February 29, 2000 G-R #:180068

TO:

Mr. David B. De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

CC:

Mr. David Vossler

Gettler-Ryan Inc.

Novato, California

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 RE:

Tosco (Former Unocal) SS #1871

96 MacArthur Blvd.

Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	February 22, 2000	Groundwater Monitoring and Sampling Report
		Semi-Annual 2000 - Event of January 21, 2000

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by *March 13, 2000*, this report will be distributed to the following:

Enclosure

cc: Alameda County Health Care Services, 1131 Harbor Bay Parkway, Alameda, California 94502

SI:11MA [-81.400

agency/1871dbd.qmt

February 22, 2000 G-R Job #180068

Mr. David B. De Witt **Tosco Marketing Company** 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE:

Semi-Annual 2000 Groundwater Monitoring & Sampling Report

Tosco (Former Unocal) Service Station #1871

96 MacArthur Boulevard Oakland, California

Dear Mr. De Witt:

This report documents the semi-annual groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R). On January 21, 2000, field personnel monitored and sampled four wells (MW-1, MW-6, MW-7, and MW-8) at the above referenced site.

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1, 2 and 3. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

No. 5577

Sincerely,

Deanna L. Harding

Project Coordinator

Stephen J. Carter

Senior Geologist, R.G. No. 5577

Figure 1:

Potentiometric Map Concentration Map

Figure 2:

Table 1:

Groundwater Monitoring Data and Analytical Results

Table 2:

Groundwater Analytical Results

Table 3:

Groundwater Analytical Results - Oxygenate Compounds Standard Operating Procedure - Groundwater Sampling

Attachments:

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

1871.qml

EXPLANATION

Groundwater monitoring well

★ Destroyed well

99.99 Groundwater elevation in feet referenced to Mean Sea Level (MSL)

Groundwater elevation contour, dashed where inferred.

Approximate groundwater flow direction at a gradient of 0.03 Ft./Ft.

Source: Figure Modified From Drawing Provided By MPOS Services, Inc.

Gettler - Ryan Inc.

6747 Sierro Ct., Suite J Dublin, CA 94568 (925) 551-7555

POTENTIOMETRIC MAP

Tosco (Former Unocal) Service Station No. 1871 96 MacArthur Boulevard Oakland, California

REVIEWED BY

DATE January 21, 2000 REVISED DATE

FIGURE

JOB NUMBER 180068

EXPLANATION

Groundwater monitoring well

Destroyed well ※

TPH(G) (Total Petroleum Hydrocarbons A/B/Cas Gasoline)/Benzene/MTBE concentrations in ppb

Not Detected ND

MTBE by EPA Method 8260 +

Source: Figure Modified From Drowing Provided By MPDS Services, Inc.

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

CONCENTRATION MAP

Tosco (Former Unocal) Service Station No. 1871 96 MacArthur Boulevard Oakland, California REVISED DATE

January 21, 2000

FIGURE

JOB NUMBER 180068

REVIEWED BY

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
OC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ррь)
				260,000	2,300	4,600	3,700	17,000	
IW-1	11/03/92			120,000	2,100	4,600	4,900	22,000	
	01/25/93		 67.47	100,000	850	2,000	4,300	19,000	
1.18	04/29/93	13.71		29,000	590	560	980	4,200	
	07/16/93	14.51	66.67	67,000	1,400	2,600	2,900	5,000	
	10/19/93	15.20	65.98	92,000	1,400	3,000	3,400	17,000	
	01/20/94	15.17	66.01	51,000	1,000	2,600	3,200	15,000	
*	04/13/94	14.44	66.74	35,000	550	150	1,400	5,700	·
	07/13/94	14.88	66.30		1,000	810	3,300	12,000	
	10/10/94	15.55	65.63	52,000 810	1,000	18	59	250	
	01/10/95	12.44	68.74	48,000	880	530	2,500	11,000	
	04/17/95	12.68	68.50 67.21	48,000 48,000	1,500	420	2,700	9,700	
	07/24/95	13.97		48,000 47,000	780	210	2,100	11,000	270
	10/23/95	14.85	66.33		1,500	500	3,500	13,000	2,400
	01/18/96	14.21	66.97	30,000	2,700	2,200	3,100	13,000	57,000
86.24	04/18/96	13.40	72.84	66,000		2,200 ND	160	160	24,000
	07/24/96	14.15	72.09	5,600	2,100	8,000	3,300	14,000	58,000
	10/24/96	14.85	71.39	110,000	7,500	19,000	3,100	15,000	120,000
	01/28/97	11.25	74.99	94,000	7,700	19,000 ND	3,100 ND	ND	70,000
	07/29/97	14.67	71.57	ND	ND		3,000	17,000	110,000
	01/14/98	12.27	73.97	85,000	6,100	10,000		15,000	110,000
	07/01/98	14.32	71.92	110,000	8,700	12,000	2,700		72,000/47,000
	06/18/99	13.93	72.31	49,000	6,900	6,500	380	12,000	
	01/21/00	15.05	71.19	63,700 ⁵	5,520	2,000	2,640	13,100	57,100
		•		140	2.2	ND	ND	2.0	
MW-2	11/03/92		**	2,100	56	1.1	90	140	
	01/25/93		 66 00	2,100 1,500	290	ND	33	11	
76.61	04/29/93	9.73	66.88				3.2	2.5	
	07/16/93	10.17	66.44	510 ¹	17	0.60	3.2 7.7	2.3	
	10/19/93	11.18	65.43	670	24	1.1		ND	
	01/20/94	11.12	65.49	820	97	ND	12		
	04/13/94	10.12	66.49	550	71	ND	5.1	1.3	
•	07/13/94	10. 86	65.75	2,000	490	ND	17	13	
	10/10/94	11.48	65.13	2,300	340	ND	25	ND	
	01/10/95	8.71	67.90	850	3.8	ND	8.5	1.3	

Table 1
Groundwater Monitoring Data and Analytical Results

		DTW	GWE	TPH(G)	В	T	E	X	MTBE
Well ID/	Date		(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
TOC*		(ft.)	(110+6)		V. A. C. Z. C.				
	04/17/05	8.90	67.71	1,300	4.7	ND	8.3	1.2	
MW-2	04/17/95	9.94	66.67	960	20	ND	4.2	6.2	
(cont)	07/24/95	10.70	65.91	ND	ND	ND	ND	ND	19
	10/23/95	10.11	66.50	900	300	86	7.6	18	4,300
	01/18/96	9.27	72.39	18,000	3,600	680	890	4,100	19,000
81.66	04/18/96	10.02	71.64	100,000	13,000	21,000	2,700	16,000	120,000
	07/24/96	10.78	70.88	800	110	17	11	20	20,000
	10/24/96	7.70	73.96	45,000	2,400	2,900	2,000	7,600	29,000
	01/28/97	10.28	71.38	ND	1.2	0.72	0.63	0.62	17,000
	07/29/97	8.63	73.03	14,000	1,000	150	790	3,300	23,000
•	01/14/98		72.13	2,700	100	ND^3	180	78	7,100
	07/01/98	9.53	72.13	2,700		~-			
	06/18/99	DESTROYED			•				
			·	2,100	120	15	38	200	
MW-3	11/03/92		 	2,300	80	1	55	52	-
	01/25/93		66.11	4,500	1,700	ND	200	140	
77.48	04/29/93	11.37		4,000 ¹	1,100	28	52	70	
	07/16/93	12.09	65.39	3,800	42	ND	50	56	
	10/19/93	12.69	64.79	4,200	11	ND	21	15	
	01/20/94	12.65	64.83	4,200	210	ND	36	53	
	04/13/94	12.02	65.46	$1,800^2$	16	16	ND	21	
	07/13/94	12.46	65.02		11	ND	12	ND	
	10/10/94	12.98	64.50	4,300	4.6	ND	3.5	2.1	
	01/10/95	10.42	67.06	310	ND	4.6	300	450	·
	04/17/95	10.42	67.06	7,800	170	ND	22	16	
	07/24/95	11.76	65.72	3,200	55	ND	19	11	4,500
	10/23/95	12.50	64.98	3,900	270	33	26	18	5,500
	01/18/96	11.79	65.69	2,200		ND	100	230	48,000
82.55	04/18/96	11.30	71.25	6,000	1,800		ND	ND	71,000
	07/24/96	12.17	70.38	ND	2,500	ND	15	ND	65,000
	10/24/96	12.65	69.90	3,800	660	ND	13 87	47	54,000
	01/28/97	9.50	73.05	4,400	250	13	220	ND	75,000
	07/29/97	11.99	70.56	ND	3,500	ND	220	ND	72,000

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
roc*	Lytta	(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
	01 (14)00	10.20	72.25	ND^3	430	ND^3	100	380	37,000
MW-3	01/14/98	10.30		ND^3	430	ND^3	ND^3	ND^3	45,000
(cont)	07/01/98	11.70	70.85		430				
	06/18/99	DESTROYED		- 					
MW-4							ND ,	ND	18,000
32.04	04/18/96	9.83	72.21	ND	630	ND		5.2	3,900
	07/24/96	10.47	71.57	ND	ND	ND	ND	ND	6,300
	10/24/96	11.14	70.90	ND	ND	ND	ND	6.8	16,000
	01/28/97	7.94	74.10	1,200	490	ND	17	0.78	15,000
	07/29/97	10.86	71.18	50	1.5	0.61	0.73	ND ³	5,200
	01/14/98	8.73	73.31	ND_3	ND^3	ND ³	ND ³		5,200 640
	07/01/98	10.51	71.53	ND	ND	ND	ND	ND	0 4 0
	06/18/99	DESTROYED							
MW-5						1 400	1 700	8,100	66,000
81.80	04/18/96	9.65	72.15	31,000	5,500	1,400	1,700	6,100	120,000
	07/24/96	10.80	71.00	32,000	6,400	ND	1,600	130	84,000
	10/24/96	11.40	70.40	17,000	6,900	ND	970	310	160,000
	01/28/97	7.76	74.04	19,000	6,100	62 NT	82 ND	ND	71,000
	07/29/97	11.58	70.22	ND	ND	ND		ND ³	80,000
	01/14/98	9.08	72.72	ND^3	3,600	ND^3	ND ³		61,000
	07/01/98	11.25	70.55	6,400	2,100	21	120	330	
	06/18/99	DESTROYED		, 					·
MW-6							ND3	47	97,000/71,000 ⁴
78.91	06/18/99	9.30	69.61	2,100	21	29	ND^3	47	
	01/21/00	9.37	69.54	1,880 ⁵	143	31.2	106	196	41,200/48,800

Table 1
Groundwater Monitoring Data and Analytical Results

Well ID/	Date	DTW	GWE	TPH(G)	B	T	E	X	MTBE
TOC*		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-7	06/18/99	8.70	71.22	ND	ND	ND	ND	ND	16,000/13,000 ⁴ 12,300/18,200 ⁴
79.92	01/21/00	9.30	70.62	ND³	ND ³	ND ³	ND ³	ND³	
MW-8	06/18/99	9.10	71.86	ND	ND	ND	ND	ND	290/160 ⁴
80.96	01/21/00	10.00	70.96	ND	ND	ND	ND	1.09	224/221 ⁴
Trip Blank TB-LB	01/14/98 07/01/98 06/18/99 01/21/00	 	 	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND 14.6

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco (Former Unocal) Service Station #1871 96 MacArthur Boulevard Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to January 14, 1998, were compiled from reports prepared by MPDS Services, Inc.

TOC = Top of Casing elevation

B = Benzene

ppb = Parts per billion

DTW = Depth to Water

T = Toluene

ND = Not Detected

(ft.) = Feet

E = Ethylbenzene

-- = Not Measured/Not Analyzed

GWE = Groundwater Elevation

X = Xylenes

(msl) = Referenced relative to mean sea level

MTBE = Methyl tertiary butyl ether

TPH(G) = Total Petroleum Hydrocarbons as Gasoline

- * TOC elevations were re-surveyed by Kier & Wright in May, 1996, per City of Oakland Benchmark No. 2310, a cut square in concrete curb at mid point of return at the northeast corner of El Dorado and Fairmont Street. (Elevation = 77.53 feet msl).
- Laboratory report indicates the presence of discrete peaks not indicative of gasoline.
- ² Laboratory report indicates the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.
- Detection limit raised. Refer to analytical reports.
- 4 MTBE by EPA Method 8260.
- Laboratory report indicates gasoline C6-C12.

Table 2

Groundwater Analytical Results

Tosco (Former Unocal) Service Station #1871 96 MacArthur Boulevard Oakland, California

Well ID	Date	TPH(D) (ppb)	TOG (ppb)	HVOC (ppb)	SVOC (ppb)
MW-1	06/18/99			ND	
MW-4	04/18/96 07/24/96 10/24/96 01/28/97 07/29/97 01/14/98 07/01/98 06/18/99	110 ¹ ND ND 210 ³ ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ² ND ⁴ ND ND ND ND ND
MW-6	06/18/99			ND	
MW-7	06/18/99		-	ND	
MW-8	06/18/99	-		ND	ND ⁵

EXPLANATIONS:

Groundwater analytical results prior to January 14, 1998, were compiled from reports prepared by MPDS Services, Inc.

TPH(D) = Total Petroleum Hydrocarbons as Diesel

TOG = Total Oil and Grease

HVOC = Halogenated Volatile Organic Compounds by EPA Method 8010

SVOC = Semi-Volatile Organic Compounds by EPA Method 8270

ppb = Parts per billion

-- = Not Analyzed

ND = Not Detected

- Laboratory report indicates the hydrocarbons detected did not appear to contain diesel.
- Bis (2-ethylhexyl) phthalate was detected at a concentration of 14 ppb.
- Laboratory report indicates the hydrocarbons detected appeared to be a diesel and non-diesel mixture.
- Naphthalene was detected at a concentration of 17 ppb.
- 5 All SVOCs were ND except for Bis(2-ethylhexy)phthalate at 11 ppb.

All EPA Method 8010 and 8270 constituents were ND, unless noted.

Table 3
Groundwater Analytical Results - Oxygenate Compounds

Well ID	Date	Ethanol (ppb)	TBA (ppb)	MTBE (ppb)	DIPE (ppb)	ETBE (ppb)	TAME (ppb)	EDB (ppb)	1,2-DCA (ppb)
MW-1	06/18/99	ND¹	ND	47,000	ND ¹	ND ¹	ND¹	ND¹	ND_1
MW-6	06/18/99 01/21/00	ND ¹ 	ND¹	71,000 48,800	ND¹	ND ¹	ND¹ 	ND¹	ND¹
MW-7	06/18/99 01/21/00	ND¹	ND ¹	13,000 18,200	ND¹	ND¹	ND¹	ND¹	ND ¹
MW-8	06/18/99 01/21/00	ND¹ 	ND ¹ 	160 221	ND¹ 	ND ¹	ND¹	ND ¹	ND ¹

EXPLANATIONS:

TBA = Tertiary Butyl Alcohol

MTBE = Methyl Tertiary Butyl Ether

DIPE = Di-isopropyl Ether

ETBE = Ethyl Tertiary Butyl Ether

TAME = Tertiary Amyl Methyl Ether

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-Dichloroethane

ppb = Parts per billion

-- = Not Analyzed

ND = Not Detected

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

Detection limit raised. Refer to analytical reports.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using a MMC flexidip interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ Facility <u># 187</u>	(Job	o#: <u>180068</u>	
Address: 96	Mac Arthur Blv	J. Da	te: <u>1-21-00</u>	
City: Oakl	340	San	mpler:	·
Well ID	WW-	Well Condition:	0.K.	
Well Diameter	4 in.	Hydrocarbon Thickness:	Amount Bail	A STATE OF THE STA
Total Depth	24.10 ft.	Volume 2"	= 0.17 3" = 0.38	4* = 0.66
Depth to Water	15.05 ft.	Factor (VF)	6° = 1.50	12" = 5.80
	9.05 x	1F <u>0.66</u> = 5.9 1x31c	ase volume) = Estimated Purg	e Volume: 18 (gal.)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	Samplin Equipm		
	/ / /3 / ite:	Sediment Des	cription: <u>None</u> Volume	
			*	
Time _\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Volume pH (g21.) 6 7.17 12 7.14 18 7.11	Conductivity 100 To 100	The second of th	ORP Alkalinity (mV) (ppm)
11: 16 11:18 11:21 -	(g21.) 6 7.17 12 7.14 18 7.11 (#) - CONTAINER	LABORATORY INFO	RMATION PE / LABORATORY	(mV) (ppm)
11.16 -11.18 -11.21 -	(g21.) 6 7.17 12 7.14 18 7.11	3.70 3.70 3.74 ————————————————————————————————————	F (mg/L) 7/L 7/L RMATION	(mV) (ppm)
11: 16 11:18 11:21 -	(g21.) 6 7.17 12 7.14 18 7.11 (#) - CONTAINER	LABORATORY INFO	RMATION PE / LABORATORY	(mV) (ppm)
11: 16 11:18 11:21 -	(g21.) 6 7.17 12 7.14 18 7.11 (#) - CONTAINER	LABORATORY INFO	RMATION PE / LABORATORY	(mV) (ppm)
11: 16 	(g21.) 6 7.17 12 7.14 18 7.11 (#) - CONTAINER	2.66 3.70 2.74 LABORATORY INFOR	RMATION PE / LABORATORY	(mV) (ppm)

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ Facility <u># 187</u>	<u> </u>		Job#:	180	068		
	Mac Arthur Blue	J	Date:	1-21-	- 09		
_	and		Sampler: <u>Joe</u>				
Well ID	mw-6	Well Condit	tion:	o.k	-		
Well Diameter	2 _{in.}	Hydrocarbo			nt Bailed		
Total Depth	24.75 h	Thickness:			- 0.38 4	(Gallons)	
Depth to Water	9.37 tt.	Factor (VF)	. <u>.</u>	6 = 1.50	12" = 5.80		
Purge	Disposable Bailer		Sampling		ed Purge Volume: _	g (gai.)	
Equipment:	Bailer Stack Suction Grundfos Other:		Equipment	Batter Pressure Grab San	Bailer		
· -	10:27 10:50 e: 1 gpi	<u>A</u> .⊶ Water	Color:		Odor:ku		
Did well de-wate	r?	If yes;	Time: _	V	olume:	<u>(ˌlsp)</u>	
	olume pH (gal.) 2.5 7.92 7.52 7.38	Conductivity µmhos/cm / 6.35 6.32		<u> </u>	O. ORP yL) (mV)	Alkalinity (ppm)	
SAMPLE ID			INFORMA			YSES	
COMMENTS: _							

9/97-Nelder_frm

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ Facility <u># 18</u> 7	<u> </u>		Job#:	180	0068		 -
	Mac Arthur Bl	vd	Date:	1-2	1-00		
City: Oakl	- 1		Samp	ler:	Jue		
Well ID	mw-7	Well	Condition:	D.k.			
Well Diameter	2 in.	-	ocarbon	Ai (f <u>eeti</u> (pi	nount Ba		(Gallons)
Total Depth	24.55 tt.	Volu	ame 2° = 0.1	17	3" = 0.38	4*	= 0.66
Depth to Water	9.30 ft.	Fact	or (VF)	6 = 130		12" = 5.80	
	15.25 x	VF <u>0.17</u>		volume) = Es	timated Pur	ge Volume:	logl.)
Purge	Disposable Bailer Bailer		Sampling Equipment:	Dispo	sable Bai	iler	•
Equipment:	Stack		240.	Baller			
	Soction				ure Baile: Sample	r	
	Grundios Other:				r:	<u>-</u> _	
Sampling Time: Purging Flow Ra Did well de-water	1	<u>сот.</u>	Water Color: Sediment Descrip If yes; Time: _	ition: <u>/</u> /	ه ۱۸ و	 	· ·
	Volume pH (gal.) 7.46	Cond µmh	uctivity 10 Tempo	rature : 	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
10:09	5 7.47		1.16 71.	<u>ı</u>			
10:11 -	3 7.41		417 -71.	3 — -			
SAMPLE ID	(#) - CONTAINER	LABOR	ATORY INFORMA	ATION LABORA	TORY	ANAL	YSES
MW-7	3 VO A	Y	HCL .	SEQUOIA		TPH(G)/btex/r	ntbe -448264
	2			1			
							
		<u></u>		<u> </u>		<u> </u>	
COMMENTS:							·
COMMITTEE ! CO					<u> </u>		

WELL MONITORING/SAMPLING FIELD DATA SHEET

Facility # 187	acility <u># 1871 </u>					Job#: 180068					
	Mac Arthur B	lvel.			,	-21-0					
	gud I					Ju c					
City: <u>Uder</u>	ano			Sant	ner:		<u></u>				
Well ID	WW-8	Wei	l Condition	1.:	0	K					
Well Diameter	2 in.	-	Irocarbon ckness:	ť	(feet)	Amount E		(Gallons)			
Total Depth	24.80 m	Vo	olume	2" = 0.	.17	3" = 0.3	8 4 12 = 5.80				
Depth to Water	10.00 n.	F-2	ctor (VF)		6 = 1		12 = 3.80				
	14.8 ×	VF <u>8.17</u>	2.52 = <u>laub</u> ;	3 (case	volume) =	Estimated P	urge Valume: _	8 (dsl')			
Purge	Disposable Bailer	•		npling			· · · · · · · · · · · · · · · · · · ·				
Equipment:	Bailer Stack		Equ	iipment	•	sposable B	ailer				
	Suction	•				essure Baile	er				
	Grundfos					ab Sample					
	Other:		٠		U	ther:	- .				
Purging Flow Rat	q! te:	gom.	Sediment	Descrip	- otion:	none	Odor:				
	Yolume pH (gal.)	Cone	ductivity hos/cm Y	Temps	erature	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)			
9'.30	7.33	3	-46	71.	9		• •				
9:34-	$\frac{5}{2}$ $\frac{7.37}{7.00}$		3.42	$-\frac{72}{2}$	<u> </u>						
7,79-	8 7.29		3.4 <u>4</u>		<u>6.3</u>						
:											
SAMPLE ID	(#) - CONTAINER	LABOR REFRIG.	LATORY IN			RATORY	ANAL	YSES			
mw-0	3 VO A	Y	НС		SEQUOL		,	ntbe - 44826			
, , , , , , , , , , , , , , , , , , ,	2 40 11		17.0								
							· · · · · · · · · · · · · · · · · · ·				
COMMENTS: _			<u> </u>								
			··								

Chain-of-Custody-Record MR. DAVID DEWITT (928) 277-2384 Contact (Name) -Facility Address 96 Mackethur Blud Sequoia Analytical Consultant Project Number 180068 Laboratory Name_ Consultant Name Gettler-Ryan Inc. (G-R Inc.) Laboratory Release Number... Samples Collected by (Hame) JOE ATEMIAN TOSCO Address 6747 Sierra Court, Suite I, Dublin, CA 94568 Project Contact (Name) Deanna L. Harding Collection Date ... 2000 Crow Caryon FL, Ste. 400 Signature Ser (Phone) 510-551-7555 (Fax Number) 510-551-7888 DO NOT BILL Analyses To Be Performed Air Charcoal TB-LB ANALYSIS Purgeable Aramatics (8020) Grab Composite Discrete TPH G. + BTEX WANTBE (8015) (8020) Purgeable Halocarbons (8010) Extractable Organics (8270) Container Purgeable Organics (8240) ş 11 Oll and Gream (5520) ∢υ 8 TPH Diosel (3015) Sample Matrix S = Soli W = Water 111 ъ 20 (3 gr ۵ ب ب Remarks ĝ H CL G-W <TB-LB 11:30 3V1A mw-1 10.50 MW-6 10:20 mw-T 11 9:45 -ww-8 11 1 Turn Around Time (Circle Cholos) Date/Ilme 1500 Organization Received By (Signatury) Date/Time 31.00 Relinquished By (Signature) Organization 1-21-00 5 121 100 24 Hrs. G-R Inc. 48 Hre. Date/Time Organization Received By (Signature) Date/Ilme Organization 5 Doys \$tt.Daye Date/Time As Contracted Regioned For Laboratory By (Signature) Dale/Time Organization Relinguished By (Signature)

February 4, 2000

Deanna Harding Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite D Dublin, CA 94568

RE: Tosco(4)/L001187

Dear Deanna Harding:

RECEIVED

FEB 0 / 2000

GETTLEK-KYAN INC.

Enclosed are the results of analyses for sample(s) received by the laboratory on January 21, 2000. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wayne Stevenson Project Manager

CA ELAP Certificate Number I-2360

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite D Dublin, CA 94568

Tosco(4) Project: Project Number:

UNOCAL SS#1871/180068 Project Manager: Deanna Harding

Sampled: 1/21/00 1/21/00 Received:

2/4/00 Reported:

ANALYTICAL REPORT FOR L001187

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
TB-LB	L001187-01	Water	1/21/00
MW-1	L001187-02	Water	1/21/00
MW-6	L001187-03	Water	1/21/00
MW-7	L001187-04	Water	1/21/00
MW-8	L001187-05	Water	1/21/00

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite D

Project: Tosco(4)

Sampled: 1/21/00

Project Number: UNOCAL SS#1871/180068

Received: 1/21/00

Dublin, CA 94568

Project Manager: Deanna Harding

Reported: 2/4/00

Sample Description:

Laboratory Sample Number:

TB-LB L001187-01

	Batch	Date	Date	Specific Method/	Reporting		-	
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
		Seque	oia Analytica	l - San Carlos				
Total Purgeable Hydrocarbons (C6-C	12), BTEX at	d MTBE by	DHS LUFT					
Purgeable Hydrocarbons as Gasoline	0020009	2/3/00	2/3/00		50.0	ND	ug/l	
Benzene	**	11	"		0.500	ND	Ħ	
Toluene	Ħ	tt i	и		0.500	ND	*	
Ethylbenzene	m i	H ·	н	•	0.500	ND	Ħ	
Xylenes (total)	11	n	11		0.500	ND	н	
Methyl tert-butyl ether	11	н .	m		5.00	14.6	Ħ	
Surrogate: a,a,a-Trifluorotoluene	n	"	Ħ	70.0-130		104	%	

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite D

Project: Tosco(4)

Sampled:

1/21/00

Dublin, CA 94568

Project Manager: Deanna Harding

Project Number: UNOCAL SS#1871/180068

Received: 1/21/00 2/4/00 Reported:

Sample Description:

Laboratory Sample Number:

MW-1 L001187-02

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method/ Surrogate Limits	Reporting Limit	Result	Units	Notes*
		Seque	ia Analytica	l - San Carlos				
Total Purgeable Hydrocarbons (C6-C1	2), BTEX ar	nd MTBE by	DHS LUFT					
Purgeable Hydrocarbons as Gasoline	0020002	2/1/00	2/2/00		10000	63700	ug/l	1
Benzene	n	ți	п .		100	5520	н	
Toluene		и .	11	•	100	2000	l†	
	н	17	**		100	2640	**	
Ethylbenzene	11	н			100	13100	P	
Xylenes (total)	•		н			57100		
Methyl tert-butyl ether	91				1000		0/	
Surrogate: a,a,a-Trifluorotoluene	r	"	"	70.0-130		85.7	%	

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite D

Project: Tosco(4)

Sampled: 1/21/00

Dublin, CA 94568

Project Number: Project Manager:

UNOCAL SS#1871/180068 Deanna Harding

Received: 1/21/00 Reported: 2/4/00

Sample Description:

Laboratory Sample Number:

MW-6 L001187-03

	Batch	Date	Date	Specific Method/	Reporting		** ** **	
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
		Sequo	ia Analytica	l - San Carlos				
Total Purgeable Hydrocarbons (C6-C1	2), BTEX an	d MTBE by	DHS LUFT					•
Purgeable Hydrocarbons as Gasoline	0020007	2/2/00	2/2/00		1000	1880	ug/l	1
Benzene	"	n	n		10.0	143	tt .	
Toluene	H	n	π		10.0	31.2	tt .	
Ethylbenzene	ir	H	H		10.0	106	Ħ	
Xylenes (total)	II.	IF.	н		10.0	196	#	٠
Methyl tert-butyl ether	n	n	n		2000	41200	47	
Surrogate: a,a,a-Trifluorotoluene	н	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	# ·	70.0-130		79.6	%	
MTBE by EPA Method 8260A								
Methyl tert-butyl ether	0010141	1/27/00	1/27/00		2000	48800	ug/l	
Surrogate: 1,2-Dichloroethane-d4	n .		"	76.0-114		99.6	%	

Gettler-Ryan/Geostrategies(1) Project: Tosco(4) Sampled: 1/21/00 |
6747 Sierra Court, Suite D Project Number: UNOCAL SS#1871/180068 Received: 1/21/00 |
Dublin, CA 94568 Project Manager: Deanna Harding Reported: 2/4/00

Sample Description: Laboratory Sample Number: MW-7 L001187-04

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method/ Surrogate Limits	Reporting Limit	Result	Units	Notes*
		Seque	oia Analytica	l - San Carlos				
Total Purgeable Hydrocarbons (C6-C	12), BTEX an	d MTBE by	DHS LUFT	•				
Purgeable Hydrocarbons as Gasoline	0020009	2/3/00	2/3/00		1250	ND	ug/i	
Benzene	11	Ħ	H		12.5	ND	11	
Toluene	11		н	•	12.5	ND		•
	#		#	•	12.5	ND	. 14	
Ethylbenzene	H.		. 11		12.5	ND	п	
Xylenes (total)	0020002	2/1/00	2/2/00		500	12300	44	
Methyl tert-butyl ether						93.0	%	
Surrogate: a,a,a-Trifluorotoluene	0020009	2/3/00	2/3/00	70.0-130		93.0	/6	
MTBE by EPA Method 8260A					•			
Methyl tert-butyl ether	0010141	1/27/00	1/27/00		200	18200	ug/l	
Surrogate: 1,2-Dichloroethane-d4	"	п	ır	76.0-114		98.2	%	

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite D Dublin, CA 94568

Project:

Tosco(4)

Sampled: 1/21/00

Project Number: UNOCAL SS#18.

Project Manager: Deanna Harding

Project Number: UNOCAL SS#1871/180068

Received: 1/21/00 Reported: 2/4/00

Sample Description:

Laboratory Sample Number:

MW-8

L001187-05

	Batch	Date	Date	Specific Method/	Reporting			-
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
.				<u>l - San Carlos</u>				
Total Purgeable Hydrocarbons (C6-C	<u>12), BTEX ar</u>	<u>id MTBE by</u>	DHS LUFT					
Purgeable Hydrocarbons as Gasoline	0020009	2/3/00	2/3/00		50.0	ND	ug/l	
Benzene	H	Ħ	6 †		0.500	ND	Ħ	
Toluene	- rr	п	n		0.500	ND	Ħ	
Ethylbenzene	P	n	11		0.500	ND		
Xylenes (total)	n	Ħ	#		0.500	1.09	м	
Methyl tert-butyl ether	H	#	17		5.00	224	н	
Surrogate: a,a,a-Trifluorotoluene	n n	<i>n</i>	"	70.0-130		100	%	··
MTBE by EPA Method 8260A								
Methyl tert-butyl ether	0010141	1/26/00	1/27/00		10.0	221	ug/l	
Surrogate: 1,2-Dichloroethane-d4	"	"	tr	76.0-114		91.6	%	

Gettler-Ryan/Geostrategies(1)

6747 Sierra Court, Suite D

Project Number: UNOCAL SS#1871/180068

Project Manager: Deanna Harding

Project: Tosco(4)

UNOCAL SS#1871/180068

Received: 1/21/00

Reported: 2/4/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUKT/Ouality Control Sequoia Analytical—San Carlos Sequoia Analytical—San Carlos Date Spike Sample QC Reporting Limit Recov. RPD RPD Analyte Analyzed Level Result Result Units Recov. Limits % Limit % Notes*

	Date	Spike	Sample	QC		Keborung rume r		Limit	% Notes*
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%_	Limit	70 INDICES*
Batch: 002 <u>0002</u>	Date Prepa	red: 2/1/00			Extra	ction Method: EPA	5030B	<u>P/T]</u>	
Blank	0020002-B								
Purgeable Hydrocarbons as Gasoline	2/1/00			ND	ug/l	50.0			
Benzene	11			ND	Ħ	0.500			
Toluene	*	•	•	ND	17	0.500			
	•			ND	10	0.500			
Ethylbenzene	ll*			ND	**	0.500			
Xylenes (total)	n			ND	n	5.00			
Methyl tert-butyl ether Surrogate: a,a,a-Trifluorotoluene	n	10.0		8.50	n	70.0-130	85.0		
Surrogate: a,a,a-111jiuoroioiuene									
<u>LCS</u>	<u>0020002-B</u>			7.74	ug/l	70.0-130	77.4		
Benzene	2/1/00	10.0			n mShi	70.0-130	73.9		
Toluene	11	10.0		7.39	et	70.0-130	76.1		
Ethylbenzene	H	10.0		7.61	91	70.0-130	75.7		
Xylenes (total)	n	30.0		22.7		70.0-130	85.7		
Surrogate: a,a,a-Trifluorotoluene	n	10.0		8.57		70.0-150	05.7		
<u>LCS</u>	0020002-E	3 <u>S2</u>				70.0.100	02.0		
Purgeable Hydrocarbons as Gasoline	2/1/00	250		207	ug/l	70.0-130	82.8		
Surrogate: a,a,a-Trifluorotoluene	н	10.0	- ,	7.59	#	70.0-130	75.9		
Matrix Spike	0020 <u>002-1</u>	MS1 L	.001 <u>203-05</u>						
Purgeable Hydrocarbons as Gasoline	2/1/00	250	ND	224	ug/l	60.0-140	89.6		
Surrogate: a,a,a-Trifluorotoluene	n	10.0		9.50	n	70.0-130	95.0		
-	0020002-	MSD1 I	_0012 <u>03-05</u>		•				
Matrix Spike Dup	2/1/00	250	ND	227	ug/l	60.0-140	90.8	25.0	1.33
Purgeable Hydrocarbons as Gasoline Surrogate: a,a,a-Trifluorotoluene	#	10.0		9.25	#	70.0-130	92.5	 -	
Burrogate. u,u,u-11-y-u-					E4	action Method: EP	A 5030F	R IP/Tl	
Batch: 0020007		pared: 2/2/0	<u>90</u>		LXII	action Metadu. El 2	A 30301	<u> </u>	
Blank	0020007-	<u>BLK1</u>				50.0			
Purgeable Hydrocarbons as Gasoline	2/2/00			ND	ug/l "	0.500			
Benzene	н			ND	"	0.500			
Toluene	n			ND	" m				
Ethylbenzene	tt			ND		0.500			
Xylenes (total)	11			ND	н	0.500 5.00			
Methyl tert-butyl ether				ND	"		90.0		
Surrogate: a,a,a-Trifluorotoluene	#	10.0		9.00	н	70.0-130	y 0.0		
Blank	0020007	BLK2							
Purgeable Hydrocarbons as Gasoline	2/3/00			ND	ug/l	50.0			
Benzene	n			ND	#	0.500			•

Sequoia Analytical - San Carlos

Gettler-Ryan/Geostrategies(1)
Project: Tosco(4)
Sampled: 1/21/00
6747 Sierra Court, Suite D
Project Number: UNOCAL SS#1871/180068
Received: 1/21/00
Dublin, CA 94568
Project Manager: Deanna Harding
Reported: 2/4/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - San Carlos

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Blank (continued)	0020007-BI	E?								
Toluene	2/3/00	<u> </u>		ND	(1	0.600				
Ethylbenzene	<i>2/3/00</i>			ND	ug/l "	0.500 0.500				
Xylenes (total)	11			ND ND	n	0.500				
Methyl tert-butyl ether	п .			ND ND	**	5.00				
Surrogate: a,a,a-Trifluorotoluene	,,	10.0		8.78	п	70.0-130	87.8			
LCS	0020007-BS	21								
Benzene	2/2/00	10.0		7.78	ug/l	70.0-130	77.8			
Toluene	71 27 00	10.0		7.78	ii π≅λt	70.0-130	77.8			
Ethylbenzene	**	10.0		7.32		70.0-130	74.2			
Xylenes (total)	H	30.0		22.7	**		74.2 75.7			
Surrogate: a,a,a-Trifluorotoluene		10.0		8.56	#	70.0-130				
barroguie. a,a,a-17 graco otomene		10.0		8.30		70.0-130	85.6			
<u>LCS</u>	0020007-BS	32								
Purgeable Hydrocarbons as Gasoline	2/2/00	 250		195	ug/l	70.0-130	78.0			
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.08	n	70.0-130	90.8			
LCS	0020007-BS	:3		-						
Benzene	2/3/00	10.0		8.41	ug/l	70.0-130	84.1			
Toluene	n	10.0		7.92		70.0-130	79.2			
Ethylbenzene	H	10.0		8.00	ıı	70.0-130	80.0			
Xylenes (total)	n	30.0		24.3	n	70.0-130	81.0			
Surrogate: a,a,a-Trifluorotoluene	n	10.0	· · · · · · · · · · · · · · · · · · ·	8.48	"	70.0-130	84.8			
LCS	0020007-BS	: 4								
Purgeable Hydrocarbons as Gasoline	2/3/00	250		202	ug/l	70.0-130	80.8			
Surrogate: a,a,a-Trifluorotoluene	п	10.0		9.38	# # T	70.0-130	93.8		····	
Matrix Spike	0020007-M	S1 T	001249-07							
Benzene	2/2/00	10.0	ND	9.47	ug/l	60.0-140	94.7			
Toluene	H	10.0	ND	8.39	ug/i	60.0-140	83.9			
Ethylbenzene	п	10.0	ND	8.49	**	60.0-140	84.9			
Xylenes (total)		30.0	ND	25.8	**	60.0-140	86.0			
Surrogate: a,a,a-Trifluorotoluene	н	10.0		8.69	· "	70.0-130	86.9		<u>-</u>	
Matrix Spike Dup	0030007 344	eni #	001040-05							
Benzene	<u>0020007-M:</u> 2/2/00		001249-07	0.00	a	(0.0.140	00.0	25.0		
Toluene	2/2/00	10.0	ND	8.90	ug/l "	60.0-140	89.0	25.0	6.21	
Ethylbenzene	"	10.0	ND	8.38	"	60.0-140	83.8	25.0	0.119	
Xylenes (total)		10.0	ND	8.41	"	60.0-140	84.1	25.0	0.947	
Surrogate: a,a,a-Trifluorotoluene		30.0	ND	25.7	#	60.0-140	85.7	25.0	0.349	
		10.0		8.53	,,	70.0-130	<i>85.3</i>			

Sequoia Analytical - San Carlos

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite D Dublin, CA 94568

Project:

Tosco(4)

Project Number: UNOCAL SS#1871/180068 Project Manager: Deanna Harding

Sampled: 1/21/00 Received: 1/21/00

Reported: 2/4/00

Total Purgeable Hydrocarbous (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - San Carlos

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	<u>%</u>	Notes*
					-	ction Method: EP.	A ENSOR	ID/TI		
Batch: 0020009	Date Prepa		<u>}</u>		Extrac	ction (vietnou; Er	A SUSUD	13/11		
<u>Blank</u>	0020009-B	<u>LK1</u>		3773	A	50.0				
Purgeable Hydrocarbons as Gasoline	2/2/00		-	ND	ug/l "	0.500				
Benzene	IT			ND		0.500				
Toluene	· #			ND	-					
Ethylbenzene	. 41			ND		0.500 0.500				
Xylenes (total)	H		•	ND	и.	5.00				
Methyl tert-butyl ether	h			ND	"		98.8		 -	
Surrogate: a,a,a-Trifluorotoluene	n ·	10.0		9.88	•	70.0-130	90.0			
Blank	0020009-B	LK3								
Purgeable Hydrocarbons as Gasoline	2/3/00			ND	ug/l	50.0				
Benzene	**			ND	**	0.500				
Toluene	1)			ND	•	0.500				
Ethylbenzene	ţŢ.			ND	11	0.500				
Xylenes (total)	#1			ND	п	0.500				
Methyl tert-butyl ether	11			ND	H	5.00				
Surrogate: a,a,a-Trifluorotoluene	н	10.0		10.3		70.0-130	103			
LCS	002000 <u>9-</u> B	<u>8S1</u>								
Benzene	2/2/00	10.0		10.6	ug/l	70.0-130				
Toluene		10.0		10.1		70.0-130				
Ethylbenzene	Ħ	10.0		10.2	и	70.0-130				
Xylenes (total)	17	30.0		30.4	17	70.0-130				
Surrogate: a,a,a-Trifluorotoluene	"	10.0	· -	9.82		70.0-130	98.2			
<u>LCS</u>	<u>0020009-1</u>	BS2	-							
Purgeable Hydrocarbons as Gasoline	2/2/00	250		249	ug/l_	70.0-130				
Surrogate: a,a,a-Trifluorotoluene	#	10.0		11.8	#	70.0-130	118			
<u>LCS</u>	0020009-1	BS3								
Benzene	2/3/00	10.0		10.3	ug/l	70.0-130				
Toluene	н	10.0		9.94	м	70.0-130				
Ethylbenzene	"	10.0		9.84	"	70.0-130				
Xylenes (total)	н	30.0		29.9	#	70.0-130				
Surrogate: a,a,a-Trifluorotoluene	п	10.0		10.1	"	70.0-130	101			
1.00	0020009-	RS4				•				
LCS	2/3/00	250		236	ug/l	70.0-130				
Purgeable Hydrocarbons as Gasoline	2/3/00	10.0		11.7	<u> </u>	70.0-130				
Surrogate: a,a,a-Trifluorotoluene		10.0		2						

Sequoia Analytical - San Carlos

Gettler-Ryan/Geostrategies(1) Project: Tosco(4) Sampled: 1/21/00 6747 Sierra Court, Suite D Project Number: UNOCAL SS#1871/180068 Received: 1/21/00 Dublin, CA 94568 Project Manager: Deanna Harding Reported: 2/4/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control
Sequoia Analytical - San Carlos

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Matrix Spike	0020009-M	S1 L	001249-01							
Benzene	2/2/00		ND	10.9	ug/l	60.0-140	109			
Toluene	Ħ	10.0	ND	10.5	"	60.0-140	105			
Ethylbenzene	Ħ	10.0	ND	10.4	n	60.0-140	104			
Xylenes (total)	n	30.0	ND	31.4	10	60.0-140	105			
Surrogate: a,a,a-Trifluorotoluene		10.0		10.0	n	70.0-130	100			
Matrix Spike Dup	0020009-M	SD1 L	001249-01							
Benzene	2/2/00	10.0	ND	9.94	ug/l	60.0-140	99.4	25.0	9.21	
Toluene	H	10.0	ND	9.77	11	60.0-140	97.7	25.0	7.20	
Ethylbenzene	n	10.0	ND	9.65	17	60.0-140	96.5	25.0	7.48	
Xylenes (total)		30.0	ND	28.8	17	60.0-140	96.0	25.0	8.96	
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.81	n .	70.0-130	98.1	 _		-

Gettler-Ryan/Geostrategies(1) Project: Tosco(4) Sampled: 1/21/00 6747 Sierra Court, Suite D Project Number: UNOCAL SS#1871/180068 Received: 1/21/00 Dublin, CA 94568 Project Manager: Deanna Harding Reported: 2/4/00

MTBE by EPA Method 8260A/Quality Control Sequoia Analytical - San Carlos

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	-	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*	
Batch: 0010141	Date Prepa	Date Prepared: 1/26/00				tion Method: EP.	tion Method: EPA 5030B [P/T]				
Blank	0010141-B	L <u>K1</u>									
Methyl tert-butyl ether	1/26/00			ND	ug/l	0.500					
Surrogate: 1,2-Dichloroethane-d4	#	50.0		46.7	n .	76.0-114	93.4				
Blank	0010141-B	LK2									
Methyl tert-butyl ether	1/27/00			ND	ug/l	0.500					
Surrogate: 1,2-Dichloroethane-d4	N	50.0		51.3	*	76.0-114	103				
LCS	0010141-B	<u>S1</u>									
Methyl tert-butyl ether	1/26/00	50.0		39.2	ug/l	70.0-130	78.4			····	
Surrogate: 1,2-Dichloroethane-d4	H	50.0		46.5	nt .	76.0-114	93.0				
LCS	0010141-B	<u>S2</u>									
Methyl tert-butyl ether	1/27/00	50.0		63.7	ug/l	70.0-130			 		
Surrogate: 1,2-Dichloroethane-d4	#	50.0		51.5	"	76.0-114	103				
Matrix Spike	0010141-M	<u> </u>	001200-01								
Methyl tert-butyl ether	1/27/00	50.0	ND	35.6	ug/l	60.0-140		_			
Surrogate: 1,2-Dichloroethane-d4	T T	50.0	· · · · · · · · · · · · · · · · · · ·	45.2	π	76.0-114	90.4				
Matrix Spike Dup	0010141-M	ISD1 L	001200-01			'			عادا د		
Methyl tert-butyl ether	1/27/00	50.0	ND	37.1	ug/l	60.0-140		25.0	4.13		
Surrogate: 1,2-Dichloroethane-d4	н	50.0		43.9	Ħ	76.0-114	87.8				

Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite D Dublin, CA 94568

Project: Tosco(4)

Project Manager: Deanna Harding

Project Number: UNOCAL SS#1871/180068

1/21/00 Sampled:

Received: 1/21/00 Reported: 2/4/00

Notes and Definitions

Note Chromatogram Pattern: Gasoline C6-C12 DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported dry Sample results reported on a dry weight basis Recovery Recov. RPD Relative Percent Difference