RO 455

July 30, 2004

TRC Project No. 42016101

Mr. Don Hwang Alameda County Health Services 1131 Harbor Bay Parkway Alameda, CA 94502-6577

RE: Quarterly Status Report - Second Quarter 2004

76 Service Station #1871, 96 Macarthur Boulevard, Oakland, California

Alameda County

Dear Mr. Hwang:

On behalf of ConocoPhillips Company (ConocoPhillips), TRC is submitting the Second Quarter 2004 Quarterly Status Report for the subject site, shown on attached Figure 3 through 5.

PREVIOUS ASSESSMENTS

The site is located on the north corner of the intersection of MacArthur Boulevard and Harrison Street in Oakland, California. The site is currently an operating service station.

May 1992: Roux Associates (Roux) performed a dispenser and product piping modification project.

October 1992: Roux installed three 4-inch diameter groundwater monitoring wells onsite.

January 1993: Quarterly groundwater sampling and monitoring began.

August 1994: A 280-gallon single-wall steel waste oil underground storage tank (UST) was replaced with a 550-gallon double-wall fiberglass UST. Conformation sampling was performed.

February 1996: The Alameda County Health Care Service Agency (ACHCSA) approved Unocal's request to reduce the groundwater monitoring and sampling program from quarterly to semiannually (KEI, 1996).

March 1996: Two monitoring wells were installed at the site.

May 1998: John's Excavating of Santa Rosa, California removed all underground and aboveground equipment and facilities. Facilities included two 12,000-gallon double-wall steel gasoline USTs, one 550-gallon double-wall steel waste oil UST, two hydraulic lifts, two dispenser islands and related single-wall product piping, and one service station building. Gettler-Ryan Inc.

QSR – Second Quarter 2004 76 Service Station #1871, Oakland, California July 30, 2004 Page 2

(GR) personnel performed soil and groundwater sampling activities in conjunction with the station demolition. A total of 1,252.78 tons of soil were removed from the site during demolition activities and transported to Forward Landfill for disposal.

September 1998: Two wells that were damaged during site demolition activities were drilled out and the boreholes backfilled with neat cement to grade. In addition, one soil boring was advanced onsite to a total depth of 16.5 feet below ground surface (bgs). Groundwater was encountered at approximately 10.5 feet bgs. Soil and groundwater samples were collected for use in a Risk Based Corrective Action (RBCA) analysis for the site.

February 1999: GR performed a RBCA evaluation. The RBCA evaluation determined that, since the site was scheduled for construction of a fuel dispensing facility covered with concrete and asphalt and no groundwater receptors were located within a .25 mile radius of the site, the potential threat to public health and environment was not of significant concern.

June 1999: GR installed three offsite monitoring wells, and advanced nine soil borings on and near the site. Depth-discrete soil and groundwater samples were collected.

April 2002: An ozone injection system was installed and activated at the site.

September 2003: Operations and maintenance responsibilities for the remediation system were transferred to SECOR International Inc. (SECOR).

October 2003: Site environmental consulting responsibilities were transferred to TRC.

SENSITIVE RECEPTORS

According to the RBCA evaluation, no groundwater receptors were located within a ¼mile radius of the site. No other sensitive receptor survey has been identified.

MONITORING AND SAMPLING

One onsite and six offsite wells are currently monitored quarterly. All wells were sampled this quarter. The groundwater gradient and flow direction were 0.05 foot/foot to the southwest. These data were consistent with historical data.

CHARACTERIZATION STATUS

Total purgeable petroleum hydrocarbons (TPPH) were detected in five of seven wells, with a maximum concentration of 3,400 micrograms per liter (µg/l) in offsite well MW-7.

Benzene was detected in one of seven wells, with a maximum concentration of 1.8 μ g/l in onsite well MW-1.

QSR – Second Quarter 2004 76 Service Station #1871, Oakland, California July 30, 2004 Page 3

Methyl tertiary butyl ether (MTBE) was detected in six of seven wells, with a maximum concentration of 5,900 µg/l in offsite well MW-6.

Hydrocarbon impacts are not fully delineated offsite. Perimeter downgradient monitoring well MW-11 was non-detect for benzene, TPPH, and MTBE. Perimeter downgradient monitoring well MW-10 was non-detect for benzene and TPPH, and had low levels of MTBE. Perimeter downgradient monitoring well MW-9 contained 850 μg/l MTBE and 510 μg/l TPPH and was non-detect for benzene.

REMEDIATION STATUS

April 2002: GR installed an ozone sparging system utilizing 10 ozone sparge wells completed to maximum depths of 25 to 30 feet bgs. The system was activated on April 8, 2002. Since then approximately 112 pounds of ozone have been injected.

Second Quarter 2004 Evaluation: Since system activation, hydrocarbon concentrations have declined in MW-1 and MW-6. Hydrocarbon concentrations in MW-7 initially increased, then decreased, and have been relatively stable over the last year. Petroleum hydrocarbon concentrations in perimeter downgradient monitoring wells MW-9 through MW-11 have remained stable.

RECENT CORRESPONDENCE

No correspondence this quarter.

CURRENT QUARTER ACTIVITIES

April 2, 2004: TRC performed groundwater monitoring and sampling. Wastewater generated from well purging and equipment cleaning was stored at TRC's groundwater monitoring facility in Concord, California, and transported by Onyx to the ConocoPhillips Refinery in Rodeo, California, for treatment and disposal.

April-June 2004: SECOR performed operations and maintenance activities on the ozone sparging system throughout the quarter. Approximately 9.36 pounds of ozone was injected during the second quarter. No waste was generated at the site.

NEXT QUARTER ACTIVITIES

Continue quarterly monitoring and sampling to assess plume stability and concentration trends.

Continue operating the ozone sparging system to reduce hydrocarbon mass in the subsurface. Continue sampling of monitoring wells MW-1 and MW-7 to aid in evaluation of the ozone sparging system.

QSR - Second Quarter 2004 76 Service Station #1871, Oakland, California July 30, 2004 Page 4

If you have any questions regarding this report, please call Roger Batra at (925) 688-2466.

Sincerely,

TRC

Roger Batra

Senior Project Manager

Roger Poutra

Barbara Moed, R.G.

Senior Project Geologist

Attachments:

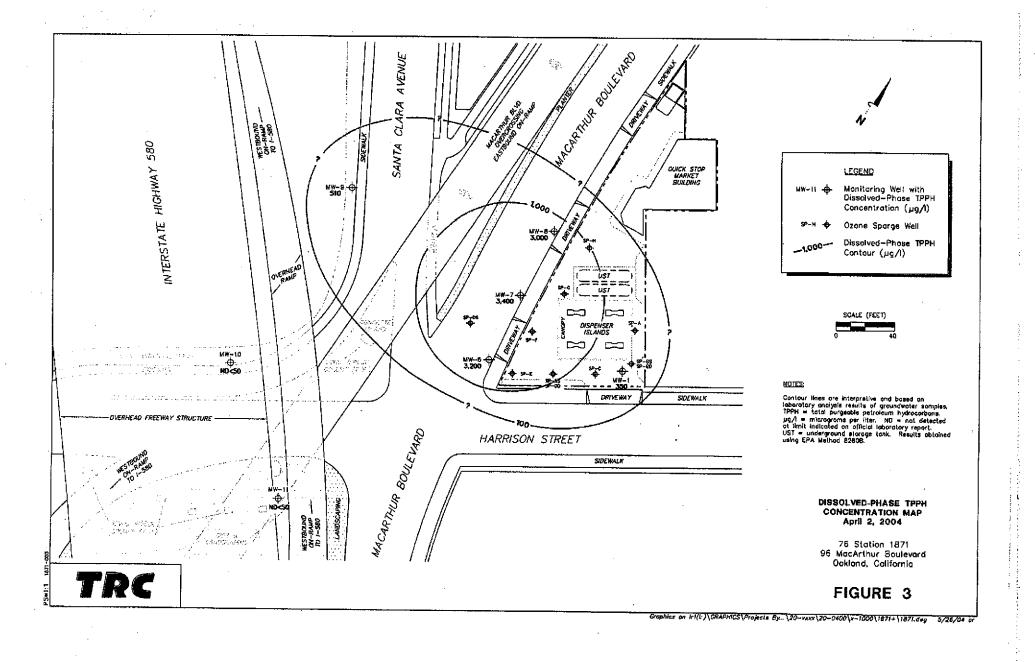
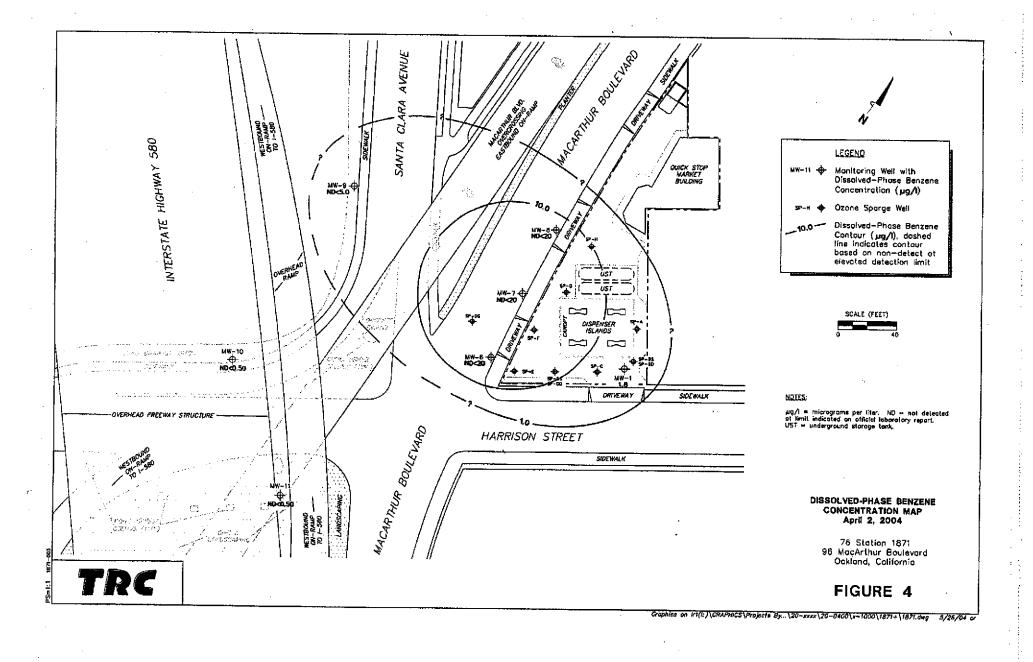
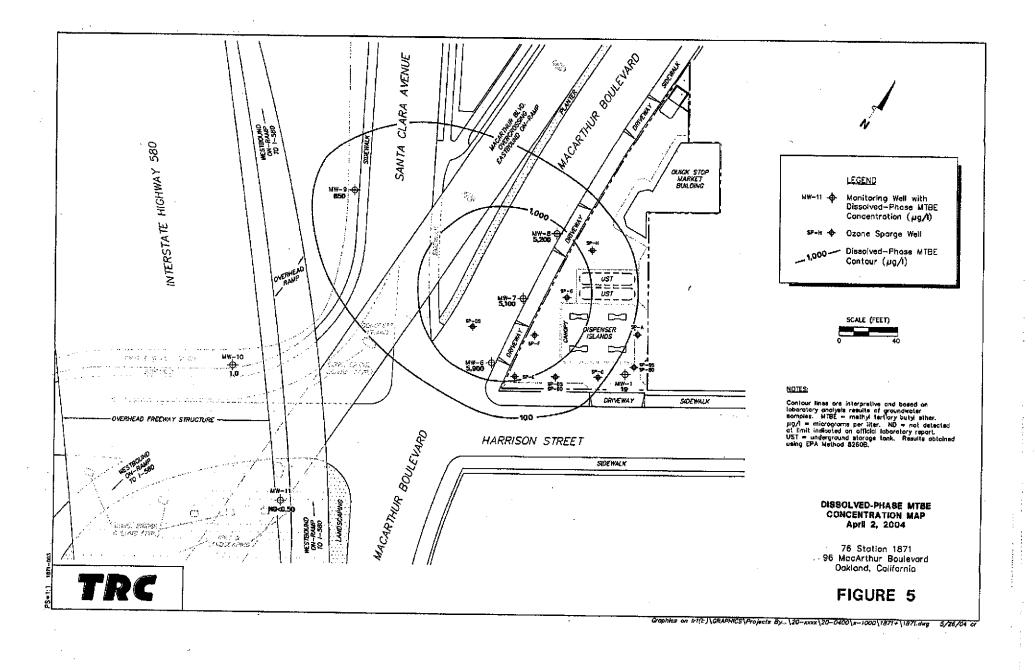

Figure 3 – Dissolved-Phase TPPH Concentration Map, April 2, 2004, from Second Quarter 2004 Fluid Level Monitoring and Sampling Report, dated May 25, 2004 by TRC.

Figure 4 – Dissolved-Phase Benzene Concentration Map, April 2, 2004, from Second Quarter 2004 Fluid Level Monitoring and Sampling Report, dated May 25, 2004 by TRC.


Figure 5 – Dissolved-Phase MTBE Concentration Map, April 2, 2004, from Second Quarter 2004 Fluid Level Monitoring and Sampling Report, dated May 25, 2004 by TRC.


Thomas Kosel, ConocoPhillips (hard copy and electronic upload) cc:

Compared the Compared Compared States and the Compared

EMATION TO COLUMN

February 20, 2004

ConocoPhillips Company 76 Broadway Sacramento, CA 95818

ATTN:

MR. THOMAS H. KOSEL

SITE:

76 STATION 1871

96 MACARTHUR BOULEVARD

OAKLAND, CALIFORNIA

RE:

QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2004

Dear Mr. Kosel:

Please find enclosed our Quarterly Monitoring Report for 76 Station, located at 96 MacArthur Boulevard, Oakland, California. If you have any questions regarding this report, please call us at (949) 753-0101.

Sincerely,

TRC

Anju Farfan

QMS Operations Manager

RECEIVED

MAR 1 5 2004

A.C.W.D. ENGINEERING DEPT.

CC:

Alameda County Health Care Services

Barbara Moed, TRC

Enclosures 1871R02.QMS

ND CODE

FIRST QUARTER 2004 FLUID LEVEL MONITORING AND GROUNDWATER SAMPLING REPORT

February 20, 2004

76 STATION 1871 96 MacArthur Boulevard Oakland, California

Prepared For:

Mr. Thomas H. Kosel CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

Senior Project Geologist, Irvine Operations

RECEIVED

MAR 1 5 2004

A.C.W.D. ENGINEERING DEPT.

GROUNDWATER MONITORING REPORT

	LIST OF ATTACHMENTS											
Summary Sheet	Summary of Gauging and Sampling Activities											
Tables	Table Key Table 1: Summary of Groundwater Levels and Chemical Analysis Results Table 2: Historic Groundwater Levels and Chemical Analysis Results Table 3: Summary of Additional Chemical Analysis Results											
Figures	Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase Hydrocarbon Concentration Map											
Graphs	Benzene Concentrations vs. Time Hydrographs											
Field Activities	General Field Procedures Groundwater Sampling Field Notes											
Laboratory Reports	Official Laboratory Reports Quality Control Reports Chain of Custody Records											
Statement	Purge Water Transport and Disposal Limitations											

Summary of Gauging and Sampling Activities January 2004 through March 2004

76 Station 1871 96 MacArthur Oakland, CA

Oakianu, CA	
Information:	
Site:	76 Station
	96 MacArthur
	Oakland, CA
Project Coordinator/Phone Number:	Thomas Kosel/916-558-7666
Groundwater wells onsite:	1
Groundwater wells offsite:	6
Activity:	
Sampling consultant:	TRC
Date(s) sampled:	1/7/04
Groundwater wells gauged:	7
Groundwater wells sampled:	7
Purging method:	diaphragm pump
Treatment/disposal method during sampling event:	Onyx/Rodeo Unit 100
Free product pumpouts other than sampling event:	No
Treatment/Disposal method during free product pumpouts:	N/A
Hydrogeology:	
Minimum depth to groundwater (feet bgs):	6.22
Maximum depth to groundwater (feet bgs):	16.2
Average groundwater elevation (feet relative to mean sea level):	70.07
Average change in groundwater elevations since previous event (feet):	1.30
Groundwater gradient and flow direction:	0.05 ft/ft, southwest
Previous gradient and/or flow direction (and date):	0.02 ft/ft, southwest (10/2/03)
indwater Condition (Benzene Maximum Contaminant Level [MCL] = 1.0	μg/l}
Wells with benzene concentrations below MCL:	5
Wells with benzene concentrations at or above MCL:	2
Minimum benzene concentration (µg/l):	ND
Maximum benzene concentration (μg/l):	690 (MW-1)
	,
Minimum MTBE concentration (µg/l): Maximum MTBE concentration (µg/l):	ND 19000 (MW-7)
waxinum wit be concentration (µg/i):	19000 (1000-7)
Minimum TPPH concentration (µg/I):	ND
Maximum TPPH concentration (µg/l):	34000 (MW-1)
Groundwater wells with free product:	0
Minimum free product thickness (feet):	0
Maximum free product thickness (feet):	0

This report presents the results of groundwater monitoring and sampling activities performed by TRC. Please contact the primary consultant for other specific information on this site.

TABLES

TABLE KEY

ABBREVIATIONS / SYMBOLS

LPH = liquid-phase hydrocarbons

μg/l = micrograms per liter mg/l = milligrams per liter

ND = not detected at or above laboratory detection limit

DTSC = Department of Toxic Substances Control

N/A = not applicable

Trace = less than 0.01 foot of LPH in well

USTs = underground storage tanks

-- e not analyzed, measured, or collected

TPH-G = total petroleum hydrocarbons with gasoline distinction
BTEX = benzene, toluene, ethylbenzene, and total xylenes
TPH-D = total petroleum hydrocarbons with diesel distinction

TRPH = total recoverable petroleum hydrocarbons

MTBE = methyl tertiary butyl ether
TAME = tertiary amyl methyl ether
ETBE = ethyl tertiary butyl ether

DIPE = di-isopropyl ether
TBA = tertiary butyl alcohol
1,1-DCA = 1,1-Dichloroethane
1,2-DCA = 1,2-Dichloroethane
1,1-DCE = 1,1-Dichloroethene

1,2-DCE = cis- and trans-1,2-Dichloroethene

PCE = tetrachloroethene TCA = trichloroethane TCE = trichloroethene

PCB = polychlorinated biphenyls

TPPH = total purgeable petroleum hydrocarbons

NOTES

Elevations are in feet above mean sea level.

Groundwater elevation for wells with LPH is calculated as follows: Surface elevation – depth to water $+ (0.75 \times LPH \text{ thickness})$.

Concentration Graphs have been modified to plot non-detect results at the reporting limit stated in the official laboratory report. All non-detect results prior to the Second Quarter 2000 were plotted at $0.1 \,\mu g/l$ for graphical display.

J = estimated concentration, value is between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL)

REFERENCE

TRC began groundwater monitoring and sampling activities in October 2003. Historical data for 76 Station 1871 was provided by Gettler-Ryan Inc, Dublin, California, in an excel table received in September 2003.

Table 1
SUMMARY OF GROUNDWATER LEVELS AND CHEMICAL ANALYSIS RESULTS
January 7, 2004
76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	$(\mu g/l)$	(μg/l)	(μg/l)	$(\mu g/l)$	(μg/l)	(µg/l)	(μg/l)	
MW-1		(Screen I	nterval in f	eet: 9.5-2	1.5)									
1/7/04	86.99	12.30	0.00	74.69	2.65		34000	690	41	1600	5200		2600	
MW-6		(Screen I	nterval in f	eet: 5.0-2	5.0)									
1/7/04	79.67	8.08	0,00	71.59	1.84		140	2.4	ND<1.0	8.6	13		86	
MW-7		(Screen I	nterval in f	eet: 5.0-25	5.0)									
1/7/04	80.67	7.27	0.00	73.40	2.62		ND<20000	ND<200	460	ND<200	540		19000	
MW-8		(Screen I	nterval in f	eet: 5.0-25	5.0)									
1/7/04	81.71	8.21	0.00	73.50	2.20		ND<5000	ND<50	ND<50	ND<50	340		3700	
MW-9		(Screen I	nterval in f	eet: DNA))									
1/7/04	82,07	14.65	0.00	67.42	1.63		ND<1000	ND<10	ND<10	ND<10	ND<20	**	1200	
MW-10		(Screen I	nterval in f	eet: DNA)	ŀ									
1/7/04	74.98	6.22	0.00	68.76	1.41		54	ND<0.50	ND<0.50	1.3	4.5		ND<2.0	
MW-11		(Screen Interval in feet: DNA)												
1/7/04	77.31	16.20	0.00	61.11	-3.24		63	ND<0.50	ND<0.50	0.68	2.2		ND<2.0	

Table 2
HISTORIC GROUNDWATER LEVELS AND CHEMICAL ANALYSIS RESULTS
November 1992 Through January 2004

76 Station 1871

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	ТРРН 8260В	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	
MW-1	(Screen Int	erval in fee	t: 9.5-24.5)									
1/25/9	3 81.18		0.00			120000		2100	4600	4900	22000			
4/29/9	3 81.18	13.71	0.00	67.47		100000		850	2000	4300	19000			
7/16/9	3 81.18	14.51	0.00	66.67	-0.80	29000		590	560	980	4200			
10/19/9	93 81.18	15.20	0.00	65.98	-0.69	67000		1400	2600	2900	5000			
1/20/9	4 81.18	15.17	0.00	66.01	0.03	92000		1200	3000	3400	17000			
4/13/9	4 81.18	14.44	0.00	66.74	0.73	51000		1000	2600	3200	15000			
7/13/9	4 81.18	14.88	0.00	66.30	-0.44	35000		550	150	1400	5700	••		
10/10/9	94 81.18	15.55	0.00	65.63	-0.67	52000		1000	810	3300	12000			
1/10/9	5 81.18	12.44	0.00	68.74	3.11	810		16	18	59	250			
4/17/9	5 81.18	12.68	0.00	68.50	-0.24	48000	**	880	530	2500	11000			
7/24/9	5 81.18	13.97	0.00	67.21	-1.29	48000		1500	420	2700	9700			
10/23/	95 81.18	14.85	0.00	66.33	-0.88	47000		780	210	2100	11000	270		
1/18/9	6 81.18	14.21	0.00	66.97	0.64	30000		1500	500	3500	13000	2400		
4/18/9	6 86.24	13.40	0.00	72.84	5.87	66000		2700	2200	3100	13000	57000		
7/24/9	6 86.24	14.15	0.00	72.09	-0.75	5600		2100	ND	160	160	24000		
10/24/9	96 86.24	14.85	0.00	71.39	-0.70	110000		7500	8000	3300	14000	58000		
1/28/9	7 86.24	11.25	0.00	74.99	3.60	94000		7700	19000	3100	15000	120000		
7/29/9	7 86.24	14.67	0.00	71.57	-3.42	ND		ND	ND	ND	ND	70000		
1/14/9	8 86.24	12.27	0.00	73.97	2.40	85000		6100	10000	3000	17000	110000		
7/1/9	86.24	14.32	0.00	71.92	-2.05	110000		8700	12000	2700	15000	110000		
6/18/9	9 86.24	13.93	0.00	72.31	0.39	49000		6900	6500	380	12000	72000	47000	
1/21/0	0 86.24	15.05	0.00	71.19	-1.12	63700		5520	2000	2640	13100	57100		
7/10/0	0 86.24	13.97	0.00	72.27	1.08	67800		9910	4120	3330	16100	67400	54000	
1/4/0	1 86.24	14.92	0.00	71.32	-0.95	63900		6270	784	2,670	12,900		38100	
7/16/0	1 86.24	14.32	0.00	71.92	0.60	66000		7100	330	2300	9800	36000	41000	

Page 1 of 7

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)
MW-1	continued												
1/31/0	2 86.99	13.54	0.00	73.45	1.53	42000		5800	1800	2000	8200	26000	26000
4/11/0	2 86.99	13.64	0.00	73.35	-0.10	58000		2900	1200	1800	10000		19000
7/11/0	2 86.99	13.96	0.00	73.03	-0.32		5900	330	ND<10	230	600	3400	3400
10/15/0	2 86.99	14.71	0.00	72.28	-0.75		470	16	ND<2.5	14	16	390	390
1/14/0	3 86.99	12. 7 7	0.00	74.22	1.94		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	49	49
4/16/0	3 86.99	13.18	0.00	73.81	-0.41		510	57	0.62	29	61	160	160
7/16/0	3 86.99	14.26	0.00	72.73	-1.08		27000	260	23	730	3200	1200	1200
10/2/0	3 86.99	14.95	0.00	72.04	-0.69		45000	1400	32	2900	7600		3200
1/7/04	86.99	12.30	0.00	74.69	2.65		34000	690	41	1600	5200		2600
MW-2	(5	Screen Inte	erval in fee	t: DNA)									
11/3/9	2 76.61					140	**	2.2	ND	ND	2		
1/25/9	3 76.61					2100		56	1.1	90	140		
4/29/9	3 76.61	9.73	0.00	66.88		1500		290	ND	33	11		
7/16/9	3 76.61	10.17	0.00	66.44	-0.44	510		17	0.6	3.2	2.5		
10/19/9	76.61	11.18	0.00	65.43	-1.01	670		24	1.1	7.7	23		
1/20/9	4 76.61	11.12	0.00	65.49	0.06	820		97	ND	12	ND		
4/13/9	4 76.61	10.12	0.00	66.49	1.00	550		71	ND	5.1	1.3		
7/13/9	4 76.61	10.86	0.00	65.75	-0.74	2000		490	ND	17	13		**
10/10/9	94 7 6.61	11.48	0.00	65.13	-0.62	2 300		340	ND	25	ND		**
1/10/9	5 76.61	8.71	0.00	67.90	2.77	850	**	3.8	ND	8.5	1.3		
4/17/9	5 76.61	8.90	0.00	67.71	-0.19	1300		4.7	ND	8.3	1.2		4 10
7/24/9	5 76.61	9.94	0.00	66.67	-1.04	960		20	ND	4.2	6.2		SM ME
10/23/9	95 76.61	10.70	0.00	65.91	-0.76	ND		ND	ND	ND	ND	19	
1/18/9	6 76.61	10.11	0.00	66.50	0.59	900		300	86	7.6	18	4300	
4/18/9	6 81.66	9.27	0.00	72.39	5.89	18000		3600	680	890	4100	19000	
7/24/9	6 81.66	10.02	0.00	71.64	-0.75	100000		13000	21000	2700	16000	120000	
10/24/9	96 81.66	10.78	0.00	70.88	-0.76	800		110	17	11	20	20000	
1/28/9	7 81.66	7.70	0.00	73.96	3.08	45000		2400	2900	2000	7600	29000	
7/29/9	7 81.66	10.28	0.00	71.38	-2.58	ND		1.2	0.72	0.63	0.62	17000	

Comments

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	
	continued													
1/14/9			0.00	73.03	1.65	14000		1000	150	790	3300	23000		
7/1/98		9.53	0.00	72.13	-0.90	2700		100	ND	180	78	7100		
6/18/9	9													Well was destroyed
MW-3	,		erval in fee	t: DNA)										
11/3/9						2100		120	15	38	200			
1/25/9						2300		80	1	55	52			
4/29/9				66.11		4500		1700	ND	200	140			
7/16/9	3 77.48	12.09		65.39	-0.72	4000		1100	28	52	70			
10/19/9	77.48	12.69		64.79	-0.60	3800		42	ND	50	56			
1/20/9	4 77.48	12.65		64.83	0.04	4200		11	ND	21	15			
4/13/9	4 77.48	12.02	0.00	65.46	0.63	4200		210	ND	36	53			
7/13/9	4 77.48	12.46	0.00	65.02	-0.44	1800		16	16	ND	21			
10/10/9	77.48	12.98	0.00	64.50	-0.52	4300		11	ND	12	ND			
1/10/9	5 77.48	10.42	0.00	67.06	2.56	310		4.6	ND	3.5	2.1			
4/17/9	5 77.48	10.42	0.00	67.06	0.00	7800		ND	4.6	300	450			
7/24/9	5 77.48	11.76	0.00	65.72	-1.34	3200		170	ND	22	16			
10/23/9	95 77.48	12.50	0.00	64.98	-0.74	3900		55	ND	19	11	450 0		
1/18/9	6 77.48	11.79	0.00	65.69	0.71	2200		270	33	26	18	5500		
4/18/9	6 82.55	11.30	0.00	71.25	5.56	6000		1800	ND	100	230	48000		
7/24/9	6 82.55	12.17	0.00	70.38	-0.87	ND		2500	ND	ND	ND	71000		
10/24/	96 82.55	12.65	0.00	69.90	-0.48	3800		660	ND	15	ND	65000	••	
1/28/9	7 82.55	9.50	0.00	73.05	3.15	4400		250	13	87	47	54000		
7/29/9	7 82.55	11.99	0.00	70.56	-2.49	ND		3500	ND	220	ND	75000		
1/14/9	8 82.55	10.30	0.00	72.25	1.69	ND		430	ND	100	380	37000		
7/1/9	82.55	11.70	0.00	70.85	-1.40	ND		430	ND	ND	ND	45000		
6/18/9	9													Well was destroyed
MW-4	ſ	Screen Int	erval in fee	t: DNA)										
4/18/9			0.00	72.21		ND		630	ND	ND	ND	18000		
7/24/9	6 82.04	10.47	0.00	71.57	-0.64	ND		ND	ND	ND	5.2	3900		

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	$(\mu g/l)$	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	
	continued													
10/24/	96 82.04	11.14	0.00	70.90	-0.67	ND		ND	ND	ND	ND	6300		
1/28/9	7 82.04	7.94	0.00	74.10	3.20	1200		490	ND	17	6.8	16000		
7/29/9		10.86	0.00	71.18	-2.92	50		1.5	0.61	0.73	0.78	15000		
1/14/9		8.73	0.00	73.31	2.13	ND		ND	ND	ND	ND	5200		
7/1/9		10.51	0.00	71.53	-1.78	ND		ND	ND	ND	ND	640		
6/18/9	9 82.04				M A4									Well was destroyed
MW-5		Screen Inte	erval in feet	t: DNA)										
4/18/9	6 81.80	9.65	0.00	72.15	**	31000		5500	1400	1700	8100	66000		
7/24/9	6 81.80	10.80	0.00	71.00	-1.15	32000		6400	ND	1600	6100	120000		
10/24/	96 81.80	11.40	0.00	70.40	-0.60	17000		6900	ND	970	130	84000		
1/28/9	7 81.80	7.76	0.00	74.04	3.64	19000		6100	62	82	310	160000	=-	
7/29/9	7 81.80	11.58	0.00	70.22	-3.82	ND	••	ND	ND	ND	ND	71000		
1/14/9	8 81.80	9.08	0.00	72.72	2.50	ND		3600	ND	ND	ND	80000		
7/1/98	81.80	11.25	0.00	70.55	-2.17	6400		2100	21	120	330	61000		•
6/18/9	9 81.80													Well was destroyed
MW-6	(8	Screen Inte	rval in feet	: 5.0-25.0))									
6/18/9	9 78.91	9.30	0.00	69.61		2100	- -	21	29	ND	47	97000	71000	
1/21/0	0 78.91	9.37	0.00	69.54	-0 .07	1880		143	31.2	106	196	41200	48800	
7/10/0	0 78.91	8.94	0.00	69.97	0.43	5710		869	209	301	1430	22200	19500	
1/4/0	l 78.91	9.21	0.00	69.70	-0.27	ND		ND	ND	ND	ND		9510	
7/16/0	1 78.91	9.42	0.00	69.49	-0.21	4800		200	21	150	440	29000	34000	
1/31/0	2 78.91	8.50	0.00	70.41	0.92	12000		250	92	500	1500	26000	31000	
4/11/0	2 79.67	9.08	0.00	70.59	0.18	3600		42	32	39	280	120000		
7/11/0	2 79.67	9.70	0.00	69.97	-0.62		12000	ND<100	ND<100	ND<100	ND<200		15000	
10/15/6	79.67	9.96	0.00	69.71	-0.26		1300	ND<10	ND<10	ND<10	ND<20		3200	
1/14/0	3 79.67	8.31	0.00	71.36	1.65		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	+-	120	
4/16/0	3 79.67	8.21	0.00	71.46	0.10		270	ND<0.50	ND<0.50	ND<0.50	1.3		15	
7/16/0	3 79.67	9.43	0.00	70.24	-1.22		290	39	0.6	ND<0.50	15		150	
10/2/0	3 79.67	9.92	0.00	69.75	-0.49		200	ND<1.0	ND<1.0	ND<1.0	ND<2.0		220	

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	ТРН-G	ТРРН 8260В	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	
MW-6 1/7/04	continued 79.67	8.08	0.00	71.59	1.84		140	2.4	ND<1.0	8.6	13		86	
MW-7	•		erval in feet	t: 5.0-25.0)									
6/18/9			0.00	71.22		ND		ND	ND	ND	ND	16000	13000	
1/21/0		9.30	0.00	70.62	-0.60	ND		ND	ND	ND	ND	12300	18200	
7/10/0		8.72	0.00	71.20	0.58	ND		ND	ND	ND	ND	16900	13800	
1/4/01			0.00	70.75	-0.45	ND		ND	ND	ND	0.719		37.3	
7/16/0		9.02	0.00	70.90	0.15	ND		ND	ND	ND	ND	7200	4700	
1/31/0		7.91	0.00	72.01	1.11	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	8900	9900	
4/11/0											**			Inaccessible
7/11/0													••	Inaccessible
10/15/0		9.81	0.00	70.86			ND<5000	ND<50	ND<50	ND<50	ND<100		12000	
1/14/0		7.89	0.00	72.78	1.92		ND<25000	ND<250	ND<250	ND<250	ND<500		33000	
4/16/0		8.04	0.00	72.63	-0.15		ND<25000	ND<250	ND<250	ND<250	ND<500		37000	
7/16/0		9.19	0.00	71.48	-1.15		25000	ND<250	ND<250	ND<250	ND<500		38000	
10/2/0	3 80.67	9.89	0.00	70.78	-0.70		17000	ND<100	ND<100	ND<100	ND<200		22000	
1/7/04	80.67	7.27	0.00	73.40	2.62		ND<20000	ND<200	460	ND<200	540		19000	
MW-8	(5	Screen Int	erval in feet	: 5.0-25.0))									
6/18/9	9 80.96	9.10	0.00	71.86		ND		ND	ND	ND	ND	290	160	
1/21/0	0 80.96	10.00	0.00	70.96	-0.90	ND		ND	ND	ND	1.09	224	221	
7/10/0	0 80.96	7.94	0.00	73.02	2.06	ND		ND	ND	ND	ND	234	223	
1/4/01	80.96	9.76	0.00	71.20	-1.82	3790		141	8.92	128	375		34200	
7/16/0	1 80.96	9.15	0.00	71.81	0.61	ND		ND	ND	ND	ND	66	70	
1/31/0	2 80.96	7.99	0.00	72.97	1.16	5900		86	ND<10	630	390	670	700	
4/11/0	2 81.71	9.00	0.00	72.71	-0.26	250		2.0	ND<0.50	38	2.2	410		
7/11/0	2 81.71	9.60	0.00	72.11	-0.60		110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		120	
10/15/0	2 81.71	10.60	0.00	71.11	-1.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		21	
1/14/0	3 81.71	8.63	0.00	73.08	1.97		ND<250	2.6	ND<2.5	18	ND<5.0		430	
4/16/0	3 81.71	8.98	0.00	72.73	-0.35		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		18	
7/16/0	3 81.71	9.63	0.00	72.08	-0.65	4-	110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		140	

Page 5 of 7

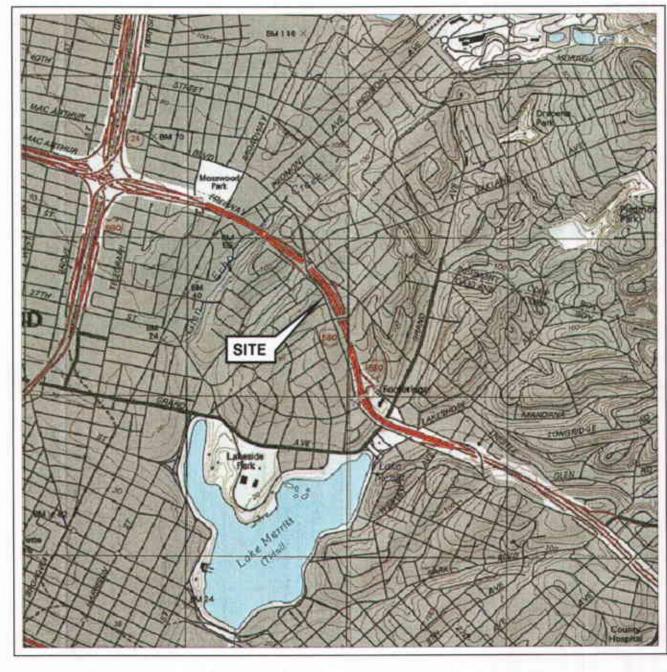
	Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B
19/20/3		(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	$(\mu g/l)$
MV-9 MV-													, -	
MW-9					71.30	-0.78				ND<0.50	ND<0.50	ND<1.0	••	78
1/31/02 82.07 14.72 0.00 67.35 ND<50 ND<505 ND<505 ND<505 ND<505 ND<605 ND<605 680 910 4/11/02 82.07 14.85 0.00 67.22 -0.13 ND<50 ND<505 ND>505 ND<505 ND>505 ND<505 ND<505 ND>505 ND<505 ND>505 ND<505 ND>505	1/7/04	81.71	8.21	0.00	73.50	2.20		ND<5000	ND<50	ND<50	ND<50	340		3700
			Screen Inte	rval in fee	t: DNA)									
7/11/02 8.0.7 15.39 0.00 66.68 0.54 $-$ 580 ND<5.0 ND<5.0 ND<5.0 ND<6.0 ND<6.0 $-$ 580 10/15/02 82.07 16.16 0.00 65.91 $-$ 0.77 $-$ 570 ND<5.0	1/31/02	2 82.07	14.72	0.00	67.35		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	680	910
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			14.85	0.00	67.22	-0.13	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	620	
1/14/03 82.07 14.75 0.00 67.32 1.41	7/11/02	2 82.07	15.39	0.00	66.68	-0.54		580	ND<5.0	ND<5.0	ND<5.0	ND<10		580
4/16/03 82.07 14.51 0.00 67.56 0.24 ND<500 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<10 860 ND<16/16/03 82.07 15.54 0.00 66.53 1.03 ND<18 ND<2500 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<10 860 ND<10/16/03 82.07 16.28 0.00 66.53 1.03 ND<18	10/15/0	2 82.07	16.16	0.00	65.91	-0.77		570	ND<5.0	ND<5.0	ND<5.0	ND<10		1400
7/16/03 82.07 15.54 0.00 66.53 -1.03 ND<2500 ND<25 ND<25 ND<25 ND<30 1300 10/2/03 82.07 16.28 0.00 65.79 -0.74 820 ND<5.0	1/14/03	82.07	14.75	0.00	67.32	1.41		ND<200	ND<2.0	ND<2.0	ND<2.0	ND<4.0		220
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4/16/03	82.07	14.51	0.00	67.56	0.24		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10		860
1/7/04 82.07 14.65 0.00 67.42 1.63 ND<100 ND<10 ND	7/16/03	82.07	15.54	0.00	66.53	-1.03		ND<2500	ND<25	ND<25	ND<25	ND<50		1300
MW-10 (Screen Interval in feet: DNA) 1/31/02 74.98 8.02 0.00 66.96 ND<50	10/2/03	82.07	16.28	0.00	65.79	-0.74		820	ND<5.0	ND<5.0	ND<5.0	ND<10		990
1/31/02	1/7/04	82.07	14.65	0.00	67.42	1.63		ND<1000	ND<10	ND<10	ND<10	ND<20		1200
4/11/02 74.98 7.60 0.00 67.38 0.42 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<2.5 7/11/02 74.98 8.91 0.00 66.07 -1.31 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 1.1 1 10/15/02 74.98 11.49 0.00 63.49 -2.58 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/14/03 74.98 8.47 0.00 66.51 3.02 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/14/03 74.98 7.92 0.00 67.06 0.55 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/16/03 74.98 7.03 0.00 67.95 0.89 ND<50 ND<50 ND<0.50	MW-10	(5	Screen Inte	rval in feet	: DNA)									
7/11/02 74.98 8.91 0.00 66.07 -1.31 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 1.1 10/15/02 74.98 11.49 0.00 63.49 -2.58 ND<50	1/31/02	74.98	8.02	0.00	66.96		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	1.2
10/15/02 74.98 11.49 0.00 63.49 -2.58 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/14/03 74.98 8.47 0.00 66.51 3.02 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/14/03 74.98 8.47 0.00 66.51 3.02 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/14/03 74.98 7.92 0.00 67.06 0.55 ND<50 ND<0.50	4/11/02	74.98	7.60	0.00	67.38	0.42	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	•••
1/14/03 74.98 8.47 0.00 66.51 3.02 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 4/16/03 74.98 7.92 0.00 67.06 0.55 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 7/16/03 74.98 7.03 0.00 67.95 0.89 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 10/2/03 74.98 7.63 0.00 67.35 -0.60 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/7/04 74.98 6.22 0.00 68.76 1.41 54 ND<50 ND<0.50 N	7/11/02	74.98	8.91	0.00	66.07	-1.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.1
4/16/03 74.98 7.92 0.00 67.06 0.55 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 ND<2.0 ND<1.0	10/15/0	2 74.98	11.49	0.00	63.49	-2.58	44	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0
7/16/03 74.98 7.03 0.00 67.95 0.89 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 10/2/03 74.98 7.63 0.00 67.35 -0.60 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/7/04 74.98 6.22 0.00 68.76 1.41 54 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 ND<0.50 ND<0	1/14/03	74.98	8.47	0.00	66.51	3.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0
10/2/03 74.98 7.63 0.00 67.35 -0.60 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/7/04 74.98 6.22 0.00 68.76 1.41 54 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 MW-11 (Screen Interval in feet: DNA) 1/31/02 77.31 11.71 0.00 65.60 ND<50 ND<50 ND<0.50	4/16/03	74.98	7.92	0.00	67.06	0.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0
1/7/04 74.98 6.22 0.00 68.76 1.41 54 ND<0.50 ND<0.50 1.3 4.5 ND<2.0 MW-11 (Screen Interval in feet: DNA) 1/31/02 77.31 11.71 0.00 65.60 ND<50 ND<0.50 ND	7/16/03	74.98	7.03	0.00	67.95	0.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0
MW-11 (Screen Interval in feet: DNA) 1/31/02 77.31 11.71 0.00 65.60 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<5.0 ND<1.0 4/11/02 77.31 11.95 0.00 65.36 -0.24 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<2.5 7/11/02 77.31 12.79 0.00 64.52 -0.84 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<0.50 10/15/02 77.31 13.67 0.00 63.64 -0.88 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/14/03 77.31 13.31 0.00 64.00 0.36 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0	10/2/03	74.98	7.63	0.00	67.35	-0.60		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0
1/31/02 77.31 11.71 0.00 65.60 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<5.0 ND<1.0 4/11/02 77.31 11.95 0.00 65.36 -0.24 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<2.5 7/11/02 77.31 12.79 0.00 64.52 -0.84 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<0.50 10/15/02 77.31 13.67 0.00 63.64 -0.88 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/14/03 77.31 13.31 0.00 64.00 0.36 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0	1/7/04	74.98	6.22	0.00	68.76	1.41		54	ND<0.50	ND<0.50	1.3	4.5		ND<2.0
1/31/02 77.31 11.71 0.00 65.60 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<5.0 ND<1.0 4/11/02 77.31 11.95 0.00 65.36 -0.24 ND<50 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<2.5 7/11/02 77.31 12.79 0.00 64.52 -0.84 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<0.50 10/15/02 77.31 13.67 0.00 63.64 -0.88 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/14/03 77.31 13.31 0.00 64.00 0.36 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0	MW-11	(S	Screen Inte	rval in feet	: DNA)									
7/11/02 77.31 12.79 0.00 64.52 -0.84 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<0.50 10/15/02 77.31 13.67 0.00 63.64 -0.88 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/14/03 77.31 13.31 0.00 64.00 0.36 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 ND<0.50	1/31/02						ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<1.0
10/15/02 77.31 13.67 0.00 63.64 -0.88 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 1/14/03 77.31 13.31 0.00 64.00 0.36 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0	4/11/02	77.31	11.95	0.00	65.36	-0.24	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	
1/14/03 77.31 13.31 0.00 64.00 0.36 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0	7/11/02	77.31	12.79	0.00	64.52	-0.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50
	10/15/0	2 77.31	13.67	0.00	63.64	-0.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0
4/16/03 77.31 14.08 0.00 63.23 -0.77 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0	1/14/03	77.31	13.31	0.00	64.00	0.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0
	4/16/03	77.31	14.08	0.00	63.23	-0.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0

Page 6 of 7

Comments

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPPH 8260B	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B	MTBE 8260B	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	
MW-11	continue	d												
7/16/0	3 77.31	12.98	0.00	64.33	1.10		65	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
10/2/0	77.31	12.96	0.00	64.35	0.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
1/7/04	77.31	16.20	0.00	61.11	-3.24		63	ND<0.50	ND<0.50	0.68	2.2		ND<2.0	
Trip Blank	: (S	creen Int	erval in feet	: DNA)										
7/10/00	0					ND		ND	ND	ND	ND	ND		

Table 3
SUMMARY OF ADDITIONAL CHEMICAL ANALYSIS RESULTS
76 Station 1871


Date Sampled	TPH-D	EDB	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Ethanol 8015B	Ethanol 8260B	H- Alkalinity	1,2 DCE	
	(µg/l)	(μg/l)	(μg/l)	(μ g/l)	(μg/l)	(μg/l)	(mg/l)	(μg/l)	(mg/l)	(μg/l)	
MW-1											
6/18/99		ND	ND	ND	ND	ND	ND		ND		
7/16/01		ND	ND	ND	ND	ND	ND				
1/14/03		ND<2.0	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<500				
7/16/03							NT><10000	**			
10/2/03								ND<25000			
1/7/04								ND<20000			
MW-4											
4/18/96	110										
7/24/96	ND										
10/24/96	ND								~~		
1/28/97	210					*-					
7/29/97	ND										
1/14/98	ND										
7/1/98	ND		7=								
MW-6											
6/18/99		ND	ND	ND	ND	ND	ND			ND	
7/16/01		ND	ND	ND	ND	ND	ND			ND	
7/11/02		ND<100	ND<100	ND<1000	ND<200	ND<100	ND<5000			ND<100	
1/14/03		ND<2.0	ND<2.0	ND<100	ND<2.0	ND<2.0	ND<500			ND<2.0	
7 /16/03							ND<500				
10/2/03								ND<1000			
1/7/04								ND<1000	4-		
MW-7											
6/18/99		ND	ND	ND	ND	ND	ND			ND	
7/16/01		ND	ND	ND	ND	ND	ND			ND	
1/14/03		ND<1000	ND<1000	ND<50000	ND<1000	ND<1000	ND<250000			ND<1000	

1871

Page 1 of 2

Date Sampled	TPH-D	EDB	TAME 8260B	TBA 8260B	DIPE 8260B	ETBE 8260B	Ethanol 8015B	Ethanol 8260B	H- Alkalinity	1,2 DCE	
	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(mg/l)	(µg/l)	(mg/l)	(μg/l)	
MW-7	continued										
7/16/03				**			ND<250000				
10/2/03				**				ND<100000			
1/7/04								ND<200000			
MW-8											
6/18/99		ND	ND	ND	ND	ND	ND			ND	
7/16/01		ND	ND	ND	ND	ND	ND			ND	
1/14/03		ND<10	ND<10	ND<500	ND<10	ND<10	ND<2500			ND<10	
7/16/03							ND<500				
10/2/03				. 				ND<500		**	
1/7/04	••							ND<50000			
MW-9											
10/2/03								ND<5000			
1/7/04								ND<10000			
MW-10											
1/31/02		ND<7.1	ND<7.1	ND<140	ND<7.1	ND<7.1	ND<3600			ND<7.1	
1/14/03		ND<8.0	ND<8.0	ND<400	ND<8.0	ND<8.0	ND<2000		••	ND<8.0	
7/16/03							ND<25000				
10/2/03					~~			ND<500			
1/7/04	•-				**			ND<500			
MW-11											
10/2/03					**			ND<500			
1/7/04	**							ND<500			

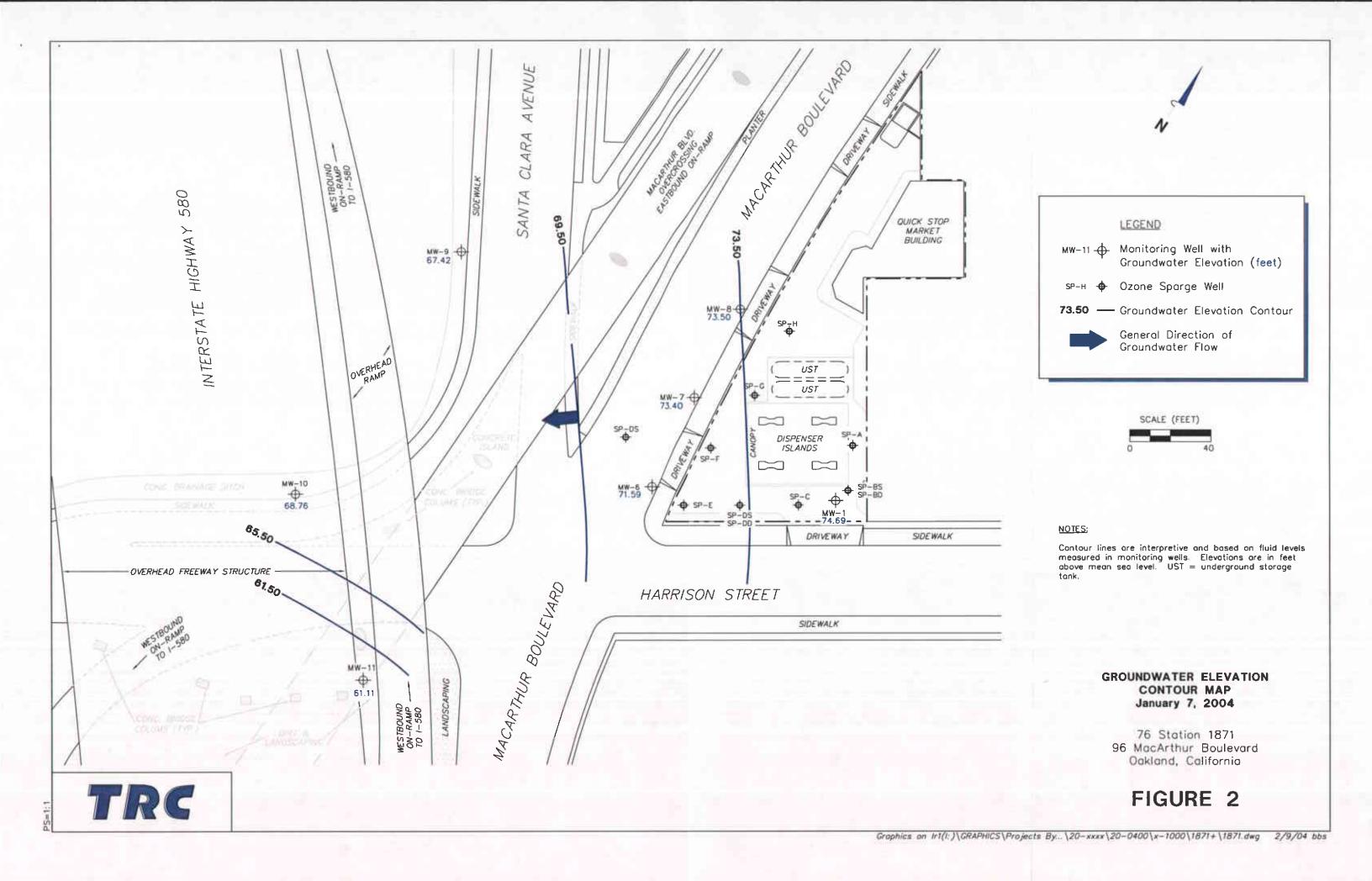
FIGURES

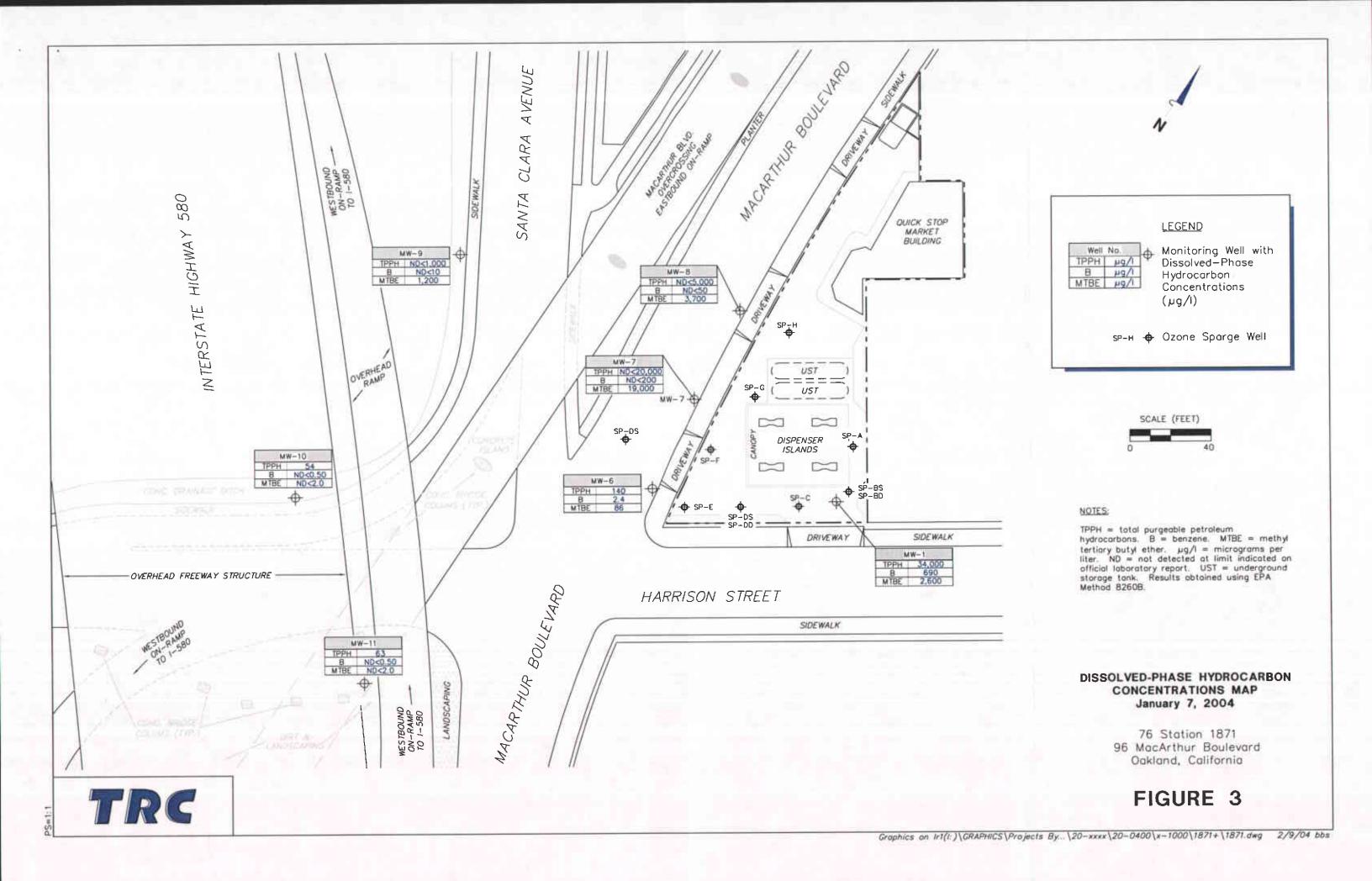
3/4 1 MILE 1/2 1/4

SCALE 1: 24,000

SOURCE:

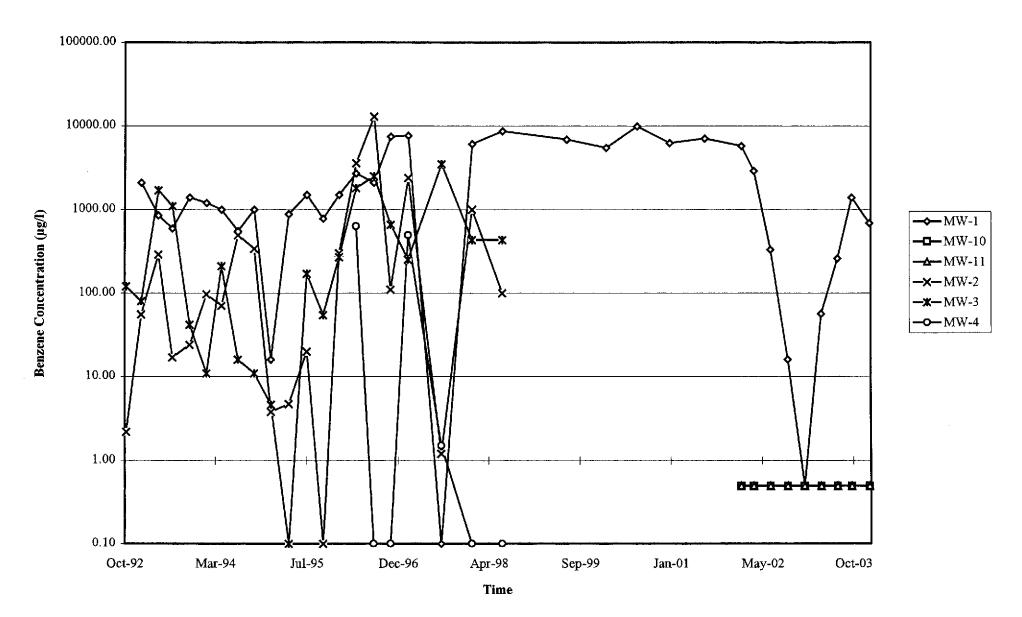
United States Geological Survey 7.5 Minute Topographic Map: Oakland West Quadrangle

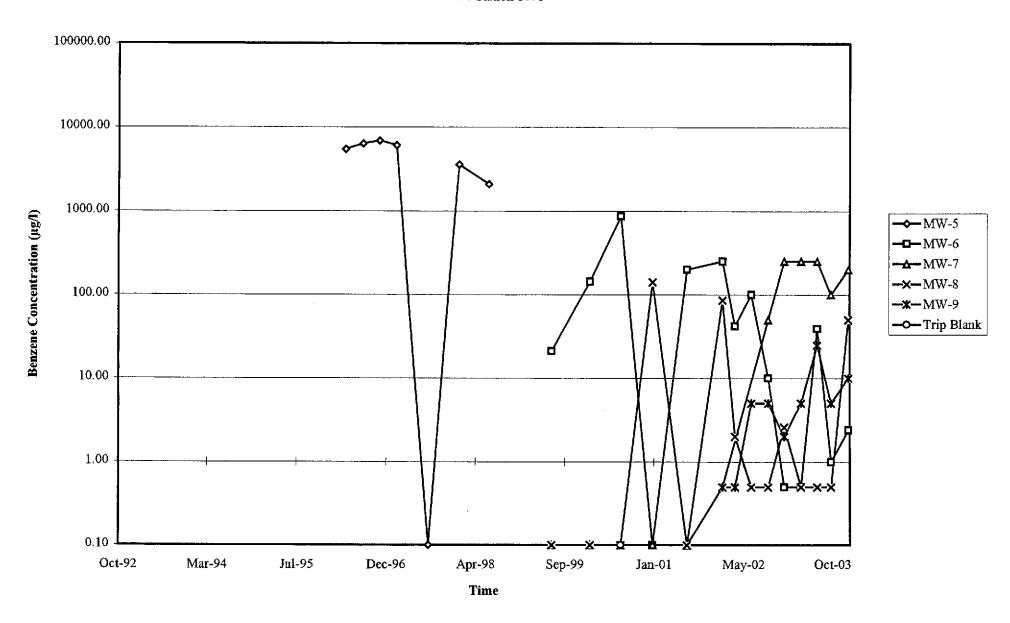




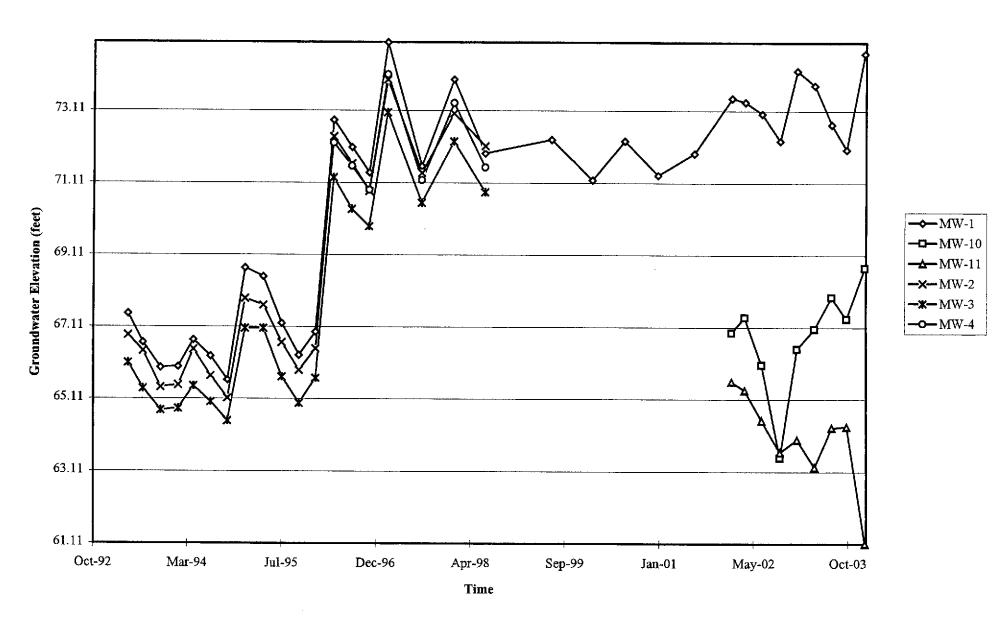
VICINITY MAP

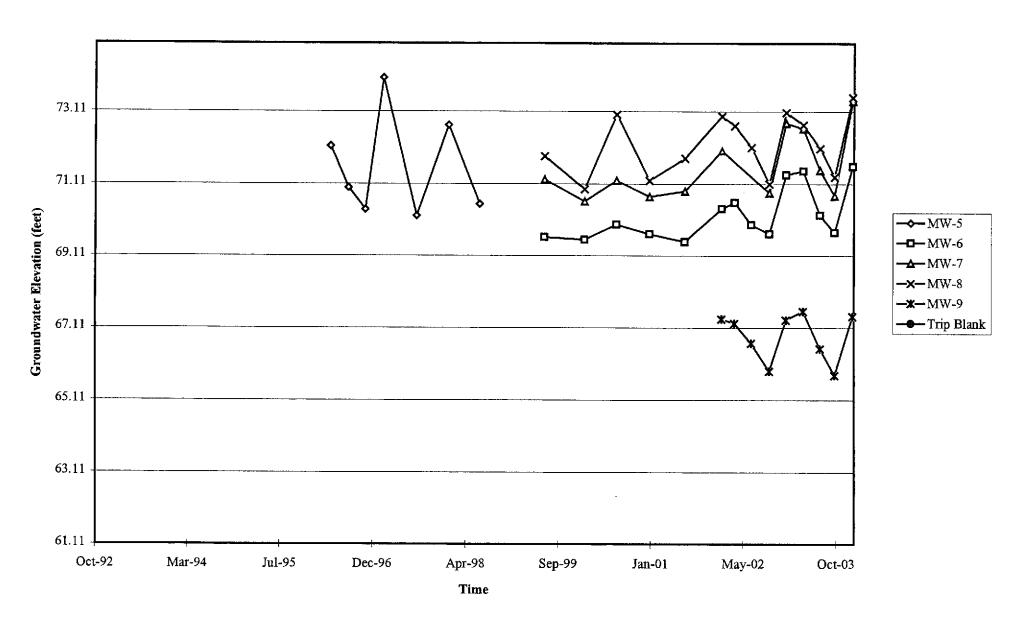
76 Station 1871 96 MacArthur Boulevard Oakland, California


FIGURE 1



GRAPHS


Graph 1
Benzene Concentrations vs. Time
76 Station 1871


Graph 2
Benzene Concentrations vs. Time
76 Station 1871

Graph 3 Hydrograph 76 Station 1871

Graph 4 Hydrograph 76 Station 1871

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage, or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurement are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, and the samplers initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging, and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least-affected well and ending with the well that has highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected well to the most-affected well

Decontamination

In order to reduce the possibility of cross-contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

FIELD MONITORING DATA SHEET

Technician: WIEW	Job #/Task #:	11650001 FAZO	Date: 0/ 07/09
Site#1&71	Project Manager		Page/_ of _/

		· · · · · · · · · · · · · · · · · · ·	Total	Depth to	Depth to	Product Thickness	Time	
Well#	Grade	TOC	Depth	Water	Product	(feet)	Sampled	Misc. Well Notes
nw-1		/	24.63	12.30	0	0	1133	4"
mw-8		-	24.27	8,21	O	0	1157	2"
14W-7	·	1	24.28	7.27	6	0	1149	2*
mu-4		_	24.41	8.08	٥	0	1141	2.
1110-9		~		14.65		0	1207	24
MW-10			19.91	4.22	0	0	1248	2" 2"
mw-11		/	3000	16.20	0	0	1311	2"
				-				
					-			
				,				
		7						•
							_	
							<u>-</u>	
						<u> </u>		
		 						
			<u> </u>					
			-					
		-				<u>-</u>		
		<u> </u>	 					
			<u> </u>			 		
	COMP	CTC	ONICO		<u> </u>	1	ELL BOY	ONDITION SHEETS
FIELD DAT	COMPL	C1E	awac	•	coc		ELL BUNC	OND HONOHEETS
WTT CERTI	FICATE		MANIFE	ST	DRUMAK	VENTORY	TRA	FFIC CONTROL
					/			

GROUNDWATER SAMPLING FIELD NOTES

	Technician:	Both	<u></u>		. 1	1
Site: 1871	Project No.:	410500	01	D	ate: // 7	103
Nell No.: MU - 1	·	Purge Method	DI1	9	·	
Depth to Water (feet): 12.30		Depth to Prode		0		
Total Depth (feet): 4.63		-	Recovered (gall	ons): O	<u> </u>	
Water Column (feet): 11.73		Casing Diame		<u>4'</u>		
80% Recharge Depth (feet): / / /	4	1 Well Volume		8		
Time Time Depth	Volume	Conduc-	Temperature		OPP	D.O.
Start Stop To Wate (feet)	Purged (gallons)	(uS/cm)	(F,C)	рН	d urbidity	0.0.
0840	(galoi,o)	707	20.2	7.08	14.2	12.31
00 70	10	727	20.3	7.18	47	1.39
0915	24	705	18.1	7.32	29	12.12
		700	V			
•						
Static at Time Sampled	- 	Total Gallons Pu	ırged		Time Samp	ied
19.15		24			113	3
(25 MIN), WAST	0		(80%)			
	<u> </u>					
			0.4			
Well No.: MW-6	•		od:	0		
		Depth to Pro	duct (feet):	0		•
Well No.: MW - 6 Depth to Water (feet): \$4.46 Total Depth (feet):	<u> </u>	Depth to Pro	duct (feet): r Recovered (g:	allons): \widehat{L})	.
Well No.: MW - G Depth to Water (feet): \$ - GF Total Depth (feet): 24.49	36	Depth to Pro LPH & Wate Casing Diam	duct (feet):	allons): $\hat{\mathcal{L}}$)	.
Well No.: Mu - 4 Depth to Water (feet): \$4.46 Total Depth (feet): 14.46 Water Column (feet): 14.41	P 3 G Notume	Depth to Pro LPH & Wate Casing Dian 1 Well Volum	duct (feet): r Recovered (ga neter (Inches): ne (gallons):	allons): 2 2 3	000	
Well No.: MU - G Depth to Water (feet): Start Stop To Water Column Multiple Start S	7 Volume	Depth to Pro LPH & Wate Casing Diam 1 Well Volum Conductivity	duct (feet): r Recovered (galerer (Inches): ne (gallons): Temperature	allons):	O Startistity.	DQ
Well No.: Mu - 4 Depth to Water (feet): 44 Total Depth (feet): 44 Water Column (feet): 44 80% Recharge Depth (feet): 14 Time Depth	7 Notume ter Purged	Depth to Pro LPH & Wate Casing Diam 1 Well Volum Conductivity (uS/cm)	duct (feet): r Recovered (g: neter (Inches): ne (gallons):	allons): 2 2 3	O S	D.O.
Well No.: MU - G Depth to Water (feet): Start Stop To Water Column Multiple Start S	7 Volume	Depth to Pro LPH & Wate Casing Diam 1 Well Volum Conductivity (uS/cm)	duct (feet): r Recovered (galeter (Inches): ne (gallons): Temperature (F,C)	2 2 3 pH 7.39	Furbidity.	14.2eq
Well No.: Mu - 4 Depth to Water (feet): 4.46 Water Column (feet): 14.46 Water Column (feet): 16.41 80% Recharge Depth (feet): 11.4 Time Time Depth To Water Column (feet)	7 Volume	Depth to Pro LPH & Wate Casing Diam 1 Well Volum Conductivity (us/cm) 7/6	duct (feet): r Recovered (galeter (Inches): ne (gallons): Temperature (F,C)	7.36	7 - 12 12	13.83 12.63
Well No.: MU - G Depth to Water (feet): Start Stop To Water Column Multiple Start S	7 Volume	Depth to Pro LPH & Wate Casing Diam 1 Well Volum Conductivity (uS/cm)	r Recovered (g: neter (Inches): ne (gallons): Temperature (F.C) //.8	2 2 3 pH 7.39	7 - 12 12	14.20
Well No.: Mu - 4 Depth to Water (feet): 4.46 Water Column (feet): 14.46 Water Column (feet): 16.41 80% Recharge Depth (feet): 11.4 Time Time Depth To Water Column (feet)	7 Volume	Depth to Pro LPH & Wate Casing Diam 1 Well Volum Conductivity (us/cm) 7/6 73/	r Recovered (graneter (Inches): ne (gallons): Temperature (F.C) //S/ //3	7.36	1 - 12 12 12 24	14.29 13.83 12.63
Well No.: Mu - 4 Depth to Water (feet): 24.46 Water Column (feet): 14.46 Water Column (feet): 15.66 Time Time Depth (feet): 16.61 Time Start Stop To Water Column (feet)	7 Volume	Depth to Pro LPH & Wate Casing Diam 1 Well Volum Conductivity (us/cm) 7/6	r Recovered (graneter (Inches): ne (gallons): Temperature (F.C) //S/ //3	7.36	7 - 12 12	14.20 13.83 12.63

GROUNDWATER SAMPLING FIELD NOTES

• ,		Ŧ	echnician:	WIEL				//
Site: <i> </i>	71	F	-	41050			Date: / /	17/04
Well No.:	M67-7		1	Purge Method:	211	7		
Deoth to Water	(feet): 7.	. 27	t t	Depth to Produ	uct (feet):	0		
Total Depth (fe					Recovered (gall	ions): <u>O</u>	<u> </u>	
Water Column	(feet):	1.01		Casing Diamel		2'		
80% Recharge	Depth (feet):	10.67		1 Weli Volume	: (gallons):	3		
Time	Time	Depth	Volume	Conduc-	Temperature		080	7.0
Start	Stop	To Water (feet)	Purged (gallons)	tivity (uS/cm)	(F,C)	рН	-Turbidity>	D.O.
0935			3	844	18.3	7.39	23	10.85
		*	6	842	14.4	7.36		11.90
	0942		A	832	19.0	7.35	5	10.79
Stati	c at Time Sam	pled	Tc	otal Gallons Pu	irged		Time Samp	fed
	7Ó			1	PETHAN			49
Well No.:/	M 6) -8			Purae Metho	d: 01A	<i>!</i>	·	
Depth to Water		2.21		Depth to Prod		0		
Total Depth (f	<i>2</i>) <	9.27	_	•	r Recovered (ga	aflons):(0	
Water Column	n (faat):	14.04	_		eter (Inches):	2"		
	ge Depth (feet):	11 /2.	2	· ·	ne (gallons):	4		
Time Start	Time Stop	Depth To Water (feet)	Volume Purged (gattons)	Conduc- tivity (uS/cm)	Temperature (F,C)	pH	Forticity	D.O .
naus	 	(1004	3	614	15.0	7.47	-15	13.13
1.11.			L	615	19.1	7.42		12.60
	0957	7.2	1	619	18.9	7.41		9.99
Sta	tic at Time Sar	mpled		Fotal Gallons P	rurged	1	Time Sam	ıpled
9.	55			9				'জ্য
Comments:	55 W	AT 1		19 12e 1	D Roll	400 RG E		

GROUNDWATER SAMPLING FIELD NOTES

• ,		· Te	echnician:	LYDEL	<u> </u>		,	•
Site: 18	71	P	roject No.:	41050	5001	C)ate://-	164
Well No.:	mw-9			Purge Method:	DIA	7		
Benth to Wate	r (feet):/<	1.65		Depth to Produ	rct (feet):	٥		
Total Deoth (f	eet):/ /	.85		LPH & Water F	Recovered (gall	ons):_ <i>O</i> _		
Water Column	n (feet):	5.2		Casing Diamel	ler (Inches):	<u>Z" </u>		
80% Recharg	e Depth (feet):	15.69		1 Well Volume	(gallons):	• [
Time	Time	Depth	Volume	Conduc-	Temperature		ORP	D.O.
Start	Stop	To Water (feet)	(gallons)	tivity (uS/cm)	(F,C)	рН	Tailmily	<u> </u>
1023				450	16.3	751	9	17,00
			2	646	16.0	7.46	23	12.00
	1028		3	634	16.7	7.42		10.45
			-	to the control of the	and		Time Samp	led
Sta	tic at Time Sam	pledl		otal Gallons Pu	rged HORSK	<u> </u>	1277	7
Well Na.:	mw.	-10		Purge Method	d:	7		
	ter (feet):(_	Depth to Prod	duct (feet):	0	<u>. </u>	
Total Depth	(feet):	19.91	_	LPH & Water	Recovered (ga	illons):	2	
Water Colur	(feet):	B.69	-	Casing Diam	eter (Inches):	24	1	
	ge Depth (feet)	1 A 1-		-	ne (gallons):	2	· · · · · · · · ·	
Time Start	Time Stop	Depth To Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,C)	pH	Torthodity	D.O.
1037			2	545	15.4	750	35	11.62
			4	545	15.3	7.48	50	11.99
	1092		4	574	15.7	7.46	59	10.04
						and the second s		Market Stranger and Stranger
S	atic at Time Sa	mpled	1	Total Gallons P	urged	1	Time Sam	pled

11.20 4 1298

Comments: WAT NOW TO RETHARGE 80%, DID 107

ECOVER WITHIN 2HR.

GROUNDWATER SAMPLING FIELD NOTES

		T	echnician:	woa	<u></u>		j	j.
Site:	871			4103		(Date: 1/7	108
	m10-11				019			
oleW of #	r (feet):	11. 20		Depth to Produ	ıct (feet):C	2		
ebin in ware	-n. 2r	(8)77		I PH & Water I	Recovered (gall	ons): 🔼	-	
otai Deptri (re	eet):3©	13.0			ter (inches):	Α,		
Vater Column	ı (feet):	10 11.		1 Well Volume		2		
0% Recharge	e Depth (feet):	11 -011		I AAGR A ORGING				
Time	Time	Depth	Volume	Conduc-	Temperature	ρΗ	Turbidity	D.O.
Start	Stop	To Water (feet)	Purged (gallons)	tivity (uS/cm)	(F;C)_			
10 Co	21, 14	(leea)	2	1572	140	7.43	99	13.82
1057			<u> </u>	1613	15.6	7.41	96	12.27
					15.9	7.40	103	11.69
· ·	1105		lç_	1621	2.1	1.10	140_	
						<u> </u>	<u></u>	<u> </u>
Stat	tic at Time San	rpled	T	Total Gallons Pu	irged	1	Time Samp	
18.	52			\ \Q	CHARE			311
Well No.:				Purge Metho	d:			-
				-	duct (feet):			
,	•			-	Recovered (ga			
					eter (Inches):			
Water Colun 80% Rechar	ge Depth (feet)):	_		ne (gallons):			
Time	Time	Depth	Volume			pH	Turbidity	D.O.
Start	Stop	To Water (feet)	Purged (gattons)		(F,C)		1 Citoroicy	
<u> </u>		(10.54)	1 (3/4/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2					
		<u> </u>	-				-	
<u> </u>					ļ		 	<u> </u>
								<u> </u>
St	atic at Time Sa	 moled	 	Total Gallons f	Purged	1	Time Sam	pled
			. · · · · · · · · · · · · · · · · · · ·			·····		
	-	_						
Comments	:	· · · · · · · · · · · · · · · · · · ·			<u> </u>			
				<u> </u>				-

Submission#: 2004-01-0214

TRC Alton Geoscience

January 21, 2004

21 Technology Drive Irvine, CA 92718

Attn.:

Anju Farfan

Project#: 41050001FA20

Project:

Conoco Phillips #1871

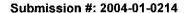
Site:

96 MacArthur, Oakland

Attached is our report for your samples received on 01/08/2004 16:12

This report has been reviewed and approved for release. Reproduction of this report is permitted only in its entirety.

Please note that any unused portion of the samples will be discarded after 02/22/2004 unless you have requested otherwise.


We appreciate the opportunity to be of service to you. If you have any questions, please call me at (925) 484-1919.

You can also contact me via email. My email address is: dsharma@stl-inc.com Sincerely,

Dimple Sharma Project Manager

> Severn Trent Laboratories, Inc. STL San Francisco * 1220 Quarry Lane, Pleasanton, CA 94566 Tel 925 484 1919 Fax 925 484 1096 * www.stl-inc.com * CA DHS ELAP# 2496

haema

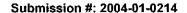
TRC Alton Geoscience

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20


Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

Samples Reported

Sample Name	Date Sampled	Matrix	Lab#
MW-1	01/07/2004 11:33	Water	1
MW-8	01/07/2004 11:57	Water	2
MW-7	01/07/2004 11:49	Water	3
MW-6	01/07/2004 11:41	Water	4
MW-9	01/07/2004 12:07	Water	5
MW-10	01/07/2004 12:48	Water	6
MW-11	01/07/2004 13:11	Water	7

TRC Alton Geoscience Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

Prep(s):

5030B

Test(s):

8260FAB

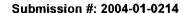
Sample ID: MW-1

Lab ID:

2004-01-0214 - 1

Sampled: 01/07/2004 11:33 Extracted:

1/18/2004 11:24


Matrix:

Water

QC Batch#: 2004/01/18-01.64

Analysis Flag: o (See Legend and Note Section)

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	34000	2000	ug/L	40.00	01/18/2004 11:24	
Benzene	690	20	ug/L	40.00	01/18/2004 11:24	
Toluene	41	20	ug/L	40.00	01/18/2004 11:24	
Ethylbenzene	1600	20	ug/L	40.00	01/18/2004 11:24	
Total xylenes	5200	40	ug/L	40.00	01/18/2004 11:24	
Methyl tert-butyl ether (MTBE)	2600	80	ug/L	40.00	01/18/2004 11:24	
Ethanol	ND	20000	ug/L	40.00	01/18/2004 11:24	
Surrogate(s)						
1,2-Dichloroethane-d4	91.4	76-114	%	40.00	01/18/2004 11:24	
Toluene-d8	90.5	88-110	%	40.00	01/18/2004 11:24	

TRC Alton Geoscience Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

Prep(s):

5030B

Test(s):

8260FAB

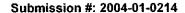
Sample ID: MW-8

Lab ID:

2004-01-0214 - 2

Extracted:

1/18/2004 11:46


Sampled: 01/07/2004 11:57 Matrix:

Water

QC Batch#: 2004/01/18-01.64

Analysis Flag: o (See Legend and Note Section)

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	ND	5000	ug/L	100.00	01/18/2004 11:46	
Benzene	ND	50	ug/L	100.00	01/18/2004 11:46	
Toluene	ND	50	ug/L	100.00	01/18/2004 11:46	
Ethylbenzene	ND	50	ug/L	100.00	01/18/2004 11:46	
Total xylenes	340	100	ug/L	100.00	01/18/2004 11:46	
Methyl tert-butyl ether (MTBE)	3700	200	ug/L	100.00	01/18/2004 11:46	
Ethanol	ND	50000	ug/L	100.00	01/18/2004 11:46	
Surrogate(s)				1		
1,2-Dichloroethane-d4	88.9	76-114	%	100.00	01/18/2004 11:46	
Toluene-d8	92.9	88-110	%	100.00	01/18/2004 11:46	

TRC Alton Geoscience Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

Prep(s): 5030B

Test(s):

8260FAB

Sample ID: MW-7

Lab ID:

2004-01-0214 - 3

Sampled: 01/07/2004 11:49

Extracted:

1/18/2004 12:08

Matrix:

Water

QC Batch#: 2004/01/18-01.64

Analysis Flag. o (See Legend and Note Section)

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	ND	20000	ug/L	400.00	01/18/2004 12:08	
Benzene	ND	200	ug/L	400.00	01/18/2004 12:08	
Toluene	460	200	ug/L	400.00	01/18/2004 12:08	
Ethylbenzene	ND	200	ug/L	400.00	01/18/2004 12:08	
Total xylenes	540	400	ug/L	400.00	01/18/2004 12:08	
Methyl tert-butyl ether (MTBE)	19000	800	ug/L	400.00	01/18/2004 12:08	
Ethanol	ND	200000	ug/L	400.00	01/18/2004 12:08	
Surrogate(s)			1	ĺ		
1,2-Dichloroethane-d4	91.9	76-114	%	400.00	01/18/2004 12:08	
Toluene-d8	91.5	88-110	%	400.00	01/18/2004 12:08	

Submission #: 2004-01-0214

Gas/BTEX Fuel Oxygenates by 8260B

TRC Alton Geoscience

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

Prep(s):

5030B

Test(s):

8260FAB

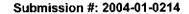
Sample ID: MW-6

Lab ID:

2004-01-0214 - 4

Sampled: 01/07/2004 11:41 Extracted:

1/18/2004 12:30


Matrix:

Water

QC Batch#: 2004/01/18-01.64

Analysis Flag: o (See Legend and Note Section)

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	140	100	ug/L	2.00	01/18/2004 12:30	
Benzene	2.4	1.0	ug/L	2.00	01/18/2004 12:30	
Toluene	ND	1.0	ug/L	2.00	01/18/2004 12:30	
Ethylbenzene	8.6	1.0	ug/L	2.00	01/18/2004 12:30	
Total xylenes	13	2.0	ug/L	2.00	01/18/2004 12:30	
Methyl tert-butyl ether (MTBE)	86	4.0	ug/L	2.00	01/18/2004 12:30	
Ethanol	ND	1000	ug/L	2.00	01/18/2004 12:30	
Surrogate(s)						
1,2-Dichloroethane-d4	102.7	76-114	%	2.00	01/18/2004 12:30	
Toluene-d8	92.9	88-110	%	2.00	01/18/2004 12:30	

TRC Alton Geoscience

Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

Prep(s):

5030B

Test(s):

8260FAB

Sample ID: MW-9

Lab ID:

2004-01-0214 - 5

Sampled: 01/07/2004 12:07

Extracted:

1/18/2004 12:52

Matrix:

Water

QC Batch#: 2004/01/18-01.64

Analysis Flag: o (See Legend and Note Section)

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	ND	1000	ug/L	20.00	01/18/2004 12:52	
Benzene	ND	10	ug/L	20.00	01/18/2004 12:52	
Toluene	ND	10	ug/L	20.00	01/18/2004 12:52	
Ethylbenzene	ND	10	ug/L	20.00	01/18/2004 12:52	
Total xylenes	ND	20	ug/L	20.00	01/18/2004 12:52	
Methyl tert-butyl ether (MTBE)	1200	40	ug/L	20.00	01/18/2004 12:52	•
Ethanol	ND	10000	ug/L	20.00	01/18/2004 12:52	
Surrogate(s)				•		
1,2-Dichloroethane-d4	96.0	76-114	%	20.00	01/18/2004 12:52	
Toluene-d8	88.3	88-110	%	20.00	01/18/2004 12:52	

TRC Alton Geoscience Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

Prep(s):

5030B

Test(s):

8260FAB

Sample ID: MW-10

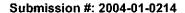
Lab ID:

2004-01-0214 - 6

Sampled:

01/07/2004 12:48

Extracted:


1/18/2004 13:14

Matrix:

Water

QC Batch#: 2004/01/18-01.64

Compound	Conc.	RL.	Unit	Dilution	Analyzed	Flag
Gasoline	54	50	ug/L	1.00	01/18/2004 13:14	-
Benzene	ND	0.50	ug/L	1.00	01/18/2004 13:14	
Toluene	ND	0.50	ug/L	1.00	01/18/2004 13:14	
Ethylbenzene	1.3	0.50	ug/L	1.00	01/18/2004 13:14	
Total xylenes	4.5	1.0	ug/L	1.00	01/18/2004 13:14	
Methyl tert-butyl ether (MTBE)	ND	2.0	ug/L	1.00	01/18/2004 13:14	
Ethanol	ND	500	ug/L	1.00	01/18/2004 13:14	i
Surrogate(s)	ļ					
1,2-Dichloroethane-d4	90.5	76-114	%	1.00	01/18/2004 13:14	
Toluene-d8	90.7	88-110	%	1.00	01/18/2004 13:14	

TRC Alton Geoscience Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

Prep(s):

5030B

Test(s):

8260FAB

Sample ID: MW-11

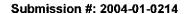
Lab ID:

2004-01-0214 - 7

Sampled:

01/07/2004 13:11

Extracted:


1/18/2004 14:21

Matrix:

Water

QC Batch#: 2004/01/18-01.64

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	63	50	ug/L	1.00	01/18/2004 14:21	g
Benzene	ND	0.50	ug/L	1.00	01/18/2004 14:21	
Toluene	ND	0.50	ug/L	1.00	01/18/2004 14:21	
Ethylbenzene	0.68	0.50	ug/L	1.00	01/18/2004 14:21	
Total xylenes	2.2	1.0	ug/L	1.00	01/18/2004 14:21	
Methyl tert-butyl ether (MTBE)	ND	2.0	ug/L	1.00	01/18/2004 14:21	
Ethanol	ND	500	ug/L	1.00	01/18/2004 14:21	
Surrogate(s)						
1,2-Dichloroethane-d4	87.5	76-114	%	1.00	01/18/2004 14:21	
Toluene-d8	90.3	88-110	%	1.00	01/18/2004 14:21	

TRC Alton Geoscience Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

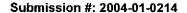
Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

Batch QC Report

Prep(s): 5030B


Method Blank

MB: 2004/01/18-01.64-023

Test(s): 8260FAB
Water QC Batch # 2004/01/18-01.64

Date Extracted: 01/18/2004 09:23

Compound	Conc.	RL	Unit	Analyzed	Flag
Gasoline	ND	50	ug/L	01/18/2004 09:23	
Benzene	ND	0.5	ug/L	01/18/2004 09:23	
Toluene	ND	0.5	ug/L	01/18/2004 09:23	
Ethylbenzene	ND	0.5	ug/L	01/18/2004 09:23	
Total xylenes	ND	1.0	ug/L	01/18/2004 09:23	
Methyl tert-butyl ether (MTBE)	ND	2.0	ug/L	01/18/2004 09:23	
Ethanol	ND	500	ug/L	01/18/2004 09:23	
Surrogates(s)					
1,2-Dichloroethane-d4	84.8	76-114	%	01/18/2004 09:23	
Toluene-d8	88.2	88-110	%	01/18/2004 09:23	

TRC Alton Geoscience Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

Batch	QC R	eport

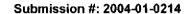
Prep(s): 5030B

LCS

Test(s): 8260FAB

Laboratory Control Spike

2004/01/18-01.64-039


Water

QC Batch # 2004/01/18-01.64

LCSD 2004/01/18-01.64-001

Extracted: 01/18/2004 Extracted: 01/18/2004 Analyzed: 01/18/2004 08:39 Analyzed: 01/18/2004 09:01

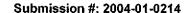
Compound	Conc.	ug/L	Exp.Conc.	Recov	very %	RPD	Ctrl.Lin	nits %	Fla	igs
	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Benzene Toluene Methyl tert-butyl ether (MTBE)	24.6 25.0 24.0	23.8 25.0 20.9	25.0 25.0 25.0	98.4 100.0 96.0	95.2 100.0 83.6	3.3 0.0 13.8	69-129 70-130 65-165	20 20 20		
Surrogates(s) 1,2-Dichloroethane-d4 Toluene-d8	432 445	385 462	500 500	86.4 89.0	77.0 92.4		76-114 88-110			

TRC Alton Geoscience Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20


Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

		Batch QC Report		
Prep(s)	5030B			Test(s): 8260FAB
Matrix	Spike (MS / MSD)	Water	QC Bat	ch # 2004/01/18-01.64
MW-10) >> MS		Lab ID:	2004-01-0214 - 006
MS:	2004/01/18-01.64-036	Extracted: 01/18/2004	Analyzed:	01/18/2004 13:36
			Dilution:	1.00
MSD:	2004/01/18-01.64-059	Extracted: 01/18/2004	Analyzed:	01/18/2004 13:59
			Dilution:	1.00

Compound	Conc.	ug.	/L	Spk.Level	R	ecovery	%	Limits	%	FI	ags
	MS	MSD	Sample	ug/L	MS	MSD	RPD	Rec.	RPD	MS	MSD
Benzene	27.3	23.5	ND	25.0	109.2	94.0	15.0	69-129	20		
Toluene	28.0	24.8	ND	25.0	112.0	99.2	12.1	70-130	20		
Methyl tert-butyl ether	25.7	24.1	ND	25.0	102.8	96.4	6.4	65-165	20		
Surrogate(s)			İ								
1,2-Dichloroethane-d4	459	446		500	91.8	89.2		76-114			
Toluene-d8	462	450		500	92.4	90.1		88-110			

TRC Alton Geoscience Attn.: Anju Farfan

21 Technology Drive Irvine, CA 92718

Phone: (949) 341-7440 Fax: (949) 753-0111

Project: 41050001FA20

Conoco Phillips #1871

Received: 01/08/2004 16:12

Site: 96 MacArthur, Oakland

Legend and Notes

Analysis Flag

0

Reporting limits were raised due to high level of analyte present in the sample.

Result Flag

g

Hydrocarbon reported in the gasoline range does not match our gasoline standard.

STL San Francisco

Sample Receipt Checklist

Submission #:2004- 01 - 0214	
Checklist completed by: (initials) \cancel{M} Date: $\cancel{01}$ $\cancel{09}$ /04	· ·
Courier name: X STL San Francisco □ Client	
Custody seals intact on shipping container/samples	YesNoPresent
Chain of custody present?	Yes_V_No
Chain of custody signed when relinquished and received?	Yes No
Chain of custody agrees with sample labels?	Yes No
Samples in proper container/bottle?	· Yes No
Sample containers intact?	YesNo
Sufficient sample volume for indicated test?	YesNo
All samples received within holding time?	7 YesNo
Container/Temp Blank temperature in compliance (4° C ± 2)?	Temp: 511°C Yes V No
	Ice Present Yes_VNo
Water - VOA vials have zero headspace?	No VOA vials submitted Yes No
Water - pH acceptable upon receipt? Yes ☐ No	
□ pH adjusted- Preservative used: □ HNO ₃ □ HCl □ H ₂ SO ₄ □ NaOH For any item check-listed "No", provided detail of discrepancy in comments:	
For any item check-listed "No", provided detail of discrepancy in comments: Project Management [Routing for instruction of indication of project Manager: (initials)	nent section below:
For any item check-listed "No", provided detail of discrepancy in common Comments: Project Management [Routing for instruction of indicated Project Manager: (initials) Date:	nent section below:
For any item check-listed "No", provided detail of discrepancy in comments: Project Management [Routing for instruction of indication of project Manager: (initials)	nent section below:
For any item check-listed "No", provided detail of discrepancy in common Comments: Project Management [Routing for instruction of indicated Project Manager: (initials) Date:	nent section below:

2004-01-0214 STL-San Francisco

ConocoPhillips Chain Of Custody Record

81823

ConocoPhillips Site Manager: ConocePhillips Work Order Jumber 1220 Quarry Lane INVOICE REMITTANCE ADDRESS: CONOCOPHILLIPS Pleasanton, CA 94566 Attn: Dee Hutchinson ConocoPhillips Cost Object 3611 South Harbor, Suite 200 (925) 484-1919 (925) 484-1096 fax Santa Ana, CA. 92704 SAMPLING COMPANY: Valid Value ID: CONOCOPHILLIPS SITE NUMBER GLOBAL ID NO .: TOG 80101493 TRC ADDRESS: ITE ADDRESS (Street and City): 96 Mac ARTHUR COKLAND 21 Technology Drive, Irvine CA 92618 PROJECT CONTACT (Hardcopy or PDF Report to): Aniu Farfan LAB USE ONLY TELEPHONE: Peter Thomson, TRC 949 341-7408 949-341-7440 949-753-0111 afarfan@trcsolutions.com pthomson@trcsolutions.com SAMPLER NAME(S) (Print): CONSULTANT PROJECT NUMBER REQUESTED ANALYSES 41050001/FA20 TURNAROUND TIME (CALENDAR DAYS): 8260B - TPHg / BTEX / 8 oyxgenates + methanol (8015M) 16 than 8260B - TPHg / BTEX / 8 Oxygenates 14 DAYS 🔲 7 DAYS 🔲 72 HOURS 🔲 48 HOURS 🚨 24 HOURS 🔲 LESS THAN 24 HOURS 8015M / 8021B - TPHg/BTEX/MtBE 62600 FIELD NOTES: SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX IF EDD IS NEEDED 8260B - TPHg/BTEX/MtBE TPHd Extractable Container/Preservative 8270C - Semi-Volatiles or PID Readings include oxygenates) or Laboratory Notes TPDAT * Field Point name only required if different from Sample ID Sample Identification/Field Point SAMPLING NO. OF TEMPERATURE ON RECEIPT C° MATRIX Name* DATE TIME 3 1133 MW-1 1207 mw-11 Relinquished by: (Signature Received by: (Signature) Received by: (Signature) Relinquished by: (Signature)

STATEMENTS

. u≛

Purge Water Transport and Disposal

Non-hazardous groundwater produced during purging and sampling was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by Onyx Transportation, Inc., to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office. Purge water suspected of containing potentially hazardous material, such as liquid-phase hydrocarbons, was accumulated separately in a drum for transportation and disposal by Filter Recycling, Inc.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.