-1	1.4E+2	1.5E-3	7.0E-2	1.0E-4	1.1E-4		
Ethylbenzene	2.7E-2	1.3E+2	2.1E-4	2.0E-1	4.1E-5	5.5E-5		
Methyl t-Butyl Ether	4.5E+1	8.5E+2	5.2E-2	2.0E-1	1.0E-2	1.5E-2		
Toluene	9.5E-2	1.4E+2	6.9E-4	2.0E-1	1.3E-4	1.5E-4		
Xylene (mixed isomers)	8.4E-2	1.5E+2	5.6E-4	2.0E-1	1.1E-4	1.5E-4		

AF	BS = Dermal absorption factor (dim) F = Adherance factor (mg/cm^2) T = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
----	--	---	--	---

Software: GSI RBCA Spreadsheet

Serial: G-225-ZRX-486

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT Tier 1 Worksheet 8.2 Completed By: David J. Vossler 2 OF 4 Site Name: Former Tosco (former Unocal) S\$ Site Location: 96 MacArthur Blvd., Oakland, Ca. Date Completed: 11/23/1998 TIER 1 PATHWAY RISK CALCULATION INDOCH AIR EXPOSURE PATHWAYS CARCINOGENIC RISK TOXIC EFFECTS (4) Individual COC (7) Individual COC (2) Total Carcinogenic (3) Inhalation (5) Total Toxicant (6) Inhalation (1) EPA Intake Rate (mg/kg/day) Slope Factor Risk (2) x (3) Intake Rate (mg/kg/day) Reference Dose Hazard Quotient (5) / (6) Carcinogenic On-Site On-Site On-Site On-Site Constituents of Concern Classification Commercial Commercial Commercial (mg/kg-day) Commercial (mg/kg-day)^-1 1.1E-4 2.9E-2 3.2E-6 3.1E-4 1.7E-3 1.8E-1 Benzene Α Ethylbenzene D 5.5E-5 2.9E-1 1.9E-4 Methyl t-Butyl Ether 1.5E-2 8.6E-1 1.7E-2 D 1.5E-4 1.1E-1 1.3E-3 Toluene Xylene (mixed isomers) D 1.5E-4 2.0E+0 7.4E-5 Total Pathway Carcinogenic Risk = 0.0E+0 3.2E-6 Total Pathway Hazard Index = 0.0E+0 2.0E-1

Software: GSI RBCA Spreadsheet

Serial: G-225-ZRX-486

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT

Tier 1 Worksheet 8.3

Serial: G-225-ZRX-486

Site Name: Former Tosco (former Unccal) SS # 1871 Site Location: 96 MacArthur Blvd., Oakland, Ca. Completed By: David J. Vossler Date Completed: 11/23/1998

1 of 1

			TIER		NE RISK SU	MMARY TA						
•		BASELIN	E CARCINOGI	ENIC RISK			BASEL	INE TOXIC E	FFECTS			
	See official allowers	OOO Diele	Comment of the	- 000 Piele	Risk Limit(s)	Hamaud	O	11	Toxicity Limit(s)			
EXPOSURE PATHWAY	Maximum Value	COC Risk Target Risk	Total Value	e COC Risk Target Risk	Exceeded?	Maximum Value	Quotient Applicable Limit	Hazar Total Value	Exceeded?			
PATHWAY Value Risk Value Risk Value Limit Value Limit OUTDOOR AIR EXPOSURE PATHWAYS												
Complete:	5.3E-9	1.0E-6	5.3E-9	N/A		3.0E-4	1.0E+0	3.7E-4	N/A	□		
INDOOR AIR EX	OSURE PATHY	VAYS		·					ı			
Complete:	3.2E-6	1.0E-6	3.2E-6	N/A		1.8E-1	1.0E+0	2.0E-1	N/A			
SOIL EXPOSURE	PATHWAYS											
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A			
GROUNDWATER	EXPOSURE PA	THWAYS										
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A			
CRITICAL EXPOR	SURE PATHWA	/ (Select Maxi	num Values Fr	om Complete F	athways)							
	3.2E-6	1.0E-6	3.2E-6	N/A	≡	1.8E-1	1.0E+0	2.0E-1	N/A	□		

Software: GSI RBCA Spreadsheet

	RBCA SITE ASSESSMENT									Tier 1 Worksheet 6.1				
Site Name: Former Tosco (for	mer Unocal) SS # 1871		Completed By: David J. Vossler											
Site Location: 96 MacArthur B	lvd., Oakiand, Ca.		Date Comple	Date Completed: 11/23/1998										
SURFACE S	Target Risk (Class A & B) 1.0E-6 MCL exposure limit? Target Risk (Class C) 1.0E-5 PEL exposure limit? Target Hazard Quotient 1.0E+0					1 OF Calculation Option: 1								
	RBSL Results For Complete Exposure Pathways ("x" if Complete)													
CONSTITUENTS OF CONCERN		Representative Concentration	Soil Leaching to Groundwater			Ingestion, Inhalation and Dermal Contact		Construction Worker	Applicable RBSL	RBSL Exceeded ?	Required CRF			
CAS No. Name		(mg/kg)	Residential: Commercial: Regulatory(MC (on-site) (on-site) (on-site)			Residential: (on-site)	Commercial: (on-site)(PEL)	Commercial: (on-site) (PEL)	(mg/kg)	•■ If yes	Only if "yes" left			
71-43-2 Benzene		0.0E+0	NA	NA	NA	NA	NA	NA	>Res		<1			
100-41-4 Ethylbenzen	Ð	0.0E+0	NA	NA	NA	NA	NA	NA	>Res		<1			
1634-04-4 Methyl t-But	yl Ether	0.0E+0	NA	NA	NA	NA	NA	NA	>Res		<1			
108-88-3 Toluene		0.0E+0	NA	NA	NA	NA	NA	NA	>Res		<1			
1330-20-7 Xylene (mixe	ed isomers)	0.0E+0	NA	NA	NA	NA	NA	NA NA	>Res		<1			

>Res indicates risk-based target concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet

Serial: G-225-ZRX-486

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

-		RBCA SITE	ASSESSM	ENT					τ	ier 1 Worksho	eet 6.2	
Site Name: Fo	rmer Tosco (former Unocal) SS # 187	71	Completed B	y: David J. Vo	ssler							
Site Location:	96 MacArtinur Bivd., Oakland, Ca.		Date Comple	Date Completed: 11/23/1998								1 OF 1
		Target Flisi	(Class A & B)	1.0E-6	■ MCL exp	osure limit?		Ca	lculation Option	: 1		
SUI	Target	Risk (Class C)	1.0E-5	■ PEL expo	sure limit?							
	Target H	azard Quotlent	1.0E+0									
RBSI. Results For Complete Exposure Pathways ("x" if Complete)												
Concentration		Representative Concentration	Soil Leaching to Groundwater			Soil Volatilization to		Soil Volatilization to Outdoor Air		Applicable RBSL	RBSL Exceeded	Required CRF
CONSTITUEN	ITS OF CONCERN		Residential:		Regulatory(MCL):		Commercial:	Residential:	Commercial:	nbor	 ' -	Hedaner Out
CAS No.	Name	(mg/kg)	(on-site)	(on-site)	(on-site)	(on-site)	(on-site) (PEL)		(on-site)(PEL)	(mg/kg)	* ≡ if yes	Only if "yes" left
71-43-2	Вепzеле	6.4E-2	NA	NA	NA	NA	>Res	NA	>Res	>Res		<1
100-41-4	Ethylbenzene	3.5E-2	NA	NA	NA	NA	>Res	NA	>Res	>Res		<1
1634-04-4	Methyl t-Butyl Ether	1.1E+1	NA	NA	NA	NA	>Res	NA	>Res	>Res		<1
	Toluene	2.7E-2	NA	NA	NA	NA	>Res	NA	>Res	>Res		<1
1330-20-7	Xylene (mixed isomers)	8.7E-2	NA	NA	NA	NA	>Res	NA	>Res	>Res		<1
			>Res	indicates risk	-based target con	centration grea	iter than constitu	uent residual s	aturation value			

Software: GSI RBCA Spreadsheet

Serial: G-225-ZRX-486

Version: 1.0.1

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

· 06 Tier/

		RBCA	A SITE ASSESSMENT						Tier 1 Worksheet 6.3				
Site Name: F	former Tosco (former Unocal) SS # 18	371	Completed B	ly: David J. Vo	essier								
Site Location	: 96 MacArthur Blvd., Oakland, Ca.		Date Comple	ted: 11/23/19	98							1 OF 1	
G	ROUNDWATER RBSL V	Target Risk (Class A & B) 1.0E-6						Celculation Option: 1					
			····		L Results For Com	plete Exposure	Pathways ("x" if	Complete)	******				
CONSTITUENTS OF CONCERN		Representative Concentration	Groundwater ingestion					rdwater Volatilization Applica to Outdoor Air RBS		RBSL Exceeded	Required CRF		
CAS No.	Name	(mg/L)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site) (PEL)	Residential (on-site)	Commercial: (on-site) (PEL)	(mg/L	*■* If yes	Only if "yes" left	
71-43-	2 Benzene	2.1E-1	NA	NA	NA	NA	4.6E+2	NA	>Soi	4.6E+2		<1	
100-41-	4 Ethylbenzene	2.7E-2	NA	NA	NA	NA	>So!	NA	>Sol	>Sol		<1	
1634-04-	4 Methyl t-Butyl Ether	4.5E+1	NA	NA	NA	NA	>Sol	NA	>Sol	>Sol		<1	
108-88-	3 Toluene	9.5E-2	NA	NA	NA	NA	>Sol	NA	>Sol	>Sol_	П	<1	
1330-20-	7 Xylene (mixed isomers)	8.4E-2	NA	NA	NA	NA	>So!	NA	>Sci	>Sol		<1	

>Sol indicates risk-based target concentration greater than constituent solubility

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-225-ZRX-488

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.